
Chapter 7
Verification and Evaluation of Load
Forecast Models

Whatmakes a good forecast?This section aims to introduce someof themain tools for
evaluating the quality of time series forecasts. It is worth noting that this is still a very
active research area, especially in the developing area of probabilistic load forecasts.
Obviously error measures can only be calculated after the actual observations have
become available, although in practice forecasts are evaluated on the historical data
by splitting it into training and testing periods (see Sect. 8.1.3).

Of course, when a forecast is required for a particular application why is it not
more appropriate to simply evaluate the forecast based on its performance for that
application? One of the reason’s is that the performance of an application (See exam-
ples of applications in Chap. 15) is not usually defined in a simple way and may be
computationally infeasible, especially if multiple evaluations are required. Instead
simpler, easier to calculate measures, such as those introduced in this chapter are
used. However, it still does not mean that any measure can be used and it is always
preferable that one is chosen which aligns to the application as closely as possible.

This section will begin by introducing error measures which are used for both
evaluating the accuracy of the forecasts but are also to compare and select between
various models (Sect. 8.2). Before looking at specific error metrics and measures
it is worth noting that the measures have to be different depending on whether we
are considering point, or probabilistic forecasts (Sect. 5.2) with the latter having
several different forms which may require different measures. The next section con-
siders point forecast measures, and then probabilistic error measures are discussed in
Sect. 7.2. These measures can be used to define skill scores, an important evaluation
method for forecast skill, and are considered in Sect. 7.4. The chapter then finishes
by illustrating ways to improve a forecast based on residual checks and other forecast
correction methods.
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7.1 Point Forecast Error Measures

To define the error measures, consider two h-step-ahead point forecasts

L̂(1) = (L̂(1)
n+1, L̂

(1)
n+2, . . . , L̂

(1)
n+h)

and
L̂(2) = (L̂(2)

n+1, L̂
(2)
n+2, . . . , L̂

(2)
n+h)

for a time series with actual values given byL = (Ln+1, Ln+2, . . . , Ln+h). The errors
between the forecasts are defined by

e(k) = L − L̂(k) = (Ln+1 − L̂(k)
n+1, Ln+2 − L̂(k)

n+2, . . . , Ln+h − L̂(k)
n+h) = (e(k)1 , e(k)2 , . . . , e(k)h ),

(7.42)
where k is 1 or 2. How can these forecasts be scored and these errors summarised
in order to compare which one is ‘closer’ to the actual values and hence which is
more accurate? The answer is not obvious as there are several ways to choose how
to measure this (unless e(k) = 0 of course, in which case you’ve achieved a perfect
forecast!).

As an initial choice, consider norm functions, a common way of measuring the
distance between vectors. Given any real-valued vector x = (x1, x2, . . . , xN ), the
p-norm of x is defined to be

||x||p =
(

N∑
k=1

x p
k

)1/p

= (x p
1 + x p

2 + · · · + x p
N )

1/p, (7.43)

where p ≥ 1. The most common norms are the 1-norm (i.e. the absolute sum),

||x||1 = |x |1 + |x |2 + · · · + |x |N , (7.44)

the 2-norm (known as the standard Euclidean norm),

||x||2 =
√
x21 + x22 + · · · + x2N , (7.45)

and also the ∞-norm which is defined as ||x||∞ = maxk∈{1,...,N } |xk |. The p-norms
are metric functions which have the following useful properties which make them
well-defined and intuitive for measuring the difference between two vectors:

1. Positive Definite: ||x||p ≥ 0 and ||x||p = 0 if and only if x = 0 = (0, 0, . . . , 0).
In other words the sizes are always positive and only zero if all the elements of
the vector have no size.

