
Chapter 8
Load Forecasting Model Training
and Selection

Chapters5 and 6 have shown how to define a time series forecast, how to prepare
the data, and how to generate inputs for the models. Chapters9 to 11 will show
several methods for forecasting the demand. However, although Chap.7 provided us
the tools for measuring the accuracy of a forecast, the following questions remain
largely unanswered: How do we train and select a model which will consistently
produce accurate forecasts?

This chapterwill investigate this question by looking at someof themost important
aspects for creating a good forecast including proper utilisation of benchmarking, and
how to use cross-validation to properly train yourmodel. Underlying cross-validation
is one of the most important aspects of a creating a good forecast, the so-called bias-
variance trade-off principle, discussed in Sect. 8.1.2. This ensures that the model is
not over (or under-) trained and allows the model to better generalise to new, unseen
data. Next, in Sect. 8.2, methods for training the models are considered, including
ways to select the best model from a selection of models. One important set of
techniques covered in Sects. 8.2.4 and 8.2.5 is regularisation, which helps to reduce
overfitting, but also how to find the appropriate hyperparameters within a family of
models.

8.1 General Principles for Forecasts Trials

In the previous sections the general form of a forecasting problem was introduced
as well as methods for scoring the forecast accuracy through error measures. This
section introduces some general principles with the aim to aid the practitioner to
properly design and develop a forecast trial. This includes considerations on why
choosing appropriate benchmarks is important to better understand the accuracy of
your model; why it is important to avoid over/under-fitting your model to the data;
and how to split the data in order to properly train and test your models.
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8.1.1 Benchmarking

An error score (see Chap.7) for a model is not very informative on its own. The
accuracy of a forecast can only be understood in the context of other, well-designed
forecasts. Benchmark models are a vital component for creating useful and accu-
rate forecasts. They enable informative comparisons and help to better understand
important (and unimportant) features and relationships in the data. Often simple
benchmarks can be quite effective as their strong performance can suggest impor-
tant features or drivers for the forecast accuracy. How much your model(s) improve
compared to the benchmarks can also be used as performance indicators (See skill
scores in Sect. 7.4).

Most benchmarks fit into the following categories:

1. Simple or Naïve benchmarks. These are very basic benchmarks models which
have minimal features and parameters. They serve as the lowest bar for which
your main forecast model should outperform. If they don’t, then, due to their
simple form, these benchmarks should be able to suggest improvements to the
current model or indicate flaws in the chosen model. A selection of several of
these simple benchmarks can also highlight some of the most important features
in the underlying data. At least one of the benchmarks in a forecast trial should
be simple.

2. Common benchmarks. Different applications will have some models which are
commonly used as benchmarks. For example, this could be ARIMAX or simple
linear regression models (Forecast models will be introduced in detail in Chap.9).
This can be helpful since it allows some degree of comparison between different
models across different experiments even though the underlying data or situation
is completely different.

3. State-of-the-art benchmarks. Often it will be desirable to compare to the cur-
rent best methods available and implement a version of the state-of-the-art in the
selection of different models. Even if the model doesn’t quite outperform the best
in the business, confidence can be given to a model which performs similarly to
models which been tried-and-tested and shown to work well over several experi-
ments and data sets. In many cases it may be difficult to identify any single model
which performs well in general and instead at least one, well-known, competitive
model should be chosen for comparison in your experiment.

In addition to choosing a naïve or common model, a simple way to choose a bench-
mark is to base themon at least one feature/relationshipwhich appears to be important
for the dependent variable of interest. In load forecasting, there is often weekly or
daily seasonalities, and therefore it is common to pick a benchmark model which
includes these features. Several common benchmark methods for load forecasting
will be introduced in Sect. 9.1.

It should be highlighted that just because a model has the smallest error there
is no guarantee it will achieve the best performance when used within the chosen
application. However, it is often not computationally viable to assess the model
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by testing each forecast model in the chosen application (e.g. storage control as
introduced in Sect. 15.1). That is why it is important to carefully select the forecast
error metric which reflects the aims of the forecast (see Chap. 7).

8.1.2 Bias-Variance Tradeoff

The bias-variance tradeoff is one of the single most important concepts in creating
an accurate forecast. As seen in Sect. 5.2 and Eq. (5.27), a time series forecast is
essentially a function which takes various inputs to give the desired outputs. The
nature of the function is determined by a number of parameters which must be
trained on historical data. How to properly choose and train the parameters can have
a large impact on the overall accuracy of the forecast.

As introduced in Chap.4 machine learning was defined as algorithms that learn
from data to improve prediction performance. However, there is no practical value if
a machine learning model is only capable of predicting accurately based on instances
from the data it was trained on. Here, a model that simply memorised all the training
data can, in theory, achieve perfect performance. However, this is meaningless for all
practical problems, as it is typically infeasible that all possible inputs can bemeasured
(e.g. if the variables are real-valued). Therefore, the central challenge is to train a
machine learning model that performs well on new, previously unseen inputs. The
ability to perform well on previously unobserved inputs is called generalisation.

At the one extreme it may be desirable to choose a model with a large number of
parameters and train it so it fits very closely to the training data. However, the more
parameters, the more likely the model is to fit to spurious noise in the time series
signal and hence cannot be extrapolated very well to new data. This is often called
overfitting the model to the data. In this case, small changes in the input to the model
will produce large errors and hence the model is said to have high variance. A high
variance model does not generalise well to new data. In contrast a model with very
few parameters will miss some of the core features of the time series and underfit
the data. It means that on average the errors will be quite large and the model is said
to have high bias.

