
Chapter 5 
Representations with a Unique Monomial 
Structure 

In this chapter, we recall the notion of monomial structures (and their isomorphism) 
on a representation, show a natural monomial structure on induced representations, 
and introduce solitary characters (characters whose induced representation has a 
unique monomial structure up to isomorphism); these characters may be used to 
detect conjugacy of subgroups. We also recall a specific type of wreath product 
construction and state and prove Bart de Smit’s theorem on the existence of solitary 
characters for these (and a follow-up result of Pintonello for characters of degree 
two)—these were previously formulated and used in the context of number theory, 
but we present them abstractly. We give an application to covering equivalence in a 
very specific setup of manifolds, and also count the number of required characters, 
based on a formula for the commutator of a wreath product. 

5.1 Monomial Structures 

Definition 5.1.1 Suppose ρ : G → Aut(V ) is a representation, and 

. V =
⊕

x∈�

Lx

is a decomposition of V into one-dimensional spaces (“lines”) Lx for x ∈ �, with
� some index set. If the action of G on V permutes the lines Lx , we say that the 
G-set 

. L = {Lx : x ∈ �}

is a monomial structure on ρ. 
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Equivalently, in a basis having precisely one element from each line Lx , the  
action of any g ∈ G is given by a matrix having exactly one non-zero entry in 
each row and column. Note that, contrary to the case of permutation matrices, the 
non-zero entry in the matrix need not be 1. 

An isomorphism of monomial structures L and L′ on two representation of the 
same group G is an isomorphism of L and L′ as G-sets. 

Example 5.1.2 An induced representation IndG 
H χ of a linear character χ ∈ qH 

admits (by definition) a monomial structure where � = {g1, . . . , gn} is such that 
giH are the different cosets of H in G, and Lx = C · xH . The corresponding 
matrices have as non-zero entries n-th roots of unity if χ is a character of order n. 
We call this monomial structure the standard monomial structure on IndG 

H χ . This  
standard monomial structure is isomorphic to G/H as G-set. ♦ 

Definition 5.1.3 A linear character � on a subgroup H of a group G is called G-
solitary if IndG 

H � has a unique monomial structure up to isomorphism. 

Lemma 5.1.4 Let G denote a group with two subgroups H1 and H2, and suppose
� ∈ |H1 is a G-solitary linear character. There exists a linear character χ ∈ |H2 for 
which there is an isomorphism of representations IndG 

H1
� ∼= IndG 

H2 
χ if and only if 

H1 and H2 are conjugate subgroups of G. 

Proof In this situation, IndG 
H2 

χ carries two monomial structures: the standard one 

and the one induced from the standard one on IndG 
H1

� through the isomorphism 
of representations. Hence these monomial structures have to be isomorphic. But as 
G-sets, they are G/H1 and G/H2, respectively (see Example 5.1.2). By Proposi-
tion 3.5.1(ii), this means precisely that H1 and H2 are conjugate in G. ��

5.2 Wreath Product Construction 

Definition 5.2.1 Let G denote a finite group and H a subgroup of index n := [G : 
H ] with cosets 

. {g1H = H, g2H, . . . , gnH }

of cardinality n. For a prime number �, let  C = Z/�Z denote the cyclic group with
� elements, and let 

. ̃G := Cn
� G

denote the wreath product; this is by definition the semidirect product where G 
acts on the n copies of C by permuting the coordinates in the same way as G 
permutes the cosets giH . In coordinates, this means that if we let e1, . . . , en denote
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the standard basis vectors of Cn, and, as before, define the permutation i �→ g(i) of 
{1, . . . , n} by ggiH = gg(i)H , then the semidirect product is defined by the action 

.G
�→ Aut(Cn) : g �→ �(g) =

⎡

⎣
n∑

j=1

kj ej �→
n∑

j=1

kj eg(j)

⎤

⎦ (5.1) 

where kj ∈ Z/�Z. This is the (left) action of g ∈ G on Cn given by 

. Cn 	 (k1, . . . , kn) �→ (kg−1(1), . . . , kg−1(n)) ∈ Cn.

Define 

. H̃ := Cn
� H

to be the subgroup of G̃ corresponding to H . The cosets of H̃ in G̃ are of the form 

. {g̃1H̃ = H̃ , g̃2H̃ , . . . , g̃nH̃ },

where for gi ∈ G, we have a corresponding element g̃i := (0, gi) ∈ G̃. 

Remark 5.2.2 Recall that IndG 
H 1 is the Z[G]-module corresponding to the permu-

tation representation of G acting on the G-cosets of H . Thus, if we identify C with 
the additive group of the finite field F�, the action of G on Cn ∼= Fn

� corresponds to 
the F�[G]-module (IndH 

G 1) ⊗Z F�. 

