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Chapter 1
Introduction

1.1 Background

In string theory, the term “brane” is used for certain extended objects. As is typical
of string theory, there are many different ways of seeing or defining these objects,
depending on one’s preferred point of view. For example, from the target space per-
spective, where string theory can be thought of as modeling the motion of strings
in a target space X, one can picture branes as particular distinguished submanifolds
ofX (decorated with additional data) on which open strings can end. Relatedly, from
the point of view of the string worldsheet, branes are simply boundary conditions
of the two-dimensional worldsheet theory. But branes can also be viewed as sources
for higher-form gauge symmetries in the effective field theory of the target space. In
the supergravity approximation, such extended sources produce interesting solutions,
called “black branes” by analogywith familiar “black hole” solutions in standard gen-
eral relativity. This perspective is especially useful in eleven-dimensional M-theory,
where a first-quantization perspective (which would replace the string worldsheet by
an appropriate “membrane” theory) is currently unavailable.

Branes, or at least models of certain special versions of branes, have also made
numerous appearances in the mathematics literature, where they may go by different
names. For example, topological string theory (which, from the physical point of
view, comes from a twist of the worldsheet sigma-model discussed above) comes
in two flavors, known as the A- and B-models. The category of branes in each
of these can be identified with a fairly well-defined mathematical structure associ-
ated to a Calabi–Yau target space X. For the B-model, this is the derived category
of coherent sheaves on X, whereas the A-model is expected to be some appropri-
ately defined version of—or generalization of—the Fukaya category Fuk(X,ωX),
where ωX is the symplectic form. Since this generalization may be nontrivial, we
will write A-Brane(X,ωX) for the category of A-branes, in which Fuk(X,ωX) is
expected to be a full subcategory. The homological mirror symmetry proposal of
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2 1 Introduction

Kontsevich [110] identifies the category of A-branes on a Calabi–Yau threefold with
the category of B-branes on its mirror, and is the subject of ongoing intense mathe-
matical research.

While the category of B-branes belongs squarely to the realm of algebraic geom-
etry, the category of A-branes is much more subtle, and has appeared in numerous
different guises in mathematical physics. To give another example, the proposed
framework of brane quantization [85] suggests that the problem of quantizing a
symplectic manifold M can be approached by studying the topological A-model on
a different target spaceX, which is chosen to be a so-called “complexification” of M .
(When M is the set of real points of an algebraic symplectic manifold, this complex-
ification can be taken to be the obvious one.) This complexification should, in any
case, be a complex manifold whose dimension is twice that of M ; M should map
to X, and X should be equipped with a holomorphic symplectic form �, whose real
part Re� restricts to the symplectic form on M , and imaginary part Im� restricts
to zero on M .

One is then instructed to consider the A-model of the complexificationwith respect
to the imaginary part of the holomorphic symplectic form, ωX = Im�. This gives
rise to a category A-Brane(X,ωX) of A-branes, which includes not only Lagrangian
objects but alsomuchmore unfamiliar branes supported on coisotropic submanifolds
of X. Coisotropic branes were introduced in [8, 107] conjectured that spaces of
morphisms between A-branes should be identified with deformation quantizations
of the functions on their intersections. While coisotropic branes remain mysterious
in general, and do not occur at all on simply-connected Calabi–Yau three-folds, they
are needed for mirror symmetry to work, even on flat target spaces.

In fact, since the dimension of X is always zero modulo four, one can define a
particularly useful exotic A-brane on X, known as the canonical coisotropic brane.
This brane was introduced in [117], where it played an important role in connecting
A-branes to D-modules. Its support is the entire space X, and it is furthermore
expected to have a very interesting algebra of endomorphisms. In fact, in keeping
with the proposal of [8], one expects that

End(Bcc) = Oq(X), (1.1)

where the object on the right-hand side is the deformation quantization of the ring
O(X) of holomorphic functions (with appropriate polynomial growth conditions at
infinity) on the complexification, taken with respect to its holomorphic symplectic
form. In the case of an affine variety, O(X) is just the coordinate ring. (Although the
A-model depends only on the symplectic form ωX = Im�, the real part of � enters
the definition of the boundary conditionBcc, which is only canonically definable on
a holomorphic symplectic manifold.)

As with any category, there is an action of this algebra by precomposition (physi-
cally speaking, by joining strings at boundary conditions) on the space of morphisms
from Bcc to any other A-brane B. In other words, brane quantization naturally
proposes a functor
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Hom(Bcc,−) : A-Brane(X,ωX) → Rep(Oq(X)), (1.2)

which allows us to generate a representation of this algebra from an A-brane. A
category is said to be generated by an object A if Hom(A,−) is an equivalence
of categories. In fact, Kapustin [98] proposed that Bcc is a generating object of
the category of A-branes, and that Rep(Oq(X)) can be taken as a definition of the
category A-Brane(X), when X is a hyper-Kähler space. We remark that there are
some subtleties here. The Fukaya category as typically studied in homological mirror
symmetry [110] requires each object to carry a choice of grading, so that there is
at least a family of A-branes supported on the same Lagrangian which are shifts of
one another, forming a torsor over Z. There is typically no canonical choice of a
preferred grading datum on an A-brane. One should more properly expect

RHom(Bcc,−) : Db A-Brane(X,ωX) → Db Rep(Oq(X)) (1.3)

to provide a derived equivalence between the category of A-branes and the derived
category of Oq(X)-modules. (From the physical perspective, this corresponds to
working with the notion of equivalence appropriate to the twist, treating A-branes
as boundaries for the A-twisted theory rather than boundaries for the full theory
that are compatible with the twist.) The relevance of derived categories to boundary
conditions in topological string theory has been understood for a long time; see [46,
for example].

Returning briefly to the perspective of brane quantization, the gist now consists
in the fact that M is a Lagrangian submanifold in (X,ωX), so that the original
symplectic manifold itself can be used to define an A-braneBM in (X,ωX). In fact,
it is shown in [82, 85] that the morphism space Hom(Bcc,BM) can be identified in a
precise fashion with the geometric quantization of M , at least under the assumption
that M is a Kähler manifold. As such, brane quantization provides a bridge between
deformation quantization—which is guaranteed to formally produce the algebra of
quantum observables Oq(X), but gives no candidate for a natural module or Hilbert
space on which it acts—and standard geometric quantization. (For a recent study of
issues in geometric quantization from this perspective, see [87].)However, aswe have
already argued, the functor Hom(Bcc,−) is much more than this: assuming that it is
an equivalence, it provides a natural description of the category of Oq(X)-modules
in geometric terms. Indeed, the role of M in the story is no longer distinguished: it
is just one A-brane among (at least potentially) many, each of which corresponds
naturally to an Oq(X)-module. This broader perspective was already appreciated
in [85], where a particular spaceX = T ∗

CP1 was used to generalize the orbit method
and give geometric constructions for all representations of SL(2,R). Therefore, the
proposed equivalence (1.3) between A-branes and Oq(X)-modules is the natural
way to think about a geometric approach to representation theory for algebras that
deformation-quantize hyper-Kähler manifolds X.

As the definition of the A-brane category is not available yet, much of this discus-
sion is not at a mathematical level of rigor. Nonetheless, with an appropriate choice
of (X,ωX), we can provide concrete evidence for the equivalence (1.3) if we restrict
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ourselves to Lagrangian objects belonging to the Fukaya category Fuk(X,ωX) ofX,
which forms a subcategory in A-Brane(X,ωX). We will take the target space X of
the 2d sigma-model to be the moduli space of complex flat connections (or parabolic
Higgs bundles) on a once-punctured torus C p. Then, as proved in [131], the algebra
Oq(X) will be the spherical subalgebra of double affine Hecke algebra (DAHA in
short) [35]. One of our goals in this paper is to explore the idea described above in
this setup, presenting solid evidence for the equivalence (1.3).1

Remark: In the past few years, Kontsevich and Soibelman [113] have been devel-
oping a new formalism within the framework of ‘holomorphic Floer theory,’ which
among other things, allows for a rigorous formulation of brane quantization. Accord-
ing to the generalized Riemann–Hilbert correspondence of Kontsevich–Soibelman,
there is an embedding of the Fukaya category Fuk(X) into the right-hand side of
(1.3) as the category of so-called holonomic Dq -modules. Their approach provides
a realization of the category of representations of Oq(X) in terms of sheaves on its
Lagrangian skeleton. Some of our results in this paper about DAHA representations
can thus be interpreted as a particular example of the generalized Riemann-Hilbert
correspondence.

1.2 Results

We first study the representation theory of spherical double affine Hecke algebra S
..
H

of type A1 from the viewpoint of brane quantization in great detail. We explicitly
identify a compact Lagrangian brane in X = Mflat(C p,SL(2,C)), the moduli space
of flat SL(2,C)-connections onC p, for each finite-dimensional irreducible represen-
tation of S

..
H . In particular, we match objects including the parameter spaces, dimen-

sions and shortening conditions on both sides. We also study the spaces of derived
morphisms of the two categories. As a by-product, we find new finite-dimensional
representations of S

..
H that do not appear in [35]. We see examples in which two

irreducible branes can form bound states in more than one way, corresponding to
a higher-dimensional Ext1; these bound states are related to subtleties defining A-
branes supported on singular submanifolds. Hence, the careful study in Chap. 2 in
terms of brane quantization provides solid evidence for the following:

1 A related functor of a similar kind is constructed in [27–29]. The constructions there give a
description of the factorization homology of a particular E2 algebra valued in categories in terms
of modules. (One may equivalently think of such an algebra as a braided tensor category). Taking
the braided tensor category to be Repq GLn and applying the general result to a once-punctured
torus, one obtains a Morita equivalence between the spherical DAHA of type gl(N ,C) and the
endomorphisms of a generating object of the factorization homology.
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Claim 1.1 For X = Mflat(C p,SL(2,C)), the functor (1.3) restricts to a derived
equivalence of the full subcategory of compact Lagrangian A-branes of X and the
category of finite-dimensional S

..
H-modules.

We also consider a particular example of a non-compact brane corresponding
to the polynomial representation of S

..
H studied by Cherednik. In fact, the brane

perspective suggests straightforward generalizations of this representation.
While the brane quantization proposal—and thus the physics of the A-model—is

our starting point, many of the various other types of branes in string theory and
M-theory, and the guises in which they appear, will have a role to play in this paper.
As was already emphasized, just for example, in the constructions of [117], the
moduli spaceX plays an important role in higher-dimensional gauge theories, which
allows for an embedding of the physics of A-branes into a richer system. We focus
on one such construction: M5-branes on a once-punctured torus (or equivalently
with �-deformation orthogonal to M5-branes on a torus) in an appropriate setup of
M-theory. This construction will provide many new angles to view the structure of
the category of representations of (spherical) DAHA.

As such, braneswill lead us to a geometric interpretation of previously known facts
about S

..
H -modules, as well as to new results, not previously known in the representa-

tion theory literature. It is rather straightforward from the geometry of the target space
X to identify finite-dimensional S

..
H -modules that carry representations of PSL(2,Z).

More interestingly, by connecting the M5-brane setup of the 3d/3d correspondence
to the 2d A-model, we can naturally identify the corresponding PSL(2,Z) repre-
sentations. Let us recall the fivebrane setup for the 3d/3d correspondence where
M5-branes are located on S1 × D2 × M3 with the �-background. Then, a suitable
compactification on T 2 × T 2 can relate this setup to the 2d A-model described above,
where the center of D2 is associated toBcc and a boundary condition at the boundary
of D2 gives rise to BM .

For various choices of boundary conditions BM , the partition function of 3d
N = 2 theory T [M3] on S1 × D2 computes the corresponding invariant of the
3-manifold M3. In some cases, such topological invariants of 3-manifolds can be
lifted to a 3d TQFT, i.e. can be constructed via cutting-and-gluing. In turn, the alge-
braic structure underlying a 3d TQFT often can be encoded in a modular tensor
category (that, in general, may be non-unitary or non-semisimple). In particular,
in the present setup of 3d/3d correspondence, this algebraic structure itself can be
viewed as a special caseMTC[S1 × (S2 \ pt),BM ] of amore general algebraic struc-
ture dubbedMTC[M3] in [76] for its close resemblance to the structure of a modular
tensor category. We will explain how concrete instances of this algebraic structure
can be realized via branes in the 2d A-model and the corresponding S

..
H -modules:

Hom(Bcc,BM) ∼= K 0(MTC) . (1.4)

In particular, one such boundary condition leads to a TQFT associated to a 4d
Argyres-Douglas theory. In general, branes supported on M that are invariant under
PSL(2,Z) action (not pointwise) give rise to interesting PSL(2,Z) representations
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Hom(Bcc,BM), and 3d/3d correspondence can help us to relate them to the modular
data (and the Grothendieck group) of an MTC-like structure.

Another relevant brane setting appears in the class S construction [62, 70] of a 4d
N = 2∗ theory T [C p] where M5-branes are placed on S1 × R

3 × C p. An algebra
of line operators becomes the coordinate ring of the Coulomb branch of 4dN = 2∗
theory on S1 × R

3 [69], and we can study it again in a rank-one case from the relation
to S

..
H . As in [6], the spectrum of line operators in the 4dN = 2∗ theory is sensitive

to the global structure of the gauge group, which can be specified by imposing
additional discrete data. In fact, the Coulomb branch of 4d N = 2∗ theory of rank-
one is given as the quotient ofMflat(C p,SL(2,C)) by this additional discrete choice
Z2 ⊂ Z2 ⊕ Z2,which can be interpreted as an automorphismgroupof S

..
H . Therefore,

we can study the elliptic fibration of the Coulomb branch, and the algebra of line
operators on the �-background is a Z2-invariant subalgebra of S

..
H . Furthermore, by

introducing a surface operator of codimension two in the system, an algebra of line
operators on the surface operator is related to the full (rather than spherical) DAHA.
By compactifying the 4d theory to the 2d sigma-model, we propose a canonical
coisotropic brane ̂Bcc of higher rank where the algebra of (̂Bcc, ̂Bcc)-open strings
realizes the full DAHA. In this way, the interplay among moduli spaces, algebras of
line operators, and DAHA can be studied from the viewpoint of the compactification
of fivebrane systems.

1.3 Structure

The structure of the paper follows a simple principle. We start in the world of two-
dimensional physics, and we gradually proceed to higher-dimensional theories. One
advantage of this approach is that lower-dimensional theories can be analyzed much
more explicitly and often can be described in mathematically rigorous terms. For
example, the two-dimensional sigma-model perspective is phrased in the language
of the topological A-model, which is reasonably well understood in themathematical
literature. Likewise, many explicit calculations can be done easily and many ques-
tions can be answered more concretely in low-dimensional systems. The advantage
of higher-dimensional systems, on the other hand, is that they reveal a much richer
(higher categorical) structure, that helps to see a “bigger picture,” dualities and rela-
tions between various low-dimensional descriptions, which otherwise might seem
worlds apart.

To give a concrete overview of what follows: In Chap. 2, we provide a detailed
study of the equivalence (1.3) between DAHA representations and A-branes. To this
end, we study the 2d sigma-model on the moduli space of flat SL(2,C)-connections
(or the Hitchin moduli space) on the punctured torus C p in this section. We begin
by constructing the spherical DAHA S

..
H in the 2d A-model. We review the rel-

evant geometry of the target space in Sect. 2.1. Then we move on to study the
algebraic side, reviewing the double affine Hecke algebra of type A1 and its spher-
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ical subalgebra S
..
H in Sect. 2.2. We introduce the canonical coisotropic brane in

Sect. 2.3, showing how the spherical DAHA S
..
H arises as the algebra of (Bcc,Bcc)-

strings. In the remainder of Chap. 2, we discuss the match between representations
of S

..
H and open-string states between A-branes. To this end, Sect. 2.4 reviews some

details of the category A-Brane, explaining the correspondence between branes sup-
ported on Lagrangian submanifolds and modules of S

..
H . In particular, we will find

branes for the polynomial representations in Sect. 2.5. Section2.6 aims to show the
match between branes with irreducible compact supports and finite-dimensional S

..
H

representations. Section2.7 studies bound states of branes and the corresponding
short exact sequences in representations, matching them between the two categories.

Some finite-dimensional S
..
H -modules carry PSL(2,Z) representations. Taking

the 3d/3d correspondence into account, we explore the geometric origin of these
PSL(2,Z) representations (and the conditions under which they are present) in
Chap.3. Moreover, the vantage point of three-dimensional physics reveals additional
structure concealed behind these PSL(2,Z) representations. We show in Sect. 3.1
that the fivebrane system of the 3d/3d correspondence connects the two-dimensional
A-model to three-dimensional topological field theories on a 3-manifold M3. In par-
ticular, we show that the choice of an S

..
H -module with a PSL(2,Z) action gives

rise to a modular tensor category that describes such a 3d TQFT on M3, whose
Grothendieck group is identified with the chosen S

..
H -module. In Sect. 3.2, we pro-

pose that the categorification of the skein module of a closed oriented 3-manifold M3

results in a modular tensor category so that there is a “hidden” SL(2,Z) action on
the skein module of M3. We also explain the connection to SL(2,C) Floer homology
groups of M3.

In Chap.4, we move one more dimension up, and study our category of interest
from the vantage point of four-dimensional physics, namely in the context of four-
dimensional N = 2∗ theories. N = 2∗ theories can be constructed by wrapping a
stack of M5 branes on the once-punctured torus C p, labeled with some additional
discrete data associated to C p. In Sect. 4.1, we study an elliptic fibration of the
Coulomb branch of anN = 2∗ theory of rank-one on S1 × R

3, based on the analysis
of the Hitchin fibration performed in Sect. 2.1. We also show that the algebra of
line operators in the 4d N = 2∗ theory in the �-background is a subalgebra of S

..
H

specified by the discrete data. Here as well, the bird’s-eye view provided by the
fivebrane system connects 4d physics and 2d sigma-models. We use this in Sect. 4.2
to sort out the relationships among line operators, Coulomb branches, and DAHA.
Finally, we introduce a surface operator in the 4d N = 2∗ theory and consider an
algebra of line operators on the surface operator in Sect. 4.3. We also discuss a
higher-rank bundle for the canonical coisotropic brane to realize the full DAHA and
the Morita equivalence Rep(

..
H) ∼= Rep(S

..
H).

In Appendix A, we list notations and symbols adopted in this paper. A concise
summary of some basics of DAHA is given in Appendix B. In Appendix C, we
discuss the representation theory of the quantum torus algebra QT in terms of brane
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quantization. As a toy model, we show the match between representation theory of
QT and A-branes on a flat space C× × C

×. Then we consider an orbifold quotient
by Z2, and we match A-branes to representations in this context in Appendix C.3.
Appendix D is devoted to studying the relation between trigonometric and rational
degenerations of the spherical DAHA and Coulomb branches of 3dN = 4 theories.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 2
2d Sigma-Models and DAHA

In this section, we study representation theory of DAHA, strictly speaking, the
spherical subalgebra of DAHA of type A1, in terms of brane quantization in the 2d
A-model [85] on the moduli space of flat SL(2, C)-connections on a once-punctured
torus. The brane quantization lends itself well to a geometric approach to repre-
sentation theory of spherical DAHA, which provides novel viewpoints. The main
goal of this section is to explicitly show the correspondence between A-branes with
compact Lagrangian submanifolds and finite-dimensional representations of spher-
ical DAHA with respect to dimensions, shortening conditions and morphisms. This
matching enables us to find new finite-dimensional representations. The geomet-
ric picture also allows us to identify PSL(2, Z) actions on some finite-dimensional
modules. As another advantage, we generalize Cherednik’s polynomial represen-
tation from a geometric viewpoint. These results play a crucial role in higher-
dimensional physical theories and categorical structures in the subsequent sections.

DAHA associated to a root system R (or, equivalently, to a semisimple Lie alge-
bra g) can be constructed by beginning with the quantum torus algebra QT (P ⊕
P∨,ω) defined on the direct sum of the weight and coweight lattices of g with the
symplectic pairing ω between P and P∨. More concretely, QT (P ⊕ P∨,ω) can be
understood as the group algebra of the Heisenberg group with the relation

XμY λ = q(μ,λ)Y λXμ, for μ ∈ P,λ ∈ P∨ ,

where (μ,λ) is the symplectic pairing. Note that this lattice is isomorphic to the
standard pairing onZ

2 dimP ∼= Z
2n , so that the algebra has outer automorphism group

Out(QT (P ⊕ P∨,ω)) = Sp(2n, Z).
However, we have the additional data of the action of the Weyl group W on P

and P∨. This gives a distinguished embedding ofW into Sp(2n, Z), which therefore
determines an extension

0 → QT (P ⊕ P∨,ω) → ..
Ht=1(W ) → C[W ] → 0 (2.1)

c© The Author(s) 2023
S. Gukov et al., Branes and DAHA Representations,
SpringerBriefs in Mathematical Physics,
https://doi.org/10.1007/978-3-031-28154-9_2
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up to equivalence. The algebra
..
Ht=1(W ) is known to be the group algebra of the

double affine Weyl group
..
W :

..
Ht=1(W ) ∼= C[ ..W ]. Since the representation of W is

just on P (and contragredient on P∨), this extension leaves the “diagonal” Sp(2, Z)

subgroup unbroken as outer automorphisms of
..
Ht=1(W ). For the Cartan type A1,

this construction is equivalent to the algebra
..
Ht=1 in Appendix C.3. Moreover, the

algebra
..
Ht=1(W ) can be further deformed by other formal parameters t , transform-

ing the group algebra C[W ] to the Hecke algebra. The result is DAHA
..
H(W ). We

will give a concrete description of the deformation in the Cartan type A1 in this
section. DAHAs of general Cartan types are explained in Appendix B. Through
this construction, the quantum torus algebra and DAHA are closely related, and we
can take the same approach to representation theory of the quantum torus algebra.
Although the representation theory of the quantum torus algebra is well-known, it
can be a useful guide for DAHA. Therefore, the reader can refer to Appendix C
for the brane quantization of the quantum torus algebra and symmetrized quantum
torus.

The algebra
..
H(W ) is not commutative, even in the q = 1 limit. Nonetheless, it

contains the spherical subalgebra S
..
H(W ), obtained by an idempotent projection,

which is commutative as q = 1. In the limit t = 1, S
..
Ht=1(W ) is isomorphic to the

Weyl-invariant subalgebra of QT (P ⊕ P∨,ω) (after a lift of the Weyl group action
is chosen). In the further specialization q = 1, S

..
H becomes precisely the algebra of

Weyl-invariant functions on

(tC/Q∨) × (t∨
C
/Q) = TC × TC .

Note that we take the coroot and root latticesQ∨ ⊕ Q = Hom(P, Z) ⊕ Hom(P∨, Z)

(namely the dual lattice) as the quotient lattice. This space with group action is
nothing other than the moduli space of flat connections on a two-torus T 2, valued in
the corresponding complex Lie group GC:

Mflat(T
2,GC) = Hom(π1(T

2),GC)/GC

∼= TC × TC

W
.

(2.2)

We would like to consider an additional deformation of this moduli space to
study the representation theory of spherical DAHA geometrically. Happily, for type
A, this can be achieved just by adding a “puncture” on a two-torus T 2. Despite this
rather simple “addition”, the story becomes incredibly deeper and more interesting.
This section focuses on DAHA of rank one to illustrate and highlight all the delicate
features and interesting phenomena. In rank one, we can perform concrete compu-
tations as explicitly as possible. For that reason, we will first review some necessary
background on the moduli space of flat SL(2, C)-connections on a once-punctured
torus, which will play the role of the target space X in the 2d sigma-model.



2.1 Higgs Bundles and Flat Connections 11

Then, we will carve out A-branes in X for salient modules of the spherical DAHA.
This will give solid evidence of the functor (1.3) from the categories of A-branes in
X to the representation category of the spherical DAHA.

2.1 Higgs Bundles and Flat Connections

Figuratively speaking, the target space of the 2d sigma-model is the stage where our
main characters (branes) will make their appearance. Thus, let us begin by setting
the stage.

The target space of our system will be the moduli space of G = SU(2) Higgs
bundles on a genus-one curve Cp, ramified at one point p:

X := MH (Cp,G). (2.3)

Although the geometry of this space, also called the Hitchin moduli space, is a fairly
familiar character in mathematical physics literature, we review those aspects that
will be especially important for applications to DAHA representations.

Recall [94, 138], that a ramified (or stable parabolic) Higgs bundle is a pair
(E,ϕ) of a holomorphic SU(2)-bundle E over a curve C and a holomorphic section
ϕ, called the Higgs field, of the bundle KC ⊗ ad(E) ⊗ O(p). Here, KC denotes the
canonical bundle of C , andO(p) is the line bundle whose holomorphic sections are
functions holomorphic away from p with a first-order pole at p. The ramification
at p—more precisely called tame ramification since we are considering first-order
pole—is described by the following conditions on the connection A on E and the
Higgs field

A = αp dϑ + · · ·
ϕ = 1

2
(βp + iγp)

dz

z
+ · · · (2.4)

Here, z = reiϑ is a local coordinate on a small disk centered at p, and the rami-
fication data is a triple of continuous parameters, (αp,βp, γp) ∈ T × t × t where
we denote the Cartan subgroup T ⊂ G and the Cartan subalgebra t ⊂ g. With this
prescribed behavior at p, the Hitchin moduli space is the space of solutions to the
equations

F − [ϕ,ϕ] =0

DA ϕ =0 ,
(2.5)

modulo gauge transformations. We denote this moduli space MH (Cp,G), where
Cp is a Riemann surface C with the tame ramification (2.4) at p ∈ C . It is a hyper-
Kähler space and the corresponding Kähler forms are
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ωI = − i

2π

∫
C

|d2z|Tr
(
δAz̄ ∧ δAz − δϕ̄ ∧ δϕ

)
,

ωJ = 1

2π

∫
C

|d2z|Tr
(
δϕ̄ ∧ δAz + δϕ ∧ δAz̄

)
,

ωK = i

2π

∫
C

|d2z|Tr
(
δϕ̄ ∧ δAz − δϕ ∧ δAz̄

)
.

(2.6)

There is also a triplet of holomorphic symplectic forms �I = ωJ + iωK , �J =
ωK + iωI , and �K = ωI + iωJ , holomorphic in complex structures I , J , and K ,
respectively. In the absence of ramification, it is easy to check that ωJ and ωK are
cohomologically trivial [117, Sect. 4.1], whereas ωI is non-trivial and, if properly
normalized, can be taken as a generator of H 2(X, Z). On the other hand, in the pres-
ence of ramification (2.4), the cohomology classes of ωJ and ωK are proportional to
βp and γp, respectively.

The description of MH (Cp,G) as the moduli space of Higgs bundles given
above is in complex structure I . Another useful description, in complex structure
J , comes from identifying a complex combination AC = A + iφ with a GC-valued
connection, where φ = ϕ + ϕ̄. The Hitchin equations then become the flatness con-
dition FC = d AC + AC ∧ AC = 0 for this GC-valued connection AC. According to
(2.4), it has a non-trivial monodromy around the point p:

U = exp(2π(γp + iαp)) . (2.7)

which depends holomorphically on γp + iαp and is independent of βp. Indeed, in
complex structure J , βp is a Kähler parameter and γp + iαp is a complex structure
parameter. Another useful fact, also explained in [84], is that the cohomology class
of the holomorphic symplectic form �J = ωK + iωI is proportional to γp + iαp

and independent of βp.
Similarly, in complex structure I the Kähler modulus is αp, while βp + iγp is a

complex structure parameter. The cohomology class of the holomorphic symplectic
form �I = ωJ + iωK is βp + iγp. There is a similar story for complex structure K
and all these statements are summarized in Table 2.1.

In a supersymmetric sigma-model with targetX, the Kähler modulus of the target
space is always complexified. This fact plays an important role in mirror symmetry.
In the present setup, too, the Kähler moduli are all complexified by the periods of
the 2-form field B. For example, in complex structure I , the complexified Kähler

Table 2.1 Complex and Kähler moduli of the moduli space MH with one ramification point

Complex structure Complex modulus Kähler modulus

I βp + iγp αp

J γp + iαp βp

K αp + iβp γp
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modulus is αp + iηp, where ηp ∈ T ∨ = Hom(�∨,U(1)) and �∨ is the cocharac-
ter lattice of G. Therefore, taking into account the “quantum” parameter ηp, the
ramification data consists of the quadruple of parameters (αp,βp, γp, ηp).

All of these structures can be made completely explicit in the case when Cp is
a punctured torus. In complex structure J , where X = MH (Cp,G) is the moduli
space of complex flat connections on Cp, we can then use an explicit presentation
of the fundamental group

π1(Cp) = 〈m, l, c|mlm−1l−1 = c〉 . (2.8)

to describe flat connections concretely, in terms of holonomies along the (1, 0)-cycle
m, the (0, 1)-cycle l, and the loop c around p:

x = Tr(ρ(m)), y = Tr(ρ(l)), and z = Tr(ρ(ml−1)) . (2.9)

In terms of these holonomy variables, the space of SL(2, C)-representations ρ :
π1(Cp) → SL(2, C) is a cubic surface (see e.g. [72, 82]):

Mflat(Cp,SL(2, C)) = {(x, y, z) ∈ C
3|x2 + y2 + z2 − xyz − 2 = Tr(ρ(c)) = t̃2 + t̃−2} .

(2.10)
Here we used the fact that, according to (2.7), the holonomy of the complex flat
connection around p is conjugate to

ρ(c) ∼
(
t̃−2 0
0 t̃2

)
. (2.11)

This section will be devoted to studying the deformation quantization Oq(X) of this
coordinate ring holomorphic in complex structure J , which is generated by x , y, z,
and its representations geometrically.

For a complex surface defined by the zero locus of a polynomial f (x, y, z), the
holomorphic symplectic form (a.k.a. Atiyah-Bott-Goldman symplectic form) can be
written as

�J = 1

2πi

dx ∧ dy

∂ f/∂z
= 1

2πi

dx ∧ dy

2z − xy
. (2.12)

and the Kähler form is

ωJ = i

4π
(dx ∧ dx̄ + dy ∧ d ȳ + dz ∧ dz̄) . (2.13)

In the special case αp = βp = γp = 0, the moduli space of flat
SL(2, C)-connections on Cp is simply a quotient space

(C× × C
×)/Z2 (2.14)
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by the Weyl group Z2. It can be understood as a moduli space of flat SL(2, C)-
connections on a torus (without ramification), such that holonomy eigenvalues along
A- and B-cycles each parametrize a copy of C

×. The “real slice” (S1 × S1)/Z2

is the moduli space of SU(2) flat connections on the (punctured) torus, and it is
sometimes called the “pillowcase”. According to the theorem of [128] (resp. [125]),
it can be identified with the moduli space Bun(Cp,G) of stable (resp. parabolic) G-
bundles on Cp. It is easy to see that Bun(Cp,G) is a holomorphic submanifold of
MH (Cp,G) in complex structure I . Furthermore, because δϕ = 0 on Bun(Cp,G),
it follows from (2.6) that Bun(Cp,G) is a holomorphic Lagrangian submanifold
with respect to �I (in particular, Lagrangian with respect to ωJ and ωK ). Following
the notation in Sect. 2.4, we write it by V as a Lagrangian submanifold in the target
(X,ωX).

In addition to V, other special submanifolds of MH (Cp,G) will play a role in
what follows. For example, in complex structure I , the Hitchin moduli space is a
completely integrable Hamiltonian system [94], i.e. a fibration

π : MH (Cp,G) → BH (2.15)

over an affine space, the “Hitchin base” BH , whose generic fibers are abelian vari-
eties (sometimes called “Liouville tori”). For G = SU(2), the map π takes a pair
(E,ϕ) to Trϕ2, which is holomorphic in complex structure I . Specializing fur-
ther to the case where Cp is a genus-one curve gives a particularly simple inte-
grable system: its generic fiber F is a torus that, just like V, is holomorphic in com-
plex structure I and Lagrangian with respect to ωJ and ωK . We also note that the
only singular fiber of the Hitchin fibration π : MH (Cp,G) → BH is the pre-image
N = π−1(0) of 0 ∈ BH which, in the limit αp = βp = γp = 0, is the “pillowcase”
V ∼= (S1 × S1)/Z2 with four orbifold points.

Now let us consider what happens when we go away from the limit αp = βp =
γp = 0 and consider generic values of the ramification parameters. From the view-
point of the complex structure J , the equation (2.10) describes the deformation of
the four A1 singularities of the singular surface (2.14), where t̃2 (or, equivalently,
γp + iαp) plays the role of the complex structure deformation. On the other hand,
turning on βp = 0 leads to a resolution of the A1-singularities. In other words, βp

is the Kähler structure parameter in complex structure J , cf. Table 2.1.
Recall that αp is the Kähler structure parameter in complex structure I . If we

turn on αp while keeping βp = γp = 0, then the four orbifold points are blown
up in the Hitchin fibration. Consequently, the singular fiber in the Hitchin fibration,
called the global nilpotent coneN := π−1(0), now contains five compact irreducible
components (all rational) [82, 90]:

N = V ∪
4⋃

i=1

Di . (2.16)
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V

D4D3

D2D1

q4q3

q2q1

NF ∼= T 2

BH

MH

0gen pt

π

ξ1

ξ2

Fig. 2.1 Schematic illustration of the Hitchin fibrationMH (Cp,SU(2)) → BH and global nilpo-
tent cone at βp = 0 = γp and a generic value of ααp

In fact, it is a singular fiber of Kodaira type I ∗
0 [108, 109] in the elliptic fibration π.

The irreducible components V and Di of the global nilpotent cone are holomorphic
Lagrangians with respect to �I , sometimes called Lagrangians of type (B, A, A).
The homology classes of V and Di provide a basis for the second homology groups
H2(MH (Cp,G), Z), and their intersection form is the affine Cartan matrix of type
D̂4, as illustrated in Fig. 2.1. The intersection form has only one null vector, which
must be identified with the class of a generic fiber F of the Hitchin fibration, result-
ing in the relation

[F] = 2[V] +
4∑

i=1

[Di ] . (2.17)

Once we move away from βp = γp = 0, we are deforming the complex struc-
ture modulus βp + iγp of complex structure I , and so the structure of the Hitchin
fibration drastically changes. For generic values of (βp, γp), the embeddings of the
two-cycles V and Di (i = 1, . . . , 4) into MH (Cp,G) are no longer holomorphic
with respect to complex structure I , and the singular fiber of type I ∗

0 splits into
three singular fibers of type I2 [61, Sect. 3.4]. If we write the base genus-one curve
Cp of the Hitchin system by an algebraic equation y2 = (x − e1)(x − e2)(x − e3)
with e1 + e2 + e3 = 0 where the ramification point p is located at infinity, then the
singular fibers of type I2 are preimages of points

BH � bi := eiTr (βp + iγp)
2 (i = 1, 2, 3) , (2.18)

under the Hitchin fibration as depicted in Fig. 2.2. In the singular fiber at bi ∈ BH ,
two irreducible components U2i−1 and U2i , which are topologically CP1, meet at
two double points.

