Skip to main content

Long-Term Vaccination and Treatment Strategies for COVID-19 Disease and Future Coronavirus Pandemics

  • Chapter
  • First Online:
Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1412))

Abstract

The appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased infectivity and immune escape capabilities has allowed continuation of the COVID-19 pandemic for the foreseeable future. This review describes the worldwide efforts aimed at developing new vaccination and treatment strategies to keep pace with these variants as they emerge. In the case of vaccines and monoclonal antibody-based therapeutics, we describe the development of variant-specific, multivalent, and universal coronavirus directed approaches. Existing treatment approaches consist of repurposed medicines, such as antiviral compounds and anti-inflammatory agents, although efforts are underway to develop new ways of preventing or minimizing the effects of infection with the use of small molecules that disrupt binding the SARS-CoV-2 virus to host cells. Finally, we discuss the preclinical and clinical testing of natural products from medicinal herbs and spices, which have demonstrated anti-inflammatory and antiviral properties and therefore show potential as novel and safe COVID-19 treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Our World in Data; Coronavirus (COVID-19) Vaccinations. https://ourworldindata.org/covid-vaccinations. Accessed June 24, 2022

  2. United Nations; Press Release; Unequal Vaccine Distribution Self-Defeating, World Health Organization Chief Tells Economic and Social Council’s Special Ministerial Meeting. https://www.un.org/press/en/2021/ecosoc7039.doc.htm#:~:text=With%20the%20number%20of%20new,head%20of%20the%20United%20Nations. Accessed June 24, 2022

  3. Yogesh R, Srivastava N, Abbas Bukhari SN (2022) COVID-19 Challenge: A Quest for Effective Vaccine Strategies Against Circulating and Emerging SARS-CoV-2 Variants. Curr Pharm Des. https://doi.org/10.2174/1381612828666220701160116

  4. Sallam M, Al-Sanafi M, Sallam M (2022) A Global Map of COVID-19 Vaccine Acceptance Rates per Country: An Updated Concise Narrative Review. Journal of Multidisciplinary Healthcare 15:21–45. https://doi.org/10.2147/JMDH.S347669

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stokel-Walker C (2022) How are vaccines being adapted to meet the changing face of SARS-CoV-2? BMJ 377. https://doi.org/10.1136/bmj.o1257

  6. Gov.uk; COVID-19: guidance for people whose immune system means they are at higher risk; Updated 16 June 2022. https://www.gov.uk/government/publications/covid-19-guidance-for-people-whose-immune-system-means-they-are-at-higher-risk/covid-19-guidance-for-people-whose-immune-system-means-they-are-at-higher-risk. Accessed July 09, 2022

  7. van der Straten K, van Gils MJ, de Taeye SW, de Bree GJ (2022) Optimization of Anti-SARS-CoV-2 Neutralizing Antibody Therapies: Roadmap to Improve Clinical Effectiveness and Implementation. Front Med Technol 4:867982. https://doi.org/10.3389/fmedt.2022.867982

    Article  PubMed  PubMed Central  Google Scholar 

  8. Statistica. Number of SARS-CoV-2 Omicron variant cases worldwide as of May 16, 2022, by country or territory. https://www.statista.com/statistics/1279100/number-omicron-variant-worldwide-by-country/. Accessed June 24, 2022

  9. Islam F, Dhawan M, Nafady MH, et al (2022) Understanding the omicron variant (B.1.1.529) of SARS-CoV-2: Mutational impacts, concerns, and the possible solutions. Ann Med Surg (Lond) 78:103737. https://doi.org/10.1016/j.amsu.2022.103737

    Article  PubMed  Google Scholar 

  10. Lubin JH, Markosian C, Balamurugan D, et al (2021) Structural models of SARS-CoV-2 Omicron variant in complex with ACE2 receptor or antibodies suggest altered binding interfaces. bioRxiv 2021.12.12.472313. https://doi.org/10.1101/2021.12.12.472313

  11. Kannan SR, Spratt AN, Sharma K, et al (2022) Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. J Autoimmun 126:102779. https://doi.org/10.1016/j.jaut.2021.102779

    Article  CAS  PubMed  Google Scholar 

  12. COMIRNATY®▼(TOZINAMERAN) COVID-19 mRNA VACCINE (NUCLEOSIDE MODIFIED). https://www.pfizer.co.uk/products/prescription-medicines/comirnaty. Accessed June 29, 2022

