
Logistic Regression 

Logistic regression is a type of generalized linear model, which is a family of 
models for which key linear assumptions are relaxed. Logistic regression is an 
excellent tool for modeling relationships with outcomes that are not measured 
on a continuous scale (a key requirement for linear regression). Logistic regres-
sion is often leveraged to model the probability of observations belonging to 
different classes of a categorical outcome, and this type of modeling is known 
as classification. The context for classification can be binomial for two classes 
(e.g., active/inactive, promoted/not promoted), multinomial for multiple unordered 
classes (e.g., job family, location), or ordinal for multiple ordered classes (e.g., 
survey items measured on a Likert scale, performance level, education level). 
Regardless of the outcome variable’s classes, logistic regression is in fact a 
type of regression analysis, which by definition returns a numeric outcome—and 
probabilities are numeric. Logistic regression accomplishes this by using a link 
function to generalize the linear model for non-continuous outcomes. 

You may be wondering why linear regression cannot be implemented when the 
categorical outcome is dummy coded as outlined in chapter “Data Preparation”. 
In a binary case, in which the categorical response has been coded as 1/0, least 
squares regression would produce an estimate for .β̂X that represents the estimated 
probability of the outcome coded as 1 given X. For example, if attrition is the 
binary outcome and .Y = 1 for employees who left and .Y = 0 for employees 
who stayed, .Ŷ > 0.5 could lend to a termination prediction assuming this is an 
appropriate probability threshold. Linear regression may produce estimates lower 
than 0 and higher than 1, however, which complicates the interpretation of estimates 
as probabilities. 

This issue is not limited to binary categorical outcomes. Response variables with 
more than 2 categories cannot naturally be converted into quantitative values that are 
appropriate for linear regression. Instead of modeling the response directly as in lin-
ear regression, logistic regression models the probability of an outcome’s class given 
values for one or more predictors. For example, we can leverage our employees 
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data set to model the probability of active given a value for  interview_rating, 
which would be written as Pr(active = Yes  |  interview_rating) or simply  
p(inteview_rating). A probability of active = Yes will be estimated for a 
given value of interview_rating, and the probability threshold for determining 
the predicted class needs to be defined based on the business context. If we want 
to minimize false positives (i.e., incorrectly flagging at-risk employees who do not 
actually leave), we may set the threshold to something north of 0.5 (e.g., 0.7) to gain 
more confidence that those classified into the termination class are highly likely to 
exit. 

Binomial Logistic Regression 

Since estimating a binary outcome using linear regression can result in .p(X) < 0 for  
some values of X and p(X) > 1 for others, we need a function that constrains the 
output to a [0,1] interval. For logistic regression, the logistic function is used. This 
function converts the linear model, .p(X) = β0 + β1X, to the following form: 

. p(X) = eβ0+β1X

1 + eβ0+β1X

Irrespective of the value of X, the logistic function will always produce a 
sigmoidal (S-shaped) curve. 

Taking the ratio of . p(X)
1−p(X)

will give the odds of the outcome, which ranges 

between 0 (very low) and . ∞ (very high). The logarithm of this ratio, .log( p(X)
1−p(X)

), 
is known as the log odds or logit and is fundamental to logistic regression. Log odds 
is a monotonic transformation, meaning the greater the odds, the greater the log of 
odds (and vice versa). 

Recall that in linear regression, the coefficient . β on a predictor is interpreted as 
the average change in Y for a one-unit increase in the respective predictor’s value. 
In logistic regression, the interpretation is similar but rather than . β representing the 
average change in Y , and it represents the average unit change in the log of the odds 
for a one-unit increase in the predictor’s value. 