2. Triangle Inequality: For two vectors x, y ∈ R
N then ||x + y||p ≤ ||x||p + ||y||p.

This has the intuitive interpretation that the distance from A to B and then B to
C will always be longer than the distance directly from A to C .
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Table 7.1 A comparison of different p-norm values applied to two vectors as described in the main
text (values to the nearest 2 decimal places)

p-norm e(1) e(2)

1 1.2 1.2

2 1.01 0.69

∞ 1 0.4

The choice of p determines the emphasis of the p-norm on different compo-
nents of the error, with larger p values meaning that the norm more strongly rep-
resents the larger error components. To illustrate this consider two error vectors
e(1) = (1, 0.1, 0.1) and e(2) = (0.4, 0.4, 0.4), produced by two different 3-step ahead
forecast models. The first model has a relatively large peak error whilst the second
has no such large errors and has constant errors at each time step. The errors scores
for each forecast for three p-norms with different values of p are shown in Table7.1.
First, notice that the sum of the absolute errors are equal for both forecasts and hence
||e(k)||1 = 1.2 for k = 1, 2. Thus the 1-norm evaluates both forecasts as having the
same errors. In contrast the ∞-norm only focuses on the largest value and hence
gives values of 1 and 0.4 for forecast model 1 and 2 respectively, but doesn’t take
into account any information about the other errors. Choosing a value of p between
these extremeswill produce an error valuewhich includes contributions from all error
values but with stronger influences from the larger values the larger the p value. In
this example it can be seen that the 2-norm produces a similar value for e(1) as the
∞-norm but has a value for e(2) which is between both the 1-norm and ∞-norm.
Hence the 2-norm includes a contribution from all components of the error but the
larger errors contribute slightly more than the 1-norm. The point of this example
is that the choice of error measure is an important aspect of the application being
considered.

Despite the potential subjectivity in the choice of error measure there are some
commonmethods which are applied in time series, and in particular load forecasting.
On their own norms are not usually appropriate as error measures as they don’t scale
with the problem. The size of the errors will grow with the length of the series which
inhibits the comparison of different forecast horizons. For this reason they are often
combined with normalisations. One of the most common error measures is the mean
absolute error (MAE), defined using the 1-norm as

MAE(L, L̂) = 1

h
||L − L̂||1 = 1

h

h∑
k=1

|Ln+k − L̂n+k |. (7.46)

The MAE gives an average absolute error for all time points in the forecast horizon,
n + 1, . . . , n + h. A useful property of absolute error measures is that the units of the
error are often the same as the data being considered which simplifies interpretations.
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Since in much of the examples considered in this section the data will be in energy
units (e.g. kWh), the errors will be in the same units as well.

Another common error measure, which also preserves the units, is the root-mean-
square error (RMSE) which is defined in terms of the 2-norm as

RMSE(L, L̂) = 1√
h

||L − L̂||2 =
√∑h

k=1(Ln+k − L̂n+k)2

h
. (7.47)

As seen earlier in this section, the power on the error measure can play an important
role in what type of errors the measure focuses on. The higher the power the more
focus the measure has on larger errors. Hence for RMSE, the larger errors will
contribute relatively more to the overall score than with the MAE. This can be
important if you are interested in assessing which forecast may be more suitable in
accurately estimating extreme values, such as peaks in demand.

A drawback of absolute-type error measures such as MAE and RMSE is the
difficulty in making comparisons of accuracy when time series have different mag-
nitudes. For example, an error of 1kWh in a day ahead forecast is quite significant
when the daily demand is only 2kWh but negligible for substation feeders which
regularly have daily demands of 100kWh or more. A more accurate comparison of
these errors may be to present the percentage errors relative to the size of values
in the time series. In this case the 1kWh error is 50% of the overall demand for
the substation with 2kWh daily demand but only 1% for the substation feeder with
100kWh daily demand.

One of the most commonly used scores for evaluating the relative accuracy of a
point forecasts is the mean absolute percentage error (MAPE) defined by

MAPE(L, L̂) = 100

h

h∑
k=1

|Ln+k − L̂n+k |
|Ln+k | . (7.48)

The individual error at each time step, |Ln+k − L̂n+k |, is divided by the absolute
demand |Ln+k | and averaged to give a relative score. The score is often multipled
by 100 in order to provide a percentage score. The MAPE is not appropriate for
series which have zero or very small values, for example, household level electricity
demand, or on a feeder with a lot of localised generation. Small Lk values will inflate
the size of the errors at time tk , masking the true accuracy of the forecast. TheMAPE
is not even defined when the true value is zero, Lk = 0. One alternative employed
in this book is to instead replace the denominator with the average value 1

N

∑
Lk .

