
Chapter 14
Case Study: Low Voltage Demand
Forecasts

This chapter demonstrates the practical implementation of short term (day-ahead)
forecasts for the application of residential low voltage networks. It is split into two
main parts: An in-depth examination of a short term forecasting case study of resi-
dential low voltage networks (Sect. 14.2); and a example python code demonstrating
how to implement some of the methods and techniques in practice (Sect. 14.3).

The case studies serve to demonstrate how to:

• identify the main challenges when implementing short term forecasts.
• use the techniques fromChap.6 to analyse the data, and identify important features.
• use the analysis to choose several forecastmodels (from those presented inChaps. 9
and 11). This includes both point and probabilistic models.

• test, compare and evaluate the forecasts.

The chapter begins by a short discussion of how to design a forecast trial which
will frame the case study that follows later.

14.1 Designing Forecast Trials

It is worth reiterating some of the core elements which should be considered prior to,
and while, developing the forecasts. These elements are important to ensure that the
model is designed appropriatelywithminimal bias inmethodology, and to ensure that
the results are properly tested. The full forecasting procedure is outlined in Chap.12
and will be followed implicitly throughout. This chapter will focus on the following
main considerations.

1. Initial Experimental Design: Before plotting the data it is worth sketching out
an initial experimental design and audit the available data used to produce and
test the forecasts. What type of data is being considered? Is it expected to have
seasonalities? What is the resolution of the data, half hourly, every ten minutes?
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Is there sufficient data to produce a informative result? If there is, what is an
appropriate split of the data into training, validation and testing sets (see Sect. 8.2)?
It is important to think about these questions before analysing the data to prevent
introducing bias into the test. Further, once the data has been split, it is advisable
to avoid analysing the test set prior to generating forecasts to avoid ‘cheating’ and
seeing the true values before submitting the forecast. A final consideration is to
decide on what error measure to use (see Chap.7). An incorrectly chosen error
metric can skew the results, and makes it difficult to evaluate and interpret the
results.

2. Visualisation and Data Analysis: It is essential to try and learn as much as
possible about the underlying features and relationships in the data. In Chap. 5 a
number of tools were presented showing how to achieve a better understanding of
the data. Simple time series plots can highlight large scale behaviours, scatter plots
can identify strong relationships between variables, and autocorrelation plots can
highlight periodicities and autoregressive behaviours in the data.

3. Pre-processing: A necessary component to the data analysis is data cleansing and
pre-processing. Poor quality data can make for misleading analysis and meaning-
less results. To use a common phrase in machine learning: ‘garbage-in garbage
out’. Before applying anymodels, check for anomalous data andmissing values as
shown in Sect. 6.1.2, and then either replace or remove them from the dataset. The
analysis in the previous step can be used to choose the appropriate replacement
values.

4. Model Selection and Training: As shown in Chaps. 9 and 10 there are a wide
range of possible forecastmethodologies and choosing the correctmodels requires
utilising the learning from the data analysis, considering the specific requirements
for the application, as well as learning from the forecasters own experience. The
validation set can be an essential tool for narrowing down the choice of models. It
is also vital that appropriate benchmarks (see Sect. 9.1) are selected to help assess
the accuracy of the core models. Section 12.2 presents Further criteria which can
be considered to help select the initial methods.

5. Testing and Evaluation: The trainedmodelsmust be applied to the unseen testing
set. By scoring and comparing the forecast methods with the error measures (See
Chap.7) a better understanding can be forged about what makes some methods
more accurate and what are the important (or unimportant) features. This step
will allow the forecaster to develop further improvements in future iterations of
the models.

Each of the above steps will be illustrated in the following case study.
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14.2 Residential Low Voltage Networks

This application considers short term (in this example up to four days ahead) load
forecasting for residential low voltage demand on substation feeders and will be used
to demonstrate probabilistic (Chap. 11) as well as point forecast methods (Chaps. 9
and 10). The entire section will be based upon the authors research presented in [1].

Here, the term residential low voltage (LV) network demand (or just residential
networks) is used to describe the network connected to the secondary substations
of the electricity distribution network within a residential area (Sect. 2.1). Although
the connected customers will usually be residential they may also consist of small
commercial customers such as offices, hairdressers, etc. The demand time series
represents the aggregated demand of consumers fed electricity directly from the sub-
station (ignoring any electrical losses in the cables of course). This typically consists
of around 40–50 consumers. Furthermore, since these consumers are typically res-
idential, human behaviour tends to be a strong determinant of the demand patterns
and hence daily and weekly periodicites are expected. The data considered here will
be for 100 residential feeders in the area of Bracknell, a medium sized town in the
southeast of England.

At the low voltage, demand is much more volatile than higher voltage due to the
low aggregation of consumers (Sect. 2.3) which means probabilistic forecasts can be
quite useful for quantifying the uncertainty in the demand.

14.2.1 Initial Experimental Design

The data consists of half-hourly load data for 100 residential low voltage feeders
beginning on 20th March 2014 up to the 22nd November 2015 inclusive, a total of
612 days. Typically there are 4–6 feeders which come from a residential low voltage
substation and on average there are around 45 consumers per feeder with the largest
having 109 residential consumers. A further seven had no available connectivity
information due to missing information in the database, so it is not known who is
connected. The feeders typically feed residential consumers and 83 of the 100 are
purely residential, the others are typically mixes except for one which is known to
feed only the landlord lighting of a large office block. The average daily demand
across the feeders is approximately 602kWh and a maximum and minimum daily
demand of around 1871kWh and 107kWh respectively.

