
12Filter, Map, Reduce

Jeffrey A. Cardille

Overview
The purpose of this chapter is to teach you important programming concepts as they
are applied in Earth Engine. We first illustrate how the order and type of these opera-
tions can matter with a real-world, non-programming example. We then demonstrate
these concepts with anImageCollection, a key data type that distinguishes Earth
Engine from desktop image processing implementations.

Learning Outcomes

• Visualizing the concepts of filtering, mapping, and reducing with a hypothetical,
non-programming example.

• Gaining context and experience with filtering an ImageCollection.
• Learning how to efficiently map a user-written function over the images of a

filtered ImageCollection.
• Learning how to summarize a set of assembled values using Earth Engine reducers.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks

(Part II).

J. A. Cardille (B)
McGill University, Quebec, Canada
e-mail: jeffrey.cardille@mcgill.ca

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_12

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_12&domain=pdf
mailto:jeffrey.cardille@mcgill.ca
https://doi.org/10.1007/978-3-031-26588-4_12

242 J. A. Cardille

12.1 Introduction to Theory

Prior chapters focused on exploring individual images—for example, viewing the
characteristics of single satellite images by displaying different combinations of
bands (Chap. 2), viewing single images from different datasets (Chap 3, and 4),
and exploring image processing principles (Parts II, III) as they are implemented
for cloud-based remote sensing in Earth Engine. Each image encountered in those
chapters was pulled from a larger assemblage of images taken from the same
sensor. The chapters used a few ways to narrow down the number of images in
order to view just one for inspection (Part I) or manipulation (Part II, Part III).

In this chapter and most of the chapters that follow, we will move from the
domain of single images to the more complex and distinctive world of working
with image collections, one of the fundamental data types within Earth Engine.
The ability to conceptualize and manipulate entire image collections distinguishes
Earth Engine and gives it considerable power for interpreting change and stability
across space and time.

When looking for change or seeking to understand differences in an area
through time, we often proceed through three ordered stages, which we will color
code in this first explanatory part of the lab:

1. Filter:: selecting subsets of images based on criteria of interest.
2. Map: : manipulating each image in a set in some way to suit our goals.
3. Reduce:: estimating characteristics of the time series.

For users of other programming languages—R, MATLAB, C, Karel, and many
others—this approach might seem awkward at first. We explain it below with a
non-programming example: going to the store to buy milk.

Suppose you need to go shopping for milk, and you have two criteria for deter-
mining where you will buy your milk: location and price. The store needs to be
close to your home, and as a first step in deciding whether to buy milk today, you
want to identify the lowest price among those stores. You do not know the cost of
milk at any store ahead of time, so you need to efficiently contact each one and
determine the minimum price to know whether it fits in your budget. If we were
discussing this with a friend, we might say, “I need to find out how much milk
costs at all the stores around here”. To solve that problem in a programming lan-
guage, these words imply precise operations on sets of information. We can write
the following “pseudocode”, which uses words that indicate logical thinking but
that cannot be pasted directly into a program:

AllStoresOnEarth.filterNearbyStores.filterStoresWithMilk.getMilkPricesFromEach
Store.determineTheMinimumValue

Imagine doing these actions not on a computer but in a more old-fashioned
way: calling on the telephone for milk prices, writing the milk prices on paper,

12 Filter, Map, Reduce 243

and inspecting the list to find the lowest value. In this approach, we begin with
AllStoresOnEarth, since there is at least some possibility that we could decide to
visit any store on Earth, a set that could include millions of stores, with prices
for millions or billions of items. A wise first action would be to limit ourselves to
nearby stores. Asking to filterNearbyStores would reduce the number of potential
stores to hundreds, depending on how far we are willing to travel for milk. Then,
working with that smaller set, we further filterStoresWithMilk, limiting ourselves
to stores that sell our target item. At that point in the filtering, imagine that just ten
possibilities remain. Then, by telephone, we getMilkPricesFromEachStore, making
a short paper list of prices. We then scan the list to determineTheMinimumValue
to decide which store to visit.

In that example, each color plays a different role in the workflow. The
AllStoresOnEarth set, any one of which might contain inexpensive milk, is an enor-
mous collection. The filtering actions filterNearbyStores and filterStoresWithMilk
are operations that can happen on any set of stores. These actions take a set of
stores, do some operation to limit that set, and return that smaller set of stores as
an answer. The action to getMilkPricesFromEachStore takes a simple idea—calling
a store for a milk price—and “maps” it over a given set of stores. Finally, with the
list of nearby milk prices assembled, the action to determineTheMinimumValue , a
general idea that could be applied to any list of numbers, identifies the cheapest
one.

