
Chapter 11
Probabilistic Forecast Methods

The previous two chapters were concerned with point forecasts which only produce
a single estimate for each time step in the forecast horizon, i.e. one value Lt for each
of the time periods t = N + 1, N + 2, . . . , N + k (assuming a forecast horizon of
length k steps ahead starting at forecast origin N ). Point estimates are limited in their
description of the future demand, especially when the underlying data has a large
degree of uncertainty. A more detailed picture of the possible values of the demand
can be produced by estimating the distribution of the demand for each period in the
forecast horizon. Forecasts which estimate the spread of the distribution are often
called probabilistic forecasts. That is the subject of this chapter.

11.1 The Different Forms of Probabilistic Forecasts

As introduced in Sect. 5.2 and Fig. 5.4, there are three core forms of probabilistic
forecasts which will be explored in this book: quantile forecasts, density forecasts
and ensemble forecasts (not to be confused with ensemble machine learning models
such as random forest in Sect. 10.3.2). These can be grouped into two core categories:
univariate (quantile and density) and multivariate (the ensemble forecasts). To
understand these types, consider the scenario of trying to estimate the distribution of
the data for the time steps t = N + 1, N + 2, . . . , N + k.

For a univariate forecast, the aim is to estimate the distribution of the demand at
each time step. In otherwords, estimate a total of k univariate distributions. The distri-
butions at different time steps are independent of each other, meaning that the spread
of the variable at one time step is not influenced by information about the demand at
other time steps. Another way to say this is there are no inter-dependenciesmodelled.
The univariate Gaussian, as introduced in Sect. 3.1 is the most famous example of a
univariate distribution function. There are twomain forms for estimates of univariate
distributions, either a full continuous density function, or discrete values (quantiles)
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Fig. 11.1 Example of both
Gaussian distribution as
described by its density
function (solid line) and
20-quantiles (red dotted
lines)
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defininguniformly spaced levels of equal probability.1 These two forms are illustrated
in Fig. 11.1 for a standard Gaussian distribution. The density estimate is often prefer-
able, as it describes the entire distribution, but requires either knowing/assuming that
the distribution is from a particular parametric family (e.g. Gaussian in this case),
or requires training relatively expensive methods, such as Kernel Density Estimates
whichwill be described in Sect. 11.5. The quantile estimates (described inmore detail
in Sect. 3.2) in Fig. 11.1, show the 5, 10, . . . , 95% quantiles for the Gaussian density,
and are clearly less descriptive of the distribution, however they are a lot less expen-
sive to compute and don’t rely on assuming a specific distribution of the data. Since a
univariate distribution has to be estimated for each of the k time steps in the forecast
horizon this reduction in computational cost can be particularly advantageous.

For multivariate forecasts the task is instead to estimate a single multivariate
distribution for all k demand variables in the forecast horizon (see Sect. 3.3 for more
onmultivariate distributions). The advantage of multivariate distributions is that they
take into account the inter-dependencies over the entire forecast time horizon. To
illustrate this, consider the example of household demand. This is mainly determined
by the occupants behaviour. If a person gets into work late then they will likely get
back from work later, hence their demand shift in the morning will correspond to
a shift in the evening. In other words, there is an interdependency between the
demand in the morning and the demand in the evening due to the link between
these two activities. A multivariate forecast can therefore be sampled to produce
demand profile scenarios which include these correlations. Thus more complicated
and realistic interdependent behaviours can be simulated and utilised to optimise
applications such as storage control (Sect. 15.1).

Similar to the univariate case, the full multivariate density can be estimated but
it is typically more complicated and difficult to model accurately. The methods are
often more computationally expensive, there is fewer packages/resources for fitting
them, and there are very few standard parametric multivariate distribution functions
which can be used to fit to the data. Instead finite samples from the distribution are

1 Actually the quantiles do not have to be uniformly spaced but it can often be simpler and more
useful to do this.
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Fig. 11.2 A bivariate Gaussian (left) and 30 ensembles from the distribution (right)

often estimated instead. These ensembles are realisations or ‘representatives’ from
the distribution. To illustrate this consider a basic casewith k = 2where the estimates
at two consecutive time steps t = 1, 2 are jointly described by a bivariate Gaussian
distribution, shown in the left of Fig. 11.2. Drawing 30 random samples from this
distribution gives the time-dependent correlated bivariate ensembles on the right.
Notice in the language of distributions introduced in Sect. 3.3 that the multivariate
probabilistic forecast is a joint distribution and the univariate probabilistic forecasts
are marginal distributions of the full joint distribution.

11.2 Estimating Future Distributions

As discussed in the previous section, the aim of a probabilistic forecast is to estimate
the future distribution of the demand whether at a single time step (univariate) or
multiple (multivariate). To estimate the uncertainty requires accurately modelling
the variation. There are a few standard practical approaches, which will be outlined
in the section, and are the basis for many of the techniques in the following sections.

The first approach tries to model the distribution directly by training on the obser-
vations. As with most point forecasts these models use the historical data to capture
the variation and will typically make assumption about how the past distribution will
relate to the future demand. The parameteric models (Sect. 11.3), kernel density esti-
mation (Sect. 11.5 ) and the quantile regression (Sect. 11.4 ) all model the distribution
in this way.

The aim is to train the parameters or hyperparameters of a distribution model
directly (e.g. the Gaussian model) or use a model which will estimate the distribution
(e.g. quantiles). The advantage of these approaches is that as long as the rightmodel is
used, and they are trained on sufficient data from the target distribution, then they can
accurately capture the uncertainty. For example, if we are modeling demand for 2pm
and we know that the historic 2pm data all come from the same distribution then this
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data can be used to estimate the true distribution. Unfortunately, it is often not known
for certain which data comes from the same distribution and so certain assumptions
will need to be made based on the analysis of the data. Another drawback of this
approach is that its accuracy is correlated with the amount of available data. Small
amounts of data will mean a potentially inaccurate estimate.

