
11Object-Based Image Analysis

Morgan A. Crowley , Jeffrey A. Cardille , and Noel Gorelick

Overview
Pixel-based classification can include unwanted noise. Techniques for object-based
image analysis are designed to detect objects within images, making classifications
that can address this issue of classification noise. In this chapter, you will learn how
region growing can be used to identify objects in satellite imagery within Earth
Engine. By understanding how objects can be delineated and treated in an image,
students can apply this technique to their own images to produce landscape assess-
ments with less extraneous noise. Here, we treat images with an object delineator
and view the results of simple classifications to view similarities and differences.

Learning Outcomes

• Learning about object-based image classification in Earth Engine.
• Controlling noise in images by adjusting different aspects of object segmentation.

M. A. Crowley (B)
Natural Resources Canada, Canadian Forest Service—Great Lakes Forestry Centre, 1219 Queen
Street E, Sault Ste Marie, ON, Canada
e-mail: morgan.crowley@nrcan-rncan.gc.ca

M. A. Crowley · J. A. Cardille
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111
Lakeshore, Sainte-Anne-de-Bellevue, QC, Canada
e-mail: jeffrey.cardille@mcgill.ca

J. A. Cardille
Bieler School of Environment, McGill University, 3534 Rue University, Montreal, QC, Canada

N. Gorelick
Google Switzerland, Brandschenkestrasse 110, 8002 Zurich, Switzerland
e-mail: gorelick@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_11

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_11&domain=pdf
http://orcid.org/0000-0001-5946-529X
http://orcid.org/0000-0002-4667-9085
http://orcid.org/0000-0002-5548-2436
mailto:morgan.crowley@nrcan-rncan.gc.ca
mailto:jeffrey.cardille@mcgill.ca
mailto:gorelick@google.com
https://doi.org/10.1007/978-3-031-26588-4_11

220 M. A. Crowley et al.

• Understanding differences through time of noise in images.
• Creating and viewing objects from different sensors.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks,

classify images (Part II).
• Create a function for code reuse (Chap. 1).
• Perform pixel-based supervised and unsupervised classifications (Chap. 6).

11.1 Introduction to Theory

Building upon traditional pixel-based classification techniques, object-based image
analysis classifies imagery into objects using perception-based, meaningful knowl-
edge (Blaschke et al. 2000; Blaschke 2010; Weih and Riggan 2010). Detecting and
classifying objects in a satellite image are a two-step approach. First, the image
is segmented using a segmentation algorithm. Second, the landscape objects are
classified using either supervised or unsupervised approaches. Segmentation algo-
rithms create pixel clusters using imagery information such as texture, color or
pixel values, shape, and size. Object-based image analysis is especially useful for
mapping forest disturbances (Blaschke 2010; Wulder et al. 2004) because addi-
tional information and context are integrated into the classification through the
segmentation process. One object-based image analysis approach available in Earth
Engine is the Simple Non-Iterative Clustering (SNIC) segmentation algorithm
(Achanta and Süsstrunk 2017). SNIC is a bottom-up, seed-based segmentation
algorithm that assembles clusters from neighboring pixels based on parameters of
compactness, connectivity, and neighborhood size. SNIC has been used in previous
Earth Engine-based research for mapping land use and land cover (Shafizadeh-
Moghadam et al. 2021; Tassi and Vizzari 2020), wetlands (Mahdianpari et al.
2018 and 2020, Amani et al. 2019), burned areas (Crowley et al. 2019), sustain-
able development goal indicators (Mariathasan et al. 2019), and ecosystem services
(Verde et al. 2020).

11.2 Practicum

11.2.1 Section 1: Unsupervised Classification

In earlier chapters (see Chap. 6), you saw how to perform a supervised and unsu-
pervised classification. In this lab, we will focus on object-based segmentation and
unsupervised classifications—a clean and simple way to look at the spectral and
spatial variability that is seen by a classification algorithm.

11 Object-Based Image Analysis 221

We will now build a script in several numbered sections, giving you a chance
to see how it is constructed as well as to observe intermediate and contrasting
results as you proceed. We will start by defining a function for taking an image
and breaking it into a set of unsupervised classes. When called, this function will
divide the image into a specified number of classes, without directly using any
spatial characteristics of the image.

