Skip to main content

Plant Bioactive Peptides

From Oilseed, Legume, Cereal, Fruit, and Vegetable

  • Reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Plant peptides are very interesting potential functional ingredients and a good alternative to animal sources due to their high availability of sources, low costs, and reduced environmental impact. In this way, a lot of effort is devoted to the studies of health beneficial properties of peptides derived from plant proteins which have been increasing and becoming more complex in the last decades. This chapter is focused on the bioactive properties of peptides from three groups of seeds (cereals and pseudo-cereals, legumes, oilseeds) and fruits and vegetables. Main results from in silico, in vitro, and in vivo (animal models) studies are presented. The main bioactivities informed in all cases are antihypertensive (mainly inhibition of the angiotensin-converting enzyme and other mechanisms in some cases), antioxidant (free radical scavenging, metal chelation, modulation of antioxidant enzymes and glutathione content, among others), inhibition of enzymes associated with type 2 diabetes development, and antitumor (the same sequence has been found in several kinds of seeds). Hypocholesterolemic, antithrombotic, immunomodulatory, antimicrobial, and other activities have been also reported for some plant sources. Development of foodstuffs containing bioactive plant protein/peptides, the evaluation of bioavailability and the mechanisms of action, human intervention studies, and approbation of health claims will require a lot of work in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Añón MC, Quiroga AV, Scilingo AA, Tironi VA, Sabbione AC, Nardo AE, Suárez SE, García Fillería SF. Action of amaranth peptides on the cardiovascular system. In: Repo-Carrasco-Valencia R, Tomas MC, editors. Native crops in Latin America: processing and nutraceutical aspects. Boca Raton, USA: CRC Press, Taylor and Francis Group; 2022. p. 209–236

    Google Scholar 

  • Awosika T, Aluko R. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int J Food Sci Technol. 2019;54(6):2021–34.

    Article  CAS  Google Scholar 

  • Barati M, Javanmardi F, Jazayeri S, et al. Techniques, perspectives, and challenges of bioactive peptide generation: a comprehensive systematic review. Compr Rev Food Sci Food Saf. 2020;19:1488–520. https://doi.org/10.1111/1541-4337.12578.

    Article  PubMed  Google Scholar 

  • Barbana C, Boucher A, Boye J. In vitro binding of bile salts by lentil flours, lentil protein concentrates and lentil protein hydrolysates. Food Res Int. 2011;44:174–80. https://doi.org/10.1016/j.foodres.2010.10.045.

    Article  CAS  Google Scholar 

  • Basilicata MG, Pepe G, Rapa SF, Merciai F, Ostacolo C, Manfra M, Di Sarno V, Autore G, De Vita D, Marzocco S, Campiglia P. Anti-inflammatory and antioxidant properties of dehydrated potato-derived bioactive compounds in intestinal cells. Int J Mol Sci. 2019;20(23):6087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista-Expósito S, Martínez-Villaluenga C, Dueñas M, Silván JM, Frias J, Peñas E. Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. J Funct Foods. 2018;48:9–18. https://doi.org/10.1016/j.jff.2018.06.019.

    Article  CAS  Google Scholar 

  • Bessada SMF, Barreira JCM, Oliveira MBP. Pulses and food security: dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol. 2019;93:53–68. https://doi.org/10.1016/j.tifs.2019.08.022.

    Article  CAS  Google Scholar 

  • Cabanos C, Matsuoka Y, Maruyama N. Soybean proteins/peptides: a review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides. 2021;143:170598.

    Google Scholar 

  • Caliceti C, Capriotti AL, Calabria D, Bonvicini F, Zenezini Chiozzi R, Montone CM, Piovesana M, Zangheri M, Mirasoli P, Simoni A, Laganà A, Roda A. Peptides from cauliflower by-products, obtained by an efficient, ecosustainable, and semi-industrial method, exert protective effects on endothelial function. Oxidative Med Cell Longev. 2019:1046504. https://doi.org/10.1155/2019/1046504.