The first decision to be made is how to split the data into testing and training
data sets. The data set is reasonably sized, although more data would of course
be preferable, especially for residential feeder demand which is expected to have
annual seasonality. Ideally, to accurately model annual seasonality several years of
data would be available so that the typical year-to-year behaviour could be captured.
However, for the purposes of short term forecasts the length of data is sufficient. The
final two months were kept over as the out of sample testing set. This consists of 53
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days from 1st October 2015 to 22nd November 2015 inclusive. Notice this is just
under 9% of the data and is less than the common split of training and testing into
a 4:1 ratio (i.e. 20% testing data) as discussed in Sect. 8.1.3. There is a number of
reasons for this, firstly this increases the amount of training data whist retaining a
reasonable sized testing set and secondly it ensures that the forecasts are made for
some of the colder months of the year, which are typically higher in demand and
of particular interest to network operators who are concerned about excessive peak
demand.

It should be kept in mind, that since the training is 559 days and only 1.5years
long there may be some limitations in capturing annual seasonalities and therefore
the methods here cannot be reliably extended to medium term (one month to a year
ahead) or longer term (over 1year ahead) forecasts.

Hourly temperature forecast data and observed temperature data are also available
for the same time period. The forecasts all begin at 7AM each day and then produce
hourly forecasts up to a horizon of 4 days ahead (96h ahead). Thismeans temperature
effects can also be studied but since the forecast origin (where the forecast starts from)
is limited to 7AM each day, they must be treated with caution when using them as
inputs to the forecastmodels. In particular, it would be expected that forecasts become
slightly less accurate the further ahead they forecast which means that, e.g. the four
hour ahead temperature forecasts (i.e. the ones at 11AM) will be more accurate than
the forecasts five or more hours ahead (i.e. those from noon onwards).

With these datasets several situations can be tested

1. Case 1: How does the accuracy of a forecast model change with horizon from 1h
ahead to 96h (four days) ahead?

2. Case 2: Are all residential LV feeders forecast with similar accuracy? If not what
are some of the distinguishing factors between them?

3. Case 3: What is the effect of including temperature within a forecast model for
residential LV network demand?

To allow comparison between models with and without temperature forecast inputs,
all forecasts will generate hourly four day ahead forecasts starting at the forecast
origin of 7AM of each day of the testing set. This requires aggregating the half-
hourly demand time series up to the hourly resolution (see Sect. 6.1.4) to facilitate
using temperature data as an input to the models.

To allow comparisons between the different forecasts, some forecast error mea-
sures need to be chosen as presented in Chap.7. To allow comparison between dif-
ferent size feeders, relative measures which don’t depend on the size of the feeder
(i.e. typically demandmagnitude) are required.MAPE is a common relative measure
used for demand forecast but since it can be conflated by small values, a modified
version of the MAE (see Eq. (7.46) in Chap. 7) is also used which takes the usual
MAE but is scaled by the average hourly load of each feeder over the final year of
the training data. This will be referred to as the Relative MAE or RMAE. Since the
experiment will also include probabilistic forecasts, probabilistic scoring functions
will also be required. In this experiment the continuous ranked probability score
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(CRPS) is used (see Eq. (7.50) in Chap.7). The CRPS error for each feeder is also
divided by the average hourly demand for that feeder to produce the Relative CRPS
or RCRPS.

14.2.2 Data Analysis

As defined here, residential LV feeders are predominantly connected to residential
households but may also connect to a small number of shops, offices, churches,
schools and other small-to-medium enterprises. For these reasons it would be
expected that demand patterns are largely driven by human behaviour and hence
contain strong daily, weekly and annual seasonalities. An example of the demand for
a few of the feeders is shown in Fig. 14.1 for different numbers of consumers con-
nected (labelled with the variable NumMpans) and different numbers of residential
consumers (labelled NumRes). The time series plots identify several features. Firstly
that there is a wide variety of behaviours, even between the two purely residential
feeders (Labelled Feeder 4 and 15 in the plot) with similar numbers of connected
consumers (44 and 42). Although they both exhibit annual seasonality with larger
demands over the Winter period, there is large periods of low demand during the
Christmas and Easter holidays for Feeder 15 but not for Feeder 4. Although this
won’t be considered in this work, it does suggest holiday periods should be treated
as special inputs to the model and this could be an important extension to the more
general models presented here (see Sect. 13.6.2). Another important distinction is
between the largely residential Feeders (4, 10 and 15) and Feeder 23 which is con-
nected to a single commercial consumer. The commercial consumer doesn’t have
strong annual seasonalities, and in contrast to the purely residential feeders, has rel-
atively low demand during the Winter period. These time series have identified two
important properties of these time series, firstly annual seasonality is an important
feature to include in the models, and secondly there is a wide difference between
different feeders which suggests there may not be a one-size-fits-all model which
will be accurate for all feeders.

The time series plots have identified annual seasonality as an important feature to
include in the forecast models. Other inter-annual seasonalities can be identified by
considering the autocorrelation function (ACF) plots (see Sect. 6.2.2). In fact, in each
of the ACF plots there are relatively large spikes at lags of a day (a lag of 24h) and a
week (lags of 196) and multiples of these. Of these, the weekly periodicities are the
strongest autocorrelations as expected. Since there are 100 feeders it is difficult to
consider all of their respective autocorrelation plots, instead particularly important
lags can be given special focus. The weekly seasonality information is considered in
Fig. 14.2, by showing the autocorrelations at lag 196 as a function of the size of each
feeder (average daily demand in kilowatthours (kWh)). This shows that the strongest
weekly autocorrelations are associated to the largest feeders. One explanation for
this is that feeders with larger demands consist of aggregations of larger numbers of
residential consumers, increasing the prominent regularities in weekly behaviour.
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Fig. 14.2 Autocorrelation at lag 168 (weekly seasonal correlation) for all 100 feeders against the
mean daily demand. Reprinted from [1] with permission from Elsevier

Given these weekly periodicities what does the average weekly demand look
like for an LV feeder? Figure14.3 shows an example of the normalised average
weekly demand for three feeders each with forty consumers connected, two of which
are purely residential whilst one consists of a single commercial consumer and 39
residential consumers. The data has been normalised (i.e. divided by the average
weekly demand) so that the distribution of demand over theweek for different feeders
can be compared without being obscured by the magnitude of the demand. The plot
indicates some important features:

• Daily and weekly seasonalities are quite prominent.
• Often weekdays (Monday to Friday) are very similar but Saturday and Sunday
may be different from weekdays and from each other. This important observations
suggests that different days of the week should be treated differently in the models
(see later in Sect. 14.2.3).

