
Chapter 1
Introduction

1.1 Background

In string theory, the term “brane” is used for certain extended objects. As is typical
of string theory, there are many different ways of seeing or defining these objects,
depending on one’s preferred point of view. For example, from the target space per-
spective, where string theory can be thought of as modeling the motion of strings
in a target space X, one can picture branes as particular distinguished submanifolds
ofX (decorated with additional data) on which open strings can end. Relatedly, from
the point of view of the string worldsheet, branes are simply boundary conditions
of the two-dimensional worldsheet theory. But branes can also be viewed as sources
for higher-form gauge symmetries in the effective field theory of the target space. In
the supergravity approximation, such extended sources produce interesting solutions,
called “black branes” by analogywith familiar “black hole” solutions in standard gen-
eral relativity. This perspective is especially useful in eleven-dimensional M-theory,
where a first-quantization perspective (which would replace the string worldsheet by
an appropriate “membrane” theory) is currently unavailable.

Branes, or at least models of certain special versions of branes, have also made
numerous appearances in the mathematics literature, where they may go by different
names. For example, topological string theory (which, from the physical point of
view, comes from a twist of the worldsheet sigma-model discussed above) comes
in two flavors, known as the A- and B-models. The category of branes in each
of these can be identified with a fairly well-defined mathematical structure associ-
ated to a Calabi–Yau target space X. For the B-model, this is the derived category
of coherent sheaves on X, whereas the A-model is expected to be some appropri-
ately defined version of—or generalization of—the Fukaya category Fuk(X,ωX),
where ωX is the symplectic form. Since this generalization may be nontrivial, we
will write A-Brane(X,ωX) for the category of A-branes, in which Fuk(X,ωX) is
expected to be a full subcategory. The homological mirror symmetry proposal of
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2 1 Introduction

Kontsevich [110] identifies the category of A-branes on a Calabi–Yau threefold with
the category of B-branes on its mirror, and is the subject of ongoing intense mathe-
matical research.

While the category of B-branes belongs squarely to the realm of algebraic geom-
etry, the category of A-branes is much more subtle, and has appeared in numerous
different guises in mathematical physics. To give another example, the proposed
framework of brane quantization [85] suggests that the problem of quantizing a
symplectic manifold M can be approached by studying the topological A-model on
a different target spaceX, which is chosen to be a so-called “complexification” of M .
(When M is the set of real points of an algebraic symplectic manifold, this complex-
ification can be taken to be the obvious one.) This complexification should, in any
case, be a complex manifold whose dimension is twice that of M ; M should map
to X, and X should be equipped with a holomorphic symplectic form �, whose real
part Re� restricts to the symplectic form on M , and imaginary part Im� restricts
to zero on M .

One is then instructed to consider the A-model of the complexificationwith respect
to the imaginary part of the holomorphic symplectic form, ωX = Im�. This gives
rise to a category A-Brane(X,ωX) of A-branes, which includes not only Lagrangian
objects but alsomuchmore unfamiliar branes supported on coisotropic submanifolds
of X. Coisotropic branes were introduced in [8, 107] conjectured that spaces of
morphisms between A-branes should be identified with deformation quantizations
of the functions on their intersections. While coisotropic branes remain mysterious
in general, and do not occur at all on simply-connected Calabi–Yau three-folds, they
are needed for mirror symmetry to work, even on flat target spaces.

In fact, since the dimension of X is always zero modulo four, one can define a
particularly useful exotic A-brane on X, known as the canonical coisotropic brane.
This brane was introduced in [117], where it played an important role in connecting
A-branes to D-modules. Its support is the entire space X, and it is furthermore
expected to have a very interesting algebra of endomorphisms. In fact, in keeping
with the proposal of [8], one expects that

End(Bcc) = Oq(X), (1.1)

where the object on the right-hand side is the deformation quantization of the ring
O(X) of holomorphic functions (with appropriate polynomial growth conditions at
infinity) on the complexification, taken with respect to its holomorphic symplectic
form. In the case of an affine variety, O(X) is just the coordinate ring. (Although the
A-model depends only on the symplectic form ωX = Im�, the real part of � enters
the definition of the boundary conditionBcc, which is only canonically definable on
a holomorphic symplectic manifold.)