Hence, the two-cycles V and Di (i = 1, . . . , 4) are not projected to a point by
the Hitchin fibration with a generic ramification, though they still give a basis of
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b1

b2

b3

BH

U1

U2

U3

U4

U5

U6

W

F

Fig. 2.2 The Hitchin fibration with a generic ramification contains three singular fibers of Kodaira
type I2 at the base points bi (i = 1, 2, 3)

H2(MH (Cp,G), Z) and satisfy the relation (2.17). An analysis by the Mayer–
Vietoris sequence tells us that the homology class of each irreducible component
in a singular fiber I2 can be expressed as

[U1] = [V] + [D1] + [D2] , [U3] = [V] + [D1] + [D3] , [U5] = [V] + [D1] + [D4] ,

[U2] = [V] + [D3] + [D4] , [U4] = [V] + [D2] + [D4] , [U6] = [V] + [D2] + [D3] ,

(2.19)
and there is another two-cycle W as in Fig. 2.2 with homology class [W] = [D1].
With respect to the new basis

[U1], [U2], [U3], [U5], [W] ∈ H2(MH (Cp,G), Z) , (2.20)

the intersection form becomes
⎛
⎜⎜⎜⎜⎝

2 −2 0 0 1
−2 2 0 0 −1
0 0 2 0 1
0 0 0 2 1
1 −1 1 1 2

⎞
⎟⎟⎟⎟⎠ . (2.21)

Note that the upper-left two-by-two matrix is the Cartan matrix of the affine type Â1

as the intersection form of a singular fiber of type I2.
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For our applications to branes and representations, we also need to know the type
of the five compact two-cycles V, Di (i = 1, . . . , 4) and periods of the Kähler forms
over them. The integrals of �J over V and over F were computed e.g. in [82]. They
can be expressed as the following set of relations:

∫
V

ωI

2π
= 1

2
− |αp| , diag(αp,−αp) ∼ αp ∈ T ,

∫
V

ωJ

2π
= −sign(αp)βp , diag(βp,−βp) ∼ βp ∈ t ,

∫
V

ωK

2π
= −sign(αp)γp , diag(γp,−γp) ∼ γp ∈ t

(2.22)

and ∫
F

ωI

2π
= 1 ,

∫
F

ωJ

2π
= 0 =

∫
F

ωK

2π
, (2.23)

where in the latter we used the fact that the Hitchin fiber F is holomorphic in com-
plex structure I and Lagrangian with respect to �I for any (αp,βp, γp). We assume
that αp takes its value in the range − 1

2 < αp ≤ 1
2 . Although we did not compute the

periods of the 2-forms (2.12) and (2.13) over exceptional divisors Di directly, we
claim

|αp|
2

=
∫
Di

ωI

2π
, sign(αp)

βp

2
=
∫
Di

ωJ

2π
, sign(αp)

γp

2
=
∫
Di

ωK

2π
,

(2.24)
independently of i = 1, 2, 3, 4. One way to justify this claim is to compute the peri-
ods for small values of γp + iαp ≈ 0, i.e. for t̃ ≈ 1. Another way is to use (2.17)
together with the symmetries of MH (Cp,G) that we discuss next. The formulae
above are compatible with the fact that the Weyl group symmetry of the ramifica-
tion parameters given by an overall sign change

(αp,βp,γp) → (−αp,−βp,−γp) (2.25)

leaves the moduli space completely invariant.
Furthermore, the “quantum” parameter that complexifies a Kähler parameter can

be understood as the period of the B-field in a 2d sigma-model over Di

sign(αp)ηp =
∫
Di

B

2π
, diag(ηp,−ηp) ∼ ηp ∈ T ∨ . (2.26)

In the following, we often use the parameters (αp,βp,γp,ηp) ∈ S1 × R × R × S1

and the quadruple (αp,βp, γp, ηp) ∈ T × t × t × T ∨ of the tame ramification (2.4)
at p ∈ C in the same meaning.
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Symmetries

The target space (2.3) of our sigma-model has the symmetry group1

� × MCG(Cp) = Z2 × Z2 × SL(2, Z) (2.27)

where � = Z2 × Z2 is the group of “sign changes” generated by twists of a Higgs
bundle E → Cp by line bundles of order 2. Abusing notation, this group can be
identified with H 1(C, Z2) = Z2 ⊕ Z2 where Z2 is the center of SU(2). Obviously,
SL(2, Z) is the mapping class of the (punctured) torus:

MCG(Cp) ∼= SL(2, Z) . (2.28)

Both � and MCG(Cp) are symmetries in all complex and symplectic structures. In
particular, in what follows, we will need their explicit presentations as holomorphic
symplectomorphisms with respect to �J .

In complex structure J , the “sign changes” � = Z2 × Z2 are holomorphic invo-
lutions, and its generators ξ1, ξ2 and their combination ξ3 := ξ1 ◦ ξ2 act as

ξ1 : (x, y, z) �→ (−x, y,−z) ,

ξ2 : (x, y, z) �→ (x,−y,−z) ,

ξ3 : (x, y, z) �→ (−x,−y, z) ,

(2.29)

respectively. The “sign changes” symmetry plays a very important role to under-
stand mirror symmetry [82] and connections to 4d physics in Sect. 4.

The symmetry group � leaves V invariant (as a set, not pointwise) and acts on
the exceptional divisors Di as follows:

ξ1 : D1 ↔ D2 and D3 ↔ D4 ,

ξ2 : D1 ↔ D3 and D2 ↔ D4 ,

ξ3 : D1 ↔ D4 and D2 ↔ D3 .

(2.30)

This symmetry, illustrated in Fig. 2.1, provides supporting evidence to our assump-
tion in (2.24).

In complex structure I , a point in the Hitchin base BH is invariant under � so that
it acts on each fiber as translations of order two in the Hitchin fibrationMH → BH

[61, §3.5]. It acts freely on a generic fiber. On the other hand, ξi acts on each irre-
ducible component of the singular fiber π−1(bi ), namelyU2i−1 andU2i , respectively,
where the fixed points are exactly the two double points. At the other singular fibers,
it exchanges the two double points and swaps the two irreducible components

1 The symmetry of the A-model can be larger or smaller than the group of geometric symmetries. It
can be larger due to quantum symmetries not directly visible from geometry, and it can be smaller
if some geometric symmetries are Q-exact from the A-model viewpoint.
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ξi : U2i+1 ↔ U2i+2 and U2i+3 ↔ U2i+4 , (2.31)

where the indices of U are counted modulo 6. This is consistent with the homology
classes (2.19) and the actions (2.30).

The action of SL(2, Z) on the eigenvalues of the holonomies ρ(m) and ρ(l) is
indeed given in (C.30). In particular, the non-trivial central element −1 of SL(2, Z)

indeed exchanges the eigenvalues of the holonomies ρ(m) and ρ(l) as well as the
one around the puncture (2.11) to their inverses. Therefore, it acts as the Weyl
group symmetry of SL(2, C). Subsequently, the trace coordinates x, y, z are invari-
ant under the non-trivial central element −1 so that SL(2, Z) acts projectively on
the coordinate ring O(X) holomorphic in complex structure J . However, the eigen-
values of the holonomy around the puncture are exchanged, which we denote

ι : t̃ → t̃−1 . (2.32)

A quotient of MCG(Cp) ∼= SL(2, Z) by the center is PSL(2, Z) = SL(2, Z)/ ± 1,
which is the mapping class group of a 4-punctured sphere. In order to find an explicit
presentation of PSL(2, Z), it is convenient to note that T 2 → S2 is a double cover
branched at 4 points, cf. (2.14)

PSL(2, Z) ∼= Br3 /Z (2.33)

where the second equality is a well-known relation to the Artin braid group Br3. In
terms of standard generators τ+ and τ−1

− , which satisfy the braid relation τ+τ−1
− τ+ =

τ−1
− τ+τ−1

− , the center Z of Br3 is generated by (τ+τ−1
− )3. Under the surjective map

onto PSL(2, Z), we have

τ+ �→
(
1 0
1 1

)
, τ− �→

(
1 1
0 1

)
(2.34)

and

σ := τ+τ−1
− τ+ = τ−1

− τ+τ−1
− �→

(
0 −1
1 0

)
, τ+τ−1

− �→
(
1 −1
1 0

)
. (2.35)

In the quotient (2.33), the latter two elements have order 2 and 3, respectively.
Using (2.33), we can relate our present problem to the mapping class group action

on the character variety of the 4-punctured sphere2 which is also a cubic surface of
the form (2.10) and on various branes (submanifolds) on this surface [81]:

2 In the notations of [81] we need to take (x1, x2, x3) = (−x,−y,−z), θ1 = θ2 = θ3 = 0, and
θ4 = −2 − t̃2 − t̃−2.
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τ+ : (x, y, z) �→ (x, xy − z, y) ,

τ− : (x, y, z) �→ (xy − z, y, x) ,

σ : (x, y, z) �→ (y, x, xy − z) .

(2.36)

It is easy to verify that these are indeed polynomial automorphisms of the cubic
surface (2.10) and that they satisfy the braid relation.

Note, the action of PSL(2, Z) leaves V invariant (as a set, not pointwise) and acts
on the exceptional divisors Di as on the set of Z2 torsion points on an elliptic curve,
In other words, D1 is fixed by the PSL(2, Z), also as a set, not pointwise, whereas
D2, D3 and D4 transform as points 1

2 ,
τ
2 , and

1
2 + τ

2 , respectively. In terms of the
generators of PSL(2, Z), we have explicit transformation rules

τ+ : D2 ↔ D4 and D1, D3 are fixed as a set ,

τ− : D3 ↔ D4 and D1, D2 are fixed as a set ,

σ : D2 ↔ D3 and D1, D4 are fixed as a set .

(2.37)

In addition, these generators permute the singular fibers of type I2 in the Hitchin
fibration as S3:

π−1(b2)

π−1(b1) π−1(b3)

σ

τ+

τ−

τ+

τ− σ
(2.38)

In the above, we pointed out that V is invariant under both symmetries � and
PSL(2, Z) only as a set, not pointwise. Also, the same is true about PSL(2, Z) action
on D1. While in the case of V the reason for both claims is fairly clear (e.g. it is
manifest in the t̃ → 1 limit (2.14)), the fact that PSL(2, Z) fixes D1 only as a set
and not pointwise is less obvious. In order to explain it, let us consider the limit
t̃ = 1 + ε, with ε � 1, and take (x, y, z) = (2 + a, 2 + b, 2 + c). Then, for small
values of (a, b, c), the surface (2.10) looks like a quadric

a2 + b2 + c2 − 2(ab + bc + ca) = 4ε2 ,

on which the generators τ± act as linear reparametrizations:

τ+ : (a, b, c) �→ (a, 2a + 2b − c, b) ,

τ− : (a, b, c) �→ (2a + 2b − c, b, a) .
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T
Y

X

(a) (b) (c)

Fig. 2.3 Generators and relations in the orbifold fundamental group of the once-punctured torus.
On the left, generators and relations are drawn on the double cover. The relations depicted are
T XT = X−1, TY−1T = Y , and Y−1X−1Y XT 2 = 1

2.2 DAHA of Rank One and Its Spherical Algebra

Now let us review a few necessary details of DAHA of rank one here. Much like the
Hecke algebra sits, loosely speaking, between the Weyl group and the braid group—
in the sense that the latter two can be obtained by either specialization or by omitting
some of the relations—DAHA sits in between the double affine Weyl group and the
double affine braid group. This perspective, reviewed in e.g. [83], will be useful
to us in what follows. In Cartan type A1, the double affine braid group (a.k.a. the
elliptic braid group), denoted

..
Brq=1(Z2), is simply the orbifold fundamental group

of the quotient space (T 2\p)/Z2, the quotient of a once-punctured torus by Z2. It is
generated by three generators X , Y , and T , illustrated in Fig. 2.3:

πorb
1

(
(T 2\p)/Z2

)
=
(
T, X, Y | T XT = X−1, TY−1T = Y, Y−1X−1Y XT 2 = 1

)
. (2.39)

Its central extension, denoted
..
Br(Z2), is obtained by deforming the last relation to

Y−1X−1Y XT 2 = q−1.
Then, rank-one DAHA

..
H(Z2) is obtained by imposing one more quadratic

(“Hecke”) relation:

..
H(Z2) = Cq,t

[
T±1, X±1, Y±1]/{

T XT = X−1 , Y−1X−1Y XT 2 = q−1 ,

TY−1T = Y , (T − t)(T + t−1) = 0

}
. (2.40)

This involves the second deformation parameter t . Here Cq,t is a ring of coefficients
defined as follows. Let C[q± 1

2 , t±] be the ring of Laurent polynomials in the formal
parameters q1/2 and t , and consider a multiplicative system M in C[q± 1

2 , t±] gener-
ated by elements of the form (q�t − q−�t−1) for any non-negative integer � ∈ Z≥0.
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We define the coefficient ring Cq,t to be the localization (or formal “fraction”)3 of
the ring C[q± 1

2 , t±] at M :

Cq,t = M−1
C[q± 1

2 , t±] . (2.41)

This coefficient ring contains the two central generators of the algebra
..
H(Z2),

q and t , which can be thought of as continuous deformation parameters and start
life (in any irreducible representation) as arbitrary complex numbers. Many remark-
able things happen when these two parameters assume special values, as will be
further discussed in the sequel. In a way, the behavior of the algebra and its repre-
sentations under such specializations—and the match of this behavior to the A-brane
category—is one of the most interesting aspects of the geometric/physical approach.

Another standard notation for the second deformation parameter (which is con-
venient for some of the specializations) is

t = qc . (2.42)

where c is often called the “central charge”. In what follows, we will use the short-
hand notation

..
H = ..

H(Z2) unless we wish to make a statement about DAHA of
Cartan type other than A1.

For further details and properties of DAHA, we refer the reader to the fundamen-
tal book [35]. The representation theory of DAHA there will be introduced through-
out this section, as they emerge from physics and geometry. Also, some basics of
DAHA are assembled in Appendix B.

The construction of
..
H based on the punctured torus allows us to see the action of

the symmetry group (2.27), and the symmetry plays a pivotal role in the geometric
understanding of the representation theory of (spherical) DAHA in what follows.
Under �, the generators are transformed as

ξ1 : T �→ T, X �→ −X, Y �→ Y, q �→ q, t �→ t,
ξ2 : T �→ T, X �→ X, Y �→ −Y, q �→ q, t �→ t .

(2.43)

The mapping class group SL(2, Z) acts on the generators of
..
H as follows4:

3 In other words, Cq,t is the ring of rational functions in the formal parameters q
1
2 and t where

denominators are always elements in the multiplicative system M such as

f (X)

(t − t−1)k0 (qt − q−1t−1)k1 · · · (q�t − q−�t−1)k�
, f (X) ∈ C[q± 1

2 , t±, X±] .

.
4 Although we follow the notation of [35] for the transformations τ± on the generators of DAHA
here and in (B.8), we change matrix assignments to τ± as in (2.34) and (B.10) from [35] since it is
consistent with the projective action (2.37) of SL(2, Z) on the exceptional divisors geometrically.
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τ+ : (X,Y, T ) �→ (X, q− 1
2 XY, T )

τ− : (X,Y, T ) �→ (q
1
2 Y X,Y, T )

σ : (X,Y, T ) �→ (Y−1, XT 2, T )

(2.44)

Since σ essentially exchanges the canonically conjugate variables X and Y , it is
sometimes called the Fourier transform of

..
H . Also,

..
H enjoys the following (non-

inner) involution,

ι̃ : T �→ −T, X �→ X, Y �→ Y, q �→ q, t �→ t−1 . (2.45)

It is easy to check from the Hecke relation that e = (T + t−1)/(t + t−1) is an
idempotent element (e2 = e) of

..
H . Then, the spherical subalgebra S

..
H is defined by

the idempotent projection
S
..
H := e

..
He . (2.46)

The generators of S
..
H can be identified with

x = (1 + t2)eXe = (X + X−1)e (2.47)

y = (1 + t−2)eY e = (Y + Y−1)e (2.48)

z = (q− 1
2 Y−1X + q

1
2 X−1Y )e = [x, y]q

(q−1 − q)
, (2.49)

and they satisfy relations

[x, y]q = (q−1 − q)z

[y, z]q = (q−1 − q)x

[z, x]q = (q−1 − q)y

q−1x2 + qy2 + q−1z2 − q− 1
2 xyz = (q− 1

2 t − q
1
2 t−1)2 + (q

1
2 + q− 1

2 )2 ,

(2.50)

where q = e2πi� and the q-commutator is defined by

[a, b]q := q− 1
2 ab − q

1
2 ba .

See e.g. [142] for further details. The key point is that the spherical DAHA S
..
H is

commutative at the “classical” limit q = 1 while the DAHA
..
H is not commutative

even in the q = 1 limit. Indeed, it is easy to see that in the “classical” limit q →
1, the Casimir relation (the last one) in (2.50) becomes the equation for the cubic
surface (2.10):

S
..
H −−→

q→1
O(Mflat(Cp,SL(2, C))) . (2.51)
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Thus, S
..
H is the deformation quantization Oq(X) of the coordinate ring (2.10) of the

moduli space of flat SL(2, C)-connections X = Mflat(Cp,SL(2, C)) with respect to
the Poisson bracket defined by �J [130, 131].

Here, it is worth commenting on an important issue in the context of the defor-
mation quantization of the coordinate ring on the affine cubic hypersurface of the
form (2.10). It is clear that this equation is Weyl-group invariant, so that the mon-
odromy parameter t̃ appears only through the symmetric combination t̃ + t̃−1, and
that the same symmetry applies to the Poisson structure. Moreover, if we work with
a specific value of t̃ , we will obtain the deformation quantization at a specific value
of the parameters, i.e. for a specific choice of the central character (at least for the
formal parameter t).

Since the inputs to deformation quantization depend on t̃ only in a Z2-invariant
fashion, the output Oq(Xt̃ ) will also have the corresponding symmetry. However,
this clarifies that t̃ = t , since the relations (2.50) do not depend symmetrically on t .
The proper identification is

t̃ = tq− 1
2 , (2.52)

as will be made clear by the discussion of the formal outer automorphism ι below.
There is no contradiction with the statement that S

..
H is the deformation quantization

ofO(X), since the classical limit of S
..
H still recovers the same commutative Poisson

algebra.
It is simple to check that the two involutions (2.43) straightforwardly reduce to

the symmetry of S
..
H , which is the same as (2.29). As in the classical case, the non-

trivial central element −1 ∈ SL(2, Z) acts trivially on the generators of S
..
H , and the

action of PSL(2, Z) is quantized from (2.36)

τ+ : (x, y, z) �→
(
x,

xy + yx

q1/2 + q−1/2
− z, y

)
,

τ− : (x, y, z) �→
( xy + yx

q1/2 + q−1/2
− z, y, x

)
,

σ : (x, y, z) �→
(
y, x,

xy + yx

q1/2 + q−1/2
− z

)
.

(2.53)

Thus, the symmetries � × PSL(2, Z) can be seen in outer automorphisms of S
..
H .

The other outer automorphism ι̃ in (2.45) is somewhat more complicated; it does
not preserve the idempotent, but it rather brings it into the other idempotent element

ι̃ : e = T + t−1

t + t−1
�→ ẽ = −T + t

t + t−1
. (2.54)

Thus, ι̃ maps S
..
H to the other spherical subalgebra ẽ

..
H ẽ where the Casimir relations

are different by t ↔ t−1. However, the involution ι̃ on
..
H does correspond in a sense

to an outer automorphism of S
..
H , which acts simply by
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ι : t �→ qt−1. (2.55)

Indeed, it is easy to check that this map preserves the Casimir relation in (2.50).
(Note that this automorphism only acts nontrivially when q and t are regarded as
formal elements; it does not preserve the central character.)

In general, we are free to think of any commutative algebra as the coordinate
ring of a certain affine space. In addition to the example above, we consider the
case of X = C

× × C
× for the quantum torus algebra in Appendix C, and X as 3d

N = 4 Coulomb branches in Appendix D in this paper. What is common between
all of these examples are certain key properties of X: First of all, it will always
be a non-compact manifold, so that it has a large and interesting algebra O(X) of
holomorphic functions with polynomial growth at infinity. (In fact, in this paper, X
will always be an affine variety over C.) It will also be a hyper-Kähler manifold, and
an algebra is obtained by the deformation quantization of the coordinate ring of X
with respect to a certain holomorphic symplectic form. These conditions fit into the
context of brane quantization [85] in a 2d sigma-model. It is the central idea of this
paper, and this will pave the way towards a geometric angle on the representation
theory of S

..
H .

2.3 Canonical Coisotropic Branes in A-models

Here, we will obtain the deformation quantization of the coordinate ring of X with
respect to �J by using the 2d A-model on a symplectic manifold (X,ωX). The main
character in our story is the canonical coisotropic brane, denoted Bcc. Eventually,
we will investigate the representation theory of S

..
H by the 2d A-model, but we begin

by constructing the (presumably less familiar) canonical coisotropic braneBcc here.
Subsequently, we will discuss standard Lagrangian branes and some methods for
computing spaces of morphisms in what follows. Our review is necessarily cursory;
for more details, we refer to the literature [82, 85].

In general, as was pointed out in [107], the A-model admits branes with sup-
port on coisotropic submanifolds which are equipped with a transverse holomorphic
structure. The canonical coisotropic brane is supported on the target space X itself,
which is a coisotropic submanifold of the target spaceX in a rather trivial way. More
precisely, there is a family of such branes, labeled by a complex parameter

� = |�|eiθ , (2.56)

and we will identify it with the parameter of deformation quantizations by q =
e2πi�. The fact that the support involves no additional choice is (at least part of)
the reason for the term “canonical.” On a 2n-dimensional target space, coisotropic
branes can therefore be supported in dimension n + 2 j for integer j ; when n is even,
there can be branes supported throughout the entire target. In our example, n = 2,
so that no other coisotropic branes can occur just for dimension reasons.



26 2 2d Sigma-Models and DAHA

In complex structure I = I cos θ − K sin θ, the data defining the brane Bcc is
simply a holomorphic line bundle L → X, equipped with a connection whose cur-
vature F is of course equal to the first Chern class:

Bcc :
L

X

c1(L) = [F/2π] ∈ H 2(X, Z) . (2.57)

As usual, open strings ending on Bcc source the gauge-invariant combination F +
B, where

B ∈ H 2(X,U(1)) (2.58)

is the 2-form B-field. For our family of the canonical coisotropic branes Bcc

parametrized by � on a symplectic manifold (X,ωX), the values of [B/2π] ∈
H 2(X,U(1)) and the integral class [F/2π] ∈ H 2(X, Z) are determined by the equa-
tion

� := F + B + iωX = �J

i�
, (2.59)

so that at a generic value of � in (2.56) we can write

F + B = Re � = 1

|�| (ωI cos θ − ωK sin θ) ,

ωX = Im � = − 1

|�| (ωI sin θ + ωK cos θ) . (2.60)

Since the hyper-Kähler conditions ensure that J = ω−1
X (F + B), we have the con-

dition for Bcc to be a coisotropic A-brane [107]

(
ω−1
X (B + F)

)2 = J 2 = −1 . (2.61)

In particular, when � is real, ωX = ωK andBcc is a brane of type (B, A, A), whereas
for � purely imaginary, ωX = ωI and Bcc is an (A, A, B)-brane. Bcc is also called
“canonical” because its extra data corresponds in this fashion to the holomorphic
symplectic structure.

Now comes the key point. Under this circumstance, the space Hom(Bcc,Bcc)

of open (Bcc,Bcc) strings with both ends on the canonical coisotropic brane Bcc

is a non-commutative deformation of the Dolbeault cohomology H 0,∗
∂

(X) when
X is regarded as a complex manifold with J , and we are interested in its zeroth
degree, namely the space of holomorphic functions. Moreover, for X an affine vari-
ety, a suitable condition at infinity for a “good A-model” is to allow only func-
tions of polynomial growth. In the presence of non-trivial background F + B = 0,
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B B

B

Bcc B′

Bcc

Fig. 2.4 (Left) Open strings that start and end on the same brane B form an algebra. (Right)
Joining a (Bcc,Bcc)-string with a (Bcc,B

′)-string leads to another (Bcc,B
′)-string

Hom0(Bcc,Bcc) is therefore the deformation quantization of the coordinate ring on
X, holomorphic in complex structure J [8, 85].5

In general, for any brane B, in either the A-model or the B-model, the space of
open strings states End(B) forms an algebra. This can be easily understood by con-
sidering the process of joining open strings, illustrated in Fig. 2.4 (left). However,
generically, this algebra of (B,B) strings is rather simple and not very interest-
ing. Even if the brane B is “big enough,” the algebra End(B) can be interesting,
but may be hard to identify or relate to more familiar algebras. For example, various
(B, B, B) branes represented by hyper-holomorphic sheaves in [82] lead to interest-
ing endomorphism algebras, but apart from some special cases it is hard to recognize
them in the world of more familiar algebras. What makes the canonical coisotropic
brane special is that the algebra End(Bcc) can be identified with the deformation
quantization Oq(X) of the target manifold X [117].

2.3.1 Spherical DAHA as the Algebra of (Bcc,Bcc)-Strings

In our example, the target space X = Mflat(Cp,SL(2, C)) is the moduli space of
flat SL(2, C)-connections over a punctured torus, which is a hyper-Kähler mani-
fold. Then, by construction, the algebra of (Bcc,Bcc) strings is the deformation
quantization Oq(X) of the coordinate ring on X with respect to �J , which is the
spherical DAHA S

..
H .

The parameter q of S
..
H is identified with � in the data (2.59) of Bcc via q =

exp(2πi�). It is worth emphasizing that for a generic value of q ∈ C
×, the B-field

needs to be turned on in the sigma-model. In fact, the target admits the Hitchin
fibration (2.15) where a generic fiber is a two-torus T 2. Since a generic fiber F is

5 Since we are mainly interested in the zeroth degree of morphism spaces, we will usually omit the
superscript 0, meaning Hom = Hom0 unless it is specified.
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Lagrangian with respect to ωJ and ωK and it sees only ωI , the evaluation of � in
(2.59) over F yields ∫

F

�

2π
= 1

�
,

where F + B is responsible for its real part. Because [F/2π] ∈ H 2(X, Z) is an ele-
ment of the second integral cohomology class, the B-field needs to be switched on
unless the real value of 1/� is an integer. Thus, a 2d A-model has to incorporate the
B-field for a generic value of �, and we will moreover witness that the B-field plays
a more important role in the subsequent sections.

The parameter t of S
..
H is related to the ramification parameters of the tar-

get space. In fact, the monodromy parameter (2.11) around the puncture can be
expressed by the ramification parameters (2.7) as

t̃ = exp(−π(γp + iαp)) .

Furthermore, (2.52) compares the monodromy parameter t̃ with the central character
t of S

..
H . Then, it is easy to see from (2.24) that the evaluation of (2.59) on an

exceptional divisor yields

1

2π

∫
Di

F + B + iωX =
∫
Di

�J

2πi�
= γp + iαp

2i�
= −c + 1

2
. (2.62)

where c is the central charge in (2.42).
The canonical coisotropic brane enjoys the symmetries � × PSL(2, Z) of the

target space X analyzed in Sect. 2.1, which become the outer automorphisms of
S
..
H given by (2.29) and (2.53). The symmetry (2.55) of S

..
H is indeed the Weyl

group symmetry t̃ ↔ t̃−1 of the monodromy matrix (2.11). In fact, the Weyl group
symmetry (2.25) of the ramification parameters preserves the target space. Since the
canonical coisotropic brane is sensitive only to (αp,γp) or t̃ , the symmetry (2.55)
of S

..
H is equivalent to the fact that the canonical coisotropic branes supported on Xt̃

and Xt̃−1 related by the Weyl group symmetry give rise to the isomorphic algebra

End(Bcc) ∼= S
..
H ∼= End(ι(Bcc)) . (2.63)

2.4 Lagrangian A-Branes and Modules of Oq(X)

Now we lay out the approach to the representation theory of Oq(X) by the 2d A-
model on (X,ωX). This subsection also serves as a lightning review about the cate-
gory of A-branes.

The approach to the representation theory ofOq from the 2d A-model arises from
a simple idea: given an open string boundary condition (or an A-brane)B′, the space
of (Bcc,B

′) open strings forms a vector space. As in the right of Fig. 2.4, a joining
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of (Bcc,Bcc) and (Bcc,B
′) string leads to another (Bcc,B

′) string. This implies
that the space of (Bcc,B

′) strings receives an action of the algebra of (Bcc,Bcc)

strings [85]. Namely, other A-branes B′ on X give rise to modules for Oq(X):

Oq(X) = Hom(Bcc,Bcc)� �

B′ = Hom(Bcc,B
′)

(2.64)

In our example, supports of other branesB′ are always Lagrangian submanifolds so
that we will review Lagrangian A-branesBL in the next subsection. If the support of
B′ is a Lagrangian submanifold contained in the fixed point set of an antiholomor-
phic involution ζ : X → X with ζ∗ J = −J , then the corresponding representation
admits unitarity.

We now briefly recall a few standard facts about Lagrangian A-branes [56, 57]
and their mathematical incarnation, the Fukaya category Fuk(X,ωX). For more
detail, the reader is referred to the literature, which is substantial; [7] is a good
starting point, or [110] for the fundamentals of homological mirror symmetry.

The Lagrangian Grassmannian, denoted LGr, of a symplectic vector space
parameterizes the collection of its Lagrangian subspaces. We can obtain a descrip-
tion of this space by thinking of the standard symplectic vector space (R2n,ω),
which can be equipped with a metric via a contractible choice. By the two-of-
three property, the group preserving both the symplectic and orthogonal structures is
U(n), which therefore acts on LGr(2n); the subgroup stabilizing a fixed Lagrangian
subspace is O(n), so that

LGr(2n) = U(n)/O(n) . (2.65)

There is furthermore an obvious map

det2 : LGr(2n) → U(1) (2.66)

which can be shown to induce an isomorphism of fundamental groups. The Maslov
index [3] of a loop in LGr(2n) is its image under this induced map in π1(U(1)) ∼= Z;
it is responsible for both obstructions and gradings in the Fukaya category. The
universal cover L̃Gr(2n) of LGr(2n) thus has deck group Z, and the Maslov index
of a loop is simply the element of Z that connects the endpoints of a lift to L̃Gr(2n).

Let (X,ωX) be a symplectic manifold with zero first Chern class (as is obviously
the case in our hyper-Kähler examples). There is a bundle

LGr(X) → X (2.67)

whose fiber over x ∈ X is LGr(TxX). (We hope the reader will forgive the mod-
erately abusive notation.) We can furthermore define a bundle L̃Gr(X), which is a
covering space of the total space LGr(X), such that the covering map is a bundle
map and restricts over each fiber to the universal covering map.
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A Lagrangian subspace L ⊂ X comes with an obvious lift

LGr(X)

L X
⊂

(2.68)

defined by the Lagrangian subbundle TL ⊂ TX|L. Lifting this canonical map to
L̃Gr(X) is obstructed by the image of π1(L) under the Maslov map, which is an
element of H 1(L, Z) called the Maslov class. Lagrangians with zero Maslov class
admit so-called graded lifts, which are maps

L̃Gr(X) LGr(X)

L X

·/Z

g

⊂
(2.69)

making the square commute. The set of such maps is naturally a Z-torsor under the
action of deck transformations, but no canonical choice of graded lift exists. Given
a Lagrangian object of A-Brane(X,ωX), the set of graded lifts plays the role of its
shifts.

A (rank-one) Lagrangian object of A-Brane(X,ωX) is supported on a Lagrangian
submanifold L ⊂ X of zero Maslov class, which is considered up to Hamiltonian
isotopy. The additional data required to define a Lagrangian A-brane consists of
a “Chan-Paton” bundle with unitary connection; a flat Spinc structure on L; and a
grade lift. A Chan-Paton bundle for a Lagrangian A-brane is generally endowed with
a flat Spinc structure [60, 85, 114, 154]. A Spinc structure arises if L′ does not exist
as a line bundle, but is obstructed by the same cocycle that obstructs the existence of
the square root K−1/2

L of the canonical bundle over the Lagrangian L. Namely, puta-
tive transition functions gi j and wi j of L′ and K−1/2

L , respectively, obey gi j g jkgki =
φi jk = wi jw jkwki where φi jk = ±1. In this case, the cocycle cancels out in the tran-
sition functions gi jwi j of an honest vector bundle L′ ⊗ K−1/2

L → L, called a Spinc

structure. The K−1/2
L part in a Spinc structure arises from boundary fermions of the

open worldsheet [96, Sect. 5] [92, Sect. 3.2], which gives rise to a Spinc structure of
the normal bundle to the support of a brane. (This proposal is explicitly checked by
Hemisphere partition functions in [104].) Thus, the canonical coisotropic braneBcc

is endowed with an ordinary line bundle whereas a Lagrangian A-brane is equipped
with a Spinc structure. Since most of the Lagrangian submanifolds in this paper are
of real two dimensions, there always exists a spin bundle of L, which is a square-
root of the canonical bundle K±1/2

L of L, though it is not necessarily unique. Hence,
both L′ and K−1/2

L exist as genuine line bundles in most of the examples in this
paper and we treat their tensor product L′ ⊗ K−1/2

L as a Spinc structure. However,
a subtlety arises when an A-brane degenerates into a different spin structure, which
will be considered in Sect. 2.7. Moreover, a Lagrangian A-brane is endowed with a
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flat Spinc structure: if L′ exists as a line bundle, the curvature F ′
L of L′ must obey a

gauge-invariant version of the flatness condition

F ′
L + B|L = 0 , (2.70)

in the presence of a B-field. Even if L′ does not exist as a line bundle, its square
(L′)2 does so that a half of the curvature of (L′)2 is subject to (2.70). In sum, for a
Lagrangian A-brane, we have a Chan-Paton bundle

BL :
L′ ⊗ K−1/2

L

L

(2.71)

with a flat Spinc structure (2.70). We will sometimes denote a Chan-Paton bundle
by BL → L, abusing notation. Morphisms between Lagrangian objects are defined
in the usual way using the Floer–Fukaya complex generated by intersection points
between the Lagrangians; see [7] for details.

Defining the space of morphisms between Lagrangian and coisotropic objects is
a bit more subtle, and is discussed in detail for flat targets in [8]. The essential idea is
that the morphism space should be thought of as related to the space of holomorphic
functions on the intersection, with respect to the transverse holomorphic structure
on coisotropic objects. For Lagrangian objects, this complex structure obviously
plays no role, but instanton corrections can appear, in the guise of the contribu-
tions of holomorphic disks to the differential in the Floer–Fukaya complex. On the
other hand, forBcc, the transverse holomorphic structure is just a standard complex
structure and plays an essential role, but instanton corrections are forbidden. In the
case of general coisotropic branes, both phenomena can be expected to be relevant.
(For some further discussion of this fact from the worldsheet perspective, as well as
generalizations to branes of higher rank, see [91].)

In a hyper-Kähler manifold, we can make use of a B-model analysis as in [82,
85] to compute the dimension of open strings. The dimension of the representation
space L := Hom(Bcc,BL) associated to a compact Lagrangian brane BL can be
computed with the help of the Grothendieck–Riemann–Roch formula:

dimL = dim H 0(L,Bcc ⊗ B−1
L )

=
∫
L
ch(Bcc) ∧ ch(B−1

L ) ∧ Td(TL) ,
(2.72)

Here we denote, by B, a bundle for the corresponding brane including an effect of
the B-field, abusing notation.

If a Lagrangian L is of real two dimensions, then the Todd class Td(TL) =
ch(K−1/2

L ) Â(TL) is equivalent to ch(K−1/2
L ). Consequently, the formula becomes

a very simple form
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dimL =
∫
L
ch(Bcc) =

∫
L

F + B

2π
, (2.73)

for a real two-dimensional Lagrangian L.
As explained in [85], for a Lagrangian brane BL, the space of open strings

Hom(Bcc,BL) can be understood as a geometric quantization of L with a curvature
on a “prequantum line bundle” Bcc ⊗ B−1

L . If X is a complexification of L in the
sense of [85], then the action of End(Bcc) on the quantization Hom(Bcc,BL) plays
the role of the quantized algebra of operators.

Finally, let us mention a brief word about coefficients. In general, the Fukaya
category is defined with coefficients in the Novikov ring; this is necessary because
the sums over instanton contributions that define the differential are formal and not
necessarily guaranteed to converge. Similarly, deformation quantization of a Poisson
manifold [53, 77, 111] is not guaranteed to produce convergent series, but only
a formal deformation in general. We will restrict ourselves to target spaces X for
which a “good A-model” is expected to exist, meaning that all the series involved
should in fact converge. The existence of a complete hyper-Kähler metric on X
should be sufficient to ensure this; see [85] for further discussion of this issue.

We will proceed to compare the two categories A-Brane(X,ωX) and Rep(S
..
H)

via the brane quantization.6 For the comparison, the symmetries play a crucial role.
In fact, the symmetries of the target space X become the group of auto-equivalences
of the categories. More concretely, we will investigate the action of � × PSL(2, Z)

((2.29) and (2.53)) and the Weyl group Z2 generated by ι (2.55) on both categories.
Now we set up the framework so that we will start our expedition to “see” and

“touch” representations of S
..
H as if they were geometric objects in the target X.

2.5 (A, B, A)-Branes for Polynomial Representations

DAHA was introduced by Cherednik in the study of Macdonald polynomials from
the viewpoint of representation theory [33] in which the distinguished infinite-
dimensional representation on the ring P := Cq,t [X±]Z2 of symmetric Laurent
polynomials, called polynomial representation, plays an important role. (See also
[38] for finite-dimensional modules.) Here, Laurent polynomials in a single vari-
able X over Cq,t are symmetrized under the inversion Z2 : X �→ X−1 so that the
ring can also be expressed asP = Cq,t [X + X−1]. This polynomial representation
of S

..
H is defined by the following formulas:

6 Note, that spherical DAHA is Morita-equivalent to DAHA (2.40), i.e. the category of representa-
tions of DAHA is equivalent to the category of representations of its spherical subalgebra [131]:

Rep(
..
H) ∼= Rep(S

..
H) . (2.74)

See also (4.26) for the explanation from the 2d sigma-model.
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x �→ X + X−1,

pol : S ..H → End(P), y �→ t X − t−1X−1

X − X−1
� + t−1X − t X−1

X − X−1
�−1,

z �→ q
1
2 X

t X − t−1X−1

X − X−1
� + q

1
2 X−1 t

−1X − t X−1

X − X−1
�−1,

(2.75)
where �±(X) = q±X is the exponentiated degree operator, often called the q-shift
operator, that appeared in (C.15) for the quantum torus algebra. In particular, pol(y)
is the so-calledMacdonald difference operator, whose eigenfunctions are symmetric
Macdonald polynomials [35, 121]. The Macdonald functions of type A1 are labeled
by spin- j

2 representations, and can be expressed in terms of the basic hypergeometric
series

Pj (X; q, t) := X j
2φ1(q

−2 j , t2; q−2 j+2t−2; q2; q2t−2X−2) . (2.76)

They are acted on diagonally by the Macdonald difference operator, with eigenval-
ues

pol(y) · Pj (X; q, t) = (q j t + q− j t−1)Pj (X; q, t) . (2.77)

Under this basis, the actions of the other generators are

pol(x) · Pj (X; q, t) =Pj+1(X; q, t) +
(
1 − q2 j

) (
1 − q2 j−2t4

)
(
1 − q2 j−2t2

) (
1 − q2 j t2

) Pj−1(X; q, t) ,

pol(z) · Pj (X; q, t) =tq j+ 1
2 Pj+1(X; q, t) + t−1q− j+ 1

2

(
1 − q2 j

) (
1 − q2 j−2t4

)
(
1 − q2 j−2t2

) (
1 − q2 j t2

) Pj−1(X; q, t) .