• The feeder with the single commercial consumer has different patterns and dis-
tribution of demand compared to the purely residential feeders. During the week
the mixed feeder has its peak demand during the day which indicates that the
commercial consumer is likely dominating the demand. In contrast at the week-
end, the demand more closely resembles a residential feeder with the peak in the
evening which indicates the commercial consumer is no longer dominant and is
likely non-operational or has reduced operation during the weekend.

The final observation suggests that there may not be a strong connection between
one feeder and another and therefore there is less scope for transferring learning
(Sect. 13.4) over low voltage feeders. This will not be tested. Although there is not
many anomalous values in the hourly data there are still some missing values due to
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Fig. 14.3 The average normalised weekly demand for three feeders with forty consumers. The
shaded profile represents a residential feeder which includes a single commercial consumers,
whereas the other profiles (lines) represent feeders with only residential consumers. The profiles
start on Monday

communication and sensor faults. Recall from Sect. 6.1 that anomalous/missing val-
ues can either be retained and then ignored by the model in the training phase or they
can be replacedwith informed estimates. The latter simplifies the training process and
hence was the chosen option here. The above analysis shows there is strong evidence
of weekly periodicities and autocorrelations, and this can be exploited to produce
sensible values from which to impute missing data as described in Sect. 6.1.2. Each
missing value is replaced with an average of the adjacent hourly demand and the
value at the same hour of the previous two weeks. This ensures a final value which
is weighted between the magnitude of the weekly seasonality and the locally recent
demand.

Having now identified important autoregressive and time period effects in the data
it is also worth considering external or exogenous variables. Temperature is often
associated with load, for example, in colder temperatures more heating is required
and therefore more energy is used [2, 3]. Fortunately for this trial, weather data is
readily available from a nearby weather station approximately 16km from the centre
of Bracknell.

The relationship between the demand (in kWh) versus temperature (day ahead)
forecasts (in degrees C) is shown in Fig. 14.4, for one of the feeders (which happens
to have a particularly strong correlation with temperature) for four different time
periods of the day. Also included are the lines of best fit (see Sect. 9.3) and the
adjusted coefficient of determination (see Eq. (6.39) in Sect. 8.2.2) which describes
how strongly the line explains the relationship. There are a few main observations
from this plot
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Fig. 14.4 Load versus temperature for a particular feeder for four different hours of the day. Linear
fits (red lines) and adjusted R2 values are also shown

• There is often a negative correlation between demand and temperature. The colder
the temperature the more demand required. This is likely due to more electric
heating and lighting being required.

• Different hours of the day have different correlations and have different adjusted
coefficients of determination. Since heating behaviour is likely driven by whether
the house is occupied this explains why some hours are more strongly related to
temperature than others.

• Although this feeder has one of the strongest linear correlations with temperature
it still isn’t particularly strong (R2 < 0.56).

As would be expected, the accuracy of the temperature forecasts reduce with
increasing horizon. For the period 31st March 2014 to 28th Nov 2015 the day ahead
temperature forecasts have a MAPE of 11.85% this reduces for every subsequent
daily horizon up to 23.80% MAPE for four days ahead (i.e. between 73 and 96h
ahead) forecasts. If temperature is one of the most important factors for demand then
one would expect that the accuracy of the models would decrease with increasing
forecast horizons.

This section has highlighted some features which may be important and will be
tested within the forecast models introduced in the next section. Of course, further
analysis and techniques could be applied, such as those introduced in Sect. 6.2, to
find further features (for example the possible holiday effects as suggested by the
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time series plots in Fig. 14.1). However for the purpose of generating forecasts which
capture the main features of the demand, the current features should suffice.

14.2.3 Model Selection

The features identified in the data analysis are not only important as inputs to the
forecasts models but can be used to inform the choice of models themselves. The
forecast models described here are all based on those presented in Chap.9. Recall
the aim is to generate accurate point and probabilistic, four day-ahead forecasts. By
comparing the forecast models, insights can be gained on which models are most
accurate, but also identify some of the more important features for describing LV
level demand. Throughout the section L1, L2, . . . ,will denote the demand time series
with Lt the demand at time step t . For the probabilistic forecasts 99 quantiles will
be generated for each time step in the forecast horizon.

To begin, four basic benchmarks will be defined in order to properly assess the
inputs and compare to the main forecast models. As described in Sect. 8.1.1 there are
several categories of benchmark models. Since there is no state-of-the-art available
the focus will be on simple and common benchmarks.

Benchmark 1: Naïve Seasonal Persistence (LW)
As described in Sect. 9.1, for time series with seasonalities, a simple seasonal per-
sistance model can be an effective choice of benchmark. For a series which has a
seasonal period of s1 this is defined as

L̂ t+k = Lt+k−s1 . (14.1)

Given that a weekly period is one of strongest auto-correlations in the LV demand
time series (Recall Fig. 14.2) s1 = 168 is chosen. This model will be called LW to
indicate that it is the Last-Week-as-this-week persistence forecast.

