Skip to main content

Abstract

In this chapter, we first introduce some underlying concepts of network-based control and motion control of unmanned marine vehicles (UMVs). Then we briefly review research motivations on scheduling protocol design and fault detection filter (FDF) design for networked control systems (NCSs). We review also how network-based heading control, fault detection, dynamic positioning, dynamic output feedback control, and cooperative target tracking for UMVs are motivated and promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.-L. Wang, Q.-L. Han, M.-R. Fei, C. Peng, Network-based T-S fuzzy dynamic positioning controller design for unmanned marine vehicles. IEEE Trans. Cybern. 48(9), 2750–2763 (2018)

    Article  Google Scholar 

  2. X. Ge, Q.-L. Han, Z. Wang, A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybern. 49(1), 171–183 (2019)

    Article  Google Scholar 

  3. X.-M. Zhang, Q.-L. Han, B.-L. Zhang, An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inf. 13(1), 4–16 (2017)

    Article  MathSciNet  Google Scholar 

  4. X. Ge, F. Yang, Q.-L. Han, Distributed networked control systems: a brief overview. Inf. Sci. 380, 117–131 (2017)

    Article  Google Scholar 

  5. S. Hu, D. Yue, X. Xie, Z. Du, Event-triggered \({H}_{\infty }\) stabilization for networked stochastic systems with multiplicative noise and network-induced delays. Inf. Sci. 299, 178–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Zhang, C. Peng, Guaranteed cost control of uncertain networked control systems with a hybrid communication scheme. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3126–3135 (2020)

    Article  Google Scholar 

  7. F. Yang, Z. Wang, D.W.C. Ho, M. Gani, Robust \({H}_{\infty }\) control with missing measurements and time delays. IEEE Trans. Autom. Control 52(9), 1666–1672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Selivanov, E. Fridman, Predictor-based networked control under uncertain transmission delays. Automatica 70, 101–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Chen, S. Meng, J. Sun, Stability analysis of networked control systems with aperiodic sampling and time-varying delay. IEEE Trans. Cybern. 47(8), 2312–2320 (2017)

    Article  Google Scholar 

  10. W.P.M.H. Heemels, A.R. Teel, N. van de Wouw, D. Nešić, Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance. IEEE Trans. Autom. Control 55(8), 1781–1796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Zhang, Y. Shi, A.S. Mehr, Robust \(H_\infty \) PID control for multivariable networked control systems with disturbance/noise attenuation. Int. J. Robust Nonlinear Control 22(2), 183–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Yue, Q.-L. Han, C. Peng, State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II Express Briefs 51(11), 640–644 (2004)

    Article  Google Scholar 

  13. D. Yue, Q.-L. Han, J. Lam, Network-based robust \(H_\infty \) control of systems with uncertainty. Automatica 41(6), 999–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Meng, J. Lam, H. Gao, Network-based \(H_\infty \) control for stochastic systems. Int. J. Robust Nonlinear Control 19(3), 295–312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Gao, T. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Jiang, Q.-L. Han, New stability criteria for linear systems with interval time-varying delay. Automatica 44(10), 2680–2685 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Peng, Y.-C. Tian, M.O. Tadé, State feedback controller design of networked control systems with interval time-varying delay and nonlinearity. Int. J. Robust Nonlinear Control 18(12), 1285–1301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Guo, H. Jin, A switching system approach to actuator assignment with limited channels. Int. J. Robust Nonlinear Control 20(12), 1407–1426 (2010)

    MathSciNet  MATH  Google Scholar 

  19. M. Tabbara, D. Nešić, A.R. Teel, Stability of wireless and wireline networked control systems. IEEE Trans. Autom. Control 52(9), 1615–1630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. W.P.M.H. Heemels, D. Nešić, A.R. Teel, N. van de Wouw, Networked and quantized control systems with communication delays, in Proceedings of the Joint 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, Shanghai, China, Dec. 2009, pp. 7929–7935

    Google Scholar 

  21. D.E. Quevedo, D. Nešić, Input-to-state stability of packetized predictive control over unreliable networks affected by packet-dropouts. IEEE Trans. Autom. Control 56(2), 370–375 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Onat, T. Naskali, E. Parlakay, O. Mutluer, Control over imperfect networks: model-based predictive networked control systems. IEEE Trans. Ind. Electron. 58(3), 905–913 (2011)

