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Abstract. In the area of industrial process mining, privacy-preserving
event data publication is becoming increasingly relevant. Consequently,
the trade-off between high data utility and quantifiable privacy poses
new challenges. State-of-the-art research mainly focuses on differentially
private trace variant construction based on prefix expansion methods.
However, these algorithms face several practical limitations such as high
computational complexity, introducing fake variants, removing frequent
variants, and a bounded variant length. In this paper, we introduce a
new approach for direct differentially private trace variant release which
uses anonymized partition selection strategies to overcome the afore-
mentioned restraints. Experimental results on real-life event data show
that our algorithm outperforms state-of-the-art methods in terms of both
plain data utility and result utility preservation.
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1 Introduction

In recent years, process mining and event data analysis have been successfully
deployed in many industries. The main objectives are to learn process models
from event logs for further behavioral inference (so-called process discovery), to
extend existing models using event logs (so-called model enhancement), or to
assess the alignment between a process model and an event log (so-called con-
formance checking) [2]. However, often the underlying event data are bound to
personal identifiers or other private information. A prominent example is the pro-
cess management of hospitals where the cases are patients being treated by staff.
Without means of privacy protection, any adversary is able to extract sensitive
information about individuals and their properties. Thus, privacy regulations,
such as GDPR [1], typically restrict data storage and access which motivates the
development of privacy preservation techniques.

The majority of state-of-the-art privacy preservation techniques are built on
Differential Privacy (DP), which offers a noise-based privacy definition. This is
due to its important features, such as providing mathematical privacy guaran-
tees and security against predicate-singling-out attacks [3]. The goal of techniques
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Table 1. A simple event log from the healthcare context including trace variants and
their frequencies.

Trace variant Frequency

〈register, visit, blood-test, release〉 10

〈register, blood-test, visit, release〉 8

〈register, visit, release〉 20

〈register, visit, blood-test, blood-test, release〉 5

based on DP is to hide the participation of an individual in the released output
by injecting noise. The amount of noise is mainly determined by the privacy
parameters, ε and δ, and the sensitivity of the underlying data. State-of-the-
art research targeting (ε, δ)-DP methods in process mining focuses on releasing
raw privatized activity sequences performed for cases, i.e., trace variants. Table 1
shows a sample of such event data in the healthcare context, where each trace
variant belongs to a case, i.e., a patient, and one case cannot have more than one
trace variant. This format describes the control-flow of event logs that is basis
for the main process mining activities. The trace variant of a case is considered
sensitive information because it contains the complete sequence of activities per-
formed for the case that can be exploited to conclude private information, e.g.,
patient diseases in the healthcare context.

To achieve differential privacy for trace variants, the state-of-the-art approach
[12] inserts noise drawn from a Laplacian distribution into the variant distribu-
tion obtained from an event log. This approach has several drawbacks including:
(1) introducing fake variants, (2) removing frequent true variants, and (3) limited
length for generated trace variants. A recent work called SaCoFa [9], attempts to
mitigate drawbacks (1) and (2) by gaining knowledge regarding the underlying
process semantics from original event data. However, the privacy quantification
of all extra queries to gain knowledge regarding the underlying semantics is not
discussed. Moreover, the third drawback still remains since this work, similar
to [12], employs a prefix-based approach. The prefix-based approaches need to
generate all possible unique variants based on a set of activities to provide dif-
ferential privacy for the original distribution of variants. Since the set of possible
trace variants that can be generated given a unique set of activities is infinite, the
prefix-based techniques need to bound the length of generated sequences. Also,
to limit the search space these approaches typically include a pruning parameter
to exclude less frequent prefixes.

We introduce an (ε, δ)-DP approach for releasing the distribution of trace
variants that focuses on the aforementioned drawbacks. In contrast to the prefix-
based approaches, the underlying algorithm is based on (ε, δ)-DP for partition
selection that allows for a direct publication of arbitrarily long sequences [4].
Employing differentially private partition selection techniques, the actual fre-
quencies of all trace variants can directly be queried without guessing (gener-
ating) trace variants. Internally, random noise drawn from a specific geometric
distribution is injected into the corresponding frequencies, and all variants whose
privatized frequencies fall beyond a threshold are removed. Hence, no fake trace
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variants are introduced, and only some infrequent variants may disappear from
the output. Moreover, no tedious fine-tuning has to be conducted and no compu-
tationally expensive search needs to be included. In Sect. 5, we introduce different
metrics to evaluate the data and result utility preservation of our approach. We
also run our experiments for the state-of-the-art prefix-based methods and show
superior data and result utilities compared to these methods.

