Skip to main content

Nanographites as Multidimensional Carriers for Advanced Therapeutic Applications

  • Chapter
  • First Online:
Carbon Nanostructures in Biomedical Applications

Abstract

Multidimensional nanographite’s structures have attracted great attention in various therapeutic applications. Due to their fabulous properties such as large surface area, high electron density, good mechanical and thermal stability, and excellent electrical conductivity, they are widely utilized in advanced therapeutic applications including targeted drug delivery and controlled drug delivery application through various drug route administration, and cancer treatment via different approaches such as drug delivery, targeted therapy, gene delivery, phototherapy, and photothermal therapy. This book chapter highlights the employed various nanographite composites with different synthetic approaches in various therapeutic applications such as drug delivery and cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., et al.: A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy. Nanomedicine 14(15), 2011–2025 (2019)

    Article  CAS  Google Scholar 

  2. Zangabad, P.S., et al.: Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev. 7(1), 95–122 (2018)

    Article  CAS  Google Scholar 

  3. Farjadian, F., et al.: Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 14(1), 93–126 (2019)

    Article  CAS  Google Scholar 

  4. Abdallah, H., et al.: One-pot green synthesis of chitosan biguanidine nanoparticles for targeting M. tuberculosis. J. Biol. Macromol. 232, 123394 (2023)

    Google Scholar 

  5. Entezar-Almahdi, E., et al.: Recent advances in designing 5-fluorouracil delivery systems: a stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomed. 15, 5445 (2020)

    Article  CAS  Google Scholar 

  6. Karimi, M., et al.: Carbon Nanotubes in Drug and Gene Delivery. Morgan & Claypool Publishers, San Rafael, CA (2017)

    Google Scholar 

  7. Farjadian, F., et al.: Recent developments in graphene and graphene oxide: properties, synthesis, and modifications: a review. ChemistrySelect 5(33), 10200–10219 (2020)

    Article  CAS  Google Scholar 

  8. Fedotov, A., et al.: Electrical conductivity and magnetoresistance in twisted graphene electrochemically decorated with Co particles. Physica. E Low Dimens. Syst. Nanostruct. 117, 113790 (2020)

    Article  CAS  Google Scholar 

  9. Chen, Z., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011)

    Article  CAS  Google Scholar 

  10. Liu, F., Seo, T.S.: A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Funct. Mater. 20(12), 1930–1936 (2010)

    Article  CAS  Google Scholar 

  11. Goda, E.S., et al.: N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int. J. Biol. Macromol. 182, 680–688 (2021)

    Article  CAS  Google Scholar 

  12. Kuilla, T., et al.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    Article  CAS  Google Scholar 

  13. Jiang, J.-H., et al.: Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. Artif. Cells Nanomed. Biotechnol. 46(sup3), S297–S307 (2018)

    Article  Google Scholar 

  14. Hoseini-Ghahfarokhi, M., et al.: Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int. J. Nanomed. 15, 9469 (2020)

    Article  CAS  Google Scholar 

  15. Campbell, E., et al.: Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  16. Yao, Q., et al.: 3D assembly based on 2D structure of cellulose nanofibril/graphene oxide hybrid aerogel for adsorptive removal of antibiotics in water. Sci. Rep. 7(1), 1–13 (2017)

    Google Scholar 

  17. Dreyer, D.R., et al.: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)

    Article  CAS  Google Scholar 

  18. Smith, A.T., et al.: Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nanomater. Sci. 1(1), 31–47 (2019)

    Google Scholar 

  19. Diez-Pascual, A.M., Diez-Vicente, A.L.: Poly (propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl. Mater. Interfaces 8(28), 17902–17914 (2016)

    Article  CAS  Google Scholar 

  20. Chen, J., et al.: An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  CAS  Google Scholar 

  21. Díez-Pascual, A.M.: Antibacterial Action of Nanoparticle Loaded nanocomposites based on graphene and its derivatives: a mini-review. Int. J. Mol. Sci. 21(10), 3563 (2020)

    Article  Google Scholar 

  22. Díez-Pascual, A.M., Luceño-Sánchez, J.A.: Antibacterial activity of polymer nanocomposites incorporating graphene and its derivatives: a state of art. Polymers 13(13), 2105 (2021)

