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Abstract. Software-defined Manufacturing (SDM) aims to enhance the
flexibility of production systems. Classical automation systems are not
a suitable technological basis for SDM. While their hierarchical, rigid
structures are increasingly being dissolved. Container-based virtualiza-
tion, and modular software architectures, gain traction in automation
systems. However, today’s PLCs are not a perfect fit for virtualization,
as the control program still is a monolithic piece of software. We analyze
cyclic and event-based real-time scheduling models for modular PLCs.
Furthermore, techniques for reconfiguration at runtime are developed
based on the selected execution models.
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1 Introduction

Today’s manufacturing systems only support manual reconfiguration at the
application level. However, the control software, e.g., the NC kernel, is fixed and
bound to hardware. Thus, adapting core functionality is impossible or requires
high manual effort. For this reason, the fixed programming of physical machines
via PLC or NC code must be replaced by an adaptable software layer to enable
Software-defined Manufacturing [1]. Software development for Programmable
Logic Controllers (PLCs) is typically done monolithically. As monolithic con-
trol applications age, they become increasingly difficult to maintain. Compo-
nents, e.g., function blocks, have low reusability and scalability [2]. Modular
software architectures, such as Service-oriented Architectures (SOAs), address
these drawbacks. Monolithic architectures are modularized into services, form-
ing cohesive applications by loosely coupled interaction. Software containers are
increasingly used to deploy modular architectures. We extend previous work [3,4]
towards a modular control platform, which implements a Microservices archi-
tecture. Specifically, we extend the container-based control system by event-
based and cyclic execution, i.e. orchestration, models that meet the requirements
of modular software architectures and the real-time requirements of control
systems.
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2 Related Work

Cucinotta et al. [5] present an SOA in which real-time communication bypasses
the Simple Object Access Protocol (SOAP) stack and directly uses UDP/IP.
Service invocations are scheduled as sporadic tasks using Earliest Deadline First
(EDF). Dai et al. [6] present an industrial SOA based on IEC 61499, within
which function blocks offer functionalities as services. The communication takes
place via SOAP and TCP/IP. Tsai et al. [7] present RTSOA, an SOA extended by
soft real-time capabilities. A concept for a container-based, real-time automation
platform is defined in [8]. The scheduling algorithm is Fixed Priority Preemptive
Scheduling (FPS). While the other publications do not provide temporal syn-
chronization of tasks across a compute node’s boundaries, Telschig’s container-
based architecture [9] does so by introducing globally valid time slots for message
exchange and task execution. Furthermore, not all architectures support a guar-
anteed execution order of tasks and the deployment or update of components
at run-time. EDF, commonly used on single-core and multicore systems, is also
suitable for scheduling applications whose tasks have dependencies that can be
modeled as DAGs. A DAG is transformed into deadlines and activation times of
the subtasks for this purpose [10,11]. The methods known for single-processor
and multiprocessor systems are extended by Rivas et al. [12] for distributed
systems. Saifullah et al. [10] present a scheduling method for parallel real-time
execution of multiple periodic DAGs on a multicore processor. An algorithm
decomposes one or more DAGs into sequential tasks by assigning activation off-
sets and deadlines to individual tasks. Global EDF is used as the scheduling
algorithm. Jiang et al. [11] present a similar decomposition algorithm for DAG
tasks. Peng et al. [13] present methods for the FPS and EDF of DAGs, where
no decomposition is necessary.

3 Analysis of Scheduling Methods

Fig. 1. An exemplary DAG task consists of subtasks with worst-case execution times
(WCETs). Every subtask is deployed as a container.

Cyclic Scheduling of Dependent Tasks: Some use cases, such as sensor
fusion, benefit from executing tasks in a specified order because this can reduce
the end-to-end latency. Therefore, we compare two [10,11] principally applicable
methods for cyclic scheduling of task sets modeled as DAGs. Both methods rely
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Fig. 2. Comparison of Jiang’s [11] and Saifullah’s [10] decomposition algorithms.