  • Calles T. The international year of pulses: what are they and why are they important. Agric for Devel. 2016;26:40–42. https://www.fao.org/3/bl797e/BL797E.pdf.

  • Cevazos A, González de Mejía E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr Rev Food Sci Food Saf. 2013;12:364–80. https://doi.org/10.1111/1541-4337.120.

    Article  Google Scholar 

  • Chang VH-S, Yang DHA, Lin HH, Pearce G, Ryan CA, Chen YC. IbACP, a sixteen-amino-acid peptide isolated from Ipomoea batatas leaves, induces carcinoma cell apoptosis. Peptides. 2013;47:148–156.

    Google Scholar 

  • Chang CY, Jin JD, Chang HL, Huang KC, Chiang YF, Hsia SM. Physicochemical and antioxidative characteristics of potato protein isolate hydrolysate. Molecules. 2020;25(19):4450. https://doi.org/10.3390/molecules25194450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee C, Gleddie S, Xiao CW. Soybean bioactive peptides and their functional properties. Nutrients. 2018;10(9):1211. https://doi.org/10.3390/nu10091211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollone MA, Tironi V. Yellow pea flour and protein isolate as potentially antioxidant ingredients. Legum Sci. 2020;2(4):e59. https://doi.org/10.1002/leg3.59.

    Article  CAS  Google Scholar 

  • Colombo A, Ribotta PD, Leon AE. Differential scanning calorimetry (DSC) studies on the thermal properties of peanut proteins. J Agric Food Chem. 2010;58(7):4434–9.

    Article  CAS  PubMed  Google Scholar 

  • Conti MV, Guzzetti L, Panzeri D, De Giuseppe R, Coccetti P, Labra M, Cena H. Bioactive compounds in legumes: implications for sustainable nutrition and health in the elderly population. Trends Food Sci Technol. 2021; https://doi.org/10.1016/j.tifs.2021.02.072.

  • Dang Y, Zhou T, Hao L, Cao J, Sun Y, Pan D. In vitro and in vivo studies on the angiotensin-converting enzyme inhibitory activity peptides isolated from broccoli protein hydrolysate. J Agric Food Chem. 2019;67(24):6757–64. https://doi.org/10.1021/acs.jafc.9b01137.

    Article  CAS  PubMed  Google Scholar 

  • De Mejia E, De Lumen BO. Soybean bioactive peptides: a new horizon in preventing chronic diseases. Sex Reprod Menopause. 2006;4(2):91–5.

    Article  Google Scholar 

  • De Souza Rocha T, Real Hernandez L, Mojica L, Johnson M, Kil Chang M, González de Mejía E. Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Res Int. 2015;76:150–9. https://doi.org/10.1016/j.foodres.2015.04.041.

    Article  CAS  Google Scholar 

  • Dia VP, Bringe NA, De Mejia EG. Peptides in pepsin–pancreatin hydrolysates from commercially available soy products that inhibit lipopolysaccharide-induced inflammation in macrophages. Food Chem. 2014;152:423–31.

    Article  CAS  PubMed  Google Scholar 

  • Draganidis D, Karagounis LG, Athanailidis I, Chatzinikolaou A, Jamurtas AZ, Fatouros IG. Inflammaging and skeletal muscle: can protein intake make a difference? J Nutr. 2016;146(10):1940–52.

    Article  CAS  PubMed  Google Scholar 

  • Duranti M. Grain legume proteins and nutraceutical properties. Fitoterapia. 2006;77(2):67–82. https://doi.org/10.1016/j.fitote.2005.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon. 2019;5:e01538. https://doi.org/10.1016/j.heliyon.2019.e01538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García Fillería S, Nardo A, Paulino M, Tironi V. Structure-activity relationship of antioxidant peptides derived from the gastrointestinal digestion of amaranth proteins. Food Chem: Mol Sci. 2021;3:100053. https://doi.org/10.1016/j.fochms.2021.100053.