In R, the glm() function is used in conjunction with the family = binomial 
argument to fit a logistic regression model. As we covered in chapter “Statistical 
Inference”, discrete probability distributions can be leveraged to model different 
types of nominal variables, and the binomial distribution is appropriate for a 
sequence of independent observations with only two outcomes—such as our 
active variable featuring only yes and no values. Therefore, we need to pass 
the family = binomial argument into the glm() function. The formula passed 
into the function is structured consistent with the lm() function used for linear 
regression: glm(y ~ x, data).
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## 
## Call: 
## glm(formula = active ~ interview_rating, family = "binomial", 
## data = employees) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -3.03045 0.00000 0.00002 0.00531 2.06562 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) -74.486 10.333 -7.208 5.67e-13 *** 
## interview_rating 21.963 2.997 7.329 2.32e-13 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 1298.58 on 1469 degrees of freedom 
## Residual deviance: 103.27 on 1468 degrees of freedom 
## AIC: 107.27 
## 
## Number of Fisher Scoring iterations: 11 

The logistic regression output has some differences relative to the output of a 
linear regression model. 

• Estimate: Average change in the log of odds for each one-unit increase in 
the value of the predictor 

• z value: Ratio of Estimate / Standard Error. Assuming .α = 0.05, a .|z-
value. | >= 2 (2s of the mean) is a good rule of thumb for achieving statistical 
significance per the properties of the normal distribution. 

• Null deviance: Measure of how well the response can be predicted by a 
model with only an intercept term; the lower the number, the better the fit. 

• Residual deviance: Measure of how well the response can be predicted 
by a model with p predictors; the lower the number, the better the fit. The 
larger the delta between residual and null deviance, the better the model with 
p predictors relative to the intercept-only model. 

Given the positive coefficient on interview_rating, we can interpret this to 
mean that for each one-unit increase in the average interviewer rating during the 
onsite stage of the employee’s recruiting process, the log of the odds of the employee 
staying with the organization (active status of Yes coded as 1) increases by 21.96. 

To illustrate why the logistic function is necessary, let us demonstrate differences 
in applying linear and logistic regression models by regressing a binary outcome 
active onto interview_rating.
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Fig. 1 Linear (left) and logistic (right) functions applied to models regressing active status (1/0) 
onto median interviewer rating 

Figure 1 illustrates that for high values of interview_rating, a linear model 
would estimate probabilities for active that are greater than 1. Since probabilities 
range from 0 (impossible) to 1 (certain), anything outside the [0,1] interval does not 
make sense. On the other hand, the logistic function produces the S-shaped curve 
described previously. Using the logistic function, the probabilities are constrained 
to the [0,1] interval, and the visual reflects the fact that active can be perfectly 
predicted for low and high values of interview_rating, but it is a mixed bag for 
values in the middle of the range (3.3–3.6). 

It is often helpful to explain the relationship between a predictor and binary 
outcome in terms of a percentage increase or decrease. When .β = 1, this indicates 
that the likelihood of the outcome is identical between the two groups of the 
predictor. If we exponentiate the coefficients, we can convert the log odds into odds 
ratios to facilitate a more intuitive interpretation. Therefore, . (exp(β) − 1) ∗ 100
will provide the percentage increase or decrease in the odds of the included group 
relative to the omitted group. 

Let us evaluate the log odds for active regressed onto two binary predictors: 
overtime and job_lvl2plus.
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# Create dummy-coded variable for job level 2+ 
employees$job_lvl2plus <- ifelse(employees$job_lvl > 1, 1, 0) 

# Fit a logistic regression model 
glm.fit <- glm(active ~ overtime + job_lvl2plus, data = 

employees, family = 'binomial')↪→ 

# Produce model summary 
summary(glm.fit) 

## 
## Call: 
## glm(formula = active ~ overtime + job_lvl2plus, family = "binomial", 
## data = employees) 
## 
## Deviance Residuals: 
## Min 1Q Median 3Q Max 
## -2.3688 0.3532 0.3532 0.6300 1.1270 
## 
## Coefficients: 
## Estimate Std. Error z value Pr(>|z|) 
## (Intercept) 1.5163 0.1192 12.718 < 2e-16 *** 
## overtimeYes -1.3965 0.1522 -9.176 < 2e-16 *** 
## job_lvl2plus 1.2270 0.1523 8.055 7.93e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
## Null deviance: 1298.6 on 1469 degrees of freedom 
## Residual deviance: 1149.8 on 1467 degrees of freedom 
## AIC: 1155.8 
## 
## Number of Fisher Scoring iterations: 5 

