
Chapter 3
3d Theories and Modularity

In this section, we connect the brane setup of the above 2d A-model to 3d/3d corre-
spondence and shed light on variousmodular representations coming from geometry.
In particular, we explain the origin for the explicit form of the S and T matrices in
Conjectures2.1 and 2.2. The modular action in Conjecture2.1 turns out to be the one
of refined Chern–Simons theory [4]. On the other hand, the modular action in Con-
jecture2.2 is a “hidden” (surprising) one; it is realized on the vector space spanned
by the set of connected components of fixed points under the Hitchin U(1)β action
on the moduli space of wild Higgs bundles associated to a certain Argyres–Douglas
theory. Furthermore, we propose how non-standard (e.g. logarithmic) modular data
ofMTC[M3] can be described in terms of the A-model on the Hitchin moduli space
associated with the Heegaard decomposition of M3 and discuss possible connections
to skein modules of closed oriented 3-manifolds.

One advantage of connecting the 2d A-model to the three-dimensional perspective
is that all of these modular actions admit a natural categorification. In other words,
in all of these instances it makes sense to ask if the space of open strings in the
Hitchin moduli space can be realized as the Grothendieck groups of a tensor category
(possibly, non-unitary or non-semisimple):

SL(2,Z)

�

K 0(MTC) .

Finally, we will see that, in the opposite direction, the relation to the 2d A-model
offers a unifying home for the above-mentioned modular data.

3.1 DAHA and Modularity

The fivebrane system in M-theory that provides geometric origins of the modular
representations on DAHA modules is the following familiar setting for the 3d/3d
correspondence
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space-time: S1 ×q,t
(
T N × T ∗M3

)

N M5-branes: S1 ×q D2 × M3
(3.1)

where M3 is a 3-manifold, D2 is a two-dimensional disk (or a cigar), and T N ∼= R
4

is the Taub-NUT space. Writing the local complex coordinates (z1, z2) on T N , such
that z1 also parametrizes D2, we turn on the Omega-background, i.e. a holonomy
along S1 that provides a twisting of T N via an isometry

(z1, z2) → (qz1, t
−1z2) . (3.2)

In this setting, the symmetry group of the 6d (2, 0) theory on the M5-branes is
reduced to

SO(6)E × SO(5)R → SO(3)1 × SO(3)2 × SO(3)R × SO(2)R , (3.3)

where SO(3)1 and SO(3)2 are the space-time symmetry of S1 ×q D2 andM3, respec-
tively, and SO(3)R is the symmetry of a cotangent fiber of T ∗M3. We perform a
topological twist by taking the diagonal subgroup SO(3)diag of SO(3)2 × SO(3)R so
that the resulting theory is partially topological (along M3). After the partial topo-
logical twist, the effective theory on S1 ×q D2 only depends on topology (but not
the metric) on M3 and is described by 3dN = 2 theory often denoted T [M3],1 with
the R-symmetry given by SO(2)R in (3.3). When M3 is a Seifert manifold, there is
an extra U(1)S symmetry associated with the two directions in the cotangent bundle
normal to the Seifert fiber. As a result, the partition function, called the half-index, of
the 3dN = 2 theory T [M3] on S1 ×q D2 with a 2dN = (0, 2) boundary condition
B in this setting is defined as

ZT [M3](S
1 ×q D2,B) = Tr(−1)Fe−β(�−R−J3/2)q J3+St R−S , (3.4)

where S and R are charges of U(1)S and SO(2)R , respectively,� is the Hamiltonian,
and J3 is an eigenvalue of the Cartan subalgebra of SO(3)1. The difference between
U(1)S and SO(2)R is customarily denoted U(1)β in [74–76], and its fugacity is the
variable t in (3.4).

Notice that the system (3.1) does not involve a once-punctured torus which was
used to define the Hitchin moduli space and the parameter t as in the previous
section. However, for gauge groups of type A, the following two physical systems
are expected to be closely related:

• 6d (2, 0) theory on S1 × Cp with Cp being a once-punctured torus.
• 4d N = 2∗ theory on S1.

Although the two systems would have different spectra,2 their BPS sectors are
expected to be equivalent. In particular, at low energy both systems realize a 3d

1 In this section, we restrict ourselves to SU(N ) gauge group so that T [M3,SU(N )] = T [M3].
2 For example, many KK modes of the 6d theory on T 2 have no counterparts in the 4d theory. Even
if one replaces the 4d N = 2∗ theory with 6d (2, 0) theory on a torus (with the mass parameter
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sigma-model onto the Hitchin moduli space. The deformation parameters can also
be identified as follows.

On one side, the (classical) deformations are parametrized by the triplet
(αp,βp, γp) of monodromy parameters around the puncture as introduced before.
On the other side, for the 4d N = 2∗ theory, the triplet of deformation parameters
is given by the complex mass of the adjoint hyper-multiplet in 4d together with the
holonomy of the U(1) flavor symmetry along the circle. In the system (3.1), the 4d
N = 2∗ theory is obtained by the compactification of the 6d theory on T 2 ⊂ M3

with holonomy for U(1)β along S1 (3.4). In particular, the parameter t defined above
is identified with the t in DAHA. In this section, we will be looking at questions
whose answers depend holomorphically on t , as required by supersymmetry on M3,
and the other deformation parameter βp won’t play a role. For example, what com-
plex connections on T 2 ⊂ M3 can be extended to the entire M3 is a question that is
“holomorphic in J” (and given by intersections of (A, B, A)-branes in the Hitchin
moduli space). Notice that this non-trivial relation only holds for a gauge group of
type A, while for other types the class S construction of 4dN = 2∗ theory is gener-
ally unknown, and the once-punctured torus does not lead to either the 4d N = 2∗
theory or DAHA.

One statement of the 3d/3d correspondence is the duality between the non-
perturbative complex SL(N ,C) Chern–Simons theory on M3 and the 3d N = 2
theory T [M3] on S1 ×q D2, so that the partition functions of both sides are iden-
tified. As explained in [68, 75, 76], for a particular class of boundary conditions
Bb labeled by b ∈ (Spinc(M3))

N−1, the partition function of the 3d N = 2 theory
T [M3]on S1 ×q D2 countsBPS states and, therefore, has aq-expansionswith integer
coefficients and integer q-powers3

ẐT [M3],b(q, t) := ZT [M3](S
1 ×q D2,Bb) . (3.5)

The relation toChern–Simons theory involves the same space of boundary conditions
with a “dual” basis, related to Bb via the S-matrix

Sab =
∑

σ∈SN
e2πi

∑N−1
i=1 �k(ai ,bσ(i))

|StabSN (a)| · |Tor H1(M3,Z)|(N−1)/2
.

In particular, the partition function of the non-perturbative SL(N ,C) Chern–Simons
theory on M3 is given by

(
− log q

4πi

) N−1
4

∑

a,b∈(Spinc(M3))N−1

e2πi k̄·�k(a,a)
Sab ẐT [M3],b(q, t) (3.6)

replaced by holonomies for a U(1) subgroup of the R-symmetry on T 2) the full spectrum is still
different. One way to see this is that the latter theory depends on all three U(1) holonomies on
T 2 × S1 in a periodic way, and they are completely symmetric, while this is not the case for the
former theory obtained from a punctured torus.
3 Up to an overall factor q�b that plays an important role but is not relevant to the present discussion.
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with generic |q| < 1, and specializes to that of SU(N ) Chern–Simons theory when
q → e2πi/k̄ with integer (renormalized) level k̄ = k + N . The origin of log q factors
is explained in [137]. Note that the linking pairing �k on Spinc(M3) is defined by the
Pontryagin duality. We will see shortly that it is the basis of BPS partition functions
(3.5) and the corresponding boundary conditions Bb that are most naturally related
to DAHA.

Consider a simple example where M3 = L(p, 1) is a Lens space. The lens space
L(p, 1) can be constructed by gluing two solid tori with a homeomorphism between
the boundary tori sending the meridian (1, 0) of one torus to a (1, p) cycle of the
other. The corresponding 3dN = 2 SU(N ) gauge theory T [L(p, 1)] consists of one
adjoint chiral multiplet�with R-charge 2 andN = 2 Chern–Simons termwith level
p. Consequently, the factor ẐT [L(p,1)],b labeled by b ∈ (Spinc(M3))

N−1 is defined
by

ẐT [L(p,1)],b(q, t) = 1

N !
∫

|X |=1

dX

2πi X
ϒ(X; q, t)�Z

N−1;p
b (X, q) , (3.7)

where

ϒ(X) =
∏

α∈R

(Xα; q2)∞
(t2Xα; q2)∞

, �
Z

N−1;p
b (X, q) =

∑

n∈pZN−1+b

q2
∑N−1

i=1 n2i /p
N−1∏

i=1

Xni
i .

Here we impose the Neumann boundary condition at the boundary ∂(S1 ×q D2) on
the vector multiplet and adjoint chiral multiplet, which give rise to the numerator and
denominator of the Macdonald measure ϒ by one-loop determinant [158] (see also

(B.14)). In addition, the boundary partition function�
Z

N−1;p
b encodes the information

about the Chern–Simons term with level p, and 2d N = (0, 2) boundary condition
at the boundary ∂(S1 ×q D2) is labeled by b ∈ (Spinc(M3))

N−1. In fact, ẐT [L(p,1)],b
can be understood as the half-index of the 3d/2d coupled system. For more detail,
we refer to [75, 76].

