
14Aggregating Images for Time Series

Ujaval Gandhi

Overview
Many remote sensing datasets consist of repeated observations over time. The inter-
val between observations can vary widely. The Global Precipitation Measurement
dataset, for example, produces observations of rain and snow worldwide every three
hours. The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
project produces a gridded global dataset at the daily level and also for each five-day
period (Funk et al. 2015). The Landsat 8 mission produces a new scene of each loca-
tion on Earth every 16 days. With its constellation of two satellites, the Sentinel-2
mission images every location every five days.

Many applications, however, require computing aggregations of data at time inter-
vals different from those at which the datasets were produced. For example, for
determining rainfall anomalies, it is useful to compare monthly rainfall against a
long-period monthly average.

While individual scenes are informative, many days are cloudy, and it is use-
ful to build a robust cloud-free time series for many applications. Producing less
cloudy or even cloud-free composites can be done by aggregating data to form
monthly, seasonal, or yearly composites built from individual scenes. For example,
if you are interested in detecting long-term changes in an urban landscape, creating
yearly median composites can enable you to detect change patterns across long time
intervals with less worry about day-to-day noise.

This chapter will cover the techniques for aggregating individual images from a
time series at a chosen interval. We will take the CHIRPS time series of rainfall for
one year and aggregate it to create a monthly rainfall time series.

U. Gandhi (B)
Spatial Thoughts LLP, FF105 Aaradhya, Gala Gymkhana Road, Bopal, Ahmedabad, 380058,
India
e-mail: ujaval@spatialthoughts.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_14

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_14&domain=pdf
https://orcid.org/0000-0003-3255-1934
mailto:ujaval@spatialthoughts.com
https://doi.org/10.1007/978-3-031-26588-4_14

268 U. Gandhi

Learning Outcomes

• Using the Earth Engine API to work with dates.
• Aggregating values from an ImageCollection to calculate monthly, seasonal,

or yearly images.
• Plotting the aggregated time series at a given location.

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Create a graph using ui.Chart (Chap. 4).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13).
• Inspect an Image and an ImageCollection, as well as their properties

(Chap. 13).

14.1 Introduction to Theory

CHIRPS is a high-resolution global gridded rainfall dataset that combines satellite-
measured precipitation with ground station data in a consistent, long time-series
dataset. The data are provided by the University of California, Santa Barbara, and
are available from 1981 to the present. This dataset is extremely useful in drought
monitoring and assessing global environmental change over land. The satellite data
are calibrated with ground station observations to create the final product.

In this exercise, we will work with the CHIRPS dataset using the pentad. A
pentad represents the grouping of five days. There are six pentads in a calendar
month, with five pentads of exactly five days each and one pentad with the remain-
ing three to six days of the month. Pentads reset at the beginning of each month,
and the first day of every month is the start of a new pentad. Values at a given
pixel in the CHIRPS dataset represent the total precipitation in millimeters over
the pentad.

14.2 Practicum

14.2.1 Section 1: Filtering an Image Collection

We will start by accessing the CHIRPS pentad collection and filtering it to create
a time series for a single year.

14 Aggregating Images for Time Series 269

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');
var startDate = '2019-01-01';
var endDate = '2020-01-01';
var yearFiltered = chirps.filter(ee.Filter.date(startDate,
endDate));

print(yearFiltered, 'Date-filtered CHIRPS images');

The CHIRPS collection contains one image for every pentad. The filtered col-
lection above is filtered to contain one year, which equates to 72 global images.
If you expand the printed collection in the Console, you will be able to see the
metadata for individual images; note that, their date stamps indicate that they are
spaced evenly every five days (Fig. 14.1).

Each image’s pixel values store the total precipitation during the pentad. With-
out aggregation to a period that matches other datasets, these layers are not very
useful. For hydrological analysis, we typically need the total precipitation for each
month or for a season. Let us aggregate this collection so that we have 12 images—
one image per month, with pixel values that represent the total precipitation for
that month.

Fig. 14.1 CHIRPS time series for one year

270 U. Gandhi

Code Checkpoint F42a. The book’s repository contains a script that shows what
your code should look like at this point.

14.2.2 Section 2: Working with Dates

To aggregate the time series, we need to learn how to create and manipulate dates
programmatically. This section covers some functions from the ee.Date module
that will be useful.