The list of steps above might seem almost too obvious, but the choice and order
of operations can have a big impact on the feasibility of the problem. Imagine if
we had decided to do the same operations in a slightly different order:

AllStoresOnEarth.filterStoresWithMilk.getMilkPricesFromEachStore.filterNearbyStor
es.determineMinimumValue

In this approach, we first identify all the stores on Earth that have milk, then
contact them one by one to get their current milk price. If the contact is done by
phone, this could be a painfully slow process involving millions of phone calls. It
would take considerable “processing” time to make each call and careful work to
record each price onto a giant list. Processing the operations in this order would
demand that only after entirely finishing the process of contacting every milk pro-
prietor on Earth, we then identify the ones on our list that are not nearby enough
to visit, then scan the prices on the list of nearby stores to find the cheapest one.
This should ultimately give the same answer as the more efficient first example,
but only after requiring so much effort that we might want to give up.

In addition to the greater order of magnitude of the list size, you can see that
there are also possible slow points in the process. Could you make a million phone
calls yourself? Maybe, but it might be pretty appealing to hire, say, 1000 people to
help. While being able to make a large number of calls in parallel would speed up
the calling stage, it is important to note that you would need to wait for all 1000
callers to return their sublists of prices. Why wait? Nearby stores could be on any

244 J. A. Cardille

caller’s sublist, so any caller might be the one to find the lowest nearby price. The
identification of the lowest nearby price would need to wait for the slowest caller,
even if it turned out that all of that last caller’s prices came from stores on the
other side of the world.

This counterexample would also have other complications—such as the need to
track store locations on the list of milk prices—that could present serious problems
if you did those operations in that unwise order. For now, the point is to filter, then
map, then reduce. Below, we will apply these concepts to image collections.

12.2 Practicum

12.2.1 Section 1: Filtering Image Collections in Earth Engine

The first part of the filter, map, reduce paradigm is “filtering” to get a smaller
ImageCollection from a larger one. As in the milk example, filters take a
large set of items, limit it by some criterion, and return a smaller set for consid-
eration. Here, filters take an ImageCollection, limit it by some criterion of
date, location, or image characteristics, and return a smaller ImageCollection
(Fig. 12.1).

As described first in Chap. 3, the Earth Engine API provides a set of filters
for the ImageCollection type. The filters can limit an ImageCollection
based on spatial, temporal, or attribute characteristics. Filters were used in Parts
I, II, and III without much context or explanation, to isolate an image from
an ImageCollection for inspection or manipulation. The information below

Fig. 12.1 Filter, map, reduce as applied to image collections in Earth Engine

12 Filter, Map, Reduce 245

should give perspective on that work while introducing some new tools for filtering
image collections.

Below are three examples of limiting a Landsat 5 ImageCollection by
characteristics and assessing the size of the resulting set.

FilterDate This takes an ImageCollection as input and returns an
ImageCollection whose members satisfy the specified date criteria. We will
adapt the earlier filtering logic seen in Chap. 3:

var imgCol = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2');
// How many Tier 1 Landsat 5 images have ever been collected?
print("All images ever: ", imgCol.size()); // A very large
number

// How many images were collected in the 2000s?
var startDate = '2000-01-01';
var endDate = '2010-01-01';

var imgColfilteredByDate = imgCol.filterDate(startDate,
endDate);
print("All images 2000-2010: ", imgColfilteredByDate.size());
// A smaller (but still large) number

After running the code, you should get a very large number for the full set of
images. You also will likely get a very large number for the subset of images over
the decade-scale interval.

FilterBounds It may be that—similar to the milk example—only images near to a
place of interest are useful for you. As first presented in Part I, filterBounds
takes an ImageCollection as input and returns an ImageCollection
whose images surround a specified location. If we take the ImageCollection
that was filtered by date and then filter it by bounds, we will have filtered the
collection to those images near a specified point within the specified date interval.
With the code below, we will count the number of images in the Shanghai vicinity,
first visited in Chap. 2, from the early 2000s:

var ShanghaiImage = ee.Image(
'LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606');

Map.centerObject(ShanghaiImage, 9);

var imgColfilteredByDateHere =
imgColfilteredByDate.filterBounds(Map

.getCenter());
print("All images here, 2000-2010: ", imgColfilteredByDateHere
.size()); // A smaller number

246 J. A. Cardille

If you could like, you could take a few minutes to explore the behavior of the
script in different parts of the world. To do that, you would need to comment
out the Map.centerObject command to keep the map from moving to that
location each time you run the script.

