
Linear Model Extensions 

This chapter covers several techniques for expanding the linear regression frame-
work covered in chapter “Linear Regression” to test hypotheses with more nuance 
and complexity. 

Model Comparisons 

Assuming it is warranted by the research objective, it is sometimes helpful to subset 
data and compare coefficients between models to determine how the strength of 
associations between predictors and the response compares between cohorts. This is 
a common approach in pay equity studies, as it clearly highlights differences in how 
a particular factor such as job level, job profile, or geography impacts compensation 
for male vs. female employees or across ethnic groups. 

To illustrate, let us fit a multiple regression model to understand drivers of YTD 
sales for salespeople with overtime relative to those without overtime: 

# Subset employees data frame; leads are only applicable for 
those in sales positions↪→ 

data <- subset(employees, job_title %in% c('Sales Executive', 
'Sales Representative'))↪→ 

# Partition data into overtime and non-overtime groups 
data_ot <- subset(data, overtime == 'Yes') 
data_nonot <- subset(data, overtime == 'No') 

# Regress transformed YTD sales on a combination of predictors 
for overtime and non-overtime groups↪→ 

© The Author(s) 2023 
C. Starbuck, The Fundamentals of People Analytics, 
https://doi.org/10.1007/978-3-031-28674-2_11

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28674-2protect T1	extunderscore 11&domain=pdf
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11
https://doi.org/10.1007/978-3-031-28674-2_11


208 Linear Model Extensions

mlm.fit.ot <- lm(sqrt(ytd_sales) ~ engagement + job_lvl + 
stock_opt_lvl + org_tenure, data_ot)↪→ 

mlm.fit.nonot <- lm(sqrt(ytd_sales) ~ engagement + job_lvl + 
stock_opt_lvl + org_tenure, data_nonot)↪→ 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_ot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -80.927 -22.171 -1.383 19.740 106.769 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 121.815 14.767 8.249 3.27e-13 *** 
## engagement 13.171 4.569 2.883 0.00472 ** 
## job_lvl 35.983 4.754 7.570 1.10e-11 *** 
## stock_opt_lvl 7.139 3.342 2.136 0.03481 * 
## org_tenure 5.369 0.722 7.437 2.15e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 32.78 on 113 degrees of freedom 
## Multiple R-squared: 0.688, Adjusted R-squared: 0.6769 
## F-statistic: 62.29 on 4 and 113 DF, p-value: < 2.2e-16 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_nonot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -81.952 -19.422 0.136 20.813 96.003 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 132.3391 8.6695 15.265 < 2e-16 *** 
## engagement 9.8523 2.4721 3.985 8.56e-05 *** 
## job_lvl 33.1396 3.0014 11.042 < 2e-16 *** 
## stock_opt_lvl 4.6377 2.1587 2.148 0.0325 * 
## org_tenure 6.0435 0.4039 14.964 < 2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 29.98 on 286 degrees of freedom 
## Multiple R-squared: 0.7332, Adjusted R-squared: 0.7295 
## F-statistic: 196.5 on 4 and 286 DF, p-value: < 2.2e-16 

Since we are comparing two models, we need not scale the variables since 
comparing a specific predictor’s relationship with the response in the overtime 
model can be juxtaposed against the same predictor in the non-overtime model using 
the original units of measurement.
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Based on the regression output, the model for salespeople who worked overtime 
explains more variance in square root transformed ytd_sales (. R2 = 0.73) relative 
to the model for salespeople without overtime (. R2 = 0.69). 

We can see that engagement has a larger effect on the transformed response 
among salespeople who worked overtime (.β = 13.17, .t (113) = 2.88, .p < 0.01) 
relative to those who worked no overtime (.β = 9.85, .t (286) = 3.99, .p < 0.001). 
In addition, job_lvl has a stronger association with the response in the overtime 
group (.β = 35.98, .t (113) = 7.57, .p < 0.01) relative to the non-overtime group 
(.β = 33.14, .t (286) = 11.04, .p < 0.001). Given that the intercept (average square 
root of ytd_sales when the values of all predictors are set to 0) is higher for the 
non-overtime group (.β = 132.34, .t (286) = 15.27, .p < 0.001) than for the overtime 
group (.β = 121.82, .t (113) = 8.25, .p < 0.001), differences in the coefficients on 
job_lvl may indicate that one’s job level is a proxy for skill and capacity to sell 
more in fewer hours. 

Hierarchical Regression 

A multiple model approach can also be useful for understanding the incremental 
value a given variable—or set of variables—provides above and beyond a set of 
control variables. Hierarchical regression is a method by which variables are added 
to the model in steps, and changes in model statistics are evaluated after each step. 
Let us use hierarchical regression to test the hypothesis below. 

H1: Among salespeople who work overtime, engagement has a significant 
positive relationship with YTD sales after controlling for job level, stock 
option level, and organization tenure. 

## 
## Call: 
## lm(formula = sqrt(ytd_sales) ~ job_lvl + stock_opt_lvl + org_tenure, 
## data = data_ot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -73.279 -23.803 -0.339 23.017 96.742 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 154.6969 9.6759 15.988 < 2e-16 *** 
## job_lvl 37.5715 4.8707 7.714 5.02e-12 *** 
## stock_opt_lvl 5.2397 3.3794 1.550 0.124 
## org_tenure 5.4935 0.7434 7.389 2.64e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 33.81 on 114 degrees of freedom 
## Multiple R-squared: 0.665, Adjusted R-squared: 0.6562 
## F-statistic: 75.44 on 3 and 114 DF, p-value: < 2.2e-16 

##
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## Call: 
## lm(formula = sqrt(ytd_sales) ~ engagement + job_lvl + stock_opt_lvl + 
## org_tenure, data = data_ot) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -80.927 -22.171 -1.383 19.740 106.769 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 121.815 14.767 8.249 3.27e-13 *** 
## engagement 13.171 4.569 2.883 0.00472 ** 
## job_lvl 35.983 4.754 7.570 1.10e-11 *** 
## stock_opt_lvl 7.139 3.342 2.136 0.03481 * 
## org_tenure 5.369 0.722 7.437 2.15e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 32.78 on 113 degrees of freedom 
## Multiple R-squared: 0.688, Adjusted R-squared: 0.6769 
## F-statistic: 62.29 on 4 and 113 DF, p-value: < 2.2e-16 

Comparing the output from these two regression models, we can determine that 
the addition of engagement to the control set explains an additional 2% of the 
variance in YTD sales (.�R2 = 0.69 − 0.67 = 0.02). 

In addition, the controls-only model output shows that without engagement in 
the model, stock_opt_lvl is not significant. This is a good reminder that regres-
sion does not examine bivariate relationships of each predictor with the response 
independent of other variables; rather, the relationships among all variables in the 
model impact which predictors emerge as having a statistical association with the 
response. 

Multilevel Models 

The models covered thus far have focused only on observation-level effects. That is, 
there has been an inherent assumption that predictor variables have fixed effects 
on the outcome and these effects do not vary based on group(s) to which the 
observations belong. These models are sometimes referred to as fixed effects 
models. 

It is often the case, however, that the strength and nature of predictors’ effects 
on an outcome vary across categorical dimensions. For example, estimating the 
number of requisitions that can be filled by a Talent Acquisition team over a certain 
period may require inputs such as the number of recruiters and position backfill 
expectations based on attrition assumptions. However, the model should probably 
account for how these factors impact recruiter productivity at the intersections of 
group-level factors such as geography, job family, and job level as well. Estimates 
for recruiters who are focused on filling executive-level positions in geographies 
with a limited talent pool or fiercely competitive labor market will look quite 
different relative to recruiters focused on entry-level, low-skilled positions that are
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location agnostic. Failure to incorporate these group-level effects may result in 
inaccurate estimates or incorrectly concluding that variables are not significant in 
explaining why recruiters vary in the number of requisitions they can fill. 

You may wonder how this concept is different from simply including dummy-
coded variables in the model to reflect the groups to which individual observations 
belong. The difference is that the average value of Y when all predictors are set 
to 0—namely the Y -intercept . β0—does not vary by group with dummy-coded 
categorical variables. In a multilevel model, the intercept is random rather than 
fixed for each group. Group-level effects can also be modeled for select (or all) 
X variables in addition to varying . β0 for each group. 

Consider a linear model constructed to test hypothesized relationships of every 
X variable with an outcome Y . This is the equivalent of building G independent 
models, where G is the number of groups, using data subsetted for the respective 
group: 

. YG = βG0 + βG1X1 + βG2X2 + . . . + βGpXp + ε

In this case, it is easy to consider wrapping the lm() function within a loop 
that iterates through each G group, filtering to each of the respective group’s 
data in turn. However, if we hypothesize that the effects of only certain variables 
depend on the G group, we need to estimate both group-level and observation-
level effects within the same model. A multilevel model featuring this mixture 
of fixed and random effects is known as a mixed effects model. This is also 
known as Hierarchical Linear Modeling (HLM), which is materially different 
from Hierarchical Regression covered in the prior section, which compared nested 
regression models. 