This is known as the weighted absolute percentage error (WAPE). The same scaling
can also be applied to the RMSE and MAE to create relative error measures. Above
are some of the most common error measures used in load forecasting but of course
there are several other measures which could be used, including those which avoid
the issue of dividing by zero.
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Directly comparing error measures between forecasts can help compare forecast
accuracy but they can be complicated if the underlying time series has varying levels
of predictability. In Sect. 7.4 skill scores are discussed which are very useful for
comparing forecast models by utilising a common benchmark to help with interpre-
tation.

It is important to carefully select the error measure that suits the application or
purposes of the forecast. A special case will demonstrate this in Sect. 13.3, which
presents household level load forecasts. Many standard error measures (including
the ones presented here) may be inappropriate for providing an objective score for
evaluating the accuracy of a forecast. Instead a novel approach is considered showing
that there is no need to restrict your evaluation methods to the most popular or
common ones such as RMSE or MAPE.

7.2 Probabilistic Forecast Error Measures

The above scores are only applicable to point forecasts and are not appropriate for
assessing probabilistic forecasts. These forecasts are less straightforward to evaluate
due to the increased complexity and the various forms that probabilistic forecasts can
take (quantile, density, ensembles, etc.) as described in Sect. 5.2. In this section, the
focus will be on scores for univariate1 probabilistic forecasts. Multivariate scoring
functions are only discussed in passing but suggestions for further reading can be
found in Appendix D.2.

The aim with a probabilistic forecast is to accurately represent the distribution
of the variable. Since there is only usually one observation per time step, to assess
a probabilistic forecast usually means comparing the single observation against the
estimate of the distribution. This makes the situation much more complicated com-
pared to point forecasts, which can compare the single observation to the single
point estimate value. Ideally the aim is to use a scoring function for which the mini-
mum score is only achieved by the true distribution, these are called proper scoring
functions.

One of the more popular proper scoring functions is the pinball loss score or
quantile scorewhich measures the accuracy of a quantile forecast (Sect. 5.2). Recall
that the quantile τ ∈ [0, 1] of a CDF, F , is simply the value zτ such that F(zτ ) = τ ,
or in other words, for a univariate distribution the probability of a random variable
being less than zτ is τ (see also Sect. 3.2 for more details on quantiles). Given an
estimate of the τ quantile, zτ , and an actual observation L from the distribution being
estimated, the pinball loss function is given by

Lτ (L , zτ ) =
{

τ (L − zτ ) L ≥ zτ

(1 − τ )(zτ − L) L < zτ

1 Recall univariate means a single variable whereas multivariate is more than one.
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Fig. 7.1 Example of the
weighting given by the
pinball loss function for
τ = 0.2. If the input is
positive then the weighting is
τ , if negative, then the
weighting is 1 − τ
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The pinball function is an asymmetric function which takes the difference between
the observation and the quantile and then weights the difference differently depend-
ing on whether the value is positive or negative. This asymmetry is important since
an accurately estimated quantile will have, on average, a proportion, τ , of the obser-
vations below zτ . The pinball function and its weighting is illustrate in Fig. 7.1.
Typically quantile forecasts are estimated for a series of quantiles zτk , for each time
step k = 1, . . . , N in the forecast horizon and these quantiles split the range of the
distribution into evenly spaced points τ1, . . . , τN (for example popular values are
the deciles 0.1, 0.2, . . . , 0.9, or ventiles, 0.05, 0.1, . . . , 0.9, 0.95). The pinball loss
score (PLS) is simply the average over each individual loss over each quantile

PLS = 1

N

N∑
k=1

Lτk (L , zτk ). (7.49)

Another common proper scoring function is the continuous ranked probability
score (CRPS). Consider a cumulative distribution F̂(z), which is an estimate of the
distribution at some time for which there is an observation, defined as L . The CRPS
is defined as

