
Chapter 2
2d Sigma-Models and DAHA

In this section, we study representation theory of DAHA, strictly speaking, the
spherical subalgebra of DAHA of type A1, in terms of brane quantization in the 2d
A-model [85] on the moduli space of flat SL(2, C)-connections on a once-punctured
torus. The brane quantization lends itself well to a geometric approach to repre-
sentation theory of spherical DAHA, which provides novel viewpoints. The main
goal of this section is to explicitly show the correspondence between A-branes with
compact Lagrangian submanifolds and finite-dimensional representations of spher-
ical DAHA with respect to dimensions, shortening conditions and morphisms. This
matching enables us to find new finite-dimensional representations. The geomet-
ric picture also allows us to identify PSL(2, Z) actions on some finite-dimensional
modules. As another advantage, we generalize Cherednik’s polynomial represen-
tation from a geometric viewpoint. These results play a crucial role in higher-
dimensional physical theories and categorical structures in the subsequent sections.

DAHA associated to a root system R (or, equivalently, to a semisimple Lie alge-
bra g) can be constructed by beginning with the quantum torus algebra QT (P ⊕
P∨,ω) defined on the direct sum of the weight and coweight lattices of g with the
symplectic pairing ω between P and P∨. More concretely, QT (P ⊕ P∨,ω) can be
understood as the group algebra of the Heisenberg group with the relation

XμY λ = q(μ,λ)Y λXμ, for μ ∈ P,λ ∈ P∨ ,

where (μ,λ) is the symplectic pairing. Note that this lattice is isomorphic to the
standard pairing onZ

2 dimP ∼= Z
2n , so that the algebra has outer automorphism group

Out(QT (P ⊕ P∨,ω)) = Sp(2n, Z).
However, we have the additional data of the action of the Weyl group W on P

and P∨. This gives a distinguished embedding ofW into Sp(2n, Z), which therefore
determines an extension

0 → QT (P ⊕ P∨,ω) → ..
Ht=1(W ) → C[W ] → 0 (2.1)
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up to equivalence. The algebra
..
Ht=1(W ) is known to be the group algebra of the

double affine Weyl group
..
W :

..
Ht=1(W ) ∼= C[ ..W ]. Since the representation of W is

just on P (and contragredient on P∨), this extension leaves the “diagonal” Sp(2, Z)

subgroup unbroken as outer automorphisms of
..
Ht=1(W ). For the Cartan type A1,

this construction is equivalent to the algebra
..
Ht=1 in Appendix C.3. Moreover, the

algebra
..
Ht=1(W ) can be further deformed by other formal parameters t , transform-

ing the group algebra C[W ] to the Hecke algebra. The result is DAHA
..
H(W ). We

will give a concrete description of the deformation in the Cartan type A1 in this
section. DAHAs of general Cartan types are explained in Appendix B. Through
this construction, the quantum torus algebra and DAHA are closely related, and we
can take the same approach to representation theory of the quantum torus algebra.
Although the representation theory of the quantum torus algebra is well-known, it
can be a useful guide for DAHA. Therefore, the reader can refer to Appendix C
for the brane quantization of the quantum torus algebra and symmetrized quantum
torus.

The algebra
..
H(W ) is not commutative, even in the q = 1 limit. Nonetheless, it

contains the spherical subalgebra S
..
H(W ), obtained by an idempotent projection,

which is commutative as q = 1. In the limit t = 1, S
..
Ht=1(W ) is isomorphic to the

Weyl-invariant subalgebra of QT (P ⊕ P∨,ω) (after a lift of the Weyl group action
is chosen). In the further specialization q = 1, S

..
H becomes precisely the algebra of

Weyl-invariant functions on

(tC/Q∨) × (t∨
C
/Q) = TC × TC .

Note that we take the coroot and root latticesQ∨ ⊕ Q = Hom(P, Z) ⊕ Hom(P∨, Z)

(namely the dual lattice) as the quotient lattice. This space with group action is
nothing other than the moduli space of flat connections on a two-torus T 2, valued in
the corresponding complex Lie group GC:

Mflat(T
2,GC) = Hom(π1(T

2),GC)/GC

∼= TC × TC

W
.

(2.2)

We would like to consider an additional deformation of this moduli space to
study the representation theory of spherical DAHA geometrically. Happily, for type
A, this can be achieved just by adding a “puncture” on a two-torus T 2. Despite this
rather simple “addition”, the story becomes incredibly deeper and more interesting.
This section focuses on DAHA of rank one to illustrate and highlight all the delicate
features and interesting phenomena. In rank one, we can perform concrete compu-
tations as explicitly as possible. For that reason, we will first review some necessary
background on the moduli space of flat SL(2, C)-connections on a once-punctured
torus, which will play the role of the target space X in the 2d sigma-model.
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Then, we will carve out A-branes in X for salient modules of the spherical DAHA.
This will give solid evidence of the functor (1.3) from the categories of A-branes in
X to the representation category of the spherical DAHA.

2.1 Higgs Bundles and Flat Connections

Figuratively speaking, the target space of the 2d sigma-model is the stage where our
main characters (branes) will make their appearance. Thus, let us begin by setting
the stage.

The target space of our system will be the moduli space of G = SU(2) Higgs
bundles on a genus-one curve Cp, ramified at one point p:

X := MH (Cp,G). (2.3)

Although the geometry of this space, also called the Hitchin moduli space, is a fairly
familiar character in mathematical physics literature, we review those aspects that
will be especially important for applications to DAHA representations.

Recall [94, 138], that a ramified (or stable parabolic) Higgs bundle is a pair
(E,ϕ) of a holomorphic SU(2)-bundle E over a curve C and a holomorphic section
ϕ, called the Higgs field, of the bundle KC ⊗ ad(E) ⊗ O(p). Here, KC denotes the
canonical bundle of C , andO(p) is the line bundle whose holomorphic sections are
functions holomorphic away from p with a first-order pole at p. The ramification
at p—more precisely called tame ramification since we are considering first-order
pole—is described by the following conditions on the connection A on E and the
Higgs field

A = αp dϑ + · · ·
ϕ = 1

2
(βp + iγp)

dz

z
+ · · · (2.4)

Here, z = reiϑ is a local coordinate on a small disk centered at p, and the rami-
fication data is a triple of continuous parameters, (αp,βp, γp) ∈ T × t × t where
we denote the Cartan subgroup T ⊂ G and the Cartan subalgebra t ⊂ g. With this
prescribed behavior at p, the Hitchin moduli space is the space of solutions to the
equations

F − [ϕ,ϕ] =0

DA ϕ =0 ,
(2.5)

modulo gauge transformations. We denote this moduli space MH (Cp,G), where
Cp is a Riemann surface C with the tame ramification (2.4) at p ∈ C . It is a hyper-
Kähler space and the corresponding Kähler forms are



12 2 2d Sigma-Models and DAHA

ωI = − i

2π

∫
C

|d2z|Tr
(
δAz̄ ∧ δAz − δϕ̄ ∧ δϕ

)
,

ωJ = 1

2π

∫
C

|d2z|Tr
(
δϕ̄ ∧ δAz + δϕ ∧ δAz̄

)
,

ωK = i

2π

∫
C

|d2z|Tr
(
δϕ̄ ∧ δAz − δϕ ∧ δAz̄

)
.

(2.6)

There is also a triplet of holomorphic symplectic forms �I = ωJ + iωK , �J =
ωK + iωI , and �K = ωI + iωJ , holomorphic in complex structures I , J , and K ,
respectively. In the absence of ramification, it is easy to check that ωJ and ωK are
cohomologically trivial [117, Sect. 4.1], whereas ωI is non-trivial and, if properly
normalized, can be taken as a generator of H 2(X, Z). On the other hand, in the pres-
ence of ramification (2.4), the cohomology classes of ωJ and ωK are proportional to
βp and γp, respectively.

The description of MH (Cp,G) as the moduli space of Higgs bundles given
above is in complex structure I . Another useful description, in complex structure
J , comes from identifying a complex combination AC = A + iφ with a GC-valued
connection, where φ = ϕ + ϕ̄. The Hitchin equations then become the flatness con-
dition FC = d AC + AC ∧ AC = 0 for this GC-valued connection AC. According to
(2.4), it has a non-trivial monodromy around the point p:

U = exp(2π(γp + iαp)) . (2.7)

which depends holomorphically on γp + iαp and is independent of βp. Indeed, in
complex structure J , βp is a Kähler parameter and γp + iαp is a complex structure
parameter. Another useful fact, also explained in [84], is that the cohomology class
of the holomorphic symplectic form �J = ωK + iωI is proportional to γp + iαp

and independent of βp.
Similarly, in complex structure I the Kähler modulus is αp, while βp + iγp is a

complex structure parameter. The cohomology class of the holomorphic symplectic
form �I = ωJ + iωK is βp + iγp. There is a similar story for complex structure K
and all these statements are summarized in Table 2.1.

In a supersymmetric sigma-model with targetX, the Kähler modulus of the target
space is always complexified. This fact plays an important role in mirror symmetry.
In the present setup, too, the Kähler moduli are all complexified by the periods of
the 2-form field B. For example, in complex structure I , the complexified Kähler

Table 2.1 Complex and Kähler moduli of the moduli space MH with one ramification point

Complex structure Complex modulus Kähler modulus

I βp + iγp αp

J γp + iαp βp

K αp + iβp γp
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modulus is αp + iηp, where ηp ∈ T ∨ = Hom(�∨,U(1)) and �∨ is the cocharac-
ter lattice of G. Therefore, taking into account the “quantum” parameter ηp, the
ramification data consists of the quadruple of parameters (αp,βp, γp, ηp).

All of these structures can be made completely explicit in the case when Cp is
a punctured torus. In complex structure J , where X = MH (Cp,G) is the moduli
space of complex flat connections on Cp, we can then use an explicit presentation
of the fundamental group

π1(Cp) = 〈m, l, c|mlm−1l−1 = c〉 . (2.8)

to describe flat connections concretely, in terms of holonomies along the (1, 0)-cycle
m, the (0, 1)-cycle l, and the loop c around p:

x = Tr(ρ(m)), y = Tr(ρ(l)), and z = Tr(ρ(ml−1)) . (2.9)

In terms of these holonomy variables, the space of SL(2, C)-representations ρ :
π1(Cp) → SL(2, C) is a cubic surface (see e.g. [72, 82]):

Mflat(Cp,SL(2, C)) = {(x, y, z) ∈ C
3|x2 + y2 + z2 − xyz − 2 = Tr(ρ(c)) = t̃2 + t̃−2} .

(2.10)
Here we used the fact that, according to (2.7), the holonomy of the complex flat
connection around p is conjugate to

ρ(c) ∼
(
t̃−2 0
0 t̃2

)
. (2.11)

This section will be devoted to studying the deformation quantization Oq(X) of this
coordinate ring holomorphic in complex structure J , which is generated by x , y, z,
and its representations geometrically.

For a complex surface defined by the zero locus of a polynomial f (x, y, z), the
holomorphic symplectic form (a.k.a. Atiyah-Bott-Goldman symplectic form) can be
written as

�J = 1

2πi

dx ∧ dy

∂ f/∂z
= 1

2πi

dx ∧ dy

2z − xy
. (2.12)

and the Kähler form is

ωJ = i

4π
(dx ∧ dx̄ + dy ∧ d ȳ + dz ∧ dz̄) . (2.13)

In the special case αp = βp = γp = 0, the moduli space of flat
SL(2, C)-connections on Cp is simply a quotient space

(C× × C
×)/Z2 (2.14)
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by the Weyl group Z2. It can be understood as a moduli space of flat SL(2, C)-
connections on a torus (without ramification), such that holonomy eigenvalues along
A- and B-cycles each parametrize a copy of C

×. The “real slice” (S1 × S1)/Z2

is the moduli space of SU(2) flat connections on the (punctured) torus, and it is
sometimes called the “pillowcase”. According to the theorem of [128] (resp. [125]),
it can be identified with the moduli space Bun(Cp,G) of stable (resp. parabolic) G-
bundles on Cp. It is easy to see that Bun(Cp,G) is a holomorphic submanifold of
MH (Cp,G) in complex structure I . Furthermore, because δϕ = 0 on Bun(Cp,G),
it follows from (2.6) that Bun(Cp,G) is a holomorphic Lagrangian submanifold
with respect to �I (in particular, Lagrangian with respect to ωJ and ωK ). Following
the notation in Sect. 2.4, we write it by V as a Lagrangian submanifold in the target
(X,ωX).

In addition to V, other special submanifolds of MH (Cp,G) will play a role in
what follows. For example, in complex structure I , the Hitchin moduli space is a
completely integrable Hamiltonian system [94], i.e. a fibration

π : MH (Cp,G) → BH (2.15)

over an affine space, the “Hitchin base” BH , whose generic fibers are abelian vari-
eties (sometimes called “Liouville tori”). For G = SU(2), the map π takes a pair
(E,ϕ) to Trϕ2, which is holomorphic in complex structure I . Specializing fur-
ther to the case where Cp is a genus-one curve gives a particularly simple inte-
grable system: its generic fiber F is a torus that, just like V, is holomorphic in com-
plex structure I and Lagrangian with respect to ωJ and ωK . We also note that the
only singular fiber of the Hitchin fibration π : MH (Cp,G) → BH is the pre-image
N = π−1(0) of 0 ∈ BH which, in the limit αp = βp = γp = 0, is the “pillowcase”
V ∼= (S1 × S1)/Z2 with four orbifold points.

Now let us consider what happens when we go away from the limit αp = βp =
γp = 0 and consider generic values of the ramification parameters. From the view-
point of the complex structure J , the equation (2.10) describes the deformation of
the four A1 singularities of the singular surface (2.14), where t̃2 (or, equivalently,
γp + iαp) plays the role of the complex structure deformation. On the other hand,
turning on βp = 0 leads to a resolution of the A1-singularities. In other words, βp

is the Kähler structure parameter in complex structure J , cf. Table 2.1.
Recall that αp is the Kähler structure parameter in complex structure I . If we

turn on αp while keeping βp = γp = 0, then the four orbifold points are blown
up in the Hitchin fibration. Consequently, the singular fiber in the Hitchin fibration,
called the global nilpotent coneN := π−1(0), now contains five compact irreducible
components (all rational) [82, 90]:

N = V ∪
4⋃

i=1

Di . (2.16)
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V

D4D3

D2D1

q4q3

q2q1

NF ∼= T 2

BH

MH

0gen pt

π

ξ1

ξ2

Fig. 2.1 Schematic illustration of the Hitchin fibrationMH (Cp,SU(2)) → BH and global nilpo-
tent cone at βp = 0 = γp and a generic value of ααp

In fact, it is a singular fiber of Kodaira type I ∗
0 [108, 109] in the elliptic fibration π.