    Article  CAS  Google Scholar 

  • Gómez A, Gay C, Tironi V, Avanza MV. Structural and antioxidant properties of cowpea protein hydrolysates. Food Biosci. 2021;41:101074. https://doi.org/10.1016/j.fbio.2021.101074.

    Article  CAS  Google Scholar 

  • Gonçalves dos Santos Aguilar J, Soares de Castro R, Harumi Sato H. Production of antioxidant peptides from pea protein using protease from Bacillus licheniformis LBA 46. Int J Pept Res Ther. 2019; https://doi.org/10.1007/s10989-019-09849-9.

  • Gong X, An Q, Le L, Geng F, Jiang L, Yan J, Xiang D, Peng L, Zou L, Zhao G, Wan Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit Rev Food Sci Nutr. 2020; https://doi.org/10.1080/10408398.2020.1860897.

  • González-Pérez S. Sunflower proteins. In: Martínez-Force E, Dunford NT, Salas JJ, editors. Sunflower: chemistry, production, processing, and utilization. Urbana Illinois, USA: AOCS Press; 2015. p. 331–93.

    Google Scholar 

  • Görgüç A, Gençdağ E, Yılmaz FM. Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments – a review. Food Res Int. 2020;136:109504. https://doi.org/10.1016/j.foodres.2020.109504.

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Richel A, Hao Y, Fan X, Everaert N, Yang X, Ren G. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Sci Nutr. 2020; https://doi.org/10.1002/fsn3.1423.

  • He R, Yang YJ, Wang Z, Xing CR, Yuan J, Wang LF, Udenigwe C, Ju XR. Rapeseed protein-derived peptides, LY, RALP, and GHS, modulates key enzymes and intermediate products of renin–angiotensin system pathway in spontaneously hypertensive rat. NPJ Sci Food. 2019;3(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heredia-Rodríguez L, de la Garza AL, Garza-Juarez AJ, Vazquez-Rodriguez JA. Nutraceutical properties of bioactive peptides in common bean (Phaseolus vulgaris L.). J Food Nutri Diete. 2016;2(1):111.

    Google Scholar 

  • Hwang JY, Shyu YS, Wang YT, Hsu CK. Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. LWT-Food Sci Tech. 2010;43(2):285–90.

    Article  CAS  Google Scholar 

  • Indrati R. Bioactive peptides from legumes and their bioavailability. IntechOpen; 2021. https://doi.org/10.5772/intechopen.99979.

    Book  Google Scholar 

  • Ishiguro K, Sameshima Y, Kume T, Ikeda KI, Matsumoto J, Yoshimoto M. Hypotensive effect of a sweet potato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides. Food Chem. 2012;131(3):774–9.

    Article  CAS  Google Scholar 

  • Jakubczyk A, Karas M, Baraniak B, Pietrzak M. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins. Food Chem. 2013;141:3774–80. https://doi.org/10.1016/j.foodchem.2013.06.095.

    Article  CAS  PubMed  Google Scholar 

  • Janssen F, Pauly P, Rombouts I, Jansens KJA, Deleu LJ, Delcouret JA. Proteins of amaranth (Amaranthus spp.), buckwheat (Fagopyrum spp.), and quinoa (Chenopodium spp.): A food science and technology perspective. Compr Rev Food Sci Food Saf. 2017;16(1):39–58. https://doi.org/10.1111/1541-4337.12240.

  • Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana B, Nammic S, Liyanage R. Cowpea: an overview on its nutritional facts and health benefits. J Sci Food Agric. 2018; https://doi.org/10.1002/jsfa.9074.

  • Kadam D, Lele SS. Value addition of oilseed meal: a focus on bioactive peptides. J Food Meas Charact. 2018;12(1):449–58.