CRPS(L , F̂) =
∫ ∞

−∞
(F̂(z) − 1(z − L))2dz = E(|Z − L|) − 1

2
E(|Z − Z̃ |),

(7.50)
where 1 is the Heaviside step function

1(x) =
{
0 for x < 0

1 for x ≥ 0
. (7.51)
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Fig. 7.2 Example of the
CRPS which is the area
between the CDF and the
empirical distribution formed
from a single observation
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The first, integral form, measures the difference between the estimated distribution
F̂(z) and the empirical cumulative distribution function for a single observation,
given by 1(z − L). The CRPS for a single observation and the estimated CDF is
illustrated in Fig. 7.2, and is equal to the shaded area between the CDF and the
empirical distribution (see Sect. 3.4) for the observation. The aim is to minimise this
shaded area, and this is achieved by accurately estimating the true distribution.

Notice that the two terms in the second formof theCRPSdescribe two components
of the error. The first term, E(|Z − L|) is the (expected) absolute difference between
the observations and the forecasts. The second term, E(|Z − Z̃ |), is a measure of
the spread, i.e. the sharpness, of the probabilistic forecast. For a point forecast the
CRPS reduces down to the first term only, i.e. the Mean absolute error. This second
equivalent form of the CRPS in Eq. (7.50), E(|Z − L|) − 1

2E(|Z − Z̃ |) suggests
another way of estimating the CRPS using sample means calculated by generating
random draws, Z̃ and Z , from the estimated distribution F̂ . For multiple observations
the final CRPS is simply the average of the individual CRPS values.

The CRPS and pinball score are only suitable for univariate densities. For ensem-
ble/scenario forecasts the second form of the CRPS given in Eq. (7.50) can be
adapted to cope with ensemble forecasts which estimate a multivariate distribu-
tion. Consider a multivariate probability distribution FZ which is defined for a N-
dimensional random variable X = (X1, X2, . . . , XN )

T . Given a single observation
vector L = (L1, L2, . . . , LN )

T then the energy score is defined as

ES(L,F) = E(||Z − L||2) − 1

2
E(||Z − Z̃||2), (7.52)

whereZ and Z̃ are independent copies of randomdraws/samples from themultivariate
distribution. To calculate this in practice the samples, Z and Z̃, are taken from the
generated forecast ensembles and the samplemeans are used to estimate the expected
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Fig. 7.3 Example of the histograms for the PIT from applying (left) the true Gaussian CDF ofmean
2 and standard deviation 0.25, (middle) from applying a Gaussian CDF of mean 2 and standard
deviation of 0.4 and (right) from applying a Gaussian CDF of mean 2 and standard deviation equal
to 0.15

values. For the pinball score, CRPS and energy score, a smaller value implies a more
accurate probabilistic forecast.

Probabilistic forecasts can also be assessed visually. Consider a CDF, F , for a
continuous random variable X , then the probability integral transform (PIT) of the
data, is defined by the application of the CDF to the observations pt = F(Xt ). The
histogram of the PIT should be uniformly distributed if the correct CDF has been
chosen. To understand this consider a quantile forecast which estimates the demi-
deciles, i.e. the q quantiles where q = 0.05, 0.1, 0.15, . . . , 0.9, 0.95 of a continuous
cumulative density function F(x). If the forecast was correctly calibrated 5% of the
observations should fall between any consecutive quantiles, F−1(q), and F−1(q +
0.05). In other words, the histogram of the PIT defined by this quantile estimate
should be uniform with 5% of observations within each bin.

An example of the PIT histogram is shown in Fig. 7.3 for three different Gaussian
CDFs (with different standard deviations) applied to random samples from one of the
distributions. When the true CDF is applied (left in the Figure) then the histogram is
uniform as expected. When a Gaussian CDF is applied which has a larger standard
deviation than the true data then the PIT has toomany observations in the centre of the
histogram, and the distribution is called overdispersed (middle plot). Alternatively,
if a PIT is applied using a Gaussian CDF with a smaller spread (smaller standard
deviation) then there is too many observations at the edges of the histogram and
the distribution is called underdispersed. Other shapes of the PIT can suggest other
biases or inaccuracies in the probabilistic estimate.