    Article  Google Scholar 

  23. X. Jia, D. Zhang, X. Hao, N. Zheng, Fuzzy \(H_\infty \) tracking control for nonlinear networked control systems in T-S fuzzy model. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(4), 1073–1079 (2009)

    Article  Google Scholar 

  24. J. Wu, T. Chen, Design of networked control systems with packet dropouts. IEEE Trans. Autom. Control 52(7), 1314–1319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Yu, L. Wang, G. Zhang, M. Yu, Output feedback stabilisation of networked control systems via switched system approach. Int. J. Control 82(9), 1665–1677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Peng, D. Yue, E. Tian, Z. Gu, A delay distribution based stability analysis and synthesis approach for networked control systems. J. Frankl. Inst. 346(4), 349–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Tipsuwan, M.-Y. Chow, Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation-part I: networked control. IEEE Trans. Ind. Electron. 51(6), 1218–1227 (2004)

    Article  Google Scholar 

  28. D. Yue, E. Tian, Z. Wang, J. Lam, Stabilization of systems with probabilistic interval input delays and its applications to networked control systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(4), 939–945 (2009)

    Article  Google Scholar 

  29. W.-A. Zhang, L. Yu, Modelling and control of networked control systems with both network-induced delay and packet-dropout. Automatica 44(12), 3206–3210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Xiong, J. Lam, Stabilization of networked control systems with a logic ZOH. IEEE Trans. Autom. Control 52(2), 358–363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Lozano, P. Castillo, P. Garcia, A. Dzul, Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter. Automatica 40(4), 603–612 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Sala, Computer control under time-varying sampling period: an LMI gridding approach. Automatica 41(12), 2077–2082 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Gao, J. Wu, P. Shi, Robust sampled-data \(H_\infty \) control with stochastic sampling. Automatica 45(7), 1729–1736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y.-L. Wang, G.-H. Yang, Output tracking control for networked control systems with time delay and packet dropout. Int. J. Control 81(11), 1709–1719 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Johansson, M. Bask, T. Norlander, Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty. Automatica 42(7), 1095–1106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. X.-J. Li, G.-H. Yang, Dynamic observer-based robust control and fault detection for linear systems. IET Control Theory Appl. 6(17), 2657–2666 (2012)

    Article  MathSciNet  Google Scholar 

  37. Y. Zhao, J. Lam, H. Gao, Fault detection for fuzzy systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 398–410 (2009)

    Article  Google Scholar 

  38. H. Dong, Z. Wang, J. Lam, H. Gao, Fuzzy-model-based robust fault detection with stochastic mixed time delays and successive packet dropouts. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 365–376 (2012)

    Article  Google Scholar 

  39. X. He, Z. Wang, Y. Liu, D.H. Zhou, Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach. IEEE Trans. Ind. Inf. 9(3), 1670–1679 (2013)

    Article  Google Scholar 

  40. D. Huang, S.K. Nguang, Robust fault estimator design for uncertain networked control systems with random time delays: an ILMI approach. Inf. Sci. 180(3), 465–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Liu, Y. Xia, Y. Yang, M. Fu, Robust fault detection of linear systems over networks with bounded packet loss. J. Frankl. Inst. 349(7), 2480–2499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Long, G.-H. Yang, Fault detection for a class of networked control systems with finite-frequency servo inputs and random packet dropouts. IET Control Theory Appl. 6(15), 2397–2408 (2012)

    Article  MathSciNet  Google Scholar 

  43. Y. Long, G.-H. Yang, Fault detection in finite frequency domain for networked control systems with missing measurements. J. Frankl. Inst. 350(9), 2605–2626 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Z. Mao, B. Jiang, P. Shi, Protocol and fault detection design for nonlinear networked control systems. IEEE Trans. Circuits Syst. II Express Briefs 56(3), 255–259 (2009)

    Google Scholar 

  45. Y. Wang, S.X. Ding, H. Ye, G. Wang, A new fault detection scheme for networked control systems subject to uncertain time-varying delay. IEEE Trans. Signal Process. 56(10), 5258–5268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Y.Q. Wang, S.X. Ding, H. Ye, L. Wei, P. Zhang, G.Z. Wang, Fault detection of networked control systems with packet based periodic communication. Int. J. Adapt. Control Signal Process. 23(8), 682–698 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Peng, J. Zhang, H. Yan, Adaptive event-triggering \({H}_{\infty }\) load frequency control for network-based power systems. IEEE Trans. Ind. Electron. 65(2), 1685–1694 (2018)