Filter by Other Image Metadata As first explained in Chap. 4, the date and
location of an image are characteristics stored with each image. Another important
factor in image processing is the cloud cover, an image-level value computed for
each image in many collections, including the Landsat and Sentinel-2 collections.
The overall cloudiness score might be stored under different metadata tag names
in different datasets. For example, for Sentinel-2, this overall cloudiness score is
stored in the CLOUDY_PIXEL_PERCENTAGE metadata field. For Landsat 5, the
ImageCollection we are using in this example, the image-level cloudiness
score is stored using the tag CLOUD_COVER. If you are unfamiliar with how to
find this information, these skills are first presented in Part I.

Here, we will access the ImageCollection that we just built using
filterBounds and filterDate and then further filter the images by the
image-level cloud cover score, using the filterMetadata function.

Next, let us remove any images with 50% or more cloudiness. As will be
described in subsequent chapters working with per-pixel cloudiness information,
you might want to retain those images in a real-life study, if you feel some values
within cloudy images might be useful. For now, to illustrate the filtering con-
cept, let us keep only images whose image-level cloudiness values indicate that
the cloud coverage is lower than 50%. Here, we will take the set already filtered
by bounds and date and further filter it using the cloud percentage into a new
ImageCollection. Add this line to the script to filter by cloudiness and print
the size to the Console.

var L5FilteredLowCloudImages = imgColfilteredByDateHere
.filterMetadata('CLOUD_COVER', 'less_than', 50);

print("Less than 50% clouds in this area, 2000-2010",
L5FilteredLowCloudImages.size()); // A smaller number

Filtering in an Efficient Order As you saw earlier in the hypothetical milk exam-
ple, we typically filter, then map, and then reduce, in that order. In the same way
that we would not want to call every store on Earth, preferring instead to narrow
down the list of potential stores first, we filter images first in our workflow in Earth
Engine. In addition, you may have noticed that the ordering of the filters within the
filtering stage also mattered in the milk example. This is also true in Earth Engine.
For problems with a non-global spatial component in which filterBounds is
to be used, it is most efficient to do that spatial filtering first.

In the code below, you will see that you can “chain” the filter commands, which
are then executed from left to right. Below, we chain the filters in the same order

12 Filter, Map, Reduce 247

as you specified above. Note that, it gives an ImageCollection of the same
size as when you applied the filters one at a time.

var chainedFilteredSet = imgCol.filterDate(startDate, endDate)
.filterBounds(Map.getCenter())
.filterMetadata('CLOUD_COVER', 'less_than', 50);

print('Chained: Less than 50% clouds in this area, 2000-2010',
chainedFilteredSet.size());

In the code below, we chain the filters in a more efficient order, implementing
filterBounds first. This, too, gives an ImageCollection of the same size
as when you applied the filters in the less efficient order, whether the filters were
chained or not.

var efficientFilteredSet = imgCol.filterBounds(Map.getCenter())
.filterDate(startDate, endDate)
.filterMetadata('CLOUD_COVER', 'less_than', 50);

print('Efficient filtering: Less than 50% clouds in this area,
2000-2010',

efficientFilteredSet.size());

Each of the two chained sets of operations will give the same result as before for
the number of images. While the second order is more efficient, both approaches
are likely to return the answer to the Code Editor at roughly the same time for this
very small example. The order of operations is most important in larger problems
in which you might be challenged to manage memory carefully. As in the milk
example in which you narrowed geographically first, it is good practice in Earth
Engine to order the filters with the filterBounds first, followed by metadata
filters in order of decreasing specificity.

Code Checkpoint F40a. The book’s repository contains a script that shows what
your code should look like at this point.

Now, with an efficiently filtered collection that satisfies our chosen criteria, we
will next explore the second stage: executing a function for all of the images in
the set.

12.2.2 Section 2: Mapping over Image Collections in Earth Engine

In Chap. 9, we calculated the Enhanced Vegetation Index (EVI) in very small steps
to illustrate band arithmetic on satellite images. In that chapter, code was called
once, on a single image. What if we wanted to compute the EVI in the same way
for every image of an entire ImageCollection? Here, we use the key tool for

248 J. A. Cardille

the second part of the workflow in Earth Engine, a .map command (Fig. 12.1).
This is roughly analogous to the step of making phone calls in the milk example
that began this chapter, in which you took a list of store names and transformed it
through effort into a list of milk prices.