(2.78)

In fact, the Macdonald polynomials Pj form a basis for the ring P over Cq,t ,
so that the polynomial representation can be studied with the help of raising and
lowering operators [105]:

R j := x − q j− 1
2 t z = X (q j t−1Y − q2 j t2) + X−1(q j tY−1 − q2 j t2) ,

L j := x − q− j− 1
2 t−1z = X (q− j t−3Y − q−2 j t−2) + X−1(q− j t−1Y−1 − q−2 j t−2) .

(2.79)
These operators relate adjacent Macdonald polynomials, respectively increasing or
decreasing the value of j :

pol(R j ) · Pj (X; q, t) = (1 − q2 j t2)Pj+1(X; q, t) , (2.80)

pol(L j ) · Pj (X; q, t) = (1 − q2 j )(1 − q2( j−1)t4)

q2 j t2(q2( j−1)t2 − 1)
Pj−1(X; q, t) . (2.81)

See Fig. 2.5 for a schematic diagram of this action. At t = 1, this represen-
tation reduces to the pullback of the lift of P y1=1 in Proposition C.6 so that
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1 P1 · · · · · · Pj−1 Pj · · ·
L1 L2 Lj−1 Lj Lj+1

R0 R1 Rj−2 Rj−1 Rj

Fig. 2.5 The action of raising and lowering operators on Macdonald polynomials

Cherednik’s polynomial representation can be understood as its deformation from
the symmetrized quantum torus to DAHA. Since the classical limit (q = 1) of the
Macdonald eigenvalues (2.77) is always t + t−1, the support of the corresponding
A-brane BP is given by

P = {y = t̃ + t̃−1 , z = t̃−1x} . (2.82)

While the parameter t in S
..
H coincides with the monodromy parameter t̃ at the

classical limit (q = 1) (see (2.52)), we use t̃ to specify the position of the brane
because it is the geometric parameter ofX. Since it is of type (A, B, A), it is happily
a Lagrangian submanifold with respect to ωX for any value of � or q.

To understand the brane BP for the polynomial representation P of S
..
H better,

it is illuminating to consider its relation to the skein module. The skein module of
type A1 [135, 143] of an oriented 3-manifold M3 is defined as

Sk(M3, SU(2)) := Sk(M3) = C[q± 1
2 ](isotopy classes of framed links in M3)

(
= q−1/2 + q1/2 , = −q − q−1

)
(2.83)

The skein algebra Sk(C) associated to an oriented closed surface C is defined as

Sk(C) := Sk(C × [0, 1],SU(2)) , (2.84)

where the multiplication Sk(C) × Sk(C) → Sk(C) is given by stacking. As a result,
Sk(C) is a C[q± 1

2 ]-associative algebra [144].
At the q = 1 specialization, the skein module Sk(M3) becomes a commutative

algebra. Moreover, it was shown in [26, 136] that by assigning a loop γ : S1 → M3

to Tr(ρ(γ)) where ρ : π1(M3) → SL(2, C) is the holonomy homomorphism, the
classical limit q = 1 of Sk(M3) is isomorphic to the coordinate ring of the character
variety Mflat(M3,SL(2, C)). Hence, the skein module Sk(M3) can be understood
as a BV quantization [66]

Sk(M3) ∼= BVq(Mflat(M3,SL(2, C))) .

The skein module of a closed 3-manifold will be studied in Sect. 3.2.
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If a 3-manifold has a boundary ∂M3 = C , then we have a module Sk(C)
�

Sk(M3) by pushing a framed links in a thickened boundary C × [0, 1] into the
bulk M3. In fact, Mflat(M3,SL(2, C)) is a holomorphic Lagrangian submanifold
of Mflat(C,SL(2, C)) with respect to the holomorphic symplectic form �J . There-
fore, it can be understood as an (A, B, A)-brane BH on Mflat(C,SL(2, C)), called
a Heegaard brane. From the viewpoint of brane quantization, the action of the skein
algebra can be understood as

Sk(C) ∼= Hom(Bcc,Bcc)� �

Sk(M3) ∼= Hom(Bcc,BH )

. (2.85)

Of our particular interest is the skein algebra Sk(T 2) of a torus, which is the
t = q specialization of S

..
H [24]. Also, the skein module Sk(S1 × D2) of the solid

torus is the Grothendieck ring of the category of finite-dimensional representations
of Uq(sl(2))

Sk(S1 × D2) ∼= K 0(RepUq(sl(2))) ⊗ C[q± 1
2 ] , (2.86)

which is spanned by Chebyshev polynomials Sj (z) of the second kind [54]. They
are recursively defined by

zS j (z) = Sj+1(z) + Sj−1(z) (2.87)

with the initial conditions S0(z) = 1, S1(z) = z, and they are actually the t = q spe-
cialization of the Macdonald polynomials

Sj (X + X−1) = Pj (X; q, t = q) = X j+1 − X− j−1

X − X−1
. (2.88)

Consequently, the polynomial representationP of S
..
Ht=q is indeed the skein module

Sk(T 2)

�

Sk(S1 × D2). In fact, the support of the Heegaard brane for the solid
torus is given by y = 2, which is the A-polynomial of the unknot complement in
S3. Indeed the eigenvalue of the y operator on Sj (X + X−1) under the polynomial
representationP at t = q is q j+1 + q− j−1 and its classical limit is y = 2. Thus, the
polynomial representation P of S

..
H can be understood as the t-deformation of the

skein module Sk(T 2)

�

Sk(S1 × D2) [93].
Let us consider how the symmetries of S

..
H act on the polynomial representation

P . For instance, an action of PSL(2, Z) onP can be seen by using the maps (2.53)
combined with (2.75). It is easy to see from (2.53) that the generators of PSL(2, Z)

maps BP to another (A, B, A) brane
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τ+(P) = {z = t̃ + t̃−1 , x = t̃−1y} ,

τ−(P) = {y = t̃ + t̃−1 , z = t̃−1x} ,

σ(P) = {x = t̃ + t̃−1 , y = t̃−1z} .

(2.89)

Under the modular T -transformation τ−, the support does not change and the poly-
nomial representationP is invariant, τ−(P) ∼= P since the Macdonald polynomi-
als are transformed under the modular T -transformation τ− as

τ−(Pj ) = q− j2

2 t− j Pj � Tj j ′ = q− j2

2 t− jδ j j ′ . (2.90)

The proof is given at the end (B.36) of Appendix B.2.1. The image σ(P) of the
polynomial representation of S

..
H under the S-transformation σ is called the func-

tional representation, which is explained in Appendix B.2.2. As for the group � of
the sign changes, the image ξ1(P) is isomorphic to itselfP ∼= ξ1(P). On the other
hand, the image under the involution ξ2 can be obtained by multiplying the minus
sign to y and z as in (2.29) and the support of the corresponding brane is

ξ2(P) = {y = −t̃ − t̃−1 , z = −t̃−1x} . (2.91)

Finally, the outer automorphism (2.55) changes the Chan-Paton bundle of BP as
explained in Sect. 2.3.1 and the support becomes

ι(P) = {y = t̃ + t̃−1 , z = t̃ x} . (2.92)

Note that the ι image ι(P) of the polynomial representation can be obtained by
changing t → q/t in (2.75).

The perspective from the brane quantization also sheds new light on infinite-
dimensional representations. We have seen that Cherednik’s polynomial representa-
tion (2.75) corresponds to the A-brane BP (2.82) at the particular value of y. It is
natural to expect that it can be deformed in such a way that the corresponding brane
is supported on a generic point of y.

This consideration leads us to the following. Let us consider the multiplicative
system M̃ ⊂ Cq,t [X±] generated by all elements of the form (q�X − q−�X−1) for
all integers � ∈ Z. Then there is a family of representations of S

..
H on the localiza-

tion7 of the ring of Laurent polynomials by M̃

P y1 = M̃−1
Cq,t [X±] , (2.93)

7 In other words,P y1 is the ring of rational functions with coefficients in Cq,t where denominators
are always elements in the multiplicative system M̃ such as

f (X)

(q−m X − qm X−1)k−m · · · (X − X−1)k0 · · · (q�X − q−�X−1)k�
, f (X) ∈ Cq,t [X±] .

.
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labeled by a parameter y1 ∈ C
× where the representations are defined by

x �→ X + X−1,

poly1 : S ..H → End(P y1 ), y �→ y1
t X − t−1X−1

X − X−1
� + y−1

1
t−1X − t X−1

X − X−1
�−1,

z �→ q
1
2 y1X

t X − t−1X−1

X − X−1
� + q

1
2 (y1X)−1 t

−1X − t X−1

X − X−1
�−1 .

(2.94)
Concretely, one is free to deform Cherednik’s polynomial representation (2.75) to
this larger representation parametrized by y1, as long as we allow denominators to
be elements of the multiplicative system M̃ . Only at y1 = 1, it decomposes into two
irreducible representations where one is Cherednik’s polynomial representation, and
the other irreducible representation is

M̃−1
Cq,t [X±]Z2 .

When t = 1, the story reduces to the polynomial representations of the symmetrized
quantum torus discussed in Appendix C.3.2. Thus, the support of the corresponding
brane By1

P is expected to be

suppBy1
P = {y = y−1

1 t̃ + y1 t̃
−1} .

In fact, the eigenfunction of y under poly1 that generalizes the Macdonald poly-
nomials is constructed in [22, 112, 118]8

Z(X, y1, q, t) = 2φ1
(
y21 , t

2; q2t−2y21 ; q2; q2t−2X−2
)

, (2.95)

where the eigenvalue is

poly1(y) · Z = (y−1
1 t + y1t

−1)Z . (2.96)

Thus, for a generic value of y1, the eigenfunction is an infinite hypergeometric series
(2.95). However, as easily seen from (2.76), the series truncates to the symmetric
Macdonald polynomial

Z(X, y1 = q− j , q, t) = X− j Pj (X; q, t) . (2.97)

at the specialization y1 = q− j ( j ∈ Z≥0).
A geometric interpretation of the multiplicative system M̃ can be given by think-

ing about the t = 1 limit, where we are interested in the quotient map C
× × C

× →
(C× × C

×)/Z2. After deforming the target of this covering map, no natural rami-
fied twofold cover by C

× × C
× exists. However, such a cover can be constructed

once we extract the Z2-invariant points X = ±1. In fact, O(C×\{X = ±1}) admits

8 Z is the so-called uncapped vertex function in the quantum K-theory of T ∗
CP1.
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the generator 1
X−X−1 . A related story exists in the rational limit, where the relevant

geometry is the deformation of the A1 singularity (C × C)/Z2 to the total space of
T ∗

CP1; we discuss this in detail in Appendix B.2.4.

2.6 Branes with Compact Supports and Finite-Dimensional
Representations: Object Matching

Cherednik’s polynomial representation is of particular significance due to the the-
orems of Cherednik [35, Sect. 2.8–9], which classify finite-dimensional representa-
tions of S

..
H obtained as quotients of the polynomial representation paired with the

action of outer automorphisms. Similar to the theory of Verma modules, the polyno-
mial representation is generically irreducible. A raising operator (2.80) never be null
since the Macdonald polynomial P2 j always has a factor (1 − q2 j t2) in the denomi-
nator. However, it can occur that a lowering operator L j annihilates one of the Mac-
donald polynomials Pj when certain conditions on the central character are satisfied.
If this occurs, Pj generates a subrepresentation, and a finite-dimensional representa-
tion of the spherical DAHA appears as the quotientP/(Pj ). We can therefore study
finite-dimensional representations by asking that the condition pol(L j ) · Pj = 0 be
satisfied for some j , i.e. that the factor

(1 − q2 j )(1 − q( j−1)t2)(1 + q( j−1)t2)

q2 j t2(q2( j−1)t2 − 1)
(2.98)

on the right hand side of (2.81) vanishes.
This amounts to the following three cases:

q2n = 1 , (2.99a)

t2 = −q−k , (2.99b)

t2 = q−(2�−1) . (2.99c)

Here, the exponent in the right hand side of (2.99c) must be an odd integer in order
for the denominators of Macdonald polynomials as well as (2.98) to be non-zero;
even exponents are excluded by the definition of the coefficient ring Cq,t in (2.41).
We write this odd integer as 2� − 1. Each of these separate shortening conditions
will naturally appear as an existence condition of an A-brane with compact support
in what follows; we will examine each of the resulting finite-dimensional represen-
tations and the corresponding compact Lagrangian branes in turn.
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2.6.1 Generic Fibers of the Hitchin Fibration

First we consider analogous A-branes in this setting; the ones supported on generic
fibers in the Hitchin fibration. As explained in Sect. 2.1, the Hitchin fibration (2.15)
is completely integrable, and a generic Hitchin fiber F is holomorphic in complex
structure I while it is a complex Lagrangian submanifold from the viewpoint of
the holomorphic two-form �I for a generic ramification data (2.4). Namely, it is
a Lagrangian submanifold of type (B, A, A) for any values of (αp,βp, γp)-triple.
Therefore, a generic fiber F can be Lagrangian in a symplectic manifold (X,ωX)

only when the canonical coisotropic brane Bcc obeys the condition θ = 0 in (2.60)
so that

ωX = −ωK

�
, and F + B = ωI

�
. (2.100)

With θ = 0, there is no A-brane supported on F in the symplectic manifold (X,ωX).
Accordingly, � = |�| is real (i.e. |q| = 1), and the canonical coisotropic brane Bcc

is an A-brane of type (B, A, A).
An analogous brane appears in the brane quantization of C

× × C
× for the quan-

tum torus algebra. As in Appendix C.2.1, a brane is supported on a fiber T 2 of the
elliptic fibration T ∗T 2 ∼= C

× × C
×, which gives rise to a finite-dimensional rep-

resentation, called the cyclic representation. Therefore, we can study a brane sup-
ported on a generic fiber F of the Hitchin fibration, comparing with the case of the
quantum torus algebra.

The branes are indexed by a position of the Hitchin base BH (see also Appendix
C.2.1). Also, the flatness condition (2.70) of the line bundleL′ an A-brane supported
BF is

F ′
F + B

∣∣
F = 0 .

Since F is topologically a two-torus, the flat Spinc structure L′ ⊗ K−1/2
L of BF

can have non-trivial U(1)2 holonomy with a choice of spin structure [85]. The
branesBλ

F are parametrized by λ = (xm, ym) ∈ C
× × C

× where the absolute values
(|xm |, |ym |) describe its position and the angular phases illustrate the U(1)2 holon-
omy with a choice of spin structures. Namely, the angular phase U(1) encodes the
holonomy U(1) and a choice of spin structures Z2 along a one-cycle of a Riemann
surface via

1 → Z2 → U(1) → U(1) → 1 .

We assign the plus sign + for 1 ∈ Z2 to the Ramond spin structure, and the minus
sign − for −1 ∈ Z2 to the Neveu-Schwarz spin structure. The choice of spin struc-
tures appears in the representation of the symmetrized quantum torus discussed in
Appendix C.3.2.

Consequently, the computation of the dimension (2.73) of the space
Hom(Bcc,B

λ
F) is reduced to the period integral (2.23)
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dimHom(Bcc,B
λ
F) =

∫
F

F + B

2π
=
∫
F

ωI

2π�
= 1

�
(2.101)

for arbitrary λ. Hence, this leads to the Bohr-Sommerfeld quantization condition
� = 1/m, or equivalently that q = e2πi/m is a primitive mth root of unity for m ∈
Z>0. In fact, since [F/2π] is an integral cohomology class in H 2(X, Z), the fiber
class relation (2.17) requires

∫
F F/2π to be an even integer. Thus, if m is an odd

positive integer, then we need non-trivial B-flux with

∫
F

B

2π
= −

∫
F

F ′
F

2π
= 1 , (2.102)

up to an even integer shift. For instance, this can be achieved if the B-field flux over
V is 1/2 and those over the exceptional divisors Di (i = 1, . . . , 4) are zero.

In order for the (Bcc,B
λ
F)-strings exist, q has to be a primitive mth root of unity

whereas t can be generic. Under this condition, the action of S
..
H under the general-

ized polynomial representation poly1 in (2.94) commute with Xm − xm for xm ∈ C
×

because the shift operator � acts trivially on it. Consequently, the ideal (Xm − xm)

is invariant under poly1 so that the quotient space

F λ
m = P y1/(Xm − xm) ,

is also a representation of S
..
H . Since the Taylor expansion of a denominator in

the multiplicative system M̃ always truncates under the condition Xm = xm , this
is indeed an m-dimensional representation parametrized by λ = (xm, ym) where y1
is any mth root of ym . Hence, we can identify Hom(Bcc,B

λ
F) with F λ

m when q is a
primitive mth root of unity where the parameter λ ∈ C

× × C
× exactly matches.

For generic values of λ = (xm, ym), the support of a brane Bλ
F is mapped to

another Hitchin fiber up to Hamiltonian isotopy under the PSL(2, Z) action, and the
holonomy of the Chan-Paton bundle, which is a point in the dual torus Jac(F), is
also transformed appropriately. Namely, PSL(2, Z) acts on λ. On the other hand, a
generic fiber is invariant as a set under the group � of the sign changes as we have
seen in Sect. 2.1. Correspondingly, the representation F λ

m is invariant under � at a
generic value of λ.

Setting y1 = 1, we can symmetrize the story [35, Theorem 2.8.5 (iv)]. Namely,
since the ideal (Xm + X−m − xm − x−1

m ) is invariant under Cherednik’s polynomial
representationP due to the same reason, we have an m-dimensional representation

F (xm ,+)
m = P/(Xm + X−m − xm − x−1

m ) . (2.103)

In this case, the corresponding braneB(xm ,+)

F supported on a Hitchin fiber intersects
with the support P (2.82) of the polynomial representation. Also, the Chan-Paton
bundle has the trivial holonomy and the Ramond spin structure around one genera-
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tor, say the (0, 1)-cycle, of π1(F) ∼= Z ⊕ Z. The parameter xm encodes its position
in the x coordinate and the holonomy around the other generator of π1(F).

Therefore, the representations of this family are analogous to the
finite-dimensional representations of both symmetrized and ordinary quantum torus
in terms of A-branes on fibers of the elliptic fibration of the target in the 2d A-
models as illustrated in Appendix C. As in the case of the symmetrized quantum
torus Appendix C.3, if a brane BF with trivial holonomies moves to a special posi-
tion, we will see below that a special phenomenon occurs.

2.6.2 Irreducible Components in Singular Fibers of Type I2

As in Fig. 2.2, the Hitchin fibration has three singular fibers of Kodaira type I2 for
generic ramification parameters of (αp,βp, γp). Since they are still fibers in the
Hitchin fibration, the irreducible components Ui (i = 1, . . . , 6) in a singular fiber
are also Lagrangian submanifolds of type (B, A, A). Therefore,Bcc needs to satisfy
(2.100) in order for BUi to be A-branes as in the previous subsection.

For instance, let us investigate a module that the brane BU1 gives rise to. The
curvature of the line bundle L′ should obey the flatness condition (2.70)

F ′
U1

+ B|U1
= 0 . (2.104)

SinceU1 is topologically CP1 and a position is fixed, there is no deformation param-
eter associated to the braneBU1 . Subsequently, one can evaluate the dimension for-
mula (2.73)

dimHom(Bcc,BU1) =
∫
U1

F + B

2π
=
∫
U1

ωI

2π�
= 1

2�
(2.105)

Consequently, the brane BU1 can exist only at 1/(2�) = n ∈ Z>0, or equivalently
when q is a primitive 2nth root of unity.

This is exactly one (2.99a) of the shortening conditions, and under this condition
a lowering operator (2.81) annihilates the Macdonald polynomial

pol(Ln) · Pn(X; q, t) = 0 where Pn(X; q, t) = Xn + X−n . (2.106)

Therefore, the quotient space

U (1)
n := P/(Pn) (2.107)

by an ideal (Pn) is an n-dimensional irreducible representation of spherical DAHA
[35, Theorem 2.8.5 (ii)] so that one can identify
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U (1)
n = Hom(Bcc,BU1) .

As seen in Sect. 2.1, the irreducible component U1 is invariant under the sign
change ξ1 whereas it is mapped to U2 under ξ2 (2.31). In fact, it follows from the
form (2.106) of Pn(X) that the finite-dimensional moduleU (1)

n is invariant under the
sign flip ξ1. On the other hand, the sign change ξ2 leads to another non-isomorphic
finite-dimensional module. Thus, the brane ξ2(BU1) corresponds to a brane sup-
ported on the other irreducible component U2 in the same singular fiber from which
the module comes from

U (2)
n := ξ2(U

(1)
n ) = Hom(Bcc,BU2) .

In a similar fashion, a brane BUi supported on another irreducible component in a
singular fiber gives rise to an image of U (1)

n under PSL(2, Z) and the sign changes
ξ1,2. The transformation rule can be read off from (2.38) so that the branesBU1,2 are
invariant under τ− whereas they are mapped as

σ(BU1) = BU3 , σ(BU2) = BU4 ,

τ+(BU1) = BU5 , τ+(BU2) = BU6 .
(2.108)

The corresponding modules U (i)
n are obtained from U (1)

n in the same way.

2.6.3 Moduli Space of G-Bundles

Next, we consider a brane BV supported on the moduli space V of G-bundles. For
the sake of brevity, let us first see the case of βp = 0. If � is real, only αp can be
turned on while γp must vanish in order for V to be Lagrangian with respect to ωK .
As � = |�|eiθ is rotated θ = 0 in the complex plane, the symplectic form we are
interested in is also rotated from ωK to ωX according to (2.60). However, this rota-
tion can be actually compensated by switching on γp so that V can stay Lagrangian
with respect to ωX. According to (2.22) and (2.60), the set V is Lagrangian with
respect to ωX when the following condition holds:

Im

(
1
2 − αp

)+ iγp

�
= 0 (2.109)

As a simple check, one can easily see from (2.22) and (2.62) that the integral of the
symplectic form is zero

∫
V

Im �

2π
=
∫
V

ωX

2π
= 0 , (2.110)
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In addition, if βp = 0, the submanifold V is also Lagrangian with respect to ωJ .
Namely, it is a complex Lagrangian submanifold with respect to a holomorphic
two-form ωX + iωJ . When βp is varied, V stays as a Lagrangian submanifold with
respect to ωX while they are no longer Lagrangian with respect to ωJ . In fact, the
variation of βp does not change the holomorphic symplectic form �J = ωK + iωI ,
and therefore keeps ωX fixed. In conclusion, V can be Lagrangian with respect to
ωX only when (2.109) holds. Since our concern is the A-model in the symplectic
manifold (X,ωX), the value of βp can be arbitrary. For generic (βp, γp), V is no
longer a Lagrangian of type (B, A, A), and it is therefore not contained in a fiber
of the Hitchin fibration. Nonetheless, unlike a Hitchin fiber, we can consider the
A-model in a generic symplectic form ωX in (2.60) where � can take any complex
value.

Under the condition (2.109) with a generic value of �, V is a unique compact
Lagrangian submanifold, which is topologically CP1. Hence, there is no defor-
mation parameter for BV. Consequently, we obtain the dimension of the space of
(Bcc,BV)-strings from (2.62)

dimHom(Bcc,BV) =
∫
V

F + B

2π
= 1

2�
− γp + iαp

i�
= 1

2�
+ 2c − 1 . (2.111)

The Bohr-Sommerfeld quantization condition imposes its dimension as a positive
integer 1/2� + 2c − 1 = k + 1 ∈ Z>0, or equivalently t2 = −qk+2.

One can observe that this quantization condition is equivalent to the image of
the shortening condition (2.99b) under the involution ι. In fact, under the shorten-
ing condition t2 = −qk+2, the lowering operator in the ι-image of the polynomial
representation becomes an annihilation operator

pol(Lk+1) · Pk+1(X; q, t)
∣∣∣
t→ q

t

= 0 .

Consequently, the quotient space by an ideal (Pk+1)

ι(Vk+1) := ι(P)/(Pk+1(X; q,
q
t )) (2.112)

is a (k + 1)-dimensional irreducible representation of S
..
H [132]. This representation

is called the additional series in [35, §2.8.2], and we identify

ι(Vk+1) = Hom(Bcc,BV) .

In fact, the support (2.92) of the brane ι(BP) intersects with V at t2 = −qk+2 so
that Hom(ι(BP),BV) ∼= C becomes non-trivial. Hence, ι(Vk+1) can be obtained as
the quotient of ι(P) as in (2.112).

As we have seen at the end of Sect. 2.1, the submanifold V is geometrically
invariant under the sign changes ξ1,2 so that we expect that the corresponding
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module Vk+1 is also endowed with the same property. When t2 = −qk+2, the Mac-
donald polynomials obey

Pk+1(−X; q,
q
t ) = (−1)k Pk+1(X; q,

q
t ) ,

which implies that ι(Vk+1) is indeed invariant under ξ1. In addition, it is easy to
check that the full set of y-eigenvalues (the ι-image of (2.77)) of ι(Vk+1) is also
invariant under ξ2.

What makes the space of (Bcc,BV)-strings even more interesting is that it also
carries a PSL(2, Z) action. Indeed, as also explained in Sect. 2.1, the submanifold
V is invariant under PSL(2, Z) symmetry and, as a result, the module ι(Vk+1) is a
PSL(2, Z) representation.

Of course, it is then natural to ask which representation it is, and in particular,
what the corresponding S and T matrices are. To this end, it is more convenient to
consider the space of (Bcc,BV)-strings in the target Xt̃−1 under (2.32) or (2.25).
Then, the corresponding representation is given by

Vk+1 := P/(Pk+1) (2.113)

under the shortening condition (2.99b). Since the basis fo Vk+1 is spanned by the
Macdonald polynomials Pj (X) ( j = 0, . . . , k), the modular T -transformation τ−
acts diagonally in this basis due to (2.90). Under the modular S transformation, this
basis is transformed to Pj (Y ) and the submanifoldV intersects with both the support
(2.82) of the branesBP and that (2.89) of σ(BP). Hence, the modular S-matrix can
be written as

Sj j ′ = pol(Pj (Y
−1)) · Pj ′(X)

∣∣
X=t−1 = Pj (tq

j ′ ; q, t) Pj ′(t
−1; q, t) . (2.114)

This is first introduced by Cherednik [34] as a symmetric bilinear pairing of Mac-
donald polynomials, which we also denote by [Pj , Pj ′ ] as in (B.21). Moreover, it
becomes of rank (k + 1) when t2 = −q−k , and it acts on Vk+1. Therefore, we find
explicit forms of the S and T matrices as follows, and we will also find a 3d inter-
pretation of this PSL(2, Z) representation in §3.1.1.

Conjecture 2.1 The space Vk+1 is a (k + 1)-dimensional PSL(2, Z) representation,
with modular S and T matrices given by

Tj j ′
∣∣
V k+1

= e
πik
12 q− k(k−1)

12 i− j q
j (k− j)

2 δ j j ′ 0 ≤ j, j ′ ≤ k

S j j ′
∣∣
V k+1

= a−1
k g j (q, t = iq−k/2)−1Pj (iq

j ′−k/2; q, t = iq−k/2) Pj ′ (iq
k/2; q, t = iq−k/2) .

(2.115)
These matrices provide the PSL(2, Z) representation for “refined Chern-Simons the-
ory”.

Here we normalize the modular S-transformation (2.114) by the Macdonald
norm of type A1 (See (B.15) for the definition)
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g j (q, t) := (q2 j ; q−2) j (t4; q2) j

(q2 j−2; q−2) j (t2q2; q2) j
(2.116)

and

ak =
⎧⎨
⎩

√
2
∏ k−3

2
i=0(q

1
4+ i

2 + q− 1
4− i

2 ) k : odd

2
∏ k−4

2
i=0(q

1
2+ i

2 + q− 1
2− i

2 ) k : even

so that S2 = 1. We also normalize the T -transformation (2.90) by eπik/12q−k(k−1)/12

so that (ST )3 = 1. For example, the first non-trivial case occurs at k = 1

T
∣∣
V 2

= eπi/12

(
1 0
0 −i

)
, S

∣∣
V 2

= 1√
2

(
1 −i(q

1
2 − q− 1

2 )

i(q
1
2 − q− 1

2 )−1 −1

)
.

Next, we turn to less familiar and more interesting modular representation that arises
from another Lagrangian A-brane in a similar fashion.

2.6.4 Exceptional Divisors

Now let us consider an interesting A-braneBDi supported on an exceptional divisor
Di , i = 1, . . . , 4. As we reviewed in the earlier part of this section, the ramifica-
tion parameters (αp,βp,γp) play the role of resolution/deformation parameters for
Di . In particular, when βp = 0 and � is real, only αp can be turned on while γp

must vanish in order for Di to be Lagrangian with respect to ωK . As � = |�|eiθ
is rotated θ = 0 in the complex plane, the exceptional divisors Di stay Lagrangian
with respect to ωX if the deformation parameter γp + iαp ∈ C in complex structure
J is proportional to i�, namely,

Im
γp + iαp

2i�
= 0 . (2.117)

Here the value of βp can be arbitrary as in the previous case. It is easy to verify
from (2.24) and (2.62) that

∫
Di

Im �

2π
=
∫
Di

ωX

2π
= 0 .

The story goes as before. The flatness condition (2.70) of the Chan-Paton bundle
for the brane BDi is

F ′
Di

+ B
∣∣
Di

= 0 ,

Since it is topologically CP1, there is no holonomy and no deformation parameter
forBDi . Subsequently, the dimension can be computed as
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dimHom(Bcc,BDi ) =
∫
Di

F + B

2π
= −c + 1

2
. (2.118)

The Bohr-Sommerfeld quantization condition imposes its dimension as a positive
integer −c + 1/2 = � ∈ Z>0, or equivalently t2 = q−(2�−1), which is (2.99c).

When t = q−(2�−1)/2, the lowering operator annihilates the Macdonald polyno-
mial

pol(L2�) · P2�(X; q, t) = 0 . (2.119)

Therefore, the quotient space

D2� := P/(P2�) (2.120)

by an ideal (P2�) is a 2�-dimensional representation of S
..
H . In fact, it is not irre-

ducible, and decomposes into two irreducible representations

D2� = D (1)
� ⊕ D (2)

� . (2.121)

Because Pj and P2�− j−1 have the same eigenvalue of the Macdonald difference
operator (2.77) when t = q−(2�−1)/2, their combinations indeed form bases ofD (1,2)

�

D
(1)
� =

�−1⊕
j=0

Cq,t

[ Pj (X)

Pj (t−1)
+ P2�− j−1(X)

P2�− j−1(t−1)

]
, D

(2)
� =

�−1⊕
j=0

Cq,t

[ Pj (X)

Pj (t−1)
− P2�− j−1(X)

P2�− j−1(t−1)

]
.

(2.122)
Consequently, they are related by the sign change D (2)

� = ξ1(D
(1)
� ). In fact, the sup-

port (2.82) of the braneBP intersects withD1,2 at t = q−(2�−1)/2 so thatD (1)
� ⊕ D (2)

�

can be obtained as the quotient of P as in (2.120).
Even when t = −q−(2�−1)/2, the shortening condition (2.119) holds, but the

eigenvalues (2.77) of the y-operator have the opposite sign as in (2.91). Therefore,
the corresponding irreducible representations can be obtained by the sign change ξ2
in (2.29) from D (1,2)

� .
As a result, for t2 = q−(2�−1), there are four irreducible finite-dimensional rep-

resentations [35, Theorem 2.8.1] that are obtained from D (1)
� by the sign changes

ξ1,2. This is analogous to the relationship among the exceptional divisors under the
sign changes (2.30). Therefore, we identify these modules to the spaces of open
(Bcc,BDi )-strings as

D
(1)
� = Hom(Bcc,BD1 ) , D

(2)
� = ξ1(D

(1)
� ) = Hom(Bcc,BD2 ) ,

D
(3)
� := ξ2(D

(1)
� ) = Hom(Bcc,BD3 ) , D

(4)
� := ξ2(D

(2)
� ) = ξ3(D

(1)
� ) = Hom(Bcc,BD4 ) .

(2.123)
The modulesD (1,2)

� can be obtained as the quotient of the polynomial representation
because the support (2.82) of BP intersects with D1 and D2. On the other hand, its
ξ2-image (2.92) intersects with D3 and D4. (See also Fig. 2.7.)
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Under the PSL(2, Z) action, the four irreducible representations are transformed
as in (2.37). Namely, the modular T -transformation τ− exchanges D (3)

� and D (4)
�

whereas D (1)
� and D (2)

� are invariant. Also, the modular S-transformation
σ exchanges D (2)

� and D (3)
� whereas the modules D (1)

� and D (4)
� are invariant.

τ+ : D (2)
� ↔ D (4)

� and D (1)
� , D (3)

� are invariant ,

τ− : D (3)
� ↔ D (4)

� and D (1)
� , D (2)

� are invariant ,

σ : D (2)
� ↔ D (3)

� and D (1)
� , D (4)

� are invariant .

(2.124)

Thus, only the module D (1)
� = Hom(Bcc,BD1) among the four modules becomes a

PSL(2, Z) representation.
Let us find the modular S and T matrices for this PSL(2, Z) representation. As

we have seen, the polynomial representation P captures both D (1)
� and D (2)

� so
that the S-matrix (2.114) truncates a matrix of size 2� × 2� under the shortening
condition (2.99c). However, the matrix has rank � and it acts non-trivially only on
D (1)

� under the change (2.122) of basis

S̃ j j ′ := G−1Sj j ′G(q, t = q−(2�−1)/2)
∣∣
D (1)

�

, 0 ≤ j, j ′ ≤ � − 1 (2.125)

where G is a matrix of size 2� × 2� that changes the basis according to (2.122). This
gives the geometric interpretation of the basis change in [116, §4.1]. As a result, we
find the following explicit forms of the S and T matrices, and a 3d interpretation
of our A-model setup in §3.1.1 will identify an intrinsic physical meaning of the
PSL(2, Z) representation:

Conjecture 2.2 The spaceD (1)
� is an �-dimensional PSL(2, Z) representation, with

modular S and T matrices given by

Tj j ′
∣∣
D (1)

�

= e
(�−1)πi

6 q− (2�−1)(�−1)
6 q

j (k− j)
2 δ j j ′ 0 ≤ j, j ′ ≤ � − 1

Sj j ′
∣∣
D (1)

�

= b−1
� g j (q, t = q−(2�−1)/2)−1 S̃ j j ′ .

(2.126)

The PSL(2, Z) representation comes from a modular tensor category associated to
the Argyres-Douglas theory of type (A1, A2(�−1)). These matrices coincide with
those of the (2, 2� + 1) Virasoro minimal model at q = e−2πi/(2�+1).

Here we normalize (2.125) by the Macdonald norm (2.116) and

b� = 2
�−2∏
i=0

(q1/2+i − q−1/2−i )

so that S2 = 1. We also normalize (2.90) by e(�−1)πi/6q−(2�−1)(�−1)/6 so that
(ST )3 = 1.
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Table 2.2 A summary of finite-dimensional representations of S
..
H with corresponding shortening

and A-brane conditions

finite-dim rep shortening condition A-brane condition

F
(xm ,ym )
m qm = 1 m = 1

�

Un q2n = 1 n = 1
2�

Vk+1 t2 = −q−k k = 1
2�

+ γp+iαp
i�

D� t2 = q−�+1/2 � = γp+iαp
2i�

For instance, when � = 2, these matrices become

T
∣∣
D (1)

�=2
= e

πi
6

(
q− 1

2 0
0 q

1
2

)
, S

∣∣
D (1)

�=2
= i

q
1
2 − q− 1

2

(
1 −(q − 1 + q−1)

1 −1

)
.

When q = e−2πi/5, they coincide with the modular matrices of the (2, 5) Virasoro
minimal model although an appropriate change of basis is required to bring the S-
matrix into the standard form (Table 2.2).

