Skip to main content

Ensemble Model of Visual Transformer and CNN Helps BA Diagnosis for Doctors in Underdeveloped Areas

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 Workshops (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13848))

Included in the following conference series:

  • 239 Accesses

Abstract

The diagnosis of Biliary Atresia (BA) is still complicated and high resource consumed. Though sonographic gallbladder images can be used as an initial detection tool, lack of experienced experts limits BA infants to be treated timely, resulting in liver transplantation or even death. We developed a diagnosis tool by ViT-CNN ensemble model to help doctors in underdeveloped area to diagnose BA. It performs better than human expert (with 88.1% accuracy versus 87.4%, 0.921 AUC versus 0.837), and still has an acceptable performance on severely noised images photographed by smartphone, providing doctors in clinical facilities with outdated Ultrasound instruments a simple and feasible solution to diagnose BA with our online tool

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., et al.: Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia. Cell. 183(7), pp. 1867–1883.e26 (2020). https://www.sciencedirect.com/science/article/pii/S0092867420314550

  2. Asai, A., Miethke, A., Bezerra, J.: Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat. Rev. Gastroenterol. Hepatol. 12, 05 (2015)

    Article  Google Scholar 

  3. Hartley, J.L., Davenport, M., Kelly, D.A.: Biliary atresia. The Lancet 374(9702), 1704–1713 (2009)

    Article  Google Scholar 

  4. Hsiao, C.-H., et al.: Universal screening for biliary atresia using an infant stool color card in Taiwan. Hepatology 47(4), 1233–1240 (2008)

    Article  Google Scholar 

  5. Ohi, R.: Surgical treatment of biliary atresia in the liver transplantation era, pp. 1229–1232 (1998)

    Google Scholar 

  6. Serinet, M.-O., et al.: Impact of age at Kasai operation on its results in late childhood and adolescence: a rational basis for biliary atresia screening. Pediatrics 123(5), 1280–1286 (2009)

    Article  Google Scholar 

  7. Lertudomphonwanit, C., et al.: Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci. Transl. Med. 9(417), eaan8462 (2017)

    Google Scholar 

  8. Harpavat, S., et al.: Diagnostic yield of newborn screening for biliary atresia using direct or conjugated bilirubin measurements. Jama 323(12), 1141–1150 (2020)

    Article  Google Scholar 

  9. Humphrey, T.M., Stringer, M.D.: Biliary atresia: US diagnosis. Radiology 244(3), 845–851 (2007)

    Article  Google Scholar 

  10. Qi, X., et al.: Machine learning-based CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARS-COV-2 infection: a multicenter study. MedRxiv (2020)

    Google Scholar 

  11. Ardila, D., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25(6), 954–961 (2019)

    Article  Google Scholar 

  12. Zhou, W., et al.: Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images. Nat. Commun. 12(1), 1–14 (2021)

    Google Scholar 

  13. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, Y., Yu, Y., Wang, W.: Moiré photo restoration using multiresolution convolutional neural networks. IEEE Trans. Image Process. 27(8), 4160–4172 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2021)

  16. Gu, Y., Piao, Z., Yoo, S.J.: STHardNet: Swin transformer with HardNet for MRI segmentation. Appl. Sci. 12(1), 468 (2022)

    Article  Google Scholar 

  17. Zhang, L., Wen, Y.: A transformer-based framework for automatic covid19 diagnosis in chest CTS. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 513–518 (2021)

    Google Scholar 

  18. Harpavat, S., Garcia-Prats, J.A., Shneider, B.L.: Newborn bilirubin screening for biliary atresia. N. Engl. J. Med. 375(6), 605–606 (2016)

    Article  Google Scholar 

  19. Feldman, A.G., Sokol, R.J.: Recent developments in diagnostics and treatment of neonatal cholestasis. In: Seminars in Pediatric Surgery, vol. 29, no. 4, p. 150945. Elsevier (2020)

    Google Scholar 

  20. Zhou, L., Shan, Q., Tian, W., Wang, Z., Liang, J., Xie, X.: Ultrasound for the diagnosis of biliary atresia: a meta-analysis. Am. J. Roentgenol. 206(5), W73–W82 (2016)