When the lens space L(p, 1) is constructed by gluing two solid tori, we can include
a Wilson loop in each solid torus. The reduced partition function with boundary
condition specified by Spinc structure b results in

ẐT [L(p,1)],b(λ,μ) = 1

ẐT [L(p,1)],b

1

N !
∫

|X |=1

dX

2πi X
ϒ(X) �

Z
N−1;p

b (X) Pλ(X)Pμ(X) ,

(3.8)
where the conjugation f �→ f is defined in (B.13). In particular, when p = 0,
i.e. L(0, 1) ∼= S1 × S2, the partition function vanishes unless the total charge of
two Wilson loops is zero. This defines the Macdonald inner product (B.15)

〈Pλ, Pμ〉 = ẐT [L(0,1)],0(λ,μ) = δλ,μ gλ(q, t) .

In the case of M3 = S3, this defines the symmetric bilinear pairing [34, 50, 101]



3.1 DAHA and Modularity 61

[Pλ, Pμ] = ẐT [L(1,1)],0(λ,μ) = Pλ(q
−2μt−2ρ)Pμ(t

−2ρ) , (3.9)

where ρ is theWeyl vector of sl(N ). As in AppendixB.1.6, this pairingCq,t [X ]SN ×
Cq,t [X ]SN → Cq,t can be defined by transforming the holonomy Tr (X) along the
(1, 0)-cycle in one solid torus to the holonomy Tr (Y ) along the (0, 1)-cycle, and
it acts on loop operators in the other solid torus via the polynomials representation
when they link:

[ f (X), g(X)] = pol( f (Y−1)) · g(X)

∣∣
∣
X �→t−2ρ

(3.10)

for f, g ∈ Cq,t [X ]SN . In the case of SU(2), this is indeed (2.114). This can be viewed
as a deformed version of the construction of the skein module of type AN−1

Sk(M3,SU(N )) = Sk(M+
3 ,SU(N )) ⊗

Sk(C,SU(N ))
Sk(M−

3 ,SU(N )) (3.11)

of a closed oriented 3-manifoldM3 by using a Heegaard splittingM3 = M+
3 ∪C M−

3 .
As seen in Sect. 2.5, the polynomial representation P of S

..
H can be understood as

a deformed Skein module of a solid torus S1 × D2. In (3.8), Pλ(X) (resp. Pμ(X))
can be actually regarded as a basis element of the deformed skein module of one
(resp. the other) solid torus, and the boundary partition function � glues the two
solid tori by the S-transformation (2.89). Thus, the spherical DAHA acts on the
left-module via the polynomial representation whereas it acts on the right-module
via its S-transformation. As a result, the S-transformation σ(P) of the polynomial
representation, called the functional representation, can be defined by the symmetric
bilinear pairing, which is presented in AppendixB.2.2.

Moreover, the relation between 3d N = 2 theory T [M3] to the 2d sigma-model
explored in Sect. 2 becomes manifest from the fivebrane system (3.1). For the sake of
brevity, let M3 = S1τ × C where C ∼= T 2. As described above, the compactification
of the 6d theory onC with U(1)β holonomy along S1 leads to 4dN = 2∗ theory, and
the t parameter in (3.1) can be identified with the ramification parameters (αp,γp)

via
tq− 1

2 = exp(−π(γp + iαp)) . (3.12)

As in Fig. 3.1, we further compactify the 4dN = 2∗ theory on a two-torus T 2 = S1 ×
S1q ⊂ S1 ×q D2 to obtain the 2d sigma-model S1τ × I → MH (Cp,SU(N ))where the
interval I = [0, 1] is obtained by reducing along S1q ⊂ D2. The canonical coisotropic
braneBcc arises at the boundary of the strip S1τ × I corresponding to the center of D2

[129]. In addition, a boundary condition of 3d N = 2 theory at ∂(S1 ×q D2) gives
rise to a brane B′ at the other boundary of the strip S1τ × I in the 2d sigma-model.

The theory T [S1τ × C] consists of threeN = 2 adjoint chiral multiplets Q, Q̃ and
�where the Neumann boundary condition is imposed on theN = 2 vector multiplet
and chiral multiplets Q̃ and �, and the Dirichlet boundary condition is imposed on
theN = 2 chiral multiplet Q at ∂(S1 ×q D2). Moreover, the form (3.4) of the refined
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Fig. 3.1 The relation between 3d N = 2 theory T [S1 ×ζ C] and 2d sigma-model. A mapping
torus S1 ×ζ C where the top and bottom tori are identified by ζ ∈ SL(2,Z) gives rise to an SL(2,Z)

duality wall on the worldsheet of (Bcc,B
′)-string

index tells us that fermions are periodic and a field � is identified along the time
circle S1

q(J3+S)t (R−S)�(x0 + β, z1) ∼ �(x0, z1) . (3.13)

The time derivative is replaced as ∂t → ∂t − R − J3/2 due to e−β(�−R−J3/2).