The second type of model doesn’t model the variation directly but instead inserts
variation into the model either through adjusting the input variables and/or the model
parameters. For example, assume there is a demand model which is dependent on
temperature alone. Then the variation in the demand can be modelled by inserting
different values of the temperature into the model. Usually these are formed by
tweaks on an individual estimate of the temperature and simulates the sensitivity of
the demand to the temperature.

This approach is used in numerical weather prediction to produce forecast ensem-
bles/scenarios. Small deviations are applied to themost likely state of the atmosphere
and the numerical weather prediction models are reapplied to the adjusted states to
produce a range of weather scenarios. Analysis of closeness of the final ensembles
can indicate confidence in the future weather states, and widely ranging ensembles
may mean there the future weather is highly uncertain.

Alternatively small adjustments can be applied to the model parameters. This
accounts for mis-specifications in the model and can generate other likely future
states. Multiple adjustments can therefore produce a range of outputs allowing for
an estimate of the future distribution. The difficultly with both of these adjustment
approaches is that the correct deviations have to be applied to the inputs/parameters
in order to produce an accurate distribution estimate. This can be aided in the input
case by randomly sampling from the historical observations, or from estimating a
distribution from which you can sample.

Another drawback of this model is that the demand variation is not being simu-
lated directly but instead is estimating the sensitivity of the model to the inputs or
parameters. Consider the temperature example above. The demand may change with
the temperature but in fact it is the variation in the demand for a fixed temperature
which is of primary interest (assuming the temperature can be accurately forecast).
The key is to add adjustments to the temperature so that it captures this variation.
Once again cross-validation is one approach which can be used to determine an
appropriate adjustment to the inputs/parameters.

The following sections will mainly focus on the first approach for producing
probabilistic forecasts and train the models directly on the historical observations.

11.2.1 Notation

In the following subsections a few probabilistic forecast methodologies are intro-
duced for at least one of each of the three types introduced in Sect. 11.1: quantile,
density and ensemble forecast. For the next sections it is worth considering the fol-
lowing notation and conditions.
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1. As before consider the demand is represented by the time series L1, L2, . . ., where
Lt is the demand at time step t .

2. Without loss of generality suppose the aim is to forecast the demand k-steps ahead
for the time stamps t = N + 1, N + 2, . . . , N + k.

3. For univariate probabilistic forecasts: denote the true distributions as CDFs,
F1(LN+1|Z), F2(LN+2|Z), . . . , Fk(LN+k |Z), one function for each time step in
the forecast horizon, i.e. Ft is the univariate distribution of the demand at time
step t . Each forecast is conditional on prior information Z which represents the
set of all required dependent variables such as weather, historical demand etc.
which determine the future demand. The corresponding CDF forecasts, for each
time step t ∈ {1, 2, . . . , k}, are denoted F̂t (LN+t |Z). For simplicity theZmay not
be included in the notation.

4. For themultivariate probabilistic forecasts the true distribution can be represented
by a single CDF, Ft=1,...,k(L|Z) describing the distribution of the multivariate ran-
dom variable L = (LN+1, LN+2, . . . , LN+k)

T . The prior information Z contains
all dependent variables and the historical loads up to time step N . Often the Z
will not be included for clarity.

5. The mth ensemble of an ensemble forecast will often be denote as L̂(m) =
(L̂(m)

N+1, L̂
(m)
N+2, . . . , L̂

(m)
N+k)

T .

11.3 Parametric Models

Parametric distribution models are desirable as they can give a full description of
the spread of the data usually using only a few parameters. This section begins
by discussing parametric models via a simple example of a univariate distribution
(Sect. 11.3.1). Individual univariate parametric models are usually too inflexible to
model the distributions accurately, but families of simple univariate distributions
can be “mixed” to estimate much more general shapes and will be introduced in
Sect. 11.3.2.

11.3.1 Simple Univariate Distributions

Some simple univariate distributions have already been introduced in Sect. 3.1. The
most common being the Gaussian (or Normal) distribution, but the lognormal, and
the gamma distributionwere also presented. A range of distributions can bemodelled
using these functions in addition to other similar ones. The advantage of such models
is that they only require training a small number of parameters to fully estimate the
distribution. However, the restriction to a specific functional form means simple
parametric models cannot estimate more complex distributions. For example, the
distribution functions mentioned above are all unimodalwhich means they describe
distributions with a single modal (maximum) value. It would be impossible to model
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Fig. 11.3 Examples of unimodal (top), bimodal (middle) and trimodal (bottom) univariate distri-
butions

multimodal distributions (distributions with multiple distinct maximum values). An
example of a unimodal, bimodal and trimodal distribution are shown in Fig. 11.3.

Although univariate models are unlikely to produce the most accurate univari-
ate probabilistic forecasts they can be useful as benchmark models to compare to
more sophisticated approaches described later in this chapter. Further since they
are described by relatively few parameters they may be easier to train than non-
parametric models. Training parametric models requires estimating each individual
parameter which describes the chosen distribution family. For example, a Gaussian
will require estimates for themean and standard deviation, whereas the gamma distri-
bution requires estimating the shape and scale parameters. In the case of the Gaussian
distribution the mean and standard deviation can be found by maximum likelihood
estimation (Sect. 8.2.1) and these values turn out to simply be the sample mean and
sample standard deviation (Sect. 3.5) respectively. To ensure the best possible esti-
mate is produced requires carefully selecting the most appropriate input data to train
the parameters (in contrast to data driven machine learning techniques which will
learn from all the data). The data can be identified by the analysis methods outlined
in Chap.6. For example, suppose some hourly data is discovered to have strong daily
periodicity then it may be appropriate to train 24 different models, each one using
only the data from a specific hour of the day.

Parametric models also exist for multivariate models. In particular there is a mul-
tivariate version of the Gaussian distribution. As mentioned in Sect. 11.1 these para-
metric models can be used to produce ensemble probabilistic forecasts over the
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h-steps ahead (by estimating a h-dimensional parametric multivariate distribution).
Unfortunately, there are much fewer well defined multivariate distributions which
can accurately capture awide variety of probabilistic forecast behaviours. Thismakes
them less suitable compared to more versatile methods which will be introduced in
Sects. 11.6 and 11.7 which can also capture interdependencies across time steps in
the forecast horizon.