Benchmark 2: Simple Moving Average (SMA)
The seasonal persistence forecast captures some of the seasonality in the demand
time series but as shown in Sect. 9.1 it suffers from the natural variations in the
demand from week-to-week. In order to smooth out these deviations the simple
moving average was proposed. This simply takes the average over the same period
of the week for the previous p weeks. It is defined as

L̂ t+k = 1

p

p∑

i=1

Lt+k−i×s1 (14.2)

where s1 = 168 is again the weekly period for hourly data. The main parameter p
is to be found over the training period and p = 5 is found to be the optimal. This
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model retains the seasonality of the LW method but does not suffer from the random
weekly variations. This model is denoted SMA or SMA-pW to indicate the p weeks
of data used in the average.

Benchmark 3: Empirical CDF
A simple probabilistic model can be generated by estimating the distribution of the
historical load data. For each period of the week define an empirical distribution
function (see Sect. 3.4) using all the load data from the same time period over the
final year (using only one year reduces any potential seasonal biases, i.e. selecting
one month more than others) of the historical data. In other words to estimate the dis-
tribution of points for 2PM on aMonday, for a particular feeder select all load values
from 2pm on a Monday. From the resultant empirical distribution, quantiles can the
be selected. The median of this distribution can also be chosen as the corresponding
point estimate. For more details on an empirical distribution see Sect. 3.4.

Benchmark 4: Linear Seasonal Trend Model (ST)
The previous benchmarks focus on the weekly seasonal behaviour. A multiple linear
model as described in Sect. 9.3 is a relatively simple benchmark which nevertheless
can model more sophisticated relationships. Motivated by the analysis in Sect. 14.2.2
a linear model is constructed to produce day ahead forecasts (three other equivalent
models are developed to achieve two, three and four day ahead forecasts respectively)
which takes into account the annual, weekly and daily effects. One of the easiest ways
to include seasonal behaviours is to use sine and cosine functions as basis function
(see Sect. 6.2.5), e.g.

H∑

k=1

⎛

⎝ak + bkη(t) +
P∑

p=1

(ck,p) sin

(
2π pη(t)

365

)
+ (dk,p) cos

(
2π pη(t)

365

)⎞

⎠ ,

(14.3)
where, H is the number of time steps in a day (24 for the hourly data here), η(t) =⌊

t
H

⌋ + 1, is an identifier for the day of the trial (with day 1 the first day of the trial
set: 20th March 2014). The function �x� here is the floor function and rounds down
the number to the largest integer less than or equal to x , so for example, �2.1� = 2,
�−5.4� = −6, and �12� = 12. This simple model is a good start for describing the
annual seasonality but it does not take into account the daily seasonality which was
observed in the data analysis. The model can therefore be updated using dummy
variables (see Sect. 9.3), e.g.

H∑

k=1

Dk(t)

⎛

⎝ak + bkη(t) +
P∑

p=1

(ck,p) sin

(
2π pη(t)

365

)
+ (dk,p) cos

(
2π pη(t)

365

)⎞

⎠ ,

(14.4)
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where Dk(t) is the daily effects dummy variable and is defined by

D j (t) =
{
1, if j = t + Hk, for some integer k

0, otherwise,

This new model captures annual seasonality by effectively producing 24 models,
one model for each hour of the day. The data analysis also showed that there is strong
weekly periodicities in the LV demand time series, hence one more adjustment can
be applied to give the final model

L̂ t =
H∑

k=1

Dk(t)

⎛

⎝ak + bkη(t) +
P∑

p=1

(ck,p) sin

(
2π pη(t)

365

)
+ (dk,p) cos

(
2π pη(t)

365

)⎞

⎠

+
7H∑

l=1

flWl (t), (14.5)

where Wl(t) a weekly dummy variable defined by

W j (t) =
{
1, if j = t + 7Hk, for some integer k

0, otherwise,

The
∑7H

l=1 flWl(t) term adjusts each daily hour model depending on the hour of the
week and this allows the modelling of different behaviours on the weekends and the
weekdays and can capture the features which were observed in Fig. 14.3. One of the
hyperparameters to choose is the number of seasonal terms P . For simplicity and to
avoid overfitting (see Sect. 8.1.2) this is set to P = 3 (Although a validation set as
described in Sect. 8.1.3 could be used to properly choose this).

Although the formula looks relatively complicated the model is actually quite
simple and is still a multiple linear model. Due to the presence of the dummy vari-
ables, there is in fact 168 separate models for each hour of the week for the day ahead
forecasts.

The model can be easily extended to include further inputs. In this case the non-
linear relationship between temperature, Tt , at time t can be included by adding a
simple polynomial of the temperature. In this case, since the relationship between
demand and temperature is not too strongly nonlinear a simple cubic is considered:
α1Tt + α2T 2

t + α3T 3
t , whereα1,α2,α3 are the coefficients for the temperature com-

ponents of the multiple linear model.
Any linear model can be easily extended to a univariate probabilistic model

by using the model within a quantile regression for each quantile as described in
Sect. 11.4. An example of a quantile regression fit on the 6PM data in the training set
for a specific feeder is shown in Fig. 14.5 for the 10, 50 and 90 percentiles. Notice the
main annual seasonality captured by the model and the small increases in demand
that occur on weekends. The variation in the demand may not appear to be smooth
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Fig. 14.5 Quantile regression fit of the simple linear model for the demand at 6PM on a specific
feeder for the 10, 50 and 90 percentiles

and it may be tempting to try and force the data to have amore simple annual seasonal
shape, however it is important to not try and second-guess the patterns in the data as
the only true assessment of the model will be on the test set. Besides, since this is a
benchmark model it is not necessary to try andmake the model perfect. The variation
in the annual seasonality could also be due to the small numbers of complete years
in the training set. It is likely to be smoother if several years of data were available.

