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Abstract. Machine Learning helps to separate entanglements in Bin-
Picking Applications. The goal is to create a system that finds a path to
separate an entanglement, starting from a single visual input. To realize
such a system both supervised and reinforcement learning methods can
be implemented. For both of these approaches we set up a motion model
and the remaining properties of the real robot cell are implemented in
a simulation scene. While the simulation scene can be used to create
training data for the supervised learning approach, it is also the learn-
ing environment for the reinforcement learning model. Therefore, there
are similar premises for comparing the two models. What needs to be
investigated is which of the two methods separates the most entangle-
ments and offers the least setup effort. The setup effort in general and
the performance are examined for both approaches in simulation and
also in real-world experiments. The reinforcement learning model out-
performs both of the supervised learning models in the setup effort and
the separation rate by over 15 percent points.

Keywords: Bin-Picking - Machine Learning + Reinforcement
Learning - Supervised Learning - Entanglement Separation

1 Introduction

The ability to automatically pick chaotically stored workpieces from bins creates
many new opportunities in productions. While some workpiece geometries can
be picked in a robust manner, there are a lot of workpieces which are prone to
entangle. Therefore an automated process that is supposed to consistently pick
single workpieces needs to have the ability to detect and separate entanglements.
Since the detection of entanglements has been handled in previous work [1,2],
this paper mainly focuses on the separation of these entanglements. For this
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purpose a new convolutional neural network (CNN) architecture for a supervised
learning approach has been developed and tested alongside two already existing
supervised learning [3] and reinforcement learning [4] approaches.

The main contributions of this paper are:

e the introduction of the updated supervised learning architecture

e the introduction of a threshold evaluation to deny gripping points for impos-
sible separations

e real-world entanglement separation experiments

e comparison of supervised and reinforcement learning approaches

2 State of the Art

In motion-planning for bin picking applications multiple different approaches
have emerged recently. Ellikide et al. [5] and Iversen et al. [6] prioritize find-
ing a motion path, which avoids collisions with the environment. In the case
of separating entangled harnesses Zhang et al. [7] uses a set of eight possible
motion schemes with increasing complexity. Matsumura et al. present a model-
free entanglement detection approach, but without separation strategies [8]. Leao
et al. calculate the robot trajectory based on the size of the workpiece and move
the robot on its z-y-plane [9]. Moosmann et al. [3] proposed a motion model
in the shape of a hemisphere consisting of 25 points, which is based around
the center of the entangled workpiece. The amount of hemisphere points have
later been reduced to 17 points [4]. Each of the points has a specific transla-
tional and rotational offset that gets added to the original workpiece position.
The workpiece is moved to the point, which has the highest probability to sepa-
rate the entanglement. To calculate these probabilities a supervised learning [3]
and a reinforcement [4] learning approach has been developed. Additionally two
more hemispheres are created centering around the selected path point of the
preceding hemisphere. Once all three path points have been passed the work-
piece is lifted up. Figure 1 displays an example for a separation in the simulation
environment,.
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Fig. 1. Example for an entanglement from the simulation with the corresponding sep-
aration path generated by the Entanglement Separation Network
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3 New Supervised Learning Entanglement Separation
Method
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Fig. 2. Supervised Learning A: Serial connection of CNNs presented in [3].

In [3] a supervised learning method was presented, which uses a serial connec-
tion of three convolutional neural networks to predict the optimal trajectory
for entanglement separation as shown in Fig. 2. This approach has been unified
into a single network within this work in order to simplify the usage and reduce
training time.

3.1 Data Generation

The training data is generated using the simulation environment CoppeliaSim®.
In the simulation scene several objects such as the workpieces and bins in mul-
tiple sizes are integrated. All are based on a CAD-model with real-world pro-
portions. A simulation cycle starts by filling the bin with a random amount
of background workpieces, which vary between 0 and 20. After that a random
entanglement is selected from of previously generated entangled workpiece poses
and placed with a random = and y offset in the bin. To make sure the entan-
glement is still valid after being placed in the bin, the entangled workpiece is
lifted up and it is checked how many workpieces are located above the bin. As
soon as the conditions for a valid entanglement are met, a set of possible grip-
ping points is checked in the simulation. For every gripping point that does not
collide with the bin or the surrounding workpieces, a simulation cycle will start.