We can convert these coefficients into odds ratios by exponentiating the coeffi-
cients: 

# Return exponentiated coefficients 
exp(coef(glm.fit)) 

## (Intercept) overtimeYes job_lvl2plus 
## 4.5551147 0.2474668 3.4108303 

The exponentiated coefficient on overtime is .exp(β) = 0.25, so there is a 
.(1−0.25)∗100 = 75% decrease in the odds of being active for employees who work 
overtime (since overtime = Yes is the included group) relative to those who do 
not work overtime. The exponentiated coefficient on job_lvl2plus is . exp(β) =
3.41, so there is a .(3.41 − 1) ∗ 100 = 241% increase in the odds of being active 
for those with a job level of 2 or greater relative to those with a job level of 1 (i.e., 
attrition is a larger concern for level 1 employees).
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Generalized linear mixed models can be fitted using the glmer() function from 
the lme4 library. The syntax is identical to the illustration of lmer() for multilevel 
linear models in chapter “Linear Regression” with the exception of needing to define 
family as an additional argument. 

A comparison of glm() and glmer() fits for logistic regression is shown in the 
following block of code. The mixed model example features an additional random 
(group-level) effect on business_travel via 1 | business_travel and fixed 
(observation-level) effects on remaining predictors which are consistent with the 
standard logistic regression model: 

# Load library 
library(lme4) 

# Logistic model 
glm(active ~ overtime + job_lvl2plus, data = employees, family 

= 'binomial')↪→ 

## 
## Call: glm(formula = active ~ overtime + job_lvl2plus, family = "binomial", 
## data = employees) 
## 
## Coefficients: 
## (Intercept) overtimeYes job_lvl2plus 
## 1.516 -1.396 1.227 
## 
## Degrees of Freedom: 1469 Total (i.e. Null); 1467 Residual 
## Null Deviance: 1299 
## Residual Deviance: 1150 AIC: 1156 

# Logistic mixed model 
lme4::glmer(active ~ overtime + job_lvl2plus + (1 | 

business_travel), data = employees, family = 'binomial')↪→ 

## Generalized linear mixed model fit by maximum likelihood (Laplace 
## Approximation) [glmerMod] 
## Family: binomial ( logit ) 
## Formula: active ~ overtime + job_lvl2plus + (1 | business_travel) 
## Data: employees 
## AIC BIC logLik deviance df.resid 
## 1148.0596 1169.2317 -570.0298 1140.0596 1466 
## Random effects: 
## Groups Name Std.Dev. 
## business_travel (Intercept) 0.4351 
## Number of obs: 1470, groups: business_travel, 3 
## Fixed Effects: 
## (Intercept) overtimeYes job_lvl2plus 
## 1.546 -1.382 1.223
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Multinomial Logistic Regression 

Multinomial logistic regression is used to estimate the probability of an unordered 
categorical response with .K > 2 classes. With an understanding of binomial logistic 
regression, extending the binomial model to a multinomial logistic regression model 
should be relatively intuitive. 

To extend the binomial model to a multinomial context, we need to first identify 
a reference level. This decision may be arbitrary or guided by the research question 
or hypothesis, but the decision is nonetheless important as it impacts how the 
model coefficients are interpreted—always relative to the reference level. With the 
reference level defined, we can then express the multinomial logistic regression 
model as: 

. Pr(Y = k|X = x) = eβk0+βk1x1+...+βkpxp

1 +
K−1∑

j=1

eβj0+βj1x1+...+βjpxp

where K is the reference class, j is a .K−1 non-reference level, and k is the specified 
class for which the probability is being estimated on the basis of values for one or 
more X predictors. 

Consider dept from our employees data, which has values of Research & 
Development, Sales, and Human Resources. This is a nominal variable because 
differences in these levels are not ordered in the same way job levels ranging 
from 1 to 10 or Likert scales ranging from 1 to 5 are. Employees in the Sales 
department may be greater in number relative to employees in the Human Resources 
department, for example, but it would not be appropriate to assign to the Sales 
department a numeric value that indicates it is higher or better relative to the Human 
Resources department. 

