
Chapter 7 
Geometric Construction of the Covering 
Manifold 

In this chapter, we provide a geometric construction of a manifold extending a given 
Galois cover to a wreath product, using composita and fiber products. For this to be 
possible, a certain assumption on the homology, previously called ( ∗), needs to be 
strengthened to a new condition ( ∗∗) (equivalent in most cases). To motivate and use 
this new condition, we first recall the connection between homology of a quotient 
and coinvariants. Apart from geometric tools, the construction is also based on the 
vanishing of certain group cohomology, which is used to prove the existence of 
certain isometries of manifolds. In the final section, we give a universal property 
of the wreath product in relation to coverings of manifolds, just like there is such a 
universal property in the theory of Galois extensions of fields. 

7.1 From Quotient to Submodule 

If � is a prime number coprime to |G|, by Maschke’s theorem, any short exact 
sequence of F�[G]-modules splits, and condition ( ∗) from Theorem 6.4.1 is 
equivalent to 

(∗∗) (IndG
H1

1) ⊗Z F� is an F�[G]-submodule of H1(M,F�).

7.2 Homology of a Quotient as Coinvariants 

We recall the following tool from invariant theory, see, e.g. [21, II §2]. If R is a 
commutative ring (for us, R is Z,Q or F�), H a finite group, and M is a (left)
R[H ]-module, its coinvariants are defined as theR-moduleMH := M /IM where 
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I is the kernel of the augmentation map R[H ] → R : ∑
khh �→ ∑

kh. An explicit 
description is given by 

IM = 〈h(x) − x : h ∈ H, x ∈ M 〉

(by linearly, it suffices to let x run over a set of generators of M ). Denote the 
projection map by 

tR : M → MH = M /IM . (7.1) 

When R is clear from the context, we will leave it out of the notation and simply 
write t for this map. 

This map is particularly easy ifM = ⊕
R[H ]xi is free as an R[H ]-module with 

generators xi ; then MH = ⊕
Rxi with the obvious map, i.e., 

tR :
⊕

R[H ]xi →
⊕

Rxi :
∑

i

∑

h

khhxi �→
∑

i

(
∑

h

kh

)

xi, (7.2) 

cf. [21, (2.3)]. 
One may use “transfer” to prove the following (the case of a free action is also in 

[21, II.(2.4)]). 

Lemma 7.2.1 ([16, III.2.4]) If H is a finite group of isometries of a closed smooth 
manifold M with quotient map 

q : M → H\M,

and the order of H is coprime to the characteristic of the field K , then the 
first K-homology of the quotient, H1(H\M,K), is isomorphic to the coinvariants 
H1(M,K)H of the first K-homology of M , and under this identification, the map q∗
that q induces on the first homology groups is the map tK from (7.1), i.e., we have a 
diagram 

H1(H M,K)

H1(M,K)

q

tK

H1(M,K)H

\

7.3 Geometric Construction 

We refer back to the situation of diagram (6.10), and keep our assumption that F�

is a field of order coprime to |G|. By condition ( ∗∗), we have a decomposition of
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F�[G]-modules 

H1(M,F�) = N ⊕ V ∼=
⊕

F�ωi ⊕ V

(for some F�[G]-submodule V ), where the G-action on N is given in terms of the 
permutation of cosets as gωi = ωg(i), with the convention that i = 1 corresponds to 
the trivial H1-coset in G. We also let  

V ′ :=
⊕

i≥2

F�ωi

denote the vector space complement of F�ω1 in N . 
The quotient map q1 : M → M1 = H1\M induces a surjective map 

q1∗ : H1(M,F�) → H1(M1,F�),

and we define ω′
1 := q1∗(ω1). 

Let �1 denote the subgroup �1 ≤ �0 for which M1 = �1\M̃ . 

Lemma 7.3.1 Suppose � is coprime to |G| and condition ( ∗) (equivalently, ( ∗∗)) 
holds. Then we have a well-defined and commutative diagram: 

(7.3) 

where 

• ι is the embedding of � in �1; 
• r1 : Cn → C, (k1, . . . , kn) �→ k1 is projection onto the first coordinate; 
• ϕ0 is defined by 

ϕ0 : H1(M1,F�)
∼=−→ F�ω

′
1 ⊕ W → F�

∼= C

k1ω
′
1 + w �→ k1 (k1 ∈ F�, w ∈ W).

with W := q1∗(V ⊕ V ′) a complementary vector space to F�ω
′
1 in H1(M1,F�). 