Before beginning to code the EVI functionality, it is worth noting that the word
“map” is encountered in multiple settings during cloud-based remote sensing, and
it is important to be able to distinguish the uses. A good way to think of it is
that “map” can act as a verb or as a noun in Earth Engine. There are two uses
of “map” as a noun. We might refer casually to “the map” or more precisely to
“the Map panel”; these terms refer to the place where the images are shown in
the code interface. A second way “map” is used as a noun which is to refer to
an Earth Engine object, which has functions that can be called on it. Examples of
this are the familiar Map.addLayer and Map.setCenter. Where that use of
the word is intended, it will be shown in purple text and capitalized in the Code
Editor. What we are discussing here is the use of .map as a verb, representing the
idea of performing a set of actions repeatedly on a set. This is typically referred
to as “mapping over the set”.

To map a given set of operations efficiently over an entire
ImageCollection, the processing needs to be set up in a particular way.
Users familiar with other programming languages might expect to see “loop”
code to do this, but the processing is not done exactly that way in Earth Engine.
Instead, we will create a function and then map it over the ImageCollection.
To begin, envision creating a function that takes exactly one parameter, an
ee.Image. The function is then designed to perform a specified set of operations
on the input ee.Image and then, importantly, returns an ee.Image as the last
step of the function. When we map that function over an ImageCollection, as
we will illustrate below, the effect is that we begin with an ImageCollection,
do operations to each image, and receive a processed ImageCollection as
the output.

What kinds of functions could we create? For example, you could imagine a
function taking an image and returning an image whose pixels have the value 1
where the value of a given band was lower than a certain threshold and 0 otherwise.
The effect of mapping this function would be an entire ImageCollection of
images with zeroes and ones representing the results of that test on each image.
Or, you could imagine a function computing a complex self-defined index and
sending back an image of that index calculated in each pixel. Here, we will create
a function to compute the EVI for any input Landsat 5 image and return the one-
band image for which the index is computed for each pixel. Copy and paste the
function definition below into the Code Editor, adding it to the end of the script
from the previous section.

12 Filter, Map, Reduce 249

var makeLandsat5EVI = function(oneL5Image) {
// compute the EVI for any Landsat 5 image. Note it's

specific to
// Landsat 5 images due to the band numbers. Don't run this

exact
// function for images from sensors other than Landsat 5.

// Extract the bands and divide by 1e4 to account for
scaling done.

var nirScaled = oneL5Image.select('SR_B4').divide(10000);
var redScaled = oneL5Image.select('SR_B3').divide(10000);
var blueScaled = oneL5Image.select('SR_B1').divide(10000);

// Calculate the numerator, note that order goes from left
to right.

var numeratorEVI = (nirScaled.subtract(redScaled)).multiply(
2.5);

// Calculate the denominator
var denomClause1 = redScaled.multiply(6);
var denomClause2 = blueScaled.multiply(7.5);
var denominatorEVI = nirScaled.add(denomClause1).subtract(

denomClause2).add(1);

// Calculate EVI and name it.
var landsat5EVI =

numeratorEVI.divide(denominatorEVI).rename(
'EVI');

return (landsat5EVI);
};

It is worth emphasizing that, in general, band names are specific to each
ImageCollection. As a result, if that function was run on an image without
the band ‘SR_B4’, for example, the function call would fail. Here, we have empha-
sized in the function’s name that it is specifically for creating EVI for Landsat
5.

The function makeLandsat5EVI is built to receive a single image, select the
proper bands for calculating EVI, make the calculation, and return a one-banded
image. If we had the name of each image comprising our ImageCollection,
we could enter the names into the Code Editor and call the function one at a
time for each, assembling the images into variables and then combining them
into an ImageCollection. This would be very tedious and highly prone to
mistakes: lists of items might get mistyped, an image might be missed, etc. Instead,
as mentioned above, we will use .map. With the code below, let us print the
information about the cloud-filtered collection and display it, execute the .map
command, and explore the resulting ImageCollection.

250 J. A. Cardille

var L5EVIimages = efficientFilteredSet.map(makeLandsat5EVI);
print('Verifying that the .map gives back the same number of
images: ',

L5EVIimages.size());
print(L5EVIimages);

Map.addLayer(L5EVIimages, {}, 'L5EVIimages', 1, 1);

After entering and executing this code, you will see a grayscale image. If you
look closely at the edges of the image, you might spot other images drawn behind it
in a way that looks somewhat like a stack of papers on a table. This is the drawing
of the ImageCollection made from the makeLandsat5EVI function. You
can select the Inspector panel and click on one of the grayscale pixels to view
the values of the entire ImageCollection. After clicking on a pixel, look for
the Series tag by opening and closing the list of items. When you open that
tag, you will see a chart of the EVI values at that pixel, created by mapping the
makeLandsat5EVI function over the filtered ImageCollection.