The bias and variance can be expressed in more precise mathematical terms.
Consider a model which relates the true relationship between a dependent value L
(e.g. Load), and an independent variable Z (say temperature), via a function f

L̂ = f (Z) + ε, (8.1)

with noise ε (with assumed zero mean). The aim is to develop a model f̂ (Z ,β) that
estimates the true function f (Z), by learning the parameters β over some training
data of observed values. Now suppose this estimate is produced by minimising the
mean squared error, a common error measure for time series forecasts (see Chap.7),

MSE( f (Z), f̂ (Z ,β)) = E[( f (Z) − f̂ (Z ,β))2]. (8.2)
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It turns out that this can be broken down as follows

E[( f (Z) − f̂ (Z ,β))2)] = (E[ f̂ (Z ,β)] − f (Z))2 + E[( f̂ (Z ,β) − E[ f̂ (Z ,β)])2] + σ2,
(8.3)

where σ2 is the variance of ε. The first term is the square of the bias (E[ f̂ (Z ,β)] −
f (Z))2 and describes the difference between the model output and the output from
the true function. The bias term will be large if the model is too simple to capture the
pattern in the data. The second term E[( f̂ (Z ,β) − E[ f̂ (Z ,β)])2] is the variance,
and describe the dispersion of the model outputs around the mean. In practical terms
this measures how spread out the errors are around the mean. Finally there is the
irreducible error defined by σ2. This is the error that can never be reduced which
limits howmuch theMSE can be reduced. The key to producing consistently accurate
forecasts is to get low bias and low variance, i.e. a model which captures the main
features in the data but also generalises well to new data.

As an example consider a simple model y = x3 − 15x2 + 66x − 60 + ε, with
irreducible errors, ε, which is chosen to be Gaussian with mean zero and variance
σ2 = 20. This function takes as input x , and gives the observed outputs, y. Points are
generated from the true model x3 − 15x2 + 66x − 60 to give pairs of input-outputs
(xk, yk) for k = 1, . . . , 50. To replicate a real system, random error samples from
the Gaussian distribution, εk , are added to each true dependent variable, yk , to give
observed points ŷk = yk + εk , for k = 1, . . . , 50.Hence the true outputs are unknown
to the modeller who only sees the inputs with the noisy outputs, i.e. (xk, ŷk). This
means it will be impossible to create a perfect match between any model and the
original observations.

Now consider fitting polynomials of different orders to these noisy points. The
first model is a simple linear one of the form, a1x + a0, this is an underparameterised
model and is expected to have high bias but low variance. The second model is a
cubic polynomial of the form a3x3 + a2x2 + a1x + a0, and should be a good balance
betweenmatching the general shape of the datawithout overfitting the noise. Thefinal
model is a polynomial of the order 20, i.e. of the form a20x20 + a19x19 + · · · a2x2 +
a1x + a0 which would be expected to overfit to the data and thus have high variance.
In each case the coefficients (The a′

i s) are trained to find the best fit to the points for
that model (how to train the fit will be covered in Sect. 8.2).

The results are shown in Fig. 8.1 for the three different models. As expected the
best fitting model is the cubic model which is very close to the original curve and the
noisy observations (red circles). The highly parameterised polynomial of degree 20
clearly overfits to the noise and will not generalise (i.e. will not estimate the correct
output) very well to new inputs, it has high variance. In contrast the linear polynomial
on the left does not fit the data very well but gets the general level. It has high bias
and clearly underfits the data.

There are several strategies for avoiding over- or under-fitting the data. Sev-
eral techniques will be introduced in this chapter, including cross-validation in
the following section, regularisation methods (Sect. 8.2.4) and information criterion
(Sect. 8.2.2).
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Fig. 8.1 Example of bias-variance trade-off by fitting different polynomials (thick black curve) to
the observations (red circles). The true polynomial which generated the data is also shown as a thin
black line. The left hand plot shows the fitting using a polynomial of degree 1, the middle plot using
a polynomial model of degree 3 and the right plot using a polynomial of degree 20. Full details are
in the main text

8.1.3 Cross-Validation Methods

In order to understand how a forecast model will perform in practice the available
training datamust be split into appropriate components. Time series data, the focus of
this book, adds an extra potential restriction due to the chronological order of the data.
This section will discuss some of the motivations and principles of cross-validation.

Forecast models must be tested on unseen data to ensure that the forecaster is not
unrealistically tailoring (subconsciously or otherwise) the model to score higher than
would be possible in practice. In real applications the future data is not available and
forecasters would not have the advantages of knowing the actual values in advance.
Hence designing a forecasting trial is very much like designing a blind experiment in
medicine in order to test a particular hypothesis for whether a treatment is effective
or not.

Another, related, reason for splitting the data is to choose a model with a good
bias-variance trade-off (see Sect. 8.1.2). Cross-validation, the topic of this section,
is one way to select a model so that it is not over- or under-fitted to the data, i.e. that
it generalises well to unseen data.