As with any category, there is an action of this algebra by precomposition (physi-
cally speaking, by joining strings at boundary conditions) on the space of morphisms
from Bcc to any other A-brane B. In other words, brane quantization naturally
proposes a functor
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Hom(Bcc,−) : A-Brane(X,ωX) → Rep(Oq(X)), (1.2)

which allows us to generate a representation of this algebra from an A-brane. A
category is said to be generated by an object A if Hom(A,−) is an equivalence
of categories. In fact, Kapustin [98] proposed that Bcc is a generating object of
the category of A-branes, and that Rep(Oq(X)) can be taken as a definition of the
category A-Brane(X), when X is a hyper-Kähler space. We remark that there are
some subtleties here. The Fukaya category as typically studied in homological mirror
symmetry [110] requires each object to carry a choice of grading, so that there is
at least a family of A-branes supported on the same Lagrangian which are shifts of
one another, forming a torsor over Z. There is typically no canonical choice of a
preferred grading datum on an A-brane. One should more properly expect

RHom(Bcc,−) : Db A-Brane(X,ωX) → Db Rep(Oq(X)) (1.3)

to provide a derived equivalence between the category of A-branes and the derived
category of Oq(X)-modules. (From the physical perspective, this corresponds to
working with the notion of equivalence appropriate to the twist, treating A-branes
as boundaries for the A-twisted theory rather than boundaries for the full theory
that are compatible with the twist.) The relevance of derived categories to boundary
conditions in topological string theory has been understood for a long time; see [46,
for example].

Returning briefly to the perspective of brane quantization, the gist now consists
in the fact that M is a Lagrangian submanifold in (X,ωX), so that the original
symplectic manifold itself can be used to define an A-braneBM in (X,ωX). In fact,
it is shown in [82, 85] that the morphism space Hom(Bcc,BM) can be identified in a
precise fashion with the geometric quantization of M , at least under the assumption
that M is a Kähler manifold. As such, brane quantization provides a bridge between
deformation quantization—which is guaranteed to formally produce the algebra of
quantum observables Oq(X), but gives no candidate for a natural module or Hilbert
space on which it acts—and standard geometric quantization. (For a recent study of
issues in geometric quantization from this perspective, see [87].)However, aswe have
already argued, the functor Hom(Bcc,−) is much more than this: assuming that it is
an equivalence, it provides a natural description of the category of Oq(X)-modules
in geometric terms. Indeed, the role of M in the story is no longer distinguished: it
is just one A-brane among (at least potentially) many, each of which corresponds
naturally to an Oq(X)-module. This broader perspective was already appreciated
in [85], where a particular spaceX = T ∗

CP1 was used to generalize the orbit method
and give geometric constructions for all representations of SL(2,R). Therefore, the
proposed equivalence (1.3) between A-branes and Oq(X)-modules is the natural
way to think about a geometric approach to representation theory for algebras that
deformation-quantize hyper-Kähler manifolds X.

As the definition of the A-brane category is not available yet, much of this discus-
sion is not at a mathematical level of rigor. Nonetheless, with an appropriate choice
of (X,ωX), we can provide concrete evidence for the equivalence (1.3) if we restrict
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ourselves to Lagrangian objects belonging to the Fukaya category Fuk(X,ωX) ofX,
which forms a subcategory in A-Brane(X,ωX). We will take the target space X of
the 2d sigma-model to be the moduli space of complex flat connections (or parabolic
Higgs bundles) on a once-punctured torus C p. Then, as proved in [131], the algebra
Oq(X) will be the spherical subalgebra of double affine Hecke algebra (DAHA in
short) [35]. One of our goals in this paper is to explore the idea described above in
this setup, presenting solid evidence for the equivalence (1.3).1