Paste the following block into a new script.

// 1.1 Unsupervised k-Means classification

// This function does unsupervised clustering classification
// input = any image. All bands will be used for clustering.
// numberOfUnsupervisedClusters = tunable parameter for how

// many clusters to create.
var afn_Kmeans = function(input,
numberOfUnsupervisedClusters,

defaultStudyArea, nativeScaleOfImage) {

// Make a new sample set on the input. Here the sample

// randomly selected spatially.
var training = input.sample({

region: defaultStudyArea,
scale: nativeScaleOfImage,
numPixels: 1000

});

var cluster = ee.Clusterer.wekaKMeans(
numberOfUnsupervisedClusters)

.train(training);

// Now apply that clusterer to the raw image that was
also passed in.

set is

var toexport = input.cluster(cluster);
// The first item is the unsupervised classification.

Name the band.
var clusterUnsup = toexport.select(0).rename(

'unsupervisedClass');
return (clusterUnsup);

};

We will also need a function to normalize the band values to a common scale
from 0 to 1. This will be most useful when we are creating objects. Additionally,
we will need a function to add the mean to the band name. Paste the following

222 M. A. Crowley et al.

functions into your code. Note that, the code numbering skips intentionally from
1.2 to 1.4; we will add Sect. 1.3 later.

// 1.2 Simple normalization by maxes function.
var afn_normalize_by_maxes = function(img, bandMaxes) {

return img.divide(bandMaxes);
};

// 1.4 Simple add mean to Band Name function
var afn_addMeanToBandName = (function(i) {

return i + '_mean';
});

We will create a section that defines variables that you will be able to adjust.
One important adjustable parameter is the number of clusters for the clusterer to
use. Add the following code beneath the function definitions.

//
// 2. Parameters to function calls
//

// 2.1. Unsupervised KMeans Classification Parameters
var numberOfUnsupervisedClusters = 4;

The script will allow you to zoom to a specified area for better viewing and
exists already in the code repository check points. Add this code below.

//
// 2.2. Visualization and Saving parameters
// For different images, you might want to change the min
and max
// values to stretch. Useful for images 2 and 3, the
normalized images.
var centerObjectYN = true;

Now, with these functions, parameters, and flags in place, let us define a new
image and set image-specific values that will help analyze it. We will put this in
a new section of the code that contains “if” statements for images from multiple
sensors. We set up the code like this because we will use several images from
different sensors in the following sections; therefore, they are preloaded, so all
that you have to do are to change the parameter “whichImage”. In this particu-
lar Sentinel-2 image, focus on differentiating forest and non-forest regions in the

11 Object-Based Image Analysis 223

Puget Sound, Washington, USA. The script will automatically zoom to the region
of interest.

//
// 3. Statements
//

// 3.1 Selecting Image to Classify
var whichImage = 1; // will be used to select among images
if (whichImage == 1) {

// Image 1.
// Puget Sound, WA: Forest Harvest
// (April 21, 2016)
// Harvested Parcels
// Clear Parcel Boundaries
// Sentinel 2, 10m
var whichCollection = 'COPERNICUS/S2';
var ImageToUseID =

'20160421T191704_20160421T212107_T10TDT';
var originalImage = ee.Image(whichCollection + '/' +
ImageToUseID);
print(ImageToUseID, originalImage);
var nativeScaleOfImage = 10;
var threeBandsToDraw = ['B4', 'B3', 'B2'];
var bandsToUse = ['B4', 'B3', 'B2'];
var bandMaxes = [1e4, 1e4, 1e4];
var drawMin = 0;
var drawMax = 0.3;
var defaultStudyArea = ee.Geometry.Polygon(

[
[

[-123.13105468749993, 47.612974066532004],
[-123.13105468749993, 47.56214700543596],
[-123.00179367065422, 47.56214700543596],
[-123.00179367065422, 47.612974066532004]

]
]);

var zoomArea = ee.Geometry.Polygon(
[

[
[-123.13105468749993, 47.612974066532004],
[-123.13105468749993, 47.56214700543596],
[-123.00179367065422, 47.56214700543596],
[-123.00179367065422, 47.612974066532004]

224 M. A. Crowley et al.

], null, false);
}
Map.addLayer(originalImage.select(threeBandsToDraw), {

min: 0,
max: 2000

}, '3.1 '+ ImageToUseID, true, 1);

]

Now, let us clip the image to the study area we are interested in, then extract
the bands to use for the classification process.