U(1)R U(1)S bdry cond.
� 2 0 N
Q 0 −2 D
Q̃ 0 0 N

One important lesson that we learn in this subsection is that the Hilbert space of
a non-perturbative complex Chern–Simons TQFT on a 2-torus is the space of repre-
sentations of the spherical DAHA at t = 1. A categorified version of this statement
would be a relation between the category of line operators in the Ẑ TQFT and the
category of modules of S

..
Ht=1,

MTC(Ẑ) ∼= Rep(S
..
Ht=1) . (3.14)
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Again, we remind that here and in other places, MTC refers to a tensor category
where some of the traditional conditions may need to be relaxed, e.g. it may have
an infinite number of simple objects, be non-unitary or non-semisimple. (The latter
generalization typically appearswhenone tries to “truncate” a categorywith infinitely
many simple objects to a finite-dimensional structure.) The modular representations
that arise from such generalizations are, in general, more delicate and interesting than
familiar vector-valued modular forms that describe the space of genus-1 conformal
blocks in a rational VOA.Of course, in some special cases, thesemore interesting and
exotic generalizations do not arise, and MTC is a genuine modular tensor category
in its full mathematical sense (justifying the name for generalizations as well); this
happens in some of the examples discussed in the following subsections and also in
various examples considered in [44, 55, 76].

3.1.1 SU(2): Refined Chern–Simons and TQFT Associated
to Argyres–Douglas Theory

This connection of 3d theories to the 2d sigma-model clarifies the geometric origin
of the modular action. It was proposed in [4] that the fivebrane system (3.1) with
N = 2 M5-branes gives rise to SU(2) refined Chern–Simons theory on M3 when the
parameters are subject to4

q = exp
( πi

k + 2c

)
, t = exp

( c πi

k + 2c

)
. (3.15)

This condition is equivalent to the existence (2.99b) of the brane BV in the 2d
sigma-model Sect. 2.6.3 so that the field identification (3.13) under (3.15) leads to
the boundary condition B′ = BV upon the reduction as in Fig. 3.1. Therefore, the
module Hom(Bcc,BV) of DAHA in the 2d sigma-model can be identified with
the Hilbert space of SU(2) refined Chern–Simons theory on T 2 spanned by {|Pj 〉}
( j = 0, . . . , k). The projective action of SL(2,Z) on the Hilbert space is mani-
fest in refined Chern–Simons theory, and the matrix elements can be obtained via
the 3d/3d correspondence. In fact, the pairing (3.9) at N = 2 (which is equal to
(2.114)) becomes of rank (k + 1)when (3.15) holds; it gives the modular S-matrix in
Conjecture2.1 up to a suitable normalization with the Macdonald norm (2.116).
Upon reduction to the sigma-model, it can be interpreted as the S-duality wall
in the worldsheet of the (Bcc,BV)-string. Thus, the gluing of the two states
λ,μ ∈ Hom(Bcc,BV) by the S-duality wall in the (Bcc,BV)-string can be under-
stood as theHopf link configuration in refinedChern–Simons theory on S3, illustrated
in Fig. 3.2.

4 The parameters (qours, tours) in this paper are related to the parameters (qAS, tAS) in [4] via qour =
q1/2AS and tour = t1/2AS .
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Fig. 3.2 The
(Bcc,BV)-string with the
S-duality wall gives rise to
refined Chern–Simons
invariant of the Hopf link in
S3

Although the parameters q and t are subject to t2qk = −1, there is one free
parameter left. If c is generic, refinedChern–Simons theory cannot arise froma fusion
category due to Ocneanu rigidity (for instance, see [49]) and, therefore, it is not a
modular tensor category (MTC).5 Nonetheless, it provides torus link invariants as we
will briefly review below. In addition, the half index in (3.8) provides the deformation
of WRT-invariants of the lens space L(p, 1), and moreover ẐT [L(p,1)],b(q, t) in (3.7)
exhibits positivity [75, 76]. Despite the failure to be a fusion category, the half indices
shed new light on the topology of three-manifolds and link invariants via the 3d/3d
correspondence.

The relation between a 3d theory and Conjecture2.2 is more interesting. It was
argued in [116] that the field identification (3.13) under the condition t2q2�−1 = 1
is equivalent to the class S construction for the Argyres–Douglas theory of type
(A1, A2(�−1)) in [39, 155], which we briefly review below. The 4dN = 2 Argyres–
Douglas theory of type (A1, A2(�−1)) can be geometrically engineered by compacti-
fying two M5 branes on a sphere C ∼= CP1 with one wild (irregular) singularity at
infinity. The theory is specified by the Hitchin system on Cwild where the Higgs field
has the asymptotic behavior at infinity described by

ϕ(z1)dz1 ∼ z
2�−1
2

1 σ3dz1 , (3.16)

where z1 is the coordinate of C\∞ and σ3 is the third Pauli matrix. Thus, we denote
this Argyres–Douglas theory by T [Cwild,SU(2)]. The Hitchin action on the moduli
space of Higgs bundles can be identified with the U(1)β symmetry defined below
(3.4)

U(1)β : (A,ϕ) → (A, eiθϕ) .

