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Abstract. Collecting metadata from Transport Layer Security (TLS)
servers on a large scale allows to draw conclusions about their capabili-
ties and configuration. This provides not only insights into the Internet
but it enables use cases like detecting malicious Command and Control
(C&C) servers. However, active scanners can only observe and interpret
the behavior of TLS servers, the underlying configuration and implemen-
tation causing the behavior remains hidden. Existing approaches struggle
between resource intensive scans that can reconstruct this data and light-
weight fingerprinting approaches that aim to differentiate servers with-
out making any assumptions about their inner working. With this work
we propose DissecTLS, an active TLS scanner that is both light-weight
enough to be used for Internet measurements and able to reconstruct
the configuration and capabilities of the TLS stack. This was achieved by
modeling the parameters of the TLS stack and derive an active scan that
dynamically creates scanning probes based on the model and the previous
responses from the server. We provide a comparison of five active TLS
scanning and fingerprinting approaches in a local testbed and on toplist
targets. We conducted a measurement study over nine weeks to finger-
print C&C servers and analyzed popular and deprecated TLS parameter
usage. Similar to related work, the fingerprinting achieved a maximum
precision of 99 % for a conservative detection threshold of 100%; and at
the same time, we improved the recall by a factor of 2.8.
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1 Introduction

Transport Layer Security (TLS) is currently the de facto standard for encrypted
communication on the Internet [18]; thus, providing a good common base to
analyze, compare, and relate servers. The protocol is influenced by libraries,
hardware capabilities, custom configurations, and the application build on top,
resulting in an a server specific TLS configuration. A large amount of meta-
data from this configuration can be collected because in the initial TLS hand-
shake clients and servers must exchange their capabilities such that a mutual
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cryptographic base can be found. There are at least two possibilities to collect
this metadata: on the one hand, TLS server debugging tools like testssl.sh [33]
or SSLyze [10] perform resource intensive scans that dynamically adapt to the
server and can reconstruct a human-readable representation. On the other hand,
active TLS fingerprinting approaches like JARM [4] or Active TLS Stack Fin-
gerprinting (ATSF) [31] use a small set of fixed requests that are designed to be
good in differentiating TLS server configurations. Their light-weight approaches
enable them to be used for Internet-wide scans; e.g., censys.io already provides
JARM fingerprints [8].

Related works have shown that collecting and analyzing TLS configurations
from a large amount of servers enables further use cases, e.g., monitoring a fleet
of application servers [4] or detecting malicious Command and Control (C&C)
servers [4,31]. To be able to collect this data, the respective scanning approach
needs to be efficient, to both reduce the time it takes to collect the data and the
impact the scan has on third parties.

However, using a fixed set of probes will always leave open the possibility for
redundant data to be collected and for useful information to be overlooked; there-
fore, the performance of subsequent applications (e.g., detecting C&C servers)
might not reach their full potential. An alternative is to exhaustively scan a
server until the full TLS configuration can be reconstructed. However, current
tools are not efficient enough to be used on a large scale.

This work investigates whether a dynamically adapting scan can be imple-
mented efficient enough to be used on a large scale and if this provides a benefit
over existing work and tools. We propose DissecTLS as an efficient tool to collect
TLS server configurations and provide the following contributions:

(i) a model of the TLS stack on a server that explains its behavior towards
different requests and that can be used to craft TLS Client Hellos (CHs)
on a per-server level to reconstruct its underlying configuration;

(ii) a comparison of five popular TLS scanners regarding their capabilities to
detect different configurations and their scanning costs performed both in
a controlled testbed environment and on toplist servers;

(iii) a measurement study of one top- and two blocklists over nine weeks com-
paring a C&C server detection using fingerprinting tools and this work,
complimented with an overview of common TLS parameters; and

(iv) published measurement data [29], scanner, and comparison scripts [30].

2 Methodology

During the initial handshake of the TLS protocol, clients and servers share sev-
eral pieces of information related to their capabilities to negotiate a mutual
encryption base. Part of this can be configured by the user (e.g., ciphers the
server is allowed to select), only limited by the actual capabilities of the soft-
ware and hardware. However, TLS servers only react to clients; therefore, reveal
only a portion of their internal configuration with every response (e.g., the server
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Table 1. Model of TLS configuration properties on a server and their representations.