Remark: In the past few years, Kontsevich and Soibelman [113] have been devel-
oping a new formalism within the framework of ‘holomorphic Floer theory,’ which
among other things, allows for a rigorous formulation of brane quantization. Accord-
ing to the generalized Riemann–Hilbert correspondence of Kontsevich–Soibelman,
there is an embedding of the Fukaya category Fuk(X) into the right-hand side of
(1.3) as the category of so-called holonomic Dq -modules. Their approach provides
a realization of the category of representations of Oq(X) in terms of sheaves on its
Lagrangian skeleton. Some of our results in this paper about DAHA representations
can thus be interpreted as a particular example of the generalized Riemann-Hilbert
correspondence.

1.2 Results

We first study the representation theory of spherical double affine Hecke algebra S
..
H

of type A1 from the viewpoint of brane quantization in great detail. We explicitly
identify a compact Lagrangian brane in X = Mflat(C p,SL(2,C)), the moduli space
of flat SL(2,C)-connections onC p, for each finite-dimensional irreducible represen-
tation of S

..
H . In particular, we match objects including the parameter spaces, dimen-

sions and shortening conditions on both sides. We also study the spaces of derived
morphisms of the two categories. As a by-product, we find new finite-dimensional
representations of S

..
H that do not appear in [35]. We see examples in which two

irreducible branes can form bound states in more than one way, corresponding to
a higher-dimensional Ext1; these bound states are related to subtleties defining A-
branes supported on singular submanifolds. Hence, the careful study in Chap. 2 in
terms of brane quantization provides solid evidence for the following:

1 A related functor of a similar kind is constructed in [27–29]. The constructions there give a
description of the factorization homology of a particular E2 algebra valued in categories in terms
of modules. (One may equivalently think of such an algebra as a braided tensor category). Taking
the braided tensor category to be Repq GLn and applying the general result to a once-punctured
torus, one obtains a Morita equivalence between the spherical DAHA of type gl(N ,C) and the
endomorphisms of a generating object of the factorization homology.
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Claim 1.1 For X = Mflat(C p,SL(2,C)), the functor (1.3) restricts to a derived
equivalence of the full subcategory of compact Lagrangian A-branes of X and the
category of finite-dimensional S

..
H-modules.

We also consider a particular example of a non-compact brane corresponding
to the polynomial representation of S

..
H studied by Cherednik. In fact, the brane

perspective suggests straightforward generalizations of this representation.
While the brane quantization proposal—and thus the physics of the A-model—is

our starting point, many of the various other types of branes in string theory and
M-theory, and the guises in which they appear, will have a role to play in this paper.
As was already emphasized, just for example, in the constructions of [117], the
moduli spaceX plays an important role in higher-dimensional gauge theories, which
allows for an embedding of the physics of A-branes into a richer system. We focus
on one such construction: M5-branes on a once-punctured torus (or equivalently
with �-deformation orthogonal to M5-branes on a torus) in an appropriate setup of
M-theory. This construction will provide many new angles to view the structure of
the category of representations of (spherical) DAHA.

As such, braneswill lead us to a geometric interpretation of previously known facts
about S

..
H -modules, as well as to new results, not previously known in the representa-

tion theory literature. It is rather straightforward from the geometry of the target space
X to identify finite-dimensional S

..
H -modules that carry representations of PSL(2,Z).

More interestingly, by connecting the M5-brane setup of the 3d/3d correspondence
to the 2d A-model, we can naturally identify the corresponding PSL(2,Z) repre-
sentations. Let us recall the fivebrane setup for the 3d/3d correspondence where
M5-branes are located on S1 × D2 × M3 with the �-background. Then, a suitable
compactification on T 2 × T 2 can relate this setup to the 2d A-model described above,
where the center of D2 is associated toBcc and a boundary condition at the boundary
of D2 gives rise to BM .

