Chapter 4 ®)
Primer on Machine Learning e

The previous chapter introduced various concepts from statistics and probability rel-
evant to forecasting. As many state-of-the-art approaches rely on machine learning,
this chapter will introduce some fundamental definitions and concepts. It does not
intend to provide an in-depth understanding but instead plans to overview the main
concepts as they are relevant to this book. It provides an overview of practically rel-
evant concepts when using software packages to fit and configure machine learning
models. It does not introduce specific algorithms as those machine learning algo-
rithms that are typically used in load forecasting are discussed in detail in Chap. 10.
More in-depth overviews of the approaches can be found in the list of further reading
in Appendix D.2.

4.1 Definitions and Related Concepts

A common definition of machine learning is that it includes algorithms that enable
computers to learn from data and improve performance within a specific task with-
out being explicitly programmed. A typical such task is to describe the relationship
between a set of input variables that are typically measured or preset and have some
influence on one or several outputs (see the next section for other machine learning
tasks).

With this definition, machine learning can be distinguished from classic
algorithms and programs studied in computer science, i.e., a finite sequence of
well-defined instructions. A traditional algorithm performs a task deterministically
following the steps that have been implemented by the programmer at design time,
resulting in a specific performance. In contrast, a machine learning algorithm uses
experience/observations, i.e. data, to improve the performance within the task, pos-
sibly even when in operation. This allows the algorithm to tackle tasks that are too
difficult to solve with classical algorithms and programs written and designed by
human beings. A second way of distinguishing machine learning from classical pro-

© The Author(s) 2023 41
S. Haben et al., Core Concepts and Methods in Load Forecasting,
https://doi.org/10.1007/978-3-031-27852-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27852-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-27852-5_4

42 4 Primer on Machine Learning

gramming is that for classical programming, one provides the input and a function
(the algorithm) to compute an output. In machine learning, one provides some exam-
ple inputs and outputs to find a function which can then be used with new inputs to
compute outputs.

The above definition can also be used to distinguish machine learning from statis-
tics (see the introduction to some basic concepts in Chap. 3). One notion of distin-
guishing the two is that statistical models are designed for inference about the rela-
tionships between variables, and machine learning models are developed to make
the most accurate predictions, i.e. to maximise performance. A common purpose
of statistical models is to make inferences about the relationships between variables,
i.e., creating a mathematical model of the process by which data was generated to
formalise understanding or test a hypothesis about the system behaviour.

While statistical models can also make predictions, this is often achieved by mak-
ing parametric assumptions, like assuming that data follows a specific distribution
(see Chap.3). While this improves model understanding and interpretability, it
introduces model bias that for complex data may hinder achieving accurate pre-
dictions. Similarly, as too many input variables hinder the interpretability of the
process, statisticians may want to avoid situations where p >> n, i.e., the number of
input variables is much larger than the number of samples. Hence, a statistician may
want to attempt to avoid over-parameterisation by performing a variable selection,
removing terms that do not contribute significantly to the inference. This generally
improves model understanding but may inhibit prediction accuracy, as even small
contributions can improve predictions.

In contrast, a machine learning model aims to learn from experience (past data)
with the main goal of improving a prediction, in other words it typically sacrifices
understanding of the underlying mechanisms for performance. Machine learning
models are mostly non-parametric methods (e.g. see Sect.3.4) and are typically
capable of handling many input variables without extensive manual preprocessing
or feature selection. Utilising complex models and removing restrictive assump-
tions, machine learning applies optimisation techniques to find approximate algo-
rithmic solutions (see Sect.4.3). In contrast statistical models can sometimes find
exact closed-form solutions. Alongside optimisation, machine learning methods are
often concerned with developing methods to avoid overfitting, i.e., finding models
and methods that are capable of generalising well to new data points that they have
not been trained on. This includes different regularisation methods (see Sect. 8.2.5).
All this is done to improve prediction performance at the cost of interpretability com-
pared to statistical methods.

While the previous paragraphs highlighted some main differences between
machine learning to classic computer algorithms and statistics, they are not com-
pletely distinct. There are considerable overlaps between the concepts, and machine
learning heavily relies on classical computer science and statistics techniques and
approaches. For instance, knowing the data-generating process typically provides
insights into what makes a good predictor and is often an essential step in the applied
modelling process. Machine learning also relies on several areas of computer science
and algorithms, for instance, when datasets become too large to fit into the memory

4.2 Machine Learning Taxonomy and Terms 43

of a single computer (or its GPU). Much of practical machine learning is concerned
with developing strategies to manage millions, billions and even trillions of param-
eters using computer science methods like distributed computing (this aspect is not
addressed in this book). Beyond those, machine learning also heavily relies on other
mathematical concepts such as optimisation, matrix algebra and calculus.