11.3.2 Mixture Models

More versatile univariate distribution can be modelled by combining mixtures of the
simple parametric distributions discussed in Sect. 11.3.1. The general form of a PDF
for a finite mixture model of a random variable x ∈ R

p is

f (x) =
K∑

k=1

πkgk(x, θk), (11.131)

where gk(x) are PDF’s usually from a single family (e.g. Gaussian’s) with their own
corresponding parameter’s θk (e.g. mean and standard deviation for a Gaussian). The
πk areweightswhich satisfy

∑K
k=1 πk = 1, and are often calledmixingprobabilities.

Mixture models are often used for clustering, and in this case each PDF defines a
distribution of points fromone of the clusters, and theweights signifywhat proportion
of the observations are in each cluster.

The most common mixture models for continuous variables use Gaussian com-
ponents, i.e.

gk(x) = 1

(2π)N/2det (�k)1/2
exp

(
(x − μk)

T�−1
k (x − μk)

)
, (11.132)

with covariance �k ∈ R
p×p, and mean vector μk ∈ R

p. This is called a Gaussian
mixture model (GMM). A simple example of a GMM (p = 1) with three clusters is
shown in Fig. 11.4 with mixture probabilities of 0.5, 0.25 and 0.25, means of 1, 3, 6
and all the same standard deviation of 1. It is easy to see that more complicated
distributions can be estimated by adding more groups/clusters.

AlthoughGMMs have a lot more parameters to fit to the observations then a single
Gaussianmodel they can be solved relatively efficiently via an iterative process called
the expectation-maximisation algorithm (EM) which finds an optimal estimate2

for the maximum likelihood function (See Sect. 8.2.1).
Consider observations, x1, x2, . . . , xN ∈ R

p. Without going into the details of
the EM-algorithm, the process iterates between an expectation step (E-step), which

2 Note this is more than likely a locally optimal rather than a globally optimal estimate.
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Fig. 11.4 Example of a three component Gaussian mixture model. Also shown are scaled version
of the individual Gaussian components (in red) to show their positions and how they contribute to
the overall distribution of the GMM

calculates the expectation of the log-likelihood function with current estimates of
the parameters, and the maximisation (M-step) which updates the parameters which
maximises the current expected log-likelihood function. For a GMM this translates
to the following steps (calculated for each iteration):

1. Calculate the posterior probability τik that each observations xi belongs to each
group k = 1, . . . , K ,

τik = πkgk(xi , θk)∑K
k=1 πkgk(xi , θk)

. (11.133)

This is the E-step.
2. Update the mixing probabilities πnew

k = ∑N
i=1 τk,i , for each component k =

1, . . . , K .
3. Update the mean for each component k = 1, . . . , K ,

μk =
∑N

i=1 τk,ixi∑N
i=1 τk,i

. (11.134)

Note this is a weighted average, weighted based on the membership probabilities.
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4. Update the Covariance matrix for each component k = 1, . . . , K ,

�k =
∑N

i=1 τk,i (xi − μk)(xi − μk)
T

∑N
i=1 τk,i

. (11.135)

I.e. a weighted version of the sample covariance.

The number of groups, K , is a hyperparameter that must be chosen. Although
this could be picked during cross-validation, a likelihood function framing means
that information criteria (as introduced in Sect. 8.2.2) can also be used to find the
most appropriate number of clusters. For different sized clusters calculate the BIC
(or AIC). Plotting the BIC against the number of clusters can be used to find the
point where increasing the number of clusters shows diminishing returns in terms
of the drop in the BIC. This point is the “elbow” point of the plot (and hence why
this heuristic is called the“elbow method”) and indicates one choice for a suitable
number of clusters. “Suitable” here is a relatively subjective term since there may be
several other reasons why different numbers may be more appropriate or useful.

An example of the method is illustrated in Fig. 11.5. Here, the optimal number of
clusters is around four since the tangential lines intersect around this value. Tangential
lines are often used to make it easier to identify the elbow and hence the number of
clusters.
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Fig. 11.5 Example of Bayesian information criteria for different numbers of clusters in a GMM.
Also shown are tangents to the curves to demonstrate the ‘elbow plot’ method for determining the
‘optimal’ number of clusters
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Fitting a GMM is an easy way to estimate a distribution if all the data comes from
the same distribution. For a time series this means that the data used for training
forms a stationary series. Unfortunately this is unlikely to be the case in general.
Different hours of the day may have different distributions and the time series may
be dependent on weather, time of year, or a whole host of other variables. Hence,
even though the EM-algorithm allows for relatively quick training of the GMM, there
may be insufficient data to train several mixture models accurately.

11.4 Quantile Regression and Estimation

Themajority of models used for probabilistic load forecasting are nonparametric and
are popular because they allow more flexibility in what distributions are being mod-
elled. One of the simplest andmost commonways to generate univariate probabilistic
forecasts is quantile regression, the subject of this section. One of the advantages of
the method is that it is a simple adaption of standard least squares regression.

Consider estimating the q quantiles (See Sect. 3.2 for introduction to quantiles)
for the time steps t = N + 1, N + 2, . . . , N + k. Popular choices are deciles (10-
quantiles) or demi-deciles (20-quartiles) so that the distribution is split into 10 or 20
areas of equal probability respectively.

Consider the historical time series L1, L2, . . . , LN . Recall from Sect. 9.3, the aim
in standard linear regression is to find the parameters β of some forecast model
ft (Z,β) by minimising the least squares difference with the observations. In math-
ematical terms this can be written

β̂ = argmin
β∈B

(
N∑

t=1

(Lt − ft (Z,β))2

)
. (11.136)

Here B represents the set of feasible values the parameters can take, this is often
the multi-dimensional real space Rp, where p is the number of parameters for the
chosen forecast model. Once the parameters are found the model can then be used
to produce forecast values using new inputs.