For these reasons the data in machine learning trials is split into a unseen part,
called the test set, or hold-out set, and a part for training the parameters and hyper-
parameters of your model, often called the training set. For time series, the ordering
of the data is often relevant and hence the test set typically follows chronologi-
cally from the training set. We will call this a time-series split (other approaches
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will be discussed shortly). For example, consider a time series L1, L2, . . . LN+k , for
N , k > 1 and suppose the aim is to produce 1-step ahead forecasts for the test set
consisting of data at the time steps N + 1, N + 2, . . . , N + k. Any data (including
any other explanatory variables, see Sect. 5.2) prior to the start of the test set is part
of the training data. The following steps are then implemented:

1. The first forecast value L̂ N+1 is produced by training a model (see Eq. (5.27)) on
the current training data L1, L2, . . . LN (as well as any other explanatory data).

2. The next step ahead forecast L̂ N+2 is then produced by retraining1 the data on
L1, L2, . . . LN+1 (i.e. the last observation at N + 1 is now included in the new
training data).

3. This continues until the kth time step of the test period has been reached.

Note if a multistep ahead point forecast is being produced from a one-step ahead
forecast then instead forecasts from the previous time steps are used as inputs to the
model rather than the actual observations, e.g. for the mth step ahead the forecast
would use as inputs L1, L2, . . . , LN , L̂ N+1, . . . , L̂ N+m−1.

Tofind themost accurate forecast, a large number ofmodels could be trained on the
training set and the the errors on their predictions could be compared. However, this
is often computationally infeasible. Further, the trialing of a large number of models
increases the possibility that one particular forecast will have high performance
by chance alone rather than due to its particular suitability for predicting the data
behaviour. Hence, it is more practical and reliable to test a relatively small number of
models. Recall in Sect. 8.1.2, that a core goal when creating a forecast is to balance
the bias and variance, and find a model which accurately generalises to new data.
This means not overfitting to the training data set by using a very complicated model,
but also not using a very simple model which under-fits the data.

One of the most common ways to do this is to split another set, called the vali-
dation set off the end of the training set, and use this to help select a well-trained
model and to select appropriatehyperparameters (Sect. 8.2.3).Hyperparameters are
parameters of the algorithm which have to be chosen before the remaining parame-
ters such as weights are determined in training and influence the training. Examples
are the regularisation parameter used in regularisation methods in Sect. 8.2.4, and the
number of layers and nodes in artificial neural networks (Sect. 10.4). The original
shortened data set is now simply renamed the training data.

To use the validation data set for model selection, a family of models, are fit on the
training data with different hyperparameter values (for example for neural networks,
the number of nodes in each layer, number of layers, see Sect. 10.4) are used to
generate a forecast for the data in the validation dataset (i.e. in a similar way as
they are generated for a test set). The performance of the models are then compared,
e.g. using the error measures introduced in Chap. 7, and the best performing models
are selected to produce forecasts on the test set, often after being retrained on the
combined training and validation set. The additional testing of the models introduced

1 The model may not have to be retrained at every new time step, especially if it retains the same
accuracy and if it is too expensive to retrain.
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Fig. 8.2 Example
illustrating a timeseries split
into Training, Validation and
Test set in a 3:1:1 ratio
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by using a validation set improves the bias-variance tradeoff by eliminating models
which over- or under-train. In addition, good performance on both the validation
and test set increases confidence with using these models. Further hyperparameter
selection methods are considered in Sect. 8.2.3.

A common split of the data is about 60%, 20%, 20% for the training, validation
and testing set respectively, although this can be adjusted depending on the problem.
As mentioned, more testing data increases the confidence in the performance of a
model but sufficient training data is required to improve the chances that the models
generalise as much as possible. An illustration of splitting the data into a training,
validation and testing set is shown in Fig. 8.2.2

Given the above split of the data the following is a typical procedure to generate
forecasts:

1. Given a family (or families) of forecast models, and suitable benchmarks
(Sect. 8.1.1), train the model parameters on the training data.

2. Produce a forecasts over the validation set and compare the models (using the
appropriate error measures as will be introduced in Chap. 7) within the same
family to select a set of optimal values for the hyperparameters.

3. On the selectedmodels (whichmay include one or two choices of hyperparameters
for each family of models), re-train the models on the combined training and
validation set.

4. Produce a forecast for the test set.

To illustrate the process consider a simple example. Take the model y = sin(x) +
0.2 sin(2x) + 0.4 sin(4x) which is used to generate values yk at xk = 0.2(k − 1) for
k = 1, 2, . . . , 100 to give 100 points (xk, yk). To make the data more realistic add
random samples from a Gaussian distribution with mean 0 and variance 0.4 to the y

2 Note there are ways to train models without using a validation set, for example, automatic model
selection using information criteria (see Sect. 8.2.2) and this can be preferable if the amount of data
available for training is quite low.
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Fig. 8.3 Illustration of
validation and testing for a
simple example as described
in the text. a Shows the
forecasts of model M1 and
M4 for the validation set
(shaded), b Shows the same
models for the test set.
c Summarises the RMSE
errors for the models MN for
N = 1, . . . , 10 (Eq.8.4) for
both the validation and the
test set
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values to produce the updated input-output pairs (xk, ŷk). Next, consider fitting a set
of models to the noisy observations, of the form

MN (x) =
N∑

n=1

an sin(nx), (8.4)

for N = 1, 2, . . . , 10 which for larger values includes more higher frequency terms
to the model. Note that N is a hyperparameter for this family of models. Let the first
60% of the points be the training set (defined at x = 0, 0.2, . . . , 11.8), the next 20%
as the validation set (x = 12, 12.2, . . . , 15.8) and the final 20% as the test set (points
x = 16, 16.2, . . . , 19.8). The models are trained for each N on the training data set.