How is this translated to short term load forecasts?

As in many domains in recent years, machine learning models have increas-
ingly been applied to forecasting problems. In contrast to many other disci-
plines like image recognition or natural language processing, for time series
forecasting they have not yet dominated over other approaches in the field,
like simple benchmarks and more sophisticated statistical approaches, as dis-
cussed in Chap.9. This is because many time-series problems have limited
data availability, and many machine learning algorithms are often unnecessar-
ily complex. Only in recent years have machine learning models, for instance,
recurrent neural networks or gradient boosting, started to outperform other
methods consistently (see, for example, the discussion of the M5 time series
forecasting competition [1]). With the advent of specialised deep learning
approaches like DeepAR [2] and N-BEATS [3], there is a likely trend that
more advanced specialised machine learning models may improve in many
time series problems. However, as statistical models allow for a better under-
standing of the relationships between the available data and the forecast, an
accurate statistical model should always be used as a benchmark in the load
forecasting process (see Chap.9). The M5 competition showed [1], that com-
binations of statistical and machine learning models can reach state-of-the-art
results with the advantage of remaining at least partly interpretable, combin-
ing the benefits of both approaches. This makes them particularly interesting
for real-world applications.

4.2 Machine Learning Taxonomy and Terms

The former section introduced machine learning as algorithms that enable com-
puters to improve the performance within a specific task by learning from data.
The most common machine learning task is to describe the relationship between a
set of input and output variables. This task is called supervised learning. Besides
supervised learning, there are other sub-types of machine learning, most importantly
unsupervised learning and reinforcement learning.

44 4 Primer on Machine Learning

4.2.1 Supervised Learning

Supervised learning is the task of learning the relationship between a set of input
and output variables from data, i.e., to learn some function f to be able to make pre-
dictions. These inputs are often referred to as instances or examples. An instance
is a collection of values that can be measured or obtained in some way (e.g. through
sensors). It is often denoted as X € R”. In statistical terms, an instance is a reali-
sation vector of the n random variables X, X», ..., X,,, so that one can also write
X = (X1, X2, ..., X,,) (Sect.3.1). These inputs are often called predictors or inde-
pendent variables in the statistical literature. In the machine learning literature (and
the remainder of this Chapter), the term features is more commonly used. Through-
out this book, both terms will be used.

A statistician may refer to the outputs as the response or the dependent variables.
Depending on if the task is to predict a numeric variable or a qualitative variable
(like the membership to a class), in machine learning, the output is referred to as
target or label in the machine learning literature. If the supervised learning task is
to predict a numeric variable, the task is referred to as regression. To solve this, the
machine learning algorithm aims to model a function f: R" — R, or f: R" — RF
in the case of multiple target variables. In the latter case, the regression problem
may be referred to as multi-target or multi-output regression. Note this is not to
be confused with multiple regression or multivariate regression, which refers to the
dimensionality of the inputs, i.e., n > 1. Note that the term regression is sometimes
used to denote linear regression (see Sect.9.3). However, linear regression is only
one specific regression method, and the regression task can be performed using many
different algorithms, as will be discussed in this book.

A common machine learning task is to predict the assignment of an instance to
one of k categories, or classes. Here, the machine learning algorithm is equivalent
to modelling a function f: R" — {1, ..., k}, with each class assigned an integer.
This output can be a numeric code representing a specific class, but more commonly,
machine learning algorithms produce a probability distribution over the classes. This
task is referred to as classification. Depending on whether the output is univariate
or multivariate, the output is denoted as ¥ € R or Y € R* (for the sake of simplicity
in the following the univariate case is presented as a special case of the multivariate
case fork = 1).

The relationship f is learned from a dataset. While formally, the order should
not matter, a dataset can be seen as a set of N tuples of instances with the respective
labels or targets, i.e., X = {(X1, Y1), (X2, Y2), ..., (X;,Y;), Xy, Yy)}. However,
as many algorithms make use of linear algebra, it is also common to denote the set
of inputs of the dataset as a matrix X and the set of output as a vector or matrix Y.
Note that the inputs have been introduced as n-dimensional vectors for simplicity,
but for different machine learning tasks, they may be of higher dimensionality, e.g.
for images or videos. Hence, they may be considered more generally as tensors.
However, for convenience and clarity, the focus will be on matrices and vectors,
which will be the most common form for load forecasting.