The irreducible components V and Di of the global nilpotent cone are holomorphic
Lagrangians with respect to �I , sometimes called Lagrangians of type (B, A, A).
The homology classes of V and Di provide a basis for the second homology groups
H2(MH (Cp,G), Z), and their intersection form is the affine Cartan matrix of type
D̂4, as illustrated in Fig. 2.1. The intersection form has only one null vector, which
must be identified with the class of a generic fiber F of the Hitchin fibration, result-
ing in the relation

[F] = 2[V] +
4∑

i=1

[Di ] . (2.17)

Once we move away from βp = γp = 0, we are deforming the complex struc-
ture modulus βp + iγp of complex structure I , and so the structure of the Hitchin
fibration drastically changes. For generic values of (βp, γp), the embeddings of the
two-cycles V and Di (i = 1, . . . , 4) into MH (Cp,G) are no longer holomorphic
with respect to complex structure I , and the singular fiber of type I ∗

0 splits into
three singular fibers of type I2 [61, Sect. 3.4]. If we write the base genus-one curve
Cp of the Hitchin system by an algebraic equation y2 = (x − e1)(x − e2)(x − e3)
with e1 + e2 + e3 = 0 where the ramification point p is located at infinity, then the
singular fibers of type I2 are preimages of points

BH � bi := eiTr (βp + iγp)
2 (i = 1, 2, 3) , (2.18)

under the Hitchin fibration as depicted in Fig. 2.2. In the singular fiber at bi ∈ BH ,
two irreducible components U2i−1 and U2i , which are topologically CP1, meet at
two double points.

Hence, the two-cycles V and Di (i = 1, . . . , 4) are not projected to a point by
the Hitchin fibration with a generic ramification, though they still give a basis of
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b1

b2

b3

BH

U1

U2

U3

U4

U5

U6

W

F

Fig. 2.2 The Hitchin fibration with a generic ramification contains three singular fibers of Kodaira
type I2 at the base points bi (i = 1, 2, 3)

H2(MH (Cp,G), Z) and satisfy the relation (2.17). An analysis by the Mayer–
Vietoris sequence tells us that the homology class of each irreducible component
in a singular fiber I2 can be expressed as

[U1] = [V] + [D1] + [D2] , [U3] = [V] + [D1] + [D3] , [U5] = [V] + [D1] + [D4] ,

[U2] = [V] + [D3] + [D4] , [U4] = [V] + [D2] + [D4] , [U6] = [V] + [D2] + [D3] ,

(2.19)
and there is another two-cycle W as in Fig. 2.2 with homology class [W] = [D1].
With respect to the new basis

[U1], [U2], [U3], [U5], [W] ∈ H2(MH (Cp,G), Z) , (2.20)

the intersection form becomes
⎛
⎜⎜⎜⎜⎝

2 −2 0 0 1
−2 2 0 0 −1
0 0 2 0 1
0 0 0 2 1
1 −1 1 1 2

⎞
⎟⎟⎟⎟⎠ . (2.21)

Note that the upper-left two-by-two matrix is the Cartan matrix of the affine type Â1

as the intersection form of a singular fiber of type I2.



2.1 Higgs Bundles and Flat Connections 17

For our applications to branes and representations, we also need to know the type
of the five compact two-cycles V, Di (i = 1, . . . , 4) and periods of the Kähler forms
over them. The integrals of �J over V and over F were computed e.g. in [82]. They
can be expressed as the following set of relations:

∫
V

ωI

2π
= 1

2
− |αp| , diag(αp,−αp) ∼ αp ∈ T ,

∫
V

ωJ

2π
= −sign(αp)βp , diag(βp,−βp) ∼ βp ∈ t ,

∫
V

ωK

2π
= −sign(αp)γp , diag(γp,−γp) ∼ γp ∈ t

(2.22)

and ∫
F

ωI

2π
= 1 ,

∫
F

ωJ

2π
= 0 =

∫
F

ωK

2π
, (2.23)

where in the latter we used the fact that the Hitchin fiber F is holomorphic in com-
plex structure I and Lagrangian with respect to �I for any (αp,βp, γp). We assume
that αp takes its value in the range − 1

2 < αp ≤ 1
2 . Although we did not compute the

periods of the 2-forms (2.12) and (2.13) over exceptional divisors Di directly, we
claim

|αp|
2

=
∫
Di

ωI

2π
, sign(αp)

βp

2
=
∫
Di

ωJ

2π
, sign(αp)

γp

2
=
∫
Di

ωK

2π
,

(2.24)
independently of i = 1, 2, 3, 4. One way to justify this claim is to compute the peri-
ods for small values of γp + iαp ≈ 0, i.e. for t̃ ≈ 1. Another way is to use (2.17)
together with the symmetries of MH (Cp,G) that we discuss next. The formulae
above are compatible with the fact that the Weyl group symmetry of the ramifica-
tion parameters given by an overall sign change

(αp,βp,γp) → (−αp,−βp,−γp) (2.25)

leaves the moduli space completely invariant.
Furthermore, the “quantum” parameter that complexifies a Kähler parameter can

be understood as the period of the B-field in a 2d sigma-model over Di

sign(αp)ηp =
∫
Di

B

2π
, diag(ηp,−ηp) ∼ ηp ∈ T ∨ . (2.26)

In the following, we often use the parameters (αp,βp,γp,ηp) ∈ S1 × R × R × S1

and the quadruple (αp,βp, γp, ηp) ∈ T × t × t × T ∨ of the tame ramification (2.4)
at p ∈ C in the same meaning.
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Symmetries

The target space (2.3) of our sigma-model has the symmetry group1

� × MCG(Cp) = Z2 × Z2 × SL(2, Z) (2.27)

where � = Z2 × Z2 is the group of “sign changes” generated by twists of a Higgs
bundle E → Cp by line bundles of order 2. Abusing notation, this group can be
identified with H 1(C, Z2) = Z2 ⊕ Z2 where Z2 is the center of SU(2). Obviously,
SL(2, Z) is the mapping class of the (punctured) torus:

MCG(Cp) ∼= SL(2, Z) . (2.28)

Both � and MCG(Cp) are symmetries in all complex and symplectic structures. In
particular, in what follows, we will need their explicit presentations as holomorphic
symplectomorphisms with respect to �J .

In complex structure J , the “sign changes” � = Z2 × Z2 are holomorphic invo-
lutions, and its generators ξ1, ξ2 and their combination ξ3 := ξ1 ◦ ξ2 act as

ξ1 : (x, y, z) �→ (−x, y,−z) ,

ξ2 : (x, y, z) �→ (x,−y,−z) ,

ξ3 : (x, y, z) �→ (−x,−y, z) ,

(2.29)

respectively. The “sign changes” symmetry plays a very important role to under-
stand mirror symmetry [82] and connections to 4d physics in Sect. 4.

The symmetry group � leaves V invariant (as a set, not pointwise) and acts on
the exceptional divisors Di as follows:

ξ1 : D1 ↔ D2 and D3 ↔ D4 ,

ξ2 : D1 ↔ D3 and D2 ↔ D4 ,

ξ3 : D1 ↔ D4 and D2 ↔ D3 .

(2.30)

This symmetry, illustrated in Fig. 2.1, provides supporting evidence to our assump-
tion in (2.24).

In complex structure I , a point in the Hitchin base BH is invariant under � so that
it acts on each fiber as translations of order two in the Hitchin fibrationMH → BH

[61, §3.5]. It acts freely on a generic fiber. On the other hand, ξi acts on each irre-
ducible component of the singular fiber π−1(bi ), namelyU2i−1 andU2i , respectively,
where the fixed points are exactly the two double points. At the other singular fibers,
it exchanges the two double points and swaps the two irreducible components

1 The symmetry of the A-model can be larger or smaller than the group of geometric symmetries. It
can be larger due to quantum symmetries not directly visible from geometry, and it can be smaller
if some geometric symmetries are Q-exact from the A-model viewpoint.
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ξi : U2i+1 ↔ U2i+2 and U2i+3 ↔ U2i+4 , (2.31)

where the indices of U are counted modulo 6. This is consistent with the homology
classes (2.19) and the actions (2.30).

The action of SL(2, Z) on the eigenvalues of the holonomies ρ(m) and ρ(l) is
indeed given in (C.30). In particular, the non-trivial central element −1 of SL(2, Z)

indeed exchanges the eigenvalues of the holonomies ρ(m) and ρ(l) as well as the
one around the puncture (2.11) to their inverses. Therefore, it acts as the Weyl
group symmetry of SL(2, C). Subsequently, the trace coordinates x, y, z are invari-
ant under the non-trivial central element −1 so that SL(2, Z) acts projectively on
the coordinate ring O(X) holomorphic in complex structure J . However, the eigen-
values of the holonomy around the puncture are exchanged, which we denote

ι : t̃ → t̃−1 . (2.32)

A quotient of MCG(Cp) ∼= SL(2, Z) by the center is PSL(2, Z) = SL(2, Z)/ ± 1,
which is the mapping class group of a 4-punctured sphere. In order to find an explicit
presentation of PSL(2, Z), it is convenient to note that T 2 → S2 is a double cover
branched at 4 points, cf. (2.14)

PSL(2, Z) ∼= Br3 /Z (2.33)

where the second equality is a well-known relation to the Artin braid group Br3. In
terms of standard generators τ+ and τ−1

− , which satisfy the braid relation τ+τ−1
− τ+ =

τ−1
− τ+τ−1

− , the center Z of Br3 is generated by (τ+τ−1
− )3. Under the surjective map

onto PSL(2, Z), we have

τ+ �→
(
1 0
1 1

)
, τ− �→

(
1 1
0 1

)
(2.34)

and

σ := τ+τ−1
− τ+ = τ−1

− τ+τ−1
− �→

(
0 −1
1 0

)
, τ+τ−1

− �→
(
1 −1
1 0

)
. (2.35)

In the quotient (2.33), the latter two elements have order 2 and 3, respectively.
Using (2.33), we can relate our present problem to the mapping class group action

on the character variety of the 4-punctured sphere2 which is also a cubic surface of
the form (2.10) and on various branes (submanifolds) on this surface [81]:

2 In the notations of [81] we need to take (x1, x2, x3) = (−x,−y,−z), θ1 = θ2 = θ3 = 0, and
θ4 = −2 − t̃2 − t̃−2.
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τ+ : (x, y, z) �→ (x, xy − z, y) ,

τ− : (x, y, z) �→ (xy − z, y, x) ,

σ : (x, y, z) �→ (y, x, xy − z) .

(2.36)

It is easy to verify that these are indeed polynomial automorphisms of the cubic
surface (2.10) and that they satisfy the braid relation.

Note, the action of PSL(2, Z) leaves V invariant (as a set, not pointwise) and acts
on the exceptional divisors Di as on the set of Z2 torsion points on an elliptic curve,
In other words, D1 is fixed by the PSL(2, Z), also as a set, not pointwise, whereas
D2, D3 and D4 transform as points 1

2 ,
τ
2 , and

1
2 + τ

2 , respectively. In terms of the
generators of PSL(2, Z), we have explicit transformation rules

τ+ : D2 ↔ D4 and D1, D3 are fixed as a set ,

τ− : D3 ↔ D4 and D1, D2 are fixed as a set ,

σ : D2 ↔ D3 and D1, D4 are fixed as a set .

(2.37)

In addition, these generators permute the singular fibers of type I2 in the Hitchin
fibration as S3:

π−1(b2)

π−1(b1) π−1(b3)

σ

τ+

τ−

τ+

τ− σ
(2.38)

In the above, we pointed out that V is invariant under both symmetries � and
PSL(2, Z) only as a set, not pointwise. Also, the same is true about PSL(2, Z) action
on D1. While in the case of V the reason for both claims is fairly clear (e.g. it is
manifest in the t̃ → 1 limit (2.14)), the fact that PSL(2, Z) fixes D1 only as a set
and not pointwise is less obvious. In order to explain it, let us consider the limit
t̃ = 1 + ε, with ε � 1, and take (x, y, z) = (2 + a, 2 + b, 2 + c). Then, for small
values of (a, b, c), the surface (2.10) looks like a quadric

a2 + b2 + c2 − 2(ab + bc + ca) = 4ε2 ,

on which the generators τ± act as linear reparametrizations:

τ+ : (a, b, c) �→ (a, 2a + 2b − c, b) ,

τ− : (a, b, c) �→ (2a + 2b − c, b, a) .
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T
Y

X

(a) (b) (c)

Fig. 2.3 Generators and relations in the orbifold fundamental group of the once-punctured torus.
On the left, generators and relations are drawn on the double cover. The relations depicted are
T XT = X−1, TY−1T = Y , and Y−1X−1Y XT 2 = 1

2.2 DAHA of Rank One and Its Spherical Algebra

Now let us review a few necessary details of DAHA of rank one here. Much like the
Hecke algebra sits, loosely speaking, between the Weyl group and the braid group—
in the sense that the latter two can be obtained by either specialization or by omitting
some of the relations—DAHA sits in between the double affine Weyl group and the
double affine braid group. This perspective, reviewed in e.g. [83], will be useful
to us in what follows. In Cartan type A1, the double affine braid group (a.k.a. the
elliptic braid group), denoted

..
Brq=1(Z2), is simply the orbifold fundamental group

of the quotient space (T 2\p)/Z2, the quotient of a once-punctured torus by Z2. It is
generated by three generators X , Y , and T , illustrated in Fig. 2.3:

πorb
1

(
(T 2\p)/Z2

)
=
(
T, X, Y | T XT = X−1, TY−1T = Y, Y−1X−1Y XT 2 = 1

)
. (2.39)

Its central extension, denoted
..
Br(Z2), is obtained by deforming the last relation to

Y−1X−1Y XT 2 = q−1.
Then, rank-one DAHA

..
H(Z2) is obtained by imposing one more quadratic

(“Hecke”) relation:

..
H(Z2) = Cq,t

[
T±1, X±1, Y±1]/{

T XT = X−1 , Y−1X−1Y XT 2 = q−1 ,

TY−1T = Y , (T − t)(T + t−1) = 0

}
. (2.40)

This involves the second deformation parameter t . Here Cq,t is a ring of coefficients
defined as follows. Let C[q± 1

2 , t±] be the ring of Laurent polynomials in the formal
parameters q1/2 and t , and consider a multiplicative system M in C[q± 1

2 , t±] gener-
ated by elements of the form (q�t − q−�t−1) for any non-negative integer � ∈ Z≥0.
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We define the coefficient ring Cq,t to be the localization (or formal “fraction”)3 of
the ring C[q± 1

2 , t±] at M :

Cq,t = M−1
C[q± 1

2 , t±] . (2.41)

This coefficient ring contains the two central generators of the algebra
..
H(Z2),

q and t , which can be thought of as continuous deformation parameters and start
life (in any irreducible representation) as arbitrary complex numbers. Many remark-
able things happen when these two parameters assume special values, as will be
further discussed in the sequel. In a way, the behavior of the algebra and its repre-
sentations under such specializations—and the match of this behavior to the A-brane
category—is one of the most interesting aspects of the geometric/physical approach.