For various choices of boundary conditions BM , the partition function of 3d
N = 2 theory T [M3] on S1 × D2 computes the corresponding invariant of the
3-manifold M3. In some cases, such topological invariants of 3-manifolds can be
lifted to a 3d TQFT, i.e. can be constructed via cutting-and-gluing. In turn, the alge-
braic structure underlying a 3d TQFT often can be encoded in a modular tensor
category (that, in general, may be non-unitary or non-semisimple). In particular,
in the present setup of 3d/3d correspondence, this algebraic structure itself can be
viewed as a special caseMTC[S1 × (S2 \ pt),BM ] of amore general algebraic struc-
ture dubbedMTC[M3] in [76] for its close resemblance to the structure of a modular
tensor category. We will explain how concrete instances of this algebraic structure
can be realized via branes in the 2d A-model and the corresponding S

..
H -modules:

Hom(Bcc,BM) ∼= K 0(MTC) . (1.4)

In particular, one such boundary condition leads to a TQFT associated to a 4d
Argyres-Douglas theory. In general, branes supported on M that are invariant under
PSL(2,Z) action (not pointwise) give rise to interesting PSL(2,Z) representations
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Hom(Bcc,BM), and 3d/3d correspondence can help us to relate them to the modular
data (and the Grothendieck group) of an MTC-like structure.

Another relevant brane setting appears in the class S construction [62, 70] of a 4d
N = 2∗ theory T [C p] where M5-branes are placed on S1 × R

3 × C p. An algebra
of line operators becomes the coordinate ring of the Coulomb branch of 4dN = 2∗
theory on S1 × R

3 [69], and we can study it again in a rank-one case from the relation
to S

..
H . As in [6], the spectrum of line operators in the 4dN = 2∗ theory is sensitive

to the global structure of the gauge group, which can be specified by imposing
additional discrete data. In fact, the Coulomb branch of 4d N = 2∗ theory of rank-
one is given as the quotient ofMflat(C p,SL(2,C)) by this additional discrete choice
Z2 ⊂ Z2 ⊕ Z2,which can be interpreted as an automorphismgroupof S

..
H . Therefore,

we can study the elliptic fibration of the Coulomb branch, and the algebra of line
operators on the �-background is a Z2-invariant subalgebra of S

..
H . Furthermore, by

introducing a surface operator of codimension two in the system, an algebra of line
operators on the surface operator is related to the full (rather than spherical) DAHA.
By compactifying the 4d theory to the 2d sigma-model, we propose a canonical
coisotropic brane ̂Bcc of higher rank where the algebra of (̂Bcc, ̂Bcc)-open strings
realizes the full DAHA. In this way, the interplay among moduli spaces, algebras of
line operators, and DAHA can be studied from the viewpoint of the compactification
of fivebrane systems.

1.3 Structure

The structure of the paper follows a simple principle. We start in the world of two-
dimensional physics, and we gradually proceed to higher-dimensional theories. One
advantage of this approach is that lower-dimensional theories can be analyzed much
more explicitly and often can be described in mathematically rigorous terms. For
example, the two-dimensional sigma-model perspective is phrased in the language
of the topological A-model, which is reasonably well understood in themathematical
literature. Likewise, many explicit calculations can be done easily and many ques-
tions can be answered more concretely in low-dimensional systems. The advantage
of higher-dimensional systems, on the other hand, is that they reveal a much richer
(higher categorical) structure, that helps to see a “bigger picture,” dualities and rela-
tions between various low-dimensional descriptions, which otherwise might seem
worlds apart.