An equivalent method for visualising the quality of a probabilistic forecast is a
reliability plot (or reliability diagram). For this the quantiles of the probabilistic
forecast are plotted against the observed relative frequency. In other words, take the
τ th quantile F−1(τ ), for a probabilistic forecast with CDF, F , and suppose there
are observations y1, y2, . . . , yN . These points can be used to define an empirical
distribution function FE (y) which is a step function defined by



7.2 Probabilistic Forecast Error Measures 97

Fig. 7.4 Reliability diagram
for the three different
estimates for the distribution
for the same data as in
Fig. 7.3
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F̂E (y) = number observations less than X

N
= 1

N

N∑
k=1

1yk<y, (7.53)

where 1S is the indicator function which takes the value 1 if the statement S is true
and 0 otherwise (also see Sect. 3.4). A reliability diagram is simply a comparison
of the quantiles of the estimated distribution, F , with the empirical distribution, FE .
The quantiles should be similar (for the same probability value τ ) if the estimate F is
an accurate representation of the distribution of the observations (as estimated by the
empirical CDF, FE ). The reliability diagram for the same distributions as in Fig. 7.3
are shown in Fig. 7.4. This is for 1000 observations from the true normal distribution
with mean 2 and standard deviation 0.25. Notice that in the reliability diagram if
the observations are from the true distribution they should be close to the diagonal
y = x . In contrast the line for the overdispersed distribution has a small gradient
for the under-represented tail quantiles but high gradient in the middle for the over-
represented quantiles. The opposite is true for the underdispersed distribution which
has high gradients at the tail quantiles and a lower gradient in the central quantiles.

It is worth noting, that a uniform PIT (or equivalently a reliability plot lying on
the y = x line) is only a necessary condition and not a sufficient condition for the
distribution to be the true underlying distribution for the data. In other words, uniform
PITs can still occur even if the estimated distribution is not a true representation of
the underlying distribution.
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7.3 Causes of Forecast Error

There will always be some error in the forecasts no matter the sophistication of the
model. However, there are some common causes of forecast error it is worth briefly
mentioning to prevent jumping to conclusions and assist in interpreting the models
and their errors.

Even when an accurate model has been generated with both low-bias and low-
variance the forecasts errors are likely to increase with the forecast horizon, this is
illustrated in Fig. 7.5. This is because there is usually a interdependency between
values which are close in time. This is particularly true in energy demand behaviour
where appliances are used over several hours (heaters), or similar actions are per-
formed together (a morning shower followed by boiling a kettle for a cup of tea).
Hence if comparing the errors for forecasting tomorrow, versus forecasts for the fol-
lowing day and so on, there would be an expected upward trajectory in the forecast
errors/scores.

However, things may not be as simple as this. In the Case study in Chap. 14, the
forecast errors vary within a day (see Fig. 14.7 in particular). This is because there is
more variation in demand (and hence larger errors on average) during certain periods
of the day compared to others. However, even in this case the average daily errors
do seem to be increasing. This highlights another source of forecast error which is
the volatility of particular periods.

Another source of forecast error may be due to their dependence on the input
variables. Many load forecasts are strongly related to weather (e.g. see Sect. 6.7) and
therefore weather forecasts are utilised within the load forecast models. However,
if these inputs are inaccurate (for example through measurement, forecasts or even
calibration errors) then the load forecast will also be inaccurate. In other words, for
surprising or unusual errors in the data, the input variables should also be considered
as possible causes.

Fig. 7.5 Expected forecast
error as a function of forecast
horizon
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Benchmarks also serve a useful function of determining the causes of forecast
errors. Since they may include different inputs than the main models they can con-
firm which variables may be sources of large errors. Benchmarks are also useful
for comparing models and understanding improvements over time, even when the
underlying data changes. This is explored in the next section.