  13. Vaxzevria (previously COVID-19 Vaccine AstraZeneca). https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca. Accessed July 09, 2022

  14. Serum Institute of India: Covishield (Oxford/ AstraZeneca formulation). https://covid19.trackvaccines.org/vaccines/48/. Accessed July 09, 2022

  15. Spikevax (previously COVID-19 Vaccine Moderna). https://www.ema.europa.eu/en/medicines/human/EPAR/spikevax. Accessed July 09, 2022

  16. Sinopharm (Beijing): Covilo. https://covid19.trackvaccines.org/vaccines/5/. Accessed July 09, 2022

  17. Jcovden (previously COVID-19 Vaccine Janssen). https://www.ema.europa.eu/en/medicines/human/EPAR/jcovden-previously-covid-19-vaccine-janssen. Accessed July 09, 2022

  18. Sinovac: CoronaVac. https://covid19.trackvaccines.org/vaccines/7/. Accessed July 09, 2022

  19. COVAXIN® – India’s First Indigenous COVID-19 Vaccine. https://www.bharatbiotech.com/covaxin.html. Accessed July 09, 2022

  20. Serum Institute of India: COVOVAX (Novavax formulation). https://covid19.trackvaccines.org/vaccines/123/. Accessed July 09, 2022

  21. Nuvaxovid. https://www.ema.europa.eu/en/medicines/human/EPAR/nuvaxovid. Accessed July 09, 2022

  22. CanSino: Convidecia. https://covid19.trackvaccines.org/vaccines/2/. Accessed July 09, 2022

  23. von Gabain A, Klade C (Eds) (2012) Development of Novel Vaccines: Skills, Knowledge and Translational Technologies. Springer; New York, NY, USA. ISBN-13: 978-3709107089

    Google Scholar 

  24. Leroy O, Geels M, Korejwo J, et al (2014) Roadmap for the establishment of a European vaccine R & D infrastructure. Vaccine 32(51):7021–7024

    Article  PubMed  Google Scholar 

  25. Wen EP, Ellis R, Pujar NS (2015) Vaccine Development and Manufacturing (Wiley Series in Biotechnology and Bioengineering): 5. Wiley; New York, NY, USA. ISBN-13: 978-0470261941

    Google Scholar 

  26. Rahmoune H, Guest PC (2017) Application of Multiplex Biomarker Approaches to Accelerate Drug Discovery and Development. Methods Mol Biol 1546:3–17

    Article  CAS  PubMed  Google Scholar 

  27. Mellet J, Pepper MS (2021) A COVID-19 Vaccine: Big Strides Come with Big Challenges. Vaccines (Basel) 9(1):39. https://doi.org/10.3390/vaccines9010039

    Article  CAS  PubMed  Google Scholar 

  28. Carneiro DC, Sousa JD, Monteiro-Cunha JP (2021) The COVID-19 vaccine development: A pandemic paradigm. Virus Res 301:198454. https://doi.org/10.1016/j.virusres.2021.198454.

    Article  CAS  PubMed  Google Scholar 

  29. Wagner R, Hildt E, Grabski E, et al (2021) Accelerated Development of COVID-19 Vaccines: Technology Platforms, Benefits, and Associated Risks. Vaccines (Basel) 9(7):747. https://doi.org/10.3390/vaccines9070747

    Article  CAS  PubMed  Google Scholar 

  30. Guest PC, Ozanne SE (2021) The Worldwide Effort to Develop Vaccines for COVID-19. Adv Exp Med Biol 1327:215–223

    Article  PubMed  Google Scholar 

  31. Gasmi A, Srinath S, Dadar M, et al (2022) A global survey in the developmental landscape of possible vaccination strategies for COVID-19. Clin Immunol 237:108958. https://doi.org/10.1016/j.clim.2022.108958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. How have Covid-19 vaccines been made quickly and safely? https://wellcome.org/news/quick-safe-covid-vaccine-development. Accessed July 11, 2022

  33. U.S. Food and Drud Administration. FDA Approves First Treatment for COVID-19. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. Accessed June 30, 2022

  34. Gilead Press Releases (Jan 21, 2022) FDA Approves Veklury® (Remdesivir) for the Treatment of Non-Hospitalized Patients at High Risk for COVID-19 Disease Progression. https://www.gilead.com/news-and-press/press-room/press-releases/2022/1/fda-approves-veklury-remdesivir-for-the-treatment-of-nonhospitalized-patients-at-high-risk-for-covid19-disease-progression. Accessed Jun 30, 2022