In the brane setting (3.1), we cannot consider the Hitchin system with (3.16) on D2

in general. However, when the�-deformation parameters are subject to t2q2�−1 = 1,
the field identification (3.13) for the Higgs field is consistent along the time circle S1

5 If we further impose the condition that q is a root of unity, the 3d theory on M3 becomes anMTC
[101].
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tq
2�−1
2 ϕ(x0 + β, z1) = ϕ(x0 + β, z1) ∼ ϕ(x0, z1) .

Hence, under (2.99c), it is effectively equivalent to the following brane setting:

space-time: S1 × T ∗Cwild × T ∗M3

2M5-branes: S1 × Cwild × M3
(3.17)

This system is investigated in detail (including Argyres–Douglas theories of other
types) [44, 58, 59, 116], and remarkably there turns out to be an SL(2,Z) represen-
tation on the set of connected components of U(1)β fixed points

SL(2,Z)

� 〈
components of U(1)β fixed points in MH (Cwild,G)

〉
. (3.18)

Moreover, considering the topologically twisted partition function Z(S1 × M3) of
the Argyres–Douglas theory T [Cwild,SU(2)], this SL(2,Z) representation can be
categorified. Namely, there is a modular tensor category MTC[A1, A2(�−1)] on M3

whose simple objects are in one-to-one correspondence with U(1)β fixed points.
In fact, the Argyres–Douglas theory of type (A1, A2(�−1)) possesses the discrete

global symmetry Z2�+1, and if we impose a holonomy q = e− 2πγi
2�+1 (γ ∈ Z

×
2�+1) of

this discrete global symmetry along S1, then the modular matrices in Conjecture2.2
are those of the corresponding MTC[A1, A2(�−1)] on M3. Although the S and T
matrices in Conjecture2.2 satisfy the PSL(2,Z) relation even for a generic q, the
Ocneanu rigidity again forbids them to be those of an MTC. Rather, they connect
MTC’s for different values of a holonomy q = e− 2πγi

2�+1 with γ ∈ Z
×
2�+1 by the one-

parameter family with q.
When γ = 1, themodularmatrices coincidewith those of the (2, 2� + 1)Virasoro

minimal model [44, 116]. Note that the (2, 2� + 1) Virasoro minimal model is the
chiral algebra of theArgyres–Douglas theory of type (A1, A2(�−1)) [40].However, the
topologically twisted partition function Z(S1 × M3) (therefore MTC[A1, A2(�−1)])
receives the contribution from Coulomb branch operators whereas a vacuum char-
acter of the chiral algebra is given by Higgs branch operators [23]. It is worth noting
that there are generally many chiral algebras with the same representation categories
[55] so that this coincidence remains very mysterious. (It is sometimes called “4d
symplectic duality”.)

3.1.2 SU(N): Higher Rank Generalization

Let us briefly consider a higher rank generalization of the 3d modularity. The moduli
space of GC flat connections over a two-torus C ∼= T 2 is the quotient space (TC ×
TC)/W of the product of the two complex maximal tori by the Weyl group. In
particular, whenGC = SL(N ,C), the fixed points under the action of theWeyl group
W = SN consist of the center ZN × ZN ⊂ TC × TC so that there are N 2 torsion
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points on the moduli space V := (T × T )/SN of SU(N )-bundles over a torus. For
higher ranks, tame ramifications of Higgs bundles are classified by Levi subgroups of
SU(N ) or equivalently partitions of N [84]. To obtain the spherical DAHA S

..
H(SN )

of type AN−1 as Hom(Bcc,Bcc), a simple puncture corresponding to the [1, N − 1]
partition needs to be introduced on C . Although we have not understood topology
and symplectic geometry of the Hitchin moduli space M(Cp,SU(N )) over a torus
with a simple puncture (for instance, the number of irreducible components of the
global nilpotent cone), we can generalize Conjectures2.1 and 2.2 to the higher ranks.
It is a very interesting problem to generalize the analysis in this paper to arbitrary
semi-simple gauge groups.

In refined Chern–Simons theory with SU(N ) gauge group [4], the parameters q
and t are usually expressed in terms of a positive integer k ∈ Z>0 and the continuous
parameter c:

q = exp
( πi

k + c N

)
, t = exp

( c πi

k + c N

)
, (3.19)

so that they are subject to the relation t Nqk = −1. Under this condition, the moduli
space V of SU(N )-bundles is a Lagrangian submanifold in the symplectic mani-
fold (M(Cp,SU(N )),ωX). As in the A1 case, finite-dimensional representations in
the higher rank spherical DAHA S

..
H(SN ) can be studied by using the raising and

lowering operators [105] in the polynomial representation P . The Hilbert space
Hom(Bcc,BV) of SU(N ) refined Chern–Simons theory is spanned by the basis Pλ

labeled by Young diagrams λ ⊂ [kN−1] inscribed in the k × (N − 1) rectangle. The
modular action on theHilbert space is described by S and T matrices of rank (N+k−1)!