Another standard notation for the second deformation parameter (which is con-
venient for some of the specializations) is

t = qc . (2.42)

where c is often called the “central charge”. In what follows, we will use the short-
hand notation

..
H = ..

H(Z2) unless we wish to make a statement about DAHA of
Cartan type other than A1.

For further details and properties of DAHA, we refer the reader to the fundamen-
tal book [35]. The representation theory of DAHA there will be introduced through-
out this section, as they emerge from physics and geometry. Also, some basics of
DAHA are assembled in Appendix B.

The construction of
..
H based on the punctured torus allows us to see the action of

the symmetry group (2.27), and the symmetry plays a pivotal role in the geometric
understanding of the representation theory of (spherical) DAHA in what follows.
Under �, the generators are transformed as

ξ1 : T �→ T, X �→ −X, Y �→ Y, q �→ q, t �→ t,
ξ2 : T �→ T, X �→ X, Y �→ −Y, q �→ q, t �→ t .

(2.43)

The mapping class group SL(2, Z) acts on the generators of
..
H as follows4:

3 In other words, Cq,t is the ring of rational functions in the formal parameters q
1
2 and t where

denominators are always elements in the multiplicative system M such as

f (X)

(t − t−1)k0 (qt − q−1t−1)k1 · · · (q�t − q−�t−1)k�
, f (X) ∈ C[q± 1

2 , t±, X±] .

.
4 Although we follow the notation of [35] for the transformations τ± on the generators of DAHA
here and in (B.8), we change matrix assignments to τ± as in (2.34) and (B.10) from [35] since it is
consistent with the projective action (2.37) of SL(2, Z) on the exceptional divisors geometrically.
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τ+ : (X,Y, T ) �→ (X, q− 1
2 XY, T )

τ− : (X,Y, T ) �→ (q
1
2 Y X,Y, T )

σ : (X,Y, T ) �→ (Y−1, XT 2, T )

(2.44)

Since σ essentially exchanges the canonically conjugate variables X and Y , it is
sometimes called the Fourier transform of

..
H . Also,

..
H enjoys the following (non-

inner) involution,

ι̃ : T �→ −T, X �→ X, Y �→ Y, q �→ q, t �→ t−1 . (2.45)

It is easy to check from the Hecke relation that e = (T + t−1)/(t + t−1) is an
idempotent element (e2 = e) of

..
H . Then, the spherical subalgebra S

..
H is defined by

the idempotent projection
S
..
H := e

..
He . (2.46)

The generators of S
..
H can be identified with

x = (1 + t2)eXe = (X + X−1)e (2.47)

y = (1 + t−2)eY e = (Y + Y−1)e (2.48)

z = (q− 1
2 Y−1X + q

1
2 X−1Y )e = [x, y]q

(q−1 − q)
, (2.49)

and they satisfy relations

[x, y]q = (q−1 − q)z

[y, z]q = (q−1 − q)x

[z, x]q = (q−1 − q)y

q−1x2 + qy2 + q−1z2 − q− 1
2 xyz = (q− 1

2 t − q
1
2 t−1)2 + (q

1
2 + q− 1

2 )2 ,

(2.50)

where q = e2πi� and the q-commutator is defined by

[a, b]q := q− 1
2 ab − q

1
2 ba .

See e.g. [142] for further details. The key point is that the spherical DAHA S
..
H is

commutative at the “classical” limit q = 1 while the DAHA
..
H is not commutative

even in the q = 1 limit. Indeed, it is easy to see that in the “classical” limit q →
1, the Casimir relation (the last one) in (2.50) becomes the equation for the cubic
surface (2.10):

S
..
H −−→

q→1
O(Mflat(Cp,SL(2, C))) . (2.51)
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Thus, S
..
H is the deformation quantization Oq(X) of the coordinate ring (2.10) of the

moduli space of flat SL(2, C)-connections X = Mflat(Cp,SL(2, C)) with respect to
the Poisson bracket defined by �J [130, 131].

Here, it is worth commenting on an important issue in the context of the defor-
mation quantization of the coordinate ring on the affine cubic hypersurface of the
form (2.10). It is clear that this equation is Weyl-group invariant, so that the mon-
odromy parameter t̃ appears only through the symmetric combination t̃ + t̃−1, and
that the same symmetry applies to the Poisson structure. Moreover, if we work with
a specific value of t̃ , we will obtain the deformation quantization at a specific value
of the parameters, i.e. for a specific choice of the central character (at least for the
formal parameter t).

Since the inputs to deformation quantization depend on t̃ only in a Z2-invariant
fashion, the output Oq(Xt̃ ) will also have the corresponding symmetry. However,
this clarifies that t̃ = t , since the relations (2.50) do not depend symmetrically on t .
The proper identification is

t̃ = tq− 1
2 , (2.52)

as will be made clear by the discussion of the formal outer automorphism ι below.
There is no contradiction with the statement that S

..
H is the deformation quantization

ofO(X), since the classical limit of S
..
H still recovers the same commutative Poisson

algebra.
It is simple to check that the two involutions (2.43) straightforwardly reduce to

the symmetry of S
..
H , which is the same as (2.29). As in the classical case, the non-

trivial central element −1 ∈ SL(2, Z) acts trivially on the generators of S
..
H , and the

action of PSL(2, Z) is quantized from (2.36)

τ+ : (x, y, z) �→
(
x,

xy + yx

q1/2 + q−1/2
− z, y

)
,

τ− : (x, y, z) �→
( xy + yx

q1/2 + q−1/2
− z, y, x

)
,

σ : (x, y, z) �→
(
y, x,

xy + yx

q1/2 + q−1/2
− z

)
.

(2.53)

Thus, the symmetries � × PSL(2, Z) can be seen in outer automorphisms of S
..
H .

The other outer automorphism ι̃ in (2.45) is somewhat more complicated; it does
not preserve the idempotent, but it rather brings it into the other idempotent element

ι̃ : e = T + t−1

t + t−1
�→ ẽ = −T + t

t + t−1
. (2.54)

Thus, ι̃ maps S
..
H to the other spherical subalgebra ẽ

..
H ẽ where the Casimir relations

are different by t ↔ t−1. However, the involution ι̃ on
..
H does correspond in a sense

to an outer automorphism of S
..
H , which acts simply by
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ι : t �→ qt−1. (2.55)

Indeed, it is easy to check that this map preserves the Casimir relation in (2.50).
(Note that this automorphism only acts nontrivially when q and t are regarded as
formal elements; it does not preserve the central character.)

In general, we are free to think of any commutative algebra as the coordinate
ring of a certain affine space. In addition to the example above, we consider the
case of X = C

× × C
× for the quantum torus algebra in Appendix C, and X as 3d

N = 4 Coulomb branches in Appendix D in this paper. What is common between
all of these examples are certain key properties of X: First of all, it will always
be a non-compact manifold, so that it has a large and interesting algebra O(X) of
holomorphic functions with polynomial growth at infinity. (In fact, in this paper, X
will always be an affine variety over C.) It will also be a hyper-Kähler manifold, and
an algebra is obtained by the deformation quantization of the coordinate ring of X
with respect to a certain holomorphic symplectic form. These conditions fit into the
context of brane quantization [85] in a 2d sigma-model. It is the central idea of this
paper, and this will pave the way towards a geometric angle on the representation
theory of S

..
H .

2.3 Canonical Coisotropic Branes in A-models

Here, we will obtain the deformation quantization of the coordinate ring of X with
respect to �J by using the 2d A-model on a symplectic manifold (X,ωX). The main
character in our story is the canonical coisotropic brane, denoted Bcc. Eventually,
we will investigate the representation theory of S

..
H by the 2d A-model, but we begin

by constructing the (presumably less familiar) canonical coisotropic braneBcc here.
Subsequently, we will discuss standard Lagrangian branes and some methods for
computing spaces of morphisms in what follows. Our review is necessarily cursory;
for more details, we refer to the literature [82, 85].

In general, as was pointed out in [107], the A-model admits branes with sup-
port on coisotropic submanifolds which are equipped with a transverse holomorphic
structure. The canonical coisotropic brane is supported on the target space X itself,
which is a coisotropic submanifold of the target spaceX in a rather trivial way. More
precisely, there is a family of such branes, labeled by a complex parameter

� = |�|eiθ , (2.56)

and we will identify it with the parameter of deformation quantizations by q =
e2πi�. The fact that the support involves no additional choice is (at least part of)
the reason for the term “canonical.” On a 2n-dimensional target space, coisotropic
branes can therefore be supported in dimension n + 2 j for integer j ; when n is even,
there can be branes supported throughout the entire target. In our example, n = 2,
so that no other coisotropic branes can occur just for dimension reasons.
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In complex structure I = I cos θ − K sin θ, the data defining the brane Bcc is
simply a holomorphic line bundle L → X, equipped with a connection whose cur-
vature F is of course equal to the first Chern class:

Bcc :
L

X

c1(L) = [F/2π] ∈ H 2(X, Z) . (2.57)

As usual, open strings ending on Bcc source the gauge-invariant combination F +
B, where

B ∈ H 2(X,U(1)) (2.58)

is the 2-form B-field. For our family of the canonical coisotropic branes Bcc

parametrized by � on a symplectic manifold (X,ωX), the values of [B/2π] ∈
H 2(X,U(1)) and the integral class [F/2π] ∈ H 2(X, Z) are determined by the equa-
tion

� := F + B + iωX = �J

i�
, (2.59)

so that at a generic value of � in (2.56) we can write

F + B = Re � = 1

|�| (ωI cos θ − ωK sin θ) ,

ωX = Im � = − 1

|�| (ωI sin θ + ωK cos θ) . (2.60)

Since the hyper-Kähler conditions ensure that J = ω−1
X (F + B), we have the con-

dition for Bcc to be a coisotropic A-brane [107]

(
ω−1
X (B + F)

)2 = J 2 = −1 . (2.61)

In particular, when � is real, ωX = ωK andBcc is a brane of type (B, A, A), whereas
for � purely imaginary, ωX = ωI and Bcc is an (A, A, B)-brane. Bcc is also called
“canonical” because its extra data corresponds in this fashion to the holomorphic
symplectic structure.

Now comes the key point. Under this circumstance, the space Hom(Bcc,Bcc)

of open (Bcc,Bcc) strings with both ends on the canonical coisotropic brane Bcc

is a non-commutative deformation of the Dolbeault cohomology H 0,∗
∂

(X) when
X is regarded as a complex manifold with J , and we are interested in its zeroth
degree, namely the space of holomorphic functions. Moreover, for X an affine vari-
ety, a suitable condition at infinity for a “good A-model” is to allow only func-
tions of polynomial growth. In the presence of non-trivial background F + B = 0,
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B B

B

Bcc B′

Bcc

Fig. 2.4 (Left) Open strings that start and end on the same brane B form an algebra. (Right)
Joining a (Bcc,Bcc)-string with a (Bcc,B

′)-string leads to another (Bcc,B
′)-string

Hom0(Bcc,Bcc) is therefore the deformation quantization of the coordinate ring on
X, holomorphic in complex structure J [8, 85].5

In general, for any brane B, in either the A-model or the B-model, the space of
open strings states End(B) forms an algebra. This can be easily understood by con-
sidering the process of joining open strings, illustrated in Fig. 2.4 (left). However,
generically, this algebra of (B,B) strings is rather simple and not very interest-
ing. Even if the brane B is “big enough,” the algebra End(B) can be interesting,
but may be hard to identify or relate to more familiar algebras. For example, various
(B, B, B) branes represented by hyper-holomorphic sheaves in [82] lead to interest-
ing endomorphism algebras, but apart from some special cases it is hard to recognize
them in the world of more familiar algebras. What makes the canonical coisotropic
brane special is that the algebra End(Bcc) can be identified with the deformation
quantization Oq(X) of the target manifold X [117].

2.3.1 Spherical DAHA as the Algebra of (Bcc,Bcc)-Strings

In our example, the target space X = Mflat(Cp,SL(2, C)) is the moduli space of
flat SL(2, C)-connections over a punctured torus, which is a hyper-Kähler mani-
fold. Then, by construction, the algebra of (Bcc,Bcc) strings is the deformation
quantization Oq(X) of the coordinate ring on X with respect to �J , which is the
spherical DAHA S

..
H .