  35. Warren TK, Jordan R, Lo MK, et al (2016) Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531(7594):381–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tchesnokov EP, Feng JY, Porter DP, Götte M (2019) Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses 11(4):326. https://doi.org/10.3390/v11040326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Angamo MT, Mohammed MA, Peterson GM (2022) Efficacy and safety of remdesivir in hospitalised COVID-19 patients: a systematic review and meta-analysis. Infection 50(1):27–41

    Article  CAS  PubMed  Google Scholar 

  38. Santenna C, Vidyasagar K, Amarneni KC, et al (2021) The safety, tolerability and mortality reduction efficacy of remdesivir; based on randomized clinical trials, observational and case studies reported safety outcomes: an updated systematic review and meta-analysis. Ther Adv Drug Saf 12:20420986211042517. https://doi.org/10.1177/20420986211042517

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tanni SE, Silvinato A, Floriano I, et al (2022) Use of remdesivir in patients with COVID-19: a systematic review and meta-analysis. J Bras Pneumol 48(1):e20210393. https://doi.org/10.36416/1806-3756/e20210393

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim C, Ryu DK, Lee J, et al (2021) A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun 12(1):288. https://doi.org/10.1038/s41467-020-20602-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang M, Li A, Jiang L, et al (2022) Regdanvimab improves disease mortality and morbidity in patients with COVID-19: A meta-analysis. J Infect S0163-4453(22)00369-3. https://doi.org/10.1016/j.jinf.2022.05.044

    Article  CAS  Google Scholar 

  42. Weinreich DM, Sivapalasingam S, Norton T, et al (2021) REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med 384(3):238–251

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki Y, Shibata Y, Minemura H, et al (2022) Real-world clinical outcomes of treatment with casirivimab-imdevimab among patients with mild-to-moderate coronavirus disease 2019 during the Delta variant pandemic. Int J Med Sci 19(5):834–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pinto D, Park YJ, Beltramello M, et al (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583(7815):290–295

    Article  CAS  PubMed  Google Scholar 

  45. Menéndez R, González P, Latore A, Méndez R (2022) Immune treatment in COVID-19. Rev Esp Quimioter 35 Suppl 1(Suppl 1):59–63

    Article  Google Scholar 

  46. Tao K, Tzou PL, Kosakovsky Pond SL, et al (2022) Susceptibility of SARS-CoV-2 Omicron Variants to Therapeutic Monoclonal Antibodies: Systematic Review and Meta-analysis. Microbiol Spectr. Jun 14:e0092622. https://doi.org/10.1128/spectrum.00926-22

    Article  CAS  Google Scholar 

  47. Zhou H, Dcosta BM, Landau NR, Tada T (2022) Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies. Viruses 14(6):1334. https://doi.org/10.3390/v14061334

  48. Planas D, Saunders N, Maes P, et al (2022) Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602(7898):671–675

    Article  CAS  PubMed  Google Scholar 

  49. Zost SJ, Gilchuk P, Case JB, et al (2020) Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584(7821):443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levin MJ, Ustianowski A, De Wit S, et al (2022) Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of Covid-19. N Engl J Med 386(23):2188–2200

    Article  CAS  PubMed  Google Scholar 

  51. Herold T, Jurinovic V, Arnreich C, et al (2020) Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol 146(1):128–136.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Laguna-Goya R, Utrero-Rico A, Talayero P, et al (2020) IL-6-based mortality risk model for hospitalized patients with COVID-19. J Allergy Clin Immunol 146(4):799–807.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scott LJ (2017) Tocilizumab: A review in rheumatoid arthritis. Drugs 77(17):1865–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maraolo AE, Crispo A, Piezzo M, et al (2021) The Use of Tocilizumab in Patients with COVID-19: A Systematic Review, Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Studies. J Clin Med. 2021 Oct 25;10(21):4935. https://doi.org/10.3390/jcm10214935

  55. Zhang J, Chen C, Yang Y, Yang J (2022) Effectiveness of tocilizumab in the treatment of hospitalized adults COVID-19: A systematic review and meta-analysis. Medicine (Baltimore) 101(9):e28967. https://doi.org/10.1097/MD.0000000000028967