Proof To see that this is well defined and the right square commutes, we need that 
ω′
1 is linear independent of W = q1∗(V ⊕V ′); so suppose that there are a1, a2 ∈ F�

such that a1ω′
1 + a2q1∗(v) = 0 for some v ∈ V ⊕ V ′. This means that
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a1ω1 + a2v ∈ ker(q1∗). (7.4) 

By Lemma 7.2.1, the kernel of q1∗ is equal to the kernel of tF�
, and by definition 

this kernel is spanned by elements h1(ωi) − ωi (i = 1, . . . , n) and h1(v) − v for 
v ∈ V and h1 ∈ H1. Now  

• for any h1 ∈ H1 ≤ G, h1(ωi) − ωi = ωh1(i) − ωi ; if i = 1, this element is zero, 
since that index corresponds to the trivial conjugacy class of H1 in G, whereas if 
i �= 1, this element belongs to V ′, since then also h1(i) �= 1; 

• sinceN ⊕V is a decomposition as F�[G]-modules, h1(v)−v ∈ V for all v ∈ V

and all h1 ∈ H1. ��
It follows that ker(q1∗) ⊆ V ⊕V ′, and by (7.4), a1ω1 ∈ V ⊕V ′. Since ω1 is linearly 
independent from V ⊕ V ′, we conclude that a1 = 0, as desired. This guarantees 
that if ω = ∑

kiωi + v ∈ H1(M,F�) with v ∈ V (so ϕ(ω) = (k1, . . . , kn)), then 
q1∗(ω) = k1ω

′
1 + w ∈ H1(M1,F�) with w ∈ W , so  

ϕ0(q1∗(ω)) = k1 = r1(ϕ(ω)).

Just like we defined � = ker� in (6.11), we now  set  

�′
1 := kerχ0 � �1 and M ′

1 := �′
1\M̃ with covering map q ′

1 : M ′
1 → M1.

(7.5) 
The following lemma describes the relationship between the group � = ker� used 
in Chap. 6, and �′

1 := kerχ0, the group used in this chapter. 

Lemma 7.3.2 Suppose � is coprime to |G| and condition ( ∗) (equivalently, ( ∗∗)) 
holds. The group �′ = ker� can be expressed in terms of the group �′

1 = kerχ0
and a set {g1, . . . , gn} of lifts of {g1, . . . , gn} to �0, as �′ = �′

new, where 

�′
new :=

n⋂

i=1

gi�
′
1g

−1
i ∩ � =

n⋂

i=1

(� ∩ gi�
′
1g

−1
i ) =

n⋂

i=1

gi(� ∩ �′
1)g

−1
i . (7.6) 

Proof The equalities in (7.6) follow since � is normal in �0. It remains to prove 
�′
new = ker�. Notice that it follows from diagram (7.3) that 

�′
1 ∩ � = kerχ0 ∩ � = {γ ∈ � | r1 ◦ �(γ ) = 0} = �−1({0} × Cn−1). (7.7) 

Since � is surjective, this implies �(�′
1 ∩ �) = {0} × Cn−1. Since by definition 


(gi)({0} × Cn−1) = Ci−1 × {0} × Cn−i ,

from diagram (6.12), we conclude that
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�(gi(�
′
1 ∩ �)g−1

i ) = 
(gi)�(�′
1 ∩ �) = Ci−1 × {0} × Cn−i , (7.8) 

and therefore 

�(�′
new) ⊆

⋂

i

Ci−1 × {0} × Cn−i = {0},

so �′
new ⊆ ker�. 

To prove the reverse inclusion, assume that �(γ ) = 0 for some γ ∈ �. Then by 
diagram (6.12) we also have �(γ −1

0 γ γ0) = 0 for any γ0 ∈ �0, so  

γ −1
0 γ γ0 ∈ �−1(0) ⊆ �−1({0} × Cn−1)

(7.7)= �′
1 ∩ �. 