For quantile regression the principle is identical, except now instead ofminimising
a least squares cost function, for each quantile τ ∈ {1, 2, . . . , q} a set of parameters,
β̂τ must be found which minimise the difference between the model and the obser-
vations according to the quantile loss function, i.e.

β̂τ = argmin
β∈B

(
min

N∑

t=1

cτ (Lt , ft (Z,β))

)
, (11.137)

where the cost function cτ (x, y) is defined by
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cτ (x, y) =
{

τ (x − y) x ≥ y

(1 − τ )(y − x) x < y
,

This is repeated for all quantiles. Recall this is the same pinball loss score intro-
duced in Chap.7. The process of quantile regression is slightly more complicated
than for least squares regression as the cost function isn’t differentiable. However the
problem is easily reformulated as a linear programming problem and can be solved
very quickly. Quantile regression is only applicable for models, ft (Z,β), which are
linear combination of the parameters. This still allows a lot of versatility in the types
of relationships that can be modelled.

To illustrate the process consider a very simple example. Generate 400 points
from a Gaussian distribution (See Sect. 3.1) with mean μ = 2 and standard deviation
σ = 3 to represent a time series of 400 points. Here the y-axis values are the random
points and the order in time is simply the order in which they were sampled. The time
series is shown in black in Fig. 11.6. Now consider a simple linear model of the form
ft (β) = at + b, (i.e. the parameters β = (a, b)T ) where there is no other inputs Z
since there is no dependencies in this particular model. A quantile regression for
this linear model is applied to the time series as in Eq. (11.137) for each deciles (or
10-quantiles). These are shown in Fig. 11.6 as the red dashed lines. Notice in theory,
in the limit of increasing numbers of samples, the final quantiles should be flat
horizontal lines, and should describe quantiles for a Gaussian distribution with mean
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Fig. 11.6 Random time series (black) and the 10-quantiles generated from a quantile regression
applied to the simple linear model a + bt
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Fig. 11.7 Plot of the probability integral transform for the example in the text. This shows the
count of observations in each decile as defined by the quantile regression on the linear model to the
data

μ = 2 and standard deviation σ = 3. However, in this case there is a slight gradient
since there is only a relatively small amount of data and skews in the sampling can
have a large effect on the model fit.

Recall in Chap.7 that the Probability Integral Transform (PIT) can be used to
assess the calibration of a probabilistic forecast. The quantile regression lines should
split the data into equal probabilities of observations which would mean 40 (400/10)
observations are expected between each of the consecutive deciles. This is shown to
be the case in the PIT in Fig. 11.7. Notice in some quantiles there is actually 39 or 41
observations due to the relatively small number of samples. Having a uniform PIT
on the training set should be expected when an appropriate model is chosen. The true
assessment of the model is, as always, determined by evaluating it on an unseen test
set rather than the training set. In addition, for a probabilistic forecast both calibration
and sharpness are important properties and therefore the proper scoring functions
introduced in Sect. 7.2 should be used to evaluate forecasts rather than the PIT alone.

Finally, it should be noted that since each quantile is trained independently, some-
times the quantiles may cross over with each other which would obviously be incon-
sistent since say the 5% quantile may end up higher than the 10% quantile. To prevent
this, it is valid to reorder each quantile at each time step to ensure the p percentile is
lower than the q percentile, when p < q.
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11.5 Kernel Density Estimation Methods

As shown in Sect. 3.4 kernel density estimation (KDE) could be viewed as a smooth
version of a histogram. However, instead of adding discrete counts in different buck-
ets, a continuous distribution can be estimated by adding kernel functions at the
positions where observations are made. Consider observations X j , for j = 1, . . . , N
of a random variable X , then the KDE for the probability density function is defined
as

F̂(X) = 1

Nh

N∑

j=1

K

(
X − X j

h

)
, (11.138)

where h is the bandwidth, a smoothing parameter for the estimate, and K () is some
kernel function. A popular example of the kernel function is the so-called Gaussian
kernel defined as

K (x) = 1√
2π

exp

(
−1

2
x

)
. (11.139)

The chosen kernel is often less important than the proper training of the bandwidth.
Also note that the choice of kernel function has no relationship to the true distribu-
tion, i.e. a Gaussian kernel does not mean the data is distributed as a Gaussian. The
importance of the bandwidth is illustrated in Fig. 11.8. The plot shows a comparison
between the histogram of the 200 observations (left) versus the KDE of the same
observations but for three different bandwidths (right). Selecting a bandwidth too
small and the KDE will overfit the observations, too large and the KDE will under-
fit and have a higher bias (recall Sect. 8.1.2 on bias-variance tradeoff). Although
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there are rules of thumb for choosing the bandwidth, these are often based on strong
assumptions of the underlying distribution (such as being Gaussian) and hence are
too restrictive for the purposes of load forecasting. Instead the bandwidth can be
chosen using cross validation by minimising the fit (often defined according to min-
imising a probabilistic scoring function such as the CRPS, see Chap.7) between the
estimate and the observations in the validation set. This could be through a search
of the hyperparameter space e.g. grid search (Sect. 8.2.3). Although there is only
one parameter for the simplest form of KDE, it can be a computationally expensive
process.

The KDE can be easily adapted to probabilistic time series forecasts. Consider
again historical observations Lt for t = 1, . . . , N for some random variable which
are assumed to come from the same distribution with the aim being to generate k-
step ahead density forecasts for each time step t = N + 1, . . . , N + k in the forecast
horizon. In this simplified case the most basic kernel density estimate can be defined
as

F̂i (LN+i ) = 1

Nh

N∑

t=1

K

(
L − Lt

h

)
, (11.140)

for each time step in the horizon i = 1, . . . , k, and bandwidth h. In other words, the
distribution is assumed to be the same at each time step. This is clearly unrealistic for
several reasons. For one, it is likely that older data is less relevant than more recent
information. In addition, the KDE estimate in Eq. (11.140) is also independent of any
other inputs, e.g. temperature or time of the day/week. To rectify these shortcomings
modified versions of the simple KDE estimate are available.