    Article  CAS  PubMed  Google Scholar 

  56. Peng J, She X, Mei H, et al (2022) Association between tocilizumab treatment and clinical outcomes of COVID-19 patients: a systematic review and meta-analysis. Aging (Albany NY) 14(2):557–571

    Article  CAS  PubMed  Google Scholar 

  57. Lim PC, Wong KL, Rajah R, et al (2022) Comparing the efficacy of tocilizumab with corticosteroid therapy in treating COVID-19 patients: a systematic review and meta-analysis. Daru 30(1):211–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hong JY, Ko JH, Yang J, et al (2022) Severity-Adjusted Dexamethasone Dosing and Tocilizumab Combination for Severe COVID-19. Yonsei Med J 63(5):430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moosazadeh M, Mousavi T (2022) Combination therapy of tocilizumab and steroid for COVID-19 patients: A meta-analysis. J Med Virol 94(4):1350–1356

    Article  CAS  PubMed  Google Scholar 

  60. Yuan X, Huang W, Ye B, et al (2020) Changes of hematological and immunological parameters in COVID-19 patients. Int J Hematol 112(4):553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iglesias-Julián E, López-Veloso M, de-la-Torre-Ferrera N, et al (2020) High dose subcutaneous Anakinra to treat acute respiratory distress syndrome secondary to cytokine storm syndrome among severely ill COVID-19 patients. J Autoimmun 115:102537. https://doi.org/10.1016/j.jaut.2020.102537

  62. Naveed Z, Sarwar M, Ali Z, et al (2022) Anakinra treatment efficacy in reduction of inflammatory biomarkers in COVID-19 patients: A meta-analysis. J Clin Lab Anal 36(6):e24434. https://doi.org/10.1002/jcla.24434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Somagutta MKR, Lourdes Pormento MK, et al (2021) The Safety and Efficacy of Anakinra, an Interleukin-1 Antagonist in Severe Cases of COVID-19: A Systematic Review and Meta-Analysis. Infect Chemother 53(2):221–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barkas F, Filippas-Ntekouan S, Kosmidou M, et al (2021) Anakinra in hospitalized non-intubated patients with coronavirus disease 2019: a Systematic review and meta-analysis. Rheumatology (Oxford) 60(12):5527–5537

    Article  CAS  PubMed  Google Scholar 

  65. Carr A, Cooper DA (1996) HIV protease inhibitors. AIDS 10 Suppl A:S151–157. https://doi.org/10.1097/00002030-199601001-00021

  66. Patel TK, Patel PB, Barvaliya M, et al (2021) Efficacy and safety of lopinavir-ritonavir in COVID-19: A systematic review of randomized controlled trials. J Infect Public Health 14(6):740–748

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB (2020) Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA 323(18):1824–1836

    CAS  PubMed  Google Scholar 

  68. Deng J, Zhou F, Hou W, et al (2021) Efficacy of lopinavir-ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virol. https://doi.org/10.2217/fvl-2021-0066

  69. Zhang L, Li Q, Liang Z, et al (2022) The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect 11(1):1–5

    Google Scholar 

  70. Cao Y, Wang J, Jian F, et al (2022) Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602(7898):657–663

    Article  CAS  PubMed  Google Scholar 

  71. Carreño JM, Alshammary H, Tcheou J, et al (2022) Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature 602(7898):682–688

    Article  PubMed  Google Scholar 

  72. Hu YF, Hu JC, Gong HR, et al (2022) Computation of Antigenicity Predicts SARS-CoV-2 Vaccine Breakthrough Variants. Front Immunol 13:861050. https://doi.org/10.3389/fimmu.2022.861050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zakir TS, Meng T, Carmen LCP, et al (2022) Characterization of a Broadly Neutralizing Monoclonal Antibody against SARS-CoV-2 Variants. Viruses 14(2):230. https://doi.org/10.3390/v14020230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma H, Guo Y, Tang H, et al (2022) Broad ultra-potent neutralization of SARS-CoV-2 variants by monoclonal antibodies specific to the tip of RBD. Cell Discov 8(1):16. https://doi.org/10.1038/s41421-022-00381-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang X, Hu A, Chen X, et al (2022) A potent human monoclonal antibody with pan-neutralizing activities directly dislocates S trimer of SARS-CoV-2 through binding both up and down forms of RBD. Signal Transduct Target Ther 7(1):114. https://doi.org/10.1038/s41392-022-00954-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang X, Chen X, Tan J, et al (2022) 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope. Cell Host Microbe 30(6):887–895.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin Y, Yue S, Yang Y, et al (2022) Nasal Spray of Neutralizing Monoclonal Antibody 35B5 Confers Potential Prophylaxis Against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern (VOCs): A Small-scale Clinical Trial. Clin Infect Dis; ciac448. https://doi.org/10.1093/cid/ciac448