on the decomposition of DAG tasks, i.e., the assignment of offsets and deadlines
to subtasks. Furthermore, both methods use EDF at runtime. Figure 1 depicts an
exemplary task modeled as a DAG. In the following, a DAG is called a task and
its components are called subtasks. Arrows symbolize precedence constraints.
The methods considered in this work are the algorithms of Saifullah et al. [10]
and Jiang et al. [11]. Figure 2 shows the decomposition of the DAG in Fig. 1
under Saifullah’s (Fig. 2b) and Jiang’s (Fig. 2c) methods. Vertical markers at the
end of the abscissa symbolize specified deadlines. Both methods are compared
as follows. Random task sets with varying parameters are generated, and the
numbers of schedulable task sets are compared. The task set generation follows
the following scheme based on [10,14]:

1. Determination of the parameters: The connection probability p ∈ (0, 1) spec-
ifies the probability of precedence constraints. n is the number of subtasks
per task, Uset is the desired processor utilization of the entire task set. β < 1
is a factor used to influence individual task utilization.

2. The generation of n random task is done using the G(n, p) method according
to Ernős-Rényi.

3. The WCET Ci,j of a subtask j in task i is randomly chosen from the interval
[100 µs, 1000 µs]. The length of the critical path Li, i.e., the sum over the
WCETs of subtasks on the longest path in the DAG, and the workload Wi,
i.e., the sum over the WCETs of all subtasks in the DAG, are calculated.
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Fig. 3. DAG-transformation to minimize intra-task-interference under G-FPS.

4. The period of a task Ti is chosen randomly from the interval [Li,Wi/β).
Thus, the processor utilization Ui lies in the interval [β,Wi/Li]. The deadline
is implicitly set to be identical to the period.

5. Step 2 to 4 is repeated until
∑n

i=1 Ui > Uset holds, and the period of the last
task is chosen so that exactly the desired total utilization is reached.

1000 random task sets per utilization were generated using the parameters
p ∈ [0.01; 0.2], n ∈ [20; 100], β = 0.1, and Ci,j ∈ [100 µs; 1000 µs]. Figure 2d
shows the acceptance rates for the randomly generated task sets with different
utilizations. Since Jiang’s decomposition strategy can decompose significantly
more task sets in a schedulable manner, it is applied if the application requires
cyclic scheduling considering the execution order.

Event-Based Scheduling of Dependent Tasks. For event-based scheduling
of DAG tasks, global EDF (G-EDF) [15] and global FPS (G-FPS) [14] are suit-
able algorithms. Using global FPS, the subtasks within a task are assigned pri-
orities according to their topological order. Different tasks (DAGs) are assigned
priorities according to Deadline Monotonic Scheduling (DMS) and thus, in the
case of implicit deadlines, according to Rate Monotonic Scheduling (RMS). Due
to the implementation-specific details of the SCHED DEADLINE scheduler,
schedulability cannot be tested according to Melani et al. [18]. The deadline of
a thread is relative to its activation time on Linux. For the schedulability test,
according to Melani et al., and similar tests, its deadline must be relative to the
activation time of the source subtask. Thus, G-FPS is used for the event-based
scheduling of container-based DAG tasks. Pathan’s test [14] is applied to check
the schedulability. As discussed in [3,4], the container-based control system uses
the socket API for inter-service communication. The select, poll, or epoll
syscalls can be used to wake up tasks, when a message is delivered. The ideal
implementation of the execution model would require a syscall that blocks until
a task has received messages from all of its predecessors. Such syscall is not
available on Linux, which leads to unnecessary context switches and increased
intra-task interference between the subtasks of a DAG, as illustrated on the left
in Fig. 3. Our approach to minimizing the intra-task interference is described
in the following and shown in Fig. 3. Subtasks that have more than one prede-
cessor are decomposed into sequential virtual subtasks. The number of virtual
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subtasks corresponds to the number of predecessors. For a subtask vi,j of a DAG
task Πi with predecessors predi,j = {predi,j,1, predi,j,2, ...}, the decomposition
into sequential virtual subtasks is done in four steps:

1. First, the response time analysis (RTA) is performed using the original task
set and the test of Pathan et al. [14]. Here, the worst-case response time Ri,j

is calculated for each subtask vi,j .
2. The subtask vi,j is divided according to the cardinality of the predecessors into

nvirt
i,j = |predi,j | virtual sequential subtasks vk

i,j . The first k = 1, ..., nvirt
i,j − 1

subtasks are assigned the WCET Ck
i,j = τrecv+τproc, where τproc corresponds

with the message processing time and τrecv corresponds with the delay, needed
to fetch the message from the messaging system. The last virtual subtask is
assigned the WCET C

|predi,j |
i,j = τrecv +τproc+τtask+nsub

i,j τsend. τsend denotes
the time needed to send a message.