(N−1)!k! ,

Sλμ = Pλ(q
−2μt−2ρ)Pμ(t

−2ρ) , Tλμ = δλμ · q 1
N |λ|2−||λ||2 t ||λ

t ||2−N |λ| , (3.20)

where ‖λ‖2 = ∑
λ2
i , and λt denotes the transposition of the Young diagram λ. They

indeed compute invariants of a Seifertmanifold and a torus link [4, 36, 37]. Regarding
Pλ(X) as an element of S

..
H(SN ), one can define the invariant of a torus link Tm,n by

θ(ζm,n(Pλ(X))) , ζm,n =
(
m n
∗ ∗

)
∈ SL(2,Z) . (3.21)

where ζm,n acts projectively on Pλ(X) ∈ S
..
H(SN ), and θ : S ..H(SN ) → Cq,t is the

evaluation map defined in (B.18). The large N limit is conjectured to be equal to the
Poincare polynomial of the HOMFLY-PT homology of a torus link up to a change
of variables when colors are labeled by a rectangular Young diagram.

After a simple puncture is added on a two-torus T 2, the moduli space becomes
smooth and the N 2 torsion points turn into the corresponding N 2 exceptional divisors.
Let us denote them byD(N )

i (i = 1, . . . , N 2). They become Lagrangian submanifolds
with respect to ωX when t N = q−M , or
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q = exp

(
2πi

M + cN

)
, t = exp

(
2cπi

M + cN

)
, (3.22)

with coprime (M, N ). In fact, under the shortening condition t N = q−M , there are N 2

irreducible S
..
H(SN )-modules of dimension (N+M−1)!

(N−1)!M !N , corresponding to the excep-

tional divisors. Among them, only one irreducible componentD(N )
1 is invariant under

PSL(2,Z), which is analogous toD1 in the A1 case. We are interested in the modular
matrices acting on the corresponding finite-dimensional representation of S

..
H(SN ).

With the shortening condition t N = q−M , a finite-dimensional module arises
as a quotient of the polynomial representation whose basis is spanned by Mac-
donald polynomials Pλ with λ ⊂ [MN−1] inscribed in the M × (N − 1) rectangle.
This decomposes into N irreducible modules, and the other N (N − 1) irreducible
modules can be obtained by their orbits under the symmetry 	 × PSL(2,Z) =
H 1(C,ZN ) × PSL(2,Z) of S

..
H(SN ). They correspond to Hom(Bcc,BD(N )

i
). From

the brane perspective, the support of the brane of the polynomial representation
intersects with the corresponding N exceptional divisors. When t N = q−M , N Mac-
donald polynomials Pλ(i) (i = 1, . . . , N ) of type AN−1, where λ(i) ⊂ [MN−1], are
degenerate at each eigenvalue of the Dunkl operator

D(u) =
n∑

r=0

(−u)r D(r) , D(r) =
∑

I⊂[1,...,N ]
|I |=r

∏

i∈I
j /∈I

t Xi − t−1X j

Xi − X j
�i (r = 0, 1, . . . , N ) .

Here we write variables of the Macdonald polynomials defined in AppendixB.1.5 as
Xi/X j := Xα for a rootα = ei − e j and the q-shift operators act as�i X j = qδi j X j .
We also note that D(0) = 1 = D(N ). Out of the N irreducible finite-dimensional
modules, only one irreducible representation becomes a PSL(2,Z) representation,
and its basis is spanned by

{ N∑

i=1

Pλ(i) (X)/Pλ(i) (t−ρ)
}

λ(i)⊂[MN−1]
. (3.23)

In fact, the modular S-matrix Sλμ in (3.20) becomes of rank (N+M−1)!
(N−1)!M !N with the

shortening condition t N = q−M . As in the A1 case (2.125), we can make a change
of basis to (3.23) to obtain a (N+M−1)!

(N−1)!M !N -dimensional PSL(2,Z) representation on the

irreducible S
..
H(SN )-module explicitly.

By a similar argument to the one above, the fivebrane system (3.1) at t N = q−M

is equivalent to the Argyres–Douglas theory of type (AN−1, AM−1) [39, 155] on
S1 × M3, which admits a class S construction with an SU(N ) Hitchin system on
CP1 with a wild singularity at z = ∞ where the eigenvalues of the Higgs field
grow as |ϕ| ∼ |zM/Ndz|. Therefore, the modular matrices acting on the module
Hom(Bcc,BD(N )

1
) can be understood as those of an MTC[AN−1, AM−1] associ-

ated to the (AN−1, AM−1) Argyres–Douglas theory, which categorifies the SL(2,Z)
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action on fixed points of the U(1)β action on the corresponding wild Hitchin moduli
space [58]. As a higher rank generalization of Conjecture2.2, it is expected that they
are related to the modular matrices in the (N , M + N ) minimal model of the WN -
algebra, which is the chiral algebra of the (AN−1, AM−1) Argyres–Douglas theory
[40]. In fact, by normalizing them appropriately with the Macdonald norm (B.15)
of type AN−1, the modular matrices at q = e−2πi/(M+N ) coincide with those (3.26)
of the WN (N , M + N ) minimal model [20], which are reviewed below. However,
we should keep in mind the same caution as the one given at the end of the previous
subsection Sect. 3.1.1.