    Article  Google Scholar 

  48. F. Liu, H. Gao, J. Qiu, S. Yin, J. Fan, T. Chai, Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process. IEEE Trans. Ind. Electron. 61(1), 460–468 (2014)

    Article  Google Scholar 

  49. L. El Ghaoui, F. Oustry, M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Gao, X. Meng, T. Chen, J. Lam, Stabilization of networked control systems via dynamic output-feedback controllers. SIAM J. Control Optim. 48(5), 3643–3658 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Zhang, H. Gao, O. Kaynak, Network-induced constraints in networked control systems–a survey. IEEE Trans. Ind. Inf. 9(1), 403–416 (2013)

    Article  Google Scholar 

  52. D. Freirich, E. Fridman, Decentralized networked control of systems with local networks: a time-delay approach. Automatica 69, 201–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Liu, E. Fridman, L. Hetel, Stability and \({L}_{2}\)-gain analysis of networked control systems under round-robin scheduling: a time-delay approach. Syst. Control Lett. 61(5), 666–675 (2012)

    Article  MATH  Google Scholar 

  54. D. Ding, Z. Wang, Q.-L. Han, G. Wei, Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans. Cybern. 49(6), 2372–2384 (2019)

    Article  Google Scholar 

  55. V. Gupta, T.H. Chung, B. Hassibi, R.M. Murray, On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica 42(2), 251–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Zhang, C. Peng, M.-R. Fei, Y.-C. Tian, Output feedback control of networked systems with a stochastic communication protocol. J. Frankl. Inst. 354(9), 3838–3853 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. E. Fridman, Introduction to Time-Delay Systems: Analysis and Control (Birkh\(\ddot{\text{a}}\)user, Basel, 2014)

    Google Scholar 

  58. K. Liu, E. Fridman, K.H. Johansson, Networked control with stochastic scheduling. IEEE Trans. Autom. Control 60(11), 3071–3076 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. G. Wen, Y. Wan, J. Cao, T. Huang, W. Yu, Master-slave synchronization of heterogeneous systems under scheduling communication. IEEE Trans. Syst. Man Cybern. Syst. 48(3), 473–484 (2018)

    Article  Google Scholar 

  60. T.I. Fossen, Guidance and Control of Ocean Vehicles (Wiley, Chichester, U.K., 1994)

    Google Scholar 

  61. Z. Li, J. Sun, Disturbance compensating model predictive control with application to ship heading control. IEEE Trans. Control Syst. Technol. 20(1), 257–265 (2012)

    Google Scholar 

  62. T.I. Fossen, T. Perez, Kalman filtering for positioning and heading control of ships and offshore rigs. IEEE Control Syst. Mag. 29(6), 32–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. S. Muhammad, A. Dòria-Cerezo, Passivity-based control applied to the dynamic positioning of ships. IET Control Theory Appl. 6(5), 680–688 (2012)

    Article  MathSciNet  Google Scholar 

  64. E. Alfaro-Cid, E.W. McGookin, D.J. Murray-Smith, T.I. Fossen, Genetic programming for the automatic design of controllers for a surface ship. IEEE Trans. Intell. Transp. Syst. 9(2), 311–321 (2008)

    Article  Google Scholar 

  65. J.-H. Li, P.-M. Lee, B.-H. Jun, Y.-K. Lim, Point-to-point navigation of underactuated ships. Automatica 44(12), 3201–3205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Yu, Q. Zhu, G. Xia, Z. Liu, Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)

    Article  MathSciNet  Google Scholar 

  67. D. Chwa, Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2011)

    Article  Google Scholar 

  68. S.-Y. Kim, Y.-D. Yoon, S.-K. Sul, Suppression of thrust loss for the maximum thrust operation in the electric propulsion ship. IEEE Trans. Ind. Appl. 45(2), 756–762 (2009)

