Skip to main content

Conventional and Advance Breeding Approaches for Developing Abiotic Stress Tolerant Maize

  • Chapter
  • First Online:
Adapting to Climate Change in Agriculture-Theories and Practices
  • 82 Accesses

Abstract

Conventional breeding approaches in crops continue to deliver improved genotypes to farmers since long back; however, the ever-increasing population is a great challenge for the researchers to produce sufficient food from available land in the increasing adverse effects of changing climate. In the era of climate change, several abiotic and biotic stresses are prevalent and affecting maize production worldwide. Among abiotic stresses, drought, water logging and heat stresses are important yield restraining factors in maize, which are adversely affecting its growth and development. They affect the maize biomass production, grains formation and development by intervening in plant physiological, morphological, and anatomical and biochemical mechanisms. Therefore, it is the major concern of all maize breeders to develop the climate resilient genotypes that ensure the global food security threatened by the climate. There are several in built mechanisms in tolerant plant which help in their osmotic adjustment, leaf canopy temperature regulation, stomata conductance, deep root systems development, availability of soluble sugar, and aerenchyma formation etc., under various abiotic stresses conditions. Breeding for abiotic stress tolerance includes selection and utilization of resistant/tolerant germplasm, use of molecular markers, utilization of secondary traits through different breeding techniques. Wide or distant related germplasm like teosinte provides useful source germplasm for drought and water logging tolerance. In addition to the conventional breeding approaches, recent advances in molecular breeding and biotechnology have provided powerful tools to accelerate breeding gains and stress adaptation. Marker assisted selection (MAS), genome editing and genomic selection are the important innovative techniques which can increase and speed up the genetic gain in any of the maize improvement programme. Many Quantitative Trait Loci (QTLs) have been mapped for the drought, water-logging and heat in maize which can be integrated in breeding programme. In the era of molecular biology, “omics” has proved its potential in detail study of genes and transcriptional factors which play significant roles in abiotic stresses tolerance regulation in maize. Biotechnological approaches can only be utilized as supplement to the conventional breeding approaches and alone they may not be able to invent the potential genotypes which can survive under abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulmalik, R. O., Menkir, A., Meseka, S. K., Unachukwu, N., Ado, S. G., Olarewaju, J. D., Aba, D. A., Hearne, S., Crossa, J., & Gedil, M. (2017). Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Frontiers in Plant Science, 8, 841. https://doi.org/10.3389/fpls.2017.0084

    Article  PubMed  PubMed Central  Google Scholar 

  • Adee, E., Roozeboom, K., Balboa, G. R., Schlegel, A., & Ciampitti, I. A. (2016). Drought-tolerant corn hybrids yield more in drought-stressed environments with no penalty in non-stressed environments. Frontiers in Plant Science, 7, 1534. https://doi.org/10.3389/fpls.2016.01534

    Article  PubMed  PubMed Central  Google Scholar 

  • Anonymous. (2020a). Area and production quantities of maize by country. www.fao.org/faostat/en/#data/QC/visualize. Accessed on September 5, 2020.

  • Anonymous. (2020b). Fourth advance estimates of production of foodgrains and commercial crops 2019–20: Agricultural statistics division, directorate of economics & statistics). Govt of India. http://www.agricoop.nic.in/acessed on 15–08–2020

  • Bankole, F., Menkir, A., Olaoye, G., Crossa, J., Hearne, S., & Unachukwu, N. (2017). Genetic gains in yield and yield related traits under drought stress and favorable environments in a maize population improved using marker assisted recurrent selection. Frontiers in Plant Science, 8, 808. https://doi.org/10.3389/fpls.2017.00808

    Article  PubMed  PubMed Central  Google Scholar 

  • Basra, A. (2000). Crop responses and adaptations to temperature stress: New insights and approaches. CRC Press.

    Google Scholar 

  • Bechoux, N., Bernier, G., & Lejeune, P. (2000). Environmental effects on the early stages of tassel morphogenesis in maize (Zea mays L.). Plant, Cell and Environment, 23, 91–98.

    Article  Google Scholar 

  • Brauner, P. C., Schipprack, W., Utz, H. F., Bauer, E., Mayer, M., Schön, C. C., & Melchinger, A. E. (2019). Testcross performance of doubled haploid lines from European fint maize landraces is promising for broadening the genetic base of elite germplasm. Theoretical and Applied Genetics, 132(6), 1897–1908.

    Article  CAS  PubMed  Google Scholar 

  • Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., & Babu, R. (2012). Maize production in a changing climate. Advances in Agronomy, 144, 1–58.

    Google Scholar 

  • Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5(3), 45–360.