3. The predecessors predi,j of the subtask are sorted in descending order accord-
ing to their response times Ri,j . The virtual subtasks are ordered in ascending
order for k = 2, ..., nvirt

i,j and the predecessors predi,j,k and vk−1
i,j are assigned

to the subtask. The first virtual subtask receives only predi,j,1 as predecessor.
4. Finally, we evaluate schedulability by applying Pathan’s RTA [14] to the

transformed DAG tasks.

If a DAG extends across the boundaries of a system, schedulability under global
FPS is evaluated by the RTA of Peng et al. [13]. This method considers that
subtasks not executed on the same processor cores cannot interfere with each
other.

4 Execution Models for the Container-Based PLC

4.1 Cyclic Execution Model

Scheduling: To support independent and DAG applications simultaneously and
guarantee schedulability for high processor loads, the cyclic execution model uses
the decomposition method of Jiang et al. [11] and global EDF. This execution
model is suitable for implementing cyclic DAG tasks with implicit or constrained
deadlines (Di ≤ Ti). The interaction between the communication system and
application subtasks follows the synchronous interaction pattern. Thus, the exe-
cution time of a subtask results in

τtotal = npubτrecv + τtask + nsubτsend + τaug. (1)

The task’s execution time is augmented with the latency τaug, which is the time
needed until all messages are transmitted to the successors. npub is the number
of predecessors and nsub is the number of successors. In the schedulability test,
only the actual execution time of the subtasks is considered.
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Fig. 4. Concept for reconfiguration by reassigning deadlines and offsets.

Runtime Reconfiguration: The reconfiguration, that is, adding a subtask
vi,ni+1 to a DAG task Πi with subtasks {vi,1, ..., vi,ni

} and period Ti, is done in
three steps. vsource is any source subtask of Πi, e.g. vi,1. The update strategy is
exemplified for one subtask vi,j , but is applied simultaneously to all subtasks of
the DAG. To simplify the notation, T = Ti is the period of DAG task Πi and
rksource = rki,1 is the request time of the k-th instance of the source subtask. The
relative offset o = oi,j of the subtask vi,j refers to rksource, which is increased by
T for each invocation of the DAG task: rksource = rk−1

source + T . The request time
rk of the k-th instance of subtask vi,j is rk = rksource +o. The deadline D of sub-
task vi,j is relative to its request time. For rksource and rk, the notations rsource
and r are used. First, new deadlines and offsets are assigned to subtasks by
the decomposition procedure. The old and new offsets and deadlines of subtask
vi,j , are denoted oold and onew, and Dold and Dnew. The next step is to notify
the subtasks about their new deadlines and offsets. A message is sent to each
subtask, containing the new deadlines and offsets and a global synchronization
point. The global synchronization point is derived from the request time rksource
of the source subtask: S = rksource + xT . x ∈ N can be freely chosen. While, e.g.,
Xenomai natively supports the allocation of offsets between threads, on Linux,
this can only be done using a timed sleep. If the request time of a subtask is
shifted to the left, that is (onew < oold), the corresponding subtask would have
to be executed a second time within one period. Since the deadline of the sub-
task may already be exceeded at this point, and the Constant Bandwidth Server
(CBS) may have no remaining bandwidth, the subtask might be throttled. For
this reason, the reallocation follows the strategy shown in Fig. 4. If onew < oold,
the subtasks are paused until S + T + onew, and the new deadline is assigned. If
onew > oold, the subtasks are paused until S + onew and Dnew is assigned. The
third step includes the deployment of the new subtask. A consistent state trans-
fer is necessary if a subtask is updated, i.e., replaced. First, the schedulability
test is used to check whether the new subtask can be executed parallel, i.e., with
identical offsets and deadlines, to the subtask to be replaced. If this is the case,
the subtask starts. Otherwise, the deployment follows the procedure described
above. Next, the necessary communication channels are initialized. The new sub-
task does not process incoming messages and leaves them in the message queue.
A time-stamped image of the state of the internal variables of the component
to be replaced is successively transmitted to the new subtask. Once the state
is completely transmitted, the actual state is reconstructed using the messages
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Fig. 5. Example of an update to replace a stateful subtask.