    Article  Google Scholar 

  • Kan J, Hood M, Burns C, Scholten J, Chuang J, Tian F, Pan X, Du J, Gui M. A novel combination of wheat peptides and fucoidan attenuates ethanol-induced gastric mucosal damage through anti-oxidant, anti-inflammatory, and pro-survival mechanisms. Nutrients. 2017;9:978. https://doi.org/10.3390/nu9090978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimian J, Abedi S, Shirinbakhshmasoleh M, Moodi F, Moodi V, Ghavami A. The effects of quinoa seed supplementation on cardiovascular risk factors: a systematic review and meta-analysis of controlled clinical trials. Phytochem Res. 2020; https://doi.org/10.1002/ptr.6901.

  • Kudo K, Onodera S, Takeda Y, Benkeblia N, Shiomi N. Antioxidative activities of some peptides isolated from hydrolyzed potato protein extract. J Funct Foods. 2009;1(2):170–6.

    Article  CAS  Google Scholar 

  • Lammi C, Zanoni C, Arnoldi A. IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. J Funct Foods. 2015;14:469–78.

    Article  CAS  Google Scholar 

  • Lammi C, Arnoldi A, Aiello G. Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3-methylglutaryl-coa reductase and dipeptidyl peptidase-iv targets in vitro. J Agric Food Chem. 2019;67(17):4824–30.

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Bae IY, Lee HG, Yang CB. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica). Food Chem. 2006;99(1):143–8.

    Article  CAS  Google Scholar 

  • Lei F, Hu C, Zhang N, He D. The specificity of an aminopeptidase affects its performance in hydrolyzing peanut protein isolate and zein. LWT. 2019;102:37–44.

    Article  CAS  Google Scholar 

  • Lopez-Barrios L, Antunes-Ricardo M, Gutierrez-Uribe JA. Changes in antioxidant and anti-inflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chem. 2016;203:417–24. https://doi.org/10.1016/j.foodchem.2016.02.048.

    Article  CAS  PubMed  Google Scholar 

  • Luna-Vital D, González de Mejía E. Peptides from legumes with antigastrointestinal cancer potential: current evidence for their molecular mechanisms. Curr Opin Food Sci. 2018;20:13–8. https://doi.org/10.1016/j.cofs.2018.02.012.

    Article  Google Scholar 

  • Maeshima M, Sasaki T, Asahi T. Characterization of major proteins in sweet potato tuberous roots. Phytochemistry. 1985;24(9):1899–902.

    Article  CAS  Google Scholar 

  • Mäkinen S, Streng T, Larsen LB, Laine A, Pihlanto A. Angiotensin I-converting enzyme inhibitory and antihypertensive properties of potato and rapeseed protein-derived peptides. J Funct Foods. 2016;25:160–73.

    Article  Google Scholar 

  • Malaguti M, Dinelli G, Leoncini E, Bregola V, Bosi S, Cicero AFG, Hrelia S. Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects. Int J Mol Sci. 2014;15:21120–35. https://doi.org/10.3390/ijms151121120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques MR, Cerda A, Fontanari GG, Pimenta DC, Soares-Freitas RM, Hirata MH, … Arêas JAG. Transport of cowpea bean derived peptides and their modulator effects on mRNA expression of cholesterol-related genes in Caco-2 and HepG2 cells. Food Res Int. 2018;107:165–71. https://doi.org/10.1016/j.foodres.2018.01.031.

  • Matemu A, Nakamura S, Katayama S. Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants. 2021;10:316. https://doi.org/10.3390/antiox10020316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megías C, Pedroche J, Yust M, Alaiz M, Girón-Calle J, Millán F, Vioque J. Stability of sunflower protein hydrolysates in simulated gastric and intestinal fluids and Caco-2 cell extracts. LWT. 2009a;42(9):1496–500.