    Google Scholar 

  • Chaikam, V., Nair, S. K., Martinez, L., Lopez, L. A., Utz, H. F., Melchinger, A. E., & Boddupalli, P. M. (2018). Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions. Frontiers in Plant Science, 9, 1527.

    Google Scholar 

  • Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019). Doubled haploid technology for line development in maize: Technical advances and prospects. Theoretical and Applied Genetics, 132, 3227–3243.

    Article  CAS  PubMed  Google Scholar 

  • Cheikh, N., & Jones, R. J. (2006). Heat stress effects on sink activity of developing maize kernels grown in vitro. Physiologia Plantarum, 95(1), 59–66.

    Article  Google Scholar 

  • Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin, G., Hagen, T., Quinn, M., & Ng, E. H. (2019). Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theoretical and Applied Genetics, 132(3), 627–645. https://doi.org/10.1007/s00122-019-03317-0

  • Confalonieri, R., Paleari, L., Foi, M., Movedi, E., Vesely, F. M., & Thoelke, W. (2017). Pocketplant3d: Analysing canopy structure using a smartphone. Biosystems Engineering, 164, 1–12.

    Article  Google Scholar 

  • Cooper, M., Gho, C., Leafgren, R., Tang, T., & Messina, C. (2014). Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. Journal of Experimental Botany, 65, 6191–6204.

    Article  CAS  PubMed  Google Scholar 

  • Das, R. R., Vinayan, M. T., Patel, M. B., Phagna, R. K., Singh, S. B., Shahi, J. P., Sharma, A., Baru, N. S., Babu, R., Seetharam, K., Burgueno, J. A., & Zaidi, P. (2020). Genetic gains with rapid-cycle genomic selection for combined drought and waterlogging tolerance in tropical maize (Zea mays L.). The Plant Genome. https://doi.org/10.1002/tpg2.20035

  • Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nature Communications, 3, 740.

    Article  PubMed  Google Scholar 

  • Erdmann, B., Hoffmann, P., & Wiedenroth, E.M. (1986). Changes in the root system of wheat seedlings following root anaerobiosis I. Anatomy and Respiration in Triticum aestivum L. Annals of Botany, 58(5), 597–605.

    Google Scholar 

  • Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. (2015). Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461–481.

    Article  CAS  Google Scholar 

  • Gennaro, S. F. D., Rizza, F., Badeck, F. W., Berton, A., Delbono, S., & Gioli, B. (2017). UAV-based high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. International Journal of Remote Sensing, 39, 5330–5344.

    Article  Google Scholar 

  • Goulden, C. H. (1939). Problems in plant selection. In R. C. Burnett (Ed.), Proceeding of the seventh genetics congress (pp. 132–133). Cambridge University Press.

    Google Scholar 

  • Grafius, J. E. (1965). Short cuts in plant breeding. Crop Science, 5, 377.

    Google Scholar 

  • Herman, J., & Sultan, S. (2011). Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain, M. A., & Uddin, S. N. (2011). Mechanisms of waterlogging tolerance in wheat: Morphological and metabolic adaptations under hypoxia or anoxia. Australian Journal of Crop Science, 5(9), 1094–1110.

    CAS  Google Scholar 

  • Hoisington, D., Khairall, M., Reeves, T., Ribaut, J. M., Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: What can they contribute toward increased crop productivity. Proceedings of the National Academy of Sciences of the United States of America, 96, 5937–5943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: Biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595–1616.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi, R., & Karan, R. (2013). Physiological, biochemical and molecular mechanisms of plants drought tolerance in plants (pp. 209–231).

    Google Scholar 

  • Kimotho, R. N., Baillo, E. H., & Zhang, Z. (2019). Transcription factors involved in abiotic stress responses in Maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ7, e7211. https://doi.org/10.7717/peerj.7211

  • Kumar, B., Guleria, S. K., Khanorkar, S. M., Dubey, R. B., Patel, J., Kumar, V., Parihar, C. M., Jat, S. L., Singh, V., Yatish, K. R., Das, A., Sekha, J. C., Bhati, P., Kaur, H., Kumar, M., Singh, A. K., Varghese, E., & Yadav, O. P. (2016). Selection indices to identify maize (Zea mays L.) hybrids adapted under drought-stress and drought-free conditions in a tropical climate. Crop and Pasture Science, 67, 1087–1095.

    Article  Google Scholar 

  • Lafitte, R., Blum, A., & Atlin, G. (2003). Using secondary traits to help identify drought-tolerant genotypes. In K. S. Fischer, R. H. Lafitte, S. Fukai, G. Atlin, & B. Hardy (Eds.), Breeding rice for drought-prone environments (pp. 37–48). International Rice Research Institute.