The Earth Engine API has a function called ee.Date.fromYMD that is
designed to create a date object from year, month, and day values. The fol-
lowing code snippet shows how to define a variable containing the year value and
create a date object from it. Paste the following code in a new script:

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');
var year = 2019;
var startDate = ee.Date.fromYMD(year, 1, 1);

Now, let us determine how to create an end date in order to be able to specify
a desired time interval. The preferred way to create a date relative to another date
is using the advance function. It takes two parameters—a delta value and the
unit of time—and returns a new date. The code below shows how to create a
date one year in the future from a given date. Paste it into your script.

var endDate = startDate.advance(1, 'year');

Next, paste the code below to perform filtering of the CHIRPS data using these
calculated dates. After running it, check that you had accurately set the dates by
looking for the dates of the images inside the printed result.

var yearFiltered = chirps
.filter(ee.Filter.date(startDate, endDate));

print(yearFiltered, 'Date-filtered CHIRPS images');

Another date function that is very commonly used across Earth Engine is
millis. This function takes a date object and returns the number of milliseconds
since the arbitrary reference date of the start of the year 1970: 1970-01-
01T00:00:00Z. This is known as the “Unix Timestamp”; it is a standard way
to convert dates to numbers and allows for easy comparison between dates with
high precision. Earth Engine objects store the timestamps for images and features

14 Aggregating Images for Time Series 271

in special properties called system:time_start and system:time_end.
Both of these properties need to be supplied with a number instead of dates, and
the millis function can help you to do that. You can print the result of calling
this function and check for yourself.

print(startDate, 'Start date');
print(endDate, 'End date');

print('Start date as timestamp', startDate.millis());
print('End date as timestamp', endDate.millis());

We will use the millis function in the next section when we need to set the
system:time_start and system:time_end properties of the aggregated
images.

Code Checkpoint F42b. The book’s repository contains a script that shows what
your code should look like at this point.

14.2.3 Section 3: Aggregating Images

Now, we can start aggregating the pentads into monthly sums. The process of
aggregation has two fundamental steps. The first is to determine the beginning and
ending dates of one time interval (in this case, one month), and the second is to
sum up all of the values (in this case, the pentads) that fall within each interval. To
begin, we can envision that the resulting series will contain 12 images. To prepare
to create an image for each month, we create an ee.List of values from 1 to
12. We can use the ee.List.sequence function, as first presented in Chap. 1,
to create the list of items of type ee.Number. Continuing with the script of the
previous section, paste the following code:

// Aggregate this time series to compute monthly images.
// Create a list of months
var months = ee.List.sequence(1, 12);

Next, we write a function that takes a single month as the input and returns an
aggregated image for that month. Given beginningMonth as an input parame-
ter, we first create a start and end date for that month based on the year and month
variables. Then, we filter the collection to find all images for that month. To create
a monthly precipitation image, we apply ee.Reducer.sum to reduce the six
pentad images for a month to a single image holding the summed value across the
pentads. We also expressly set the timestamp properties system:time_start

272 U. Gandhi

and system:time_end of the resulting summed image. We can also set year
and month, which will help us to filter the resulting collection later.

// Write a function that takes a month number
// and returns a monthly image.
var createMonthlyImage = function(beginningMonth) {

var startDate = ee.Date.fromYMD(year, beginningMonth, 1);
var endDate = startDate.advance(1, 'month');
var monthFiltered = yearFiltered

.filter(ee.Filter.date(startDate, endDate));

// Calculate total precipitation.
var total = monthFiltered.reduce(ee.Reducer.sum());
return total.set({

'system:time_start': startDate.millis(),
'system:time_end': endDate.millis(),
'year': year,
'month': beginningMonth

});
};

We now have an ee.List containing items of type ee.Number from 1 to
12, with a function that can compute a monthly aggregated image for each month
number. All that is left to do are to map the function over the list. As described
in Chaps. 12 and 13, the map function passes over each image in the list and
runs createMonthlyImage. The function first receives the number “1” and
executes, returning an image to Earth Engine. Then, it runs on the number “2” and
so on for all 12 numbers. The result is a list of monthly images for each month of
the year.

