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Abstract. Assigning resources in business processes execution is a
repetitive task that can be effectively automated. However, different
automation methods may give varying results that may not be optimal.
Proper resource allocation is crucial as it may lead to significant cost
reductions or increased effectiveness that results in increased revenues.

In this work, we first propose a novel representation that allows the
modeling of a multi-process environment with different process-based
rewards. These processes can share resources that differ in their eligi-
bility. Then, we use double deep reinforcement learning to look for an
optimal resource allocation policy. We compare those results with two
popular strategies that are widely used in the industry. Learning optimal
policy through reinforcement learning requires frequent interactions with
the environment, so we also designed and developed a simulation engine
that can mimic real-world processes.

The results obtained are promising. Deep reinforcement learning based
resource allocation achieved significantly better results compared to two
commonly used techniques.

Keywords: Resource allocation · Deep reinforcement learning ·
Double DQN · Process optimization

1 Introduction

In process science, there is a wide range of approaches that are employed in
different stages of operational processes’ life cycles. Following [1], these include,
among others, optimization and stochastic techniques. Business processes can
be also categorized according to the following perspectives: control-flow, orga-
nizational, data, and time perspective [2]. Resource allocation is focused on the
organizational perspective utilizing optimization and stochastic approaches.

As it was emphasized in [3] resource allocation, while being important from
the perspective of processes improvement, did not receive much attention at the
time. However, as it was demonstrated in [4] the problem received much more
attention in the last decade, which was reflected in the number of published
scientific papers.
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This paper addresses the problem of resource allocation with the use of meth-
ods known as approximate reinforcement learning. We specifically applied recent
advancements in deep reinforcement learning such as double deep q-networks
(double DQN) described in [5]. To use those methods we firstly propose a rep-
resentation of a business processes suite that helps to design the architecture of
neural networks in terms of appropriate inputs and outputs.

To the best of our knowledge, this is the first work that proposes a method
utilizing double deep reinforcement learning for an on-line resource allocation for
a multiple-process and multi-resource environment. Previous approaches either
used so-called “post mortem” data in the form of event logs (e.g. [6]), or applied
on-line learning, but due to the usage of tabular algorithms were limited by
the exploding computational complexity when the number of possible states
increased.

In the next section, we provide an overview of reinforcement learning meth-
ods and outline improvements of deep learning approaches over existing solu-
tions. Then we analyze and discuss different approaches to resources allocation.
In Sect. 3 we outline our approach for modeling operational processes for the
purpose of training resource allocation agents. In Sect. 4 we describe the simu-
lation engine used in training and its experimental setup. In Sect. 5 we evaluate
the proposed approach and present outcomes of the experiments. In Sect. 6 we
summarize the results and sketch potential future research directions.

2 Background and Related Work

2.1 Deep Reinforcement Learning

Following [7], reinforcement learning is “learning what to do – how to map situ-
ations to actions – so as to maximize a numerical reward signal”. There are two
main branches of reinforcement learning, namely tabular and approximate meth-
ods. The former provide a consistent theoretical framework that under certain
conditions guarantees convergence. Their disadvantage is increasing computa-
tional complexity and memory requirements when the number of states grows.
The latter are able to generalize over a large number of states but do not provide
any guarantee of convergence.

The methods that we use in this work find optimal actions indirectly, identify-
ing optimal action values for each state-action pair. Following recursive Bellman
equation for the state-action pair [7], where p(s′, r|s, a) is a conditional proba-
bility of moving to state s′ and receiving reward r after taking action a in state
s; π(a|s) is the probability of taking action a in state s; γ ∈ [0, 1] is a discount
factor:

qπ(s, a) =
∑

s′,r

p(s′, r|s, a)[r + γ
∑

a′
π(a′|s′)qπ(s′, a′)], (1)

an optimal policy is a policy that at each subsequent step takes an action that
maximizes state-action value, that is q∗(s, a) = maxπqπ(s, a).