To reduce the influenceof older points a simple decay factor,λwith0 < λ ≤ 1, can
be introduced. This reduces the contribution of older data to the overall distribution
function. One possible implementation is

F̂i (LN+i ) =
N∑

t=1

wt K

(
L − Lt

h

)
, (11.141)

where the exponential decay weight wt = λN−t

h
∑N

l=1 λN−l
. In this case both the decay

factor λ and the bandwidth must be optimised (again, often by cross-validation).
Other weightings are of course possible, as will be seen with the conditional KDE
form below. If more historical data is likely to be relevant then a slower decay, e.g
linear, may be of interest. The only restriction is that the weights should sum to one
to ensure the final function is still a well-defined probability distribution.

Another simple modification is to train only on specific historical points. For
example, load data often has simple seasonalities (such as daily or weekly) of integer
period s. In this case, the density can be estimated using

F̂i (LN+i ) = 1

Nsh

∑

t∈Ii

K

(
L − Lt

h

)
, (11.142)
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where Ns is the number of elements of the set Ii = { j |N + i − j = sk for some
integer k}. Ii is every index which is a constant multiple of the period s, so in the
case of hourly data with daily seasonality, to predict the i = 2 time period (e.g.
2AM if the forecast origin is at midnight) the historical data used to construct the
KDE estimate would only use the data from the 2AM on each of the historical days.
Recall the periodicities and seasonalities can be found using the methods presented
in Chap.5.

Another popular update to the simple KDE is conditional kernel density estima-
tion. This estimates the distribution of the variable Li , conditional on somedependent
variables, say T, S. We can now utilise the pairs of independent-dependent observa-
tions as (Tt , St , Lt ) and define the conditional distribution of F̂i (Li |T, S) as

F̂i (LN+i |T, S) =
N∑

t=1

K ((Tt − T )/hT )K ((St − S)/hS)∑n
l=1 K ((Tl − T )/hT )K ((Sl − S)/hS)

K

(
L − Lt

h

)
,

(11.143)
were hT , hS are the bandwidths for the distributions representing T and S respectively
and now must be found together with the dependent series bandwidth h. This is,
as before, simply a weighted sum like in Eq. (11.141), but where the weights are
kernel based functions of the dependent variables. As usual, popular choices of the
independent variables are weather variables, but also period of the week. This can
also be extended or simplified to take into account less ormore variables respectively.
However each bandwidth significantly increases the computational cost of training
the models which can be impractical beyond two conditional independent variables.

Often to help accelerate the optimisation, the variables are normalised (e.g. to
[0, 1]) in order to reduce the search space (see Sect. 6.1.3). The forecast can be
rescaled after the training is complete. As mentioned in Sect. 3.4 there are options
for the different kernels, and different ones can be tested, although often the choice
has minimal impact on the accuracy of the forecasts [1].

The different modifications presented here can obviously be combined to create
other models. For example the conditional kernel density form shown in Eq. (11.143)
can be extended to include a decay factor like in Eq. (11.141) or restrictions can be
applied on the inputs like in Eq. (11.142). As with manyKDEmethods, the drawback
is that each modification often increases the training complexity and computational
cost.

11.6 Ensemble Methods

This section introduces ensemble forecasts, by which we mean a set of point fore-
casts from the same forecast origin, estimating each time step with the same forecast
horizon (of length h time steps). The point forecasts are samples of equal probability
froma h-dimensionalmultivariate distribution representing the joint distribution over
the forecast horizon (see Sect. 3.3 for more on joint distributions). In other words,
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each ensemble represents an equally likely load trajectory. The methods described
in this section produce these ensembles without needing to produce the full joint
distribution.

11.6.1 Residual Bootstrap Ensembles (Homoscedasticity)

This section describes a method for generating ensemble forecast which can be
viewed as realisations from a full multivariate probabilistic forecast in the case where
the time series is assumed to have fixed variance. To begin consider a 1-step ahead
point forecast model, for example, this could be the exponential smoothing model in
Sect. 9.2 or the ARIMA models in Sect. 9.4. Denote this as f (Lt |Z,β) which may
use previous historical data as well as any explanatory inputs (all described by the
set of variables Z) to create an estimate, L̂ t+1|t , for the true value, Lt+1, at t + 1.
The β are the parameters for the model. The next time step ahead can be forecast
by iteratively applying the model and including the forecast from the previous time
step as a pseudo-historical input to the model. Hence for the next time step

L̂ t+2|t = f (L̂ t+1|t |Lt ,Z,β) = f ( f (Lt |Z,β)|Lt ,Z,β). (11.144)

The process can obviously be repeated to produce k-step ahead forecasts. Now, recall
that there is an error process describing the difference between the observations
and the 1-step ahead forecasts described by the residual εt+1 = Lt+1 − L̂ t+1|t . By
including the small deviations, described by the residual series, into the forecast,
different trajectories can be created which represent different, but equally likely
outcomes.

To describe the algorithm in more detail, consider a k-step ahead forecast gen-
erated from a one step ahead model, e.g. L̂ t+1 = f (Lt |Z,β). Assume the forecast
origin is at time step t = N . Hence the aim is to produce ensemble forecasts which
cover the period N + 1, . . . , N + k. The residual series, εt = Lt+1 − L̂ t+1 (which is
calculated for the entire training set), is assumed to have a fixed variance (the series
is said to have homoscedasticity) and are uncorrelated with each other. Using this
residual series the process of generating a new ensemble for a k-step ahead forecast,
using a 1-step ahead forecast model f , is relatively simple. For each ensemble, b,
the procedure is as follows:

1. Randomly sample with replacement (this is called a bootstrap sample) a residual,
ê(b)
1 , from the set of all residuals, {ε1, ε2, . . . , εN }.

2. Add this residual to the current 1-step ahead forecast value L̃ N+1|N to produce a
new value L̂(b)

N+1|N = L̃ N+1|N + ê(b)
1 .

3. Include L̂(b)
N+1|N in the forecast model to generate an estimate for the next time

step, L̃(b)
N+2|N+1 = f (L̂(b)

N+1|N |LN ,Z,β).
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Fig. 11.9 Example of a simple periodic time series with homoscedasticity (top) and heteroskedas-
ticity (bottom)

4. Update this value using another bootstrap sample from the residual series to give
L̂(b)
N+2|N+1 = L̃(b)

N+2|N+1 + ê(b)
2 .