4.2 Machine Learning Taxonomy and Terms 45

4.2.2 Unsupervised Learning

Unsupervised learning typically refers to algorithms that learn and identify pat-
terns within the data without labels. Denote the dataset as set X with N members
Xy, ..., X, ..., Xy with each X; = (X4, ..., X;, L X)T consisting of n fea-
tures. Unsupervised learning tasks can be used to either model a pattern within the
set of data X', model within each of the instances X;, or both.

The type of problem that is most commonly associated with finding patterns within
the dataset is the task of finding partitionings or groupings of a dataset, i.e. clustering
a dataset. The goal is to find k groupings X7, ..., X/, X such that Us_ X/ = X. The
most common algorithms are the centroid-based k-means clustering, distance-based
hierarchical clustering and the density-based models DBSCAN and OPTICS. A
discussion of those algorithms is not part of this book, but see [4] for k-means
and hierarchical clustering and [5] for a discussion on DBSCAN and OPTICS. An
example of another approach which can be used for clustering, called finite mixture
models is given in Sect.11.3.2, except in this case it is used to model complex
distributions.

The most common reason for finding patterns within each of the individual
instances X; is dimensionality reduction and the related problem of finding embed-
dings, i.e., meaningful latent representations of the data. Dimensionality reduction
methods aim to address the curse of dimensionality! by finding lower-dimensional
representations of the data. This lower-dimensional representation of the data can
be used as features, for instance, in supervised learning or forecasting. A model that
uses lower-dimensional data as input to make the predictions may be referred to as a
down-stream model. It can also be useful for visualising high-dimensional data in
2D or 3D representations. Popular methods are principal component analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE). Figure4.1 shows the
result of using PCA to reduce the time series of three households from 96 values per
day (15-min data) into two dimensions. On the left, there are some example samples
of three households in 15-min resolution. One can see that the behaviour is generally
quite different with load at different times of the day. On the right is a scatter plot of
the two-dimensional data after applying PCA with the goal of finding two descriptive
features of the data. The colour highlighting of the specific households is added to
illustrate how even though the dimensionality has been drastically reduced, the data
of the different households generally stay together, indicating that some differences
between them are preserved in this low dimensional representation.

A detailed discussion of these methods is not within the scope of this book. Finding
a suitable latent representation of raw inputs is essential in working with image or
text data. For instance, many machine learning models need fixed-length numerical
input sequences and cannot handle sentences of different lengths. It is commonly

! In short, the curse of dimensionality is the rapid increase in observations that are required for
accurately estimating relationships as the number/dimension of features in the inputs increases.
To illustrate this note how points in 2-dimensional space are much less isolated than points in
3-dimensions.

46 4 Primer on Machine Learning

0.8 Household 1 : 3.50 , , , : :
[] ==« Household 1
[" “. “] 3.00}| . - . Household 2 |* 1
F /““j\”f’\, I/ p +++ Household 3
Eo s S U oo 250} 1
00:00 06:00 12:00 18:00 00:00
09 Household 2 i 2,00l]
: 1 2 150} ’]
: A YA Wi 1.00} |
00:00 06:00 12:00 18:00 00:00
16 i Housghold 3 i i 0.50|]
L I]
L] 0.00+ 4
: \) \ : 05 ’ -
k JW 0\ APAI VS Y 1 -0. L L L L L
00000800 o e 000 050 000 050 1.00 150 200
Time X1

Fig. 4.1 Samples of a dataset of household-data in 15-min resolutions (left) and the resulting
two-dimensional representation after applying PCA (right)

associated with neural networks (Sect. 10.4). The goal is to find a lower-dimensional
representation of a fixed width, also for different length inputs (e.g., of different
sentence lengths) in a latent space where similar instances are closer together.

Density estimation can also be considered an unsupervised learning task and
learns patterns within both the dataset and the instances. Section 3.4 introduces some
more classical approaches to density estimation from the statistics domain. However,
more recently, for complex distributions like text, images and video, generative
machine learning methods like variational auto-encoders (VAE), normalising flows,
generative adversarial networks (GAN), and diffusion models have been introduced.
Some of these concepts are sometimes applied to time series, including load data,
but are not well established yet in this domain and are hence not further discussed in
this book. The goal of the model is to estimate a distribution (see Sect.3.1), e.g., to
make inferences about uncertainties in the forecast estimate, or it can also be used
to sample new data (or realisations) from the distribution of the dataset.