Property Representation

Supported TLS versions set
Cipher suites ⎫

⎬

⎭
priority list / setaSupported groups

ALPNs
Selected extension valuesb map(id → value)
Inappropriate Fallback support bool
Order of TLS extensions DAGc / set
Error behavior one of {TCP, TLS, Ignore}

a Only sets can be collected if the server uses the client preferences.
b EC Point Formats, Signature Algorithms (Cert), and Heartbeat.
c A directed acyclic graph (DAG) is used if the server responds consistently.

selects only a single cipher from the list of proposed ciphers). This means, mul-
tiple requests (i.e., CHs) must be sent to collect the full amount of information
hidden in the TLS stack. It is not feasible (regarding time and resources) to send
every possible CH to a server. Thus, every active TLS scanner uses a strategy
to select CHs depending on the information it wants to collect. With DissecTLS
we aim to reconstruct the configuration that cause the observed TLS behavior
in a scalable manner that can be used even for Internet-wide scans. Therefore,
we need to reduce the number of requests as far as possible. This is achieved
by defining a general model of the TLS configuration on a server and use the
minimum number of requests necessary to learn the parameters of the model.
Additionally, we defined the output such that it can be used for fingerprinting;
i.e., exclude session, timing, and instance related data. Depending on the previ-
ous responses from a TLS server we use the model to craft the most promising
CH that should reveal new information about the server.

The following sections will explain our model of the TLS stack, how we
represent its features, and how our scanner is implemented on an abstract level.

2.1 Modeling the TLS Configuration on Servers

To design a scan that is able to extract the parameters of a TLS stack con-
figuration, these parameters need to be defined first. We analyzed popular web
server configurations (e.g., provided by Mozilla [23]), TLS server debugging tools
(testssl.sh [33] and SSLyze [10]), passively captured TLS handshakes, and the
TLS 1.2 and 1.3 specification [27,28] to derive the model from Table 1. This
model reflects our understanding of TLS and how it is applied in the Internet.
It is not complete as discussed in Sect. 6.

TLS servers support a set of versions and either answer with the correct ver-
sion, abort the handshake, or attempt a downgrade to a lower version. There
are three priority lists used in the handshake where the client offers a list of
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options and the server selects one according to its internal preferences. Itera-
tively removing each parameter from new requests that was previously selected
by the server, the full list of length n can be scanned with n+ 1 requests. This
is the optimal approach using the “lowest number of connections necessary [. . . ]
for one host”, explained by Mayer et al. [20]. However, if the server prefers client
preferences, only a set of supported parameters can be acquired instead of a
priority list. Clients can inform the server about their own priorities through the
order of parameters in the CH. We tested whether servers respect this priority
as follows: after learning at least two parameters, we also learned which one
the server selected first. Then, we send a new CH where the order of the two
is reversed; we know a server prefers its own preferences if this had no influ-
ence on the selection. We scan cipher suites, supported groups, and Application
Layer Protocol Negotiations (ALPNs) with the currently 350, 64, and 27 possi-
ble values listed by IANA [17], respectively. Some servers provide the full list of
supported groups [27] directly as extension, in these cases we do not explicitly
scan them. However, the presence of a pre-computed key share can influence
the priorities of the supported groups; hence, we collect the preference without
a pre-computed key share and afterwards test whether the presence influenced
the decision. Support of most TLS extensions is indicated by their presence or
absence and does not need a particular logic, they just need to be triggered
in the CH with their presence. Others need specific logic because they modify
the encryption (Encrypt Then Mac and Extended Master Secret), are mutually
exclusive with other extensions (Record Size Limit and Max Fragment Size), or
multiple values can be send (Heartbeat). Sometimes, the content of extensions
is of interest because it reveals information about the server capabilities, and in
these cases we store the raw byte content. The man-in-the-middle inappropriate
fallback protection needs special logic because it only makes sense to send the
signaling cipher [21] if multiple TLS versions are detected. Lastly, servers can
respond differently in cases of problems, some report an error on the Transmis-
sion Control Protocol (TCP) layer, some send TLS alerts, and others just ignore
the problematic part of the handshake (e.g., using a default value). An example
is shown in Appendix A.

In summary, this model is an abstract and human-readable representation of
the TLS stack on a server that can explain its behavior in TLS handshakes.

2.2 Representing Multiple Observations of Extension Orders

The order of extensions is not defined in the TLS standard; however, we argue
most servers have a consistent order as result how they are implemented in the
code. We confirmed this by checking the source code of the Golang TLS library
we modified to implement our tool. Moreover, in Sect. 4.2 we found that more
than 99% of the servers in the study responded with a consistent order.