    Article  Google Scholar 

  • Megías C, Pedroche J, Yust M, Alaiz M, Girón-Calle J, Millán F, Vioque J. Sunflower protein hydrolysates reduce cholesterol micellar solubility. Plant Foods Hum Nutr. 2009b;64(2):86–93.

    Article  PubMed  Google Scholar 

  • Meshginfar N, Mahoonak AS, Hosseinian F, Tsopmo A. Physicochemical, antioxidant, calcium binding, and angiotensin converting enzyme inhibitory properties of hydrolyzed tomato seed proteins. J Food Biochem. 2019;43(2):e12721.

    Article  PubMed  Google Scholar 

  • Moayedi A, Hashemi M, Safari M. Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions. J Food Sci Tech. 2016;53(1):391–400.

    Article  CAS  Google Scholar 

  • Moayedi A, Mora L, Aristoy MC, Safari M, Hashemi M, Toldrá F. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chem. 2018;250:180–187.

    Google Scholar 

  • Mojica L, Gonzalez de Mejia E, Granados-Silvestre MA, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J Funct Foods. 2017;31:274–86. https://doi.org/10.1016/j.jff.2017.02.006.

    Article  CAS  Google Scholar 

  • Montone CM, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S, Chiozzi RZ, Laganà A. Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics. J Funct Foods. 2018;44:40–7.

    Article  CAS  Google Scholar 

  • Montoya-Rodrıguez A, Gomez-Favela MA, Reyes-Moreno C, Milan-Carrillo J, Gonzalez De Mejıa E. Identification of bioactive peptide sequences from amaranth (Amaranthus hypochondriacus) seed proteins and their potential role in the prevention of chronic diseases. Compr Rev Food Sci Food Saf. 2015;14:139–58.

    Article  PubMed  Google Scholar 

  • Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L. Bioactive proteins and phytochemicals from legumes: mechanisms of action preventing obesity and type-2 diabetes. Food Res Int. 2020;130:108905. https://doi.org/10.1016/j.foodres.2019.108905.

    Article  CAS  PubMed  Google Scholar 

  • Moronta J, Smaldini PL, Docena GH, Añón MC. A peptide of amaranth was targeted as containing a sequence with potential anti-inflammatory properties. J Funct Foods. 2016a;21:463–73.

    Article  CAS  Google Scholar 

  • Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH. The anti-inflammatory SSEDIKE peptide from amaranth seeds modulates IgE-mediated food allergy. J Funct Foods. 2016b;25:579–87.

    Article  CAS  Google Scholar 

  • Mudgil P, Kilari BP, Kamal H, Olalere OA, FitzGerald RJ, Gan C-Y, Maqsood S. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: inhibition of 2 α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J Cereal Sci. 2020;96:103130. https://doi.org/10.1016/j.jcs.2020.103130.

    Article  CAS  Google Scholar 

  • Nardo AE, Suarez SE, Quiroga AV, Añón MC. Amaranth as a source of antihypertensive peptides. Front Plant Sci. 2020; https://doi.org/10.3389/fpls.2020.578631.

  • Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops. A nutraceutical and molecular approach. Crit Rev Food Sci Nutr. 2019;59(12):1949–1975. https://doi.org/10.1080/10408398.2018.1434480.

  • Osborne T. The vegetable proteins. New York, USA: Longmans, Green and Co. 1924. https://iiif.wellcomecollection.org/pdf/b29807670.

  • Oseguera-Toledo ME, de Mejıa EG, Dia VP, Amaya-Llano SL. Common vean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-jB pathways. Food Chem. 2011;127:1175–85. https://doi.org/10.1016/j.foodchem.2011.01.121.

    Article  CAS  PubMed  Google Scholar 

  • Quist EE, Phillips RD, Saalia FK. Angiotensin converting enzyme inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.) flour. LWT. 2009;42(3):694–9.

    Article  CAS  Google Scholar 

  • Real Hernández L, Gonzáles de Mejía E. Enzymatic production, bioactivity, and bitterness of chickpea (Cicer arietinum) peptides. Compr Rev Food Sci Food Saf. 2019;18:1913–46. https://doi.org/10.1111/1541-4337.12504.