Remarkably, the space Hom(Bcc,BD(N )
1

) has another intriguing interpretation. In

the limit of the spherical rational Cherednik algebra S
..
H rat

�,c(SN ), the target space
of the sigma-model becomes the Hilbert scheme of (N − 1)-points on the affine
planeC2, and the exceptional divisorD(N )

1 only remains to be a compact Lagrangian
submanifold, called punctual Hilbert scheme. (See also AppendixD.2.) It is known
that its geometric quantization provides the unique finite-dimensional representation
of S

..
H rat

�,c(SN ) [14, 78, 79] and it is furthermore isomorphic to the lowest a-degree
Hbottom(TN ,M) of HOMFLY-PT homology of the (N , M) torus knot TN ,M [73]. Thus,
we have an isomorphism of vector spaces

K 0(MTC[AN−1, AM−1]) ∼= Hom(Bcc,BD(N )
1

) ∼= Hbottom(TN ,M) . (3.24)

In what follows, we briefly review the modular matrices of the WN (N , M + N )

minimal model [20]. These minimal models admit a coset description:

WN (N , M + N ) = SU(N )k × SU(N )1

SU(N )k+1
, with k = N

M
− N . (3.25)

Therefore, their modular matrices are constructed from those of SU(N )k affine Lie
algebra [20]. The primary fields in the SU(N )k WZW model are classified by

�(N ; n) :=
{
λ = (λ1, . . . ,λN−1) ∈ Z

N−1
>0 |

N−1∑

i=1

λi < n = k + N
}

where the vacuum corresponds to � = (1, . . . , 1) ∈ �(N ; n), and the S matrix is
given by

S(N ;n)

λμ = 1

in
√
N

exp[2πi t (λ)t (μ)

Nn
] det

(
exp[−2πi

λ[�]μ[m]
n

]
)

1≤�,m≤N

with

λ[i] =
∑

i≤�<N

(λ� + 1) , t (λ) :=
N−1∑

j=1

jλ j .
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The primary fields of the WN (N , M + N ) minimal model are in one-to-one corre-
spondence with the following set

�[WN (N , M + N )] =
{
(�,λ) | λ ∈ �(N ; N + M) , t (λ) ≡ 0 mod N

}

The modular S and T matrices of the WN (N , M + N ) minimal model are

S(�,λ)(�,μ) = (N (N + M))
3−N
2 exp

[
−2πi

t (�)(t (μ) + t (λ))

N

]
S(N ;N/(N+M))
�� S(N ;(N+M)/N )

λμ ,

T(�,λ)(�,μ) = −iδλμ exp

[
πi

(N + M)� − Nλ) · ((N + M)� − Nλ)

(N + M)N

]
,

(3.26)

where the inner product is defined by

λ · μ :=
∑

1≤i<N

i(N − i)

N
λiμi +

∑

1≤i< j<N

i(N − j)

N

(
λiμ j + λ jμi

)
.

3.2 Relation to Skein Modules and MTC[M3]

In the above discussion, we already encountered the skein modules of 3-manifolds
and the algebraic data of line operatorsMTC[M3,G] in 3dN = 2 theory T [M3,G],

MTC[M3,G] := Line
[
T [M3,G]]

that also enters “gluing” of vertex algebras associated to 4-manifolds [55], twisted
indices of T [M3,G] on general 3-manifolds [76], and modular properties of q-series
invariants Ẑ(M3) [32].

Since 3d theory T [M3,G] has onlyN = 2 supersymmetry, it cannot be topolog-
ically twisted on a general 3-manifold and, therefore, does not lead to a full 3d TQFT
that could have been associated to a tensor category (of its line operators) in a famil-
iar way. Nevertheless, as was pointed out in [76], the structure of line operators and
partially twisted partition functions in T [M3,G] in many ways is close to (and, in
some cases, is described by) that of a tensor category. Hence, the nameMTC[M3], or
MTC[M3,G]. The simple objects ofMTC[M3,G] are complex GC flat connections
on M3. For example, when M3 is the Poincaré sphere andG = SU(2), there are three
simple objects in MTC[M3,G] and K 0(MTC[M3,G]) has rank 3. In this example,
and more generally, when all GC flat connections on M3 are isolated, they can be
identified with the intersection points of two Heegaard branes BH± associated with
the Heegaard decomposition of M3, illustrated in Fig. 3.3.

Specifically, let M3 = M+
3 ∪C M−

3 be a Heegaard splitting of a closed oriented
3-manifold M3. As in (2.85), 3-manifolds with boundary ∂M±

3 = C define the
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M+
3 C M−

3

BH+

BH−

Mflat(C,GC)

Fig. 3.3 A Heegaard decomposition (left panel) of a closed oriented 3-manifold leads to an inter-
pretation of K 0(MTC[M3]) as the space of (BH+ ,BH− )-strings in Mflat(C,GC)

(A, B, A)-branes BH± supported on Lagrangian submanifolds Mflat(M
±
3 ,GC) in

Mflat(C,GC). Hence, K 0(MTC[M3]) can be interpreted as the space of open strings
between two Heegaard branes BH± associated to M±

3 and illustrated in Fig. 3.3.
Furthermore, via a complex analogue of the Atiyah–Floer conjecture (see e.g.
[81]), this ring is expected to be isomorphic to the complex GC Floer homology
HF inst

0 (M3,GC) of M3:

K 0(MTC[M3]) ∼= Hom0(BH+ ,BH− ) ∼= HF symp
0 (Mflat(C,GC); H+, H−) ∼= HF inst

0 (M3,GC) .

(3.27)
Here both symplectic and instanton Floer homology groups are Z-graded, and we
take the zeroth degree of the homology groups. Physically, this grading comes from
non-anomalous U(1) R-symmetry.

Indeed, the relevant system here is a stack ofM5-branes onR × T 2 × M3, and we
are interested in the Hilbert spaceHT [M3×T 2,G]. We can interpret this Hilbert space as
that of 3dN = 2 theory T [M3,G] on T 2. The Hilbert space isZ-graded by the U(1)
R-symmetry of the 3d N = 2 theory. On the other hand, we can compactify the 6d
N = (2, 0) theory on T 2, and perform the topological twist of the 4dN = 4 theory
considered in [157]. The two types of topological twists of the 4d N = 4 theory in
[157], Vafa-Witten twist [150] and Marcus/GL-twist [117, 123], are equivalent on
R × M3, and the BPS equations on M3 are satisfied by complexGC-flat connections.
As a result, the Hilbert space can be understood as complex Floer homology of M3.
Consequently, the Hilbert space admits two interpretations [76]:

HT [T 2,G](M3) ∼= HT [M3×T 2,G] ∼= HT [M3,G]
(
T 2

)
.

In general, complex Floer homology groups are infinite-dimensional due to the pres-
ence of reducible solutions and non-compactness of moduli spaces. Nonetheless, it
is graded by the R-charges of the 3dN = 2 supersymmetry, and we expect that the
zeroth degree piece gives precisely (3.27).

Note, that for some manifolds, like M3 = T 3, all complex flat connections are
reducible. (In this example, simply because π1(M3) is abelian.) Such examples illus-
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trate especially well how the infinite-dimensional complex Floer homology of M3 is
re-packaged into its finite-dimensional version K 0 (MTC[M3,G]). Moreover, half-
BPS line operators in T [M3,G] are in one-to-one correspondence with states of the
Hilbert space of T [M3,G] on T 2. The mapping class group of T 2 acts on this Hilbert
space, justifying the name for K 0(MTC[M3]). In practice, this can be a log-modular
action, as in [32].

A somewhat similar “regularization” of the complex Floer theory is provided by
the skein module Sk(M3,G), which was recently shown to be finite-dimensional
[67] for any closed oriented 3-manifold M3. Physically, the SU(N )-skein module of
M3 is a set of all formal linear combinations of line operators in complex SL(N ,C)

Chern–Simons theory, defined as [135, 143]:

Sk(M3, SU(N )) = C[q±](isotopy classes of framed oriented links in M3)/skein relations .

where the skein relations are given by

q−
1
N − q

1
N = (q−1 − q)

= q
1
N −N = qN− 1

N = qN−q−N

q−q−1

.

The analogue for Cartan types other than A is not well explored, and would be an
excellent direction for future work.

Focusing on G = SU(N ) and GC = SL(N ,C), the above discussion suggests
that there may be a relation between K 0(MTC[M3,G]) that describes line operators
in T [M3] and the skein module Sk(M3,G). This relation cannot be a simple isomor-
phism because, e.g. for M3 = T 3 and G = SU(2), K 0(MTC[M3,G]) has 10 simple
objects whereas rank Sk(M3,G) = 9 [30, 65]. Relegating a better understanding of
this relation to future work,6 here we merely conjecture that it commutes with the
SL(2,Z) action, so that Sk(M3,G) also enjoys a (possibly, log-) modular action

SL(2,Z)

�

Sk(M3,G) .

6 The above mentioned examples of the Poincaré sphere and M3 = T 3 suggest that the general
relation for G = SU (2) might be rank Sk(M3,G) = rankK 0(MTC[M3,G]) − 1. Although we do
not know any counterexample to this potential relation, we should stress that the role of “−1” is
likely to be delicate and can not be simply attributed to, say, reducible flat connections (as in the
case of the Poincaré sphere). For example, in the case of M3 = T 3, all complex flat connections
are reducible, as was already pointed out in the main text.
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As a next natural step, we now turn our attention to a relation between the skein
algebra Sk(C) of a Riemann surface C and line operators of the 4d N = 2 theory
T [C], in particular in the case when C is a (punctured) torus.
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