//
// 4. Image Preprocessing
//
var clippedImageSelectedBands =
originalImage.clip(defaultStudyArea)

.select(bandsToUse);
var ImageToUse =
afn_normalize_by_maxes(clippedImageSelectedBands,

bandMaxes);

Map.addLayer(ImageToUse.select(threeBandsToDraw), {
min: 0.028,
max: 0.12

},
'4.3 Pre-normalized image', true, 0);

Now, let us view the per-pixel unsupervised classification, produced using the
k-means classifier. Note that, as we did earlier, we skip a section of the code
numbering (moving from Sects. 4 to 6), which we will fill in later as the script is
developed further.

11 Object-Based Image Analysis 225

//
// 6. Execute Classifications
//

// 6.1 Per Pixel Unsupervised Classification for Comparison
var PerPixelUnsupervised = afn_Kmeans(ImageToUse,

numberOfUnsupervisedClusters, defaultStudyArea,
nativeScaleOfImage);

Map.addLayer(PerPixelUnsupervised.select('unsupervisedClass'
)

.randomVisualizer(), {}, '6.1 Per-Pixel Unsupervised',
true, 0
);
print('6.1b Per-Pixel Unsupervised Results:',
PerPixelUnsupervised);

Then, insert this code, so that you can zoom if requested.

//
// 7. Zoom if requested
//
if (centerObjectYN === true) {

Map.centerObject(zoomArea, 14);
}

Code Checkpoint F33a. The book’s repository contains a script that shows what
your code should look like at this point.

Run the script. It will draw the study area in a true-color view (Fig. 11.1), where
you can inspect the complexity of the landscape as it would have appeared to your
eye in 2016, when the image was captured.

Note harvested forests of different ages, the spots in the northwest part of the
study area that might be naturally treeless, and the straight easements for trans-
mission lines in the eastern part of the study area. You can switch Earth Engine to
satellite view and change the transparency of the drawn layer to inspect what has
changed in the years since the image was captured.

As it drew your true-color image, Earth Engine also executed the k-means clas-
sification and added it to your set of layers. Turn up the visibility of layer 6.1
Per-Pixel Unsupervised, which shows the four-class per-pixel classification result
using randomly selected colors. The result should look something like Fig. 11.2.

Take a look at the image that was produced, using the transparency slider
to inspect how well you think the classification captured the variability in
the landscape and classified similar classes together, then answer the following
questions.

226 M. A. Crowley et al.

Fig. 11.1 True-color Sentinel-2 image from 2016 for the study area

Question 1. In your opinion, what are some of the strengths and weaknesses of
the map that resulted from your settings?

Question 2. Part of the image that appears to our eye to represent a single land use
might be classified by the k-means classification as containing different clusters.
Is that a problem? Why or why not?

Question 3. A given unsupervised class might represent more than one land
use/land cover type in the image. Use the Inspector to find classes for which
there were these types of overlaps. Is that a problem? Why or why not?

Question 4. You can change the numberOfUnsupervisedClusters variable
to be more or less than the default value of 4. Which, if any, of the resulting maps

11 Object-Based Image Analysis 227

Fig. 11.2 Pixel-based unsupervised classification using four-class k-means unsupervised classifi-
cation using bands from the visible spectrum

produce a more satisfying image? Is there an upper limit at which it is hard for
you to tell whether the classification was successful or not?

As discussed in earlier chapters, the visible part of the electromagnetic spec-
trum contains only part of the information that might be used for a classification.
The short-wave infrared bands have been seen in many applications to be more
informative than the true-color bands.

Return to your script and find the place where threeBandsToDraw is set.
That variable is currently set to B4, B3, and B2. Comment out that line and use
the one below, which will set the variable to B8, B11, and B12. Make the same
change for the variable bandsToUse. Now, run this modified script, which will

228 M. A. Crowley et al.

use three new bands for the classification and also draw them to the screen for
you to see. You will notice that this band combination provides different contrasts
among cover types. For example, you might now notice that there are small bodies
of water and a river in the scene, details that are easy to overlook in a true-color
image. With numberOfUnsupervisedClusters still set at 4, your resulting
classification should look like Fig. 11.3.