The remainder of this paper is structured as follows. In Sect. 2, we provide
a summary of related work. Preliminaries and notations are provided in Sect. 3.
Section 4 introduces the theoretical background of differentially private parti-
tion selection, and describes our TraVaS algorithm. In Sect. 5, the experimental
results based on real-life event logs are shown. Section 6 concludes the paper.

2 Related Work

The research area of privacy and confidentiality in process mining is recently
growing in importance. Several techniques have been proposed to address the
privacy and confidentiality issues. In this paper, our focus is on the so-called
noise-based techniques that are based on the notion of differential privacy. In
[12], the authors apply an (ε, δ)-DP mechanism to event logs to privatize directly-
follows relations and trace variants. The underlying principle uses a combina-
tion of an (ε, δ)-DP noise generator and an iterative query engine that allows an
anonymized publication of trace variants with an upper bound for their length.
SaCoFa [9] is the most recent extension of the aforementioned (ε, δ)-DP mecha-
nism that attempts to optimize the query structures with the help of underlying
semantics. Another extension of [12] is the PRIPEL approach, where more event
attributes can be secured using the so-called sequence enrichment [8].

Whereas most of the aforementioned ideas target raw event logs, in [7], the
focus is on directly-follows graphs. During the edge generation, connections are
randomized using (ε, δ)-DP mechanisms to balance utility preservation and pri-
vacy risks. As the main benchmark model for our work, we choose the technique
by Mannhardt et al. [12] since it focuses on trace variants and is the basis of most
of the other techniques. Moreover, its privacy guarantees are directly proven by
(ε, δ)-DP mechanisms, i.e., no extra privacy analysis is required. Nevertheless,
we also compare our results with SaCoFa as the most recent extension of the
benchmark to demonstrate the superior performance of our approach.

3 Preliminaries

In this section, we introduce the necessary mathematical concepts and definitions
utilized throughout the remainder of the paper. Let A be a set. B(A) is the
set of all multisets over A. A multiset A can be represented as a set of tuples
{(a,A(a))|a ∈ A} where A(a) is the frequency of a ∈ A. Given A and B as two
multisets, A � B is the sum over multisets, e.g., [a2, b3] � [b2, c2] = [a2, b5, c2].
We define a finite sequence over A of length n as σ = 〈a1, a2, . . . , an〉 where
σ(i) = ai∈A for all i∈{1, 2, . . . , n}. The set of all finite sequences over A is
denoted with A∗.
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3.1 Event Data

The data used by process mining techniques are typically collections of unique
events that are recorded per activity execution and characterized by their
attributes. We denote E as the universe of events. Then, a trace σ, which is a sin-
gle process execution, is represented as a sequence of events σ = 〈e1, e2, ..., en〉 ∈
E∗ belonging to the same case and having a fixed ordering based on timestamps.
Note that events are unique and cannot appear in more than one trace. More-
over, each case (individual) contributes to only one trace. An event log L can
be represented as a set of traces L ⊆ E∗. Our work focuses on the control-flow
aspect of an event log that only considers the activity attribute of events in
traces. We define a simple event log based on activity sequences, so-called trace
variants.

Definition 1 (Trace Variant). Let A be the universe of activities. A trace
variant σ = 〈a1, a2, ..., an〉 ∈ A∗ is a sequence of activities performed for a case.

Definition 2 (Simple Event Log). A simple event log L is defined as a
multiset of trace variants L ∈ B(A∗). L denotes the universe of simple event
logs.

3.2 Differential Privacy

In the following, we introduce the necessary concepts of (ε, δ)-DP for our
research. The main idea of DP is to inject noise into the original data in such a
way that an observer who sees the randomized output cannot tell if the infor-
mation of a specific individual is included in the data [6]. Considering simple
event logs, i.e., the distribution of trace variants, as our sensitive event data,
differential privacy can formally be defined as Definition 3.