Therefore γ ∈ γ0(�
′
1 ∩ �)γ −1

0 for all γ0, showing that γ ∈ �′
new, so ker� ⊆ �′

new.
��

Remark 7.3.3 Standard expressions for the kernel of the restriction and induction 
of representations (see, e.g., [54, Lemma 5.11]) allow one to give a representation-
theoretic description of �′

new. Namely, let χ̃0 denote the linear character on �1 given 
by χ̃0(γ ) = e2πiχ0(γ )/� where χ0 is as in diagram (7.3). Then, with ker χ̃0 =
kerχ0 = �′

1, we have  

ker Res�0
� Ind�0

�1
χ̃0 = � ∩ ker Ind�0

�1
χ̃0 = � ∩

⋂

γ0∈�0

γ0 ker(χ̃0)γ
−1
0 = �′

new.

We now perform the following 2-step geometric construction: 

(a) For g ∈ G, “twist” the cover q1 : M → M1 by defining q
g

1 : M → M1 by 
x �→ q1(g

−1x), and set 

M ′′
g := M ′

1 ×M1,q
g
1

M;

corresponding to the following diagram: 

Mg

M1

C

q1
Mqg

1

g−1 .
M

q1
M1 (7.9) 

The two different M in the diagram are in fact identical, but the maps to M1 are 
different.
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(b) Iteratively construct the fiber product 

M ′
new := M ′′

g1
×M M ′′

g2
×M · · · ×M M ′′

gn
, (7.10) 

where {g1, . . . , gn} is the chosen set of representatives for G/H1; this is  
presented in the following diagram: 

new

Mg1

C

Mg g2
C

· · · M
n

C
M

M

(7.11) 

We will prove that this manifold M ′
new is the same as M ′, the one constructed in the 

previous chapter. 

Proposition 7.3.4 Suppose � is coprime to |G| and condition ( ∗) (equivalently, 
( ∗∗)) holds. 
(i) The fiber product M ′

new in (7.10) is represented as 

M ′
new = {

(x1, . . . , xn, x) ∈ M ′
1 × · · · M ′

1 × M |
q ′
1(xi) = q1(g

−1
i x), i = 1, . . . , n

}
, (7.12) 

and in these coordinates, the projection M ′
new → M ′′

gi
is given by 

M ′
new � (x1, x2, . . . , xn, x) �→ (xi, x) ∈ M ′′

gi
.

M ′
new is a connected manifold and corresponds to the subgroup �′

new, so that 
in fact M ′

new = M ′. 
(ii) Geometrically, the action of G̃ on M ′

new is expressed as follows in the 
coordinates used in (7.12): there exists an isometry ι : M ′

new → M ′
new that 

conjugates the action of G̃ into 

• c = (ci) ∈ Cn ≤ G̃ acts componentwise on each factor M ′′
gi
, i.e., 

ι−1cι · (x1, x2, . . . , xn, x) = (c1x1, . . . , cnxn, x); (7.13) 

• g ∈ G ≤ G̃ acts on M ′
new by 

ι−1gι · (x1, x2, . . . , xn, x) = (xg−1(1), xg−1(2), . . . , xg−1(n), gx), (7.14)
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where g−1(i) is defined, as before, via g−1gi ∈ gg−1(i)H1. Colloquially, 
this means that, up to an isometry, in diagram (7.11), g act naturally on 
the “base” manifold M , while the points in the various M ′′

gj
above a given 

point in M are permuted across these different manifolds in the same way 
as g−1 permutes the cosets G/H1. 

Proof Since the group homomorphism χ0 : �1 → C in diagram (7.3) is surjective, 
�′
1 := kerχ0 � �1 is of index � in �1, and q ′

1 : M ′
1 → M1 is a C-Galois cover. 

(a) Since M1 is a manifold, the compositum is described as 

M ′′
g = {(x1, x) ∈ M ′

1 × M : q ′
1(x1) = q1(g

−1x)}.

Since the degrees of the covers q ′
1 : M ′

1 → M1 and q1 : M → M1 are coprime, 
Lemma 2.3.2 implies that M ′′

g is connected and equal to the compositum. As in 

(6.5), the action of g−1 on M0 and M1 corresponds to the action on �0 and the 
subgroup �′

1 by conjugation with g−1, where g is a lift of g to �0. Hence the 
corresponding group is the intersection �′′

g := � ∩ g�′
1g

−1, i.e., M ′′
g = �′′

g\M̃ . 
By Lemma 2.3.3 and coprimality of the degree, the covering M ′′

g → M is C-
Galois. 