Question 5. Did using the bands from outside the visible part of the spectrum
change any classes so that they are more cleanly separated by land use or land
cover? Keep in mind that the colors which are randomly chosen in each of the

Fig. 11.3 Pixel-based unsupervised classification using four-class k-means unsupervised classifi-
cation using bands from outside of the visible spectrum

11 Object-Based Image Analysis 229

images are unrelated—a class colored brown in Fig. 11.2 might well be pink in
Fig. 11.3.
Question 6. Experiment with adjusting the numberOfUnsupervised
Clusters with this new dataset. Is one combination preferable to another, in
your opinion? Keep in mind that there is no single answer about the usefulness
of an unsupervised classification beyond asking whether it separates classes of
importance to the user.

Code Checkpoint F33b. The book’s repository contains a script that
shows what your code should look like at this point. In that code, the
numberOfUnsupervisedClusters is set to 4, and the infrared bands are
used as part of the classification process.

11.2.2 Section 2: Detecting Objects in Imagery with the SNIC
Algorithm

The noise you noticed in the pixel-based classification will now be improved using
a two-step approach for object-based image analysis. First, you will segment the
image using the SNIC algorithm, and then, you will classify it using a k-means
unsupervised classifier. Return to your script, where we will add a new function.
Noting that the code’s sections are numbered, find code Sect. 1.2 and add the
function below beneath it.

// 1.3 Seed Creation and SNIC segmentation Function
var afn_SNIC = function(imageOriginal, SuperPixelSize,
Compactness,

Connectivity, NeighborhoodSize, SeedShape) {
var theSeeds =

ee.Algorithms.Image.Segmentation.seedGrid(
SuperPixelSize, SeedShape);

var snic2 = ee.Algorithms.Image.Segmentation.SNIC({
image: imageOriginal,
size: SuperPixelSize,
compactness: Compactness,
connectivity: Connectivity,
neighborhoodSize: NeighborhoodSize,
seeds: theSeeds

});
var theStack = snic2.addBands(theSeeds);
return (theStack);

};

230 M. A. Crowley et al.

As you see, the function assembles parameters needed for running SNIC
(Achanta and Süsstrunk 2017; Crowley et al. 2019), the function that delineates
objects in an image. A call to SNIC takes several parameters that we will explore.
Add the following code below code Sect. 2.2.

// 2.3 Object-growing parameters to change
// Adjustable Superpixel Seed and SNIC segmentation Parameters:
// The superpixel seed location spacing, in pixels.
var SNIC_SuperPixelSize = 16;
// Larger values cause clusters to be more compact
(square/hexagonal).
// Setting this to 0 disables spatial distance weighting.
var SNIC_Compactness = 0;
// Connectivity. Either 4 or 8.
var SNIC_Connectivity = 4;
// Either 'square' or 'hex'.
var SNIC_SeedShape = 'square';

// 2.4 Parameters that can stay unchanged
// Tile neighborhood size (to avoid tile boundary artifacts).
Defaults to 2 * size.
var SNIC_NeighborhoodSize = 2 * SNIC_SuperPixelSize;

Now, add a call to the SNIC function. You will notice that it takes the param-
eters specified in code Sect. 11.2.2 and sends them to the SNIC algorithm. Place
the code below into the script as the code’s Sect. 11.2.5, between Sects. 4 and 6.

11 Object-Based Image Analysis 231

//
// 5. SNIC Clustering
//

// This function returns a multi-banded image that has had
SNIC
// applied to it. It automatically determine the new names
// of the bands that will be returned from the segmentation.
print('5.1 Execute SNIC');
var SNIC_MultiBandedResults = afn_SNIC(

ImageToUse,
SNIC_SuperPixelSize,
SNIC_Compactness,
SNIC_Connectivity,
SNIC_NeighborhoodSize,
SNIC_SeedShape

);

var SNIC_MultiBandedResults = SNIC_MultiBandedResults
.reproject('EPSG:3857', null, nativeScaleOfImage);

print('5.2 SNIC Multi-Banded Results',
SNIC_MultiBandedResults);