Definition 3 ((ε,δ)-DP for Event Logs). Let L1 and L2 be two neighbour-
ing event logs that differ only in a single entry, e.g., L2 = L1�[σ] for any
σ∈A∗. Also, let ε∈R>0 and δ∈R>0 be two privacy parameters. A randomized
mechanism Mε,δ:L→L provides (ε, δ)-DP if for all S ⊆ A∗×N: Pr[Mε,δ(L1) ∈
S] ≤ eε×Pr[Mε,δ(L2) ∈ S]+δ. Given L ∈ L, Mε,δ(L) ⊆ {(σ,L′(σ)) | σ ∈
A∗ ∧ L′(σ) = L(σ) + xσ}, with xσ being realizations of i.i.d. random variables
drawn from a probability distribution.

In Definition 3, ε as the first privacy parameter specifies the probability ratio,
and δ as the second privacy parameter allows for a linear violation. In the strict
case of δ = 0, M offers ε-DP. The randomness of respective mechanisms is typ-
ically ensured by the noise drawn from a probability distribution that perturbs
original variant-frequency tuples and results in non-deterministic outputs. The
smaller the privacy parameters are set, the more noise is injected into the mech-
anism outputs, entailing a decreasing likelihood of tracing back the instance
existence based on outputs.

A commonly used (ε, 0)-DP mechanism for real-valued statistical queries is
the Laplace mechanism. This mechanism injects noise based on a Laplacian dis-
tribution with scale Δf/ε. Δf is called the sensitivity of a statistical query f .
Intuitively, Δf indicates the amount of uncertainty we must introduce into the
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output in order to hide the contribution of single instances at (ε, 0)-level. In our
context, f is the frequency of a trace variant. Since one individual, i.e., a case,
contributes to only one trace, Δf = 1. In case an individual can appear in more
than one trace, the sensitivity needs to be accordingly increased assuming the
same value for the privacy parameter ε. State-of-the-art event data anonymiza-
tion frameworks such as our benchmark often use the Laplace mechanism.

4 Partition Selection Algorithm

We first highlight the problem of partition selection and link it to event data
release. Then, the algorithmic details are presented with a brief analysis.

4.1 Partition Selection

Many data analysis tasks can be expressed as per-partition aggregation opera-
tions after grouping the data into an unbounded set of partitions. When iden-
tifying the variants of a simple log L as categories, the transformation from L
to pairs (σ,L(σ)) becomes a specific instance of these aggregation tasks. To ren-
der such queries differentially private, two distinct steps need to be executed.
First, all aggregation results are perturbed by noise addition of suitable mecha-
nisms. Next, the set of unique partitions must be modified to prevent leakage of
information on the true data categories (differentially private partition selection)
[4,6]. In case of publicly known partitions or bounded partitions from a famil-
iar finite domain, the second step can be reduced to a direct unchanged release
or a simple guessing-task, respectively. However, for the most general form of
unknown and infinite category domains, guessing is not efficient anymore and
an (ε, δ)-DP partition selection strategy can be used instead.

Recently, in [4], the authors proposed an (ε, δ)-DP partition selection app-
roach, where they provided a proof of an optimal partition selection rule which
maximizes the number of released category-aggregation pairs while preserving
(ε, δ)-DP. In particular, the authors showed how the aforementioned anonymiza-
tion steps can be combined into an explicit (ε, δ)-DP mechanism based on a
k-Truncated Symmetric Geometric Distribution (k-TSGD), see Definition 4. We
exploit the analogy between partition selection and simple event log publication
and transfer this mechanism to the event data context. Definition 5 shows the
respective definition based on a k-TSGD.1

Definition 4 (k-TSGD).Given probability p ∈ (0, 1), m = p/(1+(1−p)−2(1−p)k+1),
and k ≥ 1, the k-TSGD of (p, k) over Z formally reads as:

k-TSGD[X = x | p, k] =

{
m · (1 − p)|x| ifx ∈ [−k, k]

0 otherwise
(1)

Definition 5 ((ε,δ)-DP for Event Logs Based on k-TSGD). Let ε∈R>0

and δ∈R>0 be the privacy parameters, and Mk−TSGD
ε,δ : L → L be a randomized

1 A respective proof can be found in Sec. 3 of [4].
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mechanism based on a k-TSGD. Given L ∈ L as an input of the randomized
mechanism, an event log L′ = {(σ,L′(σ)) | σ∈L∧L′(σ) > k} ∈ rng(Mk−TSGD

ε,δ )
is an (ε, δ)-DP representation of L if L′(σ) = L(σ)+xσ is the noisified frequency
with xσ being realization of i.i.d random variables drawn from a k-TSGD with
parameters (p, k), where p = 1−e−ε and k = �1/ε×ln((eε+2δ−1)/δ(eε+1))�.