7.4 Skill Scores

Even if an error measure is appropriate to the application, it may not be easy to
compare or evaluate forecasts, especially if comparing on multiple datasets. For
example, consider two forecast models where one model produces an estimate for
one dataset and the other model produces an estimate for another, dataset. If these
datasets have different volatilities (for example it could be that the data is for different
seasons, where say heating appliances may make Winter demand behaviour more
volatile) then it will not be clear how to compare the accuracy of these forecasts.
Similarly, how do you keep track of the improvement (or degradation) in the same
forecast over time, which will be using more and/or newer data?

Oneway to help discriminate between forecasts in cases like the above and others,
is to use a skill score. A skill score measures the accuracy of a forecast relative to
some benchmark score. They are very common in numerical weather prediction
applications, where they are used to show the improvement of forecast models over
time.

Skill scores can take many forms but a common format is

SS(L̂,Lb) = E f − Eb

Ep − Eb
, (7.54)

where E f , Eb, Ep represent the error scores for the main forecast, the benchmark
forecast and the perfect forecast respectively. The error measure could be any of
those presented above, such as RMSE, or MAE for point forecasts, or CRPS for
probabilistic forecasts.

Often the error should be zero for a perfect forecast, and in this case the skill score
reduces to

SS(L̂,Lb) = 1 − E f

Eb
. (7.55)

The skill score can obtain amaximumvalue of 1 if the forecast is perfect (E f = 0),
but is equal to zero if is only as good as the benchmark, and of course the score can
be negative if the forecast is worse than the benchmark.

The benchmark here is often called a standard, or reference, forecast, but the
important point is that this method is kept constant to allow more appropriate com-
parisons. Since the benchmark methodology stays the same then this allows a com-
parative analysis of the forecast across different datasets as well as over different
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periods in the same dataset. If two datasets have very different “predictabilities” then
you can compare the performance on them better via a skill score since the forecast
error on the less predictable dataset will be scaled according to the common bench-
mark, which will also perform more poorly on this data set relatively to the other. As
a consequence, the relative performance on the datasets can bemore easily compared
and will not simply be based on bad luck due to the features of the test dataset that
is used.

The main question when creating a skill score then, is what is an appropriate
benchmark to use? The following is some suggested criteria:

1. It should be quite simple and not require too much data or additional data sets to
produce. This enables the model to be used in most circumstances.

2. It should be easy to implement so that other forecasters can easily replicate it.
3. It should be easy to interpret to help with model evaluation and improvement.
4. It should not be too sophisticated, or state-of-the-art. It is only needed for com-

parison and hence there is no need for a complicated or “difficult to beat” model.

For many applications, the simple benchmark models described in Chap. 9 will
be sufficient. The persistence model is quite common. Other considerations about
choosing appropriate benchmarks are given in Sect. 8.1.1.

7.5 Residual Checks and Forecast Corrections

Ideally a forecast is a good estimator of the true load but for various reasons may
require some corrections. Common in climate modelling is a model bias where the
mean (or expected) value of the prediction is consistently shifted from the actual
values. Analysing the residuals of the final forecast model is a common way to both
evaluate your model and identify possible improvements for future implementations.

Whatever models are created for time series forecasting there may still be some
structure remaining in the residuals which could be exploited to further improve the
accuracy of the forecast. Suppose a forecast model is generated for the time series
Lt over the time steps in the training data t = 1, . . . N . Let L̂ t represent a forecast
estimate fitted to the training data and recall fromSect. 5.2 that the residual time series
can be defined as rt = Lt − L̂ t for t = 1, . . . N . A desirable feature for a forecast
model is that this residual series is essentially random noise, since any remaining
patterns/relationships could be used to improve the forecast.

The first check should be to plot the residual time series and look for any remaining
patterns or features. If the model has correctly explained the data, then the residual
series should be random noise,2 in other words, their values are independent and
identically distributed with zero mean.