When we analyze Eq. 1 we can intuitively understand problems with iterative
tabular methods for finding optimal policy π∗ for high-dimensional state spaces.
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Fortunately, recent advancements in deep learning methods allow for further
enhancement of approximate reinforcement learning methods with a most visible
example being human-level results for Atari suite [8] obtained with the use of
double deep Q-network [9].

2.2 Resource Allocation

In [4] we can find a survey of human resource allocation methods. The spectrum
of approaches is wide. In [10–14] we can find solutions based on static, rule based
algorithms.

There is a number of approaches for resource allocation that rely on applying
predictive models. In [15] an offline prediction model based on LSTM is combined
with extended minimum cost and maximum flow algorithms.

In [16] authors introduce Reinforcement Learning Based Resource Allocation
Mechanism that utilizes Q-learning for the purpose of resource allocation. For
handling multiple business processes, the queuing mechanism is applied.

Reinforcement learning has been also used for the task of proactive business
process adaptation [17,18]. The goal there is to monitor the particular business
process case while it is running and intervene in case of any detected upcoming
problems.

The evaluations conducted in the aforementioned works are either based
on simulations [16,18] or on analysis of historical data, mostly from Business
Process Intelligence Challenge [15,17,19]. The latter has the obvious advantage
of being real-world based dataset while simultaneously being limited by the
number of available cases. The former offers a potentially infinite number of
cases, but alignment between simulated data and real business processes is hard
to achieve.

In [20] authors proposed a deep reinforcement learning method for business
process optimization. However, their research objective is concentrated on ana-
lyzing which parameters of DQN are optimal.

3 Approach

This section describes the methods that we used to conduct the experiment.
First, we will introduce concepts related to business process resource allocation.
Then we will present double deep reinforcement learning [21] for finding optimal
resource allocation policy. By optimal resource allocation policy, we mean such
that maximizes the number of completed business process cases in a given period.

As it was pointed out earlier, both tabular and approximate algorithms in
the area of reinforcement learning require frequent interaction with the execution
environment. For the purpose of this work, we designed and developed a dedi-
cated simulation environment that we call Simulation Engine. However, it can
serve as a general-purpose framework for testing resource allocation algorithms
as well. Concepts that we use for defining the business process environment
assume the existence of such an engine. They incorporate parameters describing
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the level of uncertainty regarding their instances. The purpose here is to replicate
stochastic behavior during process execution in real-world scenarios.

We imagine a business process workflow as a sequence of tasks1 that are
drawn from the queue and are being executed by adequate resources (both
human and non-human). Each task realization is in fact an instance of a task
specification described below. The task here is considered as an unbreakable unit
of work that a resource can be assigned to and works on for a specified amount
of time.

Fig. 1. Training architecture diagram. The learning process is centered around Sim-
ulation Engine that takes action from the main network and returns the reward and
the next state. The architecture above follows the double deep Q-network (DDQN)
approach [21].

Definition 1 (Task). Let the tuple (i , C i , d , s, b) define a task ti that is a single
work unit represented in the business process environment where:

– i is a unique task identifier where i ∈ {0, 1, 2, ...},
– C i is a set of transitions from a given task i,
– d ∈ R

+ is a mean task duration with s being its standard deviation and
– b ∈ {0, 1} indicates whether it is a starting task for a particular business

process.

Each task in the business process (see e.g. Figure 2a) may have zero or more
connections from itself to other tasks.
1 Task here should not be confused with the task definition used in reinforcement

learning literature where it actually means the objective of the whole learning pro-
cess. In the RL sense, our task would be to “solve” Business Process Suite (meaning
obtaining as much cumulative reward as possible) in the form of Definition 6.
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Definition 2 (Task Transition). For a given task ti a task transition cij is a
tuple (j , p) where j is a unique identifier of a task that this transition refers to
and p is a probability of this transition. If i = j it is a transition to itself.

Definition 3 (Resource). Let the tuple (k ) define a single resource rk where
k ∈ {0, 1, 2, ...} is a unique resources identifier. To refer to the set of all
resources, we use R̂ .