2.7 Bound States of Branes and Short Exact Sequences:
Morphism Matching

We have hitherto studied generic conditions when an individual A-brane supported
on a compact irreducible Lagrangian can exist. Next, we will figure out the situ-
ation in which two distinct A-branes are present at a singular fiber of the Hitchin
fibration. When two distinct A-branes intersect at a singular fiber, they will form
a bound state. In this section, we will study a bound state of compact A-branes
and identify the corresponding S

..
H -module. This provide evidence of the equiva-

lent morphism structure under the functor (1.3), restricting to the subcategory of
compact Lagrangian A-branes with that of finite-dimensional S

..
H -modules.

2.7.1 At Singular Fiber of Type I2

As seen in Sects. 2.6.1 and 2.6.2, the compact branes BF and BUi can exist when
q is a root of unity and t is generic. As Fig. 2.6 shows, the irreducible components
U1 and U2 at the singular fiber π−1(b1) of type I2 intersect at two points p1 and p2.
Therefore, the Floer complex [56, 57] (or morphisms) of the two A-branesBU1 and
BU2 is

Hom∗(BU1 ,BU2) := CF∗(BU1 ,BU2)
∼= C〈p1〉 ⊕ C〈p2〉 . (2.127)
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Fig. 2.6 At the singular
fiber π−1(b1), ξ2 exchanges
the irreducible components,
U1 and U2, by the 180◦
rotation along the
(0, 1)-circle (longitude).
Therefore, ξ2 exchanges p1
and p2. On the other hand, ι
exchanges U1 and U2 by
fixing p1 and p2. Besides, ξ1
maps each irreducible
component to itself by the
180◦ rotation along the
(1, 0)-circle (meridian)

U1

U2

ι

ξ2

ξ1

p2 p1

Note that the Floer complexes CF∗(BU1 ,BU2) and CF∗(BU2 ,BU1) and the differ-
entials on them are Poincaré-dual to each other. Namely, each intersection point pi
defines generators of both complexes, whose degrees sum to 2 (the complex dimen-
sion of the target).

This implies that there are two bound states ofBU1 andBU2 as A-branes. Let us
consider one natural candidate for them: a brane Bλ

F degenerating into the singular
fiber π−1(b1) of type I2. First of all, the dimension m of Hom(Bcc,B

λ
F) needs to be

even m = 2n in order for the brane to be supported on a singular fiber because the
evaluation of the integral cohomology class [F ′

F/(2π)] over a singular fiber cannot
be odd like (2.102). There is also a topological constraint to be a bound state of the
branesBU1 andBU2 . As illustrated in Fig. 2.6, a one-cycle, say the (1, 0)-cycle, of a
torus is pinched to a double point at two locations so that the singular fiber π−1(b1)
topologically consists of two copies of CP1. Therefore, it has the unique bounding
spin structure along the (1, 0)-cycle, which is Neveu-Schwarz. Consequently, only
a brane B(−,+)

F with trivial holonomy and the Neveu-Schwarz spin structure along
the (1, 0)-cycle of F can degenerate to a bound state of the branes BU1 and BU2 at
the singular fiber π−1(b1).

There is indeed a corresponding representation of S
..
H . We see that the support

U1 ∪ U2 is invariant under τ− (as a set). Thus, a braneB(x2n ,+)

F can enter the singular
fiber when the corresponding module F (−,+)

2n is τ−-invariant, namely when the two
ideals

(X2n + X−2n − x2n − x−1
2n ), (τ−(X2n + X−2n − x2n − x−1

2n ))

coincide. Under the condition (2.99a), the 2nth Macdonald polynomial takes the
form P2n = X2n + X−2n + 2 = (Xn + X−n)2, and (2.90) yields τ−(1) = 1 and
τ−(P2n) = t−2n P2n . For a generic value of t , only when x2n = −1, we therefore
have the τ−-invariant module F (−,+)

2n
∼= P/(P2n). Moreover, since P2n = (Pn)2
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under (2.99a), the quotient of the polynomial representation P yields a short exact
sequence

0 → U (2)
n → F (−,+)

2n → U (1)
n → 0 . (2.128)

The representation F (−,+)
2n corresponds to the bound state B(−,+)

F . As explained in
Sect. 2.6, the raising operator (2.80) ofP does not become null because the prefac-
tor (1 − q2 j t2) cancels with the denominator of Pj+1. Consequently, this short exact
sequence (2.128) does not split as a direct sum, but rather is a nontrivial extension
ofU (1)

n byU (2)
n . This is analogous to the fact that C[X ]/(X2n) → C[X ]/(Xn) can-

not split as a C[X ]-module. As such, when the gradings are chosen such thatU (1,2)
n

are in degree zero, the degree of the corresponding morphism between the A-branes
is one, and corresponds to the class in Hom1(BU1 ,BU2) represented by B

(−,+)

F
.9

Although this paper does not determine the degree of the morphism in the A-brane
category, the representation category of S

..
H predicts one. Even in what follows,

non-trivial extensions in the representation category give a description of degree-
one morphisms (extensions or bound states) of various distinct compact A-branes.
Determining the degree of the morphisms directly in the A-brane category is left for
future work.

Since Hom∗(BU1 ,BU2) is two-dimensional, there must be another generator. To
identify it, we consider the symmetries. As Fig. 2.6 illustrates, ξ2 and ι exchange the
irreducible components U1 and U2 at the singular fiber. More precisely, ξ2 acts on
the singular fiber as the 180◦ rotation along the (0, 1)-circle (longitude) so that the
intersection points p1,2 are exchanged by ξ2. On the other hand, ι exchanges U1 and
U2 by fixing p1,2. Consequently, the images of the brane B(−,+)

F under the symme-
tries ξ2 and ι are non-isomorphic objects in the A-brane category. They indeed span
the morphism space

Hom1(BU2 ,BU1)
∼= C〈ξ2(B(−,+)

F )〉 ⊕ C〈ι(B(−,+)

F )〉 . (2.129)

As a result, two irreducible branes can form bound states in more than one way.
Similarly, the images of the brane F (−,+)

2n under the symmetries ξ2 and ι are non-
isomorphic in the representation category of S

..
H for n > 1. The image of the short

exact sequence (2.128) under ξ2 becomes

0 → U (1)
n → ξ2(F

(−,+)
2n ) → U (2)

n → 0 . (2.130)

Likewise, The image of the short exact sequence (2.128) under ι becomes

0 → U (1)
n → ι(F (−,+)

2n ) → U (2)
n → 0 . (2.131)

By using the polynomial representation (2.75), one can read off the action of the
generators x and y on these representations as

9 Often literature in mathematics uses the notation Ext1 instead of Hom1. Here they have the same
meaning.
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x
∣∣∣
ξ2(F

(−,+)
2n )

=

U (2)
n︷ ︸︸ ︷ U (1)

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ 0 0
∗ 0 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

0

∗ 0 ∗ 0 0
∗ 0 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎠

, x
∣∣∣
ι(F (−,+)

2n )
=

U (2)
n︷ ︷ U (1)

n︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∗ 0 0
∗ 0 ∗ 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

0

0

∗

0 ∗ 0 0
∗ 0 0 0

0 ∗ ∗ 0
0 0 0 ∗
0 0 ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.132)
on the basis where y acts diagonally as diag(t + t−1, qt + q−1t−1, . . . , q2n−1t +
q1−2nt−1). Note that the upper-left block and lower-right matrices of the x actions
are the same whereas the lower-left matrices are different. These matrices explicitly
show that ξ2(F

(−,+)
2n ) and ι(F (−,+)

2n ) are not isomorphic.
In fact, the composition ξ2 ◦ ι leavesBU1 andBU2 as they are, respectively. How-

ever, it maps B(−,+)

F to a different object. Correspondingly, we have a short exact
sequence

0 → U (2)
n → ξ2 ◦ ι(F (−,+)

2n ) → U (1)
n → 0 , (2.133)

which is not isomorphic to (2.128). Therefore, they span the morphism space of two
dimensions

Hom1(BU1 ,BU2)
∼= C〈B(−,+)

F 〉 ⊕ C〈ξ2 ◦ ι(B(−,+)

F )〉 , (2.134)

which is Poincaré-dual to (2.129). In conclusion, when two compound branes inter-
sect two points, they can form non-isomorphic bound states with the same support
in the A-brane category, and these bound states are related to subtleties defining
A-branes supported on singular submanifolds.

At the other singular fibers π−1(b2,3), there are similar bound states. As in
(2.108), σ ∈ PSL(2, Z) maps (2.129) to Hom1(BU3 ,BU4). Also, τ+ ∈ PSL(2, Z)

maps (2.129) to Hom1(BU5 ,BU6).

2.7.2 At Global Nilpotent Cone of Type I∗
0

Next, let us consider the case in which both the A-branes BV and BDi exist. In
order for both BV and BDi to be Lagrangian, (2.109) and (2.117) need to be sat-
isfied, which implies γp = 0 and � is real whereas αp and βp can be arbitrary.
Therefore, the symplectic form must be ωX = ωK /�. In this situation, F and Ui are
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also Lagrangian with respect to the symplectic form. Moreover, the quantization
conditions, (2.118) and (2.111), for bothBDi and BV are

− c + 1

2
= � ,

1

2�
+ 2c − 1 = k + 1 , (2.135)

which implies that 1/2� = 2� + k + 1. In other words, the two shortening condi-
tions lead to the other one

(2.99c) and ι(2.99b) −→ (2.99a) where n = 2� + k + 1 .

Under this condition, there are therefore finite-dimensional representations of three
kinds, Hom(Bcc,BUi ), Hom(Bcc,BV) and Hom(Bcc,BDi ). On the representa-
tion theory side, the quotient of the polynomial representation yields a short exact
sequence

0 −→ ι(Vk+1) −→ U (1)
n

f−→ D (1)
� ⊕ D (2)

� −→ 0 . (2.136)

We also note that there exist similar short exact sequences for the images of U (1)
n

under the symmetry � × PSL(2, Z) in Sect. 2.6.2 under the same shortening condi-
tion.

In a similar fashion, if the branes BDi and BUi exist simultaneously, their quan-
tization conditions guarantee the existence of BV. Also, if we assume the presence
of the branes BV and BUi , then the quantization condition for BDi follows. In fact,
it is straightforward to check that, under the relation n = k + 1 + 2�, we have

(2.99c) and (2.99a) −→ ι(2.99b) ,

(2.99a) and ι(2.99b) −→ (2.99c) .
(2.137)

Subsequently, we have the short exact sequence (2.136).
If βp = 0, the Hitchin fibration has the three singular fibers of type I2 (Fig. 2.2),

and the Lagrangians V andBDi are not contained in a Hitchin fiber. Thus, the short
exact sequence (2.136) implies that a Hamiltonian isotopy can deform the brane
BU1 in such a way that it contains BV as subbranes. The situation becomes much
more lucid when βp = 0. As βp → 0, the three singular fibers meet simultaneously
and transform into the singular fiber of type I ∗

0 , which is the global nilpotent cone. In
this process, the A-braneBU1 becomes a bound state ofBD1 ,BD2 andBV because
of (2.19). The short exact sequence (2.136) indeed corresponds to the bound state
as illustrated in Fig. 2.7. A similar story holds for the other branes BUi and they
become bound states of irreducible branes according to the relation (2.19) of the
second homology group.

As explained above, the short exact sequence (2.136) does not split into the direct
sum because the raising operator (2.80) of P never becomes null. Geometrically,
the choice of the direction of the arrows in (2.136) comes from how the support
(2.82) of BP intersects with the global nilpotent cone. As explained in Sects. 2.6.3
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U
(1)

n ι(Vk+1)

D
(4)
�D

(3)
�

D
(2)
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q4q3
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0gen pt
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Fig. 2.7 This figure depicts the correspondence between compact supports of (B, A, A)-branes
and finite-dimensional modules of the spherical DAHA when � = 1/2n, αp/2� = � and βp =
0 = γp . Note that n = 2� + k + 1

and 2.6.4, the support (2.82) of BP cuts through real one-dimensional slices of the
exceptional divisors D1,2, but it does not intersect with V. As a result, the braneBV

becomes a subbrane ofBU1 whereas BD1 ⊕ BD2 becomes its quotient.
On the other hand, the ι-image ι(BP) intersects with V whereas it does not with

exceptional divisors Di . Consequently, there is a short exact sequence

0 −→ D (3) ⊕ D (4) −→ ι(U (1)
n ) −→ ι(Vn−2�) −→ 0 . (2.138)

Once we take ξ2-image of this short exact sequence, we have

0 −→ D (1)
� ⊕ D (2)

�

g−→ ξ2 ◦ ι(U (1)
n ) −→ ι(Vn−2�) −→ 0 . (2.139)

because ι(Vn−2�) is ξ2-invariant.
Now we are ready to compare the morphism structures of the two categories

under the shortening condition � = 1/2n and αp/� = �. As Fig. 2.7 illustrates, the
supports of branesBV andBD1 intersect at one point q1 so that the morphism space
between them is one-dimensional:

Hom1(BD1 ,BV) ∼= C〈q1〉 . (2.140)

This means that there is one bound state of BV and BD1 . Indeed, we find the corre-
sponding representation from (2.136):

0 −→ ι(Vk+1) −→ f −1(D (1)
� ) −→ D (1)

� −→ 0 . (2.141)

Its Poincare dual in the representation category can be obtained from (2.139)

0 −→ D (1)
� −→ ξ2 ◦ ι(U (1)

n )/g(D (2)
� ) −→ ι(Vn−2�) −→ 0 . (2.142)
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By using the sign change group �, we obtain short exact sequences analogous to
(2.141), which changes from D (1)

� to D (i)
� (i = 2, 3, 4). We can further pursue the

comparison of the morphism structure. In the A-brane category, the morphism space
between BV and BD1 ⊕ BD2 is two-dimensional:

Hom1(BD1 ⊕ BD2 ,BV) ∼= C〈q1〉 ⊕ C〈q2〉 . (2.143)

It is easy to find the corresponding representations

0 −→ ι(Vk+1) −→ f −1(D (1)
� ) ⊕ D (2)

� −→ D (1)
� ⊕ D (2)

� −→ 0 ,

0 −→ ι(Vk+1) −→ f −1(D (2)
� ) ⊕ D (1)

� −→ D (1)
� ⊕ D (2)

� −→ 0 .
(2.144)

In fact, the short exact sequence (2.136) can be understood as the diagonal element
corresponding to q1 + q2 ∈ Hom1(BD1 ⊕ BD2 ,BV). More generally, we have

Hom1(⊕i∈IBDi ,BV) ∼= ⊕i∈IC〈qi 〉 , (2.145)

where I is a subset of {1, 2, 3, 4}. The diagonal element in the representation cate-
gory is

0 −→ ι(Vk+1) −→ N I
|I |�+k+1 −→ ⊕i∈ID (i)

� −→ 0 , (2.146)

where |I | is the cardinality of the set I . We write the corresponding A-brane

BNI ∈ Hom1(⊕i∈IBDi ,BV) , (2.147)

which is supported on NI := ∪i∈IDi ∪ V.
If the cardinality |I | is three, the corresponding brane is supported on V plus

three exceptional divisors, and the representation N I is not obtained by a quotient
of the polynomial representation. Therefore, these are new finite-dimensional repre-
sentations, which do not appear in the theorems of Cherednik [35, Sects. 2.8–9].

When I = {1, 2, 3, 4}, the support of the corresponding brane is the entire global
nilpotent cone N (2.16) so that we simply write it asBN. It turns out that this brane
gives rise to another interesting bound state in the A-brane, which we will see below.
The global nilpotent cone. In fact, when n − k − 1 is odd (or equivalently c ∈
Z≤0), there is a short exact sequence

0 −→ ι(Vk+1) −→ F (+,+)
2n −→ N2n−k−1 −→ 0 , (2.148)

In fact, when both (2.99a) and ι(2.99b) are satisfied, we have pol(L2n−k−1) ·
P2n−k−1 = 0. Furthermore, when n − k − 1 is odd, then N2n−k−1 := P/(P2n−k−1)

becomes an irreducible module of dimension 2n − k − 1. The short exact sequence
(2.148) illustrates that the module N2n−k−1 can also be obtained by the quotient
F (+,+)

2n /ι(Vk+1).
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When βp = 0 = γp, the Hitchin fibration has one singular fiber of type I ∗
0 , and

the entire global nilpotent cone N is Lagrangian with respect to ωX. The short exact
sequence (2.148) indeed depicts the situation where the brane B

λ=(+,+)

F with the
Ramond spin structures enters the global nilpotent cone. Since it has a different spin
structure, the brane is not decomposed into each irreducible component. As a result,
the brane Bλ=(+,+)

F becomes the bound state of two branes; BV and BN. Actually,
using the fiber class relation (2.17) with (2.101) and (2.111), one can evaluate the
dimension formula for an A-brane BN

dimHom(Bcc,BN) =
∫
N

F + B

2π
=
∫
N

ωI

2π�
= 1

2�
+ 2c − 1 . (2.149)

From (2.135), this is equal to 2n − k − 1, and the space of (Bcc,BN)-strings there-
fore corresponds to the module N2n−k−1 in (2.148).

One delicate point arises for constructing the Chan-Paton bundle forBN because
N is not a manifold. Since V is linked with the exceptional divisors Di in BN, the
Chan-Paton bundle for BN is no longer well-defined at the four joining points of
V and Di . The Chan-Paton bundle becomes a putative “line bundle” L′ over each
exceptional divisor Di and the curvature F ′

N of its connection has a half-integral flux
over it [60] ∫

Di

F ′
N = −1

2
,

while it cancels with the B-field due to (2.70)

F ′
N + B

∣∣
N = 0 .

In other words, L′ restricted to an exceptional divisor Di is a “square root” of the
O(−1) → CP1 bundle and the B-field flux over it is 1/2. As a result, we have

∫
Di

F + B

2π
=
∫
Di

ωI

2π�
= n − k − 1

2
∈ 1

2
+ Z ,

which gives the condition that n − k − 1 is odd.
Under this circumstance, the line bundle L → X (2.57) for Bcc is actually the

2nth tensor product of the determinant line bundle [95, Sect. 8] of the Hitchin moduli
space. As a result, the geometric quantization of V provides the quantum Hilbert
space Vk+1 on a once-punctured torus in Chern-Simons theory [82]. The additional
series Vk+1 at a primitive 2nth root of unity q = eπi/n is called perfect representation
[35, Sect. 2.9.3]. Moreover, when n = k + 2, the additional series Vk+1 of dimension
k + 1 is isomorphic to the well-known Verlinde formula of ŝl(2)k with level k for a
torus (without puncture) [147].

Let us end this section by commenting briefly on future directions. There are an
enormous number of non-compact Lagrangian submanifolds in the moduli space
of Higgs bundles that have been studied in their own right: for example, the image
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of the Hitchin section, the brane of opers (see [25, 86, 124, 129] in a similar con-
text), or the A-polynomial of any knot [80]. Each of these geometric objects should
naturally be associated with an S

..
H -module whose behavior precisely matches the

geometric properties of the object, just as we demonstrate occurs for compact
Lagrangians and for the (generalized) polynomial representation. It would be of
great interest to further pursue this correspondence for infinite-dimensional repre-
sentations, even just in the rank-one case.

It would also be interesting to connect explicitly with other mathematical con-
texts in which algebraic approaches to the Fukaya category or equivalences between
Fukaya categories and module categories appear. To give just one example, in [51],
Etgü and Lekili study the Chekanov-Eliashberg dg-algebra associated with a Leg-
endrian link in a Weinstein four-manifold for a given graph. They show that this
algebra is A∞-quasi-isomorphic to, roughly speaking, the endomorphism algebra
of a collection of generating objects of the wrapped Fukaya category of the surface,
and go on to recover the multiplicative preprojective algebra studied in [31] in the
context of the Deligne–Simpson problem from the Legendrian link. When the graph
in question is the affine D4 Dynkin diagram, it is expected that the corresponding
preprojective algebra is related to DAHA. (We thank A. Oblomkov for private com-
munication related to this point.) The computations of the (wrapped) Fukaya cate-
gory of the above four-manifolds in [51] thus may provide an interesting perspective
on our Claim 1.1 as well as its generalization to other algebras.
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Chapter 3
3d Theories and Modularity

In this section, we connect the brane setup of the above 2d A-model to 3d/3d corre-
spondence and shed light on variousmodular representations coming from geometry.
In particular, we explain the origin for the explicit form of the S and T matrices in
Conjectures2.1 and 2.2. The modular action in Conjecture2.1 turns out to be the one
of refined Chern–Simons theory [4]. On the other hand, the modular action in Con-
jecture2.2 is a “hidden” (surprising) one; it is realized on the vector space spanned
by the set of connected components of fixed points under the Hitchin U(1)β action
on the moduli space of wild Higgs bundles associated to a certain Argyres–Douglas
theory. Furthermore, we propose how non-standard (e.g. logarithmic) modular data
ofMTC[M3] can be described in terms of the A-model on the Hitchin moduli space
associated with the Heegaard decomposition of M3 and discuss possible connections
to skein modules of closed oriented 3-manifolds.

One advantage of connecting the 2d A-model to the three-dimensional perspective
is that all of these modular actions admit a natural categorification. In other words,
in all of these instances it makes sense to ask if the space of open strings in the
Hitchin moduli space can be realized as the Grothendieck groups of a tensor category
(possibly, non-unitary or non-semisimple):

SL(2,Z)

�

K 0(MTC) .

Finally, we will see that, in the opposite direction, the relation to the 2d A-model
offers a unifying home for the above-mentioned modular data.

3.1 DAHA and Modularity

The fivebrane system in M-theory that provides geometric origins of the modular
representations on DAHA modules is the following familiar setting for the 3d/3d
correspondence

© The Author(s) 2023
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space-time: S1 ×q,t
(
T N × T ∗M3

)

N M5-branes: S1 ×q D2 × M3
(3.1)

where M3 is a 3-manifold, D2 is a two-dimensional disk (or a cigar), and T N ∼= R
4

is the Taub-NUT space. Writing the local complex coordinates (z1, z2) on T N , such
that z1 also parametrizes D2, we turn on the Omega-background, i.e. a holonomy
along S1 that provides a twisting of T N via an isometry

(z1, z2) → (qz1, t
−1z2) . (3.2)

In this setting, the symmetry group of the 6d (2, 0) theory on the M5-branes is
reduced to

SO(6)E × SO(5)R → SO(3)1 × SO(3)2 × SO(3)R × SO(2)R , (3.3)

where SO(3)1 and SO(3)2 are the space-time symmetry of S1 ×q D2 andM3, respec-
tively, and SO(3)R is the symmetry of a cotangent fiber of T ∗M3. We perform a
topological twist by taking the diagonal subgroup SO(3)diag of SO(3)2 × SO(3)R so
that the resulting theory is partially topological (along M3). After the partial topo-
logical twist, the effective theory on S1 ×q D2 only depends on topology (but not
the metric) on M3 and is described by 3dN = 2 theory often denoted T [M3],1 with
the R-symmetry given by SO(2)R in (3.3). When M3 is a Seifert manifold, there is
an extra U(1)S symmetry associated with the two directions in the cotangent bundle
normal to the Seifert fiber. As a result, the partition function, called the half-index, of
the 3dN = 2 theory T [M3] on S1 ×q D2 with a 2dN = (0, 2) boundary condition
B in this setting is defined as

ZT [M3](S
1 ×q D2,B) = Tr(−1)Fe−β(�−R−J3/2)q J3+St R−S , (3.4)

where S and R are charges of U(1)S and SO(2)R , respectively,� is the Hamiltonian,
and J3 is an eigenvalue of the Cartan subalgebra of SO(3)1. The difference between
U(1)S and SO(2)R is customarily denoted U(1)β in [74–76], and its fugacity is the
variable t in (3.4).

Notice that the system (3.1) does not involve a once-punctured torus which was
used to define the Hitchin moduli space and the parameter t as in the previous
section. However, for gauge groups of type A, the following two physical systems
are expected to be closely related:

• 6d (2, 0) theory on S1 × Cp with Cp being a once-punctured torus.
• 4d N = 2∗ theory on S1.

Although the two systems would have different spectra,2 their BPS sectors are
expected to be equivalent. In particular, at low energy both systems realize a 3d

1 In this section, we restrict ourselves to SU(N ) gauge group so that T [M3,SU(N )] = T [M3].
2 For example, many KK modes of the 6d theory on T 2 have no counterparts in the 4d theory. Even
if one replaces the 4d N = 2∗ theory with 6d (2, 0) theory on a torus (with the mass parameter



3.1 DAHA and Modularity 59

sigma-model onto the Hitchin moduli space. The deformation parameters can also
be identified as follows.

On one side, the (classical) deformations are parametrized by the triplet
(αp,βp, γp) of monodromy parameters around the puncture as introduced before.
On the other side, for the 4d N = 2∗ theory, the triplet of deformation parameters
is given by the complex mass of the adjoint hyper-multiplet in 4d together with the
holonomy of the U(1) flavor symmetry along the circle. In the system (3.1), the 4d
N = 2∗ theory is obtained by the compactification of the 6d theory on T 2 ⊂ M3

with holonomy for U(1)β along S1 (3.4). In particular, the parameter t defined above
is identified with the t in DAHA. In this section, we will be looking at questions
whose answers depend holomorphically on t , as required by supersymmetry on M3,
and the other deformation parameter βp won’t play a role. For example, what com-
plex connections on T 2 ⊂ M3 can be extended to the entire M3 is a question that is
“holomorphic in J” (and given by intersections of (A, B, A)-branes in the Hitchin
moduli space). Notice that this non-trivial relation only holds for a gauge group of
type A, while for other types the class S construction of 4dN = 2∗ theory is gener-
ally unknown, and the once-punctured torus does not lead to either the 4d N = 2∗
theory or DAHA.

One statement of the 3d/3d correspondence is the duality between the non-
perturbative complex SL(N ,C) Chern–Simons theory on M3 and the 3d N = 2
theory T [M3] on S1 ×q D2, so that the partition functions of both sides are iden-
tified. As explained in [68, 75, 76], for a particular class of boundary conditions
Bb labeled by b ∈ (Spinc(M3))

N−1, the partition function of the 3d N = 2 theory
T [M3]on S1 ×q D2 countsBPS states and, therefore, has aq-expansionswith integer
coefficients and integer q-powers3

ẐT [M3],b(q, t) := ZT [M3](S
1 ×q D2,Bb) . (3.5)

The relation toChern–Simons theory involves the same space of boundary conditions
with a “dual” basis, related to Bb via the S-matrix

Sab =
∑

σ∈SN
e2πi

∑N−1
i=1 �k(ai ,bσ(i))

|StabSN (a)| · |Tor H1(M3,Z)|(N−1)/2
.

In particular, the partition function of the non-perturbative SL(N ,C) Chern–Simons
theory on M3 is given by

(
− log q

4πi

) N−1
4

∑

a,b∈(Spinc(M3))N−1

e2πi k̄·�k(a,a)
Sab ẐT [M3],b(q, t) (3.6)

replaced by holonomies for a U(1) subgroup of the R-symmetry on T 2) the full spectrum is still
different. One way to see this is that the latter theory depends on all three U(1) holonomies on
T 2 × S1 in a periodic way, and they are completely symmetric, while this is not the case for the
former theory obtained from a punctured torus.
3 Up to an overall factor q�b that plays an important role but is not relevant to the present discussion.
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with generic |q| < 1, and specializes to that of SU(N ) Chern–Simons theory when
q → e2πi/k̄ with integer (renormalized) level k̄ = k + N . The origin of log q factors
is explained in [137]. Note that the linking pairing �k on Spinc(M3) is defined by the
Pontryagin duality. We will see shortly that it is the basis of BPS partition functions
(3.5) and the corresponding boundary conditions Bb that are most naturally related
to DAHA.

Consider a simple example where M3 = L(p, 1) is a Lens space. The lens space
L(p, 1) can be constructed by gluing two solid tori with a homeomorphism between
the boundary tori sending the meridian (1, 0) of one torus to a (1, p) cycle of the
other. The corresponding 3dN = 2 SU(N ) gauge theory T [L(p, 1)] consists of one
adjoint chiral multiplet�with R-charge 2 andN = 2 Chern–Simons termwith level
p. Consequently, the factor ẐT [L(p,1)],b labeled by b ∈ (Spinc(M3))

N−1 is defined
by

ẐT [L(p,1)],b(q, t) = 1

N !
∫

|X |=1

dX

2πi X
ϒ(X; q, t)�Z

N−1;p
b (X, q) , (3.7)

where

ϒ(X) =
∏

α∈R

(Xα; q2)∞
(t2Xα; q2)∞

, �
Z

N−1;p
b (X, q) =

∑

n∈pZN−1+b

q2
∑N−1

i=1 n2i /p
N−1∏

i=1

Xni
i .

Here we impose the Neumann boundary condition at the boundary ∂(S1 ×q D2) on
the vector multiplet and adjoint chiral multiplet, which give rise to the numerator and
denominator of the Macdonald measure ϒ by one-loop determinant [158] (see also

(B.14)). In addition, the boundary partition function�
Z

N−1;p
b encodes the information

about the Chern–Simons term with level p, and 2d N = (0, 2) boundary condition
at the boundary ∂(S1 ×q D2) is labeled by b ∈ (Spinc(M3))

N−1. In fact, ẐT [L(p,1)],b
can be understood as the half-index of the 3d/2d coupled system. For more detail,
we refer to [75, 76].

When the lens space L(p, 1) is constructed by gluing two solid tori, we can include
a Wilson loop in each solid torus. The reduced partition function with boundary
condition specified by Spinc structure b results in

ẐT [L(p,1)],b(λ,μ) = 1

ẐT [L(p,1)],b

1

N !
∫

|X |=1

dX

2πi X
ϒ(X) �

Z
N−1;p

b (X) Pλ(X)Pμ(X) ,

(3.8)
where the conjugation f �→ f is defined in (B.13). In particular, when p = 0,
i.e. L(0, 1) ∼= S1 × S2, the partition function vanishes unless the total charge of
two Wilson loops is zero. This defines the Macdonald inner product (B.15)

〈Pλ, Pμ〉 = ẐT [L(0,1)],0(λ,μ) = δλ,μ gλ(q, t) .

In the case of M3 = S3, this defines the symmetric bilinear pairing [34, 50, 101]
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[Pλ, Pμ] = ẐT [L(1,1)],0(λ,μ) = Pλ(q
−2μt−2ρ)Pμ(t

−2ρ) , (3.9)

where ρ is theWeyl vector of sl(N ). As in AppendixB.1.6, this pairingCq,t [X ]SN ×
Cq,t [X ]SN → Cq,t can be defined by transforming the holonomy Tr (X) along the
(1, 0)-cycle in one solid torus to the holonomy Tr (Y ) along the (0, 1)-cycle, and
it acts on loop operators in the other solid torus via the polynomials representation
when they link:

[ f (X), g(X)] = pol( f (Y−1)) · g(X)

∣∣
∣
X �→t−2ρ

(3.10)

for f, g ∈ Cq,t [X ]SN . In the case of SU(2), this is indeed (2.114). This can be viewed
as a deformed version of the construction of the skein module of type AN−1

Sk(M3,SU(N )) = Sk(M+
3 ,SU(N )) ⊗

Sk(C,SU(N ))
Sk(M−

3 ,SU(N )) (3.11)

of a closed oriented 3-manifoldM3 by using a Heegaard splittingM3 = M+
3 ∪C M−

3 .
As seen in Sect. 2.5, the polynomial representation P of S

..
H can be understood as

a deformed Skein module of a solid torus S1 × D2. In (3.8), Pλ(X) (resp. Pμ(X))
can be actually regarded as a basis element of the deformed skein module of one
(resp. the other) solid torus, and the boundary partition function � glues the two
solid tori by the S-transformation (2.89). Thus, the spherical DAHA acts on the
left-module via the polynomial representation whereas it acts on the right-module
via its S-transformation. As a result, the S-transformation σ(P) of the polynomial
representation, called the functional representation, can be defined by the symmetric
bilinear pairing, which is presented in AppendixB.2.2.

Moreover, the relation between 3d N = 2 theory T [M3] to the 2d sigma-model
explored in Sect. 2 becomes manifest from the fivebrane system (3.1). For the sake of
brevity, let M3 = S1τ × C where C ∼= T 2. As described above, the compactification
of the 6d theory onC with U(1)β holonomy along S1 leads to 4dN = 2∗ theory, and
the t parameter in (3.1) can be identified with the ramification parameters (αp,γp)

via
tq− 1

2 = exp(−π(γp + iαp)) . (3.12)

As in Fig. 3.1, we further compactify the 4dN = 2∗ theory on a two-torus T 2 = S1 ×
S1q ⊂ S1 ×q D2 to obtain the 2d sigma-model S1τ × I → MH (Cp,SU(N ))where the
interval I = [0, 1] is obtained by reducing along S1q ⊂ D2. The canonical coisotropic
braneBcc arises at the boundary of the strip S1τ × I corresponding to the center of D2

[129]. In addition, a boundary condition of 3d N = 2 theory at ∂(S1 ×q D2) gives
rise to a brane B′ at the other boundary of the strip S1τ × I in the 2d sigma-model.

The theory T [S1τ × C] consists of threeN = 2 adjoint chiral multiplets Q, Q̃ and
�where the Neumann boundary condition is imposed on theN = 2 vector multiplet
and chiral multiplets Q̃ and �, and the Dirichlet boundary condition is imposed on
theN = 2 chiral multiplet Q at ∂(S1 ×q D2). Moreover, the form (3.4) of the refined
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Fig. 3.1 The relation between 3d N = 2 theory T [S1 ×ζ C] and 2d sigma-model. A mapping
torus S1 ×ζ C where the top and bottom tori are identified by ζ ∈ SL(2,Z) gives rise to an SL(2,Z)

duality wall on the worldsheet of (Bcc,B
′)-string

index tells us that fermions are periodic and a field � is identified along the time
circle S1

q(J3+S)t (R−S)�(x0 + β, z1) ∼ �(x0, z1) . (3.13)

The time derivative is replaced as ∂t → ∂t − R − J3/2 due to e−β(�−R−J3/2).

U(1)R U(1)S bdry cond.
� 2 0 N
Q 0 −2 D
Q̃ 0 0 N

One important lesson that we learn in this subsection is that the Hilbert space of
a non-perturbative complex Chern–Simons TQFT on a 2-torus is the space of repre-
sentations of the spherical DAHA at t = 1. A categorified version of this statement
would be a relation between the category of line operators in the Ẑ TQFT and the
category of modules of S

..
Ht=1,

MTC(Ẑ) ∼= Rep(S
..
Ht=1) . (3.14)
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Again, we remind that here and in other places, MTC refers to a tensor category
where some of the traditional conditions may need to be relaxed, e.g. it may have
an infinite number of simple objects, be non-unitary or non-semisimple. (The latter
generalization typically appearswhenone tries to “truncate” a categorywith infinitely
many simple objects to a finite-dimensional structure.) The modular representations
that arise from such generalizations are, in general, more delicate and interesting than
familiar vector-valued modular forms that describe the space of genus-1 conformal
blocks in a rational VOA.Of course, in some special cases, thesemore interesting and
exotic generalizations do not arise, and MTC is a genuine modular tensor category
in its full mathematical sense (justifying the name for generalizations as well); this
happens in some of the examples discussed in the following subsections and also in
various examples considered in [44, 55, 76].

3.1.1 SU(2): Refined Chern–Simons and TQFT Associated
to Argyres–Douglas Theory

This connection of 3d theories to the 2d sigma-model clarifies the geometric origin
of the modular action. It was proposed in [4] that the fivebrane system (3.1) with
N = 2 M5-branes gives rise to SU(2) refined Chern–Simons theory on M3 when the
parameters are subject to4

q = exp
( πi

k + 2c

)
, t = exp

( c πi

k + 2c

)
. (3.15)

This condition is equivalent to the existence (2.99b) of the brane BV in the 2d
sigma-model Sect. 2.6.3 so that the field identification (3.13) under (3.15) leads to
the boundary condition B′ = BV upon the reduction as in Fig. 3.1. Therefore, the
module Hom(Bcc,BV) of DAHA in the 2d sigma-model can be identified with
the Hilbert space of SU(2) refined Chern–Simons theory on T 2 spanned by {|Pj 〉}
( j = 0, . . . , k). The projective action of SL(2,Z) on the Hilbert space is mani-
fest in refined Chern–Simons theory, and the matrix elements can be obtained via
the 3d/3d correspondence. In fact, the pairing (3.9) at N = 2 (which is equal to
(2.114)) becomes of rank (k + 1)when (3.15) holds; it gives the modular S-matrix in
Conjecture2.1 up to a suitable normalization with the Macdonald norm (2.116).
Upon reduction to the sigma-model, it can be interpreted as the S-duality wall
in the worldsheet of the (Bcc,BV)-string. Thus, the gluing of the two states
λ,μ ∈ Hom(Bcc,BV) by the S-duality wall in the (Bcc,BV)-string can be under-
stood as theHopf link configuration in refinedChern–Simons theory on S3, illustrated
in Fig. 3.2.