    Article  Google Scholar 

  23. Singh, N., et al.: Recent advances of novel therapeutic agents from botanicals for prevention and therapy of breast cancer: an updated review. Curr. Cancer Ther. Rev. 16(1), 5–18 (2020)

    Google Scholar 

  24. Mahanta, A.K., Patel, D.K., Maiti, P.: Nanohybrid scaffold of chitosan and functionalized graphene oxide for controlled drug delivery and bone regeneration. ACS Biomater. Sci. Eng. 5(10), 5139–5149 (2019)

    Article  CAS  Google Scholar 

  25. McCallion, C., et al.: Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur. J. Pharm. Biopharm. 104, 235–250 (2016)

    Article  CAS  Google Scholar 

  26. Daniyal, M., Liu, B., Wang, W.: Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem. 27(22), 3665–3685 (2020)

    Article  CAS  Google Scholar 

  27. Croitoru, A., et al.: Multifunctional platforms based on graphene oxide and natural products. Medicina 55(6), 230 (2019)

    Article  Google Scholar 

  28. Anirudhan, T., Sekhar, V.C., Athira, V.: Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery. Int. J. Biol. Macromol. 150, 468–479 (2020)

    Article  CAS  Google Scholar 

  29. Qi, Z., et al.: PEGylated graphene oxide-capped gold nanorods/silica nanoparticles as multifunctional drug delivery platform with enhanced near-infrared responsiveness. Mater. Sci. Eng. C 104, 109889 (2019)

    Article  CAS  Google Scholar 

  30. Mahdavi, M., Rahmani, F., Nouranian, S.: Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. J. Mater. Chem. B 4(46), 7441–7451 (2016)

    Article  CAS  Google Scholar 

  31. Trusek, A., Kijak, E., Granicka, L.: Graphene oxide as a potential drug carrier–Chemical carrier activation, drug attachment and its enzymatic controlled release. Mater. Sci. Eng. C 116, 111240 (2020)

    Article  CAS  Google Scholar 

  32. Wang, P., et al.: NIR-light-and pH-responsive graphene oxide hybrid cyclodextrin-based supramolecular hydrogels. Langmuir 35(4), 1021–1031 (2019)

    Article  Google Scholar 

  33. Cheng, S.-J., et al.: Simultaneous drug delivery and cellular imaging using graphene oxide. Biomater. Sci. 6(4), 813–819 (2018)

    Article  CAS  Google Scholar 

  34. Chen, Y., et al.: Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery. ACS Appl. Mater. Interfaces 12(1), 352–360 (2019)

    Article  Google Scholar 

  35. Ma, B., et al.: Reaction between graphene oxide and intracellular glutathione affects cell viability and proliferation. ACS Appl. Mater. Interfaces 13(3), 3528–3535

    Google Scholar 

  36. Hejmady, S., et al.: Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov. 25(12), 2227–2244 (2020)

    CAS  Google Scholar 

  37. Choi, J.-S., Joo, S.H.: Recent trends in cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 28(1), 18 (2020)

    Article  CAS  Google Scholar 

  38. Kovalchuk, O., Kovalchuk, I.: Cannabinoids as anticancer therapeutic agents. Cell Cycle 19(9), 961–989 (2020)

    Article  CAS  Google Scholar 

  39. Raslan, A., et al.: Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int. J. Pharm. 580, 119226 (2020)

    Article  CAS  Google Scholar 

  40. Heidari, M., et al.: Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater. Sci. Eng. C 103, 109768 (2019)

    Article  CAS  Google Scholar 

  41. Chauhan, G., et al.: “Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids” for targeted chemo-thermal cancer ablation: in vitro screening and in vivo studies. Eur. J. Pharm. Sci. 96, 351–361 (2017)

    Article  CAS  Google Scholar 

  42. He, H., et al.: Quantitative nanoscopy of small blinking graphene nanocarriers in drug delivery. Bioconjug. Chem. 29(11), 3658–3666 (2018)

    Article  CAS  Google Scholar 

  43. Karimzadeh, Z., Javanbakht, S., Namazi, H.: Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. Bioimpacts 9(1), 5–13 (2019)

    Article  CAS  Google Scholar 

  44. Javanbakht, S., Pooresmaeil, M., Namazi, H.: Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr. Polym. 208, 294–301 (2019)

    Article  CAS  Google Scholar 

  45. Tiwari, H., et al.: Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: the synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids. Surf. B Biointerfaces 178, 452–459 (2019)