5. Continue this procedure until the kth step is reached.
6. The final series, L̂(b)

N+1|N , L̂(b)
N+2|N+1, . . . , L̂

(b)
N+k|N+k−1 is the bth bootstrap ensem-

ble.

This is also known as a residual bootstrap forecast. The process can be repeated to
produce asmany ensembles as desired. Themore ensembles generated, themore load
diversity is captured. Generating more samples increases the computational cost, but
since each ensemble is independent of the others they can be generated in parallel.
Notice that this method strongly assumes that the 1-step ahead errors in the future
will be similar to the past 1-step ahead errors. An example of a simple periodic series
with homoscedasticity is shown in Fig. 11.9a.

If instead of sampling from the actual residuals you sample from an assumed or
fitted distribution then the method can be referred to as a Monte Carlo forecast. For
example, it is often assumed that residuals are Gaussian distributed with zero mean
and therefore instead of sampling from the set of residuals, the values can be sampled
from a Gaussian distribution trained on the residuals. An example of an ensemble
forecast generated from the Monte Carlo simulations, for 100 ensembles is shown
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Fig. 11.10 Example of an Monte Carlo derived ensemble 50-step ahead forecast with 100 ensem-
bles for a simple ARIMA model

in Fig. 11.10 for a simple ARIMA(4, 1, 1) model. Notice that the errors get wider
(have larger variation) with forecast horizon length. This is due to the accumulation
of the errors from one step to the next. This intuitively makes sense as the uncertainty
should increase the further ahead the prediction.

Notice that the forecasts at each time step can be used to estimate a univariate
estimate. This can be done by either fitting quantiles or a density estimate to the
collection of ensemble points at each time step.

11.6.2 Residual Bootstrap Ensembles (Heteroskedasticity)

An advantage of the bootstrap method described in Sect. 11.6.1, is that a multivariate
forecast can be generated with minimal computational cost since only the original
point forecastmodel needs to be trained. Further, if themodel contains autoregressive
features (as ARIMA and exponential smoothing do) then the ensembles also retain
the interdependencies of the time series. A drawback to the method is the strong
assumption of homoscedasticity for the series of residuals. In fact, it is likely that
periods of high demand will also have larger variability. A time series where the
variance changes in time is said to have heteroskedasticity.

An example of a simple periodic series with heteroskedasticity is shown in
Fig. 11.9b in which the largest variation in the demand coincides with the largest
amplitude of the periods. When time series are heteroscedastic the variability can be
incorporated using so-called GARCH-type models which can extend the bootstrap-
ping method described in Sect. 11.6.1. An outline of these methods are given here,
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but since they are relatively complicated, the details are ommited. The interested
reader is referred to some further reading given in AppendixD.

Consider a model for the load time series with some mean process (e.g. any of
the point forecasts presented in Chaps. 9 and 10) and as before let εt be the 1-step
ahead error/residual terms. Now assume that the standard deviation σt also varies
with time t . It is helpful to write the residual in the form

εt = σt Zt , (11.145)

where σt > 0 is a time-dependent conditional standard deviation, and the (Zt )t∈Z is
a random variable which is stationary, independent in time and has the conditions
E(Zt ) = 0 with Var(Zt ) = 1. Splitting the data into the standard deviation this way
helps to simplify the actual variation into the magnitude of variation, represented by
the standard deviation, and the random component which is now stationary due to the
scaling. Once the components of Eq. (11.145) are found it is easy to apply an adapted
form of the bootstrap method by taking random samples from the distribution of Zt ,
and then rescale with the modelled standard deviation σN+k at the time step being
forecast.

To do this, first a model must be chosen for the standard deviation. In economic
models standard choices are ARCH and GARCH models. The ARCH and GARCH
models are essentially variance counterparts to the AR and ARMA models of the
point forecasts introduced in Sect. 9.4. The GARCH(p, q) model is of the form

σ2
t = α0 +

q∑

i=1

αiε
2
t−i +

p∑

j=1

β jσ
2
t− j , (11.146)

where the q is the lag residual terms (called the ARCH term) and p is the lag variance
terms (this is called theGARCH term). TheARCHmodel only has the q lags with the
residual terms and no variance terms. These are often coupledwith the corresponding
AR, orARIMAmodel for themean process and are solvedwith ordinary least squares
or maximum likelihood methods.

ARCH and GARCH are specific forms of the variance which are often suitable
for financial time series applications. In fact standard deviation can be modelled
much more generally and these will be referred to as GARCH-type methods. In load
forecasting, the variation in the demand is often larger for time periods when the
demand is typically higher (however, of course, for each new time series the patterns
in the variance should be analysed before choosing a model). For this reason it is
often suitable to choose a standard deviation model which is similar to the point
forecast model chosen.

For ARCH and GARCH problems the procedures are relatively well established
and hence there are many packages for automatically selecting the order and coef-
ficients for the model. In the more general case a simple procedure can be followed
which is adapted from [2]:
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1. Since the components of the residuals as given in Eq. (11.145) are not known,
instead consider the absolute or squared residuals |εt | or ε2t . The former will be
the focus as it better captures the heavy tails of energy demand. However, the
same procedure is applicable for both forms.

2. Since E(|εt |) = σtE(|Zt |)), fitting a model to |εt | is equivalent to fitting a model
to a scaled version of the standard deviation, Cσt , for some constant C > 0 since
Zt is a stationary variable (and hence has constant expectation). The fit is usually
achieved using ordinary least squares (Sect. 8.2).

3. The constant C must now be estimated by considering the normalised residuals,
εt/|εt | = εt/Cσt = Zt/C , i.e. a scaled version of Zt . Since Zt has variance equal
to one, the scaling, C , can be be estimated by calculating the sample standard
deviation, α, of the normalised residuals which tells us that C = 1/

√
α.