4 The parameters (qours, tours) in this paper are related to the parameters (qAS, tAS) in [4] via qour =
q1/2AS and tour = t1/2AS .
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Fig. 3.2 The
(Bcc,BV)-string with the
S-duality wall gives rise to
refined Chern–Simons
invariant of the Hopf link in
S3

Although the parameters q and t are subject to t2qk = −1, there is one free
parameter left. If c is generic, refinedChern–Simons theory cannot arise froma fusion
category due to Ocneanu rigidity (for instance, see [49]) and, therefore, it is not a
modular tensor category (MTC).5 Nonetheless, it provides torus link invariants as we
will briefly review below. In addition, the half index in (3.8) provides the deformation
of WRT-invariants of the lens space L(p, 1), and moreover ẐT [L(p,1)],b(q, t) in (3.7)
exhibits positivity [75, 76]. Despite the failure to be a fusion category, the half indices
shed new light on the topology of three-manifolds and link invariants via the 3d/3d
correspondence.

The relation between a 3d theory and Conjecture2.2 is more interesting. It was
argued in [116] that the field identification (3.13) under the condition t2q2�−1 = 1
is equivalent to the class S construction for the Argyres–Douglas theory of type
(A1, A2(�−1)) in [39, 155], which we briefly review below. The 4dN = 2 Argyres–
Douglas theory of type (A1, A2(�−1)) can be geometrically engineered by compacti-
fying two M5 branes on a sphere C ∼= CP1 with one wild (irregular) singularity at
infinity. The theory is specified by the Hitchin system on Cwild where the Higgs field
has the asymptotic behavior at infinity described by

ϕ(z1)dz1 ∼ z
2�−1
2

1 σ3dz1 , (3.16)

where z1 is the coordinate of C\∞ and σ3 is the third Pauli matrix. Thus, we denote
this Argyres–Douglas theory by T [Cwild,SU(2)]. The Hitchin action on the moduli
space of Higgs bundles can be identified with the U(1)β symmetry defined below
(3.4)

U(1)β : (A,ϕ) → (A, eiθϕ) .

In the brane setting (3.1), we cannot consider the Hitchin system with (3.16) on D2

in general. However, when the�-deformation parameters are subject to t2q2�−1 = 1,
the field identification (3.13) for the Higgs field is consistent along the time circle S1

5 If we further impose the condition that q is a root of unity, the 3d theory on M3 becomes anMTC
[101].
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tq
2�−1
2 ϕ(x0 + β, z1) = ϕ(x0 + β, z1) ∼ ϕ(x0, z1) .

Hence, under (2.99c), it is effectively equivalent to the following brane setting:

space-time: S1 × T ∗Cwild × T ∗M3

2M5-branes: S1 × Cwild × M3
(3.17)

This system is investigated in detail (including Argyres–Douglas theories of other
types) [44, 58, 59, 116], and remarkably there turns out to be an SL(2,Z) represen-
tation on the set of connected components of U(1)β fixed points

SL(2,Z)

� 〈
components of U(1)β fixed points in MH (Cwild,G)

〉
. (3.18)

Moreover, considering the topologically twisted partition function Z(S1 × M3) of
the Argyres–Douglas theory T [Cwild,SU(2)], this SL(2,Z) representation can be
categorified. Namely, there is a modular tensor category MTC[A1, A2(�−1)] on M3

whose simple objects are in one-to-one correspondence with U(1)β fixed points.
In fact, the Argyres–Douglas theory of type (A1, A2(�−1)) possesses the discrete

global symmetry Z2�+1, and if we impose a holonomy q = e− 2πγi
2�+1 (γ ∈ Z

×
2�+1) of

this discrete global symmetry along S1, then the modular matrices in Conjecture2.2
are those of the corresponding MTC[A1, A2(�−1)] on M3. Although the S and T
matrices in Conjecture2.2 satisfy the PSL(2,Z) relation even for a generic q, the
Ocneanu rigidity again forbids them to be those of an MTC. Rather, they connect
MTC’s for different values of a holonomy q = e− 2πγi

2�+1 with γ ∈ Z
×
2�+1 by the one-

parameter family with q.
When γ = 1, themodularmatrices coincidewith those of the (2, 2� + 1)Virasoro

minimal model [44, 116]. Note that the (2, 2� + 1) Virasoro minimal model is the
chiral algebra of theArgyres–Douglas theory of type (A1, A2(�−1)) [40].However, the
topologically twisted partition function Z(S1 × M3) (therefore MTC[A1, A2(�−1)])
receives the contribution from Coulomb branch operators whereas a vacuum char-
acter of the chiral algebra is given by Higgs branch operators [23]. It is worth noting
that there are generally many chiral algebras with the same representation categories
[55] so that this coincidence remains very mysterious. (It is sometimes called “4d
symplectic duality”.)

3.1.2 SU(N): Higher Rank Generalization

Let us briefly consider a higher rank generalization of the 3d modularity. The moduli
space of GC flat connections over a two-torus C ∼= T 2 is the quotient space (TC ×
TC)/W of the product of the two complex maximal tori by the Weyl group. In
particular, whenGC = SL(N ,C), the fixed points under the action of theWeyl group
W = SN consist of the center ZN × ZN ⊂ TC × TC so that there are N 2 torsion



66 3 3d Theories and Modularity

points on the moduli space V := (T × T )/SN of SU(N )-bundles over a torus. For
higher ranks, tame ramifications of Higgs bundles are classified by Levi subgroups of
SU(N ) or equivalently partitions of N [84]. To obtain the spherical DAHA S

..
H(SN )

of type AN−1 as Hom(Bcc,Bcc), a simple puncture corresponding to the [1, N − 1]
partition needs to be introduced on C . Although we have not understood topology
and symplectic geometry of the Hitchin moduli space M(Cp,SU(N )) over a torus
with a simple puncture (for instance, the number of irreducible components of the
global nilpotent cone), we can generalize Conjectures2.1 and 2.2 to the higher ranks.
It is a very interesting problem to generalize the analysis in this paper to arbitrary
semi-simple gauge groups.

In refined Chern–Simons theory with SU(N ) gauge group [4], the parameters q
and t are usually expressed in terms of a positive integer k ∈ Z>0 and the continuous
parameter c:

q = exp
( πi

k + c N

)
, t = exp

( c πi

k + c N

)
, (3.19)

so that they are subject to the relation t Nqk = −1. Under this condition, the moduli
space V of SU(N )-bundles is a Lagrangian submanifold in the symplectic mani-
fold (M(Cp,SU(N )),ωX). As in the A1 case, finite-dimensional representations in
the higher rank spherical DAHA S

..
H(SN ) can be studied by using the raising and

lowering operators [105] in the polynomial representation P . The Hilbert space
Hom(Bcc,BV) of SU(N ) refined Chern–Simons theory is spanned by the basis Pλ

labeled by Young diagrams λ ⊂ [kN−1] inscribed in the k × (N − 1) rectangle. The
modular action on theHilbert space is described by S and T matrices of rank (N+k−1)!

(N−1)!k! ,

Sλμ = Pλ(q
−2μt−2ρ)Pμ(t

−2ρ) , Tλμ = δλμ · q 1
N |λ|2−||λ||2 t ||λ

t ||2−N |λ| , (3.20)

where ‖λ‖2 = ∑
λ2
i , and λt denotes the transposition of the Young diagram λ. They

indeed compute invariants of a Seifertmanifold and a torus link [4, 36, 37]. Regarding
Pλ(X) as an element of S

..
H(SN ), one can define the invariant of a torus link Tm,n by

θ(ζm,n(Pλ(X))) , ζm,n =
(
m n
∗ ∗

)
∈ SL(2,Z) . (3.21)

where ζm,n acts projectively on Pλ(X) ∈ S
..
H(SN ), and θ : S ..H(SN ) → Cq,t is the

evaluation map defined in (B.18). The large N limit is conjectured to be equal to the
Poincare polynomial of the HOMFLY-PT homology of a torus link up to a change
of variables when colors are labeled by a rectangular Young diagram.

After a simple puncture is added on a two-torus T 2, the moduli space becomes
smooth and the N 2 torsion points turn into the corresponding N 2 exceptional divisors.
Let us denote them byD(N )

i (i = 1, . . . , N 2). They become Lagrangian submanifolds
with respect to ωX when t N = q−M , or
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q = exp

(
2πi

M + cN

)
, t = exp

(
2cπi

M + cN

)
, (3.22)

with coprime (M, N ). In fact, under the shortening condition t N = q−M , there are N 2

irreducible S
..
H(SN )-modules of dimension (N+M−1)!

(N−1)!M !N , corresponding to the excep-

tional divisors. Among them, only one irreducible componentD(N )
1 is invariant under

PSL(2,Z), which is analogous toD1 in the A1 case. We are interested in the modular
matrices acting on the corresponding finite-dimensional representation of S

..
H(SN ).

With the shortening condition t N = q−M , a finite-dimensional module arises
as a quotient of the polynomial representation whose basis is spanned by Mac-
donald polynomials Pλ with λ ⊂ [MN−1] inscribed in the M × (N − 1) rectangle.
This decomposes into N irreducible modules, and the other N (N − 1) irreducible
modules can be obtained by their orbits under the symmetry 	 × PSL(2,Z) =
H 1(C,ZN ) × PSL(2,Z) of S

..
H(SN ). They correspond to Hom(Bcc,BD(N )

i
). From

the brane perspective, the support of the brane of the polynomial representation
intersects with the corresponding N exceptional divisors. When t N = q−M , N Mac-
donald polynomials Pλ(i) (i = 1, . . . , N ) of type AN−1, where λ(i) ⊂ [MN−1], are
degenerate at each eigenvalue of the Dunkl operator

D(u) =
n∑

r=0

(−u)r D(r) , D(r) =
∑

I⊂[1,...,N ]
|I |=r

∏

i∈I
j /∈I

t Xi − t−1X j

Xi − X j
�i (r = 0, 1, . . . , N ) .

Here we write variables of the Macdonald polynomials defined in AppendixB.1.5 as
Xi/X j := Xα for a rootα = ei − e j and the q-shift operators act as�i X j = qδi j X j .
We also note that D(0) = 1 = D(N ). Out of the N irreducible finite-dimensional
modules, only one irreducible representation becomes a PSL(2,Z) representation,
and its basis is spanned by

{ N∑

i=1

Pλ(i) (X)/Pλ(i) (t−ρ)
}

λ(i)⊂[MN−1]
. (3.23)

In fact, the modular S-matrix Sλμ in (3.20) becomes of rank (N+M−1)!
(N−1)!M !N with the

shortening condition t N = q−M . As in the A1 case (2.125), we can make a change
of basis to (3.23) to obtain a (N+M−1)!

(N−1)!M !N -dimensional PSL(2,Z) representation on the

irreducible S
..
H(SN )-module explicitly.

By a similar argument to the one above, the fivebrane system (3.1) at t N = q−M

is equivalent to the Argyres–Douglas theory of type (AN−1, AM−1) [39, 155] on
S1 × M3, which admits a class S construction with an SU(N ) Hitchin system on
CP1 with a wild singularity at z = ∞ where the eigenvalues of the Higgs field
grow as |ϕ| ∼ |zM/Ndz|. Therefore, the modular matrices acting on the module
Hom(Bcc,BD(N )

1
) can be understood as those of an MTC[AN−1, AM−1] associ-

ated to the (AN−1, AM−1) Argyres–Douglas theory, which categorifies the SL(2,Z)
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action on fixed points of the U(1)β action on the corresponding wild Hitchin moduli
space [58]. As a higher rank generalization of Conjecture2.2, it is expected that they
are related to the modular matrices in the (N , M + N ) minimal model of the WN -
algebra, which is the chiral algebra of the (AN−1, AM−1) Argyres–Douglas theory
[40]. In fact, by normalizing them appropriately with the Macdonald norm (B.15)
of type AN−1, the modular matrices at q = e−2πi/(M+N ) coincide with those (3.26)
of the WN (N , M + N ) minimal model [20], which are reviewed below. However,
we should keep in mind the same caution as the one given at the end of the previous
subsection Sect. 3.1.1.

Remarkably, the space Hom(Bcc,BD(N )
1

) has another intriguing interpretation. In

the limit of the spherical rational Cherednik algebra S
..
H rat

�,c(SN ), the target space
of the sigma-model becomes the Hilbert scheme of (N − 1)-points on the affine
planeC2, and the exceptional divisorD(N )

1 only remains to be a compact Lagrangian
submanifold, called punctual Hilbert scheme. (See also AppendixD.2.) It is known
that its geometric quantization provides the unique finite-dimensional representation
of S

..
H rat

�,c(SN ) [14, 78, 79] and it is furthermore isomorphic to the lowest a-degree
Hbottom(TN ,M) of HOMFLY-PT homology of the (N , M) torus knot TN ,M [73]. Thus,
we have an isomorphism of vector spaces

K 0(MTC[AN−1, AM−1]) ∼= Hom(Bcc,BD(N )
1

) ∼= Hbottom(TN ,M) . (3.24)

In what follows, we briefly review the modular matrices of the WN (N , M + N )

minimal model [20]. These minimal models admit a coset description:

WN (N , M + N ) = SU(N )k × SU(N )1

SU(N )k+1
, with k = N

M
− N . (3.25)

Therefore, their modular matrices are constructed from those of SU(N )k affine Lie
algebra [20]. The primary fields in the SU(N )k WZW model are classified by

�(N ; n) :=
{
λ = (λ1, . . . ,λN−1) ∈ Z

N−1
>0 |

N−1∑

i=1

λi < n = k + N
}

where the vacuum corresponds to � = (1, . . . , 1) ∈ �(N ; n), and the S matrix is
given by

S(N ;n)

λμ = 1

in
√
N

exp[2πi t (λ)t (μ)

Nn
] det

(
exp[−2πi

λ[�]μ[m]
n

]
)

1≤�,m≤N

with

λ[i] =
∑

i≤�<N

(λ� + 1) , t (λ) :=
N−1∑

j=1

jλ j .
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The primary fields of the WN (N , M + N ) minimal model are in one-to-one corre-
spondence with the following set

�[WN (N , M + N )] =
{
(�,λ) | λ ∈ �(N ; N + M) , t (λ) ≡ 0 mod N

}

The modular S and T matrices of the WN (N , M + N ) minimal model are

S(�,λ)(�,μ) = (N (N + M))
3−N
2 exp

[
−2πi

t (�)(t (μ) + t (λ))

N

]
S(N ;N/(N+M))
�� S(N ;(N+M)/N )

λμ ,

T(�,λ)(�,μ) = −iδλμ exp

[
πi

(N + M)� − Nλ) · ((N + M)� − Nλ)

(N + M)N

]
,

(3.26)

where the inner product is defined by

λ · μ :=
∑

1≤i<N

i(N − i)

N
λiμi +

∑

1≤i< j<N

i(N − j)

N

(
λiμ j + λ jμi

)
.

3.2 Relation to Skein Modules and MTC[M3]

In the above discussion, we already encountered the skein modules of 3-manifolds
and the algebraic data of line operatorsMTC[M3,G] in 3dN = 2 theory T [M3,G],

MTC[M3,G] := Line
[T [M3,G]]

that also enters “gluing” of vertex algebras associated to 4-manifolds [55], twisted
indices of T [M3,G] on general 3-manifolds [76], and modular properties of q-series
invariants Ẑ(M3) [32].

Since 3d theory T [M3,G] has onlyN = 2 supersymmetry, it cannot be topolog-
ically twisted on a general 3-manifold and, therefore, does not lead to a full 3d TQFT
that could have been associated to a tensor category (of its line operators) in a famil-
iar way. Nevertheless, as was pointed out in [76], the structure of line operators and
partially twisted partition functions in T [M3,G] in many ways is close to (and, in
some cases, is described by) that of a tensor category. Hence, the nameMTC[M3], or
MTC[M3,G]. The simple objects ofMTC[M3,G] are complex GC flat connections
on M3. For example, when M3 is the Poincaré sphere andG = SU(2), there are three
simple objects in MTC[M3,G] and K 0(MTC[M3,G]) has rank 3. In this example,
and more generally, when all GC flat connections on M3 are isolated, they can be
identified with the intersection points of two Heegaard branes BH± associated with
the Heegaard decomposition of M3, illustrated in Fig. 3.3.

Specifically, let M3 = M+
3 ∪C M−

3 be a Heegaard splitting of a closed oriented
3-manifold M3. As in (2.85), 3-manifolds with boundary ∂M±

3 = C define the
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M+
3 C M−

3

BH+

BH−

Mflat(C,GC)

Fig. 3.3 A Heegaard decomposition (left panel) of a closed oriented 3-manifold leads to an inter-
pretation of K 0(MTC[M3]) as the space of (BH+ ,BH− )-strings in Mflat(C,GC)

(A, B, A)-branes BH± supported on Lagrangian submanifolds Mflat(M
±
3 ,GC) in

Mflat(C,GC). Hence, K 0(MTC[M3]) can be interpreted as the space of open strings
between two Heegaard branes BH± associated to M±

3 and illustrated in Fig. 3.3.
Furthermore, via a complex analogue of the Atiyah–Floer conjecture (see e.g.
[81]), this ring is expected to be isomorphic to the complex GC Floer homology
HF inst

0 (M3,GC) of M3:

K 0(MTC[M3]) ∼= Hom0(BH+ ,BH− ) ∼= HF symp
0 (Mflat(C,GC); H+, H−) ∼= HF inst

0 (M3,GC) .

(3.27)
Here both symplectic and instanton Floer homology groups are Z-graded, and we
take the zeroth degree of the homology groups. Physically, this grading comes from
non-anomalous U(1) R-symmetry.

Indeed, the relevant system here is a stack ofM5-branes onR × T 2 × M3, and we
are interested in the Hilbert spaceHT [M3×T 2,G]. We can interpret this Hilbert space as
that of 3dN = 2 theory T [M3,G] on T 2. The Hilbert space isZ-graded by the U(1)
R-symmetry of the 3d N = 2 theory. On the other hand, we can compactify the 6d
N = (2, 0) theory on T 2, and perform the topological twist of the 4dN = 4 theory
considered in [157]. The two types of topological twists of the 4d N = 4 theory in
[157], Vafa-Witten twist [150] and Marcus/GL-twist [117, 123], are equivalent on
R × M3, and the BPS equations on M3 are satisfied by complexGC-flat connections.
As a result, the Hilbert space can be understood as complex Floer homology of M3.
Consequently, the Hilbert space admits two interpretations [76]:

HT [T 2,G](M3) ∼= HT [M3×T 2,G] ∼= HT [M3,G]
(
T 2

)
.

In general, complex Floer homology groups are infinite-dimensional due to the pres-
ence of reducible solutions and non-compactness of moduli spaces. Nonetheless, it
is graded by the R-charges of the 3dN = 2 supersymmetry, and we expect that the
zeroth degree piece gives precisely (3.27).

Note, that for some manifolds, like M3 = T 3, all complex flat connections are
reducible. (In this example, simply because π1(M3) is abelian.) Such examples illus-
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trate especially well how the infinite-dimensional complex Floer homology of M3 is
re-packaged into its finite-dimensional version K 0 (MTC[M3,G]). Moreover, half-
BPS line operators in T [M3,G] are in one-to-one correspondence with states of the
Hilbert space of T [M3,G] on T 2. The mapping class group of T 2 acts on this Hilbert
space, justifying the name for K 0(MTC[M3]). In practice, this can be a log-modular
action, as in [32].

A somewhat similar “regularization” of the complex Floer theory is provided by
the skein module Sk(M3,G), which was recently shown to be finite-dimensional
[67] for any closed oriented 3-manifold M3. Physically, the SU(N )-skein module of
M3 is a set of all formal linear combinations of line operators in complex SL(N ,C)

Chern–Simons theory, defined as [135, 143]:

Sk(M3, SU(N )) = C[q±](isotopy classes of framed oriented links in M3)/skein relations .

where the skein relations are given by

q−
1
N − q

1
N = (q−1 − q)

= q
1
N −N = qN− 1

N = qN−q−N

q−q−1

.

The analogue for Cartan types other than A is not well explored, and would be an
excellent direction for future work.

Focusing on G = SU(N ) and GC = SL(N ,C), the above discussion suggests
that there may be a relation between K 0(MTC[M3,G]) that describes line operators
in T [M3] and the skein module Sk(M3,G). This relation cannot be a simple isomor-
phism because, e.g. for M3 = T 3 and G = SU(2), K 0(MTC[M3,G]) has 10 simple
objects whereas rank Sk(M3,G) = 9 [30, 65]. Relegating a better understanding of
this relation to future work,6 here we merely conjecture that it commutes with the
SL(2,Z) action, so that Sk(M3,G) also enjoys a (possibly, log-) modular action

SL(2,Z)

�

Sk(M3,G) .

6 The above mentioned examples of the Poincaré sphere and M3 = T 3 suggest that the general
relation for G = SU (2) might be rank Sk(M3,G) = rankK 0(MTC[M3,G]) − 1. Although we do
not know any counterexample to this potential relation, we should stress that the role of “−1” is
likely to be delicate and can not be simply attributed to, say, reducible flat connections (as in the
case of the Poincaré sphere). For example, in the case of M3 = T 3, all complex flat connections
are reducible, as was already pointed out in the main text.
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As a next natural step, we now turn our attention to a relation between the skein
algebra Sk(C) of a Riemann surface C and line operators of the 4d N = 2 theory
T [C], in particular in the case when C is a (punctured) torus.
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Chapter 4
4d Theories, Fivebranes, and M-Theory

In this section, we study line operators in the 4d N = 2∗ theories. A 4d N = 2
theory of class S arises from a compactification of 6dN = (2, 0) theory on a once-
punctured torusC . The spectrum of line operators in the theory depends on additional
discrete data, a maximal isotropic lattice L ⊂ H 1(C, Z(G)) where line operators
must be invariant under the discrete group L. Therefore, we will show that a non-
commutative algebra of line operators of a 4d N = 2∗ theory on S1 × R ×q R

2

with the �-background is the L-invariant subalgebra of spherical DAHA. Also, we
give an explicit geometric relation between Hitchin moduli spaces and an elliptic
fibration of the Coulomb branch of a 4dN = 2∗ theory in the rank-one case. Besides,
we include a surface operator of Gukov–Witten type in the story, and consider an
algebra of line operators on a surface operator to realize the full DAHA instead of
the spherical DAHA. An advantage of the fivebrane system of class S is that we can
relate line operators of a 4d theory to boundary conditions of a 2d sigma-model by
a compactification. Taking this advantage, we propose a canonical coisotropic brane
̂Bcc of higher rank which realizes the full DAHA as Hom(̂Bcc, ̂Bcc).

4.1 Coulomb Branches of 4dN = 2∗ Theories of Rank One

In this subsection, we study a stack of M5-branes on C × S1 × R
3. A 4d N = 2

theory of class S is constructed by a compactification of the 6d (2, 0) theory of type
G (G is of Cartan type ADE) on a Riemann surface C [62, 70] (generally with
punctures) with additional discrete data L [141] (see also [64] where such choice is
referred to as a “polarization on C”), denoted by T [C,G,L]. The basic information
of a theory of class S is encoded in a Hitchin system

� T ∗C

C

, (4.1)
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where � is a Seiberg–Witten curve. The Coulomb branch of the theory on R
4,

called the u-plane, is an affine space Bu = ⊕r
k=1 H

0(C, K⊗dk
C ) where the exponents

dk depend on G. Given a point u ∈ Bu , the Seiberg–Witten curve � is expressed
as the characteristic polynomial det(xdz − ϕ) = f (x, u(z)) where x, z are local
coordinates of the fiber and base of T ∗C . To introduce the additional data, we pick
a symplectic basis of H1(C) of C of genus g in terms of intersection numbers

(α1, . . . ,αg,β1, . . . ,βg) ∈ H1(C), αi · α j = 0 = βi · β j , αi · β j = δi j = −β j · αi ,

which yields a symplectic lattice (H 1(C, Z(G)),ω) where Z(G) is the center
of G. In fact, the additional data are given by a maximal isotropic sublattice
L ⊂ (H 1(C, Z(G)),ω), and they specify an allowed set of charges of line opera-
tors that are compatible with the Dirac quantization conditions [6]. Given a maximal
isotropic sublattice L ⊂ (H 1(C, Z(G)),ω), the Coulomb branch MC(C,G,L) of
the T [C,G,L] theory on S1 × R

3 admits an elliptic fibration over the u-plane Bu

[69, 141]
π : MC(C,G,L) → Bu .

This is sometimes called the Donagi-Witten integrable system of class S. In fact,
H 1(C, Z(G)) freely acts on the Hitchin fibration π : MH (C,G) → BH fiberwise,
and the Coulomb branch can be obtained by the quotient of π : MH (C,G) → BH

by a fiberwise action of L so that

MC(C,G,L) = MH (C,G)/L.

Note that this action can be obtained by twists of aHiggs bundle by aflat Z(G)-bundle
over C associated to L, and it acts freely on a generic fiber of the Hitchin fibration.
Therefore, the Coulomb branchMC(C,G,L) inherits a hyper-Kähler structure from
the Hitchin moduli space MH (C,G).

Of our interest are certainly the class S theories of type A1 associated to the once-
punctured torus Cp, namely 4d N = 2∗ theories of rank one [47, 71]. The lattice
H 1(Cp, Z2) = Z2 ⊕ Z2 with the natural symplectic form can be identified with the
electric and magnetic charges of line operators of the N = 2∗ theory wrapping S1.
Line operators with charges λ = (λe,λm) and ν = (νe, νm) must be subject to the
Dirac quantization condition

ω(λ, ν) = λeνm − λmνe ∈ 2Z.

There are three ways to pick amaximal isotropic lattice, corresponding to (0, 1) (1, 0)
and (1, 1)∈ H 1(Cp, Z2) = Z2 ⊕ Z2. They are known as SU(2), SO(3)+ and SO(3)−
gauge theories, respectively, where the theta angles of SO(3)± differ by 2π. Under
the SL(2, Z) transformation on the complexified gauge coupling (electromagnetic
duality), these theories are related to each other as follows:
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SU(2)

SO(3)+ SO(3)−

S

T

T ST

T

T ST S

(4.2)

MH (Cp,SU(2))

MC(Cp,SO(3)+)MC(Cp,SU(2)) MC(Cp,SO(3)−)

MH (Cp,SO(3))

ξ2 ξ1 ξ3

ξ1 ξ2 ξ1

(4.3)
Next, we study the geometry of the Coulomb branches of the 4dN = 2∗ theories

of rank one on S1 × R
3. The Coulomb branches can be obtained by Z2 quotients

of the Hitchin moduli spaceMH (Cp,SU(2)) by ξi ∈ � = H 1(Cp, Z2) (i = 1, 2, 3)
[69, Sect. 8.4] as in (4.3). The ramification parameters 1

2 (βp + iγp) at the Higgs
field ϕ is indeed equivalent to the complex mass of the adjoint hypermultiplet in
the 4d N = 2∗ theory. The ramification parameter αp is the holonomy along S1

for the U(1) flavor symmetry. Let us investigate the action of � on the Hitchin
moduli spaceMH (Cp,SU(2)) at a generic ramificationmore in detail. As in Fig. 2.2,
MH (Cp,SU(2))with a generic ramification has three singular fibers of Kodaira type
I2. As described in Sect. 2.1, the action of � on each fiber in the Hitchin fibration
MH (Cp,SU(2)) → BH is of order two, and the action is moreover free on a generic
fiber. Hence, an interesting part is the action on the singular fibers. Two irreducible
components, U2i−1 and U2i , in the singular fiber π−1(bi ) can be understood as two
CP1’s meeting at the north and south pole as double points. As illustrated in Fig. 2.6,
the element ξ1 in (2.29) acts on each irreducible component of the singular fiber
π−1(b1) as the 180◦ rotation around the polar axis of CP1. Likewise, ξ1 acts on
a generic fiber F nearby as the 180◦ rotation along the (1, 0)-cycle (meridian) of
F. As we have seen in Sect. 2.6.2, the singular fiber π−1(b1) is mapped to π−1(b2)
by the modular S-transformation σ. Therefore, in the neighborhood of the singular
fiber π−1(b2), ξ1 acts on a generic fiber F as the 180◦ rotation along the (0, 1)-cycle
(longitude) of F. Consequently, ξ1 exchanges the two irreducible componentsU3 and
U4 by the corresponding rotation on the singular fiber π−1(b2). In a similar fashion,
τ+ ∈ PSL(2, Z)maps the singular fiberπ−1(b1) to the other fiberπ−1(b3). Therefore,
ξ1 acts on a generic fiber F as the 180◦ rotation along the (1, 1)-cycle of F around
the singular fiber π−1(b3). Moreover, it exchanges the two irreducible components
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U5 and U6 with additional rotation around the polar axis of CP1. The actions of ξ2
and ξ3 are obtained by the cyclic permutations of bi (i = 1, 2, 3).

Since ξi acts freely on a generic Hitchin fiber with order two, the quotient of the
Hitchin fibration MH (Cp,SU(2)) → BH by ξi provides the structure of an elliptic
fibration of the Coulomb branch. Namely, this double cover is obtained by an isogeny
of each elliptic fiber of degree two [1, 2]. As illustrated in Fig. 2.6, ξ1 acts on each
irreducible component of the singular fiber π−1(b1) by the 180◦ rotation so that the
quotient by its action turns the double points p1,2 into the A1 orbifold points. In fact,
the quotient can be understood as a particular limit of the fiber of Kodaira type I4.
Generically, the fiber of type I4 consists of four CP1’s joining like a necklace, or the
affine ̂A3 Dynkin diagram. The quotient is indeed the zero-volume limit of the two
disjoint CP1’s as in Fig. 4.3. On the other hand, the quotient of the other singular
fibers π−1(b2,3) by ξ1 identifies the two irreducible components and the two double
points by the rotation, yielding the fiber of Kodaira type I1. Again, the quotients
of ξ2 and ξ3 are obtained by the cyclic permutations of bi (i = 1, 2, 3). As a result,
the quotient of the Hitchin moduli space MH (Cp,SU(2)) by ξi leads to an elliptic
fibration MC → Bu of the Coulomb branch with one singular fiber of type I4 at
bi ∈ Bu and two singular fibers of type I1 at bi+1, bi+2 ∈ Bu [1, 2] as illustrated in
Fig. 4.1. Hence, an N = 2∗ theory of rank one enjoys a subgroup of SL(2, Z) that
fixes the singular fiber of type I4. One can easily read off such a subgroup from
(2.38) that is consistent with a duality group (4.2) of anN = 2∗ theory. Note that τ+
and τ− correspond to the T and T ST elements, respectively, of the electromagnetic
duality of the 4d N = 2∗ theories of rank one, which is different from the matrix
assignment in (2.34).

So farwehave studied theCoulombbrancheswith generic ramification parameters
(αp,βp,γp). When βp = 0 = γp, the Hitchin fibration MH (Cp,SU(2)) → BH

has one singular fiber of type I ∗
0 at the global nilpotent cone, and it is easy from

Fig. 2.1 to see the quotient by ξi . For instance, at generic values of αp, the quotient
of the global nilpotent cone by ξ1 again leads to the singular fiber of type I ∗

0 , but the
volumes ofD2 andD4 shrink to zero in this case. Therefore, it has two A1 singularities.
Similarly, the quotient by another generator ξi can be obtained by exchanging non-
trivial exceptional divisor D3 to another one (D2 (ξ2) or D4 (ξ3)).

As in (4.3), the moduli space MH (Cp,SO(3)) of SO(3)-Higgs bundles over Cp

can be obtained by the further quotient of the Coulomb branch by the other generator
of�. By the further quotient, the two irreducible components and the two A1 singular
points are identified in the singular fiber of type I4, and the quotient of each singular
fiber of type I1 by the 180◦ rotation of around the polar axis turns the double point into
the A1 singularity. As a result, all the singular fibers ofMH (Cp,SO(3)) → BH can
be understood as the limit of a singular fiber of type I2 in which one of the irreducible
components shrinks to zero as in Fig. 4.2. When βp = 0 = γp, the global nilpotent
cone is again the singular fiber of type I ∗

0 , but it has three A1 singularities for generic
values of αp [82, Fig. 1] (Fig. 4.3).
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I4

I1

I1

Bu

A1 A1

Fig. 4.1 Schematic illustration of elliptic fibration of Coulomb branch MC (Cp,SO(3)+) → Bu

I2

I2

I2

BH

A1

A1

A1

Fig. 4.2 Schematic illustration of the Hitchin fibration of MH (Cp,SO(3)) → BH
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A1A1 A1

Fig. 4.3 (Left) The Coulomb branch MC contains a particular limit of the fiber of type I4
so that there are two A1 singularities. (Right) Each singular fiber of the Hitchin fibration
MH (Cp,SO(3)) → BH with a generic ramification is a certain limit of the fibers of type I2

4.2 Algebra of Line Operators

It is known [69, 70] that loop operators along S1 in a 4d N = 2 theory T (C,G,L)

on S1 × R
3 form a commutative algebra that is the coordinate ringO(MC(C,G,L))

of the Coulomb branch holomorphic in complex structure J . Once we introduce the
�-background S1 × R ×q R

2, loop operators wrapped on S1 are localized on the axis
of the �-deformation as depicted in Fig. 4.4. Consequently, they are forced to come
across each other as they exchange their positions, which yields non-commutative
deformation of the algebra [12, 42, 97, 129, 134, 156]. Thus, an algebra of line
operators of a 4d N = 2 theory on the �-background provides the deformation
quantization Oq(MC) of the coordinate ring of its Coulomb branch, a.k.a quantized
Coulomb branch.

Now we are ready to discuss quantized Coulomb branches of the 4d N = 2∗
theories of rank one and their relation to spherical DAHA S

..
H . Once we specify a

q

R×q R
2S1×

Bcc

Σ
on S1 × S1

q

Fig. 4.4 An algebra of line operators (colored circles) in a 4d N = 2 theory becomes non-
commutative in the �-background S1 × R ×q R

2, which provides deformation quantization of
holomorphic coordinate ring of theCoulomb branch. The 4dN = 2 theory compactified on S1 × S1q
is described by 2d A-model � → MC on the Coulomb branch where the boundary condition at
∂� is given by Bcc. Here R

2 ⊃ S1q is the circle generating the �-deformation
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maximal isotropic latticeL ⊂ H 2(C, Z(G)), we can read off charges of line operators
in a 4dN = 2 theory subject to the Dirac quantization condition. The cases of the 4d
N = 2∗ theories of rank one have been studied in detail [6, 69]. In fact, the generators
x, y, z of S

..
H in (2.47) correspond to the minimal Wilson (1, 0), ’t Hooft (0, 1) and

dyonic (1, 1) line operator, respectively. Therefore, it is natural to expect that the
relations of quantized Coulomb branches to S

..
H are as follows:

• The SU(2) theory has line operators of charge (λe,λm) with λe ∈ Z,λm ∈ 2Z,
including a Wilson operator with the fundamental representation. Therefore, the
quantized Coulomb branch is isomorphic to the ξ2-invariant subalgebra of S

..
H

Oq(MC(Cp,SU(2))) ∼= S
..
H ξ2 (4.4)

generated by

x = (X + X−1)e, y2 − 1 = (Y 2 + 1 + Y−2)e. (4.5)

• The SO(3)+ theory has line operators of charge (λe,λm) with λe ∈ 2Z,λm ∈ Z,
including an ’t Hooft operator with the fundamental representation. Therefore, the
quantized Coulomb branch is isomorphic to the ξ1-invariant subalgebra of S

..
H

Oq(MC(Cp,SO(3)+)) ∼= S
..
H ξ1 (4.6)

generated by

x2 − 1 = (X2 + 1 + X−2)e, y = (Y + Y−1)e. (4.7)

• The SO(3)− theory has line operators of charge (λe,λm)withλe,λm ∈ Z such that
λe + λm ∈ 2Z , including aminimal dyonic operator (λe,λm) = (1, 1). Therefore,
the quantized Coulomb branch is isomorphic to the ξ3-invariant subalgebra of S

..
H

Oq(MC(Cp,SO(3)−)) ∼= S
..
H ξ3 (4.8)

generated by

x2 − 1 = (X2 + 1 + X−2)e, z = (q−1/2Y−1X + q1/2X−1Y )e. (4.9)

To see the connection to a 2d sigma-model in Chap.2, we can employ a trick sim-
ilar to Fig. 3.1. Namely, we can compactify a 4d N = 2 theory on T 2 ∼= S1 × S1q as
illustrated in Fig. 4.4, which leads to 2d A-model R × R+ ∼= � → MC(C,G,L) on
theCoulomb branch.Here S1q ⊂ R

2 is the circle around the axis of the�-background.
As a result, the axis of the �-background on which loop operators meet each other
becomes the boundary ∂�. Therefore, the boundary ∂� should give rise the quan-
tizedCoulomb branchOq(MC) so that the canonical coistoropic boundary condition
Bcc naturally shows up at ∂� [129]. By the state-operator correspondence, a loop
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operator in the 4dN = 2 theory becomes a state in Hom(Bcc,Bcc) up on the com-
pactification. In this way, Bcc arises from “the axis of the �-deformation” (or a tip
of a cigar as in [129]).