Proposition 5.2.3 (Bart de Smit [28, §10]) For all � ≥ 3, there exists a G̃-solitary 
character of order � on H̃ . 

Proof Define � by 

.� : H̃ → C∗ : (k1, . . . , kn, g) �→ e2πik1/�. (5.2) 

Let L = {Lx} and L′ = {L ′
x} denote two monomial structures on ρ := IndG̃

H̃
�, 

where L is the standard one (see Example 5.1.2). The action of G ≤ G̃ on L is that 
of G on G/H and (after rearranging) the action of Cn ≤ G̃ is given by 

.(k1, . . . , kn) · Lj = e2πikj /� · Lj , (5.3) 

where we used the simplified notation Lj := Lgj H̃ . The character ψ of ρ can be 
computed using as basis any set of vectors from the lines in L or L′. From the above, 

.|ψ((1, 0, . . . , 0))| = |e2πi/� + 1 + · · · + 1︸ ︷︷ ︸
n−1

| > n − 2,
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where the last inequality is strict since � ≥ 3. On the other hand, computing the same 
trace using a basis from L′, we get a sum of some number, say, m, of �-th roots of 
unity, where m is the number of lines in L′ that are mapped to itself by (1, 0, . . .  , 0). 
If there is a line not mapped to itself (a zero diagonal entry in the corresponding 
matrix), then there are at least two (since every row/column has precisely two non-
zero entries), so m = n or m ≤ n − 2. In the latter case, |ψ((1, 0, . . . , 0))| ≤  n − 2, 
which is impossible. Since Cn is generated by G-conjugates of (1, 0, . . . , 0), we  
find that Cn fixes all lines in L′. Hence L′ ⊆ L, but since |L| = |L′| = [G̃ : H̃ ], we  
have L = L′. ��

Pintonello [80, Theorem 3.2.2] has shown that for � = 2, there does not always 
exist a solitary character as in Proposition 5.2.3. However, he also proved the 
following result, of which we give a self-contained proof. 

Proposition 5.2.4 (Pintonello [80, Theorem 2.3.1]) Given a group G with two 
subgroups H1 and H2, consider the corresponding wreath products G̃, H̃1 and H̃2 
with C = Z/2Z. Set � : H̃1 → C∗ : (k1, . . . , kn, g) �→ (−1)k1 , and assume that 
both 

. IndG̃

H̃1
1 ∼= IndG̃

H̃2
1 and . (5.4) 

IndG̃

H̃1
� ∼= IndG̃

H̃2 
χ, (5.5) 

for some linear character χ on H̃2. Then H̃1 and H̃2 are conjugate in G. 

Proof Equality (5.5) induces two monomial structures L1 and L2 on ρ := IndG̃

H̃1
�, 

where Li is isomorphic to G̃/H̃i . As in  (5.3), ε := (1, 0, . . . , 0) ∈ Cn ≤ G̃ fixes 
all lines in L1. Note that the number of lines in Li fixed by ε is the value of the 
character of IndG̃

H̃i 
1 at ε, given  in  (3.3), and by (5.4), these are equal for i = 1 and 

i = 2. Hence all lines in L2 are fixed by ε, and as in the previous proof, we conclude 
that Cn fixes all lines in L2. Hence L2 ⊆ L1, but since |L1| = |L2| = [G̃ : H̃i], we  
have L1 = L2. ��

5.3 Application to Manifolds 

We deduce the following intermediate result. 

Corollary 5.3.1 Suppose we have a diagram (1.2). Let .C := Z/�Z denote a cyclic 
group of prime order .� ≥ 3. Let . ̃G and . H̃1 denote the wreath products as in 
Definition 5.2.1 (with .H = H1) and .H̃2 := Cn

� H2 (with the same action defined 
via the .H1-cosets), and assume that there exists a diagram of Riemannian coverings
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.

M

C
H1

G
MH1

GM1

p1
M0 (5.6) 

Then . M1 and . M2 are equivalent Riemannian covers of . M0 if and only if for a .G̃-
solitary character . � on . H̃1 and for some linear character . χ on . H̃2, the multiplicity 
of zero is equal in the two spectra 

. σM1(� ⊗ ResG̃
H̃1

IndG̃

H̃1
�) and σM2(χ ⊗ ResG̃

H̃2
IndG̃

H̃1
�)

and in the two spectra 

. σM1(� ⊗ ResG̃
H̃1

IndG̃

H̃2
χ) and σM2(χ ⊗ ResG̃

H̃2
IndG̃

H̃2
χ).