Multinomial models are essentially a collection of binomial models which 
compare the log odds of each non-reference category to the specified reference 
category. If the Human Resources department is identified as the reference category 
K , then .βk0 for .k = Sales can be interpreted as the log odds of Sales department 
membership relative to Human Resources department membership in the following 
equation: 

. log

(
Pr(Y = k|X = x)

P r(Y = K|X = x)

)
= βk0 + βk1x1 + . . . + βxpxp

Depending on the research objective, it may be appropriate to compute the odds 
of one category relative to all other categories. This can actually be accomplished 
using binomial regression if the category of interest is coded as 1 and all other 
categories are coded as 0. In this case, the reference for the binomial model is 
a collection of .K − 1 categories. If understanding the odds of each category



230 Logistic Regression

relative to a reference category is more appropriate based on the research objective, 
multinomial logistic regression is the proper model. 

Let us illustrate how to implement multinomial logistic regression by determin-
ing how variables in the employees data set help in classifying employees into 
departments. To build this model in R, we will use the multinom function from 
the nnet package. It is important that the nominal response variable is defined as a 
factor before implementing multinomial logistic regression, so we will first convert 
the data type of dept from its native character type to a factor. We also need to 
identify the reference department against which the probability of each of the other 
departments will be evaluated; we will define this using the ref argument within 
the relevel() function: 

# Load library 
library(nnet) 

# Convert dept to factor 
employees$dept <- factor(employees$dept) 

# Specify reference level 
employees$dept <- relevel(employees$dept, ref = "Human 

Resources")↪→ 

# Fit multinomial logistic regression model 
# An omitted group for categorical variables is defined by 

default↪→ 

multinom.fit <- nnet::multinom(dept ~ overtime + ed_field, 
data = employees)↪→ 

## # weights: 24 (14 variable) 
## initial value 1614.960064 
## iter 10 value 887.448722 
## iter 20 value 833.883230 
## iter 30 value 833.513790 
## final value 833.513639 
## converged 

# Summarize results from model object 
summary(multinom.fit) 

## Call: 
## nnet::multinom(formula = dept ~ overtime + ed_field, data = employees) 
## 
## Coefficients: 
## (Intercept) overtimeYes ed_fieldLife Sciences 
## Research & Development -18.92857 0.1674815 22.19842
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## Sales -19.40948 0.1602262 21.60505 
## ed_fieldMarketing ed_fieldMedical ed_fieldOther 
## Research & Development 25.72879 22.21217 21.93577 
## Sales 37.42515 21.27842 20.96823 
## ed_fieldTechnical Degree 
## Research & Development 22.0455 
## Sales 21.5113 
## 
## Std. Errors: 
## (Intercept) overtimeYes ed_fieldLife Sciences 
## Research & Development 1.808496 0.3917603 1.817514 
## Sales 1.810390 0.4071887 1.819982 
## ed_fieldMarketing ed_fieldMedical ed_fieldOther 
## Research & Development 8.991934 1.820007 1.864206 
## Sales 8.996707 1.823207 1.874536 
## ed_fieldTechnical Degree 
## Research & Development 1.84963 
## Sales 1.85451 
## 
## Residual Deviance: 1667.027 
## AIC: 1695.027 

Notice the output from the multinom() function is quite limited relative to 
glm() and lm(). Coefficients and standard errors are provided, but p-values are 
not available in the output, so we will need to calculate them separately. 

A statistical measure named Akaike Information Criterion (AIC) is included 
in the output of this model, which is a score that is helpful for model selection. AIC 
is calculated by: 

. AIC = −2
�

n
+ 2

k

n
,

where n is the number of observations, k is the number of parameters (predictors + 
intercept), and . � is the log likelihood function where: 

. � = −n

2

(
1 + ln(2π) + ln

(
1

n

n∑

i=1

(yi − ŷi )
2

))

Just as we compared . R2 across linear regression models in chapter “Linear 
Regression”, AIC can be compared across models to determine which one is a better 
fit to the data; lower AIC values indicate better fit. Consistent with how the Adjusted 
. R2 statistic adjusts for variables that do not provide information, AIC penalizes 
models that use more parameters. Therefore, if two models explain the same amount 
of variance in the response, the model with fewer parameters will achieve a lower 
AIC score. 