Definition 4 (Resource Eligibility). If a resource rk can be assigned to a
task ti it is said it is eligible for this task. Set Ei = {eik : eik ∈ R+} contains all
resource eligibility modifiers for a given task i . The lower the eik , the shorter is
the expected execution of task ti . To refer to the set of all properties of eligibility
for all defined resources R̂ we use Ê.

The expected execution time of a task ti is calculated by multiplying its
duration by the resource eligibility modifier eik .

Definition 5 (Business Process). Let a tuple (m, fm , Rm , Tm) define a busi-
ness process Pm where m is a unique identifier of a process Pm and Tm is a set
of tasks belonging to the process Pm and ti ∈ Tm =⇒ ¬∃n : n �= m ∧ ti ∈ Tn . The
relative frequency of a particular business process is defined by fm . By Rm we
refer to the reward that is received by finishing this business process instance. To
refer to the set of all defined business processes, we use P̂ .

An example of a business process can be found in Fig. 2a. Nodes represent tasks
and their identifiers. Arrows define possible task transitions from particular
nodes. The numbers on the arrows represent transition probabilities to other
tasks.

Definition 6 (Business Process Suite). Let a tuple (R̂ , Ê , P̂ ) define a Busi-
ness Process Suite that consists of a resources set R̂ , resources eligibility set Ê
and business processes set P̂ such that: ∀rk ∈ R̂ ∃m, i eik ∈ Ê ∧ ti ∈ Tm ∧ Pm ∈ P̂

Business Process Suite is a meta definition of the whole business processes
execution environment that consists of tasks that aggregate to business processes
and resources that can execute tasks in accordance with the defined eligibility.
We will refer to the instances of business processes as business process cases.

Definition 7 (Business Process Case). Let a tuple (Pm , i , o) define a busi-
ness process case P̃m where Pm is a business process definition, i is a current task
that is being executed and o ∈ {0, 1} is information whether it is running (0) or
was completed (1).

Definition 8 (Task Instance). Let a tuple (i , rk ) be a task instance t̃i . At a
particular moment of execution, there exists exactly one task instance matching
business process case property i . The exact duration is determined by properties
d and s of task definition ti .
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Definition 9 (Task Queue). Let the ordered list (N t0 ,N t1 ,N t2 , ...,N ti ) define
a task queue that stores information about the number of task instances N ti for
a given task ti .

Property 1. Direct consequence of Definitions 5, 7, 8 and 9 is that number of
task instances in the task queue matching the definition of task with identifiers
from particular business processes is equal to the number of business process
cases.

The process of learning follows the schema defined in [5] and [9]. We use two
sets of weights θ and θ′. The former is used for online learning with random
mini-batches sampled from a dedicated experience replay queue D. The latter is
updated periodically to the weights of the more frequently changing counterpart.
The update period used in tests was 104 steps. The detailed algorithm, based
on [21], is outlined in Listing 1.

Algorithm 1. Double DQN training loop
1: Initialize number of episodes E, and number of steps in episode M
2: Initialize batch size β � Set to 32 in tests
3: Initialize randomly two sets of neural network weights θ and θ′

4: D := {} � Replay memory of size E ∗ M ∗ 0.1
5: Initialize environment E
6: for e=0 in E do
7: S := Reset(E)
8: for m=0 in M do
9: if Random() < ε then

10: a := SelectRandomAction()
11: else
12: a := argmaxaQ(S, a; θ)
13: end if
14: S

′, R := Step(E , a)
15: Put a tuple (S, a, R, S′) in D
16: Sample β experiences from D to (S,A,R, S′)
17: Qtarget := R + δ ∗ Q(S′, argmaxaQ(S′, a; θ); θ′)
18: Qcurrent := Q(S, a; θ)
19: θt+1 = θt + ∇θt(Qtarget − Qcurrent)

2

20: Each 104 steps update θ′ := θ
21: end for
22: end for

In Fig. 1 an architecture of a system used in the experiment is presented in
accordance with main data flows. It is a direct implementation of the training
algorithm described in Algorithm 1. We used two neural networks: main and tar-
get. Both had the same architecture consisting of one input layer with |R | + |T |
inputs, two densely connected hidden layers containing 32 neurons each, and one
output layer with |R |x |T | outputs. After each hidden layer, there is a Batch Nor-
malization layer [22]. Its purpose is to scale each output from the hidden neuron
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layer before computing the activation function. This operation improves train-
ing speed by reducing undesirable effects such as vanishing/exploding gradient
updates.