    Article  Google Scholar 

  69. J. Bakkeheim, T.A. Johansen, O.N. Smogeli, A.J. Sorensen, Lyapunov-based integrator resetting with application to marine thruster control. IEEE Trans. Control Syst. Technol. 16(5), 908–917 (2008)

    Google Scholar 

  70. Y.-L. Wang, Q.-L. Han, Quantitative analysis and synthesis for networked control systems with non-uniformly distributed packet dropouts and interval time-varying sampling periods. Int. J. Robust Nonlinear Control 25(2), 282–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  71. Y.-L. Wang, T.-B. Wang, Q.-L. Han, Fault detection filter design for data reconstruction-based continuous-time networked control systems. Inf. Sci. 328, 577–594 (2016)

    Article  MATH  Google Scholar 

  72. B.-L. Zhang, Q.-L. Han, Network-based modelling and active control for offshore steel jacket platform with TMD mechanisms. J. Sound Vib. 333(25), 6796–6814 (2014)

    Article  Google Scholar 

  73. X.-M. Zhang, Q.-L. Han, X. Yu, Survey on recent advances in networked control systems. IEEE Trans. Ind. Inf. 12(5), 1740–1752 (2016)

    Article  Google Scholar 

  74. B.-L. Zhang, Q.-L. Han, X.-M. Zhang, X. Yu, Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans. Control Syst. Technol. 22(5), 1769–1783 (2014)

    Article  Google Scholar 

  75. X.-M. Zhang, Q.-L. Han, D. Han, Effects of small time-delays on dynamic output feedback control of offshore steel jacket structures. J. Sound Vib. 330(16), 3883–3900 (2011)

    Article  Google Scholar 

  76. N.E. Kahveci, P.A. Ioannou, Adaptive steering control for uncertain ship dynamics and stability analysis. Automatica 49(3), 685–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  77. R.-Y. Ren, Z.-J. Zou, X.-G. Wang, A two-time scale control law based on singular perturbations used in rudder roll stabilization of ships. Ocean Eng. 88, 488–498 (2014)

    Article  Google Scholar 

  78. H. Katayama, H. Aoki, Straight-line trajectory tracking control for sampled-data underactuated ships. IEEE Trans. Control Syst. Technol. 22(4), 1638–1645 (2014)

    Article  Google Scholar 

  79. P. Mahacek, C.A. Kitts, I. Mas, Dynamic guarding of marine assets through cluster control of automated surface vessel fleets. IEEE/ASME Trans. Mechatron. 17(1), 65–75 (2012)

    Article  Google Scholar 

  80. S.-I. Sohn, J.-H. Oh, Y.-S. Lee, D.-H. Park, I.-K. Oh, Design of a fuel-cell-powered catamaran-type unmanned surface vehicle. IEEE J. Ocean. Eng. 40(2), 388–396 (2015)

    Article  Google Scholar 

  81. H. Kim, D. Kim, J.-U. Shin, H. Kim, H. Myung, Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Eng. 84, 37–44 (2014)

    Article  Google Scholar 

  82. S.-L. Dai, C. Wang, F. Luo, Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inf. 8(4), 801–810 (2012)

    Article  Google Scholar 

  83. B. Tavassoli, Stability of nonlinear networked control systems over multiple communication links with asynchronous sampling. IEEE Trans. Autom. Control 59(2), 511–515 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  84. C. Peng, D. Yue, M.-R. Fei, A higher energy efficient sampling scheme for networked control systems over IEEE 802.15.4 wireless networks. IEEE Trans. Ind. Inf. 12(5), 1766–1774 (2016)

    Article  Google Scholar 

  85. C.-L. Lai, P.-L. Hsu, The butterfly-shaped feedback loop in networked control systems for the unknown delay compensation. IEEE Trans. Ind. Inf. 10(3), 1746–1754 (2014)

    Article  Google Scholar 

  86. F. Li, P. Shi, L. Wu, M.V. Basin, C.-C. Lim, Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Trans. Ind. Electron. 62(4), 2330–2340 (2015)

    Article  Google Scholar 

  87. G.-H. Yang, H. Wang, L. Xie, Fault detection for output feedback control systems with actuator stuck faults: a steady-state-based approach. Int. J. Robust Nonlinear Control 20(15), 1739–1757 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Zhao, B. Jiang, P. Shi, Z. He, Fault tolerant control for damaged aircraft based on sliding mode control scheme. Int. J. Innov. Comput. Inf. Control 10(1), 293–302 (2014)

    Google Scholar 

  89. G.-X. Zhong, G.-H. Yang, Robust control and fault detection for continuous-time switched systems subject to a dwell time constraint. Int. J. Robust Nonlinear Control 25(18), 3799–3817 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  90. J. You, S. Yin, H. Gao, Fault detection for discrete systems with network-induced nonlinearities. IEEE Trans. Ind. Inf. 10(4), 2216–2223 (2014)

    Article  Google Scholar 

  91. T.I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control (Wiley, Chichester, U.K., 2011)

    Book  Google Scholar 

  92. Y.-L. Wang, Q.-L. Han, Network-based modelling and dynamic output feedback control for unmanned marine vehicles in network environments. Automatica 91, 43–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  93. Y.-L. Wang, Q.-L. Han, Network-based heading control and rudder oscillation reduction for unmanned surface vehicles. IEEE Trans. Control Syst. Technol. 25(5), 1609–1620 (2017)

    Article  Google Scholar 

  94. Z. Peng, J. Wang, D. Wang, Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans. Ind. Electron. 64(5), 3831–3839 (2017)

    Article  Google Scholar 

  95. Z. Peng, J. Wang, D. Wang, Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling. IEEE/ASME Trans. Mechatron. 22(2), 1026–1036 (2017)

    Article  Google Scholar 

  96. M. Chen, S.S. Ge, B.V.E. How, Y.S. Choo, Robust adaptive position mooring control for marine vessels. IEEE Trans. Control Syst. Technol. 21(2), 395–409 (2013)

    Article  Google Scholar 

  97. Y.-L. Wang, Q.-L. Han, Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments. IEEE Trans. Ind. Inf. 12(5), 1753–1765 (2016)

    Article  MathSciNet  Google Scholar 

  98. Z. Yan, J. Wang, Model predictive control for tracking of underactuated vessels based on recurrent neural networks. IEEE J. Ocean. Eng. 37(4), 717–726 (2012)

    Article  Google Scholar 

  99. Y. Wang, S. Wang, M. Tan, Path generation of autonomous approach to a moving ship for unmanned vehicles. IEEE Trans. Ind. Electron. 62(9), 5619–5629 (2015)

    Article  Google Scholar 

  100. T.A. Johansen, T.I. Bø, E. Mathiesen, A. Veksler, A.J. Sørensen, Dynamic positioning system as dynamic energy storage on diesel-electric ships. IEEE Trans. Power Syst. 29(6), 3086–3091 (2014)

    Article  Google Scholar 

  101. Z. Peng, D. Wang, J. Wang, Cooperative dynamic positioning of multiple marine offshore vessels: a modular design. IEEE/ASME Trans. Mechatron. 21(3), 1210–1221 (2016)

    Article  Google Scholar 

  102. H. Katayama, Nonlinear sampled-data stabilization of dynamically positioned ships. IEEE Trans. Control Syst. Technol. 18(2), 463–468 (2010)

    Article  Google Scholar 

  103. J. Du, X. Hu, H. Liu, C.L.P. Chen, Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2775–2786 (2015)

    Article  MathSciNet  Google Scholar 

  104. Z. Peng, D. Wang, J. Wang, Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    Article  MathSciNet  Google Scholar 

  105. B. Bidikli, E. Tatlicioglu, E. Zergeroglu, Robust dynamic positioning of surface vessels via multiple unidirectional tugboats. Ocean Eng. 113, 237–245 (2016)

    Article  Google Scholar 

  106. V. Hassani, A.J. Sørensen, A.M. Pascoal, M. Athans, Robust dynamic positioning of offshore vessels using mixed-\(\mu \) synthesis modeling, design, and practice. Ocean Eng. 129, 389–400 (2017)

    Article  Google Scholar 

  107. B. Bidikli, E. Tatlicioglu, E. Zergeroglu, Compensating of added mass terms in dynamically positioned surface vehicles: a continuous robust control approach. Ocean Eng. 139, 198–204 (2017)

    Article  Google Scholar 

  108. J. Du, X. Hu, M. Krstić, Y. Sun, Robust dynamic positioning of ships with disturbances under input saturation. Automatica 73, 207–214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  109. W.-H. Ho, S.-H. Chen, J.-H. Chou, Optimal control of Takagi-Sugeno fuzzy-model-based systems representing dynamic ship positioning systems. Appl. Soft Comput. 13(7), 3197–3210 (2013)

    Article  Google Scholar 

  110. W.-B. Xie, Y.-L. Wang, J. Zhang, M.-Y. Fu, Novel separation principle based \({H}_{\infty }\) observer-controller design for a class of T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 26(6), 3206–3221 (2018)

    Article  Google Scholar 

  111. N.A.M. Subha, G.-P. Liu, Design and practical implementation of external consensus protocol for networked multiagent systems with communication delays. IEEE Trans. Control Syst. Technol. 23(2), 619–631 (2015)

    Article  Google Scholar 

  112. C. Peng, E. Tian, J. Zhang, D. Du, Decentralized event-triggering communication scheme for large-scale systems under network environments. Inf. Sci. 380, 132–144 (2017)

    Article  Google Scholar 

  113. Z.-H. Pang, G.-P. Liu, D. Zhou, Design and performance analysis of incremental networked predictive control systems. IEEE Trans. Cybern. 46(6), 1400–1410 (2016)

    Article  Google Scholar 

  114. G.-P. Liu, Consensus and stability analysis of networked multiagent predictive control systems. IEEE Trans. Cybern. 47(4), 1114–1119 (2017)

    Article  Google Scholar 

  115. D. Zhang, Q.-L. Han, X. Jia, Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers. IEEE Trans. Cybern. 45(8), 1511–1524 (2015)

    Article  Google Scholar 

  116. D. Zhang, Q.-L. Han, X. Jia, Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Syst. 273, 26–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  117. C. Peng, S. Ma, X. Xie, Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication. IEEE Trans. Cybern. 47(8), 2279–2287 (2017)

    Article  Google Scholar 

  118. Z. Zhong, Y. Zhu, Observer-based output-feedback control of large-scale networked fuzzy systems with two-channel event-triggering. J. Frankl. Inst. 354(13), 5398–5420 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  119. H. Li, C. Wu, S. Yin, H.-K. Lam, Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 24(5), 1233–1245 (2016)

    Article  Google Scholar 

  120. C. Zhang, J. Hu, J. Qiu, Q. Chen, Reliable output feedback control for T-S fuzzy systems with decentralized event triggering communication and actuator failures. IEEE Trans. Cybern. 47(9), 2592–2602 (2017)

    Article  Google Scholar 

  121. T. Adamek, C.A. Kitts, I. Mas, Gradient-based cluster space navigation for autonomous surface vessels. IEEE/ASME Trans. Mechatron. 20(2), 506–518 (2015)

    Article  Google Scholar 

  122. N. Fischer, D. Hughes, P. Walters, E.M. Schwartz, W.E. Dixon, Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Trans. Robot. 30(4), 845–852 (2014)

    Article  Google Scholar 

  123. Y. Liu, R. Bucknall, Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Eng. 97, 126–144 (2015)

    Article  Google Scholar 

  124. N. Wang, Y. Gao, H. Zhao, C.K. Ahn, Reinforcement learning-based optimal tracking control of an unknown unmanned surface vehicle. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3034–3045 (2021)

    Article  MathSciNet  Google Scholar 

  125. C. Peng, Q.-L. Han, A novel event-triggered transmission scheme and \(\cal{L} _2\) control co-design for sampled-data control systems. IEEE Trans. Autom. Control 58(10), 2620–2626 (2013)

    Article  MATH  Google Scholar 

  126. C. Peng, Q.-L. Han, On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays. IEEE Trans. Ind. Electron. 63(2), 1239–1248 (2016)

    Article  Google Scholar 

  127. S.-L. Du, X.-M. Sun, W. Wang, Guaranteed cost control for uncertain networked control systems with predictive scheme. IEEE Trans. Autom. Sci. Eng. 11(3), 740–748 (2014)

    Article  Google Scholar 

  128. M. Jungers, E.B. Castelan, V.M. Moraes, U.F. Moreno, A dynamic output feedback controller for NCS based on delay estimates. Automatica 49(3), 788–792 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  129. D. Yue, E. Tian, Q.-L. Han, A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  130. Y.-L. Wang, Q.-L. Han, Modelling and observer-based \(H_\infty \) controller design for networked control systems. IET Control Theory Appl. 8(15), 1478–1486 (2014)