    Article  CAS  Google Scholar 

  46. Makharza, S.A., et al.: Magnetic graphene oxide nanocarrier for targeted delivery of cisplatin: a perspective for glioblastoma treatment. Pharmaceuticals 12(2), 76 (2019)

    Article  CAS  Google Scholar 

  47. Abdollahi, Z., et al.: PEGAylated graphene oxide/superparamagnetic nanocomposite as a high-efficiency loading nanocarrier for controlled delivery of methotrexate. J. Biotechnol. 298, 88–97 (2019)

    Article  CAS  Google Scholar 

  48. Dhanavel, S., et al.: 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym. Bull. 77(1), 213–233 (2020)

    Article  CAS  Google Scholar 

  49. Pei, X., et al.: PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci. Rep. 10(1), 2717 (2020)

    Article  CAS  Google Scholar 

  50. De Souza, J.A., et al.: Global health equity: cancer care outcome disparities in high-, middle-, and low-income countries. J. Clin. Oncol. 34(1), 6 (2016)

    Article  Google Scholar 

  51. Mukherjee, S., Patra, C.R.: Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale 8(25), 12444–12470 (2016)

    Article  CAS  Google Scholar 

  52. Zhang, Y., et al.: Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 12(1), 1–13 (2019)

    Article  Google Scholar 

  53. Ghosh, M., Sarkar, C.: Immunotherapy-a life saving treatment. Int. J. Biochem. Cell Biol. 6(2), 1–9 (2020)

    Google Scholar 

  54. Elinav, E., Peer. D.: Harnessing nanomedicine for mucosal theranostics. A silver bullet at last? ACS Nano 7(4), 2883–2890 (2013)

    Google Scholar 

  55. Jiang, B.P., et al.: Recent advances in carbon nanomaterials for cancer phototherapy. Chem. Eur. J. 25(16), 3993–4004 (2019)

    Article  CAS  Google Scholar 

  56. Maiti, D., et al.: Carbon-based nanomaterials for biomedical applications: a recent study. Front. Pharmacol. 1401 (2019)

    Google Scholar 

  57. Jena, P.V., et al.: A carbon nanotube optical reporter maps endolysosomal lipid flux. ACS Nano 11(11), 10689–10703 (2017)

    Article  CAS  Google Scholar 

  58. Estrada, A.C., Daniel-da-Silva, A.L., Trindade, T.: Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC. Adv. 3(27), 10828–10836 (2013)

    Article  CAS  Google Scholar 

  59. Zeglis, B.M., et al.: Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol. Pharm. 12(10), 3575–3587 (2015)

    Article  CAS  Google Scholar 

  60. Zhang, Z., et al.: High drug-loading system of hollow carbon dots–doxorubicin: preparation, in vitro release and pH-targeted research. J. Mater. Chem. B 7(13), 2130–2137 (2019)

    Article  CAS  Google Scholar 

  61. Dong, X., et al.: An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomed. Nanotechnol. Biol. Med. 13(7), 2271–2280 (2017)

    Google Scholar 

  62. Kim, S.-W., et al.: PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology 28(46), 465102 (2017)

    Article  Google Scholar 

  63. Debnath, S.K., Srivastava, R.: Drug delivery with carbon-based nanomaterials as versatile nanocarriers: progress and prospects. Front. Nanotechnol. 3, 15 (2021)

    Article  Google Scholar 

  64. Wu, W., et al.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3(9), 2740–2750 (2009)

    Article  CAS  Google Scholar 

  65. Feng, L., Liu, Z.: Graphene in biomedicine: opportunities and challenges. Nanomedicine 6(2), 317–324 (2011)

    Article  CAS  Google Scholar 

  66. Alvial-Palavicino, C., Konrad, K.: The rise of graphene expectations: anticipatory practices in emergent nanotechnologies. Futures 109, 192–202 (2019)

    Article  Google Scholar 

  67. Markovic, Z.M., et al.: In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4), 1121–1129 (2011)

    Article  CAS  Google Scholar 

  68. Hosnedlova, B., et al.: Carbon nanomaterials for targeted cancer therapy drugs: a critical review. Chem. Rec. 19(2–3), 502–522 (2019)

    Article  CAS  Google Scholar 

  69. Liu, Z., et al.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. In: Nano-Enabled Medical Applications, pp. 403–429. Jenny Stanford Publishing (2020)