The above benchmarks include a number of important properties that have been
discovered by the data analysis, including weather variables, and daily, weekly and
annual periodicities. However, they do not include any autoregressive effects. The
benchmarks will therefore be compared to a number of slightly more sophisticated
models of demand which will include this feature.

Main Model 1: Seasonal Exponential Smoothing (HWT)
The double seasonal exponential smoothing method (or Holt-Winter-Taylor (HWT)
method after its creators) described in Sect. 9.2 is well suited for LV demand forecast-
ing due to its ability to incorporate two levels of seasonality and incorporate localised
autoregressive behaviour. In this case the two periods parameters used are s1 = 24,
and s2 = 168, since daily and weekly seasonalities respectively have been shown by
the data analysis to be two of the most important components of the demand time
series. In the HWT model, recent data contributes more to the final forecast than
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older data, this means that it also implicitly models the seasonal component since
the overall level of the forecast is based on locally recent information.

Once the parameters are trained for this model, a probabilistic forecast can be
generated by bootstrapping the 1-step ahead residuals as described in Sect. 11.6.1.
As with the other models, the median is used as the point forecast model.

Main Model 2: Auto-Regressive Models (ARWD, ARWDY)
Another way to incorporate autoregressive information is to generate an AR model
on the residuals of a sensible forecast model. This is the same process as described in
Sect. 7.5 which describes autoregressive correction for improving forecast models.
More generally, any forecast model μt which estimates a time series Lt can be
improved using this method if there is autocorrelation structure remaining in the
residual time series rt = Lt − μt . In this case an autoregressive model is applied to
the residual time series

rk =
p∑

k=1

φkrt−k + εt , (14.6)

where εt is the error, and the most appropriate order p can be found by, e.g. calcu-
lating the Akaike Information Criterion (AIC), or other information criterion (see
Sect. 8.2.2) for a range of different values p = 1, . . . , pmax.

The choice of underlying forecast model μt is very general. As the focus is on
testing the autoregressive effects, the baseline models will be kept relatively simple.

The analysis showed the importance of weekly seasonality, hence the first choice
of forecast model is a simple linear model

μt =
7H∑

j=1

β jW j (t). (14.7)

where, H = 24h and W j (t) is the period of the week dummy variable

W j (t) =
{
1, if j = t + 7Hk, for some integer k

0, otherwise,

as used in the ST benchmark forecast. The parameters to train are the coefficients β j

and these are estimated by simple ordinary least squares (OLS) (see Sect. 8.2) over
the initial prior year of historical loads. From this model the residuals are calculated
and the estimates from the residual model, r̂t is added to μt to give the final forecast

L̂ t = μt + r̂t . (14.8)

This model will be denoted ARWD to signify autoregressive model with weekday
mean.
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A second forecast model is also consider which adds onto the ARWDmeanmodel
by including a term for annual seasonality seen in the data analysis, this is given by

μt =
7H∑

j=1

β jW j (t) +
K∑

k=1

α1,k sin(2πtk/A) + α2,k cos(2πtk/A) (14.9)

with parameters β j and α j,k , and A = 365H as annual seasonality. The annual sea-
sonality is modelled by a Fourier approximation of order K which is fixed to K = 2
to reduce the complexity. The dummy variableW j (t) is as in Eq. (14.7). As with the
ARWD model the μk is estimated by OLS between the model and the training data.
This model is used to calculate a new residual time series which is then also trained
by OLS and is added to the mean model in Eq. (14.9) to give the final forecast L̂ t

given by
L̂ t = μt + r̂t . (14.10)

as with the ARWD model. This model is denoted ARWDY with the Y signify-
ing the yearly periodicities included through the Fourier terms. Note that separate
ARWD/ARWDY models are used depending on whether the forecasts are one, two,
three or four days ahead.

Notice the subtle differences between the modelling of the seasonalities in this
model versus the STmodel. In the ARWDYmodel the periodicities are not separated
for different periods of the day. If there is significant differences in how seasonalities
effect different times of day then perhaps the ST will perform slightly better. How-
ever, the ARWDY also includes autoregressive effects which now incorporates more
interdependencies between hours of the day. As with the ST methods the weather
effects are included by adding linear terms to the mean equations.

These regression models will serve as point forecasts. To extend them to prob-
abilistic forecasts the slightly more sophisticate GARCH type model, described in
Sect. 11.6.2 will be considered. In this the variance itself will be modelled by con-
sidering the final model residuals εt = L̂ t − Lt which are assumed to have the form
εt = σt Zt where σt is the conditional standard deviation of εt and (Zt )t∈Z is an inde-
pendent identically distributed random variable with E(Zt ) = 0 with Var(Zt ) = 1.
Themethod is described in detail in Sect. 11.6.2 and requires amodel for the standard
deviation. Since the variation in demand is likely to be correlated with the size of the
demand (larger demands have more variation) the same mean model for the point
forecast will be used for the standard deviation. For example in the case of ARWDY
the model will be

σt =
7H∑

j=1

β̃ jW j (t) +
K∑

k=1

α̃1,k sin(2πtk/A) + α̃2,k cos(2πtk/A). (14.11)

where the coefficients β̃ j , α̃1,k, α̃2,k are to be found and the tilde over the parameters
is used to distinguish them from the coefficients from the mean model. Once the
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standard deviation σt and mean L̂ t are found the bootstrap procedure (as introduced
in Sect. 11.6.2) can be employed to generate an empirical distribution (see Sect. 3.4)
for each time step in the forecast horizon. To do this perform the following operation,
for the forecast starting at time step t = N + 1

1. Draw a sample Ẑ , from empirical distribution of the random variables Zt .
2. Scale the variable with the standard deviation to give a residual εN+1 = σN+1 Ẑ .
3. Add this to the mean forecast L̃ N+1 = L̂ N+1 + εN+1.
4. Use this current value within the forecast inputs to generate the forecast for the

next time step L̂ N+2.
5. Repeat this process until forecasts have been generated for all time steps in the

forecast horizon.