2 The noise can follow a particular distribution even if it is random. White noise, is noise which is
distributed according to a Gaussian function.
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Fig. 7.6 Examples of three time series: white noise (top), white noise plus trend (middle), and a
periodic time series based on the first white noise series (bottom)

If two random variables X and Y are independent it means, unsurprisingly, that
the value of one is unrelated to the value of the other. In the language of probability
this means for all x, y the events X ≤ x and Y ≤ y are independent. In other words
the joint distribution, FX,Y (x, y), of X,Y is related to the individual distributions via

FX,Y (x, y) = FX (x)FY (y), (7.56)

where FX and FY are the cumulative distribution functions for X and Y respectively
(see Sect. 3.3). For an independent variable the correlation between the values is
zero. However, note that the reverse is not necessarily true, zero correlation does not
imply they are independent. However, it can be used as evidence for independence,
or at least increase the plausibility that they are independent.

It is usually quite easy to tell if the data is not white noise but not trivial to test if
it is. A plot of the time series should give an initial indication of which case may be
true. Examples of a few residual time series are shown in Fig. 7.6. In this example,
the values at all time steps have the same variance, hence the only thing to check is
whether they have zero mean and are independent.

In this Fig. 7.6 there are two that look like white noise and one that is quite clearly
not white noise. The top plot is white noise, the middle plot is the original white
noise series but augmented with an increasing trend. The bottom series looks like it
is white noise but however is formed by repeating a chunk of 100 data points from the
top series. Therefore in fact it has strong autocorrelation despite not being directly
obvious.

The autoregressive features in this series can be confirmed by looking at the
autocorrelation plot (As when creating the ARIMA model in Sect. 9.4). In this case
the periodic time series does not have components which are independent as seen by
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Fig. 7.7 ACF’s of the three “white noise” time series: white noise (top), white noise plus trend
(middle), and a periodic time series based on the white noise series (bottom)

the spike at lag 100 in Fig. 7.7. The ACF plot shows that the true white noise series
has no autocorrelation as expected, but the noise with trend in the middle does show
up via the slow decay in the ACF as a function of lag.

Any autocorrelation which remains in the residuals can be removed by including
extra autoregressive components to the residual series (alternatively can be added to
the original model) via

rk =
pmax∑
k=1

φkrt−k + εt (7.57)

for some assumed Gaussian error εt and optimal autoregressive order p found by
minimising theAkaike information criterion (AIC) or Bayesian information criterion
(BIC) (see Sect. 8.2.2) over p ∈ {0, . . . , pmax}, for somemaximum order pmax. After
training the coefficients φ1, . . . ,φmax, a forecast for the residual can be produced via
r̂k = ∑pmax

k=1 φkrt−k and the original forecast can be updated to achieve a new forecast
for the load series via L̂ t + r̂t . If sufficient lags have been included in the updated
model, the new residual series r̃t = Lt − L̂ t − r̂t should now have no significant
autocorrelations. Additionally it is hoped that the new models will have improved
forecast accuracy. Of course another autocorrelation check of the residuals can be
performed on the new forecast and the process repeated if not all of the autoregressive
features have been accounted for.

Another form of bias in a time series forecast is whether the residuals are centred
around zero. The random noise with trend is one such example. The simplest form
of bias is where the noise is centred around a non-zero constant. This suggests a
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simple bias correction can be applied to reduce the mean error to zero by shifting

by the sampled mean of the residual. I.e. set r̂t = rt + b where b = −
∑N

t=1 rt
N ∈ R.

Alternatively one can directly update the forecast itself, i.e.

ˆ̂Lt = L̂ t + b. (7.58)

Thus by definition the new residual series has sample mean equal to zero. The resid-
ual time series with linear trend can also be corrected in a similar way except by
detrending with the line of best fit through the points (similarly as seen for the out-
lier detection in Sect. 6.1.1). More generally, where the trend is obvious, similar
detrending approaches can be applied.

Theremay also be assumptions concerning the distribution of the residuals for par-
ticular models. For example linear regression and ARIMAmodels assume Gaussian
distributions. If the residuals are not distributed symmetrically then a transforma-
tions of the data may be required (Sect. 6.1.3). Further non-constant variance of the
residuals suggests that methods which assume fixed variancemay not be appropriate.
Instead, alternative approaches such as the GARCH type models introduced in Sect.
11.6.2 may be required.