! https://coppeliarobotics.com/.
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After a valid gripping point has been chosen, the path points of the first hemi-
sphere are checked. A separation path is considered successful, if neither the
gripper nor the workpiece collide with the bin and the entanglement has been
separated. The second and third hemisphere is created for the best point of the
preceding hemisphere. In the case of multiple or none successful separations, the
path which caused the least movement for the surrounding workpieces is selected
as the center for the next hemisphere. One simulation cycle is finished as soon
as the 17 path points of each hemisphere have been checked. The separation
motion model is presented in Fig. 3. On the left, the distribution of the 17 possi-
ble path points on the hemisphere, on the right, a possible trajectory with three
hemispheres is shown.

Fig. 3. Separation motion model - left: 17 possible path points of a hemisphere; right:
possible trajectory with three hemispheres

The depth images, which are taken for every cycle have a size of 128 x
128 pixels. Before training the network with these images they are transformed
using transfer learning methods as shown in [1]. This is necessary to minimize the
differences between simulation and real-world data. For domain adaptation, we
use CycleGAN [12] to generate real-looking depth maps from simulation. To get
more realistic sensor data, we add different domain randomisation factors to the
simulation depth map, for example Gaussian noise, translational and rotational
offsets and brightness adaption [13,14]. We also use inpainting techniques [15].

3.2 Network Architecture

Since for the new architecture all three networks as presented in Fig.2 have
been merged into a single one, the information about the previously selected
actions and the current hemisphere index needs to be transferred in a consistent
manner. Therefore a matrix with 2 x 17 values is used as an additional input.
The first column contains the value “one” at the index of the selected action
in the first hemisphere and the value “zero” for the remaining indices. For the
second column the value “one” is contained at the chosen action for the second
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hemisphere. If the respective hemisphere has not been evaluated yet the vector
contains 17 times the value “zero”. The gripping point is represented by a 4 x 4
transformation matrix relative to the workpiece center. This means a simulation
cycle as described in Sect. 3.1 creates three training labels with the same gripping
point and depth image, but a varying previous action vector. The output of
the network is the probability to solve the entanglement with each of the 17
hemisphere points. In Fig. 4 the complete architecture is summarized.
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Fig. 4. Input and Output of the Entanglement Separation Network

For the separation task a DenseNet [16] architecture with 4 Denseblocks with
depths of 6, 12, 24 and 12 layers is implemented.

3.3 Training

For all of the workpieces, which will be examined in this paper, around 20,000
data samples have been generated according to the procedure described in
Sect. 3.1. The network has been trained using a Nvidia GeForce GTX 1080 Ti
graphics card with a batch size of 128 for 80 epochs. To avoid overfitting, a
dropout with a dropout rate of 35% has been used.

3.4 Threshold Evaluation

With the current motion model most entanglements have multiple different
paths, which lead to separation. However some entanglements are impossible
to separate. One reoccurring problem is the gripper blocking the path of the
entangled workpiece as shown in Fig. 5 (a). Aside from that some entanglements
are significantly easier to separate if another workpiece, which is part of the
same entanglement, is gripped. To address these problems we implemented the
ability to deny the gripping of a workpiece if the average value of the 17 pre-
dictions of the first hemisphere is below a threshold. To find the best threshold,
the validation data of our training set has been examined for every workpiece on
multiple thresholds between 0 and 0.1. The threshold with the highest accuracy
has shown to be 0.022 as depicted in Fig.5 (b).
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Threshold influence on prediction average
in validation data set (5894 samples)

Tue Negatives ——_
TFue Positives e -

False Negatives R
False Positives

TNs+TPs

0.02 0.04 0.06 0.08 0.10
Threshold

(a) (b)

Fig. 5. (a) Example of an unsolvable gripping point (b) Threshold influence on predic-
tion accuracy of the connecting rod with maximum at 0.022

4 Comparison

4.1 Setup Effort

For the supervised learning approach the amount of training data is a substantial
factor for training success. Therefore it is necessary to generate a large amount of
training data, which is the most time consuming part. To generate data from one
simulation cycle as described in Sect. 3.1, a Lenovo Thinkpad with an Intel(R)
Core(TM) i7-10750H CPU with 2.60 GHz processor and 16 GB RAM takes
about 4.5min on average. Accordingly generating 20,000 data samples would
take 1,500h. However since simulations can run on multiple processor cores
simultaneously, the time to generate this data can be divided by the amount
of cores on the respective system, reducing data generation time significantly.
To keep the conditions for this comparison equal this aspect will be ignored.
The training time of the updated supervised approach is 0.5h lower than the
previous approach.