Figure8.3a shows the models M1 and M4 trained on the training set including its
prediction on the validation set (shaded box). The noisy observations are shown as
red circles. It’s clear from this plot that the simplest model M1 captures the main
periodic behaviour butmisses the higher frequency oscillations. In contrast themodel
M4 (which matches the order of the true model) is much more accurate, as would
be expected. Similarly Fig. 8.3b shows the prediction on the test set for the same
models. This prediction has now been formed by training on the original training
data set together with the validation set.

The RMSE errors (Chap.7) for the ten models are shown in Fig. 8.3c for both the
validation and test set. The accuracy drops down for N = 4 for both validation and
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Fig. 8.4 Comparison of various cross-validation schemes. Figure from From Tutorial 1: Building
Load Forecasting with ML licensed under CC BY 4.0

test set. This is because the complexity of the models required a periodic term of at
least sin(4x). In addition, for these models the a1, a2, a4 coefficients have the largest
magnitude, as would be expected since they coincide with the terms in the actual
underlying model, y = sin(x) + 0.2 sin(2x) + 0.4 sin(4x). Notice that the errors on
the test set are smaller than on the validation set which could be because there is
more training data available to better refine the coefficients. Although all models
have been applied to the validation and test set, in practice only the best performing
models may be carried forward to forecast on the test set, especially if the models
are computationally expensive to train.

There is several other cross-validation methods which split the data in different
ways. These are illustrated in Fig. 8.4. In the middle is the Time-Series split as
illustrated in detail above but also shown are the blocked split (left) and shuffled
split (right). The blocked approach splits the data into test blocks (typically of the
same size) however, unlike the Time-Series split, this split uses data before and after
the test block to train the data. The shuffled split, uses random samples to generate
the test and training sets.

The blocked and shuffled splits have the advantage of utilising more data with
which to train the models but for time series problems this may be less realistic since
data is not typically available after the period of interest. Hence these approachesmay
be more appropriate when considering cross-sectional models or for a time-series
model when data availability is quite limited and it is difficult to properly train using
the time-series split.

Finally it is worth noting, that if there is insufficient data available, it may be that
no choice of splits will be appropriate to create an accurate forecast. For example
consider day or week ahead forecasts for hourly time series data which is known to
have annual seasonality (e.g. as is usually the case with electricity demand). If there
is only one year of data available it will be unlikely you could train a model which
will be able to accurately capture the annual seasonality. Even if there is two years of
data this could still be difficult since one of those years could have been a particularly
unusual year and may not be representative of a typical year which the forecaster
is trying to model (for example, consider the ‘Beast from the East’ an unusual cold
wave occurring in Great Britain in 2018). However, it obviously may not be known
ahead of time whether there is insufficient data for an accurate forecast and may only
become apparent as more testing is performed and more data becomes available.

https://creativecommons.org/licenses/by/4.0/
https://colab.research.google.com/drive/1ZWpJY03xLIsUrlOzgTNHemKyLatMgKrp?usp=sharing
https://colab.research.google.com/drive/1ZWpJY03xLIsUrlOzgTNHemKyLatMgKrp?usp=sharing
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8.2 Training and Selecting Models

Once the data has been pre-processed (Sect. 6.1), features to include have been
decided (Sect. 6.2.2) and the initial forecast model(s) are chosen (See Chap. 9), the
parameters/coefficients of the models must be trained and the final models selected.
This is often done via cross-validation (see Sect. 8.1.3). This section dives deeper
into how to train a forecast model as well as further techniques for selecting accurate
models.

The performance of the predictions on the instances in the training set are called the
training error. Reducing this training error is typically one part of the optimisation
task usually solved by gradient descent-type methods (Sect. 4.3). However, what
separates machine learning from simple optimisation is that a generalisation error
should be minimised as well. The generalisation error is defined as the expected
value of the error on new input, ideally from the distribution of inputs we expect the
algorithm to encounter in practice. To simulate this, in the process of training amodel
and tuning its hyperparameters, the generalisation error is estimated by assessing its
performance on a test set of examples that were collected separately from the training
set. When creating a test set (or several test sets as in cross validation as discussed
in more detail in Sect. 8.1.3) the following so called i.i.d. assumptions are made:

• the examples in each dataset are independent from each other,
• the training set and test set are identically distributed.

Under these assumptions one can expect, that the expected training error is equal to
the expected test error for a randommodel. However, in practice since the parameters
of amodel are chosen tominimise the training set error, the expected test error is larger
than (or equal to) the expected value of the training error. Thus in order to achieve an
accurate model that generalises well, a model should minimise the training error, but
at the same time minimise the gap between the training and test set error. Figure8.5
illustrates the typical relationship between training and generalisation error against
model capacities (i.e. model complexity).