For this method notice that there is no assumption on the underlying distribution
(only on its variance). An updated version of the bootstrap forecast in Sect. 11.6.1
now updates the 1-step ahead forecast by adding a sample from the distribution of Z
(sample from the empirical distribution for Z formed from the standardized residuals
εt/σt ) which has then been scaled by the σt model at the current time. Note it is
assumed that the errors εt and standardised residuals are uncorrelated in time to allow
them to be randomly sampled for the bootstrap. As usual residuals should be checked
(in this case the standardised residuals) to ensure that they satisfy the assumptions
about correlation, fixed variance and have zero mean. If these assumptions do not
hold then further updates can be applied (as in Sect. 7.5). A specific example of the
above GARCH-type model will be given in the LV case study in Sect. 14.2.

11.7 Copula Models for Multivariate Forecasts

This section introducesCopulas, another popular method for generatingmultivariate
probabilistic forecasts, widely used in quantitative finance, but now used extensively
in energy forecasts. Here only the basics will be described. Suggested further reading
can be found in AppendixD.

A copula is simply a function, C , from an N -dimensional unit box to a 1-
dimensional unit box, i.e. C : [0, 1]N −→ [0, 1], and describes a cumulative distri-
bution function on variablesU1, . . . ,UN where each variableUi is uniformly distri-
bution over [0, 1], i.e. C(u1, u2, . . . , uN ) = P(U1 ≤ u1,U2 ≤ u2, . . . ,UN ≤ uN ).
In other words a copula models the joint distribution on variables U1, . . . ,UN with
uniform marginal distributions (See Sect. 3.3 for more details on joint and marginal
distributions). A copula is focused on the correlation/inter-dependence structure of
the variables. An advantage of these methods is the wide range of different possible
copula functions which can be used to model the inter-dependence.

The power of copulas lie in the fact that, due to Sklar’s theorem, any multivariate
distributions can be modelled using only the marginal distributions and a copula.
Consider a random variable X = (X1, X2, . . . , XN )T ∈ R

N with joint distribution
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FX1,...,XN (x1, . . . , xN ) and marginal CDFs denoted by F1(x1), . . . , FN (xN ), then by
Sklar’s theorem, there exists a copula C such that

FX1,...,XN (x1, . . . , xN ) = C(F1(x1), . . . , Fn(xN )). (11.147)

Note that for any random variable X with CDF F , is uniformly distributed when
transformed by its CDF, i.e. FX (X) is uniformly distributed. Recall this is just the
probability integral transform (PIT) described in Chap. 7.

The process in Eq. (11.147) is reversible which means once a copula model has
been trained on observations then multivariate samples can be easily produced with
the relevant dependency structure. First samples u1, u2, . . . , uN are generated from
the copula distribution and then each variable is transformed into the original random
variable space using the inverse CDF of themarginal F−1

i (ui ) for each corresponding
component of the sample point.

Suppose that X = (X1, X2, . . . , XN )T ∈ R
N has a multivariate Gaussian distri-

bution, then the corresponding copula is defined purely by the correlation matrix
since this explains the entire dependency structure. This also means that each corre-
lationmatrix defines a specificGaussian copula. Of course just because amultivariate
random variable has a Gaussian copula doesn’t mean that it follows a multivariate
Gaussian distribution since the marginals need not be Gaussian. If the correlation
matrix is the identity then the copula is called the independence copula defined by

C0(u1, u2, . . . , uN ) = u1 . . . uN , (11.148)

where each component is independent of the other components. In general, there is
no simple analytic form for a Gaussian copula but it can be expressed as

CGauss
R (u1, u2, . . . , uN ) = �R(�−1(u1), . . . , �

−1(uN )), (11.149)

where � is the univariate CDF of the standard Gaussian (mean zero and unit stan-
dard deviation) and �R is the multivariate Gaussian with zero mean and correlation
matrix R.

Another family of popular copula’s are the Archimedean copulas, which have
explicit formula’s and can represent multivariate distributions using only one param-
eter, θ. They have the general form

C(u1, . . . , uN ; θ) = ψ−1 (ψ(u1; θ) + · · · + ψ(uN ; θ); θ) (11.150)

whereψ : [0, 1] × � → [0,∞) is a continuous, strictly decreasing, convex function
such that ψ(1; θ) = 0. For example one popular Archimedean copula is the Gumbel
Copula, which is defined by

CGum(u1, u2, . . . , uN |θ) = exp
[
− (

(− log(u1))
θ + · · · + (− log(uN ))θ

)1/θ]
.

(11.151)
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Fig. 11.11 Example of samples from Gumbel copulas with different values of θ

Notice that this becomes the independence copula when θ = 1. Examples of samples
from a bivariate Gumbel copula with different values of θ are shown in Fig. 11.11.
Note that the Gumbel can never represent negative correlation.

It is clear that different copula’s are useful for different dependency structures and
that not all copulas are useful for all types of data. For example, Gumbel copula’s
shouldn’t be usedwith data with negative correlations. How to choose and fit a copula
will be briefly considered later in this section.

The value of the Pearson’s correlation coefficient depends on the marginals and
the copula, which means random variables will have different Pearson values when
transformed using themarginal CDFs.Amore convenientmeasure for the correlation
structure for a copula are Rank correlation coefficientswhich only depend on the rank
of the data (see Sect. 3.5). Since the rank of data is unchanged by the application of a
monotonically increasing function, it means the rank correlation coefficients won’t
change when the marginal CDFs are applied. An example of a rank correlation
coefficient was given in Sect. 3.5: the Spearman’s rank correlation coefficient.