    Article  CAS  PubMed  Google Scholar 

  • Sabbione AC, Oñandu Ogutu F, Scilingo AA, Zhang M, Añón MC, Mua T-H. Antiproliferative effect of amaranth proteins and peptides on HT-29 human colon tumor cell line. Plant Foods Hum Nutr. 2019;74:107–14. https://doi.org/10.1007/s11130-018-0708-8.

    Article  CAS  PubMed  Google Scholar 

  • Shewry P, Halford N. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot. 2002;53(370):947–58. https://doi.org/10.1093/jexbot/53.370.947.

    Article  CAS  PubMed  Google Scholar 

  • Shobako N, Ogawa Y, Ishikado A, Harada K, Kobayashi E, Suido H, Kusakari T, Maeda M, Suwa M, Matsumoto M, Kanamoto R, Ohinata K. A novel anti-hypertensive peptide identified in thermolysin-digested rice bran. Mol Nutr Food Res. 2017;62(4):1700732. https://doi.org/10.1002/mnfr.201700732.

    Article  CAS  Google Scholar 

  • Soares RA, Mendonça S, De Castro LÍ, Menezes AC, Arêas JA. Major peptides from amaranth (Amaranthus Cruentus) protein Inhibit HMG-CoA reductase activity. Int J Mol Sci. 2015;16:4150–4160. https://doi.org/10.3390/ijms16024150.

  • Sogi DS, Arora MS, Garg SK, Bawa AS. Fractionation and electrophoresis of tomato waste seed proteins. Food Chem. 2002;76(4):449–54.

    Article  CAS  Google Scholar 

  • Sosalagere C, Kehinde BA, Sharma P. Isolation and functionalities of bioactive peptides from fruits and vegetables: a review. Food Chem. 2022;366:130494.

    Google Scholar 

  • Sun X, Acquaha C, Aluko R, Udenigwe C. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J Funct Foods. 2020;64:103680. https://doi.org/10.1016/j.jff.2019.103680.

    Article  CAS  Google Scholar 

  • Thrane M, Paulsen PV, Orcutt MW, Krieger TM. Soy protein: impacts, production, and applications. In: Nadathur SR, Wanasundara JPD, Scanlin L, editors. Sustainable protein sources. London, UK: Academic Press; 2017. p. 23–45.

    Google Scholar 

  • Tironi VA, Añón MC, Scilingo AA, Quiroga AV, Sabbione AC. Effect of amaranth bioactive peptides on the gastrointestinal system. In: Repo-Carrasco-Valencia R, Tomas MC, editors. Native crops in Latin America: processing and nutraceutical aspects. Boca Raton, USA: CRC Press, Taylor and Francis Group; 2022. p. 237–264.

    Google Scholar 

  • Tovar-Pérez EG, Lugo-Radillo A, Aguilera-Aguirre S. Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity and characterization. Food Rev Int. 2018; https://doi.org/10.1080/87559129.2018.1514625.

  • Tovar-Pérez EG, Lugo-Radillo A, Aguilera-Aguirre S. Amaranth grain as a potential source of biologically active peptides: a review of their identification, production, bioactivity and characterization. Food Rev Int. 2019;35(3):241–245. https://doi.org/10.1080/87559129.2018.1514625.

  • Udenigwe C, Abioye R, Okagu I, Obeme-Nmom J. Bioaccessibility of bioactive peptides: recent advances and perspectives. Curr Opin Food Sci. 2021;37:182–9. https://doi.org/10.1016/j.cofs.2021.03.005.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture, Foreign Agricultural Service. Oilseeds: World markets and trade; October 2021. https://downloads.usda.library.cornell.edu/usda-esmis/files/tx31qh68h/rn302160c/ft849q23p/oilseeds.pdf.