More recently, additionally semi-supervised and self-supervised learning methods
have emerged, for instance, as part of large language models. Here, either labels partly
exist to train embedding models, or they are created by partially obscuring parts of
the data. Latent representations are also the core of generative models. However,
those are not well established yet in this domain and are hence not further discussed
in this book.

4.2.3 Reinforcement Learning

The third common machine learning sub-category is reinforcement learning. In con-
trast to unsupervised and supervised learning algorithms, it contains algorithms that
do not learn from a fixed dataset but interact with the environment, i.e., a feedback

4.2 Machine Learning Taxonomy and Terms 47

loop between the learning system and data from the environment. The reinforcement
learning task is typically modelled as a Markov decision process (MDP), where
the learning system is denoted as an agent that interacts with an environment. First,
it observes the current state of the environment and chooses an appropriate action
based on a learned policy. The action results in a reward as feedback from the envi-
ronment. Then the environment is in a new state, and the process continues in an
iterative manner. The policy is adjusted based on the rewards so that the agent learns.
Depending on the algorithms, the agent chooses actions that are known to work well
(exploitation), or it may explore new actions (exploration). As the policy maps
state/action pairs to rewards, this mapping can be supported by supervised learning
algorithms and, more recently, deep learning algorithms (Sect. 10.5).

However, often real-world applications suffer from different challenges. One prob-
lem is the credit assignment problem, where often the reward signal is delayed and
only available after a sequence of actions, making it difficult to attribute the influ-
ence of individual actions to the reward. A second problem is reward hacking,
where misformulated objective functions can lead to unexpected results. Lastly, the
exploitation of new actions may often not be desirable in an application where the
cost of ineffective actions is high. Here, simulations (often referred to as gyms)
can support learning an optimal policy. Reinforcement learning concepts have also
been partially applied to the time series forecasting problem, but they are not well
established yet and are not further discussed in this book.

How is this translated to short term load forecasts?

Time series forecasting can be formulated as a multivariate regression prob-
lem. Therefore supervised machine learning models can generally be applied
to time series forecasting problems. While supervised approaches are the most
common, unsupervised and reinforcement learning methods can be used in
forecasting, either on their own or, more commonly, in combination with
supervised approaches. For instance, when forecasting an aggregated time
series, clustering techniques can be used to partition the data of the time
series that make up the signal. Models are then trained on the resulting clus-
ters before combining the predictions. This can produce improved accuracy
compared to directly forecasting the aggregated time series since individual
series may have similar features which can be used to design an accurate
forecast model of the cluster. Further, dimensionality reduction can improve
forecasting models and be applied in exploratory data analysis to identify
important patterns and/or develop new inputs.

48 4 Primer on Machine Learning

4.3 Introduction to Optimisation with Gradient Descent

As described above, when using machine learning, the optimal parameters have
to be determined based on the prediction errors on a training set. For instance, in
neural network models (Sect. 10.4), the weights of the networks must be trained.
However, besides the prediction error, other components affected by the model must
be optimised at the same time, for instance, the range (or constraints) of the chosen
parameters (see Sect. 8.2.4 on regularisation). Overall, this function to be optimised
is called the loss or cost function.

Whereas optimisation problems in many of the statistical methods can be solved
using an analytical closed-form solution, most optimisation problems in machine
learning (like finding the weights of a neural network) are rather complex, e.g.,
having non-convex cost functions, i.e., they are having multiple local optima or
saddle points. Figure 4.2 gives an example of such a loss function of a 56-layer pre-
trained convolutional neural network. For simple cost functions, a global optimum
can often be found, but for more complex cost functions, the solution will often
be only a local optimum. Hence optimisation is often not deterministic, in other
words running the same procedure (e.g. the training of a neural network) can result
in different solutions, i.e., models that perform better or worse.