    Google Scholar 

  • Li, P., Cao, W., Fang, H., Xu, S., Yin, S., Zhang, Y., Lin, D., Wang, J., Chen, Y., Xu, C., & Yang, Z. (2017). Transcriptomic profiling of the Maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Frontiers Plant Science, 8, 290. https://doi.org/10.3389/fpls.2017.00290

  • Liu, H. J., Jian, L., Xu, J., Zhang, Q., Zhang, M., Jin, M., Peng, Y., Yan, J., Han, B., Liu, J., Gao, F., Liu, X., Huang, L., Wei, W., Ding, Y., Yang, X., Li, Z., Zhang, M., Sun, J., … Yan, R. (2020). High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in Maize. The Plant Cell, 32, 1397–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magorokosho, C., & Tongoona, P. (2003). Selection for drought tolerance in two tropical maize populations. African Crop Science Journal, 11(3), 151–161.

    Google Scholar 

  • Mano, Y., Muraki, M., Komatsu, T., Fujimori, M., Akiyama, F., & Takamizo, T. (2002). Varietal difference in pre-germination flooding tolerance and waterlogging tolerance at the seedling stage in maize inbred lines. Japan Journal Crop Science, 71(3), 361–367.

    Google Scholar 

  • Mano, Y., & Omori, F. (2007). Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Root, 1, 17–21.

    Google Scholar 

  • Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., Singh, H. B., Krishanani, K. K., & Minhas, P. S. (2017a). Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Frontiers in Plant Science, 8, 172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Meena, H. P., Bainsla, N. K., & Yadav, D. K. (2017). Breeding for abiotic stress tolerance in crop plants. In Recent Advances in Plant Stress Physiology (pp. 329–378).

    Google Scholar 

  • Menezes-Benavente, L., Kernodle, S. P., Margis-Pinheiro, M., & Scandalios, J. G. (2004). Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Report, 9(1), 29–36.

    Google Scholar 

  • Molenaar, W. S., & Melchinger, A. E. (2019). Production of doubled haploid lines for hybrid breeding in maize. In Advances in breeding techniques for cereal crops (pp. 143–172). Burleigh Dodds Science Publishing.

    Google Scholar 

  • Monneveu, P., Sánchez, C., Beck, D., & Edmeades, G. O. (2006). Drought tolerance improvement in tropical maize source populations: Evidence of progress. Crop Science, 46, 180–191.

    Article  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250.

    Article  CAS  Google Scholar 

  • Nepolean, T., Kaul, J., Mukri, G., & Mittal, S. (2018). Genomics-enabled next-generation breeding approaches for developing system-specific drought tolerant hybrids in Maize. Frontiers in Plant Science, 9, 361. https://doi.org/10.3389/fpls.2018.00361

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna, B. M. (2016). Developing and deploying abiotic stress-tolerant maize varieties in the tropics: Challenges and opportunities. In Molecular Breeding for Sustainable Crop Improvement. Springer (pp. 61–77).

    Google Scholar 

  • Prasanna, B. M., Cairns, J., & Xu, Y. (2013). Genomic tools and strategies for breeding climate resilient cereals. https://doi.org/10.1007/978-3-642-37045-8_5

    Article  Google Scholar 

  • Pulecio, J., Verman, N., Mejía-Ramírez, E., Huangfu, D., & Raya, A. (2017). CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell, 21(4), 431–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaut, J. M., Betran, J., Monneveux, P., & Setter, T. (2009). Drought tolerance in maize. In Handbook of maize: Its biology. Springer (pp. 311–344).

    Google Scholar 

  • Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inzé, D., & Beemster, G. T. S. (2007). Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle gene. Plant Physiology, 143, 1429–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, S., Turetschek, R., Wedeking, R., Wimmer, M. A., & Wienkoop, S. (2019). A protein-linger strategy keeps the plant on-hold after rehydration of drought-stressed beta vulgaris. Frontiers in Plant Science, 10, 381. https://doi.org/10.3389/fpls.2019.00381

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, J., Habben, J. E., Archibald, R. L., Drummond, B. J., Chamberlin, M. A., Williams, R. W., Lafitte, H. R., & Weers, B. P. (2015). Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiology, 169, 266–282.

    Google Scholar 

  • Shi, J., Drummond, B. J., Habben, J. E., Brugire, N., Weers, B. P., Hakimi, S. M., Lafitte, H. R., Schussler, J. R., Mo, H., Beatty, M., Zastrow‐Hayes, G., & O'Neill, D. (2019). Ectopic expression of ARGOS 8 reveals a role for ethylene in root‐lodging resistance in maize. Summary Significance Statement. The Plant Journal, 97(2), 378–390. https://doi.org/10.1111/tpj.2019.97.issue-210.1111/tpj.14131

  • Singh, S. B., Singh, A. K., & Singh, S. P. (2009). Screening of maize hybrids for drought tolerance using drought susceptibility index for various morpho-physiological and yield characters. Progressive Research, 4(1), 11–15.

    Google Scholar 

  • Singh, S. B., Gupta, B. B., & Singh, A. K. (2010). Heterotic expression and combining ability analysis for yield and its components in maize (Zea mays. L) inbreds. Progressive. Agriculture an International Journal, 10(2), 275–281.

    Google Scholar 

  • Singh, S. B., Phagna, R. K., Kumar, B., & Kumar, S. (2017). Determination of selection indices for waterlogging stress tolerance in maize (Zea mays L.) under field conditions. Applied Biological Research, 19(2), 172–179.

    Google Scholar 

  • Singh, S. B., Kasana, R. K., Kumar, S., & Kumar, R. (2020). Assessing genetic diversity of newly developed winter maize (Zea mays L.) inbred lines. Indian Journal of Plant Genetic Resources, 33(1), 68–76.

    Google Scholar 

  • Singletary, G. W., Banisa, R., & Keeling, P. L. (1994). Heat stress during grain filling in maize: Effects on carbohydrate storage and metabolism. Functional Plant Biology, 21(6), 829–841.

    Article  CAS  Google Scholar 

  • Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169, 931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, H., Niu, L., Wei, J., Chen, X., & Chen, Y. (2019). Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Frontiers in Plant Science, 10, 856. https://doi.org/10.3389/fpls.2019.00856

    Article  PubMed  PubMed Central  Google Scholar 

  • Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Frontiers in plant science, 10, 1336. https://doi.org/10.3389/fpls.2019.01336

  • Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M.–D., Asyraf Md Hatta, M., Hinchliffe, A., Steed, A., Reynolds, D., Adamski, N. M., Breakspear, A., Korolev, A., Rayner, T., Dixon, L. E., Riaz, A., Martin, W., Ryan, M., Edwards, D., Batley, J., Raman, H., Carter, J., Rogers, C., Domoney, C., Moore, G., Harwood, W., Nicholson, P., Dieters, M. J., DeLacy, I. H., Zhou, J., Uauy, C., Boden, S. A., Park, R. F., Wulff, B. B. H., & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23–29. https://doi.org/10.1038/s41477-017-0083-8

  • White, J. W., & Reynolds, M. P. (2003). A physiological perspective on modelling temperature response in wheat and maize crops. Modelling temperature response in wheat and maize (p. 8).

    Google Scholar 

  • Xu, Y., Skinner, D. J., Wu, H., Palacios-Rojas, N., Araus, J. L., & Yan, J. (2009). Advances in maize genomics and their value for enhancing genetic gains from breeding. International Journal of Plant Genomics, 2009, 30. https://doi.org/10.1155/2009/957602

    Article  CAS  Google Scholar 

  • Zaidi, P. H., Maniselvan, P., Srivastava, A., Yadav, P., & Singh, R. P. (2010). Genetic analysis of water-logging tolerance in tropical maize (Zea mays L.). Maydica, 55, 17–26.

    Google Scholar 

  • Zaidi, P. H., Rashid, Z., Almeida, V. M. T., Phagna, G. D., & RK and Babu R,. (2015). QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS ONE, 10(4), e0124350.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Cao, Y., Wang, Z., Wang, Z. Q., Shi, J., Liang, X., Song, W., Chen, Q., Lai, J., & Jiang, C. A. (2018). Retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist, 217, 1161–1176.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Huang, C., Wu, D., Qiao, F., Li, W., & Duan, L. (2017a). High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiology, 173, 1554–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Pérez-Rodríguez, P., Burgueño, J., Olsen, M., Buckler, E., Atlin, G., Prasanna, B. M., Vargas, M., San Vicente, & Crossa, J. (2017b). Rapid Cycling genomic selection in a multiparental tropical maize population. G3 (Bethesda, Md.), 7(7), 2315–2326.

    Google Scholar 

  • Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31–38. https://doi.org/10.1111/plb.12884

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Bir Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.B., Kumar, B., Singh, A., Kumar, S. (2024). Conventional and Advance Breeding Approaches for Developing Abiotic Stress Tolerant Maize. In: Sheraz Mahdi, S., Singh, R., Dhekale, B. (eds) Adapting to Climate Change in Agriculture-Theories and Practices. Springer, Cham. https://doi.org/10.1007/978-3-031-28142-6_13

Download citation

Publish with us

Policies and ethics