// map() the function on the list of months
// This creates a list with images for each month in the list
var monthlyImages = months.map(createMonthlyImage);

We can create an ImageCollection from this ee.List of images using
the ee.ImageCollection.fromImages function.

// Create an ee.ImageCollection.
var monthlyCollection =
ee.ImageCollection.fromImages(monthlyImages);
print(monthlyCollection);

14 Aggregating Images for Time Series 273

We have now successfully computed an aggregated collection from the
source ImageCollection by filtering, mapping, and reducing, as described
in Chaps. 12 and 13. Expand the printed collection in the Console, and you can
verify that we now have 12 images in the newly created ImageCollection
(Fig. 14.2).

Code Checkpoint F42c. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 14.2 Aggregated time series

274 U. Gandhi

14.2.4 Section 4: Plotting Time Series

One useful application of gridded precipitation datasets is to analyze rainfall pat-
terns. We can plot a time-series chart for a location using the newly computed
time series. We can plot the pixel value at any given point or polygon. Here, we
create a point geometry for a given coordinate. Continuing with the script of the
previous section, paste the following code:

// Create a point with coordinates for the city of
Bengaluru, India.
var point = ee.Geometry.Point(77.5946, 12.9716);

Earth Engine comes with a built-in ui.Chart.image.series function that
can plot time series. In addition to the imageCollection and region param-
eters, we need to supply a scale value. The CHIRPS data catalog page indicates
that the resolution of the data is 5566 m, so we can use that as the scale. The
resulting chart is printed in the Console.

var chart = ui.Chart.image.series({
imageCollection: monthlyCollection,
region: point,
reducer: ee.Reducer.mean(),
scale: 5566,

});
print(chart);

We can make the chart more informative by adding axis labels and a title. The
setOptions function allows us to customize the chart using parameters from
Google Charts. To customize the chart, paste the code below at the bottom of your
script. The effect will be to see two charts in the editor: one with the old view of
the data and one with the customized chart.

14 Aggregating Images for Time Series 275

var chart = ui.Chart.image.series({
imageCollection: monthlyCollection,
region: point,
reducer: ee.Reducer.mean(),
scale: 5566

}).setOptions({
lineWidth: 1,
pointSize: 3,
title: 'Monthly Rainfall at Bengaluru',
vAxis: {

title: 'Rainfall (mm)'
},
hAxis: {

title: 'Month',
gridlines: {

count: 12
}

}
});
print(chart);

The customized chart (Fig. 14.3) shows the typical rainfall pattern in the city
of Bengaluru, India. Bengaluru has a temperate climate, with pre-monsoon rains
in April and May cooling down the city and a moderate monsoon season lasting
from June to September.

Code Checkpoint F42d. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 14.3 Monthly rainfall chart

276 U. Gandhi

14.3 Synthesis

Assignment 1. The CHIRPS collection contains data for 40 years. Aggregate the
same collection to yearly images and create a chart for annual precipitation from
1981 to 2021 at your chosen location.

Instead of creating a list of months and writing a function to create monthly
images, we will create a list of years and write a function to create yearly images.
The code snippet below will help you get started.

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Create a list of years
var years = ee.List.sequence(1981, 2021);

// Write a function that takes a year number
// and returns a yearly image
var createYearlyImage = function(beginningYear) {

// Add your code
};

var yearlyImages = years.map(createYearlyImage);
var yearlyCollection =
ee.ImageCollection.fromImages(yearlyImages);
print(yearlyCollection);

14.4 Conclusion

In this chapter, you learned how to aggregate a collection to months and plot the
resulting time series for a location. This chapter also introduced useful functions
for working with the dates that will be used across many different applications.
You also learned how to iterate over a list using the map function. The technique
of mapping a function over a list or collection is essential for processing data.
Mastering this technique will allow you to scale your analysis using the parallel
computing capabilities of Earth Engine.

References

Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with sta-
tions—a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/
10.1038/sdata.2015.66

https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66

14 Aggregating Images for Time Series 277

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	14 Aggregating Images for Time Series
	14.1 Introduction to Theory
	14.2 Practicum
	14.2.1 Section 1: Filtering an Image Collection
	14.2.2 Section 2: Working with Dates
	14.2.3 Section 3: Aggregating Images
	14.2.4 Section 4: Plotting Time Series

	14.3 Synthesis
	14.4 Conclusion
	References