To give a concrete overview of what follows: In Chap. 2, we provide a detailed
study of the equivalence (1.3) between DAHA representations and A-branes. To this
end, we study the 2d sigma-model on the moduli space of flat SL(2,C)-connections
(or the Hitchin moduli space) on the punctured torus C p in this section. We begin
by constructing the spherical DAHA S

..
H in the 2d A-model. We review the rel-

evant geometry of the target space in Sect. 2.1. Then we move on to study the
algebraic side, reviewing the double affine Hecke algebra of type A1 and its spher-
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ical subalgebra S
..
H in Sect. 2.2. We introduce the canonical coisotropic brane in

Sect. 2.3, showing how the spherical DAHA S
..
H arises as the algebra of (Bcc,Bcc)-

strings. In the remainder of Chap. 2, we discuss the match between representations
of S

..
H and open-string states between A-branes. To this end, Sect. 2.4 reviews some

details of the category A-Brane, explaining the correspondence between branes sup-
ported on Lagrangian submanifolds and modules of S

..
H . In particular, we will find

branes for the polynomial representations in Sect. 2.5. Section2.6 aims to show the
match between branes with irreducible compact supports and finite-dimensional S

..
H

representations. Section2.7 studies bound states of branes and the corresponding
short exact sequences in representations, matching them between the two categories.

Some finite-dimensional S
..
H -modules carry PSL(2,Z) representations. Taking

the 3d/3d correspondence into account, we explore the geometric origin of these
PSL(2,Z) representations (and the conditions under which they are present) in
Chap.3. Moreover, the vantage point of three-dimensional physics reveals additional
structure concealed behind these PSL(2,Z) representations. We show in Sect. 3.1
that the fivebrane system of the 3d/3d correspondence connects the two-dimensional
A-model to three-dimensional topological field theories on a 3-manifold M3. In par-
ticular, we show that the choice of an S

..
H -module with a PSL(2,Z) action gives

rise to a modular tensor category that describes such a 3d TQFT on M3, whose
Grothendieck group is identified with the chosen S

..
H -module. In Sect. 3.2, we pro-

pose that the categorification of the skein module of a closed oriented 3-manifold M3

results in a modular tensor category so that there is a “hidden” SL(2,Z) action on
the skein module of M3. We also explain the connection to SL(2,C) Floer homology
groups of M3.

In Chap.4, we move one more dimension up, and study our category of interest
from the vantage point of four-dimensional physics, namely in the context of four-
dimensional N = 2∗ theories. N = 2∗ theories can be constructed by wrapping a
stack of M5 branes on the once-punctured torus C p, labeled with some additional
discrete data associated to C p. In Sect. 4.1, we study an elliptic fibration of the
Coulomb branch of anN = 2∗ theory of rank-one on S1 × R

3, based on the analysis
of the Hitchin fibration performed in Sect. 2.1. We also show that the algebra of
line operators in the 4d N = 2∗ theory in the �-background is a subalgebra of S

..
H

specified by the discrete data. Here as well, the bird’s-eye view provided by the
fivebrane system connects 4d physics and 2d sigma-models. We use this in Sect. 4.2
to sort out the relationships among line operators, Coulomb branches, and DAHA.
Finally, we introduce a surface operator in the 4d N = 2∗ theory and consider an
algebra of line operators on the surface operator in Sect. 4.3. We also discuss a
higher-rank bundle for the canonical coisotropic brane to realize the full DAHA and
the Morita equivalence Rep(

..
H) ∼= Rep(S

..
H).

In Appendix A, we list notations and symbols adopted in this paper. A concise
summary of some basics of DAHA is given in Appendix B. In Appendix C, we
discuss the representation theory of the quantum torus algebra QT in terms of brane
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quantization. As a toy model, we show the match between representation theory of
QT and A-branes on a flat space C× × C

×. Then we consider an orbifold quotient
by Z2, and we match A-branes to representations in this context in Appendix C.3.
Appendix D is devoted to studying the relation between trigonometric and rational
degenerations of the spherical DAHA and Coulomb branches of 3dN = 4 theories.
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