    Google Scholar 

  70. Razaghi, M., et al.: Highly fluorinated graphene oxide nanosheets for anticancer linoleic-curcumin conjugate delivery and T2-Weighted magnetic resonance imaging: in vitro and in vivo studies. J. Drug. Deliv. Sci. Technol. 60, 101967 (2020)

    Article  CAS  Google Scholar 

  71. Yang, X., et al.: Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem. 21(10), 3448–3454 (2011)

    Article  CAS  Google Scholar 

  72. Yang, K., Feng, L., Liu, Z.: The advancing uses of nano-graphene in drug delivery. Expert. Opin. Drug. Deliv. 12(4), 601–612 (2015)

    Article  CAS  Google Scholar 

  73. Qian, R., et al.: Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon 149, 55–62 (2019)

    Article  CAS  Google Scholar 

  74. Yang, K., et al.: Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano. Lett. 10(9), 3318–3323 (2010)

    Article  CAS  Google Scholar 

  75. Lu, C.H., et al.: Amplified aptamer-based assay through catalytic recycling of the analyte. Angew. Chem. 122(45), 8632–8635 (2010)

    Article  Google Scholar 

  76. Liu, F., Choi, J.Y., Seo, T.S.: Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens. Bioelectron. 25(10), 2361–2365 (2010)

    Article  CAS  Google Scholar 

  77. Loh, K.P., et al.: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2(12), 1015–1024 (2010)

    Article  CAS  Google Scholar 

  78. Loh, K.P., et al.: The chemistry of graphene. J. Mater. Chem. 20(12), 2277–2289 (2010)

    Article  CAS  Google Scholar 

  79. Hu, W., et al.: Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010)

    Article  CAS  Google Scholar 

  80. Zhang, L., et al.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4), 537–544 (2010)

    Google Scholar 

  81. Ma, K., et al.: Cancer cell targeting, controlled drug release and intracellular fate of biomimetic membrane-encapsulated drug-loaded nano-graphene oxide nanohybrids. J. Mater. Chem. B 6(31), 5080–5090 (2018)

    Article  CAS  Google Scholar 

  82. Pei, X., et al.: PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  83. Jain, V.P., et al.: Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur. Polym. J. 142, 110124 (2021)

    Article  CAS  Google Scholar 

  84. Karimi-Maleh, H., et al.: The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq. 298, 112040 (2020)

    Article  CAS  Google Scholar 

  85. Ma, K., et al.: PEGylated DOX-coated nano graphene oxide as pH-responsive multifunctional nanocarrier for targeted drug delivery. J. Drug. Target 29(8), 884–891 (2021)

    Article  CAS  Google Scholar 

  86. Lu, T., et al.: A potentially valuable nano graphene oxide/USPIO tumor diagnosis and treatment system. Mater. Sci. Eng. C 128, 112293 (2021)

    Article  CAS  Google Scholar 

  87. Guo, Q., et al.: Carbon nanotubes-based drug delivery to cancer and brain. Curr. Med. Sci. 37(5), 635–641 (2017)

    Article  CAS  Google Scholar 

  88. Shirvalilou, S., et al.: Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: in vitro and in vivo evaluations. Chem.-Biol. Interact. 295, 97–108 (2018)

    Google Scholar 

  89. Gadeval, A., et al.: Green graphene nanoplates for combined photo-chemo-thermal therapy of triple-negative breast cancer. Nanomedicine 15(06), 581–601 (2020)

    Article  CAS  Google Scholar 

  90. He, J., Fan, K., Yan, X.: Ferritin drug carrier (FDC) for tumor targeting therapy. J. Control. Release 311, 288–300 (2019)

    Article  Google Scholar 

  91. Lyu, Y., et al.: Generating cell targeting aptamers for nanotheranostics using cell-SELEX. Theranostics 6(9), 1440 (2016)

    Article  CAS  Google Scholar 

  92. Stern, H.M.: Improving treatment of HER2-positive cancers: opportunities and challenges. Sci. Transl. Med. 4(127), 127rv2–127rv2 (2012)

    Google Scholar 

  93. Cui, G., et al.: Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J. Nanobiotechnol. 19(1), 1–30 (2021)

    Article  Google Scholar 

  94. Stavrovskaya, A.: Cellular mechanisms of multidrug resistance of tumor cells. Biochem. c/c of Biokhimiia 65(1), 95–106 (2000)