To better understand how copula’s work and how they can be used to generate new
samples, consider a simple bivariate distribution for the random variables (X1, X2),
whose dependency structure is described by a Gaussian copula with covariance

R =
[
1 0.8
0.8 1

]
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Fig. 11.12 Observations from a bivariate distribution with Gaussian Copula, with Gamma (X1)
and Gaussian (X2) marginal distributions (shown as the histograms)

i.e. it has linear Pearson correlation ρ = 0.8. Also suppose that the marginal of the
first variable, X1, has a distribution described by a Gamma distribution, where

Gamma(X,α,β) = 1

βα�(α)

∫ X

0
tα−1e−t/βdt (11.152)

where α = 2 is the shape parameter (determines the shape of the distribution), and
β = 1 is the scale parameter (determines how spread the distribution is). �(.) is the
so-called gamma function. The second variable, X2, is described by the standard
Gaussian distribution (mean zero and unit standard deviation). An example of 1000
observations from this distribution is shown in Fig. 11.12. On the horizontal and
vertical of the plots are marginal histograms of each variable, which shows the
Gamma and Gaussian distributions respectively.

The distribution after applying the CDF of each marginal to its respective variable
is shown in Fig. 11.13. The marginals are now described by uniform distributions,
as expected. Notice in this example the sample pearson correlation between X1 and
X2 is ρ = 0.767 but between U1 and U2 is ρ = 0.785 and is not preserved by the
transformation (although they are close in this example). In contrast the Spearman’s
correlation between X1 and X2, and between U1 and U2 are both r = 0.787 as
expected. In practice the objective would be to fit a copula to this transformed data.
In this case assume it is known that the copula is a Gaussian and therefore the aim
is to find the Pearson correlation coefficient ρ. In fact in the [3] bivariate case the
Spearman’s coefficient r is related to the linear correlation via
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Fig. 11.13 Distribution of transformed observations where the marginals of their respective com-
ponents have been applied. The marginals are now uniform as shown by the histograms

ρ = 2 sin
(
r
π

6

)
, (11.153)

and hence the invariant value of the Spearman’s correlation can be used to estimate
the Pearson correlation and gives ρ = 0.801 (note it isn’t exactly the 0.8 used to
generate the data due to numerical deviations in the sample, the larger the sample
the closer we would expect the sample value to be to the original parameter).

Given the copula, new samples can be generated and then transformed to the origi-
nal space (with the same linear correlation) by using the inverseCDFof themarginals.
An example of 1000 new points generated using the copula (and transformed using
the inverse CDFs) is shown in Fig. 11.14. Notice how the final distribution success-
fully resembles the original distribution in Fig. 11.12.

A similar process can be used to generate ensemble demand forecasts. In this
case, consider a demand time series L1, L2, . . . , where the aim is to generate a
day-ahead multivariate forecast with, say, forecast origin t = N . Further for sim-
plicity, suppose the data is hourly and hence a 24-step ahead forecast is being con-
sidered. The aim here will be to generate a multivariate distribution for the day,
FN+1,...,N+24(LN+1, . . . , LN+24), and hence model the inter-dependencies between
different times of the day. It is assumed that CDFs for the marginals at different times
of the day are already known, i.e. F1(LN+1), . . . , F24(LN+24) are known. These
could be estimated, e.g. by the univariate probabilistic models described earlier in
this chapter. In this case a copula can be used to model the intra-day dependency
structure by training on the daily profiles transformed by the marginals.

There is a range of different copula models, only some of which are mentioned
above. The questions remain on how to train and choose the copulas on the data.
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Fig. 11.14 Samples from the copula model fitted to the observations

In theory, for parametric models for the copulas and marginals, maximum likeli-
hood estimation (see Sect. 8.2) could be used to fit a copula, however this can be
complicated for high dimensional problems as there are lots of parameters to train.
Instead the models can be estimated using a two step process called the Pseudo-
Maximum Likelihood, where first the marginals are estimated and a reduced form of
the maximum likelihood, given by

n∑

k=1

log
[
c{F̂1(X1,k), . . . , F̂N (XN ,k)|θC })

]
, (11.154)

is maximised. Here c is the copula density corresponding to the Copula CDF, C ,
and θC represents the parameters for the copula model. The maximisation above can
still be complicated especially for higher dimensional problems, depending on the
copula model considered. One approach has already been suggested for the simple
Gaussian copula example given above. The correlation matrix can be estimated by
using the Spearman’s correlation coefficients for each pair of variables and this can
either be used as final correlationmatrix or as an initial guess in the pseudo-maximum
likelihood optimisation in Eq. (11.154).

Choosing the correct copula’s depends onmany factors and adetailed investigation
is beyond the scope of this book. Further reading is suggested in AppendixD. In
summary, the choice depends on the type of correlation being modelled as well as the
dependencies within the tails/extremes of the distribution. One possible approach for
choosing an appropriate copula(s) model can be based on comparison on a validation
set as described in Sect. 8.1.3.
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11.8 Questions

For the questions which require using real demand data, try using some of the data as
listed in AppendixD.4. Preferably choose data with at least a year of hourly or half
hourly data. In all the cases using this data, split into training, validation and testing
in a 60, 20, 20% split (Sect. 8.1.3).

1. Sample 20 points from a 5-dimensional Gaussian distribution. Make sure that
some of the variables are more correlated than others by manipulating the corre-
lation between them in the covariance matrix. You can fix the variance of all the
variables to one to make the model simpler. Now consider that each dimension
of the Gaussian is a different time step in a time series of five points. Plot each
sample to create samples like in Fig. 11.2. What can you see between the vari-
ables which are highly correlated? What if you change the variance for different
variables, how does this change the ensemble plot?

2. Generate a quantile regression. Take your linear forecast model you generated
in Sect. 9.7. Now fit to the training data a quantile regression for percentiles of
10, 20, 30, . . . , 90 using inbuilt packages such as quantreg in R.3 Apply to the
test set, and count how many values lie between each set of quantiles. Plot the
probability integral transform. What shape is it? Is there a bias in the model? Is it
under or over dispersed? What adjustments to the quantiles could help produce a
uniform PIT?

3. To demand data with daily or weekly periodicity fit a kernel density estimate for
each time step from each period in the seasonal cycle. For example, if the data
is half hourly with daily seasonality then train 48 models for each half hour of
the day. Fit the model by performing a grid search for the bandwidth. With the
final model, apply it to the test set. Generate quantiles for the estimate, and thus
calculate the PIT for the same percentiles as the previous question. Is the PIT
uniform, overdispersed or underdispersed?
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