  78. Du W, Hurdiss DL, Drabek D, et al (2022) An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Sci Immunol: eabp9312. https://doi.org/10.1126/sciimmunol.abp9312

  79. Ueno M, Iwata-Yoshikawa N, Matsunaga A, et al (2022) Isolation of human monoclonal antibodies with neutralizing activity to a broad spectrum of SARS-CoV-2 viruses including the Omicron variants. Antiviral Res 201:105297. https://doi.org/10.1016/j.antiviral.2022.105297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kovacech B, Fialova L, Filipcik P, et al (2022) Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine 76:103818. https://doi.org/10.1016/j.ebiom.2022.103818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chi X, Guo Y, Zhang G, et al (2022) Broadly neutralizing antibodies against Omicron-included SARS-CoV-2 variants induced by vaccination. Signal Transduct Target Ther 7(1):139. https://doi.org/10.1038/s41392-022-00987-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marta RA, Nakamura GEK, de Matos Aquino B, Bignardi PR (2022) Vacunas. https://doi.org/10.1016/j.vacun.2022.06.003

  83. Gagne M, Moliva J, Foulds KE, et al (2022) mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell 185(9):1556–1571.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Callaway E (2022) Fast-evolving COVID variants complicate vaccine updates. Nature 607(7917):18–19

    Article  CAS  PubMed  Google Scholar 

  85. Launay O, Cachanado M, Nguyen LBL, et al (2022) Immunogenicity and Safety of Beta Adjuvanted Recombinant Booster Vaccine. N Engl J Med; NEJMc2206711. https://doi.org/10.1056/NEJMc2206711

  86. European Medicines Agency. Flucelvax Tetra (influenza vaccine). https://www.ema.europa.eu/en/documents/overview/flucelvax-tetra-epar-medicine-overview_en.pdf. Accessed July 09, 2022

  87. Moderna’s Omicron-targeted booster shot shows promise. Center for Infectious Disease Research and Policy. https://www.cidrap.umn.edu/news-perspective/2022/06/modernas-omicron-targeted-booster-shot-shows-promise. Accessed June 16, 2022

  88. National Institutes of Health. Promising Interim Results from Clinical Trial of NIH-Moderna COVID-19 Vaccine. https://www.nih.gov/news-events/news-releases/promising-interim-results-clinical-trial-nih-moderna-covid-19-vaccine. Accessed June 16, 2022

  89. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN et al (2020) An mRNA Vaccine against SARS-CoV-2 – Preliminary Report. N Engl J Med 383(20):1920–1931

    Article  CAS  PubMed  Google Scholar 

  90. Noor R (2021) Developmental Status of the Potential Vaccines for the Mitigation of the COVID-19 Pandemic and a Focus on the Effectiveness of the Pfizer-BioNTech and Moderna mRNA Vaccines. Curr Clin Microbiol Rep 8(3):178–185

    Article  PubMed  PubMed Central  Google Scholar 

  91. Paraiso IL, Revel JS, Stevens JF (2020) Potential use of polyphenols in the battle against COVID-19. Curr Opin Food Sci 32:149–155

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hosseini SA, Zahedipour F, Sathyapalan T, et al (2021) Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 47(3):250–269

    Article  CAS  PubMed  Google Scholar 

  93. Demeke CA, Woldeyohanins AE, Kifle ZD (2021) Herbal medicine use for the management of COVID-19: A review article. Metabol Open 12:100141. https://doi.org/10.1016/j.metop.2021.100141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Adhikari B, Marasini BP, Rayamajhee B, et al (2021) Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res 35(3):1298–1312

    Article  CAS  PubMed  Google Scholar 

  95. Zahedipour F, Hosseini SA, Sathyapalan T, et al (2020) Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 34(11):2911–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, et al (2022) Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 14(2):256. https://doi.org/10.3390/nu14020256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heidari Z, Mohammadi M, Sahebkar A (2021) Possible Mechanisms and Special Clinical Considerations of Curcumin Supplementation in Patients with COVID-19. Adv Exp Med Biol 1308:127–136