The parameter q of S
..
H is identified with � in the data (2.59) of Bcc via q =

exp(2πi�). It is worth emphasizing that for a generic value of q ∈ C
×, the B-field

needs to be turned on in the sigma-model. In fact, the target admits the Hitchin
fibration (2.15) where a generic fiber is a two-torus T 2. Since a generic fiber F is

5 Since we are mainly interested in the zeroth degree of morphism spaces, we will usually omit the
superscript 0, meaning Hom = Hom0 unless it is specified.
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Lagrangian with respect to ωJ and ωK and it sees only ωI , the evaluation of � in
(2.59) over F yields ∫

F

�

2π
= 1

�
,

where F + B is responsible for its real part. Because [F/2π] ∈ H 2(X, Z) is an ele-
ment of the second integral cohomology class, the B-field needs to be switched on
unless the real value of 1/� is an integer. Thus, a 2d A-model has to incorporate the
B-field for a generic value of �, and we will moreover witness that the B-field plays
a more important role in the subsequent sections.

The parameter t of S
..
H is related to the ramification parameters of the tar-

get space. In fact, the monodromy parameter (2.11) around the puncture can be
expressed by the ramification parameters (2.7) as

t̃ = exp(−π(γp + iαp)) .

Furthermore, (2.52) compares the monodromy parameter t̃ with the central character
t of S

..
H . Then, it is easy to see from (2.24) that the evaluation of (2.59) on an

exceptional divisor yields

1

2π

∫
Di

F + B + iωX =
∫
Di

�J

2πi�
= γp + iαp

2i�
= −c + 1

2
. (2.62)

where c is the central charge in (2.42).
The canonical coisotropic brane enjoys the symmetries � × PSL(2, Z) of the

target space X analyzed in Sect. 2.1, which become the outer automorphisms of
S
..
H given by (2.29) and (2.53). The symmetry (2.55) of S

..
H is indeed the Weyl

group symmetry t̃ ↔ t̃−1 of the monodromy matrix (2.11). In fact, the Weyl group
symmetry (2.25) of the ramification parameters preserves the target space. Since the
canonical coisotropic brane is sensitive only to (αp,γp) or t̃ , the symmetry (2.55)
of S

..
H is equivalent to the fact that the canonical coisotropic branes supported on Xt̃

and Xt̃−1 related by the Weyl group symmetry give rise to the isomorphic algebra

End(Bcc) ∼= S
..
H ∼= End(ι(Bcc)) . (2.63)

2.4 Lagrangian A-Branes and Modules of Oq(X)

Now we lay out the approach to the representation theory of Oq(X) by the 2d A-
model on (X,ωX). This subsection also serves as a lightning review about the cate-
gory of A-branes.

The approach to the representation theory ofOq from the 2d A-model arises from
a simple idea: given an open string boundary condition (or an A-brane)B′, the space
of (Bcc,B

′) open strings forms a vector space. As in the right of Fig. 2.4, a joining
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of (Bcc,Bcc) and (Bcc,B
′) string leads to another (Bcc,B

′) string. This implies
that the space of (Bcc,B

′) strings receives an action of the algebra of (Bcc,Bcc)

strings [85]. Namely, other A-branes B′ on X give rise to modules for Oq(X):

Oq(X) = Hom(Bcc,Bcc)� �

B′ = Hom(Bcc,B
′)

(2.64)

In our example, supports of other branesB′ are always Lagrangian submanifolds so
that we will review Lagrangian A-branesBL in the next subsection. If the support of
B′ is a Lagrangian submanifold contained in the fixed point set of an antiholomor-
phic involution ζ : X → X with ζ∗ J = −J , then the corresponding representation
admits unitarity.

We now briefly recall a few standard facts about Lagrangian A-branes [56, 57]
and their mathematical incarnation, the Fukaya category Fuk(X,ωX). For more
detail, the reader is referred to the literature, which is substantial; [7] is a good
starting point, or [110] for the fundamentals of homological mirror symmetry.

The Lagrangian Grassmannian, denoted LGr, of a symplectic vector space
parameterizes the collection of its Lagrangian subspaces. We can obtain a descrip-
tion of this space by thinking of the standard symplectic vector space (R2n,ω),
which can be equipped with a metric via a contractible choice. By the two-of-
three property, the group preserving both the symplectic and orthogonal structures is
U(n), which therefore acts on LGr(2n); the subgroup stabilizing a fixed Lagrangian
subspace is O(n), so that

LGr(2n) = U(n)/O(n) . (2.65)

There is furthermore an obvious map

det2 : LGr(2n) → U(1) (2.66)

which can be shown to induce an isomorphism of fundamental groups. The Maslov
index [3] of a loop in LGr(2n) is its image under this induced map in π1(U(1)) ∼= Z;
it is responsible for both obstructions and gradings in the Fukaya category. The
universal cover L̃Gr(2n) of LGr(2n) thus has deck group Z, and the Maslov index
of a loop is simply the element of Z that connects the endpoints of a lift to L̃Gr(2n).

Let (X,ωX) be a symplectic manifold with zero first Chern class (as is obviously
the case in our hyper-Kähler examples). There is a bundle

LGr(X) → X (2.67)

whose fiber over x ∈ X is LGr(TxX). (We hope the reader will forgive the mod-
erately abusive notation.) We can furthermore define a bundle L̃Gr(X), which is a
covering space of the total space LGr(X), such that the covering map is a bundle
map and restricts over each fiber to the universal covering map.
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A Lagrangian subspace L ⊂ X comes with an obvious lift

LGr(X)

L X
⊂

(2.68)

defined by the Lagrangian subbundle TL ⊂ TX|L. Lifting this canonical map to
L̃Gr(X) is obstructed by the image of π1(L) under the Maslov map, which is an
element of H 1(L, Z) called the Maslov class. Lagrangians with zero Maslov class
admit so-called graded lifts, which are maps

L̃Gr(X) LGr(X)

L X

·/Z

g

⊂
(2.69)

making the square commute. The set of such maps is naturally a Z-torsor under the
action of deck transformations, but no canonical choice of graded lift exists. Given
a Lagrangian object of A-Brane(X,ωX), the set of graded lifts plays the role of its
shifts.

A (rank-one) Lagrangian object of A-Brane(X,ωX) is supported on a Lagrangian
submanifold L ⊂ X of zero Maslov class, which is considered up to Hamiltonian
isotopy. The additional data required to define a Lagrangian A-brane consists of
a “Chan-Paton” bundle with unitary connection; a flat Spinc structure on L; and a
grade lift. A Chan-Paton bundle for a Lagrangian A-brane is generally endowed with
a flat Spinc structure [60, 85, 114, 154]. A Spinc structure arises if L′ does not exist
as a line bundle, but is obstructed by the same cocycle that obstructs the existence of
the square root K−1/2

L of the canonical bundle over the Lagrangian L. Namely, puta-
tive transition functions gi j and wi j of L′ and K−1/2

L , respectively, obey gi j g jkgki =
φi jk = wi jw jkwki where φi jk = ±1. In this case, the cocycle cancels out in the tran-
sition functions gi jwi j of an honest vector bundle L′ ⊗ K−1/2

L → L, called a Spinc

structure. The K−1/2
L part in a Spinc structure arises from boundary fermions of the

open worldsheet [96, Sect. 5] [92, Sect. 3.2], which gives rise to a Spinc structure of
the normal bundle to the support of a brane. (This proposal is explicitly checked by
Hemisphere partition functions in [104].) Thus, the canonical coisotropic braneBcc

is endowed with an ordinary line bundle whereas a Lagrangian A-brane is equipped
with a Spinc structure. Since most of the Lagrangian submanifolds in this paper are
of real two dimensions, there always exists a spin bundle of L, which is a square-
root of the canonical bundle K±1/2

L of L, though it is not necessarily unique. Hence,
both L′ and K−1/2

L exist as genuine line bundles in most of the examples in this
paper and we treat their tensor product L′ ⊗ K−1/2

L as a Spinc structure. However,
a subtlety arises when an A-brane degenerates into a different spin structure, which
will be considered in Sect. 2.7. Moreover, a Lagrangian A-brane is endowed with a
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flat Spinc structure: if L′ exists as a line bundle, the curvature F ′
L of L′ must obey a

gauge-invariant version of the flatness condition

F ′
L + B|L = 0 , (2.70)

in the presence of a B-field. Even if L′ does not exist as a line bundle, its square
(L′)2 does so that a half of the curvature of (L′)2 is subject to (2.70). In sum, for a
Lagrangian A-brane, we have a Chan-Paton bundle

BL :
L′ ⊗ K−1/2

L

L

(2.71)

with a flat Spinc structure (2.70). We will sometimes denote a Chan-Paton bundle
by BL → L, abusing notation. Morphisms between Lagrangian objects are defined
in the usual way using the Floer–Fukaya complex generated by intersection points
between the Lagrangians; see [7] for details.

Defining the space of morphisms between Lagrangian and coisotropic objects is
a bit more subtle, and is discussed in detail for flat targets in [8]. The essential idea is
that the morphism space should be thought of as related to the space of holomorphic
functions on the intersection, with respect to the transverse holomorphic structure
on coisotropic objects. For Lagrangian objects, this complex structure obviously
plays no role, but instanton corrections can appear, in the guise of the contribu-
tions of holomorphic disks to the differential in the Floer–Fukaya complex. On the
other hand, forBcc, the transverse holomorphic structure is just a standard complex
structure and plays an essential role, but instanton corrections are forbidden. In the
case of general coisotropic branes, both phenomena can be expected to be relevant.
(For some further discussion of this fact from the worldsheet perspective, as well as
generalizations to branes of higher rank, see [91].)

In a hyper-Kähler manifold, we can make use of a B-model analysis as in [82,
85] to compute the dimension of open strings. The dimension of the representation
space L := Hom(Bcc,BL) associated to a compact Lagrangian brane BL can be
computed with the help of the Grothendieck–Riemann–Roch formula:

dimL = dim H 0(L,Bcc ⊗ B−1
L )

=
∫
L
ch(Bcc) ∧ ch(B−1

L ) ∧ Td(TL) ,
(2.72)

Here we denote, by B, a bundle for the corresponding brane including an effect of
the B-field, abusing notation.

If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) =
ch(K−1/2

L ) Â(TL) is equivalent to ch(K−1/2
L ). Consequently, the formula becomes

a very simple form
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dimL =
∫
L
ch(Bcc) =

∫
L

F + B

2π
, (2.73)

for a real two-dimensional Lagrangian L.
As explained in [85], for a Lagrangian brane BL, the space of open strings

Hom(Bcc,BL) can be understood as a geometric quantization of L with a curvature
on a “prequantum line bundle” Bcc ⊗ B−1

L . If X is a complexification of L in the
sense of [85], then the action of End(Bcc) on the quantization Hom(Bcc,BL) plays
the role of the quantized algebra of operators.

Finally, let us mention a brief word about coefficients. In general, the Fukaya
category is defined with coefficients in the Novikov ring; this is necessary because
the sums over instanton contributions that define the differential are formal and not
necessarily guaranteed to converge. Similarly, deformation quantization of a Poisson
manifold [53, 77, 111] is not guaranteed to produce convergent series, but only
a formal deformation in general. We will restrict ourselves to target spaces X for
which a “good A-model” is expected to exist, meaning that all the series involved
should in fact converge. The existence of a complete hyper-Kähler metric on X
should be sufficient to ensure this; see [85] for further discussion of this issue.

We will proceed to compare the two categories A-Brane(X,ωX) and Rep(S
..
H)

via the brane quantization.6 For the comparison, the symmetries play a crucial role.
In fact, the symmetries of the target space X become the group of auto-equivalences
of the categories. More concretely, we will investigate the action of � × PSL(2, Z)

((2.29) and (2.53)) and the Weyl group Z2 generated by ι (2.55) on both categories.
Now we set up the framework so that we will start our expedition to “see” and

“touch” representations of S
..
H as if they were geometric objects in the target X.

2.5 (A, B, A)-Branes for Polynomial Representations

DAHA was introduced by Cherednik in the study of Macdonald polynomials from
the viewpoint of representation theory [33] in which the distinguished infinite-
dimensional representation on the ring P := Cq,t [X±]Z2 of symmetric Laurent
polynomials, called polynomial representation, plays an important role. (See also
[38] for finite-dimensional modules.) Here, Laurent polynomials in a single vari-
able X over Cq,t are symmetrized under the inversion Z2 : X �→ X−1 so that the
ring can also be expressed asP = Cq,t [X + X−1]. This polynomial representation
of S

..
H is defined by the following formulas:

6 Note, that spherical DAHA is Morita-equivalent to DAHA (2.40), i.e. the category of representa-
tions of DAHA is equivalent to the category of representations of its spherical subalgebra [131]:

Rep(
..
H) ∼= Rep(S

..
H) . (2.74)

See also (4.26) for the explanation from the 2d sigma-model.
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x �→ X + X−1,

pol : S ..H → End(P), y �→ t X − t−1X−1

X − X−1
� + t−1X − t X−1

X − X−1
�−1,

z �→ q
1
2 X

t X − t−1X−1

X − X−1
� + q

1
2 X−1 t

−1X − t X−1

X − X−1
�−1,

(2.75)
where �±(X) = q±X is the exponentiated degree operator, often called the q-shift
operator, that appeared in (C.15) for the quantum torus algebra. In particular, pol(y)
is the so-calledMacdonald difference operator, whose eigenfunctions are symmetric
Macdonald polynomials [35, 121]. The Macdonald functions of type A1 are labeled
by spin- j

2 representations, and can be expressed in terms of the basic hypergeometric
series

Pj (X; q, t) := X j
2φ1(q

−2 j , t2; q−2 j+2t−2; q2; q2t−2X−2) . (2.76)

They are acted on diagonally by the Macdonald difference operator, with eigenval-
ues

pol(y) · Pj (X; q, t) = (q j t + q− j t−1)Pj (X; q, t) . (2.77)

Under this basis, the actions of the other generators are

pol(x) · Pj (X; q, t) =Pj+1(X; q, t) +
(
1 − q2 j

) (
1 − q2 j−2t4

)
(
1 − q2 j−2t2

) (
1 − q2 j t2

) Pj−1(X; q, t) ,

pol(z) · Pj (X; q, t) =tq j+ 1
2 Pj+1(X; q, t) + t−1q− j+ 1

2

(
1 − q2 j

) (
1 − q2 j−2t4

)
(
1 − q2 j−2t2

) (
1 − q2 j t2

) Pj−1(X; q, t) .