To determine whether the coefficients are statistically significant, we need to 
perform an additional step to compute p-values using z scores:
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# Calculate z-scores 
z_scores <- summary(multinom.fit)$coefficients / 

summary(multinom.fit)$standard.errors↪→ 

# Produce p-values 
p_values <- (1 - pnorm(abs(z_scores))) * 2 

# Transpose and display rounded p-values 
data.frame(t(round(p_values, 3))) 

## Research...Development Sales 
## (Intercept) 0.000 0.000 
## overtimeYes 0.669 0.694 
## ed_fieldLife Sciences 0.000 0.000 
## ed_fieldMarketing 0.004 0.000 
## ed_fieldMedical 0.000 0.000 
## ed_fieldOther 0.000 0.000 
## ed_fieldTechnical Degree 0.000 0.000 

These p-values indicate that those who work overtime are not significantly more 
likely to work in either the Research & Development or Sales departments relative 
to the Human Resources department. In other words, a considerable portion of 
employees in all three departments work overtime, so this variable is not helpful 
in classifying employees into their correct departments. This is evident in Fig. 2. 

The p-values indicate that educational background is a strong predictor of 
department. This is evidenced in Fig. 3, which shows that each educational field is 
generally dominated by a single department. This means that we can achieve strong 
departmental purity on the basis of ed_field alone. All employees who studied 
Marketing work in Sales and all employees who studied HR work in the HR depart-
ment. However, those who work in R&D have a variety of educational backgrounds, 
so the signal is not as clear for these cases and additional variables would be needed 
to more accurately assign these employees to the correct department. 

As we did for binomial logistic regression, we can compute the exponential of 
model coefficients for the multinomial logistic regression model to convert the log 
odds to more intuitive odds ratios: 

# Return exponentiated coefficients from model object 
# Transpose rows to columns for improved readability 
data.frame(t(exp(coef(multinom.fit))))
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## Research...Development Sales 
## (Intercept) 6.017654e-09 3.720234e-09 
## overtimeYes 1.182323e+00 1.173776e+00 
## ed_fieldLife Sciences 4.371726e+09 2.415207e+09 
## ed_fieldMarketing 1.492349e+11 1.792819e+16 
## ed_fieldMedical 4.432226e+09 1.742213e+09 
## ed_fieldOther 3.361886e+09 1.277572e+09 
## ed_fieldTechnical Degree 3.751786e+09 2.199075e+09 

Consistent with our approach for binomial logistic regression, we can inter-
pret these exponentiated coefficients in terms of having greater or lesser odds. 
Importantly, in the multinomial context, the odds are relative to the reference 
category—the Human Resources department in this case. 

For example, the odds ratio associated with a Medical educational field is 
.exp(β) = 4.43 for Research & Development and .exp(β) = 1.74 for Sales. 
Therefore, those with a Medical education have .(4.43−1)∗100 = 343 greater odds 
of being in the Research & Development department and . (1.74 − 1) ∗ 100 = 74
greater odds of being in the Sales department relative to the Human Resources 
department. We can ignore the odds ratios associated with overtime since this 
variable does not provide significant information. 

Ordinal Logistic Regression 

Many projects in people analytics involve understanding how variables influence 
ordinal outcomes, such as performance ratings or survey items measured on a 
Likert scale. Stepwise changes in the levels of ordinal outcomes may or may not 
be consistent. For example, it may be easy for one to be promoted from job level 
1 to 2 but relatively difficult to progress from 5 to 6. Linear regression should not 
be used in these settings, as linear assumptions are designed for data measured on a 
continuous scale and will not hold for ordinal data. This section will cover ordinal 
logistic regression, which is a modeling technique designed for understanding how 
variables influence stepwise changes in a multi-class ordinal outcome. 