Most state-of-the-art machine learning models, especially neural networks, use
some form of gradient descent. The parameters, i.e., the weights 3, are adjusted

140 120
120
100
100
80 80
60 60
40
-0 40
20

Fig. 4.2 Example loss function along two random normalised directions of pretrained 56-layer
convolutional neural network ResNET-56 for image recognition, created with Loss Landscape tool
described in [6]

4.3 Introduction to Optimisation with Gradient Descent 49
Fig. 4.3 Tllustration of 40 , ,
gradient descent for a basic Cost function
cost function. The value w is O original weight, w,
updated based on the 301 |. . _Gradientat w, 7
dlI‘CC.tIOI’l in which the * New weight - learning rate 1
gradient descends. The) 20! ® New weight - learning rate 2 |
length the update moves is -
based on the learning rate. 3
Two different learning rates © 10t |
are illustrated here

0 L 4

_1 0 1 1 1 1
0 2 4 6 8 10

Weight, w

according to the gradient of the loss function (see the introduction on artificial neu-
ral networks in Sect. 10.4). Hence, if the gradient of the cost function is positive
with respect to some current weight, it means the cost will decrease if the weight
decreases. Similarly, if the gradient is negative then the cost function will decrease
if the weight increases. It should be noted that many statistical approaches also use
gradient methods, especially for problems with large numbers of parameters and
observations where finding the optimal directly in a closed-form is difficult.

To demonstrate this process consider a basic cost function (defined by (w — 4)%)
as shown in Fig.4.3. Initially, the weight is w = 7.9, and the cost function has a
positive gradient at this point. This shows that local to this weight, increasing the
weight will increase the cost function. Hence, the weight should be reduced to reduce
the value of the cost function and find a value closer to the optimal (zero in this case
with w = 4). The process is then repeated at the new value. The question remains of
how much to reduce the value. This is determined by the so-called learning rate or
step-size. Two different learning rates are shown in Fig. 4.3 where one gets closer to
the true minimum (at w = 4) for a single step compared to the other rate after one
iteration. Clearly, the learning rate is an important hyper-parameter for the algorithm
(see Sect.8.2.3 on tuning hyper-parameters). Too small, and the convergence will
take too long (and potentially be stopped too early) to reach the minimum. Too big,
and the solution will be too unstable and potentially not converge at all.

In this simple example, the gradient was determined for the full training data.
This is called batch gradient descent. It calculates the error for each instance using
efficient matrix operations and takes an average over the whole dataset to determine
the gradient. This averaging provides a stable learning path and hence leads to quick
convergence. This is only feasible for simple problems and small datasets. For larger
neural networks, for instance, convolutional neural networks and large datasets (e.g.
images), this is not feasible as the gradient calculation becomes too computationally
complex and the matrices will not fit into your computer’s memory (although even

50 4 Primer on Machine Learning

Stochastic Gradient Mini-batch Gradient
Descent Descent

Gradient Descent

Fig. 4.4 Tllustration of the convergence path of gradient descent (smoothly), stochastic gradient
descent (unstable) and mini-batch gradient descent (compromise)

if you had large amounts of memory this is perhaps an inefficient use of resources).
Instead, on large datasets, using samples from the dataset can often be enough to
produce a good approximation of the current iteration’s gradient.

When only one instance is considered at each step, this is called stochastic gra-
dient descent. The advantage of stochastic gradient descent is that the algorithm
is much faster at every iteration. However, the algorithm results in a less regular
and stable learning path compared to batch gradient descent. Instead of decreasing
smoothly, the cost function will “zig-zag” and may even temporarily move “back up
the hill”, as individual samples do not accurately approximate the entire dataset’s
gradient. While this may seem like an undesirable property, this is helpful in training
complex neural networks as it introduces a randomness to the optimisation procedure
that can help the estimate escape local minima or saddle points. Hence, most current
deep learning models use a variant of mini-batch gradient descent that combines
the concepts of batch and stochastic gradient descent. Figure 4.4 illustrates the paths
of these three gradient descent algorithms.

In mini-batch gradient descent, the algorithm computes the gradient based on
a subset of the training set at each step instead of the complete dataset or only
individual instances. This provides a trade-off, as it takes advantage of efficient matrix
operations during the gradient calculation, resulting in a smoother and more stable
convergence than stochastic gradient descent. One downside is that this introduces
additional hyperparameters to the training process, as besides the step-size, a batch-
size also has to be provided. The mini-batch size is chosen to ensure enough diversity
to escape local minima while providing some stability and enough computational
efficiency from fast matrix calculations.

Besides the way the training set is split up to calculate the gradient, there are
many other ways that the vanilla gradient descent can be improved. One popular
modification is to add momentum. Regular stochastic gradient descent may have
trouble in areas of the loss function where the surface gradient is much steeper in
one dimension than in another. Here, a momentum term is added that increases
for dimensions where the gradients point in the same directions and decreases for
dimensions where gradients change directions. This results in faster convergence
and fewer oscillations when moving towards a local optimum (see Fig.4.5 for an
illustration).