The presence of extensions depends on the request and not all extensions
can be observed at the same time (e.g., the key share extension is only present
in a TLS 1.3 handshake). This means, every response from the server reveals
part of the order and multiple observations can be combined to reconstruct the
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Fig. 1. Example for merging multiple observations of TLS extensions into a single
format. If the graph contains cycles after merging, the extension order is inconsistent.

internal order on the server as close as possible. We created a DAG for each
observation, merged these graphs and removed duplicate and transitive edges.
If the graph contains cycles after merging; this means, the observations were
inconsistent and the extension order cannot be reconstructed. An example for
this process is illustrated in Fig. 1.

In conclusion, a DAG allows to represent multiple observations of extensions
in a compact format that is as close as possible to the internal server order.

2.3 Implementation of DissecTLS

DissecTLS is implemented as feature of the TUM goscanner [15], which is a TLS
scanner for Internet-wide measurements. It is based upon a modified version of
the Golang TLS library that can send custom CHs and extract handshake data.

We designed DissecTLS to use as few requests as possible. To achieve this, the
logic of the scan is divided into several scan tasks and each task is responsible for
one or a few related parameters. The tasks are designed to collect information
in parallel. Every task modifies the next CH depending on its current state
and, after receiving the response, updates the server parameters with the new
information. This is repeated until an error occurs; then, each task that could
have caused the error is toggled on or off until one remains and the cause is found
(e.g., whether a missing cipher or the wrong TLS version was responsible). The
task causing the error must resolve it (e.g., mark the cipher scan as complete or a
TLS version as unsupported) and the scan is continued normally. In general, the
more specific a server was (e.g., it sent a “protocol version” TLS alert instead of a
TCP reset), the faster the cause can be identified. Some servers did not respond
with error messages but let the TCP connection time out, we treat these cases
not as an error in favor of reducing the load in case of real timeouts.

In summary, with help of our model we implemented a scanner that uses a
minimal amount of requests that allow us to reconstruct the TLS configuration.

3 Comparison of TLS Scanners and Their Ability
to Detect Different TLS Stack Configurations
on Servers

Active TLS scanners are designed to extract information from servers. We com-
pared their performance doing so by measuring their ability to distinguish differ-
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Table 2. Detected number of Nginx configurations for each test case. An ideal scanner
detects every alteration made on the server and finds “Goal” number of configurations.

Test Case DissecTLS DissecTLS (lim.) ATSF JARM SSLyze testssl.sh Goal

TLS Versions 15 15 13 11 15 14 15
Cipher Suites 1 956 359 115 11 63 1 956 1 956
ALPNs 2 2 2 2 1 2 2
Preferences 2 2 2 2 1 2 2
Session Tickets 2 2 2 2 2 2 2

Used CHs per Server

Minimum 8.0 8.0 9.0 9.0 423.0 9.0
Average 14.3 10.0 10.0 10.0 450.1 132.7
Maximum 42.0 15.0 12.0 10.0 455.0 224.0

ent TLS server configurations. Without analyzing the scanner output we argue
that whenever a scanner is able to differentiate two different TLS configurations,
the scanner has detected the relevant piece of information. The more configu-
rations it can differentiate, the more valuable is its output. However, we also
measured the costs of the scanner by counting the amount of requests it needed
to perform the scan. The lower the costs are, the more servers can be scanned
in the same time and the lower the impact is on individual servers. An ideal
scalable approach collects a high amount of information with low costs.

We compared testssl.sh [33], SSLyze [10], JARM [4], ATSF [31], and this
work. We selected them because from our knowledge they are the relevant rep-
resentatives that either fingerprint or reconstruct the TLS configuration. We
configured our approach in two versions, one tries to fully reconstruct the TLS
configuration (DissecTLS), the other completes using 10 handshakes (DissecTLS
lim.). We interpret the textual output of each scanner as its representation of
the server. If two outputs are equal, they detected no difference in the configu-
ration. We were able to directly use the output of JARM, ATSF, and this work.
We had to remove information regarding timing (e.g., scan time), sessions (e.g.,
cryptographic keys), and server instances (e.g., the domain name) from the out-
put of testssl.sh and SSLyze to get stable results for the same TLS configuration.
Additionally, we disabled the vulnerability detection of these tools.