We have seen that the SU(2) and SO(3)± theories are related by PSL(2, Z) so that
the quantized Coulomb branches are indeed isomorphic. We expect the conjectural
functor (1.3) exists even when X = MC(Cp,SU(2),L) are the Coulomb branches
of the 4d N = 2∗ theories of rank one. Thus, we can compare the representation
category Rep(Oq(X)) of the quantized Coulomb branch with the A-brane category
A-Brane(X,ωX) of the Coulomb branch as in Chap. 2. In fact, we can construct a
polynomial representation of a quantized Coulomb branch by using the two genera-
tors, and finite-dimensional modules can be obtained by quotients of the polynomial
representation under the corresponding shortening conditions. The geometry of the
Coulomb branches is explored in the previous section, and we confirm that there is
a one-to-one correspondence between finite-dimensional modules of the quantized
Coulomb branch and compact A-branes in the Coulomb branch as in Chap.2.

For illustrative purposes, let us briefly study representation theory of the quan-
tized Coulomb branch Oq(MC(Cp,SO(3)+)) ∼= S

..
H ξ1 . As in (4.7), it is generated

by x2 and y. Consequently, the polynomial representation of S
..
H splits into the ±

eigenspaces of the Z2 action ξ1 : X → −X as the S
..
H ξ1 -modules for generic (q, t).

Therefore, S
..
H ξ1 acts on ˜P := Cq,t [X±2]Z2 (resp. ˜P := (X + X−1)Cq,t [X±2]Z2 )

under the polynomial representation, which is spanned by Macdonald polynomials
of even (resp. odd) degrees. We can define a raising and lowering operator as in
(2.79) with these generators

˜R j := q j−1t
q−1(x2 − 1)y − qy(x2 − 1)

q2 − q−2
+ q2 j (q2 − t2)(1 − t2)

1 − q2+2 j t2
,

˜L j := q−1− j t−1 q
−1y(x2 − 1) − q(x2 − 1)y

q2 − q−2
− (q2 − t2)(1 − t2)

t2(q2 − q2 j t2)
.

(4.10)

They act on Macdonald polynomials as

pol(˜R j ) · Pj (X; q, t) = (1 − q2 j−1t2)Pj+2(X; q, t), (4.11)

pol(˜L j ) · Pj (X; q, t) = − q−2 j (1 − q2 j )(1 − q2( j−1))(1 − q2( j−2)t4)(1 − q2( j−1)t4)

t2(1 − q2( j−1)t2)2(1 − q2( j−2)t2)
Pj−2(X; q, t).

(4.12)

Thus, using these operations, we can study finite-dimensional representations as
quotients of the polynomial representation ˜P of S

..
H ξ1 as in Sect. 2.6. Focusing on

the polynomial representation of even degrees, when q is a 2nth root of unity (i.e.
q2n = 1), the ideal (X2n + X−2n − x2n − x2n) is invariant under the action of S

..
H ξ1

since the q-shift operator � acts trivially on X±2n . Consequently, the quotient by
this ideal yields an n-dimensional finite-dimensional representation

˜F x2n ,+
n := ˜P/(X2n + X−2n − x2n − x2n). (4.13)
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An analogous representation can be obtained from the polynomial representation of
odd degrees. They correspond to branes supported on a generic fiber with prescribed
holonomy in MC(Cp,SO(3)+). Comparing (2.103) at m = 2n, the dimension is a
half because it splits into the ± eigenspaces of the Z2 action ξ1. Furthermore, when
n is even n = 2p, we have another finite-dimensional representation because one
lowering operator (4.12) becomes null:

˜Up := ˜P/(Pn). (4.14)

This corresponds to a brane supported on an irreducible component in the singular
fiber π−1(b1) in Fig. 4.1. The dimension is a half of (2.107) due to the ξ1 invariance.
Under the condition, we have the short exact sequence analogous to (2.128)

0 → ˜Up → ˜F−,+
n → ξ2( ˜Up) → 0. (4.15)

This can be interpreted as a bound state formed by the branes supported on the two
irreducible components at the singular fiber π−1(b1) in Fig. 4.1. Similarly, we can
obtain finite-dimensional irreducible representations analogous to V in (2.113) and
D in (2.122) under the same shortening conditions where the dimensions are halved,
respectively.

Note that the deformation quantization of the holomorphic coordinate ring of the
Hitchinmoduli spaceMH (Cp,SO(3)) can be understood as the spherical subalgebra
of “SO(3) DAHA”. It is isomorphic to the �-invariant subalgebra of S

..
H

Oq(MH (Cp,SO(3))) ∼= S
..
H�

generated by x2 − 1 and y2 − 1. Since the weight and root lattices of SU(2) and
SO(3) are related by Q(SU(2)) = P(SO(3)) ⊂ P(SU(2)) = Q(SO(3)), this is con-
sistent with the construction of DAHA from the symplectic lattice (P ⊕ P∨,ω)

described at the beginning of Chap.2 and the deformation quantization of the mod-
uli spaceMflat(Cp,PSL(2, C)) of PSL(2, C)-flat connections. Again, we can study
representation theory of the SO(3)DAHA from the perspective of brane quantization
though the detail is omitted here.

There is yet another way [115, 117] to connect the 4dN = 4 theory to a 2d sigma-
model and to see a category of line operators in the 4dN = 4 theory. (See also [43]
for a similar analysis in 3d.) Let us consider a line operator supported on R × pt ⊂
R × R

3 in the 4dN = 4 theory with gauge groupG. Then, the neighborhood around
the line operator at pt ∈ R

3 consists of two disks glued along with a punctured disk
, called a “raviolo” [11, 127]. The “effect” of a line operator is

measured by themodification of field configurations from one diskC to the other disk
C, namely aHecke modification. The compactification of the 4dN = 4 theory on the
raviolo leads to a 2d sigma-model on the Hitchin moduli space of
the raviolo, and a line operator gives rise to a boundary condition of the worldsheet as
depicted in Fig. 4.5. It was shown [117] that a Wilson operator provides a boundary
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• on
Σ

Fig. 4.5 (Left) The neighborhood around a line operator at pt ∈ R
3 is a “raviolo”. (Right) A line

operator (blue) gives rise to a boundary condition in the 2d sigma-model upon the compactification
of the 4d N = 4 theory on the raviolo

condition of type (B, B, B)whereas an ’t Hooft operator gives a boundary condition
of type (B, A, A) in . Since a boundary condition for a Wilson
operator is holomorphic (B, B, B) in every complex structure on ,
its fusionwith another line operator preserves all supersymmetry. Taking into account
the fact that the fusion of aWilson and an ’t Hooft operator leads to a dyonic operator,
a dyonic operator hence gives rise to a brane of type (B, A, A) in 2d sigma-model on

. Thus, upon the compactification, line operators in the 4d N = 4
theory all become B-branes of type I on , and an algebra structure
can be defined by the convolution product of B-branes.

To formulate this idea into a mathematical model [16, 63, 146], let us first con-
sider the moduli space of G-bundles over the raviolo. Since the coordinate ring of
C is the formal power series ring O := C�z� and that of C

× is its fieldK := C((z))
of fractions, the moduli space of G-bundles over can be expressed as a dou-
ble coset model, namely the space GK

C
:= GC((z)) of transition functions over the

punctured disk C
× modulo the spaces of gauge transformations GO

C
:= GC�z� over

each C:

(4.16)
In fact, if we take only the right quotient by the gauge transformation, the resulting
space Gr(GC) := GK

C
/GO

C
is called the affine Grassmannian.

To consider the Hitchin moduli space, we need to introduce the Higgs field. This
can be achieved by considering the affine Grassmannian Steinberg variety

R = {(x, [g]) ∈ gO
C

× Gr(GC) | Adg−1(x) ∈ gO
C

}. (4.17)

The quotient GO
C

\R is the moduli space of a pair of G-bundles and sections of its
adjoint associated bundle over the raviolo, which can be regarded as themathematical
model of Taking the B-model viewpoint in complex structure I ,
the category Line of line operators in the 4dN = 4 theory with gauge group G and
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zero theta angle is equivalent to the derived category of GO
C
-equivariant coherent

sheaves on R
Line

[T [C,G,L]] ∼= DbCohGO
C (R),

where a maximal isotropic lattice L is chosen in such a way that the theta angle is
zero. For instance, it is easy to see that it automatically incorporates the category of
Wilson operators as

CohGO
C (pt) ∼= CohG

(pt) ∼= Rep(G).

By taking the Grothendieck ring of this category, we obtain the algebra of line
operators in the 4d N = 4 theory [16]

KGO
C (R) ∼= C[TC × T ∨

C
]W , (4.18)

which is indeed isomorphic to the coordinate ring of the Coulomb branch

MC(C,G,L) = TC × T ∨
C

W
(4.19)

of the 4d N = 4 theory on S1 × R
3 holomorphic in complex structure J [16, 63,

146]. The coordinates C[TC]W and C[T ∨
C

]W are spanned by Wilson and ’t Hooft
line operators, respectively. It is important to note that the Coulomb branch is not
isomorphic to the moduli spaceMflat(C,GC) of GC flat connections on a two-torus
C ∼= T 2 in (B.6) as a holomorphic symplectic manifold. It is rather a quotient of
Mflat(C,GC) by L.

To obtain the algebra of line operators in the 4d N = 2∗ theory, we turn on the
equivariant action C

×
t on the cotangent fiber of the affine Grassmannian Gr(GC),

which is equivalent to switching on the ramification parameters (3.12). Moreover,
its quantization can be further achieved by introducing the equivariant action C

×
q of

the loop rotation z �→ qz. In this way, we obtain the quantized Coulomb branch of
the 4d N = 2∗ theory on S1 × R

3

K (GO
C

×C
×
t )�C

×
q (R) ∼= S

..
H(W )L. (4.20)

As we have seen in the examples of rank one, it is not isomorphic to the spherical
subalgebra S

..
H(W ) of DAHA associated toW . It is rather the L-invariant subalgebra

of S
..
H(W ).
Evenwith the same gauge groupG, discrete theta angles provide different theories

as in the examples of rank one. Generally, they are distinguished by characteristic
classes ofHiggs bundles such as theStiefel-Whitney classesw2 andw4 [6, 61].Above
we consider only the cases in which the theta angle is zero, but we can generalize it
to a theory with non-trivial discrete theta angle by constructing the moduli space of
Higgs bundles with non-trivial topological classes over the raviolo.
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4.3 Including Surface Operator

So far, we focus on physical realizations of the spherical DAHA S
..
H(W ) and its

subalgebras, and it is natural to ask whether we can realize DAHA
..
H(W ) itself. To

see that, let us consider an algebra of line operators on a surface operator of Gukov–
Witten type [84]. A surface operator of Gukov–Witten type arises as an intersection
of M5-branes at codimension two locus:

space-time: R
4 × T ∗C × R

3

N M5-branes: R
4 × C × pt

(surface operator) M5’-brane: R
2 × C × R

2

where C ∼= T 2 is a two-torus. Here a surface operator is supported on R
2 × pt ⊂ R

4

in the N = 4 SU(N ) theory T [C,SU(N ),L]. A half-BPS surface operator breaks
the gauge group down to a Levi subgroup L ⊂ G, and as in (2.4) the singular behavior
of the gauge field around the surface operator is

A = αdϑ + · · · , (4.21)

where z = reiϑ is a local coordinate of the plane normal to the surface operator. The
singular behavior for one � of the adjoint chiral scalars is described by

Dz̄� = (β + iγ)δ(2)(z, z̄).

A surface operator can also be microscopically realized as a 2d N = (4, 4) theory
coupled to the 4d N = 4 theory where the triple (α,β, γ) can be understood as the
N = (4, 4) Fayet–Iliopoulos parameters. In addition to the triple (α,β, γ), they are
also labeled by the theta angles η of the 2d theory. The quadruple (α,β, γ, η) takes
a value in the WL -invariant part of T × t × t × T ∨ where we write WL for the Weyl
group of the Levi subgroup L . We remark that surface operators exist in N = 2
supersymmetric gauge theories where the parameters β and γ are absent due to the
number of supersymmetry.

In the following, we consider a category and algebra of line operators on a surface
operator that breaks the gauge group G to its maximal torus T , which is often
called the full surface operator. In this case, the corresponding Weyl group is that
of the gauge group WT = W . Since we will eventually consider the 4d N = 2∗
theory, we set β = 0 = γ and the surface operator is parametrized by the pair (α, η).
As in the previous subsection, we can study this by compactifying the 4d theory
on the “raviolo”. However, due to the presence of the surface operator, there are
ramifications at the centers of the two disks of the raviolo around a line

operator (Fig. 4.6). We write the resulting Hitchin moduli space by , and
we are interested in a category of B-branes of type I on

Again, we first consider the moduli space of G-bundles over the ramified raviolo
to formulate this into a mathematical model [146, 148, 149]. The full surface
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• on
Σ•

•

•
•

Fig. 4.6 The raviolo around a line operator (blue) on the surface operator (red) has tame ramifica-
tions at the centers of the two disks. A line operator (blue) gives rise to a boundary condition in the
2d sigma-model upon the compactification of the 4d N = 4 theory on the raviolo

operator breaks the space of gauge transformations on a disk from the loop group
GO

C
to the Iwahori subgroup

I := {a0 + a1z + a2z
2 + · · · ∈ GO

C
|a0 ∈ B} (4.22)

that is the preimage of a Borel subgroup B under the projection GO
C

→ GC. Hence,

the moduli space of G-bundles over can be expressed as the double coset
space

Actually, Fl(GC) := GK
C

/I is called the affine flag variety, which is the fiber
bundle over the affine Grassmannian with the full flag variety GC/B a fiber

GC/B Fl(GC)

Gr(GC)

.

As a mathematical model of the Hitchin moduli space , we can
consider the moduli space I \Z of a pair of G-bundles and sections of its adjoint
associated bundles on where Z is the affine flag Steinberg variety defined as

Z = {(x, [g]) ∈ Lie(I ) × Fl(GC) | Adg−1(x) ∈ Lie(I )}. (4.23)

Consequently, the category of line operators on the full surface operator in the 4d
N = 4 theory with gauge group G and zero theta angle is equivalent to the derived
category of I -equivariant coherent sheaves on Z

Line[T [C,G,L], T ] ∼= DbCohI (Z), (4.24)
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where a maximal isotropic lattice L is chosen in such a way that the theta angle is
zero. This includes the category of Wilson operators on the full surface operator

CohI (pt) ∼= CohT
(pt) ∼= Rep(T ),

which sees that the gauge groupG is broken to themaximal torus T due to the surface
operator. Clearly, the Grothendieck ring of the category (4.24) is the algebra of line
operators on the full surface operator in the 4d N = 4 theory [146, 148, 149]

KI (Z) = C[TC × T ∨
C

] � C[W ].

Unlike (4.18), this ring is non-commutative because line operators on the sur-
face operators know the order of multiplications even without quantization (�-
deformation).

By introducing the equivariant actions as in (4.20), we obtain an algebra of line
operators on the full surface operator in the 4d N = 2∗ theory with gauge group G
and zero theta angle on the �-background

K (I ×C
×
t )�C

×
q (Z) ∼= ..

H(W )L. (4.25)

This is isomorphic to the L-invariant subalgebra of DAHA
..
H(W ). In the case of

G = SU(2), this is isomorphic to the ξ2-invariant subalgebra of DAHA
..
H generated

by X,Y 2, T . ForG = SO(3), it is isomorphic to the ξ1-invariant subalgebra ofDAHA..
H generated by X2,Y, T . (See Sect. 2.2.)

Although we consider the full surface operator that breaks a gauge group SU(N )

to S[U(1)N ] here,we can instead include a surface operator of another type associated
to a partition of N . For this, we replace the Borel subgroup B in (4.22) by a parabolic
subgroup P associated to a partition of N . In this way, we can obtain a variant of
DAHA as an algebra of line operators on a surface operator.

Canonical Coisotropic Brane of Higher Ranks

In the previous subsection, the canonical coisotropic braneBcc emerges as the bound-
ary condition at the axis of the�-deformationby compactifying the 4dN = 2∗ theory
on T 2 ∼= S1 × S1q . Moreover, an algebra of line operators can be understood as the
algebra of (Bcc,Bcc)-strings in 2d A-model on the Coulomb branch. It is natural to
ask how to describe the boundary condition at the axis of the �-deformation in the
presence of the full surface operator up on the same compactification (Fig. 4.7).

For this purpose, we refer to the idea [15, 88] employed in the geometric con-
struction of rational Cherednik algebra. Roughly speaking, spherical DAHA S

..
H(W )

can be interpreted as the subalgebra averaged over the action of the Weyl group W .
We want to construct the part of the Weyl group by constructing a brane of higher
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q

q

•
•
•

̂Bcc

Σ
on S1 × S1

q

•
•
•

Fig. 4.7 The 4d N = 2∗ theory with the Gukov–Witten surface operator on S1 × S1q is described
by 2d A-model � → MC (Cp,G,L) where the boundary condition at ∂� is described by the
canonical coisotropic brane ̂Bcc of higher rank

rank since the algebra of line operators on the full surface operator realizes (4.25).
In fact, there is the natural construction of the Weyl group just by taking projection
TC × T ∨

C
→ (TC × T ∨

C
)/W . If we regard the Coulomb branch of the 4d N = 2∗

theory as the resolution η : MC(Cp,G,L) → (TC × T ∨
C

)/W , we can define their
fiber-product Y via

Y TC × T ∨
C

MC(Cp,G,L)
TC×T ∨

C

W

ρ

η

.

Therefore,Y can be understood as the universal family ofMC(Cp,G,L). Following
[88], we define the “unusual” tautological bundle P := ρ∗O(Y) onMC(Cp,G,L),
which is called Procesi bundle, by the push-forward of the sheaf O(Y) of regular
functions (or the trivial bundle) on Y. By construction, the Procesi bundle P has
rank |W |, with the regular representation of the Weyl group W on every fiber. Then,
the canonical coisotropic brane ̂Bcc := P ⊗ Bcc in the presence of the full surface
operator is indeed the tensor product of the original line bundle L for Bcc (2.57)
with the Procesi bundle P . Consequently, the algebra of (̂Bcc, ̂Bcc)-strings realizes
an algebra of line operators on the full surface operator

Hom(̂Bcc, ̂Bcc) ∼= ..
H(W )L.

If we replace MC(Cp,G,L) and T ∨
C

by the Hitchin moduli space MH (Cp,G)

and TC, respectively, in the construction above, we obtain the full DAHA as
End(̂Bcc) ∼= ..

H(W ). In particular, when q = 1, the bundle P ⊗ L is equivalent to
the vector bundle E constructed in [130, Corollaries 6.1 and 6.2]. In fact, the space of
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Bcc BccBcc Bcc Bcc Bcc

Fig. 4.8 (̂Bcc, ̂Bcc)-strings and (Bcc,Bcc)-strings form DAHA
..
H and spherical DAHA S

..
H ,

respectively. Hence, a (̂Bcc,Bcc)-string leads to
..
H -left and S

..
H -right module

..
He

(̂Bcc,Bcc)-strings canbeunderstood as
..
H(W )-left and S

..
H(W )-rightmodule

..
H(W )e,

to which the Procesi bundle P is associated (Fig. 4.8).
This has the following remarkable consequence. In Chap.2, we have seen that

given an A-brane B′, the space of (Bcc,B
′)-strings can be understood as a repre-

sentation of spherical DAHA S
..
H(W ). In fact, given a (Bcc,B

′)-string, its joining
with a (̂Bcc,Bcc)-string always yields a (̂Bcc,B

′)-string (Fig. 4.9), which receives
the action of the full DAHA

..
H(W ). In a similar fashion, by reversing a (Bcc,B

′)-
string, one can obtain a (Bcc,B

′)-string from a (̂Bcc,B
′)-string. This leads to the

Morita equivalence of the two representation categories

Hom(̂Bcc,Bcc) : Rep(S
..
H(W ))

∼−→ Rep(
..
H(W )). (4.26)

Of course, not every object produces an equivalence of this type. We expect that both
Bcc and ̂Bcc can be understood as generating objects of the category of A-branes.
In general, generating objects are far from unique, and their non-uniqueness is one
way that Morita equivalences arise. For example, any free R-module is a generating
object, giving rise to the usual Morita equivalences between matrix algebras. Since

Fig. 4.9 Joining of a
(̂Bcc,Bcc)-string and a
(Bcc,B

′)-string leads to
(̂Bcc,B

′)-string

̂Bcc B′

Bcc
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B̂cc is, in a sense, analogous to a higher-rank module overBcc, we expect a similar
story here, but do not pursue this in this paper.

In particular, since the space of (̂Bcc,Bcc)-strings is associated to the Procesi
bundle P , the dimension formula for the representation corresponding to the space
of (̂Bcc,BL)-strings for a compact Lagrangian submanifold L is obtained by just
tensoring P in (2.72)

dim Hom(̂Bcc,BL) = dim H 0(L,P ⊗ Bcc ⊗ B−1
L ),

= |W | dimHom(Bcc,BL).
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Appendix A
Glossary of Symbols

As a general rule, single symbols in sans-serif type are used to denote lattices or other
freeZ-modules.Words set in sans-serif type (e.g. A-Brane) refer to categories. Italic
symbols may be used for groups, algebras, or other classes of objects. Calligraphic
letters, such asM or B, denote objects which are moduli spaces or closely related to
moduli spaces.We reserve bold-face type for distinguished Lagrangian submanifolds
of such moduli spaces, in particular for the support of branes (such as F for a generic
fiber of the Hitchin fibration).

Capital gothic letters (e.g. X for the target space) are used for objects equipped
with the structure required by the topological A-model. As such, B denotes the A-
brane associated to particular data; for instance, BF denotes a brane supported on
the generic fiber of the Hitchin fibration. Note, though, that extra data on which the
brane depends may be left implicit.

Script letters will denote modules of the algebra Oq(X) (precisely which algebra
is intended will be clear from the context). We always suggestively use the same
letter for a brane and its corresponding representation, so that (for example)F will
be identified withBF under the correspondence (1.3).

Occasionally, we cannot help using the same symbol for different notions due
to the lack of letters. For instance, the symbol T is used for a maximal torus of a
compact Lie group, a generator of DAHA, a two-torus and an element of SL(2, Z).
However, we believe that the context is a sufficient guide.

In the following, we list notations of the paper.

• MH is a Hitchin moduli space (a moduli space of Higgs bundles), MC is a
Coulomb branch, Mflat is a moduli space of flat connections

• X is an affine variety over C which admits the structure of a non-compact hyper-
Kähler manifold. Depending on context, it may be C

× × C
×, or the moduli space

of flat connections with coefficients in a complex Lie group.
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• G is a compact gauge group, T is a Cartan subgroup ofG, and L is a Levi subgroup
of G.

• GC is the complexification of G, TC is a Cartan subgroup of GC, B is a Borel
subgroup of GC, and P is a parabolic subgroup of GC.

• R denotes a finite root system, and
.
R := R ⊕ Zδ denotes the corresponding affine

root system. R+ denotes a set of positive roots.
• Q and Q∨ denote the root and coroot lattice of R, respectively. Similarly, P and
P∨ denote the weight and coweight lattice of R, respectively. P+ denotes the set
of dominant weights.

• � and �∨ denote the character and cocharacter lattice, respectively. The center
Z(G) and the fundamental group π1(G) of G are given by quotients of lattices
Z(G) = P∨/�∨ and π1(G) = �∨/Q∨, respectively. Their duals are Z(G)∨ =
�/Q and π1(G)∨ = P/�.

• {α1, . . . ,αn} denotes the set of simple roots and {α∨
1 , . . . ,α∨

n } denotes the set of
simple coroots

• W := (s1, . . . , sn) is the Weyl group of R where si denotes the reflection with
respect to αi .

• α0 := δ − θ with θ being the highest short root of R so that {α0,α1, . . . ,αn} is
the set of simple roots of the affine root system

.
R.

• .
W := (s0, s1, . . . , sn) is the affineWeyl group for

.
R. Note that we have an isomor-

phism .
W = W � t(Q∨)

where Q∨ acts by affine translation t

t(α∨)(λ) = λ − (λ,α∨)δ.

• .
We := W � t(P∨)denotes the extended affineWeyl group,which canbe expressed
as .

We = � �
.
W

where � := P∨/Q∨ acts faithfully on the set of simple roots {α0,α1, . . . ,αn}.
Hence, if πr (αi ) = α j for πr ∈ �, then πr siπ−1

r = s j . (See Fig.A.1.)
• ..
Br(W ),

..
H(W ), and

..
W denote the double affine braid group, the double affine

Hecke algebra and the double affine Weyl group associated to a Weyl group W of
a root system.
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D

D(2)

s1D

s1s2Ds1s2D

s2DD(0) D(1)

s2s1D s2s0D

s0D

s0s1D

s0s2D

s1s0D

α0 = 1 α0 = 0 α0 = −1 α0 = −2

α1 = −1 α1 = 0 α1 = 1 α1 = 2

α2 = −1

α2 = 0

α2 = 1

α2 = 2

Fig. A.1 The action of the extended affine Weyl group
.
We of type

.
A2 with generators s0, s1, s2,π.

The reflection with respect to the axis αi = 0 is generated by si so that s2i = 1. The braid relation
can be seen as D(i) = si+2si+1si+2D = si+1si+2si+1D, which is equivalent to the reflection with
respect to the axis αi = 1. The rotation of the triangle domain D around its center by 120◦ is
generated by π that satisfies π3 = 1. One can also convince oneself πsi = si+1π. Here the indices
i = 0, 1, 2 are taken to be cyclic i ∼= i + 3. If we view the extended affine Weyl group as

.
We =

W � t(P∨), t(ω1) and t(ω2) translate the domain D to s0s2D and s0s1D, respectively, where ω1,ω2
are the fundamental weights of A2



Appendix B
Basics of DAHA

In this appendix, we will summarize the basics of double affine Hecke algebras. This
appendix can be regarded as a concise review of [35, 89, 102, 122].

B.1 DAHA

Let t := {t0, . . . , tn} be a collection of formal variables associated to an affine Weyl
group

.
W where we identify ti = t j if the reflections si and s j are conjugate in

.
W .

Note that we have at most two distinct t’s and, in particular, all the variables ti
are identical for simply-laced types (A, D, E). Let q be a formal variable and let
C[q± 1

m , t±0 , . . . , t±n ] be the ring of Laurent polynomials where m is the minimum
positive integer satisfying (P,P∨) = 1

mZ. Namely, m = 2 for type Deven; m = 1 for
type Beven and type C ; otherwise m = |�|. We consider a multiplicative system M
in C[q± 1

m , t±0 , . . . , t±n ] generated by elements of the form (q�ti − q−�t−1
i ) for any

non-negative integer � ∈ Z≥0 with i = 0, . . . , n. We define the coefficient ring Cq,t

to be the localization (or formal “fraction”) of the ring C[q± 1
m , t±0 , . . . , t±n ] at M :

Cq,t = M−1
C[q± 1

m , t±0 , . . . , t±n ].

Moreover, we define Ct := Cq,t/(q
1
m − 1) and Cq := Cq,t/(t0 − 1, . . . , tn − 1).

The DAHA
..
H(W ) associated to a Lie group G is the Cq,t -algebra generated by

elements T0, . . . , Tn,�, XP with relations

1. (braid relation) Ti Tj Ti · · · = Tj Ti Tj · · · with mi j terms on each side. (mi j is
defined via the Coxeter relations (si s j )mi j = 1 in the Weyl group W .)

2. (quadratic relation)
(Ti − ti )(Ti + t−1

i ) = 0. (B.1)
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3. (first affinization) πr Tiπ−1
r = Tj if πr (αi ) = α j .

4. (second affinization) For i = 0, . . . , n,

Ti Xμ = XμTi if (μ,α∨
i ) = 0

Ti Xμ = Xsi (μ)T−1
i if (μ,α∨

i ) = 1
(B.2)

where α∨
0 := −θ∨.

5. πr Xμπ−1
r = Xπr (μ).

The deformation parameters ti manifestly appear in the quadratic relation (B.1)
whereas the other deformation parameter q implicitly shows up in the second relation
of (B.2) via q = X δ . The most important part is i = 0 because s0(μ) = μ − α0 =
μ + θ − δ for (μ,α∨

0 ) = 1. In this case, the relation becomes

T0X
μ = Xs0(μ)T−1

0 = Xμ−α0T−1
0 = q−1Xμ+θT−1

0 .

As the name suggests, DAHA
..
H(W ) contains two affine Hecke algebras as sub-

algebras:

• (affine Hecke algebra for the root system R∨)
.
HX (W ) := Ct (T1, . . . , Tn, XP)

• (affine Hecke algebra for the root system R)
.
HY (W ) := Ct (T0, T1, . . . , Tn,�)

where both contain finite Hecke algebra H(W ) := Ct (T1, . . . , Tn). Indeed, the first
representation

.
HX (W ) is called the Bernstein presentation whereas the second one

is called the Coxeter presentation. The second one
.
HY (W ) can also be expressed in

the Bernstein presentation by using an isomorphism as vector spaces

H(W ) ⊗ C[YP∨] ∼−→ HY (W ),

where the affine translation in
.
HY (W ) is generated by Y :

Y λ := Tt(λ) if λ ∈ P∨+
Y λ := Y μ(Y ν)−1 if λ = μ − ν μ, ν ∈ P∨+.

(B.3)

B.1.1 Double Affine Braid Group and Double Affine Weyl
Group

The double affine braid group
..
Br(W ) is a group generated by elements T0, . . . , Tn,

�, XP only with the relations 1, 3, 4, 5 above (without the relation 2). In other words,
DAHA can be understood as the Cq,t -group algebra of

..
Br(W ) with the quadratic

relation (B.1) ..
H(W ) = Cq,t [ ..Br(W )]/((Ti − ti )(Ti + t−1

i )).
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The double affine Weyl group
..
W is

..
Br(W ) with the quadratic relations T 2

i = 1.
Therefore, its Cq -group algebra is the t = 1 limit of DAHA

..
H(W ), which is also

introduced at the beginning of Chap. 2

Cq [
..
W ] = ..

Ht=1(W ).

In the Bernstein presentation, the generators X and Y form the Heisenberg group as
a subgroup of

..
W with the relation

XμY λ = q(μ,λ)Y λXμ, for μ ∈ P, λ ∈ P∨.

B.1.2 PBW Theorem for DAHA

First of all, the following Poincaré–Birkhoff–Witt theorem for DAHA plays a very
important role in the representation theory. Every element h ∈ ..

H(W ) can be uniquely
written in the form

h =
∑

r∈�,w∈ .W,μ∈P
aμ,w,r (h) XμTwπr aμ,w,r (h) ∈ Cq,t

in the Coxeter presentation for
.
HY (W ), or

h =
∑

λ∈P∨,w∈W,μ∈P
bμ,w,λ(h) XμTwY

λ bμ,w,λ(h) ∈ Cq,t (B.4)

in the Bernstein presentation for
.
HY (W ).

B.1.3 Spherical Subalgebra

For w ∈ W , let tw := ti1 · · · tik , where w = si1 · · · sik is a reduced decomposition.
Then, it is well-defined. We define an element in the group algebra Ct [W ]

e :=
∑

w∈W twTw∑
w∈W (tw)2

. (B.5)

Then, we have Tie = tie, and it is moreover an idempotent e2 = e. Subsequently,
we can define the spherical subalgebra as S

..
H(W ) := e

..
H(W )e ⊂ ..

H(W ), called
spherical DAHA. Roughly speaking, the spherical DAHA can be understood as the
subalgebra “averaged over” the Weyl group symmetry.

At t = 1 = q, the spherical DAHA becomes commutative
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S
..
H(W )

∣∣∣
t=1=q

= C[TC × TC]W .

Indeed, it is isomorphic to the coordinate ring of the moduli space

Mflat(T
2,GC) = TC × TC

W
(B.6)

of GC-flat connections on a torus [130].

B.1.4 Braid Group and SL(2,Z) Action

The braid group on three strands is given by B3 = (τ± : τ+τ−1
− τ+ = τ−1

− τ+τ−1
− ), and

the relation to SL(2, Z) is given by the short exact sequence

1 → Z → B3 → SL(2, Z) → 1 (B.7)

where the kernel of the projection B3 → SL(2, Z) is given by
(
τ+τ−1

− τ+
)4 = 1.

DAHA
..
H(W ) receives an action of the braid group on three strands B3 =

(τ± : τ+τ−1
− τ+ = τ−1

− τ+τ−1
− ). To see the action explicitly, let ωi , ω∨

i (i = 1, . . . , n)
denote the fundamentalweights and coweights respectively, andwe define Xi := Xωi

andYi = Y ω∨
i as the corresponding generators of

..
H(W ) in theBernstein presentation.

Then, the action reads

τ+ :

⎧
⎪⎨

⎪⎩

Xμ �→ Xμ

Tj �→ Tj

Yi �→ XiYiq−(ωi ,ωi )

, τ− :

⎧
⎪⎨

⎪⎩

Xi �→ Yi Xiq(ωi ,ωi )

Tj �→ Tj

Y λ �→ Y λ

. (B.8)

The element σ = τ+τ−1
− τ+ = τ−1

− τ+τ−1
− maps the generators as

σ :

⎧
⎪⎨

⎪⎩

Xμ �→ Y−μ∨

Tj �→ Tj

Y λ∨ �→ T−1
w◦ Xw◦(λ)Tw◦

, σ2 :

⎧
⎪⎨

⎪⎩

Xμ �→ T−1
w◦ X−w◦(μ)Tw◦

Tj �→ Tj

Y λ �→ T−1
w◦ Y

−w◦(λ)Tw◦

, (B.9)

where w◦ is the longest element of the Weyl group W . Moreover, σ4 acts as the
conjugation by Tw◦ , namely σ4(x) = T−1

w◦ (x)Tw◦ for any x ∈ ..
H(W ).

Since Tw acts on a generator of S
..
H(W ) as the multiplication by tw, the action of

σ4 is trivial on the spherical subalgebra S
..
H(W ) in general:

σ4
∣∣∣
S
..
H(W )

∼= id
S
..
H(W )

.
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Therefore, the B3 action factors through SL(2, Z) on S
..
H(W ), and each element

corresponds to the following matrix element on S
..
H(W )1:

(
1 0
1 1

)
↔ τ+,

(
1 1
0 1

)
↔ τ−,

(
0 −1
1 0

)
↔ σ. (B.10)

B.1.5 Polynomial Representation of DAHA

The most basic representation of DAHA, first studied by Cherednik, is called the
polynomial representation

pol : ..
H(W ) → End(Cq,t [XP]);

Ti �→ ti si + (ti − t−1
i )

si − 1

Xαi − 1
for i = 0, . . . , n

πr �→ πr for πr ∈ �.

(B.11)

Here we denote the group algebra of the weight latticeP byCq,t [XP], which contains
the group algebra Ct [X

.
P] of the affine weight lattice .

P := P ⊕ Zδ as a subalgebra
by setting Xλ+rδ := qr Xλ. Hence, Xμ act on Cq,t [XP] by multiplication, and the
action of the extended affine Weyl group

.
We on Cq,t [XP], which appears as si in

(B.11), is given by
w(Xμ) := Xw(μ) = q−(v(μ),λ)Xv(μ),

where we write an element w ∈ .
We as w = t(λ)v with λ ∈ P∨, v ∈ W . Note that

the polynomial representation is faithful.

Non-symmetric Macdonald Polynomials

We define an involution f �→ f ∗ for f = ∑
λ fλ(q, t)Xλ ∈ Cq,t [X ] as

f ∗ =
∑

λ

fλ(q
−1, t−1)X−λ.

We also define the weight function

� :=
∏

α∈R+

(Xα; q2)∞(q2X−α; q2)∞
(q2cα Xα; q2)∞(q2cα+2X−α; q2)∞

.

1 Although we follow the notation of [35] for the transformations τ± on the generators of DAHA
here, we change matrix assignments (B.10) to τ± from [35].
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Note that cα relates q and t = {t0, . . . , tn} via qcα = tα where cα = cβ if α and β
are in the same W -orbit, i.e. there exists w ∈ W such that w(α) = β. In particular,
there is only one parameter c for simply-laced ADE types. Then, the product ( , )
on Cq,t [X ] is defined as the constant term (C.T.) of f g∗�

( f, g) = C.T.( f g∗�),

which can be taken by the integral

C.T. h(X) :=
∮

|X1|=1

dX1

X1
. . .

∮

|X rk(G)|=1

dX rk(G)

X rk(G)

h(X).

Using the product ( , ), one can show the existence and uniqueness of non-symmetric
Macdonald polynomials Eλ(X; q, t) as follows.