A model in which group-level effects are hypothesized for . β0 and .X1 and 
observation-level effects are hypothesized for all other predictors is expressed as: 

. YG = βG0 + βG1X1 + β2X2 + . . . + βpXp + ε

To fit a linear mixed effects model in R, we can leverage the lmer() function 
from the lmerTest package. Let us demonstrate how to fit a model to understand 
the random effects of stock_opt_lvl and fixed effects of engagement, job_lvl, 
and org_tenure on sqrt(ytd_sales): 

# Load library 
library(lmerTest) 

# Fit linear mixed model 
lme.fit <- lmerTest::lmer(sqrt(ytd_sales) ~ engagement + 

job_lvl + (1 | stock_opt_lvl) + org_tenure, data_ot)↪→ 

# Summarize model results 
summary(lme.fit)
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## Linear mixed model fit by REML. t-tests use Satterthwaite's method [ 
## lmerModLmerTest] 
## Formula: sqrt(ytd_sales) ~ engagement + job_lvl + (1 | stock_opt_lvl) + 
## org_tenure 
## Data: data_ot 
## 
## REML criterion at convergence: 1141.3 
## 
## Scaled residuals: 
## Min 1Q Median 3Q Max 
## -2.52388 -0.63661 0.00411 0.61215 3.13684 
## 
## Random effects: 
## Groups Name Variance Std.Dev. 
## stock_opt_lvl (Intercept) 51.16 7.152 
## Residual 1069.27 32.700 
## Number of obs: 118, groups: stock_opt_lvl, 4 
## 
## Fixed effects: 
## Estimate Std. Error df t value Pr(>|t|) 
## (Intercept) 133.6129 14.5677 88.8995 9.172 1.67e-14 *** 
## engagement 12.0038 4.5140 113.9662 2.659 0.00896 ** 
## job_lvl 35.8950 4.7470 112.4054 7.562 1.17e-11 *** 
## org_tenure 5.2542 0.7265 113.5918 7.232 5.94e-11 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Correlation of Fixed Effects: 
## (Intr) enggmn jb_lvl 
## engagement -0.727 
## job_lvl -0.445 -0.110 
## org_tenure 0.046 -0.054 -0.463 

The results of lmer() contain sections for both fixed and random effects. 
Consistent with the interpretation of linear regression model output, we can see 
that the fixed effects of each predictor are statistically significant. The key difference 
here is that the variance shown for the intercept of the random effects model is large. 
This indicates that there are meaningful differences in the relationships between 
predictors and sqrt(ytd_sales) across the levels of stock_opt_lvl that would 
be missed without a mixed model that accounts for these group-level effects. 

For a more comprehensive treatment on multilevel models, see Gelman and Hill 
(2006). 

Polynomial Regression 

Linear regression is a powerful approach to understanding the relative strength 
of predictors’ associations with a response variable. While linear models have 
advantages in interpretation, inference, and implementation simplicity, the linearity 
assumption often limits predictive power since this assumption is often a poor
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approximation of actual relationships in the data. In this section, we will discuss 
how to extend the linear regression framework and relax linear model assumptions 
to handle non-linear relationships. 

In a people analytics context, many data sets are cross-sectional and time-
invariant, meaning they represent data collected at a single point in time. However, 
data collected across multiple points in time (time series data) are needed for 
forecasting future values of a dependent variable (e.g., a workforce planning model 
that estimates hires by month). 

There is often a seasonality element inherent in the relationship between time 
and the outcome that is being estimated, which requires accounting for time-variant 
features (e.g., monthly attrition rate assumptions). Seasonality is the variation that 
occurs at regular intervals within a year. For example, companies with an annual 
bonus often experience a seasonal spike in voluntary attrition following bonus 
payouts (beginning in March for many organizations). Accounting for seasonality 
in models helps reduce error, but it requires estimating a more complex set of model 
coefficients relative to a more naive linear projection. 

The simple linear regression equation, .Y = β0 +β1X+ε, can be easily extended 
to include higher-order polynomial terms and achieve a more flexible fit. This is 
known as polynomial regression.