    CAS  Google Scholar 

  95. Li, L., Yang, W.-W., Xu, D.-G.: Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target 27(4), 423–433 (2019)

    Article  CAS  Google Scholar 

  96. Gulzar, A., et al.: Redox-responsive UCNPs-DPA conjugated NGO-PEG-BPEI-DOX for imaging-guided PTT and chemotherapy for cancer treatment. Dalton Trans. 47(11), 3921–3930 (2018)

    Article  CAS  Google Scholar 

  97. Izadi, S., et al.: Codelivery of HIF-1α siRNA and dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression. Pharm. Res. 37(10), 1–20 (2020)

    Article  Google Scholar 

  98. Liu, S., et al.: Biodegradable highly branched poly (β-amino ester) s for targeted cancer cell gene transfection. ACS Biomater. Sci. Eng. 3(7), 1283–1286 (2017)

    Article  CAS  Google Scholar 

  99. Yin, F., et al.: SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics 7(5), 1133 (2017)

    Article  CAS  Google Scholar 

  100. Dunbar, C., et al.: Gene therapy comes of age. Science 359, eaan4672 (2018)

    Google Scholar 

  101. Muro, A.F., D’Antiga, L., Mingozzi, F.: Gene therapy in pediatric liver disease. In: Pediatric Hepatology and Liver Transplantation, pp. 799–829. Springer (2019)

    Google Scholar 

  102. Chung, S., Revia, R.A., Zhang, M.: Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 33(22), 1904362 (2021)

    Article  CAS  Google Scholar 

  103. Liu, Y., et al.: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019)

    Article  CAS  Google Scholar 

  104. Liang, X., et al.: Dye-conjugated single-walled carbon nanotubes induce photothermal therapy under the guidance of near-infrared imaging. Cancer Lett. 383(2), 243–249 (2016)

    Article  CAS  Google Scholar 

  105. Khalil, I., et al.: Graphene–gold nanoparticles hybrid—synthesis, functionalization, and application in a electrochemical and surface-enhanced Raman scattering biosensor. Materials 9(6), 406 (2016)

    Article  Google Scholar 

  106. Mani, V., et al.: Determination of folic acid using graphene/molybdenum disulfide nanosheets/gold nanoparticles ternary composite. Int. J. Electrochem. Sci. 12(258), e267 (2017)

    Google Scholar 

  107. Hu, Z., et al.: Folic acid-conjugated graphene–ZnO nanohybrid for targeting photodynamic therapy under visible light irradiation. J. Mater. Chem. B 1(38), 5003–5013 (2013)

    Article  CAS  Google Scholar 

  108. Zhang, D.-Y., et al.: Graphene oxide decorated with Ru (II)–polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Appl. Mater. Interfaces 9(8), 6761–6771 (2017)

    Article  CAS  Google Scholar 

  109. Pardo, J., Peng, Z., Leblanc, R.M.: Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23(2), 378 (2018)

    Article  Google Scholar 

  110. Chen, Z., et al.: The advances of carbon nanotubes in cancer diagnostics and therapeutics. J. Nanomater. 2017 (2017)

    Google Scholar 

  111. Krasteva, N., et al.: Aminated graphene oxide as a potential new therapy for colorectal cancer. Oxid. Med. Cell. Longev. 2019 (2019)

    Google Scholar 

  112. Mousavi, S.M., et al.: Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Adv. 10(22), 12851–12863 (2020)

    Article  CAS  Google Scholar 

  113. Cheng, L., et al.: PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 26(12), 1886–1893 (2014)

    Article  CAS  Google Scholar 

  114. Yang, K., et al.: In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34(11), 2787–2795 (2013)

    Article  CAS  Google Scholar 

  115. Chen, Y., et al.: Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 44(9), 2681–2701 (2015)

    Article  CAS  Google Scholar 

  116. Zhang, W., et al.: Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33), 8555–8561 (2011)

    Article  CAS  Google Scholar 

  117. Chen, Y.-W., et al.: Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 105, 190–204 (2016)

    Article  CAS  Google Scholar 

  118. Chen, Y.W., et al.: NIR-triggered synergic photo-chemothermal therapy delivered by reduced graphene oxide/carbon/mesoporous silica nanocookies. Adv. Funct. Mater. 24(4), 451–459 (2014)