Code Checkpoint F40b. The book’s repository contains a script that shows what
your code should look like at this point.

12.2.3 Section 3: Reducing an Image Collection

The third part of the filter, map, reduce paradigm is “reducing” values in an
ImageCollection to extract meaningful values (Fig. 12.1). In the milk exam-
ple, we reduced a large list of milk prices to find the minimum value. The Earth
Engine API provides a large set of reducers for reducing a set of values to a
summary statistic.

Here, you can think of each location, after the calculation of EVI has been
executed through the .map command, as having a list of EVI values on it. Each
pixel contains a potentially very large set of EVI values; the stack might be 15
items high in one location and perhaps 200, 2000, or 200,000 items high in another
location, especially if a looser set of filters had been used.

The code below computes the mean value, at every pixel, of the
ImageCollection L5EVIimages created above. Add it at the bottom of your
code.

var L5EVImean = L5EVIimages.reduce(ee.Reducer.mean());
print(L5EVImean);
Map.addLayer(L5EVImean, {

min: -1,
max: 2,
palette: ['red', 'white', 'green']

}, 'Mean EVI');

12 Filter, Map, Reduce 251

Using the same principle, the code below computes and draws the median value
of the ImageCollection in every pixel.

var L5EVImedian = L5EVIimages.reduce(ee.Reducer.median());
print(L5EVImedian);
Map.addLayer(L5EVImedian, {

min: -1,
max: 2,
palette: ['red', 'white', 'green']

}, 'Median EVI');

There are many more reducers that work with an ImageCollection to pro-
duce a wide range of summary statistics. Reducers are not limited to returning
only one item from the reduction. The minMax reducer, for example, returns a
two-band image for each band it is given, one for the minimum and one for the
maximum.

The reducers described here treat each pixel independently. In subsequent chap-
ters in Part IV, you will see other kinds of reducers—for example, ones that
summarize the characteristics in the neighborhood surrounding each pixel.

Code Checkpoint F40c. The book’s repository contains a script that shows what
your code should look like at this point.

12.3 Synthesis

Assignment 1. Compare the mean and median images produced in Sect. 3
(Fig. 12.2). In what ways do they look different, and in what ways do they look
alike? To understand how they work, pick a pixel and inspect the EVI values
computed. In your opinion, which is a better representative of the dataset?

Assignment 2. Adjust the filters to filter a different proportion of clouds or a
different date range. What effects do these changes have on the number of images
and the look of the reductions made from them?

Assignment 3. Explore the ee.Filter options in the API documentation, and
select a different filter that might be of interest. Filter images using it, and comment
on the number of images and the reductions made from them.

Assignment 4. Change the EVI function so that it returns the original image
with the EVI band appended by replacing the return statement with this: return
(oneL5Image.addBands(landsat5EVI)).

What does the median reducer return in that case? Some EVI values are 0.
What are the conditions in which this occurs?

252 J. A. Cardille

Fig. 12.2 Effects of two reducers on mapped EVI values in a filtered ImageCollection: mean
image (above) and median image (below)

12 Filter, Map, Reduce 253

Assignment 5. Choose a date and location that is important to you (e.g., your
birthday and your place of birth). Filter Landsat imagery to get all the low-
cloud imageries at your location within 6 months of the date. Then, reduce
the ImageCollection to find the median EVI. Describe the image and how
representative of the full range of values it is, in your opinion.

12.4 Conclusion

In this chapter, you learned about the paradigm of filter, map, reduce. You learned
how to use these tools to sift through, operate on, and summarize a large set of
images to suit your purposes. Using the Filter functionality, you learned how to
take a large ImageCollection and filter away images that do not meet your
criteria, retaining only those images that match a given set of characteristics. Using
the Map functionality, you learned how to apply a function to each image in an
ImageCollection, treating each image one at a time and executing a requested
set of operations on each. Using the Reduce functionality, you learned how to
summarize the elements of an ImageCollection, extracting summary values
of interest. In the subsequent chapters of Part IV, you will encounter these concepts
repeatedly, manipulating image collections according to your project needs using
the building blocks seen here. By building on what you have done in this chapter,
you will grow in your ability to do sophisticated projects in Earth Engine.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	12 Filter, Map, Reduce
	12.1 Introduction to Theory
	12.2 Practicum
	12.2.1 Section 1: Filtering Image Collections in Earth Engine
	12.2.2 Section 2: Mapping over Image Collections in Earth Engine
	12.2.3 Section 3: Reducing an Image Collection

	12.3 Synthesis
	12.4 Conclusion