(2.78)

In fact, the Macdonald polynomials Pj form a basis for the ring P over Cq,t ,
so that the polynomial representation can be studied with the help of raising and
lowering operators [105]:

R j := x − q j− 1
2 t z = X (q j t−1Y − q2 j t2) + X−1(q j tY−1 − q2 j t2) ,

L j := x − q− j− 1
2 t−1z = X (q− j t−3Y − q−2 j t−2) + X−1(q− j t−1Y−1 − q−2 j t−2) .

(2.79)
These operators relate adjacent Macdonald polynomials, respectively increasing or
decreasing the value of j :

pol(R j ) · Pj (X; q, t) = (1 − q2 j t2)Pj+1(X; q, t) , (2.80)

pol(L j ) · Pj (X; q, t) = (1 − q2 j )(1 − q2( j−1)t4)

q2 j t2(q2( j−1)t2 − 1)
Pj−1(X; q, t) . (2.81)

See Fig. 2.5 for a schematic diagram of this action. At t = 1, this represen-
tation reduces to the pullback of the lift of P y1=1 in Proposition C.6 so that
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1 P1 · · · · · · Pj−1 Pj · · ·
L1 L2 Lj−1 Lj Lj+1

R0 R1 Rj−2 Rj−1 Rj

Fig. 2.5 The action of raising and lowering operators on Macdonald polynomials

Cherednik’s polynomial representation can be understood as its deformation from
the symmetrized quantum torus to DAHA. Since the classical limit (q = 1) of the
Macdonald eigenvalues (2.77) is always t + t−1, the support of the corresponding
A-brane BP is given by

P = {y = t̃ + t̃−1 , z = t̃−1x} . (2.82)

While the parameter t in S
..
H coincides with the monodromy parameter t̃ at the

classical limit (q = 1) (see (2.52)), we use t̃ to specify the position of the brane
because it is the geometric parameter ofX. Since it is of type (A, B, A), it is happily
a Lagrangian submanifold with respect to ωX for any value of � or q.

To understand the brane BP for the polynomial representation P of S
..
H better,

it is illuminating to consider its relation to the skein module. The skein module of
type A1 [135, 143] of an oriented 3-manifold M3 is defined as

Sk(M3, SU(2)) := Sk(M3) = C[q± 1
2 ](isotopy classes of framed links in M3)

(
= q−1/2 + q1/2 , = −q − q−1

)
(2.83)

The skein algebra Sk(C) associated to an oriented closed surface C is defined as

Sk(C) := Sk(C × [0, 1],SU(2)) , (2.84)

where the multiplication Sk(C) × Sk(C) → Sk(C) is given by stacking. As a result,
Sk(C) is a C[q± 1

2 ]-associative algebra [144].
At the q = 1 specialization, the skein module Sk(M3) becomes a commutative

algebra. Moreover, it was shown in [26, 136] that by assigning a loop γ : S1 → M3

to Tr(ρ(γ)) where ρ : π1(M3) → SL(2, C) is the holonomy homomorphism, the
classical limit q = 1 of Sk(M3) is isomorphic to the coordinate ring of the character
variety Mflat(M3,SL(2, C)). Hence, the skein module Sk(M3) can be understood
as a BV quantization [66]

Sk(M3) ∼= BVq(Mflat(M3,SL(2, C))) .

The skein module of a closed 3-manifold will be studied in Sect. 3.2.
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If a 3-manifold has a boundary ∂M3 = C , then we have a module Sk(C)
�

Sk(M3) by pushing a framed links in a thickened boundary C × [0, 1] into the
bulk M3. In fact, Mflat(M3,SL(2, C)) is a holomorphic Lagrangian submanifold
of Mflat(C,SL(2, C)) with respect to the holomorphic symplectic form �J . There-
fore, it can be understood as an (A, B, A)-brane BH on Mflat(C,SL(2, C)), called
a Heegaard brane. From the viewpoint of brane quantization, the action of the skein
algebra can be understood as

Sk(C) ∼= Hom(Bcc,Bcc)� �

Sk(M3) ∼= Hom(Bcc,BH )

. (2.85)

Of our particular interest is the skein algebra Sk(T 2) of a torus, which is the
t = q specialization of S

..
H [24]. Also, the skein module Sk(S1 × D2) of the solid

torus is the Grothendieck ring of the category of finite-dimensional representations
of Uq(sl(2))

Sk(S1 × D2) ∼= K 0(RepUq(sl(2))) ⊗ C[q± 1
2 ] , (2.86)

which is spanned by Chebyshev polynomials Sj (z) of the second kind [54]. They
are recursively defined by

zS j (z) = Sj+1(z) + Sj−1(z) (2.87)

with the initial conditions S0(z) = 1, S1(z) = z, and they are actually the t = q spe-
cialization of the Macdonald polynomials

Sj (X + X−1) = Pj (X; q, t = q) = X j+1 − X− j−1

X − X−1
. (2.88)

Consequently, the polynomial representationP of S
..
Ht=q is indeed the skein module

Sk(T 2)

�

Sk(S1 × D2). In fact, the support of the Heegaard brane for the solid
torus is given by y = 2, which is the A-polynomial of the unknot complement in
S3. Indeed the eigenvalue of the y operator on Sj (X + X−1) under the polynomial
representationP at t = q is q j+1 + q− j−1 and its classical limit is y = 2. Thus, the
polynomial representation P of S

..
H can be understood as the t-deformation of the

skein module Sk(T 2)

�

Sk(S1 × D2) [93].
Let us consider how the symmetries of S

..
H act on the polynomial representation

P . For instance, an action of PSL(2, Z) onP can be seen by using the maps (2.53)
combined with (2.75). It is easy to see from (2.53) that the generators of PSL(2, Z)

maps BP to another (A, B, A) brane
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τ+(P) = {z = t̃ + t̃−1 , x = t̃−1y} ,

τ−(P) = {y = t̃ + t̃−1 , z = t̃−1x} ,

σ(P) = {x = t̃ + t̃−1 , y = t̃−1z} .

(2.89)

Under the modular T -transformation τ−, the support does not change and the poly-
nomial representationP is invariant, τ−(P) ∼= P since the Macdonald polynomi-
als are transformed under the modular T -transformation τ− as

τ−(Pj ) = q− j2

2 t− j Pj � Tj j ′ = q− j2

2 t− jδ j j ′ . (2.90)

The proof is given at the end (B.36) of Appendix B.2.1. The image σ(P) of the
polynomial representation of S

..
H under the S-transformation σ is called the func-

tional representation, which is explained in Appendix B.2.2. As for the group � of
the sign changes, the image ξ1(P) is isomorphic to itselfP ∼= ξ1(P). On the other
hand, the image under the involution ξ2 can be obtained by multiplying the minus
sign to y and z as in (2.29) and the support of the corresponding brane is

ξ2(P) = {y = −t̃ − t̃−1 , z = −t̃−1x} . (2.91)

Finally, the outer automorphism (2.55) changes the Chan-Paton bundle of BP as
explained in Sect. 2.3.1 and the support becomes

ι(P) = {y = t̃ + t̃−1 , z = t̃ x} . (2.92)

Note that the ι image ι(P) of the polynomial representation can be obtained by
changing t → q/t in (2.75).

The perspective from the brane quantization also sheds new light on infinite-
dimensional representations. We have seen that Cherednik’s polynomial representa-
tion (2.75) corresponds to the A-brane BP (2.82) at the particular value of y. It is
natural to expect that it can be deformed in such a way that the corresponding brane
is supported on a generic point of y.

This consideration leads us to the following. Let us consider the multiplicative
system M̃ ⊂ Cq,t [X±] generated by all elements of the form (q�X − q−�X−1) for
all integers � ∈ Z. Then there is a family of representations of S

..
H on the localiza-

tion7 of the ring of Laurent polynomials by M̃

P y1 = M̃−1
Cq,t [X±] , (2.93)

7 In other words,P y1 is the ring of rational functions with coefficients in Cq,t where denominators
are always elements in the multiplicative system M̃ such as

f (X)

(q−m X − qm X−1)k−m · · · (X − X−1)k0 · · · (q�X − q−�X−1)k�
, f (X) ∈ Cq,t [X±] .

.
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labeled by a parameter y1 ∈ C
× where the representations are defined by

x �→ X + X−1,

poly1 : S ..H → End(P y1 ), y �→ y1
t X − t−1X−1

X − X−1
� + y−1

1
t−1X − t X−1

X − X−1
�−1,

z �→ q
1
2 y1X

t X − t−1X−1

X − X−1
� + q

1
2 (y1X)−1 t

−1X − t X−1

X − X−1
�−1 .

(2.94)
Concretely, one is free to deform Cherednik’s polynomial representation (2.75) to
this larger representation parametrized by y1, as long as we allow denominators to
be elements of the multiplicative system M̃ . Only at y1 = 1, it decomposes into two
irreducible representations where one is Cherednik’s polynomial representation, and
the other irreducible representation is

M̃−1
Cq,t [X±]Z2 .

When t = 1, the story reduces to the polynomial representations of the symmetrized
quantum torus discussed in Appendix C.3.2. Thus, the support of the corresponding
brane By1

P is expected to be

suppBy1
P = {y = y−1

1 t̃ + y1 t̃
−1} .

In fact, the eigenfunction of y under poly1 that generalizes the Macdonald poly-
nomials is constructed in [22, 112, 118]8

Z(X, y1, q, t) = 2φ1
(
y21 , t

2; q2t−2y21 ; q2; q2t−2X−2
)

, (2.95)

where the eigenvalue is

poly1(y) · Z = (y−1
1 t + y1t

−1)Z . (2.96)

Thus, for a generic value of y1, the eigenfunction is an infinite hypergeometric series
(2.95). However, as easily seen from (2.76), the series truncates to the symmetric
Macdonald polynomial

Z(X, y1 = q− j , q, t) = X− j Pj (X; q, t) . (2.97)

at the specialization y1 = q− j ( j ∈ Z≥0).
A geometric interpretation of the multiplicative system M̃ can be given by think-

ing about the t = 1 limit, where we are interested in the quotient map C
× × C

× →
(C× × C

×)/Z2. After deforming the target of this covering map, no natural rami-
fied twofold cover by C

× × C
× exists. However, such a cover can be constructed

once we extract the Z2-invariant points X = ±1. In fact, O(C×\{X = ±1}) admits

8 Z is the so-called uncapped vertex function in the quantum K-theory of T ∗
CP1.
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the generator 1
X−X−1 . A related story exists in the rational limit, where the relevant

geometry is the deformation of the A1 singularity (C × C)/Z2 to the total space of
T ∗

CP1; we discuss this in detail in Appendix B.2.4.

2.6 Branes with Compact Supports and Finite-Dimensional
Representations: Object Matching

Cherednik’s polynomial representation is of particular significance due to the the-
orems of Cherednik [35, Sect. 2.8–9], which classify finite-dimensional representa-
tions of S

..
H obtained as quotients of the polynomial representation paired with the

action of outer automorphisms. Similar to the theory of Verma modules, the polyno-
mial representation is generically irreducible. A raising operator (2.80) never be null
since the Macdonald polynomial P2 j always has a factor (1 − q2 j t2) in the denomi-
nator. However, it can occur that a lowering operator L j annihilates one of the Mac-
donald polynomials Pj when certain conditions on the central character are satisfied.
If this occurs, Pj generates a subrepresentation, and a finite-dimensional representa-
tion of the spherical DAHA appears as the quotientP/(Pj ). We can therefore study
finite-dimensional representations by asking that the condition pol(L j ) · Pj = 0 be
satisfied for some j , i.e. that the factor

(1 − q2 j )(1 − q( j−1)t2)(1 + q( j−1)t2)

q2 j t2(q2( j−1)t2 − 1)
(2.98)

on the right hand side of (2.81) vanishes.
This amounts to the following three cases:

q2n = 1 , (2.99a)

t2 = −q−k , (2.99b)

t2 = q−(2�−1) . (2.99c)

Here, the exponent in the right hand side of (2.99c) must be an odd integer in order
for the denominators of Macdonald polynomials as well as (2.98) to be non-zero;
even exponents are excluded by the definition of the coefficient ring Cq,t in (2.41).
We write this odd integer as 2� − 1. Each of these separate shortening conditions
will naturally appear as an existence condition of an A-brane with compact support
in what follows; we will examine each of the resulting finite-dimensional represen-
tations and the corresponding compact Lagrangian branes in turn.
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2.6.1 Generic Fibers of the Hitchin Fibration

First we consider analogous A-branes in this setting; the ones supported on generic
fibers in the Hitchin fibration. As explained in Sect. 2.1, the Hitchin fibration (2.15)
is completely integrable, and a generic Hitchin fiber F is holomorphic in complex
structure I while it is a complex Lagrangian submanifold from the viewpoint of
the holomorphic two-form �I for a generic ramification data (2.4). Namely, it is
a Lagrangian submanifold of type (B, A, A) for any values of (αp,βp, γp)-triple.
Therefore, a generic fiber F can be Lagrangian in a symplectic manifold (X,ωX)

only when the canonical coisotropic brane Bcc obeys the condition θ = 0 in (2.60)
so that

ωX = −ωK

�
, and F + B = ωI

�
. (2.100)

With θ = 0, there is no A-brane supported on F in the symplectic manifold (X,ωX).
Accordingly, � = |�| is real (i.e. |q| = 1), and the canonical coisotropic brane Bcc

is an A-brane of type (B, A, A).
An analogous brane appears in the brane quantization of C

× × C
× for the quan-

tum torus algebra. As in Appendix C.2.1, a brane is supported on a fiber T 2 of the
elliptic fibration T ∗T 2 ∼= C

× × C
×, which gives rise to a finite-dimensional rep-

resentation, called the cyclic representation. Therefore, we can study a brane sup-
ported on a generic fiber F of the Hitchin fibration, comparing with the case of the
quantum torus algebra.

The branes are indexed by a position of the Hitchin base BH (see also Appendix
C.2.1). Also, the flatness condition (2.70) of the line bundleL′ an A-brane supported
BF is

F ′
F + B

∣∣
F = 0 .