4.4 Questions 51

SGD without SGD with
Momentum Momentum

Fig. 4.5 Tllustration of the convergence path of stochastic gradient descent without momentum and
with momentum

Many optimisation algorithms introduce some form of adaptive learning rate
that changes the step size value according to some rule. Simple schedules may decay
(reduce) the step size over time to produce larger changes at the beginning of the
training process and then fine-tune towards the end when moving towards a local
optimum. A variant is a cycling learning rate where the learning rate iteratively
becomes larger and smaller according to a rule to improve the chances of escaping
local optima. An overview of the many existing optimisation algorithms is out of
the scope of this book. An overview of some popular optimisers is given in [7].
One effective and popular optimisation algorithm is Adaptive Moment Estimation
(Adam), which uses an adaptive learning rate and the ideas behind momentum. It
will usually converge faster to a local minimum than using vanilla stochastic gradient
descent without momentum with a simple learning rate decay schedule. Further, it
is less prone to get stuck in saddle points and relies less on initialisation parameters
like step size and decaying schedule. Hence, Adam with default hyper-parameters is
a decent method to use in practice for training deep neural networks.

4.4 Questions

For the questions which require using real demand data, try using some of the data
as listed in Appendix D.4.

1. Select the time series of an individual household or building and arrange your
dataset in a matrix so that each row represents one day. Resample it to hourly
data so that the matrix has 24 columns. Apply principle component analysis
(PCA) using a library of your preference, for instance, Scikit-Learn? to reduce the
dimensions. Then also, apply t-SNE for comparison. Visualise the results for two
dimensions and three dimensions using scatter plots. Do you see clusters of data
points? Find explanations for what could cause different groupings. Verify your
hypothesis by using different colouring in the plot. Next, repeat the application
of each of the algorithms. Do you see variation in the results?

2 https://scikit-learn.org/stable/index.html.

https://scikit-learn.org/stable/index.html

52

2.

4 Primer on Machine Learning

Use a load dataset that contains data from several households. Create a matrix
X by rearranging the data so that each row of the matrix represents one day of
one household. Run k-means clustering with the objective of finding 10 clusters.
Visualise members of each of the clusters and compare them. Do you see distinct
clusters or are their clusters with very similar patterns that could be merged? Try
less target clusters. Does this result in “better” groupings? In the absence of a
“ground truth”, what could generally be ways to assess and compare the results
in clustering?

. Clustering can be done using the raw load data or by modelling features from the

load data. X contains the raw data already. Next, create a matrix X, by applying
PCA to reduce the dimensionality of the data to 6 components (i.e., the matrix has
6 columns). Create a third matrix X3 where you derive some manual features, such
as the mean and max of certain times of the day. Repeat the k-means clustering
in the previous question with the target of 10 clusters. Visualise cluster members
of each cluster again and compare the results across the 3 representations (raw,
manual feature and automated features from PCA). Do the results vary much?
Does one method result in more distinct clusters?

References

L.

S. Makridakis, E. Spiliotis, V. Assimakopoulos, The M5 accuracy competition: results, findings
and conclusions. Int. J. Forecast. (2020)

David Salinas, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Deepar: probabilistic fore-
casting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181-1191 (2020)

. B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-beats: neural basis expansion analysis

for interpretable time series forecasting (2019). arXiv:1905.10437

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction. Springer Series in Statistics (2009)

M. Ankerst, M.M. Breunig, H.-P. Kriegel, J. Sander, Optics: ordering points to identify the
clustering structure. ACM Sigmod Record 28(2), 49-60 (1999)

H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, Visualizing the loss landscape of neural nets,
in Neural Information Processing Systems (2018)

S. Ruder, An overview of gradient descent optimization algorithms (2017). arXiv:1609.04747v2

http://arxiv.org/abs/1905.10437
http://arxiv.org/abs/1609.04747v2

References 53

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	4 Primer on Machine Learning
	4.1 Definitions and Related Concepts
	4.2 Machine Learning Taxonomy and Terms
	4.2.1 Supervised Learning
	4.2.2 Unsupervised Learning
	4.2.3 Reinforcement Learning

	4.3 Introduction to Optimisation with Gradient Descent
	4.4 Questions
	References