The input configuration we used is defined as follows:

S = [ρ0, ρ1, ...ρ|R |−1, ζ0, ζ1, ..., ζ|T |−1] (2)

where ρk = i refers to the resource assignment to one of its eligible tasks, and
ζi = N ti/

∑|T |−1
l=0 N tl is a relative load of a a given task with respect to all the

tasks present in the task queue.
Outputs of the neural network are an approximation of a q-value for each

of the available actions. The action here is assigning a particular resource to
a particular task or taking no action for a current time step. Thus, number
of outputs equals |R ||T | + 1. This number grows quickly with the number of
resources and tasks. This, in turn, may lead to a significant increase in training
time or even an inability to obtain adequate q-value estimation.

In RL there exists a separation between continuing and episodic RL tasks
[7]. The former are ending in a terminal state and differ in the rewards for the
different outcomes. The latter are running infinitely and accumulate rewards over
time. The business processes suite is a continuing RL task in its nature. However,
in our work, we artificially terminate each execution after M steps simulating
an episodic environment. We observed that it gave much better results than
treating the whole set of business processes as a continuing learning task. As
it is shown in Sect. 4 agents trained in such a way can be used in a continuing
setup without loss of their performance.

4 Experimental Setup

This section briefly describes the setup of the experiments that we have con-
ducted to assess the proposed methods and parametrization of a business process
suite used for the evaluation.

Fig. 2. Business processes used in the evaluation.

To evaluate the proposed method we devised a business processes suite con-
taining two business processes m = 0 and m = 1. Although they are quite small
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in terms of the number of tasks, the tasks transitions are nondeterministic which
intuitively makes the learning process harder.

In Figs. 2a and 2b we can see both processes’ graphs along with information
about their tasks’ parametrization. In Table 1 we can see available resources from
the testing suite along with the information about their eligibility in regard to
particular tasks.

Both processes have the same reward R0 = R1 = 1, which is received for each
completed business process case. They differ in their relative frequency, which
for the first process is f0 = 1 and f1 = 6 for the second one.

The resources we use in our experimental setup are of the same type, differing
only in their eligibility in regard to the tasks.

Table 1. Resource eligibility. Values in cells define resource efficiency that is used in
Simulation Engine. Final duration is obtained by multiplying duration d of a particular
task by the adequate value from the table. A lack of value indicates that a particular
resource is not eligible for a given task.

Task ID Resources

0 1 2

0 – 0.75 2.8

1 1.4 0.3 –

2 0.3 – 2.7

3 – 2.7 0.1

4 0.6 2.6 –

5 0.4 – 10.5

6 1.1 – 1.7

7 0.4 0.6 2.5

In terms of algorithm parametrization, we set the number of episodes E to
600 and the number of steps in a single episode to 400. ε according to [5] was
linearly annealed from 1 to 0.1 over first E∗M ∗0.1 steps. The size of the memory
buffer was set to E ∗ M ∗ 0.1 elements.

5 Results and Discussion

We run 30 tests for the test suite. The results are presented in Fig. 3a. We can see
that the variance in the cumulative sum of rewards is tremendous. Best models
achieve up to 20 units of reward while the worst keep their score around zero.

Our findings are consistent with the general perception of how deep rein-
forcement learning works [23]. In particular, a training model that achieves sat-
isfactory results strongly depends on weights initialization.

As we can see in Fig. 3b the value of a loss function also varies significantly.
Moreover, its value after the initial drop steadily increases with subsequent
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Fig. 3. Training on the test suite over 30 training runs.

episodes. This is a phenomenon that is characteristic of DQN. The error mea-
sures the difference between training and main network outputs. This value is
not directly connected with the optimization target - maximizing the cumulative
reward over all steps.