3.1 Scanner Comparison in a Local Testbed

In our local testbed we compared the TLS scanners based on a ground truth. We
challenged them in different scenarios where we systematically made alterations
to a server and checked whether the scanners were able to detect it.

The experiment was designed as follows: we selected a parameter we could
configure on the TLS server (Test Case), launched an Nginx 1.23 docker con-
tainer for each configuration we could generated for this parameter, and scanned
the containers with every scanner. We used tcpdump [32] to measure the num-
ber of CHs the scanners were using. The results can be seen in Table 2. An ideal
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scanner is able to differentiate all variations we have configured (listed under
“Goal”). Nginx allowed to configure four TLS versions, resulting in 15 working
combinations (24 − 1). We only used six TLS 1.2 ciphers because this number
was still scannable in a reasonable time. These six ciphers resulted in 1 956 con-
figurations (every permutation of every combination of the six ciphers). ALPNs,
Server Preferences, and Session Tickets were scanned either en- or disabled. The
table shows that only DissecTLS and testssl.sh were able to detect every alter-
ation we made on the server. DissecTLS (lim.) tried to detect the TLS versions,
then data in extensions, and lastly the ciphers; hence, it usually detected only
the first few ciphers from the server and could not detect configurations that
differ in the lower cipher priorities. Testssl.sh could not detect one case where
only TLS 1.3 was enabled because at the time of the experiment it included an
OpenSSL version that was not TLS 1.3 capable. SSlyze was not able to detect
the order of ciphers, therefore, could not detect any permutation we performed
on the ciphers. The two fingerprinting approaches ATSF and JARM were not
able to detect every alteration on the servers. This was expected as they use
a fixed number of requests. However, as this experiment is artificial, it is pos-
sible that the obtained fingerprints are still good enough for fingerprinting use
cases. Regarding the scanning costs, the picture is reversed. The fingerprinting
tools and the limited version of DissecTLS used the least number of requests,
DissecTLS slightly more, and testssl.sh and SSlyze being the most costly. We
expect testssl.sh and SSLyze to be used on a small scale where scanning costs
do not matter; however, we can see that the former is more optimized and uses
fewer requests to collect more information. We can see a difference in JARM and
ATSF regarding the maximum number of used CHs: both initially use 10 CHs,
but the latter completes handshakes; therefore, we sometimes observe an addi-
tional CH from the scanner as response to a Hello Retry Request (servers can
send them to request a different key share from the client). DissecTLS makes use
of this TLS feature to reconstruct the supported group preferences of the server
in case no key share is present because its presence might influence the decision.
Therefore, we observe up to 15 CHs for the maximum of 10 handshakes.

To conclude, DissecTLS competes both with testssl.sh regarding the amount
of collected information and with active TLS fingerprinting tools regarding their
low scanning costs. However, this analysis only includes a single TLS implemen-
tation and artificial test cases; therefore, to get a more complete view the next
section compares the scanners in a more realistic setting on toplist servers.

3.2 Scanner Comparison on the Top 10k Toplist Domains

This section compares the five TLS scanners on the top 10k domains from the
Tranco [19] toplist. Because the ground truth is unknown, only their performance
to differentiate servers can be compared. The scan took 6 days to complete
because of the low request rate testssl.sh and SSLyze were able to achieve.

The number of configurations each tool was able to detect and the number of
requests necessary to collect this information can be seen in Table 3. DissecTLS
was able to detect the most configurations, followed by Testssl.sh. However, this
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Table 3. Comparison of TLS scanners regarding the number of detected configurations
and Client Hello usage on the resolved (IPv4 and IPv6) top 10k Tranco domains.

DissecTLS DissecTLS (lim.) ATSF JARM SSLyze testssl.sh

Configurations 3 450.0 1 839.0 1 956.0 1 325.0 2 738.0 3 235.0
Total CHs 530.6k 235.6k 238.5k 209.4k 9.5M 3.4M
Average CHs 24.0 10.7 10.8 9.5 430.0 154.9

Total Scanned Targets 22 075

Table 4. Overview of the collected data for the Top- and Blocklist study.

Input source
Total Distinct Unique Successful Scans

Samples Targets Domains DissecTLS ATSF JARM

Tranco Toplist 15.8M 2.8M 1.1M 14.4M 13.1M 14.3M
abuse.ch Feodo Tracker 4 040.0 812.0 1 725.0 2 126.0 768.0
abuse.ch SSLBL 1 034.0 223.0 27.0 42.0 26.0

does not mean a scanner collected only a super-set from another, as discussed
in Sect. 6. This work uses just a sixth of the requests compared to testssl.sh,
with 24 CHs on average. JARM used less than 10 requests on average because
sometimes the TCP connection failed and no CH was sent. In contrast to the
last section, the limited version of DissecTLS performed a bit worse than ATSF.
Apparently, our approach only detects the finer details that help to differentiate
TLS configurations when it completes the scan.