For each λ ∈ P, there is a unique polynomial Eλ ∈ Cq,t [X ] such that

• Eλ = Xλ + lower terms,
• (Eλ, Xμ) = 0 for ∀μ < λ.

Under the polynomial representation, these are eigenfunctions of the Y -operators
consequently as

pol( f (Y )) · Eλ = f (q−2λ−2ρc(λ))Eλ (B.12)

where

ρc(λ) = 1

2

∑

α∈R+

η((λ,α))cαα with η(x) =
{
1 if x > 0

−1 if x ≤ 0
.

Symmetric Macdonald Polynomials

We define another involution f �→ f for f = ∑
λ fλ(q, t)Xλ ∈ Cq,t [X ] as

f =
∑

λ

fλ(q, t)X−λ. (B.13)

We also define another product [121, Sect. VI.9] on Cq,t [X ] as

〈 f, g〉 = 1

|W |C.T.( f g ϒ) where ϒ =
∏

α∈R

(Xα; q2)∞
(t2αX

α; q2)∞
. (B.14)

Since ϒ = ϒ , it is symmetric 〈 f, g〉 = 〈g, f 〉. Furthermore, for a dominant weight
λ ∈ P+, we define monomial symmetric functions
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mλ =
∑

μ∈W (λ)

Xμ.

Using these data, one can show the existence anduniqueness of symmetricMacdonald
polynomials Pλ(X; q, t) as follows.

For each dominant weight λ ∈ P+, there is a unique function Pλ ∈ Cq,t [X ]W such
that

• Pλ = mλ + lower terms,
• 〈Pλ,mμ〉 = 0 for ∀μ ∈ P+ such that μ < λ,

Under the product, the symmetric Macdonald polynomials are orthogonal. In the
case of type AN−1, the norm is explicitly given by

〈Pλ, Pλ′ 〉 = gλδλλ′ , gλ(q, t) =
∏

(i, j)∈λ

1 − q2(λi− j+1)t2(λ
T
j −i)

1 − q2(λi− j)t2(λ
T
j −i+1)

1 − t2(N−i+1)q2( j−1)

1 − t2(N−i)q2 j
,

(B.15)
where we express a Young diagram λ = λ1 ≥ · · · ≥ λN−1.

Let f be a symmetric polynomial f ∈ Cq,t [YP∨]W . Then, under the polynomial
representation, they are eigenfunctions

pol( f (Y1, . . . ,Yn)) · Pλ = f (q−2λ−2ρc)Pλ, (B.16)

where ρc is the formal expression

ρc := 1

2

∑

α∈R+

cαα.

Note that, for type ADE, it simplifies to q−2λ−2ρc = q−2λt−2ρ where ρ is the Weyl
vector. The non-symmetric and symmetric Macdonald polynomials are related by
the idempotent (B.5)

Pλ =
( ∑

w∈W
(tw)2

)
eEλ.

B.1.6 Symmetric Bilinear Form

There exists an anti-involution φ : ..
H(W ) → ..

H(W ) fixing q, t such that

φ :

⎧
⎪⎨

⎪⎩

Xμ �→ Y−μ∨

Tw �→ Tw−1

Y λ∨ �→ X−λ
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It is easy to see φ2 = id. If we restrict the action of φ to the spherical subalgebra
S
..
H(W ), then it is the same as σ in (B.9)

φ
∣∣∣
S
..
H(W )

∼= σ
∣∣∣
S
..
H(W )

. (B.17)

We define the evaluation map θ : ..
H(W ) → Cq,t as

θ(h) := pol(h) · 1
∣∣∣
X �→q−2ρc

(B.18)

Then, one can define a symmetricCq,t -bilinear form [ , ] . : ..
H(W ) × ..

H(W ) → Cq,t

as
[h, h′] := θ(φ(h)h′). (B.19)

In particular, for f, g ∈ Cq,t [X ], we have

[ f, g] = pol( f (Y−1)) · g
∣∣∣
X �→q−2ρc

. (B.20)

For instance, when both are symmetric Macdonald polynomials, f = Pλ(X), g =
Pμ(X), (B.16) tells us

[Pλ(X), Pμ(X)] = Pλ(q
2μ+2ρc)Pμ(q

−2ρc), (B.21)

which is the refined Chern-Simons invariants of the Hopf link [4]. In fact, using the
PBW theorem, one can bring φ(h)h′ into the form (B.4)

φ(h)h′ =
∑

λ∈P∨,w∈W,μ∈P
bμ,w,λ(φ(h)h′) XμTwY

λ.

Then, the bilinear from [ , ] is indeed expressed by

[h, h′] =
∑

λ∈P∨,w∈W,μ∈P
bμ,w,λ(φ(h)h′) q−2(μ,ρc) tw q2(λ,ρc).

Since φ and the generators τ+, τ− ∈ SL(2, Z) obey the relation φτ−φ = τ+, we have

[τ+(h), h′] = [h, τ−(h′)]. (B.22)
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B.1.7 Degenerations

There is a two-step degeneration of DAHA:

DAHA trigonometric rational..
H(W ) �

..
H tri(W ) �

..
H rat(W )

Trigonometric Degeneration

Let ci , i = 0, . . . , n be formal variables such that ci = c j whenever si and s j are
conjugate. We will also take commuting variables x̂1, . . . , x̂n and, for μ ∈ P, we will
denote

x̂μ :=
∑

(μ,α∨
j )x̂ j .

The extended affine Weyl group
.
We acts on the space C[c, �][x̂1, . . . , x̂n] where

s1, . . . , sn acts in the standard way si (x̂μ) = x̂si (μ) for i = 1, . . . , n. On the other
hand, the affine translation involves � as t(λ)(x̂μ) = x̂μ − (μ,λ)� for λ ∈ P∨.

The trigonometric Cherednik algebra (a.k.a. graded Cherednik algebra [133]
or degenerate double affine Hecke algebra [35, Sect. 1.6] also [140]),

..
H tri(W ) is

the C[c, �]-algebra generated by the extended affine Weyl group
.
We and pairwise

commuting variables x̂1, . . . , x̂n , subject to the following relations:

si x̂μ − x̂si (μ)si = −ci (μ,α∨
i ), for i = 1, . . . , n

s0 x̂μ − s0(x̂μ)s0 = c0(μ, θ∨),

πr x̂μ = x̂πr (μ)πr .

(B.23)

This algebra can be obtained by taking the leading relation in the β expansion from
DAHA

..
H(W ) as in AppendixB.2.3.

Since the variables Y, x̂ are not symmetric, the algebra
..
H tri(W ) admits two poly-

nomial representations. One is called the differential polynomial representation on
the group algebra C[c, �][YP∨]. The generators Y and w ∈ W act naturally, and x̂μ

acts via the trigonometric differential Dunkl operator

Dtri
μ := �∂μ +

∑

α∈R+

cα(μ,α∨)

1 − Y−α∨ (id − sα) − (μ, ρ∨
c ).

Here the derivative ∂μ acts on C[c, �][Y ] of the weight lattice P∨as

∂μ(Y
λ) = (μ,λ)Y λ,

and ρ∨
c is the formal expression
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ρ∨
c := 1

2

∑

α∈R+

cαα∨.

The other is called the difference-rational polynomial representation on the
group algebra C[c, �][x̂]. The generator x̂ acts by multiplication. By defining the
Demazure–Lusztig operators

Si := si + ci
x̂αi

(si − id)

for i = 0, 1, . . . , n, the action of the extended affine Weyl group
.
We is given by

Sw := πr Si1 · · · Si j for
.
We � w = πr si1 · · · si j a reduced expression.

Rational Degeneration

The rational Cherednik algebra
..
H rat(W ) [14] is the C[c, �]-algebra generated by

C[P], C[P∨] and W subject to the relations

wx̂ = w(x̂)w, w ŷ = w(ŷ)w, [ŷ, x̂] = �(x̂, ŷ) −
∑

α∈R+

cα(α, ŷ)(x̂,α∨)sα

for w ∈ W , x̂ ∈ C[P] and ŷ ∈ C[P∨]. This algebra can be obtained from trigono-
metric Cherednik algebra

..
H tri(W ) by taking the leading relation in the β expansion

as in AppendixB.2.4.
The rational Cherednik algebra

..
H rat(W ) admits a polynomial representation on

the space C[c, �][P] where x̂ and w act in the standard way, and ŷ is assigned to the
rational Dunkl operator

Drat
ŷ := �∂ŷ −

∑

α∈R+

cα
(α, y)

α
(id − sα), (B.24)

where ∂ŷ(x̂) = (x̂, ŷ), x̂ ∈ P.

Spherical Subalgebras

We can also define spherical subalgebras of both trigonometric and rational Chered-
nik algebras by

S
..
H tri(W ) := e

..
H tri(W )e, S

..
H rat(W ) := e

..
H rat(W )e,

where e now is the trivial idempotent of the group W
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e = 1

|W |
∑

w∈W
w.

At c = 0 = �, the spherical subalgebras of trigonometric and rational Cherednik
algebras become the commutative rings

S
..
H tri(W )

∣∣∣
c=0=�

= C[tC × TC]W , S
..
H rat(W )

∣∣∣
c=0=�

= C[tC × tC]W . (B.25)

Therefore, they are the coordinate rings of the hyper-Kähler manifolds

tC × TC

W
, and

tC × tC

W
,

respectively [16] where their complex structures inherit from their elliptic origin
(B.6).

B.2 DAHA of Type A1

Now we will study DAHA
..
H := ..

H(Z2) of type A1 more in detail. In the case of
type A1, the relations 1, . . . , 5 in AppendixB.1 amount to

..
H = Cq,t

[
T±1, X±1,π±1

]/ {
T XT = X−1, πXπ−1 = qX−1,

π2 = 1, (T − t)(T + t−1) = 0

}
.

Here T and X generate affine Hecke algebra
.
HX in the Bernstein presentation

whereas T and π generate the other affine Hecke algebra
.
HY in the Coxeter pre-

sentation. One can write
.
HY in the Bernstein presentation by introducing Y = πT ,

yielding another representation of
..
H

..
H = Cq,t

[
T±1, X±1,Y±1

]/ {
T XT = X−1, Y−1X−1Y XT 2 = q−1,

TY−1T = Y, (T − t)(T + t−1) = 0

}
. (B.26)

In this representation, the topological interpretation using the punctured torus
becomes apparent as we have seen in Sect. 2.2.

B.2.1 Polynomial Representation

The polynomial representation of DAHA of type A1

pol : ..
H → End(Cq,t [X±]) (B.27)
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is explicitly given by

T �→ ts + t − t−1

X2 − 1
(s − 1), π �→ s�, X �→ X, Y �→ s�T,

where s is the reflection s(X) = X−1, and � is the shift operator �(X) = qX .
To study the polynomial representation, we introduce a basis ofCq,t [X±] spanned

by non-symmetric Macdonald polynomials of type A1

E j (X; q, t) =
{
X j

2φ1(q−2 j+2, t2; q−2 j+2t−2; q2; q2t−2X−2) if j > 0

X− j
2φ1(q2 j , t2; q2 j t−2; q2; t−2X2) if j ≤ 0

,

where 2φ1(a1, a2; b1; q; X) is the basic hypergeometric series. As we have seen in
(B.12), they are eigenfunctions of theY -operator under the polynomial representation

pol(Y )E j =
{
q− j t−1E j if j > 0

q j t E j if j ≤ 0
. (B.28)

If we introduce a total ordering on the monomials

1 ≺ X ≺ X−1 ≺ X2 ≺ X−2 ≺ X3 ≺ X−3 ≺ · · · ,

then they are subject to the condition

E j (X; q, t) = X j + lower order terms.

The coefficients of the polynomials E j are rational functions of q and t in general.
For genericq and t , the non-symmetricMacdonald polynomials E j are recursively

determined by using the intertwining (raising) operators [35, Sect. 2.6.2]. Explicitly,
they are defined as

A := XT, B := t
(
T + t − t−1

Y−2 − 1

)
,

and they act on non-symmetric Macdonald polynomials as

pol(A) · E j = t−sign( j)E1− j ,

pol(B) · E j =
{
E− j for j > 0
t (1−q−2 j )(1−q−2 j t4)

(1−q−2 j t2)2 E− j for j ≤ 0
.

(B.29)

In fact, these intertwining operators A,B provide an inductive procedure for calcu-
lating the non-symmetric polynomials
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1 = E0
A←→ E1

B←→ E−1
A←→ E2

B←→ E−2
A←→ · · · . (B.30)

Because of t ∈ C
×, the intertwining operator A is always invertible. Hence, in order

to classify finite-dimensional representations, one has to understand when B is not
invertible. Hence, as we have seen in (2.81) and (2.98), finite-dimensional modules
arise when the factor

t (1 − q−2 j )(1 − q− j t2)(1 + q− j t2)

(1 − q−2 j t2)2
(B.31)

vanisheswhere j ≤ 0. Then, it is easy to see that there is a one-to-one correspondence
between finite-dimensional modules of

..
H and S

..
H because the shortening conditions

for (2.98) and (B.31) are equivalent. In other words, for finite-dimensional repre-
sentations, one can easily verify the consequence of the Morita equivalence (2.74)
explicitly by the action of the intertwining operators. Therefore, the classification
of the finite-dimensional representations of

..
H [35, Sect. 2.8] is in one-to-one corre-

spondence with that of S
..
H in Sect. 2.6.

The symmetric Macdonald polynomials Pj (2.76) for j ≥ 0 can be obtained by
symmetrizing E± j with the idempotent e = (T + t−1)/(t + t−1)

Pj (X; q, t) =
{

(1 + t2) eE j (X; q, t),
(1+t2)(1−q2 j t2)

(1−q2 j t4) eE− j (X; q, t),
(B.32)

or by the combination of E j and E− j

Pj (X; q, t) = E− j (X; q, t) + t2(1 − q2 j )

1 − q2 j t2
E j (X; q, t). (B.33)

On the other hand, non-symmetric Macdonald polynomials E j can also be obtained
from symmetric ones Pj as follows. If one expresses

Pj =
j∑

i=0

c j,i (q, t)(Xi + X−i ),

then

E j =
j∑

i=− j

d j,i (q, t)Xi where d j,i (q, t) := 1 − qi+ j

qi− j − qi+ j
c j,i (q, t).

Furthermore, one can easily determine E− j for j > 0 from Pj by (B.33). Hence, the
polynomial representations for DAHA

..
H (B.27) and spherical DAHA S

..
H (2.75) are

equivalent, which follows from the Morita equivalence (2.74).
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To conclude this subsection, let us analyze howMacdonald polynomials are trans-
formed under PSL(2, Z) transformation. In fact, under the τ− transformation (2.44),
non-symmetric Macdonald polynomials are subject to

τ−(E j ) = q− j2

2 t−| j |E j , (B.34)

for j ∈ Z. This can be proved by the induction in the sequence (B.30). For j = 0,
it is easy to see that τ−(1) = 1. Suppose that q, t ∈ C

× are generic so that all non-
symmetric Macdonald polynomials are well-defined, and (B.34) holds for E j . Since
it follows from (2.44) that the operator B commutes with τ−, E− j transforms in the
same way as E j under τ−. For j < 0, we have

τ−(E1− j ) =t−1q
1
2 pol(Y XT ) · τ−(E j )

induction= t−1q
1
2 q− j2

2 t j pol(Y XT ) · E j

(B.29)= q
1
2 q− j2

2 t j pol(Y ) · E1− j

(B.28)= q− (1− j)2

2 t−1+ j E1− j .

(B.35)

This completes the proof.
Furthermore, one can show from (2.53) that the raising (2.80) and lowering (2.81)

operators behave under the τ− transformation as

τ−(R j ) = q− j− 1
2 t−1R j , τ−(L j ) = q j− 1

2 tL j .

A similar induction shows that the symmetric Macdonald polynomials are trans-
formed as

τ−(Pj ) = q− j2

2 t− j Pj , (B.36)

which is consistent with (B.33). This formula indeed gives the modular
T -transformation for representations of S

..
H in Chap.2.

B.2.2 Functional Representation

Here we shall give an explicit definition of the functional representation of DAHA of
rank one [35, Sect. 2.7.1]. Restricted to the spherical DAHA S

..
H , it can be understood

as the S-transformation σ(P) of the polynomial representation P of S
..
H as in

Sects. 2.5 and 3.1.
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The assignment

f (X) �→ [ f (X), En(X)]/En(t
−1) =

{
f (qnt) for n > 0

f (qnt−1) for n ≤ 0

provides the function defined only over the set Fun of X = qnt sgn(n− 1
2 ) for n ∈ Z.

Thus, one can obtain the discretization of the polynomial representation (B.27) on
this set of functions defined over X ∈ Fun for h ∈ ..

H

disc : [ f (X), En(X)]/En(t
−1) �→ [ pol(h) · f (X), En(X)]/En(t

−1).

More explicitly, one can read off the action as

(disc(X) · f )(qnt sgn(n− 1
2 )) = qnt sgn(n− 1

2 ) f (qnt sgn(n− 1
2 )),

(disc(π) · f )(qnt sgn(n− 1
2 )) = f (q1−nt sgn(

1
2 −n)),

and

(disc(T ) · f )(qnt sgn(n− 1
2 ))

= tq2nt2sgn(n− 1
2 ) − t−1

q2nt2sgn(n− 1
2 ) − 1

f (q−nt sgn(
1
2 −n)) − t − t−1

q2nt2sgn(n− 1
2 ) − 1

f (qnt sgn(n− 1
2 )).

Though q−nt sgn(
1
2 −n) is not in the set Fun when n = 0, tq2nt2sgn(n− 1

2 ) − t−1 = 0 in
this case. Therefore, it is well-defined.

The functional representation is defined by the symmetric bilinear form (B.19).
If we restrict the functional representation to the spherical subalgebra S

..
H , it is the

modular S-transformation σ of the polynomial representation due to (B.17).

B.2.3 Trigonometric Cherednik Algebra of Type A1

To find the trigonometric degeneration, we set X = eβ x̂ , q = eβ�, t = eβ�c and T =
seβcs , where s ∈ Z2 is the reflection. Then, taking the leading order in β from (B.26),
the generators s, x̂,Y satisfy the following relations:

s2 = 1, sY−1s = Y, sx̂ + x̂s = −2c, Y−1 x̂Y − x̂ = � + 2cs. (B.37)

The algebra generated by s, x̂,Y with these relations is called the trigonometric
Cherednik algebra

..
H tri

�,c of type A1. It enjoys a Z2-symmetry

ξ2 : s �→ s, x̂ �→ x̂, Y �→ −Y, � �→ �, c �→ c, (B.38)
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which is reminiscent of (2.43). The idempotent is defined by

e := 1 + s

2
, (B.39)

and the spherical subalgebra is defined as S
..
H tri

�,c := e
..
H tri

�,ce, which is generated by

v := ex̂2e, and y = eY e (B.40)

B.2.4 Rational Cherednik Algebra of Type A1

In the trigonometric Cherednik algebra
..
H tri

�,c, we write Y = eβ ŷ and we rescale x̂ �→
x̂/β. Then, the generators s, x̂, ŷ satisfy the following relations

s2 = 1, sx̂ = −x̂s, s ŷ = −ŷs, [x̂, ŷ] = � + 2cs,

in the leading order of β. The algebra generated by s, x̂, ŷ with these relations is the
rational Cherednik algebra

..
H rat

�,c.

Let us study the spherical subalgebra S
..
H rat

�,c := e
..
H rat

�,ce where the idempotent e is

the same as (B.39). The spherical subalgebra S
..
H rat

�,c is a C[c, �]-algebra generated by

E = 1

2
ex̂2e, F = −1

2
e ŷ2e, H = −ex̂ ŷe.

with relations

[E, F] = �

(
H + �

2
+ c

)
, [H, E] = 2�E, [H, F] = −2�F,

4EF = H(−H + � − 2c).
(B.41)

Thus, E, F, H can be interpreted as the sl(2)-triple. Writing the Casimir element of
sl(2) as

� = EF + FE + 1

2

(
H + �

2
+ c

)2
,

it is easy to verify that there is an isomorphism [48, Proposition 8.2]

U (sl(2))/〈� − 1
2 (c + 1

2�)(c − 3
2�)〉 ∼= S

..
H rat

�,c. (B.42)

At c = 0, the rational Cherednik algebra of type A1 is isomorphic to

..
H rat

�,c=1 = Oq(C2) � C[Z2],
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where x̂, ŷ are the generators ofOq(C2) and s is the generator ofZ2. Ifwe consider the
open set C× × C ⊂ C

2, the deformation quantizationOq(C× × C) of its coordinate
ring is generated by x̂±, ŷ. Then, we can define a subalgebra generated by

E := x̂2

2
, F := − ŷ2

2
− cx̂−1 ŷ, H := −x̂ ŷ, (B.43)

which is isomorphic to the spherical subalgebra S
..
H rat

�,c with generic c given in (B.42)
with the relations (B.41). This construction indeed provides the polynomial represen-
tation (B.24) of the spherical subalgebra of S

..
H rat

�,c acting on C[x±2] by substituting
−�∂x for ŷ.



Appendix C
Quantum Torus Algebra

In this appendix, we study representations of quantum torus algebras and their sym-
metrization. We aim at understanding representations of the simplest quantum torus
algebra in terms of 2d A-model on the affine variety C

× × C
×. Therefore, we first

review representation theory of the quantum torus algebra, and we subsequently find
A-branes for two important families of representations of the quantum torus algebra:
cyclic representations and polynomial representations. The quantum torus algebra
and DAHA are closely related, and the relationship becomes clearer when we sym-
metrize the algebra and representations by the distinguished outer automorphismZ2.
Although representations of the quantum torus algebra and symmetrized quantum
torus are rather simple, they play a helpful guide for analogous analysis for DAHA
in Chap.2.

C.1 Representations of Quantum Torus Algebra

It is well-known that the so-called quantum torus algebra is given by

QT = C[q±]〈X±,Y±〉/(Y−1X−1Y X = q−1). (C.1)

Here the generator q is a formal parameter that commutes with both X and Y .
This algebra occurs throughout physics, and it is indeed a close cousin of the most
basic ingredient in the whole theory of quantum mechanics. If we allowed arbitrary
(rather than integral) powers of X and Y , and set q = exp(2πi�), it would be the
group algebra of the exponentiated form of the canonical commutation relations.
Here, since only integral powers are allowed, we are dealing with a discrete-valued
analogue of canonically conjugate variables.

In fact, QT is the group algebra of a specific Heisenberg group, associated to a
discrete analogueof a symplectic pairing.As iswell-known, the linear representations
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of a discrete group correspond precisely to modules over its group algebra, so the
presence of the scalars is irrelevant: studying QT -modules is the same as studying
representations of this Heisenberg group.

To construct it, we introduce Heisenberg groups in somewhat greater generality.
Let S be any locally compact topological ring with characteristic not equal to two,
andV a free, finitely generated S-module (so isomorphic to Sn). A symplectic pairing
on V is defined to be a function

ω : V × V → S, (C.2)

which is skew-symmetric and S-bilinear. (Note that non-degeneracy condition on ω
is not necessary here so that we use a pairing rather than a symplectic form. However,
in all the examples we consider below,ω is a non-degenerate symplectic form.) Then,
the following is true:

Theorem C.1 ([103, Theorem 7.1]) The group H 2(V, S), which classifies group
extensions of the additive group V, is isomorphic to the group of symplectic pairings
on V.

(It is a pleasant exercise to check that any bilinear function defines an inhomogeneous
group cochain. To obtain the full result, one shows that the antisymmetrization of any
cochain is necessarily bilinear, and actually defines a set of unique representatives
for the cohomology.)

There is therefore a unique central extension of groups defined by the sequence

0 → S → Heis(V,ω) → V → 0, (C.3)

which is called the Heisenberg group associated to the data (V,ω). In our example,
we take S to beZ,V to beZ

2, and the pairing to be defined by sending a fixed ordered
basis of V to +1. It is then easy to see that QT is the group algebra of Heis(Z2,ω),
and that we can similarly define the quantum torus algebra

QT (V,ω) = C[Heis(V,ω)] (C.4)

associated to a general finitely generated free Z-module with symplectic pairing. In
the sequel, QT without decoration will always refer to the standard module Z

2 with
its standard pairing.

Our algebra QT has an interesting collection of outer automorphisms: in fact,

Out(QT ) = Sp(2, Z) = SL(2, Z). (C.5)

The inner automorphisms just consist of shifting X andY by powers ofq, and somake
up the group Z

2. The full automorphism group is a central extension of SL(2, Z) by
this module:
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0 Inn(QT ) Aut(QT ) Out(QT ) 0

0 Z
2

Z
2

� SL(2, Z) SL(2, Z) 0

∼= ∼= ∼= . (C.6)

More generally, for the Heisenberg group on a higher-dimensional standard sym-
plectic lattice Z

2n , the group of automorphisms is the semidirect product Z
2n

�

Sp(2n, Z).
Heisenberg groups over more general rings now make starring appearances in

numerous branches of mathematics, including even number theory [151, for exam-
ple]. For that reason (and to highlight their connection to DAHA), we have chosen to
emphasize the generality of the concept here even though the cases of most interest
to everyday physics are S = R or Z. For some physical applications of the latter
algebra in the context of Chern–Simons theory, see for example [80] and related
work on the AJ -conjecture.

C.1.1 Unitary Representations

The unitary representation theory of Heisenberg groups is well-understood, thanks
to the Stone–von Neumann theorem and its generalizations due, in particular, to
Mackey [119, 120]. We will just quickly recall enough context to state the main the-
orem. (This subsection is intended to mathematically classify unitary representations
of QT so that the reader could skip to the three cases at the end for the first reading.)
Let us start quoting the following definition:

Definition C.2 Let G be a locally compact topological group and � a Borel space
with G-action. A system of imprimitivity based on (G, �) consists of a separable
Hilbert space with a unitary, strongly continuous representation of G, together with
a G-equivariant, projection-valued measure, assigning projection operators on the
Hilbert space to the Borel sets of �.

The basic example of such data is the space of L2 functions with respect to a
G-invariant measure on �; G is then represented by pull-back, and the projections
are just characteristic functions of subsets. Actually, one can show that essentially
all systems of imprimitivity arise in this fashion.

The most interesting examples for physics arise when a group Ĝ is the semidirect
product of an abelian normal subgroup A with some other group G that acts on A:
that is, there is a split short exact sequence

0 → A → Ĝ → G → 0. (C.7)

Then one chooses � to be the character space of the abelian normal subgroup A,
with its obvious G-action.
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Theorem C.3 The set of isomorphism classes of unitary irreducible representations
of Ĝ is in bijection with the set of systems of imprimitivity based on (G, �), up to
unitary equivalence.

It is further true [145] that when G acts transitively on �, the inequivalent systems
of imprimitivity based on (G, �) are in one-to-one correspondence with unitary
representations of the point stabilizer subgroup

Gx = {g ∈ G|g · x = x} (x ∈ �). (C.8)

This means that unitary representations of Ĝ are classified by the G-orbits of �,
together with unitary representations of the corresponding stabilizer subgroups Gx .

For the physically minded reader, this can be understood as generalizations of
Wigner’s technique of the little group [153]. There, the decomposition (C.7) for the
Poincaré group is the obvious (and canonical) one,

0 → R
d → R

d
� SO(d) → SO(d) → 0. (C.9)

The theorem of Stone and von Neumann is indeed an example of precisely the same
very powerful general logic.

To apply this technique to representations of Heis(V,ω), we must choose a max-
imal isotropic subspace L of (V,ω). There is then a unique abelian normal subgroup
AL of the Heisenberg group determined by L, which can be non-canonically iden-
tified with L ⊕ S. In fact, this choice defines a (non-canonical) semidirect product
structure

0 → AL → Heis(V,ω) → V/L → 0. (C.10)

Understanding representations thus reduces to studying the (V/L)-orbits in �. For
simplicity, let us reduce to the one-dimensional Heisenberg group, where V = S2

and ω is the standard Darboux pairing. Then � = S∨ × S∨ is the product of two
copies of the Pontryagin dual of S. If we abuse our exponential notation from (C.1)
above, we can write an element of Heis(V,ω) as qa XbY c, where a, b, c ∈ S. Then,
AL is the set of elements of the form qa Xb, and a splitting of the short exact sequence
is provided by the subgroup of elements Y c. The action of V/L is then determined
by the formula

Y−c
(
qa Xb

)
Y c = qa−bc Xb, (C.11)

which also specifies the action on � by pullback.
In our example of quantum torus algebra, S = Z, so that � = U(1) × U(1). If

we abuse notation, we can denote the image of q (the choice of central character)
simply by q. Of course, Schur’s lemma ensures that the center must act by a chosen
central character in any irreducible representation. This central character is nothing
other than the numerical value of �, and plays the same role in this more general
context. As such, no confusion should arise, and we will frequently confuse formal
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and numerical q in what follows. We will denote the image of X by x1. Then the
group action on � is just

Y : (q, x1) �→ (q, x1/q), (C.12)

and of course fixes the central character.
It is straightforward to enumerate the orbits:

1. q = 1. An orbit is any single point x1 ∈ U(1). The stabilizer isZ. A representation
is thus determined by x1 and another phase y1. These are the abelian representa-
tions of Z

2.
2. q ∈ U(1) is not a root of unity. There is a single orbit. The stabilizer is trivial.

There is thus a unique irreducible representation up to isomorphism. (This is the
Stone–von Neumann theorem.)

3. q is a primitive mth root of unity μm . The space of orbits is U(1)/μm , each
orbit consisting of m points. The stabilizer is mZ ⊂ Z. A representation is again
determined by two phases, one being the mth power of x1, the other being (in a
precise sense) the “mth power of y1.”

In fact, we can construct the corresponding representations explicitly; we do this (in
greater generality) in what follows.

C.1.2 Non-unitary Representations

Let us first fix q to be a primitive mth root of unity, corresponding to the third
case above. There is then an obvious unitary finite-dimensional representation of the
quantum torus algebra given by the well-known “clock” and “shift” matrices, acting
on a standard vector space C

m with basis ei :

ξei = ei+1, �−ei = q−i ei . (C.13)

It is clear that mapping X �→ ξ and Y �→ �− defines the structure of an m-
dimensional QT -module with central character q. What is perhaps slightly less
obvious is that every such representation is closely related to this one, differing only
by a rescaling.

Definition C.4 (cyclic representation) Fix a pair λ = (xm, ym) ∈ C
× × C

×. Let x1
and y1 be any mth roots of xm and ym respectively. Then the cyclic representation of
weight λ, denotedF λ, is defined on an m-dimensional complex vector space by the
map

QT → End(F λ) : X �→ x1ξ, Y �→ y1�
−. (C.14)

(Note that the isomorphism type does not depend on the choices of x1 and y1.) We
may sometimes writeF λ

m to specify the dimension of the representation.
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For an mth primitive root of unity q, it is known [9, 99, 100] that every rep-
resentation of QT in which X and Y are invertible is a direct sum of irreducible
representations of the form F λ for some choices of weights. Two representations
F λ and F λ′

are isomorphic precisely when λ = λ′. Note that the weight λ and
q together define a central character in this instance. Any representation must fac-
tor through the quotient QT/(qm − 1), in which the elements Xm and Ym are also
central.

If q is generic, we have no hope of finding a finite-dimensional representation
by the results of the previous subsection, but the construction above generalizes
to produce an infinite-dimensional module. Let P = C[q±, X±] be the space of
Laurent polynomials in the central generator q and the variable X . We can define an
analogue of the operator �− above by the rule

�−Xi = q−i X i . (C.15)

The role of the matrix ξ will be played simply by multiplication by X .

Definition C.5 (polynomial representation) Choose a weight y1 ∈ C
×. The polyno-

mial representation of weight y1, denoted P y1 , is defined by the map

QT → End(P y1) : X �→ X, Y �→ y1�
−. (C.16)

It is clear that the shift automorphism (multiplication by X ) intertwines the represen-
tationsP y1 andP y1/q . However, this automorphism is outer (it is not conjugation by
X , but rather a generator of SL(2, Z)), so that these representations are not actually
isomorphic.

C.1.3 Geometric Viewpoint

To obtain a geometric perspective on its representation theory, we will take a slightly
different way of looking at the algebra QT . If we set q = 1 (or, equivalently, taking
the quotient of QT by C[S]), we obtain a commutative group algebra. We are free
to think of any commutative algebra as the coordinate ring of a certain affine space.
For our example, it is indeed the product of two punctured affine lines:

QT −−→
q→1

O(C× × C
×). (C.17)

This space will play an important role in the sequel, and so we will denote it by X.
In this paper, we consider the representation theory of more complicated algebras,
andXwill therefore denote more complicated spaces, depending on the context. (As
our main interest, X in Chap.2 is the moduli space of flat SL(2, C)-connections on
the once-punctured torus.)
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What is common between all of these examples are certain key properties of X:
First of all, it will always be a non-compact complex manifold, so that it has a large
and interesting algebra O(X) of holomorphic functions with polynomial growth at
infinity. (In fact, in this paper, X will always be an affine variety over C.) It will also
be a holomorphic symplectic manifold; in our current example, there is a natural
holomorphic symplectic form on C

× × C
×, which we take to be

�J = 1

2πi

d X

X
∧ dY

Y
. (C.18)

In our examples, X will be even hyper-Kähler; for reasons that will become clear
later, we refer to the complex structure whose holomorphic symplectic structure is
of interest to us now as J , motivating the choice of notation above. In the exam-
ple at hand, we can see the hyper-Kähler structure explicitly by using logarithmic
coordinates,

X = exp(r + iϕ), Y = exp(ρ + iφ), (C.19)

and observing that both the real and imaginary parts of

�J = ωK + iωI = 1

2π

(
dr ∧ dφ + dϕ ∧ dρ

)
+ i

2π

(
dϕ ∧ dφ − dr ∧ dρ

)
(C.20)

are real symplectic forms. The third such symplectic structure is

ωJ = 1

2π

(
dr ∧ dϕ + dρ ∧ dφ

)
; (C.21)

it arises by identifying our space with the cotangent bundle of the two-torus.
Of course, it is also trivial to see that this space admits an elliptic fibration, which

can be written very simply in coordinates as

π : X → C,

(X,Y ) �→ (r, ρ).
(C.22)

It is apparent that this map is holomorphic in complex structure I , and that its fibers
are tori which are Lagrangian with respect to ωJ and ωK . As such, in the language
of mirror symmetry for hyper-Kähler manifolds [84, 117], they are appropriate sub-
manifolds to support branes of type (B, A, A), which are the only topologically
interesting compact Lagrangian branes in the A-model of (X,ωK ).

In addition, QT is actually the deformation quantization Oq(C× × C
×) of the

coordinate ring with respect to the Poisson bracket defined by�J . We can thus begin
to think about the algebra QT within the context of brane quantization [85] in 2d
sigma-model, which is reviewed in Sects. 2.3 and 2.4. It is the central idea of this
paper, and this rather simple setting in this Appendix is instructive guidance for
a similar geometric angle on DAHA in Chap. 2. (See also [139] for the geometric
approach to the quantum tori.)
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C.2 Branes for Quantum Torus Algebra

We have understood the representation theory of QT . Also, we recall that the cur-
vature F of the Bcc line bundle in 2d sigma-model on the symplectic manifold
(X = C

× × C
×,ωX) is subject to

F + B + iωX = �J

i�
,

to obtain QT as Hom(Bcc,Bcc). Now, we set up an equivalence between the cate-
goriesRep(QT ) and A-Brane(X,ωX) by finding A-branes for the cyclic representa-
tions (C.14) and the polynomial representations (C.16). It is the essential motivation
for the study of our main examples, DAHA, but this builds intuition for the sorts of
matching in Sects. 2.5 and 2.6.1.

C.2.1 Cyclic Representations

Our first attempt will be to find A-branes for the finite-dimensional representations
(C.14). On general grounds, these should arise from branes supported on compact
Lagrangians. These branes are special because, from the geometry viewpoint, com-
pact Lagrangian submanifolds are interesting and somewhat rare. Similarly, finite-
dimensional representations are rare and distinctive from the standpoint of represen-
tation theory.

Due to the simple topology of X � T ∗T 2 in this example, there is essentially
one interesting class of compact branes: Lagrangian tori wrapping the unique gen-
erator of H2(X, Z). The condition that Lagrangians have vanishing Maslov class
requires that no cycle in H1(L, Z) bound a disc inX; as such, it must map injectively
to H1(X, Z) ∼= Z

2 under the obvious map.
These tori are holomorphic in complex structure I and holomorphic Lagrangians

with respect to �I so that they can be Lagrangian submanifolds in a symplectic
manifold (X,ωX) only when ωX is proportional to ωK . According to (2.60), we need
to set θ = 0, and the parameter � is real. It is easy to see that each equivalence class
of such tori under Hamiltonian isotopies with respect to ωK contains precisely one
torus of the form π−1(r, ρ), i.e. a fiber of the map (C.22). It is furthermore clear that
no two such tori are equivalent. Each A-brane thus corresponds to exactly one special
Lagrangian brane of type (B, A, A), and branes are indexed by two real parameters
(r, ρ) recording their position. (See Fig.C.1.)