In [5] authors recommend saving model parameters if they are better than
the best previously seen (in terms of cumulative reward) during the current
training run. This approach allows addressing - to some extent - a catastrophic
forgetting effect and overall instability of approximate methods. For each run we
save both the best and last episode’s weights. After the training phase, we got
30 models as a result of keeping parameters giving the highest rewards during
learning and 30 models with parameters obtained at the end of training. The
distribution over all runs can be seen in Fig. 4a. We can see that the models
with the best parameters achieve significantly higher cumulative rewards. The
median averaged over 100 episodes was 14.04 for the best set of parameters and
12.07 for the last set.

To assess the results obtained by the deep learning agent we implemented
two commonly used heuristics:

– FIFO (first in, first out) - the first-in-first-out policy was implemented in
an attempt to avoid any potential bias while resolving conflicts in resource
allocation. In our case, instead of considering task instances themselves, we
try to allocate resources to the business process cases that arrived the earliest.

– SPT (shortest processing time) - our implementation of the shortest process-
ing time algorithm tries to allocate resources to the task instances that take
the shortest time to complete (without taking into account resource efficien-
cies for tasks). Thanks to this policy, we are able to prevent the longest tasks
from occupying resources when these resources could be used to complete
other, much shorter tasks and therefore shorten the task queue.

We conducted the same test lasting 100 episodes for both heuristics. Results
are presented in Fig. 4b. The median averaged over 100 episodes was 11.54 for
FIFO and 3.88 for SPT. SPT results were far below the FIFO. Comparing the
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Fig. 4. Results over 30 runs.

results of the best model from the left side of Fig. 4a with results for FIFO from
the left side of Fig. 4b, we can see that the cumulative reward for deep learning
models is larger in the majority of episodes.

The improvement achieved by the deep RL model with each episode lasting
400 steps is not large considering its absolute value. The median FIFO agent’s
reward oscillates around 11, while the median deep RL’s around 14. The question
that arises here is whether this relation will hold with long (potentially infinitely)
lasting episodes? To answer it, we conducted an experiment with 100 episodes
with 5000 steps each. The results are presented in Fig. 5. We can see that the gap
between rewards for DQN model and for FIFO increased. The average episode
reward for DQN was 210.52, while for FIFO 145.84 and 80.2 for SPT.

Fig. 5. Long run test for best model achieved during training compared to FIFO and
SPT approaches. Each episode lasted 5000 time steps.

6 Conclusions and Future Work

In this paper, we applied double deep reinforcement learning for the purpose
of resource allocation in business processes. Our goal was to simultaneously
optimize resource allocation for multiple processes and resources in the same
way as it has to be done in real-world scenarios.
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We proposed and implemented a dedicated simulation environment that
enables an agent to improve its policy in an iterative manner obtaining infor-
mation about the next states and rewards. Our environment is thus similar to
OpenAI’s Gym. We believe that along with processes’ definitions, it may serve as
a universal testing suite improving the reproducibility of the results for different
resource allocation strategies.

We proposed a set of rules for defining business processes suites. They are
the formal representation of real-world business process environments.

The results of the double DQN algorithm for resources allocation were com-
pared with two strategies based on common heuristics: FIFO and SPT. The
deep RL approach obtained results that are 44% better than FIFO and 162%
better than SPT. We were not able to directly compare our results to previously
published studies as they are relatively hard to reproduce. This was one of the
main reasons for publishing the code of both our simulation engine and training
algorithm. We can see this as a first step toward a common platform that will
allow different resource allocation methods to be reliably compared and assessed.

As for future work, it would be very interesting to train a resource allocation
agent for a business process suite with a larger number of business processes
that would be more deterministic compared to those used in this study. Such a
setup would put some light on a source of complexity in the training process.

The number of potential actions and neural networks’ outputs is a significant
obstacle in applying the proposed method for complex business process suites
with many processes and resources. In our future work, we plan to investigate
other deep reinforcement learning approaches, such as proximal policy optimiza-
tion, which tend to be more sample efficient than standard double DQN.

Reproducibility. Source code: https://github.com/kzbikowski/ProcessGym
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