In one episode of the reinforcement learning training a single separation path
in the simulation environment is tried. Therefore the reinforcement learning
approach takes up significantly less time per episode, compared to a cycle of the
supervised learning data generation. Aside from that, the reinforcement learning
training does not need any previously generated data and uses an Epsilon-Greedy
strategy to explore the environment within the first 1,000 episodes. To achieve
a sufficiently trained network about 30,000 episodes are necessary, which takes
around 175h. In Table1 time consumption is summarized concluding that the
reinforcement learning take up clearly less time.
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Table 1. Time consumption comparison of Supervised and Reinforcement Learning
approach, Supervised Learning A is referring to the new merged architecture and Super-
vised Learning B is referring to the old serial connection architecture

Approach Required Sim Setup Time | Training Time | Total Time
Data for Training

Supervised =220,000 ~1,500 h ~1h ~1,500 h

Learning A

Supervised =20,000 ~1,500 h ~1.5h ~1,500 h

Learning B

Reinforcement | 0 0 ~175h ~175h

Learning

4.2 Real-World Performance Comparison

To evaluate the performance of the networks, real-world experiments have been
carried out. In order to see how the separation rate differs for a variety of work-
piece geometries, u-bolts, connecting rods and hooks have been tried. The meth-
ods under consideration for the following comparison are the reinforcement learn-
ing approach introduced in [4], the supervised learning approach introduced in
[3] and the new supervised approach introduced in this paper. For every com-
bination of those workpieces and machine learning methods, the entanglement
separation success rate for 200 workpieces has been determined as depicted in
Table 2. All tests up to the last row do not involve the threshold, which has been
introduced in Sect. 3.4. Comparing the results of the different supervised learning
networks, the only minimal differences for all workpieces range between 0.5 and
1.5% points. However comparing the reinforcement learning network with the
supervised learning approach the separation rates differ within a greater range.
Here the u-bolt workpiece geometry shows the best separation rate with 98%,
being 15.5% points better than the new supervised approach. For the hook and
the connecting rod a slightly better separation rate can be achieved.

To evaluate the effectiveness of the threshold, another test series with the
connecting rod has been carried out, in which predictions below the threshold
were denied. This workpiece has been prioritised for the threshold evaluation,
because it is more prone to impossible gripping points as demonstrated in Fig. 5
(a). The improvement of these test cases is shown in the last row of Table 2. Here
an additional improvement between 4 and 5 percent points for both supervised
learning approaches and the reinforcement learning approach is visible.
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Table 2. Separation test comparison for all combinations of machine learning methods
and workpieces (with 200 entanglements per combination)

Object Approach Entanglements separated | Separation Rate
U-bolt Supervised Learning A | 165 82.5%
Supervised Learning B | 162 81.0%
Reinforcement Learning | 196 98.0%
Hook Supervised Learning A | 92 46.0%
Supervised Learning B | 91 45.5%
Reinforcement Learning | 101 50.5%
Connecting Rod | Supervised Learning A | 174 87.0%
Supervised Learning B | 176 88.0%
Reinforcement Learning | 176 88.0%
Connecting Rod | Supervised Learning A | 183 91.5%
With Supervised Learning B | 184 92.0%
Threshold Reinforcement Learning | 186 93.0%

4.3 Integration into a Bin Picking System

The Bin-Picking Application, in which the separation strategies are integrated
in, is able to detect and localize workpieces using a point cloud [10]. Further-
more to acquire a suitable gripping solution a heuristic search is used [11]. From
the point cloud depth images are extracted and used as input for the entangle-
ment detection. In case the workpiece is recognized as entangled a request for a
separation path will be sent to the entanglement separation [1].

5 Conclusion and Future Work

In this paper it has been shown that the serial connection, consisting of three
networks, which was previously implemented, can be reduced to a single net-
work. This reduces training and load up time of the weights from the neural
networks, without compromising in terms of performance. Additionally the real-
world tests have shown that the reinforcement learning model achieves a 15%
points higher separation rate, while having a lower setup effort. Furthermore, we
introduced a threshold evaluation to deny gripping points, on the basis of which
the separation of entanglements is impossible. This evaluation is also done in
real-world experiments. In future work we will try to improve the reinforcement
learning approach with any additional rotations and simplify the pipeline to
teach in new workpiece geometries. Furthermore we will try to reduce training
time with meta-learning methods.
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