Since F is topologically a two-torus, the flat Spinc structure L′ ⊗ K−1/2
L of BF

can have non-trivial U(1)2 holonomy with a choice of spin structure [85]. The
branesBλ

F are parametrized by λ = (xm, ym) ∈ C
× × C

× where the absolute values
(|xm |, |ym |) describe its position and the angular phases illustrate the U(1)2 holon-
omy with a choice of spin structures. Namely, the angular phase U(1) encodes the
holonomy U(1) and a choice of spin structures Z2 along a one-cycle of a Riemann
surface via

1 → Z2 → U(1) → U(1) → 1 .

We assign the plus sign + for 1 ∈ Z2 to the Ramond spin structure, and the minus
sign − for −1 ∈ Z2 to the Neveu-Schwarz spin structure. The choice of spin struc-
tures appears in the representation of the symmetrized quantum torus discussed in
Appendix C.3.2.

Consequently, the computation of the dimension (2.73) of the space
Hom(Bcc,B

λ
F) is reduced to the period integral (2.23)
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dimHom(Bcc,B
λ
F) =

∫
F

F + B

2π
=
∫
F

ωI

2π�
= 1

�
(2.101)

for arbitrary λ. Hence, this leads to the Bohr-Sommerfeld quantization condition
� = 1/m, or equivalently that q = e2πi/m is a primitive mth root of unity for m ∈
Z>0. In fact, since [F/2π] is an integral cohomology class in H 2(X, Z), the fiber
class relation (2.17) requires

∫
F F/2π to be an even integer. Thus, if m is an odd

positive integer, then we need non-trivial B-flux with

∫
F

B

2π
= −

∫
F

F ′
F

2π
= 1 , (2.102)

up to an even integer shift. For instance, this can be achieved if the B-field flux over
V is 1/2 and those over the exceptional divisors Di (i = 1, . . . , 4) are zero.

In order for the (Bcc,B
λ
F)-strings exist, q has to be a primitive mth root of unity

whereas t can be generic. Under this condition, the action of S
..
H under the general-

ized polynomial representation poly1 in (2.94) commute with Xm − xm for xm ∈ C
×

because the shift operator � acts trivially on it. Consequently, the ideal (Xm − xm)

is invariant under poly1 so that the quotient space

F λ
m = P y1/(Xm − xm) ,

is also a representation of S
..
H . Since the Taylor expansion of a denominator in

the multiplicative system M̃ always truncates under the condition Xm = xm , this
is indeed an m-dimensional representation parametrized by λ = (xm, ym) where y1
is any mth root of ym . Hence, we can identify Hom(Bcc,B

λ
F) with F λ

m when q is a
primitive mth root of unity where the parameter λ ∈ C

× × C
× exactly matches.

For generic values of λ = (xm, ym), the support of a brane Bλ
F is mapped to

another Hitchin fiber up to Hamiltonian isotopy under the PSL(2, Z) action, and the
holonomy of the Chan-Paton bundle, which is a point in the dual torus Jac(F), is
also transformed appropriately. Namely, PSL(2, Z) acts on λ. On the other hand, a
generic fiber is invariant as a set under the group � of the sign changes as we have
seen in Sect. 2.1. Correspondingly, the representation F λ

m is invariant under � at a
generic value of λ.

Setting y1 = 1, we can symmetrize the story [35, Theorem 2.8.5 (iv)]. Namely,
since the ideal (Xm + X−m − xm − x−1

m ) is invariant under Cherednik’s polynomial
representationP due to the same reason, we have an m-dimensional representation

F (xm ,+)
m = P/(Xm + X−m − xm − x−1

m ) . (2.103)

In this case, the corresponding braneB(xm ,+)

F supported on a Hitchin fiber intersects
with the support P (2.82) of the polynomial representation. Also, the Chan-Paton
bundle has the trivial holonomy and the Ramond spin structure around one genera-
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tor, say the (0, 1)-cycle, of π1(F) ∼= Z ⊕ Z. The parameter xm encodes its position
in the x coordinate and the holonomy around the other generator of π1(F).

Therefore, the representations of this family are analogous to the
finite-dimensional representations of both symmetrized and ordinary quantum torus
in terms of A-branes on fibers of the elliptic fibration of the target in the 2d A-
models as illustrated in Appendix C. As in the case of the symmetrized quantum
torus Appendix C.3, if a brane BF with trivial holonomies moves to a special posi-
tion, we will see below that a special phenomenon occurs.

2.6.2 Irreducible Components in Singular Fibers of Type I2

As in Fig. 2.2, the Hitchin fibration has three singular fibers of Kodaira type I2 for
generic ramification parameters of (αp,βp, γp). Since they are still fibers in the
Hitchin fibration, the irreducible components Ui (i = 1, . . . , 6) in a singular fiber
are also Lagrangian submanifolds of type (B, A, A). Therefore,Bcc needs to satisfy
(2.100) in order for BUi to be A-branes as in the previous subsection.

For instance, let us investigate a module that the brane BU1 gives rise to. The
curvature of the line bundle L′ should obey the flatness condition (2.70)

F ′
U1

+ B|U1
= 0 . (2.104)

SinceU1 is topologically CP1 and a position is fixed, there is no deformation param-
eter associated to the braneBU1 . Subsequently, one can evaluate the dimension for-
mula (2.73)

dimHom(Bcc,BU1) =
∫
U1

F + B

2π
=
∫
U1

ωI

2π�
= 1

2�
(2.105)

Consequently, the brane BU1 can exist only at 1/(2�) = n ∈ Z>0, or equivalently
when q is a primitive 2nth root of unity.

This is exactly one (2.99a) of the shortening conditions, and under this condition
a lowering operator (2.81) annihilates the Macdonald polynomial

pol(Ln) · Pn(X; q, t) = 0 where Pn(X; q, t) = Xn + X−n . (2.106)

Therefore, the quotient space

U (1)
n := P/(Pn) (2.107)

by an ideal (Pn) is an n-dimensional irreducible representation of spherical DAHA
[35, Theorem 2.8.5 (ii)] so that one can identify
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U (1)
n = Hom(Bcc,BU1) .

As seen in Sect. 2.1, the irreducible component U1 is invariant under the sign
change ξ1 whereas it is mapped to U2 under ξ2 (2.31). In fact, it follows from the
form (2.106) of Pn(X) that the finite-dimensional moduleU (1)

n is invariant under the
sign flip ξ1. On the other hand, the sign change ξ2 leads to another non-isomorphic
finite-dimensional module. Thus, the brane ξ2(BU1) corresponds to a brane sup-
ported on the other irreducible component U2 in the same singular fiber from which
the module comes from

U (2)
n := ξ2(U

(1)
n ) = Hom(Bcc,BU2) .

In a similar fashion, a brane BUi supported on another irreducible component in a
singular fiber gives rise to an image of U (1)

n under PSL(2, Z) and the sign changes
ξ1,2. The transformation rule can be read off from (2.38) so that the branesBU1,2 are
invariant under τ− whereas they are mapped as

σ(BU1) = BU3 , σ(BU2) = BU4 ,

τ+(BU1) = BU5 , τ+(BU2) = BU6 .
(2.108)

The corresponding modules U (i)
n are obtained from U (1)

n in the same way.

2.6.3 Moduli Space of G-Bundles

Next, we consider a brane BV supported on the moduli space V of G-bundles. For
the sake of brevity, let us first see the case of βp = 0. If � is real, only αp can be
turned on while γp must vanish in order for V to be Lagrangian with respect to ωK .
As � = |�|eiθ is rotated θ = 0 in the complex plane, the symplectic form we are
interested in is also rotated from ωK to ωX according to (2.60). However, this rota-
tion can be actually compensated by switching on γp so that V can stay Lagrangian
with respect to ωX. According to (2.22) and (2.60), the set V is Lagrangian with
respect to ωX when the following condition holds:

Im

(
1
2 − αp

)+ iγp

�
= 0 (2.109)

As a simple check, one can easily see from (2.22) and (2.62) that the integral of the
symplectic form is zero

∫
V

Im �

2π
=
∫
V

ωX

2π
= 0 , (2.110)
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In addition, if βp = 0, the submanifold V is also Lagrangian with respect to ωJ .
Namely, it is a complex Lagrangian submanifold with respect to a holomorphic
two-form ωX + iωJ . When βp is varied, V stays as a Lagrangian submanifold with
respect to ωX while they are no longer Lagrangian with respect to ωJ . In fact, the
variation of βp does not change the holomorphic symplectic form �J = ωK + iωI ,
and therefore keeps ωX fixed. In conclusion, V can be Lagrangian with respect to
ωX only when (2.109) holds. Since our concern is the A-model in the symplectic
manifold (X,ωX), the value of βp can be arbitrary. For generic (βp, γp), V is no
longer a Lagrangian of type (B, A, A), and it is therefore not contained in a fiber
of the Hitchin fibration. Nonetheless, unlike a Hitchin fiber, we can consider the
A-model in a generic symplectic form ωX in (2.60) where � can take any complex
value.

Under the condition (2.109) with a generic value of �, V is a unique compact
Lagrangian submanifold, which is topologically CP1. Hence, there is no defor-
mation parameter for BV. Consequently, we obtain the dimension of the space of
(Bcc,BV)-strings from (2.62)

dimHom(Bcc,BV) =
∫
V

F + B

2π
= 1

2�
− γp + iαp

i�
= 1

2�
+ 2c − 1 . (2.111)

The Bohr-Sommerfeld quantization condition imposes its dimension as a positive
integer 1/2� + 2c − 1 = k + 1 ∈ Z>0, or equivalently t2 = −qk+2.

One can observe that this quantization condition is equivalent to the image of
the shortening condition (2.99b) under the involution ι. In fact, under the shorten-
ing condition t2 = −qk+2, the lowering operator in the ι-image of the polynomial
representation becomes an annihilation operator

pol(Lk+1) · Pk+1(X; q, t)
∣∣∣
t→ q

t

= 0 .

Consequently, the quotient space by an ideal (Pk+1)

ι(Vk+1) := ι(P)/(Pk+1(X; q,
q
t )) (2.112)

is a (k + 1)-dimensional irreducible representation of S
..
H [132]. This representation

is called the additional series in [35, §2.8.2], and we identify

ι(Vk+1) = Hom(Bcc,BV) .

In fact, the support (2.92) of the brane ι(BP) intersects with V at t2 = −qk+2 so
that Hom(ι(BP),BV) ∼= C becomes non-trivial. Hence, ι(Vk+1) can be obtained as
the quotient of ι(P) as in (2.112).

As we have seen at the end of Sect. 2.1, the submanifold V is geometrically
invariant under the sign changes ξ1,2 so that we expect that the corresponding
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module Vk+1 is also endowed with the same property. When t2 = −qk+2, the Mac-
donald polynomials obey

Pk+1(−X; q,
q
t ) = (−1)k Pk+1(X; q,

q
t ) ,

which implies that ι(Vk+1) is indeed invariant under ξ1. In addition, it is easy to
check that the full set of y-eigenvalues (the ι-image of (2.77)) of ι(Vk+1) is also
invariant under ξ2.

What makes the space of (Bcc,BV)-strings even more interesting is that it also
carries a PSL(2, Z) action. Indeed, as also explained in Sect. 2.1, the submanifold
V is invariant under PSL(2, Z) symmetry and, as a result, the module ι(Vk+1) is a
PSL(2, Z) representation.

Of course, it is then natural to ask which representation it is, and in particular,
what the corresponding S and T matrices are. To this end, it is more convenient to
consider the space of (Bcc,BV)-strings in the target Xt̃−1 under (2.32) or (2.25).
Then, the corresponding representation is given by

Vk+1 := P/(Pk+1) (2.113)

under the shortening condition (2.99b). Since the basis fo Vk+1 is spanned by the
Macdonald polynomials Pj (X) ( j = 0, . . . , k), the modular T -transformation τ−
acts diagonally in this basis due to (2.90). Under the modular S transformation, this
basis is transformed to Pj (Y ) and the submanifoldV intersects with both the support
(2.82) of the branesBP and that (2.89) of σ(BP). Hence, the modular S-matrix can
be written as

Sj j ′ = pol(Pj (Y
−1)) · Pj ′(X)

∣∣
X=t−1 = Pj (tq

j ′ ; q, t) Pj ′(t
−1; q, t) . (2.114)

This is first introduced by Cherednik [34] as a symmetric bilinear pairing of Mac-
donald polynomials, which we also denote by [Pj , Pj ′ ] as in (B.21). Moreover, it
becomes of rank (k + 1) when t2 = −q−k , and it acts on Vk+1. Therefore, we find
explicit forms of the S and T matrices as follows, and we will also find a 3d inter-
pretation of this PSL(2, Z) representation in §3.1.1.

Conjecture 2.1 The space Vk+1 is a (k + 1)-dimensional PSL(2, Z) representation,
with modular S and T matrices given by

Tj j ′
∣∣
V k+1

= e
πik
12 q− k(k−1)

12 i− j q
j (k− j)

2 δ j j ′ 0 ≤ j, j ′ ≤ k

S j j ′
∣∣
V k+1

= a−1
k g j (q, t = iq−k/2)−1Pj (iq

j ′−k/2; q, t = iq−k/2) Pj ′ (iq
k/2; q, t = iq−k/2) .

(2.115)
These matrices provide the PSL(2, Z) representation for “refined Chern-Simons the-
ory”.

Here we normalize the modular S-transformation (2.114) by the Macdonald
norm of type A1 (See (B.15) for the definition)
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g j (q, t) := (q2 j ; q−2) j (t4; q2) j

(q2 j−2; q−2) j (t2q2; q2) j
(2.116)

and

ak =
⎧⎨
⎩

√
2
∏ k−3

2
i=0(q

1
4+ i

2 + q− 1
4− i

2 ) k : odd

2
∏ k−4

2
i=0(q

1
2+ i

2 + q− 1
2− i

2 ) k : even

so that S2 = 1. We also normalize the T -transformation (2.90) by eπik/12q−k(k−1)/12

so that (ST )3 = 1. For example, the first non-trivial case occurs at k = 1

T
∣∣
V 2

= eπi/12

(
1 0
0 −i

)
, S

∣∣
V 2

= 1√
2

(
1 −i(q

1
2 − q− 1

2 )

i(q
1
2 − q− 1

2 )−1 −1

)
.

Next, we turn to less familiar and more interesting modular representation that arises
from another Lagrangian A-brane in a similar fashion.

2.6.4 Exceptional Divisors

Now let us consider an interesting A-braneBDi supported on an exceptional divisor
Di , i = 1, . . . , 4. As we reviewed in the earlier part of this section, the ramifica-
tion parameters (αp,βp,γp) play the role of resolution/deformation parameters for
Di . In particular, when βp = 0 and � is real, only αp can be turned on while γp

must vanish in order for Di to be Lagrangian with respect to ωK . As � = |�|eiθ
is rotated θ = 0 in the complex plane, the exceptional divisors Di stay Lagrangian
with respect to ωX if the deformation parameter γp + iαp ∈ C in complex structure
J is proportional to i�, namely,

Im
γp + iαp

2i�
= 0 . (2.117)

Here the value of βp can be arbitrary as in the previous case. It is easy to verify
from (2.24) and (2.62) that

∫
Di

Im �

2π
=
∫
Di

ωX

2π
= 0 .

The story goes as before. The flatness condition (2.70) of the Chan-Paton bundle
for the brane BDi is

F ′
Di

+ B
∣∣
Di

= 0 ,

Since it is topologically CP1, there is no holonomy and no deformation parameter
forBDi . Subsequently, the dimension can be computed as
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dimHom(Bcc,BDi ) =
∫
Di

F + B

2π
= −c + 1

2
. (2.118)

The Bohr-Sommerfeld quantization condition imposes its dimension as a positive
integer −c + 1/2 = � ∈ Z>0, or equivalently t2 = q−(2�−1), which is (2.99c).

When t = q−(2�−1)/2, the lowering operator annihilates the Macdonald polyno-
mial

pol(L2�) · P2�(X; q, t) = 0 . (2.119)

Therefore, the quotient space

D2� := P/(P2�) (2.120)

by an ideal (P2�) is a 2�-dimensional representation of S
..
H . In fact, it is not irre-

ducible, and decomposes into two irreducible representations

D2� = D (1)
� ⊕ D (2)

� . (2.121)

Because Pj and P2�− j−1 have the same eigenvalue of the Macdonald difference
operator (2.77) when t = q−(2�−1)/2, their combinations indeed form bases ofD (1,2)

�

D
(1)
� =

�−1⊕
j=0

Cq,t

[ Pj (X)

Pj (t−1)
+ P2�− j−1(X)

P2�− j−1(t−1)

]
, D

(2)
� =

�−1⊕
j=0

Cq,t

[ Pj (X)

Pj (t−1)
− P2�− j−1(X)

P2�− j−1(t−1)

]
.

(2.122)
Consequently, they are related by the sign change D (2)

� = ξ1(D
(1)
� ). In fact, the sup-

port (2.82) of the braneBP intersects withD1,2 at t = q−(2�−1)/2 so thatD (1)
� ⊕ D (2)

�

can be obtained as the quotient of P as in (2.120).
Even when t = −q−(2�−1)/2, the shortening condition (2.119) holds, but the

eigenvalues (2.77) of the y-operator have the opposite sign as in (2.91). Therefore,
the corresponding irreducible representations can be obtained by the sign change ξ2
in (2.29) from D (1,2)

� .
As a result, for t2 = q−(2�−1), there are four irreducible finite-dimensional rep-

resentations [35, Theorem 2.8.1] that are obtained from D (1)
� by the sign changes

ξ1,2. This is analogous to the relationship among the exceptional divisors under the
sign changes (2.30). Therefore, we identify these modules to the spaces of open
(Bcc,BDi )-strings as

D
(1)
� = Hom(Bcc,BD1 ) , D

(2)
� = ξ1(D

(1)
� ) = Hom(Bcc,BD2 ) ,

D
(3)
� := ξ2(D

(1)
� ) = Hom(Bcc,BD3 ) , D

(4)
� := ξ2(D

(2)
� ) = ξ3(D

(1)
� ) = Hom(Bcc,BD4 ) .

(2.123)
The modulesD (1,2)

� can be obtained as the quotient of the polynomial representation
because the support (2.82) of BP intersects with D1 and D2. On the other hand, its
ξ2-image (2.92) intersects with D3 and D4. (See also Fig. 2.7.)
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Under the PSL(2, Z) action, the four irreducible representations are transformed
as in (2.37). Namely, the modular T -transformation τ− exchanges D (3)

� and D (4)
�

whereas D (1)
� and D (2)

� are invariant. Also, the modular S-transformation
σ exchanges D (2)

� and D (3)
� whereas the modules D (1)

� and D (4)
� are invariant.

τ+ : D (2)
� ↔ D (4)

� and D (1)
� , D (3)

� are invariant ,

τ− : D (3)
� ↔ D (4)

� and D (1)
� , D (2)

� are invariant ,

σ : D (2)
� ↔ D (3)

� and D (1)
� , D (4)

� are invariant .

(2.124)

Thus, only the module D (1)
� = Hom(Bcc,BD1) among the four modules becomes a

PSL(2, Z) representation.
Let us find the modular S and T matrices for this PSL(2, Z) representation. As

we have seen, the polynomial representation P captures both D (1)
� and D (2)

� so
that the S-matrix (2.114) truncates a matrix of size 2� × 2� under the shortening
condition (2.99c). However, the matrix has rank � and it acts non-trivially only on
D (1)

� under the change (2.122) of basis

S̃ j j ′ := G−1Sj j ′G(q, t = q−(2�−1)/2)
∣∣
D (1)

�

, 0 ≤ j, j ′ ≤ � − 1 (2.125)

where G is a matrix of size 2� × 2� that changes the basis according to (2.122). This
gives the geometric interpretation of the basis change in [116, §4.1]. As a result, we
find the following explicit forms of the S and T matrices, and a 3d interpretation
of our A-model setup in §3.1.1 will identify an intrinsic physical meaning of the
PSL(2, Z) representation:

Conjecture 2.2 The spaceD (1)
� is an �-dimensional PSL(2, Z) representation, with

modular S and T matrices given by

Tj j ′
∣∣
D (1)

�

= e
(�−1)πi

6 q− (2�−1)(�−1)
6 q

j (k− j)
2 δ j j ′ 0 ≤ j, j ′ ≤ � − 1

Sj j ′
∣∣
D (1)

�

= b−1
� g j (q, t = q−(2�−1)/2)−1 S̃ j j ′ .

(2.126)

The PSL(2, Z) representation comes from a modular tensor category associated to
the Argyres-Douglas theory of type (A1, A2(�−1)). These matrices coincide with
those of the (2, 2� + 1) Virasoro minimal model at q = e−2πi/(2�+1).

Here we normalize (2.125) by the Macdonald norm (2.116) and

b� = 2
�−2∏
i=0

(q1/2+i − q−1/2−i )

so that S2 = 1. We also normalize (2.90) by e(�−1)πi/6q−(2�−1)(�−1)/6 so that
(ST )3 = 1.
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Table 2.2 A summary of finite-dimensional representations of S
..
H with corresponding shortening

and A-brane conditions

finite-dim rep shortening condition A-brane condition

F
(xm ,ym )
m qm = 1 m = 1

�

Un q2n = 1 n = 1
2�

Vk+1 t2 = −q−k k = 1
2�

+ γp+iαp
i�

D� t2 = q−�+1/2 � = γp+iαp
2i�

For instance, when � = 2, these matrices become

T
∣∣
D (1)

�=2
= e

πi
6

(
q− 1

2 0
0 q

1
2

)
, S

∣∣
D (1)

�=2
= i

q
1
2 − q− 1

2

(
1 −(q − 1 + q−1)

1 −1

)
.

When q = e−2πi/5, they coincide with the modular matrices of the (2, 5) Virasoro
minimal model although an appropriate change of basis is required to bring the S-
matrix into the standard form (Table 2.2).

2.7 Bound States of Branes and Short Exact Sequences:
Morphism Matching

We have hitherto studied generic conditions when an individual A-brane supported
on a compact irreducible Lagrangian can exist. Next, we will figure out the situ-
ation in which two distinct A-branes are present at a singular fiber of the Hitchin
fibration. When two distinct A-branes intersect at a singular fiber, they will form
a bound state. In this section, we will study a bound state of compact A-branes
and identify the corresponding S

..
H -module. This provide evidence of the equiva-

lent morphism structure under the functor (1.3), restricting to the subcategory of
compact Lagrangian A-branes with that of finite-dimensional S

..
H -modules.

2.7.1 At Singular Fiber of Type I2

As seen in Sects. 2.6.1 and 2.6.2, the compact branes BF and BUi can exist when
q is a root of unity and t is generic. As Fig. 2.6 shows, the irreducible components
U1 and U2 at the singular fiber π−1(b1) of type I2 intersect at two points p1 and p2.
Therefore, the Floer complex [56, 57] (or morphisms) of the two A-branesBU1 and
BU2 is

Hom∗(BU1 ,BU2) := CF∗(BU1 ,BU2)
∼= C〈p1〉 ⊕ C〈p2〉 . (2.127)
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Fig. 2.6 At the singular
fiber π−1(b1), ξ2 exchanges
the irreducible components,
U1 and U2, by the 180◦
rotation along the
(0, 1)-circle (longitude).
Therefore, ξ2 exchanges p1
and p2. On the other hand, ι
exchanges U1 and U2 by
fixing p1 and p2. Besides, ξ1
maps each irreducible
component to itself by the
180◦ rotation along the
(1, 0)-circle (meridian)

U1

U2

ι

ξ2

ξ1

p2 p1

Note that the Floer complexes CF∗(BU1 ,BU2) and CF∗(BU2 ,BU1) and the differ-
entials on them are Poincaré-dual to each other. Namely, each intersection point pi
defines generators of both complexes, whose degrees sum to 2 (the complex dimen-
sion of the target).

This implies that there are two bound states ofBU1 andBU2 as A-branes. Let us
consider one natural candidate for them: a brane Bλ

F degenerating into the singular
fiber π−1(b1) of type I2. First of all, the dimension m of Hom(Bcc,B

λ
F) needs to be

even m = 2n in order for the brane to be supported on a singular fiber because the
evaluation of the integral cohomology class [F ′

F/(2π)] over a singular fiber cannot
be odd like (2.102). There is also a topological constraint to be a bound state of the
branesBU1 andBU2 . As illustrated in Fig. 2.6, a one-cycle, say the (1, 0)-cycle, of a
torus is pinched to a double point at two locations so that the singular fiber π−1(b1)
topologically consists of two copies of CP1. Therefore, it has the unique bounding
spin structure along the (1, 0)-cycle, which is Neveu-Schwarz. Consequently, only
a brane B(−,+)

F with trivial holonomy and the Neveu-Schwarz spin structure along
the (1, 0)-cycle of F can degenerate to a bound state of the branes BU1 and BU2 at
the singular fiber π−1(b1).

There is indeed a corresponding representation of S
..
H . We see that the support

U1 ∪ U2 is invariant under τ− (as a set). Thus, a braneB(x2n ,+)

F can enter the singular
fiber when the corresponding module F (−,+)

2n is τ−-invariant, namely when the two
ideals

(X2n + X−2n − x2n − x−1
2n ), (τ−(X2n + X−2n − x2n − x−1

2n ))

coincide. Under the condition (2.99a), the 2nth Macdonald polynomial takes the
form P2n = X2n + X−2n + 2 = (Xn + X−n)2, and (2.90) yields τ−(1) = 1 and
τ−(P2n) = t−2n P2n . For a generic value of t , only when x2n = −1, we therefore
have the τ−-invariant module F (−,+)

2n
∼= P/(P2n). Moreover, since P2n = (Pn)2
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under (2.99a), the quotient of the polynomial representation P yields a short exact
sequence

0 → U (2)
n → F (−,+)

2n → U (1)
n → 0 . (2.128)

The representation F (−,+)
2n corresponds to the bound state B(−,+)

F . As explained in
Sect. 2.6, the raising operator (2.80) ofP does not become null because the prefac-
tor (1 − q2 j t2) cancels with the denominator of Pj+1. Consequently, this short exact
sequence (2.128) does not split as a direct sum, but rather is a nontrivial extension
ofU (1)

n byU (2)
n . This is analogous to the fact that C[X ]/(X2n) → C[X ]/(Xn) can-

not split as a C[X ]-module. As such, when the gradings are chosen such thatU (1,2)
n

are in degree zero, the degree of the corresponding morphism between the A-branes
is one, and corresponds to the class in Hom1(BU1 ,BU2) represented by B

(−,+)

F
.9

Although this paper does not determine the degree of the morphism in the A-brane
category, the representation category of S

..
H predicts one. Even in what follows,

non-trivial extensions in the representation category give a description of degree-
one morphisms (extensions or bound states) of various distinct compact A-branes.
Determining the degree of the morphisms directly in the A-brane category is left for
future work.