This suggests another way to understand the bias-variance trade-off alluded to
in Sect. 8.1.2. If a model is not able to sufficiently minimise the training error then
this corresponds to a model which underfits the data/observations. Alternatively, if
the gap between test and training error is too large, it is overfitting the data. These
situations are illustrated in Fig. 8.5. Generally, one can control over- and underfitting
by trading off variance and bias and this can be determined using cross-validation
methods as described in Sect. 8.1.3 but also regularisation methods as described in
Sect. 8.2.4.

There are severalways a particularmodel can be trained but somemodels typically
use specific approaches. For example, linear regression models (Sect. 9.3) will often
use least-squares estimation, whereas artificial neural networks (Sect. 10.4)will often
be solved via back-propagation techniques. When implementing a particular fore-
cast model in a standard programming package they will be trained based on those
techniques which have been shown to be most suitable or typical for that method. To
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Fig. 8.5 Typical relationship between model capacity (e.g. complexity, or number of parameters)
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illustrate some of the principles of training a forecast model the following sections
consider some common techniques such as least-squares estimation and, maximum
likelihood estimation, but also describes some more principles and strategies to con-
trol the generalisation error of machine learning models, in particular regularisation
techniques. Regularisation refers to strategies and model modifications that intend
to reduce the generalisation error (but not the training error). In practice multiple
strategies are combined.

8.2.1 Least-Squares and Maximum Likelihood Model Fitting

The general aim of training will be to find a good fit between the model and the
observations. However, as noted in the previous sections if too many parameters are
chosen then the model may overfit on the training set and not generalise very well to
the test set (or any other unseen data). A model with features that have been selected
appropriatelywill have a good trade-off between bias and variance and performbetter
on the test set (see Sect. 8.1.2).

What is a deemed a ‘good’ fit is relatively subjective but requires a consistent
measure of the difference between the observation and models. The best choice is
often a balance between practical considerations and what is most appropriate for
the application being considered (for example the control of storage devices, as in
Sect. 15.1), and therefore models should be evaluated and tested accordingly. Good
candidates for such measures are the p-norms introduced in Chap.7.

As discussed in the corresponding evaluation section (Chap. 7), the choice of p
can change the focus of the errors, with larger p values meaning the final error score
is more representative of the larger errors compared to p-norms with smaller p.
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Further, some norms, such as the 1-norm are not differentiable, which make it more
difficult to train the optimal parameters compared to differentiable functions which
can be optimised by gradient methods (see Sect. 4.3). The 2-norm is differentiable
and is therefore often used as the basis of parameter estimation, in particular it is the
core measure used in so-called least-squares estimation.

Least-squares estimation (LSE) is one of the most common methods for training
parameters, especially for linear regressionmodels. The aim is tominimise the square
of the residuals. Recall the residuals are the difference between the real observation,
say Yk , and the model estimate, say Ŷk = fk(Z ,β) where Z represents the input
variables and β are the set of parameters for the model being estimated. The least
squares problem can be written

β̂ = argminβ∈B
N∑

k=1

(Yk − fk(Z ,β))
2, (8.5)

where rk = Yk − fk(Z ,β) are the residuals. The term argmin simply means finding
the arguments (parameters) over some feasible set of values (in this case represented
by B and defines the space of reasonable values that β could take) which minimises
the equation

∑N
k=1(Yn+k − fn+k(Z ,β))2. The process is illustrated in Fig. 8.6 which

shows the best fitting line to a set of observations. The vertical distance between
the observations and the line shown on the plot are the residuals for the model
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Fig. 8.6 Illustration of least squares estimation for fitting a one variable linear model (dotted red
line) to four data points (blue dots). The least squares fit minimises the sum of the squares of the
vertical residuals
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and the aim in least squares estimation is to minimise the sum of the square of
these residuals. An advantage of the least squares method is that it is relatively easy
to solve, especially for linear models (i.e. those which are linear combinations of
parameters—

∑N
k=1 αkφk(x) where the αk’s are constant coefficients/parameters to

be found), this is because the least squares problem in Eq. (8.5) is differentiable and
hence can be solved by differentiating with respect to each element in the set of
parameters β and setting to zero.

One of the most important statistical methods for training model parameters is
by maximum likelihood estimation (MLE). This involves setting the model errors
within a probabilistic frameworkwhich allows further statistical analysis and applica-
tion of further methods (for example, in Sect. 8.2.2 it will be shown how this enables
a method for model selection). The aim of MLE is to create a likelihood function,
based on a density function describing the distribution of errors of the model fit.
Hence maximising this function finds the most likely parameters which minimises
the error given the assumed distribution of values. The resultant parameters are called
maximum likelihood estimates.

The following discussion will require some basics on univariate probability dis-
tributions. To illustrate MLE consider a basic case where the errors follow a nor-
mal distribution (See Sect. 3.1), with mean zero and fixed standard deviation σ.
Assume finite observation data given by Y1, . . . ,YN and a model fk(Z ,β) which
aims to approximate these observations. The errors are given by the residuals
rk = Yk − fk(Z ,β) as before and the probability model can be written as

P(rk,β) = 1√
2πσ

exp

(−(rk − 0)2

σ2

)
, (8.6)

where the zero is written explicitly to illustrate the standard Gaussian distribution
format. The β (which in this case simply is the standard deviation σ) is also included
to show the dependence of the value on the parameters in the model. The likelihood
function is in fact the probability of the model with all observations, in other words