in the message queue. The new subtask starts executing its program logic and
transmitting the output messages to its successors. The successors always apply
the messages of the new subtask during the update process, as far as these are
available. Finally, the original subtask terminates. Figure 5 illustrates the prin-
ciple flow of a stateful reconfiguration. The DAG task consists of the source
subtask task 1, task 2, and task 3, which are executed in this order. The state-
ful task 2 is replaced by task 2’ at runtime. The reassignment of offsets and
deadlines has already been done, and the required communication links have
been established. (1) Task 2’ requests the transfer of task 2’s internal state and
starts receiving messages from task 1. (2) The state’s transmission begins, which
extends over two cycles. (3) State reconstruction is conducted based on the mes-
sages in the message queue and the transmitted state. In this example, only one
cycle is needed for this. Task 2’ begins with the execution of the program. (4)
Task 3 receives messages from tasks 2 and 2’. Messages from task 2 are dropped,
and messages from task 2’ are applied. Furthermore, task 2 is notified that the
deployment of task 2’ has been completed (5). (6) Task 2 terminates.

4.2 Event-Based Execution Model

Based on the results of the previous sections, the event-based execution model
of the container-based control system is presented. The assignment of priorities
and the execution at runtime is performed according to the procedures explained
in Sect. 3. The developed model ensures that only one event-based activation is
necessary for each subtask since all other precedence messages have already
been delivered and can be processed without interrupting the subtask. To check
schedulability, the RTA of Pathan et al. [14] and to check schedulability on a
distributed system, the RTA by Peng et al. [13] are used. In event-based systems,
it is unpredictable when an event may occur. For this reason, reconfiguration is
done either offline or without consistent state transmission.

5 Validation of a Sample Use-Case

The real-time performance of the execution models was evaluated based on a
sample application. A production line model is controlled by a single DAG task
with eight services and seven deployment units (see Fig. 6). The WCETs of the
PLC subtasks are shown in Table 1.
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Fig. 6. Production line model with two processing stations.

Table 1. WCETs of the subtasks of the exemplary application for validation

Task T1 T2 T3 T4 T5 T6 T7 T8

WCET [µs] 476 676 698 777 794 697 683 725

Validation of the Event-Based Execution Model: To validate the event-
based execution model, two instances of the DAG task Π1 and Π2 were executed
at a rate of T1 = 5 ms and T2 = 10 ms. The temporal behavior was recorded over
a time span of six hours on a Raspberry Pi 3 equipped with PREEMPT RT-
Patch and Linux version 5.2.21. Figure 7 depicts the measured execution of Π1

on the test system compared to the previously calculated response times of the
subtasks. Only tasks 1, 2 and 3 exceeded the calculated response times. However,
this was caused by WCET overruns and the jitter of the test system. If the
scheduling method is to be used for safety-critical applications, the WCET must
therefore be estimated sufficiently pessimistically. The second DAG task Π2 also
did not exceed the calculated response time.

Fig. 7. Comparison between the calculated response times of DAG Π1 with T1 = 5 ms
and the actual system behavior.
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Validation of the Cyclic Execution Model: The cyclic execution model
was also validated by running the application consisting of Π1 and Π2 (T1 =
T2 = 8 ms) with implicit deadlines for six hours on the test system. Figure 8
shows the resulting artificial deadlines and measured behavior of Π1 and Π2.
The precedence constraints were not violated at any time. The cyclic and event-
based dependent execution models’ evaluation shows that both can be employed
under real-time requirements.

Fig. 8. Comparison of the calculated response times of DAG Π1 with T1 = 8 ms and
the actual system behavior.

6 Conclusion and Future Work

In this work, we developed concepts for event-based and cyclic execution models.
Both execution models support applications with independent tasks and appli-
cations, where the tasks’ execution must occur in an explicitly specified order.
This order is modeled as DAG. The execution models allow the development,
deployment, and dynamic reconfiguration of distributed control applications. As
part of future work, we plan to extend the used socket-based messaging system
to support Time Sensitive Networking.
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