This sections showed that the dynamic scanning approach from testssl.sh,
DissecTLS, and SSLyze is superior to the fixed selection of CH regarding col-
lected data. However, this comes with increased scanning costs. We argue that
only JARM, ATSF, and DissecTLS are resource efficient enough to be used for
large-scale measurements. Additionally, in the following we refrain from limiting
the number of requests of DissecTLS. While roughly doubling the scanning costs
it provides a more complete; hence, a more useful view on the TLS stack.

4 Measurement Study on Top- and Blocklist Servers

This section transfers the findings from the previous section to a larger scale
where we collected more than 15 Million data samples with each scanner (data
available under Ref. [29]). However, we only used DissecTLS, ATSF, and JARM
for this study because testssl.sh and SSLyze did not scale well enough for this
use case.

We scanned servers from the complete Tranco [19] toplist and two C&C
server blocklists: the abuse.ch Feodo Tracker [1] and the abuse.ch SSLBL [2].
We collected nine weekly snapshots starting from July 01, 2022. Table 4 presents
an overview of these measurements. We resolved domains from the toplist and
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Fig. 2. Precision and Recall for classifying C&C servers each week based on the data
collected in previous weeks. Using the fingerprints from the respective scanner as input.

scanned each combination of IPv4 and IPv6 address together with the domain as
Server Name Indication. We call each IP and domain name combination a target.
The two blocklists only list IP addresses; hence, the number of targets is equal
to the number of entries on these lists. We count a “success” if the respective
scanner produced an output. For DissecTLS and ATSF this is the case if a
TCP connection could be established. JARM additionally needed the server to
respond at least once with a Server Hello. DissecTLS and JARM implement a
retry mechanism on failed TCP handshakes, together with the different success
definition, this can explain the variations in the success rates.

4.1 Fingerprinting C&C Servers

Althouse et al. [4] and Sosnowski et al. [31] describe the fingerprinting of mali-
cious C&C servers as one of the major use cases of their respective approach. Like
the fingerprinting tools, DissecTLS collects data from the TLS stack and its out-
put can be used for fingerprinting. In the following, we performed a C&C server
classification based on the data collected with JARM, ATSF, and DissecTLS
from the weekly top- and blocklist measurements. This allowed us to compare
the different data collection approaches regarding a C&C server detection.

Each scanned target is labeled as C&C server (positive) or toplist server
(negative) based on whether the IP address was listed on one of the blocklists
in the respective week. In case of ambiguity, the blocklist took preference. Then,
we made a prediction for each target based on the data and labels from previous
weeks. The prediction worked as follows: each week n, we calculated the rate how
often a fingerprint was observed from C&C servers versus toplist servers during
weeks [1..n−1] and predicted a “C&C server” if this rate was above a configurable
threshold. A threshold of 50% means that at least every second server with a
specific fingerprint would need to be labeled as C&C server so that this finger-
print results in a “C&C server” prediction. We performed this classification with
the fingerprints from JARM, ATSF, and DissecTLS. Figure 2 compares the pre-
cision and recall defined as TP

TP+FP and TP
TP+FN (TP := “true positives”, FP :=
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“false positives”, FN := “false negatives”), respectively. Intuitively, precision is
the rate of correct classifications and recall the fraction of C&C servers we were
able to identify. It shows that the classification based on ATSF or DissecTLS
performed quite similar with a high precision that reached the maximum at the
most conservative detection threshold of 100%. However, the high precision is
only achieved through a lower recall of 15% and 42%, respectively. JARM fin-
gerprints were not descriptive enough to identify the C&C servers on our two
blocklists and together with the lower success rate this resulted in a low recall.

In conclusion; DissecTLS, ATSF, and JARM collect TLS data that can be
used to detect C&C servers. DissecTLS and ATSF achieved a precision that is
more than 99% for the 100% threshold. Moreover, DissecTLS achieved a 2.8
times higher recall than ATSF for said threshold. Additionally, we argue that
DissecTLS collects more valuable data because it provides a human-readable
representation of the TLS stack as described in the next section.