    Article  CAS  PubMed  Google Scholar 

  98. Miryan M, Soleimani D, Askari G, et al (2021) Curcumin and Piperine in COVID-19: A Promising Duo to the Rescue? Adv Exp Med Biol 1327:197–204

    Article  PubMed  Google Scholar 

  99. Gomaa AA, Abdel-Wadood YA (2021) The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomedicine plus 1:100043. https://doi.org/10.1016/j.phyplu.2021.100043

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gomaa AA, Mohamed HS, Abd-Ellatief RB, Gomaa MA (2021) Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 29(4):1033–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van de Sand L, Bormann M, Alt M, et al (2021) Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses 13(4):609. https://doi.org/10.3390/v13040609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li J, Xu D, Wang L, et al (2021) Glycyrrhizic acid inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment. Molecules 26(20):6090. https://doi.org/10.3390/molecules26206090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Caliebe RH, Scior T, Ammon HP (2021) T (2021) Binding of boswellic acids to functional proteins of the SARS-CoV-2 virus: Bioinformatic studies. Arch Pharm 354:2100160. https://doi.org/10.1002/ardp.202100160

    Article  CAS  Google Scholar 

  104. Gomaa AA, Mohamed HS, Abd-ellatief RB et al (2022) Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: a randomized clinical trial. Inflammopharmacol 30(2):477–486

    Article  CAS  Google Scholar 

  105. Luo X, Ni X, Lin J, et al (2021) The add-on effect of Chinese herbal medicine on COVID-19: a systematic review and meta-analysis. Phytomedicine 16(8):e0256429. https://doi.org/10.1371/journal.pone.0256429

    Article  CAS  Google Scholar 

  106. Liu M, Gao Y, Yuan Y, et al (2020) Efficacy and safety of integrated traditional Chinese and western medicine for Corona Virus Disease 2019 (COVID-19): a systematic review and meta-analysis. Pharmacol Res 158:104896. https://doi.org/10.1016/j.phrs.2020.104896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou LP, Wang J, Xie RH, et al (2021) The effects of traditional chinese medicine as an auxiliary treatment for COVID-19: a systematic review and meta-analysis. J Altern Complement Med 27(3):225–237

    Article  CAS  PubMed  Google Scholar 

  108. Li L, Xie H, Wang L, et al (2022) The efficacy and safety of combined chinese herbal medicine and western medicine therapy for COVID-19: a systematic review and meta-analysis. Chin Med 17(1):77. https://doi.org/10.1186/s13020-022-00600-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoon E, Kim D, Jeon H, et al (2022) Severe Acute Respiratory Syndrome Coronavirus 2 Variants-Possibility of Universal Vaccine Design: A Review. Comput Struct Biotechnol J. https://doi.org/10.1016/j.csbj.2022.06.043

  110. Hong J, Kwon HJ, Cachau R, et al (2022) Dromedary camel nanobodies broadly neutralize SARS-CoV-2 variants. Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2201433119. https://doi.org/10.1073/pnas.2201433119

  111. Mediouni S, Mou H, Otsuka Y, et al (2022) Identification of potent small molecule inhibitors of SARS-CoV-2 entry. SLAS Discov 27(1):8–19

    Article  CAS  PubMed  Google Scholar 

  112. Zhang L, Dutta S, Xiong S, et al (2022) Engineered High-Affinity ACE2 Peptide Mitigates ARDS and Death Induced by Multiple SARS-CoV-2 Variants. Nat Chem Biol 18(3):342–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li M, Ye ZW, Tang K, et al (2022) Enhanced trimeric ACE2 exhibits potent prophylactic and therapeutic efficacy against the SARS-CoV-2 Delta and Omicron variants in vivo. Cell Res 32(6):589–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahebkar, A., Jamialahmadi, T., Rahmoune, H., Guest, P.C. (2023). Long-Term Vaccination and Treatment Strategies for COVID-19 Disease and Future Coronavirus Pandemics. In: Guest , P.C. (eds) Application of Omic Techniques to Identify New Biomarkers and Drug Targets for COVID-19. Advances in Experimental Medicine and Biology(), vol 1412. Springer, Cham. https://doi.org/10.1007/978-3-031-28012-2_2

Download citation

Publish with us

Policies and ethics