    Article  CAS  Google Scholar 

  119. Sheng, Z., et al.: Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34(21), 5236–5243 (2013)

    Article  CAS  Google Scholar 

  120. Thakur, M., Kumawat, M.K., Srivastava, R.: Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Adv. 7(9), 5251–5261 (2017)

    Article  CAS  Google Scholar 

  121. Dong, J., et al.: Medicinal chemistry strategies to discover P-glycoprotein inhibitors: an update. Drug Resist. Update 49, 100681 (2020)

    Google Scholar 

  122. Bukowski, K., Kciuk, M., Kontek, R.: Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 21(9), 3233 (2020)

    Article  CAS  Google Scholar 

  123. Wu, J., et al.: Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology 23(35), 355101 (2012)

    Article  Google Scholar 

  124. Fan, Y., et al.: Rack1 mediates Src binding to drug transporter P-glycoprotein and modulates its activity through regulating Caveolin-1 phosphorylation in breast cancer cells. Cell Death Dis. 10(6), 1–14 (2019)

    Article  Google Scholar 

  125. Li, Y., et al.: Reversing multidrug resistance by multiplexed gene silencing for enhanced breast cancer chemotherapy. ACS Appl. Mater. Interfaces 10(18), 15461–15466 (2018)

    Article  CAS  Google Scholar 

  126. Hou, L., et al.: Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer. Nanotechnology 27(1), 015701 (2015)

    Article  Google Scholar 

  127. Gu, Y., et al.: A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C 70, 572–585 (2017)

    Article  CAS  Google Scholar 

  128. Carmeliet, P.: Manipulating angiogenesis in medicine. J. Intern. Med. 255(5), 538–561 (2004)

    Article  Google Scholar 

  129. Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438(7070), 932–936 (2005)

    Article  CAS  Google Scholar 

  130. Chavakis, E., Dimmeler, S.: Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler. Thromb. Vasc. Biol 22(6), 887–893 (2002)

    Article  CAS  Google Scholar 

  131. Sabrkhany, S., Kuijpers, M.J., Griffioen, A.W.: Platelets as messengers of early-stage cancer. Cancer Metastasis Rev. 40(2), 563–573 (2021)

    Article  CAS  Google Scholar 

  132. Nishida, N., et al.: Angiogenesis in cancer. Vasc. Health Risk Manag. 2(3), 213 (2006)

    Article  CAS  Google Scholar 

  133. Meir, E.G.: CNS Cancer: Models, Markers, Prognostic Factors, Targets, and Therapeutic Approaches. Springer (2009)

    Google Scholar 

  134. Patra, C.R., et al.: Reactive oxygen species driven angiogenesis by inorganic nanorods. Nano Lett. 11(11), 4932–4938 (2011)

    Article  CAS  Google Scholar 

  135. Fu, P.P., et al.: Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food. Drug. Anal. 22(1), 64–75 (2014)

    Article  CAS  Google Scholar 

  136. Desai, N.: Challenges in development of nanoparticle-based therapeutics. AAPS J. 14(2), 282–295 (2012)

    Article  CAS  Google Scholar 

  137. Jia, P.-P., et al.: Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 247, 595–606 (2019)

    Article  CAS  Google Scholar 

  138. Zhang, Y., et al.: Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6), 3181–3186 (2010)

    Article  CAS  Google Scholar 

  139. Wang, K., et al.: Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6(1), 1–8 (2011)

    Google Scholar 

  140. Rahman, M., et al.: Role of graphene nano-composites in cancer therapy: theranostic applications, metabolic fate and toxicity issues. Curr. Drug Metab. 16(5), 397–409 (2015)

    Article  CAS  Google Scholar 

  141. Vickers, N.J.: Animal communication: when i’m calling you, will you answer too? Curr. Biol. 27(14), R713–R715 (2017)

    Article  CAS  Google Scholar 

  142. Yang, K., et al.: In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5(1), 516–522 (2011)

    Article  CAS  Google Scholar 

  143. Zhou, M., et al.: Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater. 96, 271–280 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. Abu Elella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elella, M.H.A., Goda, E.S., Abady, M.M., Mohammed, D., Abdallah, H.M. (2023). Nanographites as Multidimensional Carriers for Advanced Therapeutic Applications. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Carbon Nanostructures in Biomedical Applications. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-28263-8_3

Download citation

Publish with us

Policies and ethics