4.2 Human-Readable TLS Server Configurations

Until this section this work analyzed TLS configurations as a single unit; how-
ever, DissecTLS produces an output (see example in Appendix A) that can be
used to understand how a server is configured. This can help to explain why fin-
gerprinting was possible. In Appendix B we present statistics from the top- and
blocklist servers that can deepen our understanding of TLS parameter usages on
the Internet. We have analyzed the support for different TLS versions; computed
a popularity ranking of cipher suites, supported groups, and ALPNs; analyzed
whether servers prefer client preferences or not; and looked how many servers
supported deprecated cipher categories.

In conclusion, an exhaustive TLS scanning approach can be used for finger-
printing but additionally provides valuable insights into the TLS ecosystem.

5 Related Work

Fingerprinting TLS clients in passive network traces is a well established disci-
pline, shown by multiple related works [3,5–7,16]. This concept has been adapted
by Althouse et al. [4] and Sosnowski et al. [31] through active scanning to be
able to fingerprint servers. Both approaches use a fixed set of 10 requests that
“have been specially crafted to pull out unique responses in TLS servers” [4] and
“empirically optimized to provide as much information as possible” [31], respec-
tively. They capture variations of the TLS configuration in their fingerprints;
however, they do not actively search for them; additionally, the explainability
of their output, or fingerprint, is low and it is difficult to understand what has
caused the specific fingerprint. Both works show that they can find malicious
C&C servers on the Internet. A fundamentally different approach is proposed by
Rasoamanana et al. [26], they define a State Machine describing TLS handshakes
and argue that the transitions between states can be used to fingerprint specific
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implementations; especially, if these transitions are not conform to the TLS spec-
ification and, sometimes, even pose a security vulnerability. Their focus on the
behavior of the library in the context of erroneous input does not consider the
parameters that are the cause of the non-erroneous behavior. Dynamically scan-
ning TLS servers is a common practice in the context of analyzing and debugging
servers with tools like testssl.sh [33] or SSLyze [10]. Both make assumptions how
the TLS on the server works and adapt their scanning to this model. However,
they focus on the configurable part of the server, do not export every finger-
printable information, and are not optimized for Internet-wide usage (e.g., use
more than 100 requests to scan a single server). Mayer et al. [20] showed that
cipher suite scanning can be optimized to use 6% of the connections compared
to related works. However, they ignore the rest of the TLS configuration.

6 Discussion

This work proposes an exhaustive but optimized TLS scanning approach that
can be used for large-scale Internet measurements and for TLS fingerprinting.
The following paragraphs discuss several aspects we found worth mentioning.

C&C TLS Configurations. In general, configurations we could relate to C&C
servers had just slight alterations in their parameters compared to common con-
figurations (e.g., the position of a single cipher). However, we collected interesting
results (see Appendix A) from several servers labeled as Trickbot, according to
the Feodo Tracker [1]. These servers supported TLS 1.0 and downgraded higher
versions, which is already a rare behavior. In contrast to the low TLS version,
the ciphers were strong and some used a modern key agreement, i.a., X25519
(standardized 2016 [14] - 8 years after TLS 1.2 [28]). This led us to the conclusion
that this was a modern server where some modern features were disabled.

Completeness of the Testbed. Every TLS scanner from Sect. 3.1 was capable to
detect more configurations than the ones we have tested, e.g., TLS versions prior
to TLS 1.0 or other cipher suites. We selected the tested values because they
were configurable on the Nginx server. Some features, e.g., the extension order,
cannot be configured. Our choice of the six ciphers was arbitrary and it is possible
that there are combinations of ciphers where the performance of the scanners is
different. However, our tool sends 350 different ciphers and the analysis shows
that it can effectively identify permutations of those on the server.