Beyond the universal data screening procedures we have covered, such as 
ensuring problematic collinearity is not present, ordinal logistic regression features 
a unique proportional odds assumption that must be satisfied. This assumption, 
also known as the parallel regression assumption, requires that each independent 
variable has an equal effect at each level of the ordinal outcome. If the effect varies 
across levels of the outcome, separate models are needed to accurately reflect the 
associations with each pair of levels. 

Though other approaches exist for modeling ordinal outcomes, the proportional-
odds model based on cumulative distribution probabilities is the most common. Its 
intercepts are dependent on the j levels, but slopes are equal as defined by:
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. log

(
Pr(Y ≤ j)

P r(Y > j)

)
= βj0 −

n∑

i=1

β1ix1i + . . . + βpixpi

The implementation of ordinal logistic regression will be demonstrated by eval-
uating the statistical drivers of engagement. First, we need to define engagement as 
an ordered factor: 

# Define ordered factor 
employees$engagement <- ordered(employees$engagement, levels = 

c(1, 2, 3, 4, 5))↪→ 

# Verify structure of engagement variable 
str(employees$engagement) 

## Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 3 2 2 3 3 3 4 3 2 3 ...  

Next, the proportional odds assumption will be checked using theBrant test. The  
Brant test is a set of comparisons of the separate binary logistic models underlying 
the overall model (Brant, 1990). This test evaluates whether .βj1 through .βjp are 
consistent across each of the j levels. This is done via a . χ2 test to compare 
coefficients and determine whether observed differences are larger departures from 
what we would expect by chance. The null hypothesis states that coefficients are 
not statistically different across the j levels; therefore, .p < 0.05 indicates that 
significant differences in effects are present across the j levels and, thus, the 
proportional odds assumption is violated. 

We can leverage the brant package in R for this, which is compatible with the 
polr() function from the MASS package that will be used to perform ordinal logistic 
regression. Since we will be evaluating model statistics, rather than merely using 
the model for prediction (the subject of chapter “Predictive Modeling”), we need to 
specify the Hess = TRUE argument in the polr() function to include the Hessian 
matrix (observed information matrix) in the output. 

# Load libraries 
library(MASS) 
library(brant) 

# Fit a ordinal logistic regression model 
ord.fit <- MASS::polr(engagement ~ org_tenure, data = 

employees, Hess = TRUE)↪→ 

# Test proportional odds assumption using the Brant test 
brant::brant(ord.fit)
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## --------------------------------------------
## Test for X2 df probability 
## --------------------------------------------
## Omnibus 0.39 2 0.82 
## org_tenure 0.39 2 0.82 
## --------------------------------------------
## 
## H0: Parallel Regression Assumption holds 

Notice the line in the output for the omnibus test, which shows an identical 
. χ2, df , and p-value to the line associated with org_tenure. Omnibus tests are 
statistical tests which test for the significance of several parameters in a model at 
once. For example, a one-way ANOVA evaluating differences in mean commute 
time across three locations is an omnibus test since it has more than two parameters. 
As we covered in chapter “Analysis of Differences”, the null hypothesis is rejected 
in the context of ANOVA if there is at least one difference in complex contrasts— 
even if the mean commute time is not significantly different between all groups. 
Test statistics are identical for this ordinal logistic regression model because there is 
a single predictor, but Brant’s omnibus test investigates equality of coefficients for 
all predictors jointly in the case of more than two parameters (Martin, 2022). The 
null and alternative hypotheses for Brant’s omnibus test are: 

• . H0: The odds are proportional for all predictors in the model. 
• . HA: The odds are non-proportional for at least one predictor. 