L(β; Y1, . . . ,YN ) =
N∏

k=1

P(rk,β) = 1

(
√
2πσ)N

N∏

k=1

exp

(−(rk)2

σ2

)
. (8.7)

Often it is difficult to solve the likelihood directly, so instead the loglikelihood is
solved, which is just the log of the likelihood

log(L(β; Y1, . . . ,YN )) = −N

2
log(2πσ2) − 1

2σ2

N∑

k=1

r2k . (8.8)

Since the log function is a strictly increasing function, maximising the likelihood is
equivalent to maximising the loglikelihood. Further since in this case the first term
N
2 log(2πσ2) is constant then this is equivalent to minimising the term

∑N
k=1 r

2
k , in
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other words, solving the least squares problem in Eq. (8.5). Of course this is just for
a very specific situation where the distribution is assumed to be Gaussian but more
complicated distributions can also be considered but they are more difficult to solve
analytically.

Both the least squares and maximum likelihood function are examples of cost
functions which provides a cost between the observed data Yk and the model esti-
mates fk(Z ,β). Standard p-norms type errors such as RMSE and MAPE (See
Chap.7) can also be used to define basic cost functions. The cost functions can be
very general with different weightings and/or structures which can force themodel to
fit to different features of the data. For example, as shown in Chap.7 the pinball loss
score can be used as a cost function to produce a quantile estimate whereas using the
least squares can produce an estimate of the expected value. The aim, as with the least
squares andMLE is to optimise the parametersβ of the model to achieve the optimal
value of the cost function. A common way to find the optimal fit is through gradient
methods which were introduced in Sect. 4.3 and these are commonly deployed when
fitting machine learning models.

As discussed in Sect. 8.1.2, overfitting the model to the data will produce large
generalisation errors. One way to avoid this is to use cross-validation and use a
validation set to choose models which don’t overfit (Sect. 8.1.3). However, in some
cases alternative techniques are often employed to reduce the effect of overfitting a
forecast model. These are explored in the following sections.

8.2.2 Information Criterion

The likelihood framework introduced above facilitates the use of information cri-
terion for model selection and is particularly useful for selecting the model orders
for ARIMA methods (Sect. 9.4) and for selecting amongst linear regression models.
Consider the likelihood function, L , e.g. such as that as in Eq. (8.7) when the resid-
uals are assumed to be Gaussian distributed, evaluated at the maximum likelihood
estimated parameters β̂ which in turn provides the maximum likelihood value L̂ . In
this case the best fit can be framed in terms of the information they provide through
the so-called Information Criterion, the most famous examples are the Bayesian
Information Criterion (BIC) defined as

BIC = M. ln(N ) − 2 ln(L̂) (8.9)

and the Akaike Information Criterion (AIC) defined as

AIC = 2M − 2 ln(L̂), (8.10)

where M is the number of parameters in the model, and N is the number of obser-
vations. Both of these create a cost function which is a mix of the loglikelihood (a
measure of the fit between the data and themodel) and a penalty termwhich penalises
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the number of parameters in the model. Hence by optimising the information crite-
rion a balance is made between a good fit and the number of inputs in the model,
and reduces the chance of overfitting the model to the data. Such a model is called
parsimonious. As can be seen from the equations the AIC penalises the likelihood
more than the BIC and therefore typically optimises models with lower number of
parameters. For predictive modelling the AIC has been suggested to be more appro-
priate than the BIC [1]. Note there are several other information criterions but the
BIC and AIC are the most common.

For models which can be set within a likelihood framework, information criterion
methods are often used instead of a validation set (Sect. 8.1.3), especially where there
is insufficient training data available. However, if there is sufficient amount of data,
and a test can be created which sufficiently represents a reasonable sample of real
observations, then cross-validation may be preferable.

8.2.3 Hyper-Parameter Tuning

The main objective of optimising a machine learning model is to find an optimal
set of parameters, like the weights of a neural network, or the coefficients in a
linear regression. However, some parameters have to be chosen that influence the
optimisation itself, like the different parameters that have been introduced in other
sections like step size, batch size, activations functions and regularisation parameters
(Sects. 8.2.4 and 8.2.5). Additionally, models may introduce even more parameters
like the architecture of a neural network (number of layers and number of neurons per
layer), or the order of the polynomials in a polynomial regression. Such parameters
are called hyperparameters.

In Sect. 8.2.2 information criterion was shown to be a way to select the optimal
order for linear models. For example, by selecting the model with the minimum AIC
(or BIC) a more parsimonious model can be chosen which does not sacrifice the
model fit. However, information criteria models are not applicable to other types of
models such as neural networks or tree-based models.

For simpler models with few hyperparameters, a common approach is to exhaus-
tively search the best configuration among a grid of sensible parameters within each
dimension. Real-valued parameters are typically sampled linearly or logarithmically
across the feasible values. However, parameters can also be categorical or binary.
This approach is referred to as grid search. However, this approach is impractical
when tuningmany hyperparameters of a large neural network, where it may take sev-
eral hours or even days and weeks to train. Here, one can randomly sample from each
dimension of the hyperparameters. This approach is called random search, which
has been shown to be superior to grid search, especially when only a small number
of hyperparameters affect the model performance, i.e., the optimisation problem has
a low intrinsic dimensionality. Random search has a further advantage that it is an
any-time algorithm, as one can stop the algorithm after a specific calculation budget
(i.e., a specific number of draws or computation time) is reached. The best solution
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(a) Grid Search (b) Random Search (c) Bayesian optimisation

Fig. 8.7 The exemplary performance of a model based on two hyperparameters. For each hyper-
parameter, ten different values are evaluated and compared. Blue contours indicate regions with
strong results, whereas red ones show poor results. Source Alexander Elvers, CC BY-SA 4.0

found during the search is then selected. It is also straightforward to parallelise. By
choosing a specific distribution, one can also include prior knowledge to help focus
the search.

Since hyperparameter selection is an optimisation problem, different general
optimisation methods, including meta-heuristic methods, such as evolutionary algo-
rithms and other population-based algorithms, can be used. A popular and successful
class of such algorithms are Bayesian optimisation approaches. Bayesian optimi-
sation builds a probabilistic model of how hyperparameter values map to model
performance determined over a validation set. The probabilistic assumptions are
iteratively updated to include more and more information about the search space
as it becomes available. Algorithms differ in how they balance the exploration of
hyperparameters for which the outcome is uncertain and exploitation is increased by
sampling hyperparameters that are expected to be close to the optimum. Figure8.7
shows examples of how grid search, random search and Bayesian optimisation sam-
ple the search space. Here one can see that Bayesian optimisation does explore the
search space more effectively. There is a denser cluster of observations close to the
true optimum, while fewer points are sampled in regions that perform poorly. This
can generally lead to better or similar results than grid and random search but in
quicker time.

8.2.4 Weight Regularisation

Much like the information criterion presented in Sect. 8.2.2, regularisation also uses
a penalty based on the number of parameters to try and reduce overfitting and, as
will be seen with LASSO, can also be used for feature selection. The regularisation
methods presented here are typically applied to linear regression and artificial neural
networks (Sect. 10.4) models, although the principles can be generalised to any cost
function.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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The principle is best demonstrated with an example. Consider a linear model
for n ≥ 1 input/dependent variables X1,t , X2,t , . . . , Xn,t which are assumed to be
linearly related to the load Lt at time t . This can be written

LN+1 =
n∑

k=1

βk Xk,N+1. (8.11)

For compactness, the linear model
∑n

k=1 βk Xk,N+1 can be written as the matrix-
vector multiplication Xβ where X ∈ R

N×n is the matrix where the i th row and j th
column corresponds to the i th time step for the j th variable, i.e. X j,i . Finally, β =
(β1, . . . ,βn)

T ∈ R
n is the vector of parameters.Given a vector of dependent variables

L = (L1, L2, . . . , Ln)
T , a regularised least squares regression can be written as

min
β

(||L − Xβ||2 + λ||β||p) (8.12)

for some hyperparameter λ ≥ 0 (also known as a Lagrangian). Recall from Sect. 7.1
that ||.||p represents the p-norm. This hyperparameter must be found via the valida-
tion set as defined in Sect. 8.1.3 and controls the size of the penalty on the coefficients.
If λ = 0 then the problem reduces to the standard least-squares estimation, Eq. (8.5).
For large values of λ the parameters become small. Themost common forms used are
either p = 1, 2 the so-called LASSO (least absolute shrinkage and selection opera-
tor) or ridge regression respectively. LASSO is particularly popular at it can reduce
the number of inputs as it will often set many of the coefficients in a linear regression
to zero due to the 1-norm penalty. In this case a large number of unimportant inputs
can be eliminated. Hence LASSO can be used for both training a model and feature
selection.

To understand why LASSO can be used for feature selection consider the illus-
tration in Fig. 8.8. The figure compares the ridge regression with the LASSO regres-
sion. Both plots show the contours (lines of the same value) of the least squares cost
function within the parameter space β = (β1,β2)

T (assuming only 2 dimensional
problem). In the centre of these contours is the least squares estimate β̂, i.e. the
parameter values which gives the smallest values of the least squares cost function.

In LASSO or ridge regression, there is effectively a penalty on the size of the
parameters and this penalty changes based on the size of the λ hyperparameter.
The larger the λ the smaller the values of the parameters. Thus the parameters are
constrained within a bounded area of size 0 < C ∈ R given

||β||p = (|β1|p + |β1|p)1/p ≤ C, (8.13)

where p = 1 or 2 depending on whether LASSO or Ridge regression is being con-
sidered. These constrained regions are shown as the shaded areas in Fig. 8.8. Notice
that due to the different norm values used the shapes are very different. The con-
strained region in the 2-norm (Ridge regression) is a spherical ball, but with the
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Fig. 8.8 Demonstration of how LASSO regularisation (right) can be used to select features. This is
compared to ridge regression (left). The chosen parameters are represented by the red dot showing
the smallest value of the least-squares cost function with respect to the feasible parameters (the
shaded shape). The figure is explained in the main text

1-norm (LASSO) is a square. The minimum value for the regularised cost function
is therefore given by the β within the shaded feasible region closest to the optimal
least squares estimate β̂, shown as the red dot in the figure.

Due to the shape of the constrained region for LASSO regression this will often
lie on the ‘corners’ of this region, which means that often many of the parameters
will be equal to zero, effectively selecting the parameters in the process.