Definition 5 shows the direct (ε, δ)-DP release of trace variants by first per-
turbing all variant frequencies and then truncating infrequent behavior. Addi-
tionally, optimality is guaranteed w.r.t. the number of variants being published
due to the k-TSGD structure [4]. Note that the underlying k-TSGD mechanism
assumes each case only contributes to one variant. In case this requirement needs
to be violated, sensitivity considerations force a decrease in (ε, δ).

The development of differentially private partition selection enables signifi-
cant performance improvements for private trace variant releases. As there are
infinite activity sequences defining a variant, former approaches had to either
guess or query all of these potentially non-existing sequences in a cumbersome
fashion due to the ex-ante category anonymity in (ε, δ)-DP. On the contrary,
partition selection only needs one noisified aggregation operation followed by a
specific truncation. Hence, the output contains only existing variants that are
independent of external parameters or query patterns.

4.2 Algorithm Design

Algorithm 1 presents the core idea of TraVaS which is based on Definition 5. We
also propose a utility-aware extension of TraVaS, so-called uTraVaS, that utilizes
the privacy budgets, i.e., ε and δ, by several queries w.r.t. data utility. In this
paper, we focus on TraVaS, the details of uTraVaS are provided on GitHub.2

Algorithm 1 (TraVaS) allows to anonymize variant-frequency pairs by inject-
ing k-TSGD noise within one run over the according simple log. After a simple
log L and privacy parameters (ε > 0, δ > 0) are provided, the travas function
first transforms (ε, δ) into k-TSGD parameters (p, k). Then, each variant fre-
quency L(σ) becomes noisified using i.i.d k-TSGD noise xσ (see Definition 5).
Eventually, the function removes all modified infrequent variants where the
perturbed frequencies yield numbers below or equal to k. Due to the partition

Algorithm 1: Differentially Private Trace Variant Selection (TraVaS)
Input: Event log L, DP-Parameters (ε, δ)
Output: (ε, δ)-DP log L′

1 function travas (L, ε, δ)
2 p = 1 − e−ε

// compute probability

3 k = �1/ε × ln ((eε + 2δ − 1)/(δ(eε + 1)))� // compute threshold

4 forall (σ, L(σ)) ∈ L do
5 xσ = rTSGD (p, k) // generate i.i.d k-TSGD noise

6 if L(σ) + xσ > k then
7 add (σ, L(σ) + xσ) to L′

8 return L′

2 https://github.com/wangelik/TraVaS/tree/main/supplementary.

https://github.com/wangelik/TraVaS/tree/main/supplementary
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selection mechanism, the actual frequencies of all trace variants can directly be
queried without guessing trace variants. Thus, TraVaS is considerably more effi-
cient and easier to implement than current state-of-the-art prefix-based methods.

5 Experiments

We compare the performance of TraVaS against the state-of-the-art benchmark
[12] and its extension (SaCoFa [9]) on real-life event logs. Due to algorithmic dif-
ferences between our approach and the prefix-based approaches, it is particularly
important to ensure a fair comparison. Hence, we employ divergently structured
event logs and study a broad spectrum of privacy budgets (ε, δ). Moreover, the
sequence cutoff for the benchmark and SaCoFa is set to the length that covers
80% of variants in each log, and the remaining pruning parameter is adjusted
such that on average anonymized logs contain a comparable number of vari-
ants with the original log. Note that TraVaS guarantees the optimal number
of output variants due to its underlying differentially private partition selection
mechanism [4], and it does not need to limit the length of the released variants.
Thus, the aforementioned settings consider the limitations of the prefix-based
approaches to have a fair comparison.

We select two event logs of varying size and trace uniqueness. As we discussed
in Sect. 4, and it is considered in other research such as [9,12], and [14], infrequent
variants are challenging to privatize. Thus, trace uniqueness is an important
analysis criterion. The Sepsis log describes hospital processes for Sepsis patients
and contains many rare traces [11]. In contrast, BPIC13 has significantly more
cases at a four times smaller trace uniqueness [5]. The events in BPIC13 belong
to an incident and problem management system called VINST. Both logs are
realistic examples of confidential human-centered information where the case
identifiers refer to individuals. Detailed log statistics are shown in Table 2.