The bootstraps generate a multivariate probabilistic forecast, but these can be trans-
formed into a univariate probabilistic forecasts for each time step by fitting a dis-
tribution or calculating the empirical quantiles at each time step from the generated
points (Sect. 3.4).

14.2.4 Testing and Evaluation

A diverse selection of models have been described in Sect. 14.2.3. Since they all have
slightly different structures and use different features as inputs they can be used to
test a variety of hypothesis and assumptions. As discussed in Sect. 14.2.1 there are
the following main questions that can be analysed via the errors on the test set:

1. What is the effect of temperature?
2. How does accuracy change with forecast horizon?
3. How does accuracy change for different feeders?
4. Which features are the most important for an accurate forecast?

Themodels are all trained on a training setwhich covers the dates from20thMarch
2014 to the 30th September 2015 inclusive and rolling four day-ahead forecasts have
been generated for the 53 day testing set starting 1st October 2015. Notice that no
validation set has been used in this case (Sect. 8.1.3) this is for two reasons, firstly all
the models use a relatively small number of parameters and hence have low chance
of being over fitted to the data, hence the model selection step on the validation set
has been skipped for this trial. Secondly, although there is around a year and a half
of data this is not particularly large for a data set with annual seasonality, hence a
validation set would require splitting the data further and would potential reduce the
reliability of the results on the test set. Hence the larger training set increases the
chance of properly training the model parameters.

To begin consider a comparison of the forecast models generated in Sect. 14.2.3.
Table14.1 shows the average score over all four day-ahead forecasts for the entire 53
day test period for all 100 feeders using the MAPE, RMAE and RCRPS measures
(Sect. 14.2).
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First consider the point forecasts (MAPE and RMAE scores). The main observa-
tions from the results are as follows:

• Of the benchmark models the simple persistence model (LW) is the least accurate
whereas the moving average using 5weeks (SMA-5W) and the simple seasonal
regression (ST) are the best performing. This suggests averaging the weekly his-
torical data is useful for producing more accurate models than using a simple
last-week-as-this-week value.

• Of the two best benchmarks the ST forecast is slighlty more accurate than SMA-
5W (only 2% lower MAPE), which suggest including annual seasonality can be
beneficial but only slightly.

• The main models (ARWD, ARWDY and HWT) are more accurate than the bench-
marks. These models all have autoregressive features and hence suggests there are
important temporal interdependencies in the demand time series.

• The ARWD and ARWDYmethods are slightly better than the HWT method. One
of the main differences between these models is that HWT only explicitly uses
the previous lag (although the previous lags are included implicitly as smoothed
historical terms) and thus suggests whilst the most recent previous demand is an
important indicator of the demand, older lags are also important for determining
the current demand.

• There is very little difference between the ARWD and ARWDY forecast mod-
els, with the ARWD performing slightly better, on average, across all measures.
Thus an explicit seasonality term has limited importance in the forecast accuracy
compared to the autoregressive term.

The probabilistic forecasts in fact show the same ranking of the methods as the
MAPE and RMAE, with ARWD ranked as the most accurate method, followed by
ARWDY, then HWT, then ST and then the Empirical method. This is an encouraging
result since it suggests that the accuracy of the point forecasts may be indicative
of the accuracy of the probabilistic forecasts. Probabilistic methods are typically
more expensive to train and therefore if the point forecasts can be used to rank the
probabilistic forecasts this significantly reduces computational cost of identifying
and training these methods. However caution must be exercised as this is only an
empirical observation and hasn’t been established theoretically.

Temperature Effect
Table14.1 does not consider the influence on temperature on the forecast accuracy
of residential LV network demand. As shown in Sect. 14.2.2, there seems to be a
relatively low correlation between temperature and the demand despite the fact that
the temperature is often seen as strongly connected to electricity demand due to its
obvious connection to heating and cooling behaviours. The MAPEs for particular
point forecasts that use and don’t use temperature forecasts are shown in Table14.2.
The table suggests that the weather is not a strong driver of the demand. The bench-
mark method, ST, does improve slightly, however the most accurate models, ARWD
and ARWDY, both become less accurate when temperature is included. Why would
this be the case?
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Table 14.1 MAPEs, RMAEs and RCRPSs for all forecast methods over all 4day-ahead horizons
for the entire 53day test period for all 100 feeders. The lowest errors for each score are highlighted
in bold. Reprinted from [1] with permission from Elsevier

Method Error scores %

MAPE RMAE RCRPS

LW 18.67 18.93 –

SMA-5W 15.73 16.77 –

Empirical 16.19 16.96 12.62

ST 15.42 15.42 10.97

HWT 14.84 15.01 11.06

ARWD 14.65 14.67 10.32

ARWDY 14.64 14.80 10.44

Table 14.2 MAPEs for the methods showing the effect of including temperature forecast data in
a selection of methods. Reprinted from [1] with permission from Elsevier

Method None Temperature

ARWD 14.65 16.94

ARWDY 14.6 15.16

ST 15.42 15.16

To further investigate the effect of including temperature as an input, consider
what happens when the MAPE scores are split according to forecast horizon (at
the daily resolution) as shown in Table14.3. For comparison, the MAPEs of the
temperature forecasts themselves are included. The temperature forecast drops in
accuracy by more than 80% from one day-ahead to four days-ahead. Thus if there
is a strong dependence on temperature it would be expected that the models trained
using the temperature would also drop off in accuracy at a comparable rate. In fact
the ST demand forecast accuracy changes very slightly and the ARWDY and ARWD
demand forecasts drop in accuracy only by 4.3% and 5.6%. Further experiments can
be included, for example including lagged temperature values in the demand forecast
models. However, in all cases the results are the same: temperature doesn’t appear to
have a strong effect on the demand forecast accuracy. If we examine the individual
feeders the temperature is only shown to improve the forecasts of 19 out of 100
feeders, and in all cases the MAPEs do not improve by more than 4%.