Completeness of the TLS Server Model. Sections. 3.2 and 3.1 showed that Dis-
secTLS and testssl.sh were able to detect the most TLS configurations. How-
ever, looking into their output, no scanner provided a super-set of the other;
hence, our proposed model cannot be complete. We manually investigated cases
where testssl.sh was able to differentiate configurations while DissecTLS was
not, and vice versa. Both scanners rely on consistent server responses; however,
Sosnowski et al. [31] reported inconsistent behaviors for 1% of their fingerprinted
targets. If servers behave inconsistently, both scanners might have collected an
incomplete view of the TLS stack and reported different configurations on each
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connection attempt. We expect testssl.sh is a bit more resilient to this behavior
due to its excessive but thoroughly scanning in contrast to limiting the amount of
CHs as possible. DissecTLS was able to find more configurations than testssl.sh;
i.a., through differentiating the error behavior and by merging the observed
extensions into a single DAG. However, testssl.sh detected more details some-
times: e.g., it was able to detect variations for non-elliptic TLS 1.2 Diffie-Helman
Key Exchange Mechanism (KEM) key sizes, collected cipher priorities per TLS
version, detected typical server failures like being unable to handle certain CH
sizes, differentiated whether a session resumption was implemented through IDs
(legacy) or tickets, and used a service detection (e.g., detecting Hypertext Trans-
fer Protocol). To support these cases with DissecTLS, we would need to increase
the number of sent CHs and implement the missing TLS features in the library.
Whether the additional data would provide a benefit for use cases like the C&C
detection is an open question for future work because we could not include
testssl.sh in our C&C server detection study (Sect. 4.1), due to its limited scala-
bility. To conclude, neither scanner collected a super-set from the other and we
argue that it is impossible to build an ideal scanner without knowledge about
every TLS implementation and how TLS will evolve in the future.

Ethical Considerations All our active Internet measurements are set up following
best scanning practices as described by Durumeric et al. [12]. We used rate
limiting (overall and per-target), dedicated scan servers with abuse contacts,
informative reverse DNS entries and websites that inform about our research,
maintained a blocklist, and provided contact information for further details or
scan exclusion. Our work does not harm individuals or reveal private data as
covered by [11,24] and focuses on publicly reachable services. The core design
principle of our approach was to reduce the impact on third parties by minimizing
the number of requests while maintaining an useful level of data quality.

7 Conclusion

This work proposes a scalable active scanning approach to reconstruct the TLS
configuration on servers. The approach is compared with four active TLS scan-
ners and fingerprinting tools. While we are able to collect a comparable amount
of information to single server TLS debugging tools, we also keep up with the per-
formance of scalable active TLS fingerprinting tools using around twice the num-
ber of requests. Our approach collects more data than the fingerprinting tools
and produces human-readable representations of a TLS configuration, improv-
ing the explainability of the approach. We performed a nine week measurement
study of top- and blocklists, analyzed common TLS parameter usages, and fin-
gerprinted potentially malicious C&C servers. Similar to related work, the fin-
gerprinting achieved a precision of more than 99% for the most conservative
detection threshold of 100%; however, at the same time DissecTLS achieved a
recall 2.8 times higher than the related ATSF [31]. This was achieved by a scan
that dynamically adapts based on a TLS stack model and previously learned
information. The model was used to explain server responses and to craft new
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requests that should reveal new data. This paper shows that an exhaustive TLS
parameter scanner can be implemented efficiently enough to be used on a large
scale. Moreover, it can replace existing active TLS fingerprinting approaches
because it provides a similar fingerprinting performance but additionally pro-
duces a valuable dataset. In the future, it can help to acquire a global view on
the TLS parameter usage to deepen our understanding of the TLS ecosystem.

A Example DissecTLS Output

Table 5 shows an example output we have collected from a TLS server that was
labeled as Trickbot on the Feodo Tracker [1]. For better readability the output
was enhanced with the parameter names from IANA [17]. We could determine
the order of the ciphers and supported groups; therefore, the shown values are
a priority list. We could not determine the ALPN preferences from the server
because it supported only one option. The extension order was consistent across
all observations and the resulting DAG had no branches.

Table 5. Example DissecTLS output obtained from a server labeled as Trickbot.

Property Value

supported TLS versions TLS 1.0 support
TLS 1.1 downgrade
TLS 1.2 downgrade
TLS 1.3 downgrade

cipher suites (priority list) TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA

cipher Preference server
supported groups (priority list) x25519

secp256r1
group preference server

with key share client
ALPN (set) http/1.1
ALPN preference unknown
extension data EC Point Format → [uncompressed

ansiX962_compressed_prime,
ansiX962_compressed_char2]

order of TLS extensions (DAG) renegotiation_info → max_fragment_length →
ec_point_formats → session_ticket → ALPN →
encrypt_then_mac → extended_master_secret

version error behavior Ignore
cipher error behavior TLS Alert
groups error behavior Ignore
ALPN arror behavior Ignore
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B Additional TLS Server Parameter Statistics

This section adds several statistics we have obtained while analyzing the data
from the measurement in Sect. 4.2. We find them interesting; however, not nec-
essary to support the findings of the paper.