5.1 Evaluation Metrics

To assess the performance of an (ε, δ)-DP mechanism, suitable evaluation metrics
are needed to determine how valuable the anonymized outputs are w.r.t. the
original data. In this respect, we first consider a data utility perspective where
the similarity between two logs is measured independent of future applications.
For our experiments, two respective metrics are considered. From [13], we adopt
relative log similarity that is based on the earth mover’s distance between two
trace variant distributions, where the normalized Levenshtein string edit distance
is used as a similarity function between trace variants. The relative log similarity

Table 2. General statistics of the event logs used in our experiments.

Event log #Events #Cases #Activities #Variants Trace uniqueness

Sepsis 15214 1050 16 846 80%

BPIC13 65533 7554 4 1511 20%
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Fig. 1. The relative log similarity and absolute log difference results of anonymized
BPIC13 logs generated by TraVaS, the benchmark, and SaCoFa. Each value represents
the mean of 10 runs.

metric quantifies the degree to which the variant distribution of an anonymized
log matches the original variant distribution on a scale from 0 to 1.

In addition, we introduce an absolute log difference metric to account for sit-
uations where distribution-based metrics provide only different expressiveness.
Exemplary cases are event logs possessing similar variant distributions, but sig-
nificantly different sizes. For such scenarios, the relative log similarity yields high
similarity scores, whereas absolute log difference can detect these size dispari-
ties. To derive an absolute log difference value, we first transform both input
logs into a bipartite graph of variant vertices. Then a cost network flow problem
[15] is solved by setting demands and supplies to the absolute variant frequencies
and utilizing a Levenshtein distance between variants as an edge cost. Hence,
the resulting optimization value of an (ε, δ)-DP log resembles the number of
Levenshtein operations to transform all respective variants into variants of the
original log. In contrast to our relative log similarity metric, this approach can
also penalize a potential matching impossibility. More information on the exact
algorithms is provided on GitHub.3

Besides comparing event logs based on data utility measures, we addition-
ally quantify the algorithm performance with process discovery oriented result
utilities. We use the inductive miner infrequent [10] with default noise threshold
of 20% to discover process models from the privatized event logs for all (ε, δ)
settings under investigation. Then, we compare the models with the original
event log to obtain token-based replay fitness and precision scores [2]. Due to
the probabilistic nature of (ε, δ)-DP, we average all metrics over 10 anonymized
logs for each setting, i.e., 10 separate algorithm runs per setting.

3 https://github.com/wangelik/TraVaS/tree/main/supplementary.

https://github.com/wangelik/TraVaS/tree/main/supplementary
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Fig. 2. The relative log similarity and absolute log difference results of anonymized Sep-
sis event logs generated by TraVaS, the benchmark, and SaCoFa. Each value represents
the mean of 10 runs.

5.2 Data Utility Analysis

In this subsection, the results of the two aforementioned data utility metrics are
presented for both real-life event logs. We compare the performance of TraVaS
against our benchmark and SaCoFa based on the following privacy parameter
values: ε ∈ {2, 1, 0.1, 0.01, 0.001} and δ ∈ {0.5, 0.1, 0.05, 0.01, 0.001}.

Figure 1 shows the average results on BPIC13 in a four-fold heatmap. The
grey fields represent a general unfeasibility of the strong privacy setting ε = 0.001
for our benchmark method. Due to the intense noise perturbation, the corre-
sponding variant generation process ncreased the number of artificial variant
fluctuations to an extent that could not be averaged in a reasonable time. Apart
from this artifact, both relative log similarity and absolute log difference show
superior performance of TraVaS for most investigated (ε, δ) combinations. In
particular, for stronger privacy settings, TraVaS provides a significant advan-
tage over SaCoFa and benchmark. Whereas more noise, i.e., lower (ε, δ) values,
generally decreases the output similarity to the original data, TraVaS results
seem to particularly depend on δ. According to Definition 5, this observation
can be explained by the stronger relation between k and δ compared to k and ε.