• Quadratic (2nd Order Polynomial) Regression Equation: .Y = β0+β1X+β2X
2+

ε

• Cubic (3rd Order Polynomial) Regression Equation: . Y = β0 + β1X + β2X
2 +

β3X
3 + ε

Figure 1 illustrates how higher-order polynomial functions can fit more curvilin-
ear trends relative to a simple linear projection. 

It is important to note that adding higher-order terms to the regression equation 
usually increases .R2 due to a more flexible fit to the data, but the additional 
coefficients are not necessarily significant. .R2 will approach 1 as the power of x 
approaches .n − 1 since the fit line will connect every data point. However, a model 
that results in a perfect—or near perfect—fit is likely too flexible to generalize 
well to other data. This problem is known as overfitting and will be covered in 
chapter “Predictive Modeling”. As a general rule, it is best not to add polynomial 
terms beyond the second or third orders to protect against overfitting the model. 

Comparing the Adjusted .R2 for models with higher-order terms to one with 
only linear terms will help in determining whether higher-order polynomials add 
value to the model in explaining incremental variance in the response. Evaluating 
whether the coefficients on higher-order polynomials are statistically significant is 
important in determining which variables are contributing to any observed increases 
in Adjusted . R2.
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Fig. 1 Left: Linear turnover trend for .y = 0.75x + 3.5. Middle: Quadratic turnover trend for 
.y = 7.3x−0.53x2−6.97. Right: Cubic turnover trend for . y = −12.48x+2.47x2 −0.13x3+31.01

Let us demonstrate how to fit a regression model with polynomial terms in R 
using the turnover_trends data set. First, we will subset this data frame to level 
4 People Scientists who work remotely, based on the notion that turnover varies by 
level and remote, and then visualize the turnover trend to understand month-over-
month variation across years. 

As we can see in Fig. 2, the relationship between month and turnover rate is 
non-linear, and level 4 People Scientists who work remotely leave at lower rates 
relative to those who do not work remotely. There is a clear seasonal pattern that 
is consistent across all five years as well as remote vs. non-remote groups; namely, 
there is a spike in turnover between March and June as well as later in the year 
(November/December). Fitting a model to these data will require non-linear terms. 

Adding polynomial terms requires an indicator variable I() in which the value 
of x is raised to the desired order (e.g., . x2 = I(xˆ2)). Let us start by fitting linear, 
quadratic, and cubic regression models (to compare performance) using only month 
as a predictor. Notice that the shape of the trends resemble the cubic function shown 
in Fig. 1 in that there are two discernible inflection points at which the trend reverses 
directions: 

# Fit linear, quadratic, and cubic models to ps_turnover data 
ps.lin.fit <- lm(turnover_rate ~ month, data = ps_turnover)
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Fig. 2 Year 1–5 turnover trends for level 4 People Scientists, stratified by remote (dark grey line) 
vs. non-remote (light grey line) 

ps.quad.fit <- lm(turnover_rate ~ month + I(monthˆ2), data = 
ps_turnover)↪→ 

ps.cube.fit <- lm(turnover_rate ~ month + I(monthˆ2) + 
I(monthˆ3), data = ps_turnover)↪→ 

## 
## Call: 
## lm(formula = turnover_rate ~ month, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -3.2807 -1.3007 -0.3407 0.9218 4.5293 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 4.85067 0.35047 13.84 <2e-16 *** 
## month 0.04000 0.04762 0.84 0.403 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.801 on 118 degrees of freedom 
## Multiple R-squared: 0.005944, Adjusted R-squared: -0.00248 
## F-statistic: 0.7056 on 1 and 118 DF, p-value: 0.4026 

## 
## Call:
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## lm(formula = turnover_rate ~ month + I(month^2), data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -2.9140 -1.2790 -0.3990 0.9535 4.6560 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 4.24400 0.58692 7.231 5.35e-11 *** 
## month 0.30000 0.20758 1.445 0.151 
## I(month^2) -0.02000 0.01554 -1.287 0.201 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.796 on 117 degrees of freedom 
## Multiple R-squared: 0.01981, Adjusted R-squared: 0.003058 
## F-statistic: 1.182 on 2 and 117 DF, p-value: 0.3101 