(b) Since M is a manifold, the underlying set of the fiber product is indeed the 
set theoretic fiber product in (7.12). We next argue that M ′

new is connected, 
agrees with the compositum, and indeed corresponds to the group �′

new (and 
hence �′) in  (7.6), i.e., M ′

new = M ′. This will finish the proof of (i). To see 
the connectedness, we use induction with respect to the number of factors. So 
suppose we have already proven that M ′′

g1
×M . . . M ′′

gN−1
→ M is a connected

CN−1-cover corresponding to the group
N−1⋂

i=1
gi(� ∩ �′

1)g
−1
i . By Lemma 2.3.2, 

the product with the next factor M ′′
gN

is connected if and only if 

� = 〈
N−1⋂

i=1

gi(� ∩ �′
1)g

−1
i , gN(� ∩ �′

1)g
−1
N 〉. (7.15) 

To prove this, we notice that is true after applying �, using  (7.8): the image of 
left hand side is Cn, and the image of the right hand side is the subgroup of Cn

spanned by {0}N−1 × Cn−N and CN−1 × {0} × Cn−N , which equals the whole 
of Cn. Hence Eq. (7.15) is true up to ker�, and from Lemma 7.3.2, it follows 
that ker� is contained in both the left hand side and the right hand side of the 
equality, proving that (7.15) holds on the nose. 

To prove (ii), note that M ′
new → M is a Cn-Galois cover by Lemma 2.3.3, with 

one copy of C acting componentwise on each factor M ′′
gi
, and this is the same as 

the action of Cn on M ′. The claim about the action of g ∈ G ≤ G̃ can be proven 
as follows: the action of G on M ′ is given by considering G as a subgroup of G̃,
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and as such it acts by isometries on Mnew = M ′. We know that, in the geometric 
representation (7.12) for M ′

new, 

gx = y with x = (x1, . . . , xn, x), y = (y1, . . . , yn, y)

for some unique yi ∈ M ′
1 and y ∈ M with q ′

1(yi)
(I)= q1(g

−1
i y). We only need to 

determine what yi and y are. Since the action of G on M is as given, y
(II)= gx. Recall 

also that g−1gi = gg−1(i)hg,i for some hg,i ∈ H1. In particular, with q1 : M → M1

the covering with group H1, for x ∈ M we have q1((g−1gi)
−1x)

(III)= q1(g
−1
g−1(i)

x).

We collect this information to compute 

q ′
1(yi)

(I)= q1(g
−1
i y)

(II)= q1(g
−1
i gx) = q1((g

−1gi)
−1x) = q1(g

−1
g−1(i)

x)
(III)= q ′

1(xg−1(i)).

Since q ′
1 : M ′

1 → M1 is a C-cover, this shows that yi = cixg−1(i) for some c =
(ci) ∈ Cn, that a priori depends on g and x, i.e., it is a map 

c : G × M ′ → Cn.

Let us first prove that it does not depend x ∈ M ′. Denote the dependency on x
by c(x). Let d(·, ·) denote the distance on a manifold induced from the Riemannian 
metric. Since C acts properly discontinuously on M ′

1 there is a δ > 0 such that, for 
any two elements c, c′ ∈ C and x ∈ M ′

1, if d(cx, c′x) < δ, then c′ = c. If  x′ is at 
distance ε from x in M ′, then so is gx from gx′, and hence so is ci(x)xg−1(i) from 
ci(x

′)x′
g−1(i)

for all i. Hence 

d(ci(x)xg−1(i), ci(x
′)xg−1(i))

≤ d(ci(x)xg−1(i), ci(x
′)x′

g−1(i)
) + d(ci(x

′)x′
g−1(i)

, ci(x
′)xg−1(i))

= d(ci(x)xg−1(i), ci(x
′)x′

g−1(i)
) + d(x′

g−1(i)
, xg−1(i)) ≤ 2ε,

(the equality in the above formula holds since ci(x
′) is an isometry) and thus ci(x) =

ci(x
′) as soon as x and x′ are at distance < δ/2. We conclude that c(x) is locally 

constant in x, and since M ′ is connected, c is actually independent of x. so that we 
have a map 

c : G → Cn. (7.16) 

Now denote the dependence on g by c(g). We will prove that this is a cocycle; 
note that we write the group operation on Cn multiplicatively. We observe that for 
two elements g, h ∈ G,