In general applying forecast correction and checking for independence is not
straight forward. As shown above, time series plots of the residuals should be the
first consideration and then checks for constant mean and variances can be performed
by calculating them on fixed intervals of the residual time series and comparing them
to the full sample mean and variance. Finally, the autocorrelation and partial autocor-
relation functions should be plotted to check for moving average and autoregressive
components and identify dependence between points in the time series.

The above methods are primarily focused on point estimates. However, for prob-
abilistic forecasts there are also corrections which can be applied, but they are often
more complicated than point forecast corrections. For a simple case recall in Sect. 7.2
that a probabilistic forecasts should have a uniformprobability integral transform, but
if this is not the case, then the PIT can also suggest ways to inform possible correc-
tions. For example, as seen in Sect. 7.2, overdispersed (alternatively underdispersed)
forecasts produce a wider (or narrower for underdispersed) PIT distribution than is
desired, which means the model could be improved by squashing (or stretching for
underdispersed estimates) the distribution. More generally we can look at the PIT
to see which areas of the distribution are over or under represented. There are more
sophisticated calibration methods such as quantile mapping which have traditionally
been applied in climate and weather modelling, further reading in these areas are
given in the Appendix D.



104 7 Verification and Evaluation of Load Forecast Models

7.6 Questions

For the questions which require using real demand data, try using some of the data
as listed in Appendix D.4.

1. Take a few days from a real demand time series and create basic forecasts by
shifting the profile by full day. Calculate the MAPE, MAE and RMSE. Compare
them. Take a hundred smart meter time series and calculate the errors based on
the same seasonal persistence forecast model. Produce a scatter plot of the errors
against the size of the demand (e.g. the average half hourly or daily demand). Is
there a pattern you notice in the plots? If you plot the time series of the profile
against the forecasts can you identify the sources of error for those with the best
and worst accuracy?

2. Take a half hourly household demand profile with a peak in the evening. Take a
day and shift the profile by an hour in one direction (add the shifted points that
fall off the end to the other side). Now calculate the RMSE error between them.
Next produce a flat profile by taking the average half hourly value and setting
all half hours of the day to this value. Calculate the RMSE between this and the
original profile. Compare the two error values. Which is smaller? Try this with
several other forecasts. Is the flat profile producing smaller errors than the shifted
in some cases? This is explored more in Sect. 13.3.

3. Sample 5000 points from a univariate Gaussian distribution. Select quantiles at
0.05, 0.1, 0.15, . . . , 0.95 and plot the PIT. How many points should be in each
quantile range? Now delete 5–10 points from the middle five quantiles of the
distribution. Plot the PIT again, how has the shape changed? Is it underdispersed
or overdispersed? Repeat the experiment but remove values from the tails of the
distribution. Replot the PIT and check whether the shape is underdispersed or
overdispersed. Now plot the reliability diagrams for all three samples (this will
require calculating the empirical quantiles for each sample).

4. Sample 1000 points from a univariate distribution of your choice. Create three
empirical distributions from these samples by deleting the same number of points
(say 10%) (a) randomly, (b) from the centre of the distribution, and (c) from
the tails of the sample. Use the samples to calculate quantiles which will now
define your probabilistic estimates. Calculate the pinball loss score for these three
distributions on the original sample of points. Repeat the calculation for theCRPS.
Which has the best (lowest) score?

5. Consider forecast errors with horizon. Take some half hourly or hourly demand
data. Create a simple forecast of the next two weeks by repeating the daily profile
for one day, for the next fourteen days. Calculate the RMSE error for each day.
How does it change with horizon? Repeat this with other time series and observe
the change with horizon. Does it change smoothly with how many days ahead?
Or is there a change depending on the day of the week?
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6. Take the forecast used in the last question. Produce the residual time series. Plot the
autocorrelation and partial autocorrelation plots. Which lags produce the biggest
coefficient values? How many lags would you therefore expect to need to correct
for this in an autoregressive update to this model? If you know how to apply
linear regression try adding these terms to your model and repeat the forecast
again. How have the errors changed? If you don’t know how to apply this, you
can wait until you’ve read Chap. 9 and come back to this part of the question!
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