The inclusion of the temperature also doesn’t improve the probabilistic forecasts.
In Fig. 14.6 shows the reliability plot (See Chap.7) for the probabilistic forecasts
generated using the ARWDY model using no temperature (solid dots), using actual
temperature (unfilled dots) and using the forecast of the temperature (crosses). The
diagonal line shows the expected line if the quantiles generated from the model (i.e.
the predicted spread of the data) matched the empirical quantiles. It is clear that the
model not using any temperature is closest to this line hence showing that including
the temperature (whether forecast or actual) does not in fact improve the forecast.
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Table 14.3 MAPE Scores for different day ahead horizons for a selection of methods which use the
forecast temperature values as inputs. Also for comparison is the averageMAPE for the temperature
forecast themselves. Reprinted from [1] with permission from Elsevier

Method MAPE

Day 1 Day 2 Day 3 Day 4

ARWD 16.51 17.26 17.12 16.89

ARWDY 14.75 15.11 15.31 15.46

ST 15.12 15.21 15.16 15.16

Temperature 8.98 10.57 13.46 16.47
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Fig. 14.6 Reliability plot for the ARWDY forecast for different temperature inputs. Reprinted
from [1] with permission from Elsevier

There could bemany explanations for the lack of influence of the temperature data,
for example, the seasonality could be the main driver of demand and the perceived
correlation between demand and temperature is actual only due to the collinearity
between seasonality and temperature. In fact seasonality may be a confounding vari-
able in this situation (Sect. 13.6.1). In addition, it could be that much of the heating
for the consumers on these feeders use gas instead of electrical boilers and hence
temperature will only have a minimal effect. However, regardless of the reason, for
a forecaster the results for this particular data and test set indicate that temperature
is not a particularly important input for these forecast models. This result also high-
lights an important lesson: even if there is strong intuitive reasons for a explanatory
feature to be important, it does not necessarily translate to importance for the forecast
model. Going forward with the analysis the temperature is not going to be considered
any further.
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Forecast Accuracy and Horizon
Most forecasts become less accurate the further ahead they predict (Sect. 7.3). One
reason for this is that often recent values can be strong indicators of the near future
demand. Further into the future, the most recent observations are much older and
hence not as useful atmaking accurate predictions. If a forecast can retain its accuracy
for longer time horizons into the future then they can be useful for more longer term
planning. For storage applications this means longer term plans can be made for
when to charge and discharge the device.

Table14.4 shows the forecast accuracy (MAPE) for selectedmethods as a function
of days ahead. In other words the ‘Day 1’ column means the average error from
forecasting between 1 and 24h ahead, the ‘Day 2’ column indicates the average
error from forecasting between 25 and 48h ahead etc. For ARWDY the MAPE
errors only increase from 14.34% to 14.87%, i.e. a 3.7% increase. In fact there is
only a small drop in the accuracy for any of these models and this indicates that the
models can offer similar accuracy for estimating tomorrows demand as they do for
four days time. Computationally speaking, this can be quite advantageous as it can
reduce the cost of model retraining with minimal impact on the forecast accuracy.

How does the accuracy change at the hourly level? This time consider the prob-
abilistic forecasts (recall the results are qualitatively similar whether the point or
probabilistic forecasts are considered). Figure14.7 shows the relative CRPS errors
as a function of hourly horizon for selected methods. Recall, the forecasts all begin
at 7AM of each day and hence the first horizon point corresponds to the period
8−9AM. The following observations can be made

• The intraday shape of the errors are similar. Hence the period of the day is a
major indicator of the accuracy of the forecasts. Notice that the areas of highest
errors (largest CRPS) correspond to periods typically associated to high demand
(and hence high volatility), e.g. around the evening period. The overnight periods
(around 10PM until 5AM) have the lowest errors. These are typically periods
of low activity. This supports using a GARCH type model where the volatility
(standard deviation) is correlated with the average demand.

• Although the shapes are similar, there is a small trend of increasing error from one
day to the next.

• Different forecasts are more accurate for different periods of the day. For example,
although ARWD is generally the most accurate model, for some evening periods

Table 14.4 MAPE Scores for each method over each day ahead horizon. Reprinted from [1] with
permission from Elsevier

Method MAPE

Day 1 Day 2 Day 3 Day 4

HWT 14.56 14.83 14.95 15.04

ARWDY 14.34 14.59 14.75 14.87

ST 15.36 15.41 15.44 15.49
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Fig. 14.7 Plot of average Normalised CRPS for selected methods for horizons from 1h to 96.
Reprinted from [1] with permission from Elsevier

the STbenchmark is actuallymore accurate.Hence one potentialway of generating
a more accurate forecast could be to take a combination of several models (see
Sect. 13.1).

Forecast Accuracy and Feeder Size
The final piece of analysis concerns comparing the accuracy across different feeders.
As previously mentioned the feeders come in all shapes and sizes. Some have up to
109 customers connectedwhereas somehave as fewas one. Further there is a diversity
of the types of customers. Some are commercial, but most are domestic and even
amongst the domestic customers there is a wide diversity in their behaviours. Are
you like your neighbour? In addition, there are other loads that are not monitored:
street lights, elevators, cameras, landlord lighting etc. which all contribute to the load
shape and diversity.