7.3 Geometric Construction 65

(ci(gh)x(gh)−1(i), ghx) = ghx = g(ci(h)xh−1(i), hx)

= (ci(g)cg−1(i)(h)xh−1g−1(i), ghx),

so c(gh) = c(g)c(h)g , where the action of g on c = (ci) is given by cg :=
(cg−1(i)). This shows that the map c in Eq. (7.16) is a cocycle from G to Cn, 

and the corresponding first group cohomology class lies in H1(G,Cn). Since |G|
and |Cn| = �n are coprime, the latter cohomology group is zero [21, III.(10.1)], 
proving that c is a coboundary, i.e., there exists v ∈ Cn (independent of g) such that 
c(g) = v−1vg = (v−1

i vg−1(i)). Consider the isometry 

ι : M ′
new → M ′

new : x = (xi, x) �→ (v−1
i xi , x).

Now 

ι−1gι(x) = ι−1(ci(g)v−1
g−1(i)

xg−1(i), gx) = ι−1(v−1
i xg−1(i), gx) = (xg−1(i), gx),

as was claimed. Note also that conjugating by ι commutes with the action of Cn, so  
it does not change that action. ��
Remark 7.3.5 The action of G̃ on M ′

new ties up with the group theoretical construc-
tion from the previous chapter, as follows. The group G̃ ∼= �0/�′ acts naturally on 
M ′ = �′\M̃ via 

(γ0�
′) · (�′x̃) = �′ · (γ0x̃). (7.17) 

The explicit identification between M ′ and M ′
new is given by the map 

M ′ = �′\M̃ � �′x̃ �→ (�′
1g

−1
1 x̃, . . . , �′

1g
−1
n x̃, �x̃) =: (x1, . . . , xn, x) ∈ M ′

new,

(7.18) 
where {giH1} represent the cosets of H1 in G and G → �0 : g �→ g is a section 
such that we have eG = e�0 , g

−1 = g−1 and g�′ = j (g) with the homomorphism 
j : G → �0/�′ representing the splitting of (6.14). The action of G̃ ∼= �0/�′, 
transferred from M ′ to M ′

new is then 

(γ0�
′) · (�′

1g
−1
1 x̃, . . . , �′

1g
−1
n x̃, �x̃) = (�′

1g
−1
1 γ0x̃, . . . , �′

1g
−1
n γ0x̃, �γ0x̃).

(7.19) 
Let c ∈ � be an element satisfying �(c) = e1 and set ci := gicg

−1
i ∈ �, as in  

Sect. 6.3. Utilising the diagrams (6.12) and (7.3), we see that ci ∈ gj�
′
1g

−1
j for all 

j �= i. Thus, (7.19) implies 

(ci�
′) · (x1, . . . , xn, x) = (�′

1g
−1
1 ci x̃, . . . , �′

1g
−1
n ci x̃, �ci x̃)

= (�′
1g

−1
1 x̃, . . . , �′

1cg
−1
i x̃

︸ ︷︷ ︸
i-th entry

, �′
1g

−1
n x̃, �x̃). (7.20)
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Let g ∈ G; by definition, we have g−1gi�
′
1 = gg−1(i)c

−ki (g)�′
1 for some ki(g)

modulo �. This implies that 

(g�′) · (x1, . . . , xn, x)
(7.19)= (�′

1g
−1 
1 gx̃, . . . , �′

1g
−1 
n gx̃, �gx̃) 

= (�′
1c

k1(g) gg−1(1)x̃,  . . . , �′
1c

kn(g) gg−1(n)x̃, �gx̃) 

(7.20)= (c k1(g) 
1 · · ·  c kn(g) 

n �′) · (xg−1(1), . . . , xg−1(n), g  · x). 

Now g �→ (c
ki (g)
i �′)ni=1 is a cocycle from G to Cn = �/�′, and since H1(G,Cn) =

0, there exists (m1, . . . , mn) with ki(g) = mg−1(i) − mi (modulo �). Using the 
commutativity of the elements ci�

′, this implies that if we set c0 := ∏n
i=1 c

mi

i , then 

(c0j (g)c−1
0 ) · (x1, . . . , xn, x) = (xg−1(1), . . . , xg−1(n), g · x)

for all g ∈ G and all (x1, . . . , xn, x) ∈ M ′
new. This shows that a copy of G in 

G̃ ∼= �0/�′, namely c0j (G)c−1
0 , acts on M ′

new via permutation of the first n entries. 
In other words, it is possible to conjugate the subgroup G in G̃ to realise the specific 
action (7.14) on M ′

new. 