The results of Brant’s test indicate that we fail to reject . H0 since .p = 0.82 for 
the omnibus test, so the proportional odds assumption holds for these data. If the 
model featured more than one predictor, we could also evaluate the statistics on 
individual predictors—but only to determine for which predictor(s) the proportional 
odds assumption is violated if .p < 0.05 for the omnibus test. As the number 
of variables and tests increases, so too does our risk of incorrectly rejecting the 
proportional odds assumption; therefore, decisions regarding the proportional odds 
assumption should not be based on statistics for individual predictors alone. Even if 
the odds are truly proportional for each predictor independently, with 20 predictors 
we would expect to find one by chance for which .p < 0.05 since our tolerance for 
a Type  I error  is  1 in 20 with .α = 0.05. 

Since the proportional odds assumption holds, let us review the model output: 

# Summarize ordinal logistic regression model 
summary(ord.fit) 

## Call: 
## MASS::polr(formula = engagement ~ org_tenure, data = employees, 
## Hess = TRUE) 
## 
## Coefficients: 
## Value Std. Error t value
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## org_tenure -0.006965 0.008032 -0.8671 
## 
## Intercepts: 
## Value Std. Error t value 
## 1|2 -2.8661 0.1271 -22.5423 
## 2|3 -0.8419 0.0804 -10.4703 
## 3|4 2.1711 0.1036 20.9479 
## 4|5 4122.5567 0.1036 39776.9095 
## 
## Residual Deviance: 3084.592 
## AIC: 3094.592 

The output provides the average effect of a one-unit increase in org_tenure (the 
Coefficients section) as well as intercepts on each pair of levels for engagement 
(the Intercepts section). The effect of a one-unit increase in org_tenure in 
moving engagement from one ordinal level to the next is quite small (. β =
−0.007). The intercepts are often referred to as cutpoints and can be roughly 
translated as thresholds. While the intercepts for each cutpoint vary, note that the 
single coefficient on org_tenure is only possible because our proportional odds 
assumption holds and the effect is consistent (proportional) across levels of our 
ordered factor, engagement. 

Consistent with the default output from the multinom() function used for 
multinomial logistic regression, p-values are not provided in the standard output 
from the polr() function. However, we can calculate them for reasonably large 
samples by comparing the t-values against the standard normal distribution: 

# Store coefficients to df 
coef_df <- coef(summary(ord.fit)) 

# Produce p-values 
p <- pnorm(abs(coef_df[, "t value"]), lower.tail = FALSE) * 2 

# Combine p values with coefficients df 
coef_df <- cbind(coef_df, "p value" = p) 

# Display df contents 
coef_df 

## Value Std. Error t value p value 
## org_tenure -0.00696485 0.008032275 -0.867108 3.858828e-01 
## 1|2 -2.86612408 0.127144280 -22.542297 1.598105e-112 
## 2|3 -0.84185679 0.080404351 -10.470289 1.182814e-25 
## 3|4 2.17107818 0.103641956 20.947870 1.962145e-97 
## 4|5 4122.55669611 0.103641956 39776.909511 0.000000e+00
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We can now estimate the likelihood of a particular observation having a specified 
level of Y , such as .Y ≤ 3, as follows: 

. log

(
Pr(Y ≤ 3)

P r(Y > 3)

)
= 2.17 − 0.007xorgtenure

Review Questions 

1. Can linear regression be used when outcome variables are measured on a non-
continuous scale? Why or why not? 

2. What are some examples of hypotheses for which logistic regression would be 
an appropriate model? 

3. Why is it helpful to calculate the exponential of log odds in a logistic regression 
model? 

4. What does an odds ratio of 1.25 indicate in a binomial context? 
5. What does an odds ratio of 0.75 indicate in a multinomial context? 
6. How does Akaike Information Criterion (AIC) compare to R2 with respect to 

its purpose and function? 
7. In what type of R object do ordinal data need to be stored in order to implement 

ordinal logistic regression? 
8. Should linear regression be used to understand associations of predictors with 

an ordinal outcome? Why or why not? 
9. What does the proportional odds (or parallel regression) assumption assume 

about model coefficients? 
10. Why is it important to evaluate Brant’s omnibus test—over the test statistics 

on independent predictors alone—when determining whether the proportional 
odds assumption for ordinal logistic regression holds? 
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