Table 6. Support for different TLS versions from successfully scanned targets.

TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3

Success 62.83% 65.24% 99.57% 74.57%
Abort 37.61% 35.03% 0.32% 0.00%
Downgrade 0.02% 0.21% 0.15% 25.90%

Support for the TLS versions can be seen in Table 6. Although TLS 1.0
and 1.1 is deprecated since 2021 [22], we saw a high amount servers supporting
it. Some servers even downgraded the handshake by responding with a lower
version than the one we requested. This was expected for TLS 1.3 because the
TLS 1.3 CHs is basically a TLS 1.2 CH with special extensions. A server that
does not understand these extensions should continue with a TLS 1.2 handshake.
However, we rarely observed this behavior also for other versions.

We collected cipher suites, supported groups, and ALPNs as priority lists.
This enables combining them to get the overall most popular values as shown
in Table 7 (full list available under [30]). This problem is similar to a voting
problem where multiple individuals can vote with a list of descending preference
and can be solved with scoring rules as discussed by Fraenkel et al. [13]. We
decided to use the Dowdall rule, which favors parameters with top preferences.
This way parameters of a low priority, usually only kept for backward compli-
ance, are given a low score. The ranking worked as follows: from each priority
list the parameters [p1, . . . , pn] are scored with [1, 1

2 , . . . ,
1
n ], the scores for each

parameter are summed up, and ranks based on the highest scores are computed.
We analyze the parameters independent of the TLS version; hence, the TLS
1.3 ciphers are ranked above the others because, in general, higher versions are
preferred over ciphers.

Some servers selected the cipher suites, supported groups or ALPNs based
on the preference of the client. This leaves security decisions open to the client
but can be beneficial to the user if the client has limited hardware capabilities.
However, in our measurements we saw this was rarely the case and most servers
preferred their own priorities as shown in Table 8. This is different if a client
already pre-computed a TLS 1.3 key share for one of the supported groups;
then, 29% of the servers used the key share to avoid an additional round trip.

An important security feature on servers is the support against version down-
grade attacks. If this is not given, even when security issues are fixed in a newer
TLS version, a downgrade can reopen these attack vectors. Such a downgrade
could be achieved, e.g., by a man-in-the-middle attacker blocking connections
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Table 7. Most preferred TLS parameters (IANA names [17]) ranked separately with
the Dowdall rule and total distinct values. Each scanned target was used as vote.

Rank Cipher Suites Supported groups ALPNs

1 aes_256_gcm_sha384 x25519 h2
2 chacha20_poly1305_sha256 secp256r1 http/1.1
3 aes_128_gcm_sha256 secp384r1 http/1.0
4 ecdhe_rsa_with_aes_128_gcm_sha256 secp521r1 spdy/3
5 ecdhe_rsa_with_aes_256_gcm_sha384 x448 spdy/2
6 ecdhe_ecdsa_with_chacha20_poly1305_sha256 brainpoolP512r1 http/0.9
7 ecdhe_ecdsa_with_aes_128_gcm_sha256 brainpoolP384r1 acme
8 ecdhe_rsa_with_aes_256_cbc_sha384 secp256k1 tls/1
9 ecdhe_rsa_with_aes_128_cbc_sha256 brainpoolP256r1 h2c
10 ecdhe_ecdsa_with_aes_128_cbc_sha sect571r1 h3

Total 152 45 13

Table 8. Server preferences and downgrade protection in relation to number of targets
where the parameter could be successfully determined.

Parameter Determined Values

Cipher suite preference 2334678 4.63% (client)
Supported Group preference 2125081 5.58% (client)

with Key Share 1661825 28.60% (client)
ALPN preference 1899399 0.03% (client)
TLS downgrade protection 2101497 98.68% (protcted)

for a higher TLS version expecting the client will attempt to reconnect with a
lower version. Table 8 shows most servers were protected.

Several servers still support categories of deprecated ciphers [9,25] as shown
in Table 9. These ciphers are known to be insecure; however, they are not per-se
a security vulnerability because an attacker would still need to force a client and
server to agree on them.

Table 9. Servers supporting at least one deprecated cipher suite per category. Per-
centages are in relation to the successfully scanned targets.

Null Export Anonymous RC4 Any

Targets 376 1403 1606 36281 36694
0.02% 0.06% 0.07% 1.56% 1.58%
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