8.2.5 Other Regularisation Methods

Reducing Model Capacity For many algorithms one can control with hyperparam-
eters whether a model is more likely to over- or underfit by altering its capacity, i.e.,
its complexity or more generally its available degrees of freedom. By choosing cer-
tain hyperparameters (see Sect. 8.2.3) the hypothesis space, i.e., the set of functions
that the algorithm is capable of selecting as a solution, is affected. For instance, for
neural network models, the number of trainable parameters determines the ability
to fit a wide variety of functions. Similarly, in random forests, the number of trees
determines its complexity. Models with low capacity may not be able to properly fit
the training set (they have high bias). Models with high capacity will overtrain on
the training data set and don’t generalise to the actual underlying process (hence are
not represented in the test set).

Data Augmentation Overfitting can generally be avoided by training a model on
more data. In practice the amount of data may be small or data collection can be
expensive. Instead, one way to improve model performance is to create synthetic
data samples in the training set. For image data this can often easily be achieved
by adding transformations to images like mirroring, rotating, shifting, as problems
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Fig. 8.9 Exemplary learning curve to show relationship of training and evaluation loss over time
in training process for a model with high capacity

such as object detection are expected to be invariant to such operations. This is not
trivial for many machine learning tasks, in particular time series forecast where the
real patterns and interdependencies in the data need to be preserved. However, where
possible, data augmenting strategies should be explored.

Early Stopping Training neural network models with large capacity on tasks which
are too simple can lead to overfitting. One popular diagnostic tool to prevent this are
learning curves, i.e., the calculation of the error on the training set at regular intervals
in the training process (e.g., after each training epoch). If the hyperparameters are
chosen reasonably well the training error should decrease. To monitor generalisation
in the training process, one can create a validation dataset and calculate the errors. If
the validation error increases, while the training error decreases this is an indication
of the model starting to overfit. Figure8.9 gives an exemplary learning curve of a
model with high capacity. Thus one popular regularisation strategy is to stop training
if the validation error does not improve beyond a specific number of iterations. At the
end of the process, the model that has the smallest validation error is returned rather
than the finalmodel configuration. This requires the algorithm to store checkpoints of
the model configurations during the training process (e.g., the values of the weights
in a neural networks).

Batch NormalisationAnother popular improvement to the training process of neural
networks is batch normalisation, or batch norm. It was introduced as a method to
speed up the training of neural networks andmake it more stable by normalising each
of the layers’ inputs by re-centering and re-scaling (standardising). However, besides
providing faster and more stable training, batch normalisation also has a regularising
effect. Further, the training becomes more robust to different initialisation schemes
and the choice of the learning rates (i.e., a larger learning rate can be chosen).

Dropout In dropout a certain share of artificial neurons and its weights are ran-
domly omitted during the training process of a neural network (Sect. 10.4). This
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process effectively creates an ensemble of simpler neural network architectures.
This is related to ensemble methods such as random forests that combine the predic-
tions of simple decision trees (see Sect. 10.3.2 on random forests). Dropout has the
effect of adding noise to the training process. It has been shown that a reasonable
default for a wide range of tasks is to use a dropout of 0.5 for each layer. Dropout
can be used and configured for each layer of the neural network, and works with
different kinds of layers such as dense fully connected layers, but also convolutional
and recurrent layers (see Sects. 10.5 and 10.4). However, it should not be used in the
output layer. When adding dropout only to the input layer, this is related to the idea
of adding noise as it has been used in denoising autoencoders. It is computationally
cheap and an effective regularisation method to reduce overfitting and improve the
generalisation error in many kinds of deep neural networks.

8.3 Questions

1. Create your own bias variance experiment. You could repeat the polynomial fit in
Fig. 8.1. Alternatively choose another polynomial of a different degree. Generate
100 samples from the polynomial and add noise (saywith aGaussian distribution).
Nowfit polynomials of a variety of degrees, say from1 to 20.Calculate the training
errors. Plot the training errors for each polynomial as a function of degree. How
does the error change? Is the smallest error at the correct polynomial degree? For
higher degrees does the error increase? Now resample the polynomial (and add
noise with the same distribution as before). Measure the error between the fitted
polynomials and this new data? This is the generalisation error. Plot the errors
against degree again. What is the optimal degree? Compare this plot with the
original one with the training errors. What is the difference between them?

2. Repeat the above experiment but sample just 15 points this time. How do the
training and generalisation errors change? What about reducing the number of
sampled points to 5?

3. Performyour owngrid search.Generate points froma simplemodel, say a line y =
ax + b, with known coefficients a, b. Add a small amount of noise to the points.
Select a rectangle around the coefficients, i.e. (a, b) ∈ [A1, A2] × [B1, B2]. Gen-
erate a grid of N1 × N2 points (say N1 = N2 = 10) within this rectangle by sim-
ply choosing uniformly spaced values on each side of the rectangle, i.e. the
kth a value ak = A1 + (k − 1) (A2−A1)

N1−1 , similarly bl = A2 + (l − 1) (A2−B2)

N2−1 for
k = 1, . . . , N1, and l = 1, . . . , N2. For each pair of coefficients in the rectan-
gle calculate the errors between the sampled data and the associated line. Which
pair of coefficients give the lowest errors? How close are they to the true values?
In addition, sample random pairs from within the rectangle. How many samples
did you need to produce smaller errors than the grid search.

4. Show that themean squared error for amodel can be broken down in bias, variance
and irreducible error as in Eq.8.3.
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