Since Hom∗(BU1 ,BU2) is two-dimensional, there must be another generator. To
identify it, we consider the symmetries. As Fig. 2.6 illustrates, ξ2 and ι exchange the
irreducible components U1 and U2 at the singular fiber. More precisely, ξ2 acts on
the singular fiber as the 180◦ rotation along the (0, 1)-circle (longitude) so that the
intersection points p1,2 are exchanged by ξ2. On the other hand, ι exchanges U1 and
U2 by fixing p1,2. Consequently, the images of the brane B(−,+)

F under the symme-
tries ξ2 and ι are non-isomorphic objects in the A-brane category. They indeed span
the morphism space

Hom1(BU2 ,BU1)
∼= C〈ξ2(B(−,+)

F )〉 ⊕ C〈ι(B(−,+)

F )〉 . (2.129)

As a result, two irreducible branes can form bound states in more than one way.
Similarly, the images of the brane F (−,+)

2n under the symmetries ξ2 and ι are non-
isomorphic in the representation category of S

..
H for n > 1. The image of the short

exact sequence (2.128) under ξ2 becomes

0 → U (1)
n → ξ2(F

(−,+)
2n ) → U (2)

n → 0 . (2.130)

Likewise, The image of the short exact sequence (2.128) under ι becomes

0 → U (1)
n → ι(F (−,+)

2n ) → U (2)
n → 0 . (2.131)

By using the polynomial representation (2.75), one can read off the action of the
generators x and y on these representations as

9 Often literature in mathematics uses the notation Ext1 instead of Hom1. Here they have the same
meaning.
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x
∣∣∣
ξ2(F

(−,+)
2n )

=

U (2)
n︷ ︸︸ ︷ U (1)

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ 0 0
∗ 0 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

0

∗ 0 ∗ 0 0
∗ 0 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎠

, x
∣∣∣
ι(F (−,+)

2n )
=

U (2)
n︷ ︷ U (1)

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ 0 0
∗ 0 ∗ 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

0

0

∗

0 ∗ 0 0
∗ 0 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.132)
on the basis where y acts diagonally as diag(t + t−1, qt + q−1t−1, . . . , q2n−1t +
q1−2nt−1). Note that the upper-left block and lower-right matrices of the x actions
are the same whereas the lower-left matrices are different. These matrices explicitly
show that ξ2(F

(−,+)
2n ) and ι(F (−,+)

2n ) are not isomorphic.
In fact, the composition ξ2 ◦ ι leavesBU1 andBU2 as they are, respectively. How-

ever, it maps B(−,+)

F to a different object. Correspondingly, we have a short exact
sequence

0 → U (2)
n → ξ2 ◦ ι(F (−,+)

2n ) → U (1)
n → 0 , (2.133)

which is not isomorphic to (2.128). Therefore, they span the morphism space of two
dimensions

Hom1(BU1 ,BU2)
∼= C〈B(−,+)

F 〉 ⊕ C〈ξ2 ◦ ι(B(−,+)

F )〉 , (2.134)

which is Poincaré-dual to (2.129). In conclusion, when two compound branes inter-
sect two points, they can form non-isomorphic bound states with the same support
in the A-brane category, and these bound states are related to subtleties defining
A-branes supported on singular submanifolds.

At the other singular fibers π−1(b2,3), there are similar bound states. As in
(2.108), σ ∈ PSL(2, Z) maps (2.129) to Hom1(BU3 ,BU4). Also, τ+ ∈ PSL(2, Z)

maps (2.129) to Hom1(BU5 ,BU6).

2.7.2 At Global Nilpotent Cone of Type I∗
0

Next, let us consider the case in which both the A-branes BV and BDi exist. In
order for both BV and BDi to be Lagrangian, (2.109) and (2.117) need to be sat-
isfied, which implies γp = 0 and � is real whereas αp and βp can be arbitrary.
Therefore, the symplectic form must be ωX = ωK /�. In this situation, F and Ui are
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also Lagrangian with respect to the symplectic form. Moreover, the quantization
conditions, (2.118) and (2.111), for bothBDi and BV are

− c + 1

2
= � ,

1

2�
+ 2c − 1 = k + 1 , (2.135)

which implies that 1/2� = 2� + k + 1. In other words, the two shortening condi-
tions lead to the other one

(2.99c) and ι(2.99b) −→ (2.99a) where n = 2� + k + 1 .

Under this condition, there are therefore finite-dimensional representations of three
kinds, Hom(Bcc,BUi ), Hom(Bcc,BV) and Hom(Bcc,BDi ). On the representa-
tion theory side, the quotient of the polynomial representation yields a short exact
sequence

0 −→ ι(Vk+1) −→ U (1)
n

f−→ D (1)
� ⊕ D (2)

� −→ 0 . (2.136)

We also note that there exist similar short exact sequences for the images of U (1)
n

under the symmetry � × PSL(2, Z) in Sect. 2.6.2 under the same shortening condi-
tion.

In a similar fashion, if the branes BDi and BUi exist simultaneously, their quan-
tization conditions guarantee the existence of BV. Also, if we assume the presence
of the branes BV and BUi , then the quantization condition for BDi follows. In fact,
it is straightforward to check that, under the relation n = k + 1 + 2�, we have

(2.99c) and (2.99a) −→ ι(2.99b) ,

(2.99a) and ι(2.99b) −→ (2.99c) .
(2.137)

Subsequently, we have the short exact sequence (2.136).
If βp = 0, the Hitchin fibration has the three singular fibers of type I2 (Fig. 2.2),

and the Lagrangians V andBDi are not contained in a Hitchin fiber. Thus, the short
exact sequence (2.136) implies that a Hamiltonian isotopy can deform the brane
BU1 in such a way that it contains BV as subbranes. The situation becomes much
more lucid when βp = 0. As βp → 0, the three singular fibers meet simultaneously
and transform into the singular fiber of type I ∗

0 , which is the global nilpotent cone. In
this process, the A-braneBU1 becomes a bound state ofBD1 ,BD2 andBV because
of (2.19). The short exact sequence (2.136) indeed corresponds to the bound state
as illustrated in Fig. 2.7. A similar story holds for the other branes BUi and they
become bound states of irreducible branes according to the relation (2.19) of the
second homology group.

As explained above, the short exact sequence (2.136) does not split into the direct
sum because the raising operator (2.80) of P never becomes null. Geometrically,
the choice of the direction of the arrows in (2.136) comes from how the support
(2.82) of BP intersects with the global nilpotent cone. As explained in Sects. 2.6.3
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U
(1)

n ι(Vk+1)

D
(4)
�D

(3)
�

D
(2)
�D

(1)
�

q4q3

q2q1
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Fλ
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0gen pt

π

ξ1

ξ2

Fig. 2.7 This figure depicts the correspondence between compact supports of (B, A, A)-branes
and finite-dimensional modules of the spherical DAHA when � = 1/2n, αp/2� = � and βp =
0 = γp . Note that n = 2� + k + 1

and 2.6.4, the support (2.82) of BP cuts through real one-dimensional slices of the
exceptional divisors D1,2, but it does not intersect with V. As a result, the braneBV

becomes a subbrane ofBU1 whereas BD1 ⊕ BD2 becomes its quotient.
On the other hand, the ι-image ι(BP) intersects with V whereas it does not with

exceptional divisors Di . Consequently, there is a short exact sequence

0 −→ D (3) ⊕ D (4) −→ ι(U (1)
n ) −→ ι(Vn−2�) −→ 0 . (2.138)

Once we take ξ2-image of this short exact sequence, we have

0 −→ D (1)
� ⊕ D (2)

�

g−→ ξ2 ◦ ι(U (1)
n ) −→ ι(Vn−2�) −→ 0 . (2.139)

because ι(Vn−2�) is ξ2-invariant.
Now we are ready to compare the morphism structures of the two categories

under the shortening condition � = 1/2n and αp/� = �. As Fig. 2.7 illustrates, the
supports of branesBV andBD1 intersect at one point q1 so that the morphism space
between them is one-dimensional:

Hom1(BD1 ,BV) ∼= C〈q1〉 . (2.140)

This means that there is one bound state of BV and BD1 . Indeed, we find the corre-
sponding representation from (2.136):

0 −→ ι(Vk+1) −→ f −1(D (1)
� ) −→ D (1)

� −→ 0 . (2.141)

Its Poincare dual in the representation category can be obtained from (2.139)

0 −→ D (1)
� −→ ξ2 ◦ ι(U (1)

n )/g(D (2)
� ) −→ ι(Vn−2�) −→ 0 . (2.142)
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By using the sign change group �, we obtain short exact sequences analogous to
(2.141), which changes from D (1)

� to D (i)
� (i = 2, 3, 4). We can further pursue the

comparison of the morphism structure. In the A-brane category, the morphism space
between BV and BD1 ⊕ BD2 is two-dimensional:

Hom1(BD1 ⊕ BD2 ,BV) ∼= C〈q1〉 ⊕ C〈q2〉 . (2.143)

It is easy to find the corresponding representations

0 −→ ι(Vk+1) −→ f −1(D (1)
� ) ⊕ D (2)

� −→ D (1)
� ⊕ D (2)

� −→ 0 ,

0 −→ ι(Vk+1) −→ f −1(D (2)
� ) ⊕ D (1)

� −→ D (1)
� ⊕ D (2)

� −→ 0 .
(2.144)

In fact, the short exact sequence (2.136) can be understood as the diagonal element
corresponding to q1 + q2 ∈ Hom1(BD1 ⊕ BD2 ,BV). More generally, we have

Hom1(⊕i∈IBDi ,BV) ∼= ⊕i∈IC〈qi 〉 , (2.145)

where I is a subset of {1, 2, 3, 4}. The diagonal element in the representation cate-
gory is

0 −→ ι(Vk+1) −→ N I
|I |�+k+1 −→ ⊕i∈ID (i)

� −→ 0 , (2.146)

where |I | is the cardinality of the set I . We write the corresponding A-brane

BNI ∈ Hom1(⊕i∈IBDi ,BV) , (2.147)

which is supported on NI := ∪i∈IDi ∪ V.
If the cardinality |I | is three, the corresponding brane is supported on V plus

three exceptional divisors, and the representation N I is not obtained by a quotient
of the polynomial representation. Therefore, these are new finite-dimensional repre-
sentations, which do not appear in the theorems of Cherednik [35, Sects. 2.8–9].

When I = {1, 2, 3, 4}, the support of the corresponding brane is the entire global
nilpotent cone N (2.16) so that we simply write it asBN. It turns out that this brane
gives rise to another interesting bound state in the A-brane, which we will see below.
The global nilpotent cone. In fact, when n − k − 1 is odd (or equivalently c ∈
Z≤0), there is a short exact sequence

0 −→ ι(Vk+1) −→ F (+,+)
2n −→ N2n−k−1 −→ 0 , (2.148)

In fact, when both (2.99a) and ι(2.99b) are satisfied, we have pol(L2n−k−1) ·
P2n−k−1 = 0. Furthermore, when n − k − 1 is odd, then N2n−k−1 := P/(P2n−k−1)

becomes an irreducible module of dimension 2n − k − 1. The short exact sequence
(2.148) illustrates that the module N2n−k−1 can also be obtained by the quotient
F (+,+)

2n /ι(Vk+1).
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When βp = 0 = γp, the Hitchin fibration has one singular fiber of type I ∗
0 , and

the entire global nilpotent cone N is Lagrangian with respect to ωX. The short exact
sequence (2.148) indeed depicts the situation where the brane B

λ=(+,+)

F with the
Ramond spin structures enters the global nilpotent cone. Since it has a different spin
structure, the brane is not decomposed into each irreducible component. As a result,
the brane Bλ=(+,+)

F becomes the bound state of two branes; BV and BN. Actually,
using the fiber class relation (2.17) with (2.101) and (2.111), one can evaluate the
dimension formula for an A-brane BN

dimHom(Bcc,BN) =
∫
N

F + B

2π
=
∫
N

ωI

2π�
= 1

2�
+ 2c − 1 . (2.149)

From (2.135), this is equal to 2n − k − 1, and the space of (Bcc,BN)-strings there-
fore corresponds to the module N2n−k−1 in (2.148).

One delicate point arises for constructing the Chan-Paton bundle forBN because
N is not a manifold. Since V is linked with the exceptional divisors Di in BN, the
Chan-Paton bundle for BN is no longer well-defined at the four joining points of
V and Di . The Chan-Paton bundle becomes a putative “line bundle” L′ over each
exceptional divisor Di and the curvature F ′

N of its connection has a half-integral flux
over it [60] ∫

Di

F ′
N = −1

2
,

while it cancels with the B-field due to (2.70)

F ′
N + B

∣∣
N = 0 .

In other words, L′ restricted to an exceptional divisor Di is a “square root” of the
O(−1) → CP1 bundle and the B-field flux over it is 1/2. As a result, we have

∫
Di

F + B

2π
=
∫
Di

ωI

2π�
= n − k − 1

2
∈ 1

2
+ Z ,

which gives the condition that n − k − 1 is odd.
Under this circumstance, the line bundle L → X (2.57) for Bcc is actually the

2nth tensor product of the determinant line bundle [95, Sect. 8] of the Hitchin moduli
space. As a result, the geometric quantization of V provides the quantum Hilbert
space Vk+1 on a once-punctured torus in Chern-Simons theory [82]. The additional
series Vk+1 at a primitive 2nth root of unity q = eπi/n is called perfect representation
[35, Sect. 2.9.3]. Moreover, when n = k + 2, the additional series Vk+1 of dimension
k + 1 is isomorphic to the well-known Verlinde formula of ŝl(2)k with level k for a
torus (without puncture) [147].

Let us end this section by commenting briefly on future directions. There are an
enormous number of non-compact Lagrangian submanifolds in the moduli space
of Higgs bundles that have been studied in their own right: for example, the image
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of the Hitchin section, the brane of opers (see [25, 86, 124, 129] in a similar con-
text), or the A-polynomial of any knot [80]. Each of these geometric objects should
naturally be associated with an S

..
H -module whose behavior precisely matches the

geometric properties of the object, just as we demonstrate occurs for compact
Lagrangians and for the (generalized) polynomial representation. It would be of
great interest to further pursue this correspondence for infinite-dimensional repre-
sentations, even just in the rank-one case.

It would also be interesting to connect explicitly with other mathematical con-
texts in which algebraic approaches to the Fukaya category or equivalences between
Fukaya categories and module categories appear. To give just one example, in [51],
Etgü and Lekili study the Chekanov-Eliashberg dg-algebra associated with a Leg-
endrian link in a Weinstein four-manifold for a given graph. They show that this
algebra is A∞-quasi-isomorphic to, roughly speaking, the endomorphism algebra
of a collection of generating objects of the wrapped Fukaya category of the surface,
and go on to recover the multiplicative preprojective algebra studied in [31] in the
context of the Deligne–Simpson problem from the Legendrian link. When the graph
in question is the affine D4 Dynkin diagram, it is expected that the corresponding
preprojective algebra is related to DAHA. (We thank A. Oblomkov for private com-
munication related to this point.) The computations of the (wrapped) Fukaya cate-
gory of the above four-manifolds in [51] thus may provide an interesting perspective
on our Claim 1.1 as well as its generalization to other algebras.
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