    Article  Google Scholar 

  21. Kim, M.-J., et al.: Biliary atresia in neonates and infants: triangular area of high signal intensity in the porta hepatis at t2-weighted MR cholangiography with us and histopathologic correlation. Radiology 215(2), 395–401 (2000)

    Article  Google Scholar 

  22. Farrant, P., Meire, H., Mieli-Vergani, G.: Ultrasound features of the gall bladder in infants presenting with conjugated hyperbilirubinaemia. Br. J. Radiol. 73(875), 1154–1158 (2000)

    Article  Google Scholar 

  23. Lee, H.-J., Lee, S.-M., Park, W.-H., Choi, S.-O.: Objective criteria of triangular cord sign in biliary atresia on us scans. Radiology 229(2), 395–400 (2003)

    Article  Google Scholar 

  24. Park, W.-H., Choi, S.-O., Lee, H.-J., Kim, S.-P., Zeon, S.-K., Lee, S.-L.: A new diagnostic approach to biliary atresia with emphasis on the ultrasonographic triangular cord sign: comparison of ultrasonography, hepatobiliary scintigraphy, and liver needle biopsy in the evaluation of infantile cholestasis. J. Pediat. Surg. 32(11), 1555–1559 (1997)

    Article  Google Scholar 

  25. Koob, M., Pariente, D., Habes, D., Ducot, B., Adamsbaum, C., Franchi-Abella, S.: The porta hepatis microcyst: an additional sonographic sign for the diagnosis of biliary atresia. Eur. Radiol. 27(5), 1812–1821 (2017)

    Article  Google Scholar 

  26. Caponcelli, E., Knisely, A.S., Davenport, M.: Cystic biliary atresia: an etiologic and prognostic subgroup. J. Pediat. Surg. 43(9), 1619–1624 (2008)

    Article  Google Scholar 

  27. Zhou, L.-Y., et al.: Percutaneous us-guided cholecystocholangiography with microbubbles for assessment of infants with us findings equivocal for biliary atresia and gallbladder longer than 1.5 cm: a pilot study. Radiology 286(3), 1033–1039 (2018)

    Google Scholar 

  28. Zhou, W., Zhou, L.: Ultrasound for the diagnosis of biliary atresia: from conventional ultrasound to artificial intelligence. Diagnostics 12(1), 51 (2021)

    Article  Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2015)

    Google Scholar 

  32. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

    Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  34. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  35. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., Murphy, K.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  36. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  37. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  39. Kenton, J. D. M.-W. C., Toutanova, L.K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)

    Google Scholar 

  40. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  41. Dong, L., et al.: Unified language model pre-training for natural language understanding and generation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  42. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  43. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10:347–10:357. PMLR (2021)

    Google Scholar 

  44. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10:012–10:022 (2021)

    Google Scholar 

  45. Wu, H., et al.: CVT: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22–31 (2021)

    Google Scholar 

  46. Dong, X., et al.: CSwin transformer: a general vision transformer backbone with cross-shaped windows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12:124–12:134 (2022)

    Google Scholar 

  47. Boland, P.J.: Majority systems and the condorcet jury theorem. J. R. Statist. Soc. Ser. D (The Statist.) 38(3), 181–189 (1989)

    Google Scholar 

  48. Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R.: Advances in machine learning modeling reviewing hybrid and ensemble methods. In: Várkonyi-Kóczy, A.R. (ed.) INTER-ACADEMIA 2019. LNNS, vol. 101, pp. 215–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36841-8_21

    Chapter  Google Scholar 

  49. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  50. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  51. Kaniovski, S., Zaigraev, A.: Optimal jury design for homogeneous juries with correlated votes. Theory Decis. 71(4), 439–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghao Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Z. (2023). Ensemble Model of Visual Transformer and CNN Helps BA Diagnosis for Doctors in Underdeveloped Areas. In: Zheng, Y., Keleş, H.Y., Koniusz, P. (eds) Computer Vision – ACCV 2022 Workshops. ACCV 2022. Lecture Notes in Computer Science, vol 13848. Springer, Cham. https://doi.org/10.1007/978-3-031-27066-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27066-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27065-9

  • Online ISBN: 978-3-031-27066-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics