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Overview 
This chapter will enable you to assess the accuracy of an image classification. You 
will learn about different metrics and ways to quantify classification quality in Earth 
Engine. Upon completion, you should be able to evaluate whether your classification 
needs improvement and know how to proceed when it does. 

Learning Outcomes

• Learning how to perform accuracy assessment in Earth Engine.
• Understanding how to generate and read a confusion matrix.
• Understanding overall accuracy and the kappa coefficient.
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• Understanding the difference between user’s and producer’s accuracy and the 
difference between omission and commission errors. 

Assumes you know how to

• Create a graph using ui.Chart (Chap. 4).
• Perform a supervised Random Forest image classification (Chap. 6). 

7.1 Introduction to Theory 

Any map or remotely sensed product is a generalization or model that will have 
inherent errors. Products derived from remotely sensed data used for scientific pur-
poses and policymaking require a quantitative measure of accuracy to strengthen 
the confidence in the information generated (Foody 2002; Strahler et al. 2006; 
Olofsson et al. 2014). Accuracy assessment is a crucial part of any classification 
project, as it measures the degree to which the classification agrees with another 
data source that is considered to be accurate, ground-truth data (i.e., “reality”). 

The history of accuracy assessment reveals increasing detail and rigor in the 
analysis, moving from a basic visual appraisal of the derived map (Congalton 
1994; Foody 2002) to the definition of best practices for sampling and response 
designs and the calculation of accuracy metrics (Foody 2002; Stehman 2013; Olof-
sson et al. 2014; Stehman and Foody 2019). The confusion matrix (also called the 
“error matrix”) (Stehman 1997) summarizes key accuracy metrics used to assess 
products derived from remotely sensed data. 

7.2 Practicum 

In Chap. 6, we asked whether the classification results were satisfactory. In remote 
sensing, the quantification of the answer to that question is called accuracy assess-
ment. In the classification context, accuracy measurements are often derived from 
a confusion matrix. 

In a thorough accuracy assessment, we think carefully about the sampling 
design, the response design, and the analysis (Olofsson et al. 2014). Fundamental 
protocols are taken into account to produce scientifically rigorous and transpar-
ent estimates of accuracy and area, which requires robust planning and time. In a 
standard setting, we would calculate the number of samples needed for measuring 
accuracy (sampling design). Here, we will focus mainly on the last step, analy-
sis, by examining the confusion matrix and learning how to calculate the accuracy 
metrics. This will be done by partitioning the existing data into training and testing 
sets.
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7.2.1 Quantifying Classification Accuracy Through a Confusion 
Matrix 

To illustrate some of the basic ideas about classification accuracy, we will revisit 
the data and location of part of Chap. 6, where we tested different classifiers 
and classified a Landsat image of the area around Milan, Italy. We will name 
this dataset ‘data’. This variable is a FeatureCollection with features 
containing the “class” values (Table 7.1) and spectral information of four land 
cover/land use classes: forest, developed, water, and herbaceous (see Figs. 6.8 and 
6.9 for a refresher). We will also define a variable, predictionBands, which 
is a list of bands that will be used for prediction (classification)—the spectral 
information in the data variable. 

The first step is to partition the set of known values into training and testing 
sets in order to have something for the classifier to predict over that it has not been 
shown before (the testing set), mimicking unseen data that the model might see in 
the future. We add a column of random numbers to our FeatureCollection 
using the randomColumn method. Then, we filter the features into about 80% 
for training and 20% for testing using ee.Filter. Copy and paste the code 
below to partition the data and filter features based on the random number. 

// Import the reference dataset. 
var data = ee.FeatureCollection( 

'projects/gee-book/assets/F2-2/milan_data'); 

// Define the prediction bands. 
var predictionBands = [ 

'SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 
'SR_B7','ST_B10','ndvi', 'ndwi' 
]; 

// Split the dataset into training and testing sets. 
var trainingTesting = data.randomColumn(); 
var trainingSet = trainingTesting 

.filter(ee.Filter.lessThan('random', 0.8)); 
var testingSet = trainingTesting 

.filter(ee.Filter.greaterThanOrEquals('random', 0.8));

Table 7.1 Land cover 
classes 

Class Class value 

Forest 0 

Developed 1 

Water 2 

Herbaceous 3 

https://doi.org/10.1007/978-3-031-26588-4_6
https://doi.org/10.1007/978-3-031-26588-4_6
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Table 7.2 Confusion matrix 
for a binary classification 
where the classes are 
“positive” and “negative” 

Actual values 

Positive Negative 

Predicted values Positive TP (true 
positive) 

FP (false 
positive) 

Negative FN (false 
negative) 

TN (true 
negative) 

Note that randomColumn creates pseudorandom numbers in a deterministic 
way. This makes it possible to generate a reproducible pseudorandom sequence by 
defining the seed parameter (Earth Engine uses a seed of 0 by default). In other 
words, given a starting value (i.e., the seed), randomColumn will always provide 
the same sequence of pseudorandom numbers. 

Copy and paste the code below to train a Random Forest classifier with 50 
decision trees using the trainingSet. 

// Train the Random Forest Classifier with the 
trainingSet. 
var RFclassifier = 
ee.Classifier.smileRandomForest(50).train({ 

features: trainingSet, 
classProperty: 'class', 
inputProperties: predictionBands 

}); 

Now, let us discuss what a confusion matrix is. A confusion matrix describes the 
quality of a classification by comparing the predicted values to the actual values. 
A simple example is a confusion matrix for a binary classification into the classes 
“positive” and “negative,” as given in Table 7.2. 

In Table 7.2, the columns represent the actual values (the truth), while the rows 
represent the predictions (the classification). “True positive” (TP) and “true nega-
tive” (TN) mean that the classification of a pixel matches the truth (e.g., a water 
pixel correctly classified as water). “False positive” (FP) and “false negative” (FN) 
mean that the classification of a pixel does not match the truth (e.g., a non-water 
pixel incorrectly classified as water).

• TP: classified as positive, and the actual class is positive
• FP: classified as positive, and the actual class is negative
• FN: classified as negative, and the actual class is positive
• TN: classified as negative, and the actual class is negative. 

We can extract some statistical information from a confusion matrix. Let us look 
at an example to make this clearer. Table 7.3 is a confusion matrix for a sample
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Table 7.3 Confusion matrix 
for a binary classification 
where the classes are 
“positive” (forest) and 
“negative” (non-forest) 

Actual values 

Positive Negative 

Predicted values Positive 307 18 

Negative 14 661 

of 1000 pixels for a classifier that identifies whether a pixel is forest (positive) or 
non-forest (negative), a binary classification. 

In this case, the classifier correctly identified 307 forest pixels, wrongly classi-
fied 18 non-forest pixels as forest, correctly identified 661 non-forest pixels, and 
wrongly classified 14 forest pixels as non-forest. Therefore, the classifier was cor-
rect 968 times and wrong 32 times. Let’s calculate the main accuracy metrics for 
this example. 

The overall accuracy tells us what proportion of the reference data was classi-
fied correctly and is calculated as the total number of correctly identified pixels 
divided by the total number of pixels in the sample. 

Overall Accuracy = (TP + TN)/Sample size 

In this case, the overall accuracy is 96.8%, calculated using (307 + 661)/1000. 
Two other important accuracy metrics are the producer’s accuracy and the 

user’s accuracy, also referred to as the “recall” and the “precision,” respectively. 
Importantly, these metrics quantify aspects of per-class accuracy. 

The producer’s accuracy is the accuracy of the map from the point of view 
of the map maker (the “producer”) and is calculated as the number of correctly 
identified pixels of a given class divided by the total number of pixels actually in 
that class. The producer’s accuracy for a given class tells us the proportion of the 
pixels in that class that were classified correctly. 

Producer’s accuracy of the Forest(Positive)class = TP/(TP + FN) 

Producer’s accuracy of the Non - Forest(Negative)class = TN/(TN + FP) 

In this case, the producer’s accuracy for the forest class is 95.6%, which is 
calculated using 307/(307 + 14). The producer’s accuracy for the non-forest class 
is 97.3%, which is calculated from 661/(661 + 18). 

The user’s accuracy (also called the “consumer’s accuracy”) is the accuracy of 
the map from the point of view of a map user and is calculated as the number of 
correctly identified pixels of a given class divided by the total number of pixels 
claimed to be in that class. The user’s accuracy for a given class tells us the 
proportion of the pixels identified on the map as being in that class that are actually 
in that class on the ground. 

User’s accuracy of the Forest (Positive)class = TP/(TP + FP)
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User’s accuracy of the Non - Forest(Negative)class = TN/(TN + FN) 

In this case, the user’s accuracy for the forest class is 94.5%, which is calculated 
using 307/(307+18). The user’s accuracy for the non-forest class is 97.9%, which 
is calculated from 661/(661 + 14). 

Figure 7.1 helps visualize the rows and columns that are used to calculate each 
accuracy. 

It is very common to talk about two types of error when addressing remote 
sensing classification accuracy: omission errors and commission errors. Omission 
errors refer to the reference pixels that were left out of (omitted from) the correct 
class in the classified map. In a two-class system, an error of omission in one class 
will be counted as an error of commission in another class. Omission errors are 
complementary to the producer’s accuracy. 

Omission error = 100% − Producer’s accuracy

Fig. 7.1 Confusion matrix for a binary classification where the classes are “positive” (forest) and 
“negative” (non-forest), with accuracy metrics 
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Commission errors refer to the class pixels that were erroneously classified in 
the map and are complementary to the user’s accuracy. 

Commission error = 100% − User’s accuracy 

Finally, another commonly used accuracy metric is the kappa coefficient, which 
evaluates how well the classification performed as compared to random. The value 
of the kappa coefficient can range from − 1 to 1: A negative value indicates that the 
classification is worse than a random assignment of categories would have been; a 
value of 0 indicates that the classification is no better or worse than random; and 
a positive value indicates that the classification is better than random. 

Kappa Coefficient = observed accuracy − chance agreement 

1 − chance agreement 

The chance agreement is calculated as the sum of the product of row and 
column totals for each class, and the observed accuracy is the overall accuracy. 
Therefore, for our example, the kappa coefficient is 0.927. 

Kappa Coefficient = 0.968 − [(0.321x0.325) + (0.679x0.675)] 
1 − [(0.321x0.325) + (0.679x0.675)] = 0.927 

Now, let’s go back to the script. In Earth Engine, there are API calls for these 
operations. Note that our confusion matrix will be a 4×4 table, since we have 
four different classes. 

Copy and paste the code below to classify the testingSet and get a 
confusion matrix using the method errorMatrix. Note that the classifier auto-
matically adds a property called “classification,” which is compared to the “class” 
property of the reference dataset. 

// Now, to test the classification (verify model's accuracy), 
// we classify the testingSet and get a confusion matrix. 
var confusionMatrix = testingSet.classify(RFclassifier) 

.errorMatrix({ 
actual: 'class', 
predicted: 'classification' 

});
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Copy and paste the code below to print the confusion matrix and accuracy 
metrics. Expand the confusion matrix object to inspect it. The entries represent 
the number of pixels. Items on the diagonal represent correct classification. Items 
off the diagonal are misclassifications, where the class in row i is classified as 
column j (values from 0 to 3 correspond to our class codes: forest, developed, 
water, and herbaceous, respectively). Also expand the producer’s accuracy, user’s 
accuracy (consumer’s accuracy), and kappa coefficient objects to inspect them. 

// Print the results. 
print('Confusion matrix:', confusionMatrix); 
print('Overall Accuracy:', confusionMatrix.accuracy()); 
print('Producers Accuracy:', 
confusionMatrix.producersAccuracy()); 
print('Consumers Accuracy:', 
confusionMatrix.consumersAccuracy()); 
print('Kappa:', confusionMatrix.kappa()); 

How is the classification accuracy? Which classes have higher accuracy com-
pared to the others? Can you think of any reasons why? (Hint: Check where the 
errors in these classes are in the confusion matrix—i.e., being committed and 
omitted.) 

Code Checkpoint F22a. The book’s repository contains a script that shows what 
your code should look like at this point. 

7.2.2 Hyperparameter Tuning 

We can also assess how the number of trees in the Random Forest classifier affects 
the classification accuracy. Copy and paste the code below to create a function that 
charts the overall accuracy versus the number of trees used. The code tests from 5 
to 100 trees at increments of 5, producing Fig. 7.2. (Do not worry too much about 
fully understanding each item at this stage of your learning. If you want to find 
out how these operations work, you can see more in Chaps. 12 and 13).
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// Hyperparameter tuning. 
var numTrees = ee.List.sequence(5, 100, 5); 

var accuracies = numTrees.map(function(t) { 
var classifier = ee.Classifier.smileRandomForest(t) 

.train({ 
features: trainingSet, 
classProperty: 'class', 
inputProperties: predictionBands 

}); 
return testingSet 

.classify(classifier) 

.errorMatrix('class', 'classification') 

.accuracy(); 
}); 

print(ui.Chart.array.values({ 
array: ee.Array(accuracies), 
axis: 0, 
xLabels: numTrees 

}).setOptions({ 
hAxis: { 

title: 'Number of trees' 
}, 
vAxis: { 

title: 'Accuracy' 
}, 
title: 'Accuracy per number of trees' 

})); 

Fig. 7.2 Chart showing accuracy per number of random forest trees
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Code Checkpoint F22b. The book’s repository contains a script that shows what 
your code should look like at this point. 

7.2.3 Spatial Autocorrelation 

We might also want to ensure that the samples from the training set are uncor-
related with the samples from the testing set. This might result from the spatial 
autocorrelation of the phenomenon being predicted. One way to exclude samples 
that might be correlated in this manner is to remove samples that are within some 
distance to any other sample. In Earth Engine, this can be accomplished with a 
spatial join. The following Code Checkpoint replicates Sect. 7.2.1 but with a spa-
tial join that excludes training points that are less than 1000 m distant from testing 
points. 

Code Checkpoint F22c. The book’s repository contains a script that shows what 
your code should look like at this point. 

7.3 Synthesis 

Assignment 1. Based on Sect. 7.2.1, test other classifiers (e.g., a Classification and 
Regression Tree or Support Vector Machine classifier) and compare the accuracy 
results with the Random Forest results. Which model performs better? 

Assignment 2. Try setting a different seed in the randomColumn method and 
see how that affects the accuracy results. You can also change the split between 
the training and testing sets (e.g., 70/30 or 60/40). 

7.4 Conclusion 

You should now understand how to calculate how well your classifier is performing 
on the data used to build the model. This is a useful way to understand how a 
classifier is performing, because it can help indicate which classes are performing 
better than others. A poorly modeled class can sometimes be improved by, for 
example, collecting more training points for that class. 

Nevertheless, a model may work well on training data but work poorly in loca-
tions randomly chosen in the study area. To understand a model’s behavior on 
testing data, analysts employ protocols required to produce scientifically rigorous 
and transparent estimates of the accuracy and area of each class in the study region. 
We will not explore those practices in this chapter, but if you are interested, there 
are tutorials and papers available online that can guide you through the process. 
Links to some of those tutorials can be found in the “For Further Reading” section 
of this book.
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