  • Vaz Patto M, Amarowicz A, Aryee A, Boye J, Chung H, Martín-Cabrejas M, Domoney C. Achievements and challenges in improving the nutritional quality of food legumes. CRC Crit Rev Plant Sci. 2015;34:105–43.

    Article  CAS  Google Scholar 

  • Velarde-Salcedo AJ, Bojórquez-Velázquez E, Barba de la Rosa AP. Pseudo cereal grains, whole food nutrition amaranth. In: Johnson J, Wallace T, editors. Whole Grains and their Bioactives: composition and health. West Sussex, UK: Wiley; 2019. p. 211–50.

    Google Scholar 

  • Velliquette RA, Fast DJ, Maly ER, Alashi AM, Aluko RE. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem. 2020;319:126563.

    Article  CAS  PubMed  Google Scholar 

  • Vermeirssen V, Van Camp J, Verstraete W. Fractionation of angiotensin I converting enzyme inhibitory activity from pea and whey protein in vitro gastrointestinal digests. J Sci Food Agric. 2005;85:399–405. https://doi.org/10.1002/jsfa.1926.

    Article  CAS  Google Scholar 

  • Vilcacundo R, Martínez-Villaluenga C, Hernández-Ledesma B. Release of dipeptidyl peptidase IV, a-amylase and a-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J Func Food. 2017;35:531–539. https://doi.org/10.1016/j.jff.2017.06.024.

  • Vilcacundo R, Martínez-Villaluenga C, Miralles B, Hernández-Ledesma B. Release of multifunctional peptides from Kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. J Sci Food Agric. 2019;99:1225–32. https://doi.org/10.1002/jsfa.9294.

    Article  CAS  PubMed  Google Scholar 

  • Wanasundara JPD, Tan S, Alashi AM, Pudel F, Blanchard C. Proteins from canola/rapeseed: current status. In: Nadathur SR, Wanasundara JPD, Scanlin L, editors. Sustainable protein sources. London, UK: Academic Press; 2017. p. 285–304.

    Google Scholar 

  • Wang L, Zhang J, Yuan Q, Xie H, Shi J, Ju X. Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food Funct. 2016;7(5):2239–48. https://doi.org/10.1039/c6fo00042h.

    Article  CAS  PubMed  Google Scholar 

  • Wen C, Zhang J, Zhang H, Duan Y, Ma H. Plant protein-derived antioxidant peptides: isolation, identification, mechanism of action and application in food systems: a review. Trends Food Sci Technol. 2020;105:308–22.

    Article  CAS  Google Scholar 

  • Xu Y, Li Y, Bao T, Zheng X, Chen W, Wang J. A recyclable protein resource derived from cauliflower by-products: potential biological activities of protein hydrolysates. Food Chem. 2017;221:114–22.

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Yu W, Wu M, Wang J. In vivo antitumor and antioxidative effects of a rapeseed meal protein hydrolysate on an S180 tumor-bearing murine model. Biosci Biotechnol Biochem. 2009;73(11):2412–5.

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Wen H, Zhai L, Yu Y, Li Y, Yu W, Cheng A, Wang C, Kou X. Antioxidant activity and anti-proliferative effect of a bioactive peptide from chickpea (Cicer arietinum L.). Food Res Int. 2015;77:75–81.

    Article  CAS  Google Scholar 

  • Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, Tsuruki H, Takahata K. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors. 2000;12(1–4):143–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang SB. In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem. 2016;202:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Mu TH. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innov Food Sci Emerg Technol. 2017;43:92–101.

    Article  Google Scholar 

  • Zheng L, Su G, Ren J, Gu L, You L, Zhao M. Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. J Agric Food Chem. 2012;60(21):5431–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Tironi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Añón, M.C., Quiroga, A., Scilingo, A., Tironi, V. (2023). Plant Bioactive Peptides. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-031-28109-9_18

Download citation

Publish with us

Policies and ethics