Proof First of all, since .� ≥ 3, a  .G̃-solitary character . � on .H1 exists, by 
Proposition 5.2.3. By Proposition 4.1.1, the equalities of multiplicities of zero 
is equivalent to .IndG̃

H̃1
� ∼= IndG̃

H̃2
χ . Since . � is .G̃-solitary, we conclude by 

Lemma 5.1.4 that . H̃1 and . H̃2 are conjugate in . ̃G. As  . Cn is normal in . H̃2 with 
quotient . H2, we find that .H̃2\M ′ = H2\M = M2 and hence this conjugacy defines 
an isometry from . M1 to . M2 that is the identity on . M0. ��

Since . χ runs over linear characters of . H̃2, the “less abelian” the extension is, 
the less spectra need to be compared. A more precise statement is the following, 
where we use the abelianisation .H ab

2 of . H2, defined as the quotient of . H2 by the 
subgroup generated by commutators (equivalently, the largest abelian quotient of 
. H2; equivalently, .H ab

2
∼= Hom(H2,C∗)). The two extremes are then: if . H2 is 

abelian, .H ab
2 is as large as . H2; but if . H2 is non-abelian simple, then .|H ab

2 | = 1. 

Proposition 5.3.2 In the setup of Corollary 5.3.1, the dimension of the representa-
tions of which the spectra are being compared is the index .[G : H2]. Furthermore, 
the number of spectral equalities to be checked in Corollary 5.3.1 by using all 
possible linear characters on . H̃2 is bounded above by .2� · |H ab

2 |. 
In Corollary 5.3.1 and Proposition 5.3.2, one may interchange the roles of . H1

and . H2, which could lead to tighter results. 

Proof The dimension of the representations we are considering, as induced repre-
sentations, is the index .[G̃ : H̃2] = [G : H2].
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The spectral criterion in the proposition requires testing of 2 equalities of spectra 
for each linear character on . H̃2, so there are at most .2|H̃ ab

2 | equalities to be checked. 
The commutator subgroup of a wreath product .H̃2 = Cn

�H2 is computed in [69, 
Cor. 4.9], and we find that in our case, with .� = {g1, . . . , gn} a set of representatives 
for the cosets, 

. |[H̃2, H̃2]| = |[H2,H2]| · |{f : � → C :
∑

y∈�

f (y) = 0}|;

where, with .|C| = �, the second factor is .�|�|−1. Hence we find . |H̃ ab
2 | = |H ab

2 | · �,

and the result follows. ��
Remark 5.3.3 Using Proposition 4.1.1 to reformulate spectrally the extra assump-
tion in Proposition 5.2.4 (where .� = 2), we find that in this case, the number of 
equalities to check is at most .2 + 4|H ab

2 |. 
Remark 5.3.4 By Lemma 3.9.1, the multiplicity of zero in the spectrum . σM(ρ)

can be computed purely representation theoretically as the multiplicity of the 
trivial representation in . ρ, which is in principle possible by Mackey theory (cf. 
Remark 4.2.6), but this would be going in reverse (from spectra to group theory 
instead of the other way around). Knowing the group G and its subgroups . H1 and 
. H2, Riemannian equivalence of .M1 and .M2 over .M0 can be checked by a finite 
computation, verifying that . H1 and . H2 are conjugate in G. Corollary 5.3.1 translates 
this into a spectral statement (in the special setup where the group . ̃G is realised as 
indicated there). 

Remark 5.3.5 One may strip all geometric analysis from the results so far, and 
formulate the following purely group theoretical result. Given a finite group G and 
two subgroups . H1 and . H2, then 

. H1 and H2 are conjugate in G if and only if IndG̃

H̃1
� = IndG̃

H̃2
χ

for some linear character . χ on . H̃2. Here, . ̃G denotes the wreath product correspond-
ing to the action of G on the G-cosets of . H1, and . � denotes a solitary character of 
order 3 on . H̃1 (which exists by Proposition 5.2.3). The proof is immediate from 
Lemma 5.1.4 and the final sentence in the proof of Proposition 5.3.1. Observe that 
the construction of the wreath products and of . � is completely explicit, and the 
linear characters on . H̃2 can be described in terms of those on . H2 via the results used 
in the proof of Proposition 5.3.2. 

In the next chapters, we study under which circumstances we have a cover as in 
Corollary 5.3.1, i.e., we deal with the realisation problem for the wreath product as 
isometry group of a cover, given an isometric free action of G on a closed manifold
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. M . This is analogous to the inverse problem of Galois theory, realising the wreath 
product as Galois group of a number field. In manifolds, some condition is necessary 
on . M for such an extension to be possible at all. 
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