    Article  MathSciNet  Google Scholar 

  131. C. Lv, H. Yu, J. Chi, T. Xu, H. Zang, H. Jiang, Z. Zhang, A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Eng. 176, 222–230 (2019)

    Article  Google Scholar 

  132. Z. Gao, G. Guo, Command filtered finite/fixed-time heading tracking control of surface vehicles. IEEE/CAA J. Automatica Sinica 8(10), 1667–1676 (2021)

    Article  MathSciNet  Google Scholar 

  133. L. Ma, Y.-L. Wang, Q.-L. Han, Event-triggered dynamic positioning for mass-switched unmanned marine vehicles in network environments. IEEE Trans. Cybern. 52(5), 3159–3171 (2022)

    Google Scholar 

  134. J. Ye, S. Roy, M. Godjevac, V. Reppa, S. Baldi, Robustifying dynamic positioning of crane vessels for heavy lifting operation. IEEE/CAA J. Automatica Sinica 8(4), 753–765 (2021)

    Article  MathSciNet  Google Scholar 

  135. M. Breivik, V.E. Hovstein, T.I. Fossen, Straight-line target tracking for unmanned surface vehicles. Model. Identif. Control 29(4), 131–149 (2008)

    Article  Google Scholar 

  136. L. Liu, D. Wang, Z. Peng, C.L.P. Chen, T. Li, Bounded neural network control for target tracking of underactuated autonomous surface vehicles in the presence of uncertain target dynamics. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1241–1249 (2019)

    Article  MathSciNet  Google Scholar 

  137. S. Gao, Z. Peng, L. Liu, H. Wang, D. Wang, Coordinated target tracking by multiple unmanned surface vehicles with communication delays based on a distributed event-triggered extended state observer. Ocean Eng. 227, Article no. 108283 (2021)

    Google Scholar 

  138. Y. Yang, J. Du, H. Liu, C. Guo, A. Abraham, A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Trans. Control Syst. Technol. 22(4), 1511–1518 (2014)

    Article  Google Scholar 

  139. S. Dai, S. He, M. Wang, C. Yuan, Adaptive neural control of underactuated surface vessels with prescribed performance guarantees. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3686–3698 (2019)

    Article  MathSciNet  Google Scholar 

  140. Z. Zheng, L. Sun, L. Xie, Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1794–1805 (2018)

    Article  Google Scholar 

  141. L. Liu, D. Wang, Z. Peng, ESO-based line-of-sight guidance law for path following of underactuated marine surface vehicles with exact sideslip compensation. IEEE J. Ocean. Eng. 42(2), 477–487 (2017)

    Article  Google Scholar 

  142. C. Liu, D. Wang, Y. Zhang, X. Meng, Model predictive control for path following and roll stabilization of marine vessels based on neurodynamic optimization. Ocean Eng. 217, Article no. 107524 (2020)

    Google Scholar 

  143. Z. Peng, J. Wang, D. Wang, Q.-L. Han, An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Trans. Ind. Inf. 17(2), 732–745 (2021)

    Article  Google Scholar 

  144. O. Elhaki, K. Shojaei, Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance. Ocean Eng. 167, 239–256 (2018)

    Article  Google Scholar 

  145. O. Namaki-Shoushtari, A.P. Aguiar, A. Khaki-Sedigh, Target tracking of autonomous robotic vehicles using range-only measurements: a switched logic-based control strategy. Int. J. Robust Nonlinear Control 22(17), 1983–1998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  146. K. Shojaei, Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles. Neural Comput. Appl. 31, 509–521 (2019)

    Article  Google Scholar 

  147. K. Choi, S.J. Yoo, J.B. Park, Y.H. Choi, Adaptive formation control in absence of leader’s velocity information. IET Control Theory Appl. 4(4), 521–528 (2010)

    Article  MathSciNet  Google Scholar 

  148. Z. Peng, D. Wang, Robust adaptive formation control of autonomous surface vehicles with uncertain dynamics. IET Control Theory Appl. 5(12), 1378–1387 (2011)

    Article  MathSciNet  Google Scholar 

  149. R. Cui, S.S. Ge, B.V.E. How, Y.S. Choo, Leader-follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(17–18), 1491–1502 (2010)

    Article  Google Scholar 

  150. L. Ma, Y.-L. Wang, Q.-L. Han, \(H_\infty \) cluster formation control of networked multiagent systems with stochastic sampling. IEEE Trans. Cybern. 51(12), 5761–5772 (2021)

    Article  Google Scholar 

  151. X. Ge, Q.-L. Han, L. Ding, Y.-L. Wang, X.-M. Zhang, Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques. IEEE Trans. Syst. Man Cybern. Syst. 50(9), 3112–3125 (2020)

    Article  Google Scholar 

  152. Y. Wang, Y. Liu, Z. Wang, Theory and experiments on enclosing control of multi-agent systems. IEEE/CAA J. Automatica Sinica 8(10), 1677–1685 (2021)

    Article  MathSciNet  Google Scholar 

  153. X. Ge, Q.-L. Han, J. Wang, X.-M. Zhang, A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance. IEEE/CAA J. Automatica Sinica 9(6), 990–1004 (2022)

    Article  Google Scholar 

  154. B. Xiao, X. Yang, X. Huo, A novel disturbance estimation scheme for formation control of ocean surface vessels. IEEE Trans. Ind. Electron. 64(6), 4994–5003 (2017)

    Article  Google Scholar 

  155. T. Li, R. Zhao, C.L.P. Chen, L. Fang, C. Liu, Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans. Cybern. 48(11), 3243–3253 (2018)

    Article  Google Scholar 

  156. Z. Peng, J. Wang, D. Wang, Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Trans. Control Syst. Technol. 26(3), 1083–1090 (2018)

    Article  Google Scholar 

  157. X. Dong, Y. Zhou, Z. Ren, Y. Zhong, Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 64(6), 5014–5024 (2017)

    Article  Google Scholar 

  158. J. Dai, G. Guo, Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies. Inf. Sci. 459, 290–301 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  159. Y. Cheng, Y. Zhang, L. Shi, J. Shao, Y. Xiao, Consensus seeking in heterogeneous second-order multi-agent systems with switching topologies and random link failures. Neurocomputing 319, 188–195 (2018)

    Article  Google Scholar 

  160. M. Meng, G. Xiao, C. Zhai, G. Li, Z. Wang, Distributed consensus of heterogeneous multi-agent systems subject to switching topologies and delays. J. Frankl. Inst. 357(11), 6899–6917 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  161. H. Sun, C. Peng, W. Zhang, T. Yang, Z. Wang, Security-based resilient event-triggered control of networked control systems under denial of service attacks. J. Frankl. Inst. 356(7), 10277–10295 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  162. L. Ma, Z. Wang, Q.-L. Han, H.-K. Lam, Variance-constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks. IEEE Sens. J. 17(7), 2279–2288 (2017)

    Article  Google Scholar 

  163. D. Ding, Z. Wang, Q.-L. Han, G. Wei, Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Trans. Syst. Man Cybern. Syst. 48(5), 779–789 (2018)

    Article  Google Scholar 

  164. Z. Zuo, Q.-L. Han, B. Ning, X. Ge, X.-M. Zhang, An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Ind. Inf. 14(6), 2322–2334 (2018)

    Article  Google Scholar 

  165. A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  166. Z. Zuo, Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 9(4), 545–552 (2015)

    Article  MathSciNet  Google Scholar 

  167. X. Yang, J. Lam, D.W.C. Ho, Z. Feng, Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans. Autom. Control 62(11), 5511–5521 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  168. B.S. Park, S.J. Yoo, Robust trajectory tracking with adjustable performance of underactuated surface vessels via quantized state feedback. Ocean Eng. 246, Article no. 110475 (2022)

    Google Scholar 

  169. N. Wang, C.K. Ahn, Hyperbolic-tangent LOS guidance-based finite-time path following of underactuated marine vehicles. IEEE Trans. Ind. Electron. 67(10), 8566–8575 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Long Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, YL., Han, QL., Peng, C., Ma, L. (2023). Introduction. In: Network-Based Control of Unmanned Marine Vehicles. Springer, Cham. https://doi.org/10.1007/978-3-031-28605-6_1

Download citation

Publish with us

Policies and ethics