7.4 Universal Property of the Wreath Product 

The appearance of the wreath product in our constructions becomes less of a 
surprise given the following universal property, showing that the minimal Galois 
cover that “contains” a G-cover and a C-cover as in our situation arises from this 
wreath product (the analogous result in the theory of field extensions is well known, 
compare [37, 13.7]). 

Proposition 7.4.1 Let G and C denote finite groups with C cyclic of prime order 
� not dividing the order of G. Suppose that we are given Riemannian manifolds 
M,M1,M

′
1 and a developable Riemannian orbifold M0 such that M → M0 is G-

Galois with subcover M1 → M0, and M ′
1 → M1 is C-Galois. If N → M0 is a 

Galois cover of minimal degree admitting Riemannian covers N → M and N →
M ′

1, then the Galois group G′ of N over M0 is the wreath product G̃ := Cn
� G, 

where n is the degree of the cover M1 → M0 (see Figure (7.21).)
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N

G

M1

C

M

GM1

n

M0 (7.21) 

Proof Writing the manifolds M0,M,M1,M
′
1, N as quotients of he universal cover 

M̃0 of M0 by the respectively group �0, �, �1, �
′
1, �N , the defining properties of N

imply that it is the normal closure of the compositum of M ′
1 and M over M0, and 

hence 

�N =
⋂

γ0∈�0

γ0(� ∩ �′
1)γ

−1
0 .

First of all, for g ∈ G, choose one element g ∈ �0 that maps to g ∈ �0/� ∼= G. We  
claim that 

�N =
n⋂

i=1

�gi
where �gi

:= gi(� ∩ �′
1)gi

−1,

for {gi} a set of coset representatives for H1 in G. Indeed, for any γ0 ∈ �0 we can 
write γ0 = giγ1 for some i ∈ {1, . . . , n} and some γ1 ∈ �1, since the cosets of 
H1 ∼= �1/� in G ∼= �0/� are g1H1, . . . , gnH1 and the cosets of �1 in �0 are 
therefore g1�1, . . . , gn�1. The statement now follows from the fact that γ0 ∈ �0
must lie in one of these cosets gi�1; since both � and �′

1 are normal in �1, we have  

γ0(� ∩ �′
1)γ

−1
0 = (giγ1)(� ∩ �′

1)(giγ1)
−1 = giγ1(� ∩ �′

1)γ
−1
1 g−1

i

= gi(� ∩ �′
1)γ1γ

−1
1 g−1

i = gi(� ∩ �′
1)g

−1
i .

Now since � is normal in �0, � ≥ �N , and we find an exact sequence 

1 → �/�N → �0/�N → �0/� ∼= G → 1.

The natural map ϕ : � →
n∏

i=1
�/�gi

has kernel
n⋂

i=1
�gi

= �N . Next,  �/�gi
∼= C

since the index is the prime number �. Finally, we claim that ϕ is surjective. For this, 
it suffices to find for every i an element γi ∈ � with

ϕ(γi) = ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Cn.
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Since C is cyclic of prime order, every non-zero element is a generator, and it 
suffices to choose γi ∈ (

⋂

j �=i

�gj
) \ �gi

. This is possible since the reasoning in the 

first paragraph of this proof shows that the latter set is non-empty. In the end, we 
find a sequence 

1 → Cn → �0/�N → G → 1

where G acts on Cn by permuting the factors like it permutes the cosets of H1, and 
this finishes the proof. ��
Remark 7.4.2 In our setup, the universality property says the following: if we search 
for the “easiest possible” twisted Laplace operator on M1, meaning associated to the 
Laplace operator on some prime order cyclic cover of M1, we necessarily arrive at 
a diagram of the form (5.6). 

Project 

Assuming condition (∗∗), one can now give the following alternative construction 
of diagram (5.6) used in the main Theorem 6.4.1: perform the above two step 
construction of M ′

new and define an action of G̃ on M ′
new using the right hand side 

of Eqs. (7.13) and (7.14). Prove directly that this manifold satisfies the required 
properties. 
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