Figure14.8 shows the MAPEs for the ARWDY model for each individual feeder
as a function of the average daily demand. Each point represents a different feeder
and some of them have been given different icons to signify different categories of
feeders. An instant observation is that 88 of the feeders closely fit a power law curve
(the bold curve in the plot). The smaller feeders tend to bemore volatile and therefore
have larger relative error values. In contrast the larger feeders have smaller errors.
This can be explained largely by the law of large numbers. The increased size of the
feeder corresponds to larger numbers of customers connected to the feeders, which
result in smoother and more regular demands that are easier to forecast.
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Fig. 14.8 Scatter plot of the relationship betweenMAPE and mean daily demand for two different
forecastingmethods. Feeders which apparently have overnight storage heaters or have usually larger
errors have been labelled separately as OSH and anomalous respectively. Also shown is a power
law fit to the non-OSH/anomalous feeders. Reprinted from [1] with permission from Elsevier

There are twelve feeders which don’t fit the power law relationship. This unusual
behaviour should prompt the investigator to try and better understand why these
feeders don’t fit the general trend. By looking at the average profile of seven feeders
an immediate observation is that the feeders have unusually large overnight demand.
This prompted a consideration of what type of consumers were on these feeders.
In fact it was found that 75−85% of customers on each of these seven feeders had
large numbers of overnight storage heaters (OSH). Overnight storage heaters are
heaters which use energy during the night to store up heat and then release this
energy during the day. These are labelled “Large OSH Feeders” in the plot. Further
to this, two other feeders had smaller overnight demands, their feeders had 62% and
75% of their customers with OSHs, these are labelled “Small OSH Feeders”. This
in itself isn’t enough to explain these feeders not obeying the power law. It also must
be confirmed that none of the other 88 feeders also have large proportions (greater
than 60%) of OSH or profiles which have large overnight demands. In fact this was
found to be the case with these feeders and hence strongly suggests the presence
of a high proportion of OSH effects the accuracy of the chosen forecast models in
unexpected ways. What about the other three anomalous feeders? At least one of
them was further found to be unique. In fact the largest feeder was found to be a
landlord lighting connection for a large office block. The final two are inconclusive
as the connectivity information is incomplete.
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These results are important on a number of levels:

1. The power law relationship suggests that forecasts are more accurate for larger
feeders than smaller feeders. For storage applications this can helpmake decisions
on where to use a storage device. For example, on larger feeders an accurate
forecast can be generated which means a storage device is more likely to be
optimally controlled. In contrast a storage device may be unsuitable for a smaller
feeder since the demand is too volatile.

2. It suggests more bespoke methods are required for those feeders which have
unusually large errors (those with large deviations from the power law relation-
ship). Identifying these feeders creates opportunities for developing improved
forecasts which will increase the opportunities for applications such as storage
control to a wider class of substations and cases.

14.3 Example Code

To demonstrate some of the methods and techniques described in this book, and to
show how they are implemented in real code, a python notebook has been shared to
show some of the steps in analysing data and developing a model. The code can be
found at the following repository: https://github.com/low-voltage-loadforecasting/
book-case-study.

The notebook will briefly demonstrate topics including:

1. Exploratory data analysis using common Python plotting libraries matplotlib1

and Seaborn,2

2. Feature modelling using common Python data library Pandas,3

3. Cross-validation using machine learning library Scikit-learn,4

4. Model fitting and selection (including simple benchmarks) in Python. In contrast
to the previous section the code will focus more on machine learning models
(Chap. 10). In particular, common machine learning packages/libraries such as
Scikit-learn,5 and TensorFlow6 will be presented.

5. Model evaluation and diagnosis.

1 See https://matplotlib.org/stable/index.html.
2 See https://seaborn.pydata.org/index.html.
3 See https://pandas.pydata.org/.
4 Found at https://scikit-learn.org/stable/.
5 Found at https://scikit-learn.org/stable/.
6 See https://www.tensorflow.org/.

https://github.com/low-voltage-loadforecasting/book-case-study
https://github.com/low-voltage-loadforecasting/book-case-study
https://matplotlib.org/stable/index.html
https://seaborn.pydata.org/index.html
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
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14.4 Summary

This chapter has highlighted the major components to creating and analysing a suc-
cessful demand forecast. The chapter has shown, through a residential LV network
application, how to apply the techniques andmethods described in the previous chap-
ters in order to properly design a forecast trial given the available data. Basic plots
such as ACFs and scatter plots have been used to identify key relationships, and these
have been supported through various statistical summaries. Point and probabilistic
forecasts have been considered and compared using a range of error measures. The
comparison of these models was used to identify some of the important features and
key relationships.

The chapter has also highlighted the importance of benchmarks for better under-
standing the forecasts, the role data analysis plays in creating the models but most
importantly the chapter has shown the importance of questioning basic assumptions
about data and explanatory variables. For example, for load forecasting of residen-
tial demand, temperature is often included in all models as it is assumed to be a
driving factor for the demand. However, at least in this specific example, including
temperature could reduce the forecast accuracy.

A code has been shared with this book and described in Sect. 14.3. This helps to
demonstrate how to implement some of the methods and techniques in practice. The
reader is encouraged to experiment with generating their own forecasts. A guided
walk-through is given in AppendixCwhich can be used to go through the main steps,
from data cleaning to testing.

14.5 Questions

For this section, the ask is to run your own forecast trial. You can follow the same
procedure as in Sect. 14.2, or follow the more extensive steps given in Chap.12.
You can also follow the step-by-step walk-through in AppendixC. To perform the
experiment select a demand time series from one of those shared in AppendixD.4.

It is also recommend running the code linked to in Sect. 14.3 to get some ideas
for practical analysis and implementation.
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