The evaluation of the Sepsis log is presented in Fig. 2. In contrast to BPIC13,
Sepsis contains many variants occurring only once or twice. While our absolute
log difference shows a similar expected trend with (ε, δ) as Fig. 1, the relative log
similarity metric indicates almost constant values for the prefix-based techniques
and a considerable δ-dependency for TraVaS. We explain the resulting patterns
by examining the underlying data structure in more detail. As mentioned, the
frequency threshold k of TraVaS strongly correlates with δ. Hence, event logs
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Fig. 3. The fitness and precision results of anonymized BPIC13 event logs generated
by TraVaS, the benchmark, and SaCoFa. Each value represents the mean of 10 runs.

with prominent infrequent traces, e.g., Sepsis, are significantly truncated for
strong (ε, δ)-DP. Since this variant removal leads to a distribution mismatch
when being compared to the original log, the relative log similarity forms a
step-wise pattern as in Fig. 2. In contrast, the prefix-based techniques iteratively
generate variants that may or may not exist in the original log. In logs with high
trace uniqueness, there exist many unique variants that are treated similarly to
non-existing variants due to close frequency values, i.e., 0 and 1. Thus, in the
anonymized logs, unique variants either appear with larger noisified frequencies
or are replaced with fake variants having larger noisified frequencies. This process
remains the same for different privacy settings but with larger frequencies for
stronger privacy guarantees. Hence, the relative log similarity metric stays almost
constant although the noise increases with stronger privacy settings. However,
the absolute log difference metric can show differences. uTraVaS shows even
better performance w.r.t. the data utility metrics.4

5.3 Process Discovery Analysis

We conduct a process discovery investigation based on fitness and precision
scores. For the sake of comparability, the experimental setup remains unchanged.
Figure 3 shows the results for BPIC13, where the original fitness and precision
values are 0.995 and 0.877, respectively. TraVaS provides almost perfect replay
behavior w.r.t. fitness while the prefix-based alternatives show lower values. This
observation can be explained by the different algorithmic approach of TraVaS
and some characteristics of BPIC13. TraVaS only adopts true behavior that
4 https://github.com/wangelik/TraVaS/tree/main/experiments.

https://github.com/wangelik/TraVaS/tree/main/experiments
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Fig. 4. The fitness and precision results of anonymized Sepsis event logs generated by
TraVaS, the benchmark, and SaCoFa. Each value represents the mean of 10 algorithm
runs.

results in a simplified representation of the original process model. Due to the
rather low trace uniqueness and comparably large log-size of BPIC13, this sim-
plification is minor enough to allow an almost perfect fitness. In contrast, the
fake variants generated by prefix-based approaches negatively affect their fitness
scores. The precision metric evaluates the fraction of behavior in a model dis-
covered from an anonymized log that is not included in the original log. Due to
the direct release mechanism of TraVaS that only removes infrequent variants,
we achieve more precise process models than the alternatives. Furthermore, the
correlation between threshold k and noise intensity enables TraVaS to even rise
precision for stronger privacy guarantees. Conversely, the fake variants generated
by prefix-based approaches can lead to inverse behavior.

Figure 4 shows the fitness and precision results for Sepsis, where the original
fitness and precision values are 0.952 and 0.489, respectively. Whereas TraVaS
dominates the prefix-based approaches w.r.t. precision as in Fig. 3, our fitness
score shows a slight under-performance. Unlike BPIC13, the high trace unique-
ness and smaller log-size prohibit the underlying partition selection mechanism
to achieve negligible threshold for infrequent variant removal. Thus, the discov-
ered process models from anonymized logs miss parts of the original behavior.
This shows that carefully tuned prefix-based mechanisms might have an advan-
tage in terms of fitness for small logs with many unique traces. We particularly
note that this limitation of TraVaS vanishes as soon as the overall log-size grows.
The reason lies in the size-independent threshold k while the pruning parameter
of prefix-based approaches intensifies with the data size. The process discovery
analyses for uTraVaS, available on GitHub, show even better performance.
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6 Discussion and Conclusion

In this paper, we demonstrated a novel approach to release anonymized dis-
tributions of trace variants based on (ε, δ)-DP mechanisms. The corresponding
algorithm (TraVaS ) overcomes the variant generation problems of prefix-based
mechanisms (see Sect. 1) and directly queries all true variants. Our experiments
with two differently structured event logs showed that TraVaS outperforms the
state-of-the-art approaches in terms of data utility metrics and process-discovery-
based result utility for most of the privacy settings. In particular, for large event
logs containing many long trace variants, our implementation has no efficient
alternative. Regarding limitations and future improvements, we generally note
that the differentially private partition selection mechanism only works for δ>0,
whereby limits of small values can be problematic on large collections of infre-
quent variants. Thus, all use cases that require strict ε-DP still need to apply
prefix-based mechanisms. Finding a more efficient solution for δ = 0 seems to be
a valuable and interesting future research topic.
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