## 
## Call: 
## lm(formula = turnover_rate ~ month + I(month^2) + I(month^3), 
## data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.924 -1.464 -0.114 0.486 3.666 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 1.514000 0.873921 1.732 0.0859 . 
## month 2.410000 0.558831 4.313 3.41e-05 *** 
## I(month^2) -0.410000 0.097879 -4.189 5.49e-05 *** 
## I(month^3) 0.020000 0.004963 4.030 0.0001 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.689 on 116 degrees of freedom 
## Multiple R-squared: 0.1402, Adjusted R-squared: 0.1179 
## F-statistic: 6.304 on 3 and 116 DF, p-value: 0.0005334 

The linear (.F(1, 118) = 0.71, .p = 0.40) and quadratic (.F(2, 117) = 1.18, 
.p = 0.31) models are not significant. However, as expected based on the shape of 
the turnover trend, the cubic model is significant (.F(3, 116) = 6.30, .p < 0.001) 
and the linear (month), quadratic (I(monthˆ2)), and cubic (I(monthˆ3)) terms all 
provide significant information in estimating turnover rates (.p < 0.001). 

While the cubic model achieved statistical significance at the .p < 0.001 level, 
86% of the variance in monthly turnover rates remains unexplained (.1−R2 = 0.86). 
To improve the performance of the model, our model needs to reflect the fact that 
turnover varies as a function of year and remote in addition to month. 

As shown in Fig. 3, the multidimensional data vary widely around estimates 
produced by the two-dimensional models (i.e., turnover_rate predicted on the 
basis of month). While the cubic regression model reflects the seasonality in month-
over-month turnover, there are notable differences between remote and non-remote 
turnover rates as well as differences across years.
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Fig. 3 Linear, quadratic, and cubic models fitted to turnover data (red dashed lines). Remote 
workers are represented in dark grey points, and non-remote workers in light grey points 

Let us add remote to the cubic regression model to see how performance 
changes. 

# Fit linear, quadratic, and cubic models to ps_turnover df 
ps.cube.fit <- lm(turnover_rate ~ month + I(monthˆ2) + 

I(monthˆ3) + remote, data = ps_turnover)↪→ 

# Produce model summary 
summary(ps.cube.fit) 

## 
## Call: 
## lm(formula = turnover_rate ~ month + I(month^2) + I(month^3) + 
## remote, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.104 -0.764 -0.644 -0.334 2.846 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 2.334000 0.775051 3.011 0.0032 ** 
## month 2.410000 0.488069 4.938 2.70e-06 *** 
## I(month^2) -0.410000 0.085485 -4.796 4.89e-06 *** 
## I(month^3) 0.020000 0.004335 4.614 1.03e-05 ***
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## remoteYes -1.640000 0.269344 -6.089 1.54e-08 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.475 on 115 degrees of freedom 
## Multiple R-squared: 0.3498, Adjusted R-squared: 0.3272 
## F-statistic: 15.47 on 4 and 115 DF, p-value: 3.758e-10 

As shown in the regression output, accounting for remote status increases 
explained variance by 21% (.�R2 = 0.35 − 0.14). In addition to the increase in 
explained variance, the coefficient on remote is statistically significant (.β = −1.64, 
.t (115) = −6.09, .p < 0.001). On average, the turnover rate for remote People 
Scientists is 1.64% lower than the turnover rate for non-remote People Scientists. 

Next, let us include year as a linear term in the model since turnover rates also 
vary along this dimension. 

# Fit linear, quadratic, and cubic models to ps_turnover df 
ps.cube.fit <- lm(turnover_rate ~ year + month + I(monthˆ2) + 

I(monthˆ3) + remote, data = ps_turnover)↪→ 

# Produce model summary 
summary(ps.cube.fit) 

## 
## Call: 
## lm(formula = turnover_rate ~ year + month + I(month^2) + I(month^3) + 
## remote, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -1.419 -1.104 0.321 0.666 1.536 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) 0.36900 0.63650 0.580 0.563 
## year 0.65500 0.07338 8.926 8.71e-15 *** 
## month 2.41000 0.37609 6.408 3.43e-09 *** 
## I(month^2) -0.41000 0.06587 -6.224 8.28e-09 *** 
## I(month^3) 0.02000 0.00334 5.988 2.53e-08 *** 
## remoteYes -1.64000 0.20755 -7.902 1.90e-12 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 1.137 on 114 degrees of freedom 
## Multiple R-squared: 0.6173, Adjusted R-squared: 0.6005 
## F-statistic: 36.77 on 5 and 114 DF, p-value: < 2.2e-16 