Now, as we recalled above, an A-brane is a Lagrangian equipped with (among
other data) a flat unitary line bundle. To choose such a flat line bundle on the torus,
we need to additionally choose two U(1) holonomies, or equivalently pick a point
in Jac(T 2) ∼= (T 2)∨. Thus, we write the two U(1) holonomies by (eiϕ

∨
, eiφ

∨
). The

set of A-branes is thus labeled by two real for the position and two circle-valued
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•
y1

×
(C×)X

r ρ

(C×)Y

Fig.C.1 Abrane (red) supported on a torus fiber gives the cyclic representation and the deformation
parameter consists of its position (r, ρ) and theU(1)2 holonomy.A brane (blue) supported on (C×)X
provides the polynomial representation and the deformation parameter consists of its position |y1|
and the U(1) holonomy

parameters for the holonomies. This agrees precisely with the set λ = (xm, ym) of
the cyclic representations F λ of QT in (C.14) where the identification is

(xm, ym) = (er+iϕ∨
, eρ+φ∨

). (C.23)

The last thing to check is the dimension of the space of open strings Hom(Bcc,

BL). Since θ = 0 in (2.60), the data of Bcc consist of F + B = ωI /|�| and ωX =
−ωK /|�|. Also, the Chan-Paton bundle for the Lagrangian brane is endowed with
flat connection (2.70). As a result, the dimension formula (2.73) becomes

dimHom(Bcc,BL) =
∫

T 2

ωI

2π�
= 1

�
. (C.24)

Since this is the dimension of holomorphic sections, � = 1/m for some positive
integer m. We can interpret this as the Bohr–Sommerfeld quantizability condition
on the compact Lagrangian branes, and we therefore recover the condition that q is
a primitive mth root of unity for the cyclic representation.

The involution

ζ : X → X; (r,ϕ, ρ,φ) �→ (−r,ϕ,−ρ,φ)

is holomorphic in complex structure I and antiholomorphic in complex structures
J and K . The central Lagrangian torus π−1(0, 0) is exactly the set of fixed points
under ζ, and the A-brane on π−1(0, 0) with the trivial holonomies gives rise to
the unitary finite-dimensional representation, which is the third case at the end of
AppendixC.1.1.
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C.2.2 Polynomial Representations

Next, we will find an A-brane corresponding to the polynomial representation P y1

in (C.16). Since it is an infinite-dimensional representation, we expect this brane to
be non-compact.

Let us begin by just considering Lagrangian subspaces which are isomorphic
to T ∗S1, embedded such that the generator of H1 is mapped to the generator of
H 1((C×)X ) under the embedding map. While this choice is not canonical, other
classes in H1(C

× × C
×) could be obtained by acting with the outer automorphism

group SL(2, Z). We are thus interested in Lagrangians that are graphs �Y of topolog-
ically trivial maps Y = (ρ,φ) : (C×)X → (C×)Y , which can be represented in the
form

�Y := {(X,Y (X)) = (r,ϕ, ρ(r,ϕ),φ(r,ϕ)) ⊂ (C×)X × (C×)Y } . (C.25)

Recall that the symplectic form (2.60) we are using is

ωX = − sin θ

2π|�| (dϕ ∧ dφ − dr ∧ dρ) − cos θ

2π|�| (dr ∧ dφ + dϕ ∧ dρ), (C.26)

The condition for (C.25) to define a Lagrangian submanifold is therefore

sin θ
(∂φ

∂r
+ ∂ρ

∂ϕ

)
+ cos θ

(∂ρ

∂r
− ∂φ

∂ϕ

)
= 0. (C.27)

The two quantities in parentheses are just the two Cauchy–Riemann equations for
the function Y . Therefore, the graph of a holomorphic map (C×)X to (C×)Y defines
an A-brane for any choice of ωX—in fact, an (A, B, A)-brane. But the only such
holomorphic function that is isotopic to the constant map is itself the constant map!

Let us recall that we consider A-branes up to Hamiltonian isotopy. The Hamilto-
nian vector field associated to a generating function f (r,ϕ) is

X f = 2π|�|
[
cos θ

(∂ f

∂r

∂

∂φ
+ ∂ f

∂ϕ

∂

∂ρ

)
− sin θ

(∂ f

∂r

∂

∂ρ
− ∂ f

∂ϕ

∂

∂φ

)]
, (C.28)

which generate the Hamiltonian flow of the form

δφ = cos θ
∂ f

∂r
+ sin θ

∂ f

∂ϕ
, δρ = cos θ

∂ f

∂ϕ
− sin θ

∂ f

∂r
. (C.29)

It is easiest to understand the action of these vector fields if θ = 0. Choos-
ing f (r,ϕ) = r then generates a global rotation of φ in (C×)Y , constant over the
Lagrangian, and any radially-dependent rotation can also be obtained by a suit-
able choice of f . As such, the angle φ can be set to any chosen value anywhere
on the Lagrangian; angular displacements do not lead to different objects in the
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A-model of (X,ωK )! The other Hamiltonian vector field ensures that we can deform
our Lagrangian by a Hamiltonian isotopy to set ρ(r,ϕ) to its average value over ϕ,
depending (in principle) on r . But the Lagrangian condition (C.27) then ensures that
ρ is just constant.

As such, every A-brane in (X,ωK ) of topological class C
× can be brought by

Hamiltonian isotopy to a unique (A, B, A)-brane which is a fiber of the projection
on the second factor of C

× × C
×. This makes it easy to see that the Maslov class is

zero; we can consider the symplectic universal cover of C
× × C

× by C
2, and such

Lagrangians descend from affine subspaces there (which always have zero Maslov
class).

There are exactly two real parameters defining an (A, B, A)-brane of this form in
the category A-Brane(X,ωX): the modulus |Y | (or ρ) and the U(1) holonomy of the
flat bundle over the Lagrangian due to H1(L, Z) = Z. Thismatches preciselywith the
C

× parameter y1 for the polynomial representation P y1 . Indeed, the representation
space was just the algebra C[q±, X±] of Laurent polynomials, which is exactly the
collection of holomorphic functions (in complex structure J ) on this brane.

The story for generic values of θ is similar. However, the integral curves of the
Hamiltonian vector field generated by ∂ f/∂r are no longer closed circles, but rather
spirals in C

× (obtained as the images of lines of fixed slope under the exponential
map).

C.3 Symmetrized Quantum Torus

Now let usmoveone step forward toDAHA.Recall from (C.5) that the outer automor-
phism group of QT is SL(2, Z). Howmuch of this symmetry is visible in the classical
limit? Since the classical limit corresponds to a trivial choice of the central character
(or, equivalently, to the quotient by the ideal (q − 1)), all inner automorphisms must
act trivially, so that the residual symmetry is by the group Out(QT ) = SL(2, Z).
Indeed, this is just the natural action of the group of canonical transformations on
symplectic Z

2. Of course, these automorphisms act on X by the exponentiated form
of this action:

SL(2, Z) �
(
a b
c d

)
: (X,Y ) �→

(
XaY b, XcY d

)
. (C.30)

We will be particularly interested in one distinguished outer automorphism of
order two, namely the central elementκ of SL(2, Z). Let us study the extension of QT
by this outer automorphism. In other words, we are interested in the algebra

..
Ht=1

defined by the short exact sequence

0 → QT → ..
Ht=1 → C[Z2] → 0, (C.31)
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with respect to the outer automorphismκ. (Of course, this is just obtained by applying
the group algebra functor to a corresponding semidirect product of groups.) We can
think of this as adjoining a new generator T of Z2 to QT , subject to the relations

T 2 = 1, T XT = X−1, TY−1T = Y. (C.32)

In the classical limit,
..
Ht=1 is not commutative. We therefore have no hope of

telling a story analogous to the one we have been building for QT . However, rather
than studying

..
Ht=1—which is like a κ-equivariant version of QT—directly, we can

imagine trying to replace it by a κ-invariant version, whose classical limit should be
(the functions on) the quotient of X by κ.

This is concretely accomplished as follows. The algebra
..
Ht=1 contains an idem-

potent element e = (1 + T )/2, which one can think of as implementing projection
onto κ-invariants. We can therefore define the subalgebra

S
..
Ht=1 = e

..
Ht=1e. (C.33)

In fact, the algebras S
..
Ht=1 and

..
Ht=1 are Morita equivalent; this equivalence is wit-

nessed by the bimodule e
..
Ht=1 [130, 131], and it is also discussed in Sect. 4.3. We

are thus free to study the representation category of either, and in the classical limit,
we have that

S
..
Ht=1 −−→

q→1
O(X)Z2 = O[(C× × C

×)/Z2]. (C.34)

However, there is one subtlety. Since the geometric ramification parameter t̃ and
DAHA parameter t are related in (2.52), t = 1 means t̃ = q− 1

2 . Therefore, S
..
Ht=1 can

be understood as the deformation quantization of the coordinate ring of
Mflat(Cp,SL(2, C)) with ramification

γp + iαp = i�. (C.35)

Or, we believe that this 1
2 shift is related to the orbifold (Gepner) point (αp,βp,

γp,ηp) = (0, 0, 0, 1
2 ) [5, 21, 45, 152] in the sigma-model on (C× × C

×)/Z2. In
fact, the evaluation of the left-hand side of (2.62) at the orbifold point yields 1

2 . If
(ω−1

X (F + B))2 = −1 is satisfied, the canonical coisotropic braneBcc can exist at the
orbifold point. However, Bcc at the orbifold point is obscure because of the stringy
nature so thatwe leave it for futurework.Also, it is worth noting that the skein algebra
Sk(T 2) of a torus discussed in Sect. 2.5 is isomorphic to S

..
Ht=1. Hence, Sk(T 2) is not

simply the deformation quantization of the coordinate ring of Mflat(T 2,SL(2, C)).
This stems from the fact that a Higgs bundle over a genus one curve C ∼= T 2 is not
stable. Thus, we need to take into account the quantum correction described above.

Now let us consider representation theory of S
..
Ht=1. How can we study represen-

tations of S
..
Ht=1 using the information we have from the non-equivariant case? In

particular, can we make use of our understanding of QT -modules? Our situation is
summarized by the following diagram:
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S
..
Ht=1

..
Ht=1

QT End(U ) .

(C.36)

The astute reader will notice that there seems to be an obvious arrow missing
in (C.36) above. Isn’t S

..
Ht=1 simply the invariant subset of QT with respect to the

action of κ? The answer is yes, but not canonically. Indeed, an outer automorphism
is an equivalence class of automorphisms, and we must choose a particular lift to a
specific non-inner automorphism in order to even talk about the action of κ on QT .
For example, we could take

κ̂ : X �→ X−1, Y �→ Y−1, (C.37)

but any other choice that shifts X and Y by powers of q is equally valid and does not
change the structure of the extension

..
Ht=1.

Let us fix the lift (C.37). It is then clear that the data of a lift of a QT -moduleU to
an

..
Ht=1-module consists of an order-two endomorphism τ ofU such that conjugation

by τ and intertwining with any lift of the outer automorphism κ to an automorphism
of QT . That is, the diagram

QT End(U )

QT End(U ),

κ̂ τ (C.38)

should commute,where the action of τ onEnd(U ) is by conjugation.Wecan therefore
lift the classification of QT -modules to

..
Ht=1 by classifying such lifts, and we will

do this in the next subsection.

C.3.1 Representation Theory

In this subsection, we consider each QT -module in turn. A lifting datum for amodule
U consists, as above, of an order-two endomorphism τ ofU that intertwines with κ̂.

Proposition C.6 Lifting data for the polynomial representationP y1 exist precisely
when y21 = q� for some integer �. When this condition holds, there is a unique lift up
to a sign.

Proof Let us consider the matrix elements of τ in the polynomial basis:

τ (Xi ) = τi j X
j . (C.39)

We first consider the requirement imposed by conjugating with X :
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τ X = X−1τ ⇒ τ(i+1) j = τi( j+1). (C.40)

This means that we can write our map in the form

τ : Xi �→
∑

�

a�X
�−i (C.41)

for some constants a�. It remains to consider the action on Y :

τY = Y−1τ ⇒ y1q
−i a�X

�−i = a�y
−1
1 q�−i X �−i

⇒ a�(y
2
1 − q�) = 0.

(C.42)

From here it follows that a� = 0 unless � is chosen such that y21 = q�. In order to get
an involution, we must choose a� = ±1. Since q is not a root of unity, this completes
the proof. �

Note that the freedom in the choice of � is not very interesting: it is always
possible to shift y1 �→ y1/q by a (non-inner) automorphism of the algebra. Hence,
setting � = 0, we may consider τ (X) = X−1, and the polynomial representation can
be lifted when y1 = ±1.

Proposition C.7 Let q be a primitive mth root of unity. Lifting data for the cyclic
representationF λ

m exist precisely when both weights are equal to plus or minus one.
As above, there is then a unique lift up to a sign for each integer � (mod m).

Proof The calculation proceeds along similar lines. By conjugating with X , we
obtain the requirement

x1τ(i+1) j = x−1
1 τi( j+1). (C.43)

Since the indices are cyclic, this requirement can only be satisfied if x2m1 = 1, i.e. if
the weight xm = ±1. The calculation for Y is identical, and produces the restriction

a�(y
2
1 − q�) = 0. (C.44)

Since q is an mth root of unity, this implies that ym = ±1. �

This completes the story as to lifting of irreducible representations of QT . How-
ever, it is important to note that reducible representations can admit interesting new
choices of lifting datum!

Proposition C.8 Lifting data for the representation P y1 ⊕ P y′
1 exist whenever

y1 = q�/y′
1 for some �. When this is true, there is a unique lift up to sign. If either

y1 or y′
1 satisfies the conditions of PropositionC.6, additional lifts correspondingly

exist.

Proof This proceeds by computation, as above. τ can be decomposed into four
blocks, each of which must satisfy (C.40) independently; correspondingly, there are
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four undetermined constants, which we will call a�, b�, c�, and d�. The conjugation
by Y then produces the conditions

a�(y
2
1 − q�) = d�(y

′
1
2 − q�) = 0, b�(y1y

′
1 − q�) = c�(y1y

′
1 − q�) = 0. (C.45)

The conditions are decoupled and those on a and d just recover the conditions of
PropositionC.6. The new conditions will also be satisfied for at most one choice of
�, and we must choose b�c� = 1 to obtain an involution. �

Proposition C.9 Let q be a primitive mth root of unity. Lifting data for the represen-
tationF λ

m ⊕ F λ′
m consist whenever xmx ′

m = 1 and ym y′
m = 1. When this is true, there

is a unique lift up to sign. If either y1 or y′
1 satisfies the conditions of PropositionC.6,

additional lifts correspondingly exist.

Proof As above, the diagonal blocks reduce independently to the previous case
(PropositionC.7). The conjugation by X leads to the condition

x1τ(i+1) j̄ = x−1
1 τi( j̄+1) (C.46)

on the off-diagonal block; from cyclicity it then follows that x1x ′
1 is an mth root of

unity, and therefore that xmx ′
m = 1. The calculation for Y is identical, but reduces as

in the proof of PropositionC.7 since q is an mth root of unity. �

After choosing κ̂, the algebra S
..
Ht=1 maps injectively into QT , and we can there-

fore pull back representations. Consequently, the polynomial representation, the
lift of P y1 ⊕ P y′

1 with y1y′
1 = 1, generically becomes an irreducible representa-

tion of S
..
Ht=1 on Laurent polynomials which are not symmetrized. However, when

y1 = ±1, (or, to be precise, y21 = q� for � ∈ Z), the spectrum of the Y -operator
on P±1 becomes two-fold degenerate under Y �→ Y−1. Thus, P±1 is compatible
with the outer automorphism κ̂. Correspondingly, the representationP±1 splits into
two isomorphic irreducible representations on symmetric and antisymmetric Laurent
polynomials.

For finite-dimensional representations, the story is identical. The pullback of the
lift of F λ

m ⊕ F λ′
m to S

..
Ht=1 is generically irreducible, but becomes reducible when

m = 2n is even and ym = ±1. Precisely in this case, it becomes an n-dimensional
representation of S

..
Ht=1 on symmetric Laurent polynomials, modulo the ideal (Xn +

X−n).

C.3.2 Corresponding Branes

While we need to take into account the quantum correction (C.35), S
..
Ht=1 is related to

the coordinate ring on (C× × C
×)/Z2 as in (C.34). Therefore, let us briefly consider

the interpretation in terms of the A-brane category on (C× × C
×)/Z2.
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First, we consider A-branes corresponding to the polynomial representations.
As in AppendixC.2.2, an A-brane for the polynomial representation of S

..
Ht=1 is

supported on the constant locus of the symmetrized function Y + Y−1, and it stays
an A-brane at any value of � since it is of type (A, B, A). Its preimages to C

× × C
×

are generically two distinct branes supported on the (C×)X planes with the values
of Y related by y1y′

1 = 1. This corresponds to the representation of S
..
Ht=1 on non-

symmetric Laurent polynomials corresponding to PropositionC.6, and it has the
deformation parameter valued in C

× for positions and the U(1) holonomy. However,
at a fixed point of the Z2 action, only one brane for P±1 can be symmetrized into
a brane on C

×/Z2, and it therefore gives rise to the representation on symmetric
Laurent polynomials as in PropositionC.6. The extensions of these representations
to DAHA are discussed in Sect. 2.5.

Since the target (C× × C
×)/Z2 is the moduli space of flat SL(2, C)-connections

over a torus T 2, it admits an elliptic fibration called the Hitchin fibration, which
was discussed in Sect. 2.1. Roughly speaking, the elliptic fibration can be obtained
by identifying the elliptic fibers in (C.22) at (r, ρ) and (−r,−ρ) so that there is a
singular fiber T 2/Z2 at (r, ρ) = (0, 0). Analogous to AppendixC.2.1, an A-brane
supported on a generic fiber in the Hitchin fibration gives rise to an m-dimensional
representation when � = 1/m for m ∈ Z>0. Since its preimage in C

× × C
× under

the Z2 quotient consists of two distinct tori at different positions, it is precisely the
pullback of the lift of F λ

m ⊕ F λ−1

m in PropositionC.9. Consequently, there is the
deformation parameter λ for a position at the base and the U(1) × U(1) holonomy of
the A-brane on a generic fiber. The fiber at the center (r, ρ) = (0, 0) in (C.22) is fixed
as a set under theZ2 action so that the singular fiber in the Hitchin fibration is doubly
covered by the torus. Thus, if the representationF (±1,±1)

m is even-dimensional (m =
2n), the corresponding A-brane degenerates two copies on the singular fiber. The A-
brane with support on the singular fiber brings about the n-dimensional irreducible
representation of S

..
Ht=1 on the symmetric Laurent polynomials, obtained by the

pullback of the lifting F (±1,±1)
2n . There are no longer any deformation parameters,

as this brane does not belong to any continuous family of A-branes. As explained in
Sect. 2.4, a Chan-Paton bundle is generally endowed with a flat Spinc structure and
the choice of signs corresponds to that of a flat Spinc structure with no holonomy
(equivalently Spin structure in this case) of K−1/2

F . Indeed, the plus sign + is the
Ramond spin structure on a circle (a trivial real line bundle over a circle), and the
minus sign − is the Neveu-Schwarz spin structure (see Sects. 2.6.2 and 2.7).

Although we see similar phenomena in branes for DAHA, finite-dimensional
representations of DAHA are much richer because compact Lagrangians in the target
for DAHA are more intricate, which is the main subject in Chap. 2.



Appendix D
3dN = 4 Theories and Cherednik Algebras

In this appendix, we shall briefly discuss the relationship between Coulomb branches
of 3d N = 4 theories and the trigonometric and rational degeneration of DAHA of
type A1. The connection of the deformation quantization of Coulomb branches of
3d N = 4 theories to variants of Cherednik algebras has been studied in [16, 18,
106, 133]. Here we shall provide a brief review as well as some implications to
representation theory from brane quantization.

D.1 Coulomb Branches of 3dN = 4 Theories

If a 3dN = 4 theory admits Lagrangian description, a Lagrangian is described by a
3dN = 4 vector multiplet V and a 3dN = 4 hypermultipletH of gauge group G in
a representation R of gauge group G. Moreover, they can be constructed a 3dN = 2
vector multiplet (Aμ,σ,λα, d) and a 3dN = 2 chiral multiplet (ϕ,ψα, F) where φ
is a complex scalar, and σ is a real scalar which can be regarded as the reminiscent of
the A3 component of 4d gauge field. In fact, theN = 4 vector multiplet consists of a
3dN = 2 vectormultiplet (Aμ,σ,λα, d) and a 3dN = 2 chiralmultiplet (ϕ,ψα, F)

in the adjoint representation, forming

V = (Aμ,�αaȧ,	ab, Dȧḃ).

The gauge field Aμ, gaugino �αaȧ , scalar 	ab and auxiliary field Dȧḃ transform
in the trivial, (2, 2), (3, 1), and (1, 3), respectively, under the SU(2)C × SU(2)H
R-symmetry of a 3d N = 4 theory. The N = 4 hypermultiplet consists of N = 2
chiral multiplets in the representation R and its conjugate representation R, forming

H = (qȧ, q̃ȧ,ψαa, ψ̃αa) (D.1)
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The scalars qȧ, q̃ȧ and their fermionic superpartnersψαa, ψ̃αa transform as (1, 2) and
(2, 1), respectively, under the R-symmetry.

AnN = 4 gauge theory generically has a union of moduli spaces of vacua, called
Coulomb branch and Higgs branch. The Higgs branch is a hyper-Kähler manifold,
known as a Nakajima quiver variety [126], parameterized by the expectation val-
ues of gauge-invariant operators in hypermultiplets. The Coulomb branch M3d

C is a
hyper-Kähler manifold parameterized by the expectation values of gauge-invariant
combinations of scalars in vector multiplets and monopole operators.

In an abelian gauge theory, the classical Coulomb branch is R
3 × S1 where R

2 is
spanned by the expectation values of the complex scalarϕ andR × S1 is by that of the

monopole operators v± = e
± 1

g2
(σ+iγ)

. Note that γ is a periodic scalar γ ∼ γ + 2πg2

called “dual photon” subject to dγ = ∗d A. However, it is well-known that a 3d
N = 4 Coulomb branch receives quantum corrections, which deform the classical
moduli space. For instance, quantum corrected Coulomb branches in abelian gauge
theories have been investigated in [10, Sect. 3].

In a non-abelian gauge G theory, the scalars in the N = 4 vector multiplet take
expectation values in the Cartan subalgebra t ⊂ g. For generic expectation values, the
gauge group is broken to a Cartan subgroup T ∼= U(1)rk(G) ⊂ G. Therefore, around
a generic point, the Coulomb branch is locally (R3 × S1)rk(G). However, the Weyl
group W acts on the scalars as a residual gauge symmetry. In addition, it receives
both perturbative and non-perturbative quantum corrections. In the end, the Coulomb
branch is birationally equivalent [18] to

M3d
C ≈ (R3 × S1)rk(G)

W
. (D.2)

Moreover, it admits an interpretation as an integrable system

π : M3d
C → C

rk(G) (D.3)

where a generic fiber is (C×)rk(G). This projection can be obtained by forgetting
aboutmonopole operators, and the baseC

rk(G) is parametrized by the gauge-invariant
operators Tr(ϕn) of the complex scalar.

If a theory is the reduction of a 4dN = 2 theory of class S on S1, the projection
(D.3) canbe interpreted as a partial decompactificationof the correspondingCoulomb
branchMC(C,G,L). As explained in Sect. 4.1, the Coulomb branchMC(C,G,L)

of a 4d N = 2 theory T [C,G,L] of class S on S1 × R
3 where S1 is a circle of

radius R is a hyper-Kähler manifold (say, dimR MH (C,G) = 4r ). It is moreover
a completely integrable system so that a generic Hitchin fiber is a complex tori of
volume 1/Rr which is homeomorphic to T 2r . As S1 shrinks R → 0, a generic fiber
is decompactified to (R × S1)r , and its volume diverges to infinity. Hence, a generic
fiber and the base in (D.3) locally parametrized by the monopole operators and the
complex scalars ϕ, respectively, are holomorphic in complex structure I .
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D.2 3dN = 4 Coulomb Branches and Cherednik Algebras

Trigonometric Cherednik Algebra

Let us consider the 3d N = 8 theory, which consists of a vector multiplet and a
hypermultiplet in the adjoint representation. It is a reduction of the 4dN = 4 theory
on a circle S1. The Coulomb branch of the 3d N = 8 theory with gauge group G is
actually

M3d
C

[
G

]
= tC × T ∨

C

W
, (D.4)

and it is indeed free from quantum corrections. Although the SU(2)C symmetry
treats all the hyper-Kähler complex structures (I, J, K ) equally, it is natural to take
a viewpoint holomorphic in complex structure J to see the connection to Cherednik
algebra. A supersymmetricWilson loop Tr exp

∮
S1(A + ϕ) in 4d reduces to the com-

plex scalar ϕ in 3d whereas an ’t Hooft operator in 4d becomes a monopole operator
in 3d. As a result, M3d

C is the trigonometric degeneration of (4.19) by taking the
Cartan subgroup TC to the Cartan subalgebra tC.2

It is clear from (B.25) that the quantized Coulomb branch of the 3dN = 8 theory
and its mass deformation are related to the spherical subalgebra of the trigonometric
Cherednik algebra S

..
H tri(W ). To see this, let us consider the case of rank one. If the

gauge group is either SU(2) or SO(3), the Coulomb branch (D.4) is (C × C
×)/Z2,

which has two A1 singularities. However, the dual maximal torus is T ∨
C

= tC/Q
whereQ(SU(2)) = P(SO(3)) ⊂ P(SU(2)) = Q(SO(3)) so that the SO(3)Coulomb
branch is a double cover of the SU(2) Coulomb branch. Therefore, the quantized
Coulomb branch of the SO(3) theory is isomorphic to the spherical trigonometric
Cherednik algebra S

..
H tri

�,c=0 at c = 0. On the other hand, the quantized Coulomb

branch of the SU(2) theory is the ξ2-invariant subalgebra of S
..
H tri

�,c=0 generated by

v = ex̂2e, and y2 − 1 = (Y 2 + 1 + Y−2)e,

where the notation is the same as AppendixB.2.3. In other words, the SO(3) theory
is endowed with the minimal monopole operator whereas the SU(2) theory is not.
This is consistent with what we have seen for ’t Hooft operators in the SO(3)+ and
SU(2) 4d N = 4 theory, respectively, in Sect. 4.1.

Turning on mass parameters breaks a half of supersymmetries and it is called
3d N = 4∗ theory. Correspondingly, the two A1 singularities turn into two excep-
tional divisors in the SO(3) Coulomb branch. (Fig.D.1.) The three complex struc-
tures (I, J, K ) of the 3d N = 4∗ SO(3) Coulomb branch M3d

C inherits from those

2 In [35, Sect. 1.6], the trigonometric limit is taken in the S-dual side, T∨
C

→ t∨
C
, instead. However,

the trigonometric limit TC → tC of the Wilson loop is more natural from the physical viewpoint.
Therefore, among the two polynomial representations in AppendixB.1.7, the difference-rational
polynomial representation is more natural than the differential polynomial representation for the
reduction from 4d to 3d.
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of the Coulomb branch MC(Cp,SO(3)+) in Sect. 4.1. At the classical level, the
period integrals of (ωI ,ωJ ,ωK ) over an exceptional divisor provide the parame-
ters (αp,βp,γp) as in (2.24). Indeed, the complex mass parameter of the adjoint
hypermultiplet is βp + iγp whereas αp corresponds to the real mass parameter. The
triple (αp,βp,γp) is transformed as the scalars 	 = (σ,ϕ) in the N = 4 vector
multiplet under SU(2)C . Consequently, the quantized Coulomb branch of the SO(3)
3d N = 4∗ theory is isomorphic to the spherical trigonometric Cherednik algebra
S
..
H tri

�,c.
Therefore, the representation theory of the algebra can be studied in the context

of brane quantization analogous to Chap. 2. However, we should note that there is
one difference between 3dN = 4 theories and 4dN = 2 theories. In trigonometric
Cherednik algebra (B.37), one can set� = 1by redefinition x̂ → �x̂ , c → �c. Hence,
we can consider the 2d A-model on the 3d N = 4∗ SO(3) Coulomb branch X with
a fixed symplectic form ωX = −ωK where the parameter of S

..
H tri

1,c is identified by
c = −αp/2. More generally, once we fix a complex structure of any 3d N = 4
Coulomb branch in which deformation quantization is performed, a symplectic form
can be set to a particular Kähler form thanks to the SU(2)C symmetry. On the other
hand, a 4d N = 2 superconformal theory is endowed with the U(1)r × SU(2)H R-
symmetry, and U(1)r rotates only ωJ and ωK . As a result, � cannot be fixed to a
particular value, and the story becomes more delicate as seen in Chap.2.

Without loss of generality, we can hence consider that the target X of the 2d
A-model is the 3d N = 4∗ SO(3) Coulomb branch with

αp �= 0, βp = 0 = γp (D.5)

and the symplectic form is ωX = −ωK . The target can be understood as a partial
decompactification of the Coulomb branch MC(Cp,SO(3)+) in Sect. 4.1 with the
same ramification parameters (D.5) along the x-direction. Upon 3d reduction, the
singular fiber of type I ∗

0 inMC(Cp,SO(3)+) → Bu is decompactified to the left of
Fig.D.1, which consists of a cigar and the two exceptional divisors, denoted by D1

andD3. Consequently, finite-dimensional representations come from branesBD1 and
BD3 supported on the two exceptional divisors in Fig.D.1 that can exist only when
c = −(2� − 1)/2 as in Sect. 2.6.4. Moreover, they are related by the ξ2-reflection
D (1)

� → D (3)
� . Indeed, the finite-dimensional representations of S

..
H tri

1,c (and S
..
H rat

1,c) are
classified by [14, 52, 148], and this conclusion is consistent with [14, Proposition
7.1].

Let us remark the indications from the brane quantization ondistinguished infinite-
dimensional representations of S

..
H tri

1,c that stem from branes supported on a generic
fiber C

× of (D.3) and the cigar in π−1(0). A brane supported on a generic fiber
is labeled by a holonomy y0 of the Spinc-bundle around S1 ⊂ C

× and a position
v of the base in (D.3). Hence, we denote the corresponding infinite-dimensional
representation by V y0,v

C× . The y-weights of this representation are unbounded below
and above. On the other hand, for a brane supported on the cigar, the y-weights of
the corresponding representation, say Vcigar, are bounded below. The distinguished
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infinite-dimensional representations VC× and Vcigar are analogous to the principal and
discrete series of SL(2, R), respectively.

As in Sect. 2.7, we can consider bound states of branes. For instance, when c =
−(2� − 1)/2, the bound state ofBDi and the brane supported on the cigar gives rise
to the short exact sequence

0 −→ ι(Vcigar) −→ V (i) −→ D (i)
� −→ 0, i = 1, 3. (D.6)

This is analogous to (2.141). On the other hand, in the case of no holonomy with
Ramond spin structure y0 = +, it can enter the singular fiber π−1(0) when c ∈ Z,
which yields

0 −→ ι(Vcigar) −→ V+,0
C× −→ Vπ−1(0) −→ 0. (D.7)

This is analogous to (2.148).
If G = SU(2), the mass deformation develops only one exceptional divisor D1

(noD3) and the singular fiber π−1(0) has one A1 singularity. The quantized Coulomb
branch of the 3d N = 4∗ SU(2) theory is the ξ2-invariant subalgebra of S

..
H tri

1,c.
We have seen that the Coulomb branch of the 4d N = 4 theory on S1 × R

3 can
be constructed from affine Grassmannian Steinberg variety R in (4.17). Indeed, the
Coulomb branch of the 3d N = 8 theory can be obtained by taking the spectrum of
the GO

C
-equivariant Borel-Moore homology of R [16, 18]

Spec H
GO

C∗ (R) = tC × T ∨
C

W
= M3d

C

[
G

]
. (D.8)

By introducing the same equivariant action as in (4.20), we obtain the quantized

Coulomb branch H
(GO

C
×C

×
t )�C

×
�∗ (R) of the 3d N = 4∗ theory. If G = SU(N )/ZN ,

then it is isomorphic to the spherical subalgebra S
..
H tri

�,c(SN ) of the trigonometric
Cherednik algebra of type AN−1.

Motivated by this construction, the mathematical definition of Coulomb branches
of general 3d N = 4 quiver theories has been given in [17–19]. In addition, repre-
sentation theory of a 3d N = 4 quantized Coulomb branch has been studied in the
context of boundary conditions of 3d N = 4 gauge theory in physics literature [11,
12, 42]. Their K -theoretic version will potentially lead to a vast generalization of
DAHA as in [13] and its representation theory.

Rational Cherednik Algebra

The Coulomb (and Higgs) branch of the 3d N = 4 SQED with massless 2 flavors
is C

2/Z2. Once the mass parameters are turned on, the A1 singularity of C
2/Z2

is resolved, and the resulting manifold is called the Eguchi–Hanson space T ∗
CP1.

From its complete hyper-Kähler metric, it can be regarded as S1 fibration over R
3

where the fiber shrinks at two points in R
3. For instance, the detail can be found in
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D3

D1

D

Fig. D.1 (Left) Real locus of the Coulomb branch of 3d N = 4∗ theory with SO(3) gauge group.
(Right) Real locus of the Coulomb branch of 3d N = 4 SU(2) theory with one adjoint and one
fundamental hypermultiplet

[85, Sect. 3.7]. The deformation quantization of the Eguchi–Hanson space leads to
the spherical subalgebra S

..
H rat

�,c of the rational Cherednik algebra that is isomorphic to
the universal enveloping algebra of the sl(2) Lie algebra (B.41). The representation
theory of this algebra has been exclusively investigated from the viewpoint of brane
quantization in [85].3 In particular, a brane supported on CP1 ⊂ T ∗

CP1 can exist
only when c = −(2� − 1)/2 like BDi in Sect. 2.6.4, and it gives rise to a finite-
dimensional representation.On the other hand, branes supported on a cigar in Fig.D.1
or T ∗S1 ⊂ T ∗

CP1 bring about a discrete or principal series of SL(2, R). We refer
the reader to [85] for more details.

Now let us consider the 3d N = 4 U(N ) gauge theory with one adjoint and one
fundamental hypermultiplet. If the theory is massless, the Coulomb branch [41] is
the N th symmetric product of C

2

M3d
C

[
U(N ) 1

]
= SymN

C
2.

Consequently, its coordinate ring is indeed isomorphic to the spherical subalgebra
of the gl(N ) rational Cherednik algebra S

..
H rat(gl(N )) at c = 0 = �. In this sense,

the spherical rational Cherednik algebra S
..
H rat(gl(N )) can be interpreted as a “Lie

algebra” of the spherical DAHA S
..
H(gl(N )). Once mass parameters are turned on,

the Coulomb branch is the Hilbert scheme of N -points on the affine plane C
2, and

the resolution of singularities can be understood as the Hilbert-Chow map

π : HilbNC
2 → SymN

C
2. (D.9)

3 Precisely speaking, we need the 1/2 shift in c as in Sect. 2.3.1 to connect to [85].
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If we remove the center-of-mass coordinate of HilbN , we have the spherical subal-
gebra of the rational Cherednik algebra S

..
H rat(SN ) of type AN−1.

In the case of type AN−1, it is known that Spec(S
..
H rat

�=0(SN )) has a unique compact
holomorphic Lagrangian submanifold, called the punctual Hilbert scheme, which is
the preimage π−1(0) of zero under the Hilbert-Chowmap (D.9). As briefly discussed
in Sect. 3.1.2, this will give rise to the unique finite-dimensional representation of
S
..
H rat(SN )when c = −M/N with coprime (M, N ). This is consistent with the clas-

sification of finite-dimensional representations of the spherical rational Cherednik
algebra [14, Theorems 1.2 and 1.10]. (See also [78, 79] for a realization by geometric
quantization.) Moreover, the finite-dimensional module is isomorphic to the lowest
a-degree of the HOMFLY-PT homology of the (M, N ) torus knot [73].

As a remark, we note that the Coulomb branch of 3d N = 4 U(N ) gauge theory
with � hypermultiplets in the fundamental representation [41] is the N th symmetric
power of the hypersurface S� determined by the equation xy = z� in C

3, which can
be expressed as

M3d
C

[
U(N ) �

]
= SymN (S�).

The deformation quantization of the coordinate ring of the Coulomb branch (a.k.a
quantized Coulomb branch) leads to the cyclotomic rational Cherednik algebras
[106, 134]. The � = 0 and � = 1 specializations are the spherical subalgebras of
the trigonometric and rational Cherednik algebras of type GL(N , C), respectively.
Hence, their representation theory can be similarly investigated in the context of
brane quantization, which deserves future study.
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