Explained variance increases to 62% by adding year to the model. While the 
coefficient on year is statistically significant (.β = 0.66, .t (114) = 8.93, . p <

0.001), the change in attrition by year is not linear. Visualizing the distribution of 
turnover rates by year will provide evidence that a linear year-over-year growth 
factor will result in some large residuals since it will not capture the more complex 
trend present in these data (Fig. 4).
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Fig. 4 Turnover rate distribution by year for remote (left) and non-remote (right) groups. Red 
dashed line reflects linear relationship between year and turnover rate, with y-intercept lowered 
1.64% for remote group 

Given the cubic nature of the change in turnover year-over-year, let us add 
quadratic and cubic terms for year to examine changes in model performance: 

## 
## Call: 
## lm(formula = turnover_rate ~ year + I(year^2) + I(year^3) + month + 
## I(month^2) + I(month^3) + remote, data = ps_turnover) 
## 
## Residuals: 
## Min 1Q Median 3Q Max 
## -0.0025714 -0.0004286 -0.0004286 0.0017143 0.0017143 
## 
## Coefficients: 
## Estimate Std. Error t value Pr(>|t|) 
## (Intercept) -1.866e+00 1.875e-03 -995.2 <2e-16 *** 
## year 5.906e+00 2.179e-03 2710.7 <2e-16 *** 
## I(year^2) -2.712e+00 8.087e-04 -3353.4 <2e-16 *** 
## I(year^3) 3.625e-01 8.929e-05 4060.0 <2e-16 *** 
## month 2.410e+00 5.491e-04 4388.7 <2e-16 *** 
## I(month^2) -4.100e-01 9.618e-05 -4262.8 <2e-16 *** 
## I(month^3) 2.000e-02 4.877e-06 4100.8 <2e-16 *** 
## remoteYes -1.640e+00 3.030e-04 -5411.7 <2e-16 *** 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
## 
## Residual standard error: 0.00166 on 112 degrees of freedom 
## Multiple R-squared: 1, Adjusted R-squared: 1
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## F-statistic: 1.996e+07 on 7 and 112 DF, p-value: < 2.2e-16 

The inclusion of higher-order polynomials on year results in a perfect fit to these 
data (.R2 = 1). Albeit a statistical improbability in practice, this indicates that the 
slope of the relationship between month and turnover_rate is perfectly consistent 
across years within remote and non-remote groups. 

Our resulting equation for estimating turnover_rate on the basis of a combi-
nation of linear and non-linear values of year, month, and remote is defined by: 

. ŷ = −1.87 + 5.91 year − 2.71 year2 + .36 year3 + 2.41 month − .41 month2

+ .02 month3 − 1.64 remote + ε

The performance of this model may initially seem like a cause for celebration, 
but the probability is low that this model would estimate future turnover with 
such a high degree of accuracy. While these data were generated with a goal to 
simplify illustrations and facilitate a working knowledge of polynomial regression 
mechanics, data which conform to such a constant pattern of seasonality across 
multiple years is a highly improbable situation in practice. As stated earlier in this 
chapter, a model that results in a perfect fit is likely too flexible to generalize well 
to other data, and methods of evaluating how well models are likely to perform on 
future data will be covered in chapter “Predictive Modeling”. 

Review Questions 

1. What are some people analytics applications for comparing output from several 
regression models? 

2. What modeling technique is appropriate for understanding an independent 
variable’s contribution to a model’s R2 beyond a set of control variables? 

3. In the context of Hierarchical Regression, what is the indicator that �R2 

is statistically significant when evaluating whether a particular independent 
variable provides meaningful information beyond a set of controls? 

4. What are some examples of hypotheses that would warrant a linear mixed 
effects model over a general linear model? 

5. What are the differences between Hierarchical Linear Modeling (HLM), which 
is also referred to as multilevel or mixed effects modeling, and Hierarchical 
Regression? 

6. In what ways does polynomial regression differ from linear regression? 
7. Why is it important to evaluate the nature of relationships at various levels of a 

categorical or time variable? 
8. What shape characterizes a quadratic function?
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9. If the coefficient on the cubic term is not statistically significant (p >= 0.05) 
in a cubic regression model, but the linear and quadratic terms are statistically 
significant (p <  0.05), what does this indicate about the model’s fit to the data? 

10. Why might adding higher-order polynomial terms to a model be problematic, 
even though the additional terms increase the model’s R2? 
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