Map.addLayer(SNIC_MultiBandedResults.select('clusters')
.randomVisualizer(), {}, '5.3 SNIC Segment Clusters',

true, 1);

var theSeeds = SNIC_MultiBandedResults.select('seeds');
Map.addLayer(theSeeds, {

palette: 'red'
}, '5.4 Seed points of clusters', true, 1);

var bandMeansToDraw =
threeBandsToDraw.map(afn_addMeanToBandName);
print('5.5 band means to draw', bandMeansToDraw);
var clusterMeans =
SNIC_MultiBandedResults.select(bandMeansToDraw);
print('5.6 Cluster Means by Band', clusterMeans);
Map.addLayer(clusterMeans, {

min: drawMin,
max: drawMax

}, '5.7 Image repainted by segments', true, 0);

Now, run the script. It will draw several layers, with the one shown in Fig. 11.4
on top.

232 M. A. Crowley et al.

Fig. 11.4 SNIC clusters, with randomly chosen colors for each cluster

This shows the work of SNIC on the image sent to it—in this case, on the
composite of bands 8, 11, and 12. If you look closely at the multicolored layer,
you can see small red “seed” pixels. To initiate the process, these seeds are created
and used to form square or hexagonal “superpixels” at the spacing given by the
parameters passed to the function. The edges of these blocks are then pushed and
pulled and directed to stop at edges in the input image. As part of the algorithm,
some superpixels are then merged to form larger blocks, which is why you will
find that some of the shapes contain two or more seed pixels.

Explore the structure by changing the transparency of layer 5 to judge how the
image segmentation performs for the given set of parameter values. You can also
compare layer 5.7–layer 3.1. Layer 5.7 is a reinterpretation of layer 3.1 in which

11 Object-Based Image Analysis 233

every pixel in a given shape of layer 5.3 is assigned the mean value of the pixels
inside the shape. When parameterized in a way that is useful for a given project
goal, parts of the image that are homogeneous will get the same color, while areas
of high heterogeneity will get multiple colors.

Now, spend some time exploring the effect of the parameters that control the
code’s behavior. Use your tests to answer the questions below.

Question 7. What is the effect on the SNIC clusters of changing the parameter
SNIC_SuperPixelSize?

Question 8. What is the effect of changing the parameter SNIC_Compactness?

Question 9. What are the effects of changing the parameters
SNIC_Connectivity and SNIC_SeedShape?

Code Checkpoint F33c. The book’s repository contains a script that shows what
your code should look like at this point.

11.2.3 Section 3: Object-Based Unsupervised Classification

The k-means classifier used in this tutorial is not aware that we would often pre-
fer to have adjacent pixels to be grouped into the same class—it has no sense of
physical space. This is why you see the noise in the unsupervised classification.
However, because we have re-colored the pixels in a SNIC cluster to all share
the exact same band values, k-means will group all pixels of each cluster to have
the same class. In the best-case scenario, this allows us to enhance our classi-
fication from being pixel-based to reveal clean and unambiguous objects in the
landscape. In this section, we will classify these objects, exploring the strengths
and limitations of finding objects in this image.

Return the SNIC settings to their first values, namely:

// The superpixel seed location spacing, in pixels.
var SNIC_SuperPixelSize = 16;
// Larger values cause clusters to be more compact
(square/hexagonal).
// Setting this to 0 disables spatial distance weighting.
var SNIC_Compactness = 0;
// Connectivity. Either 4 or 8.
var SNIC_Connectivity = 4;
// Either 'square' or 'hex'.
var SNIC_SeedShape = 'square';

As code Sect. 6.2, add this code, which will call the SNIC function and draw
the results.

234 M. A. Crowley et al.

// 6.2 SNIC Unsupervised Classification for Comparison
var bandMeansNames = bandsToUse.map(afn_addMeanToBandName);
print('6.2 band mean names returned by segmentation',
bandMeansNames);
var meanSegments =
SNIC_MultiBandedResults.select(bandMeansNames);
var SegmentUnsupervised = afn_Kmeans(meanSegments,

numberOfUnsupervisedClusters, defaultStudyArea,
nativeScaleOfImage);

Map.addLayer(SegmentUnsupervised.randomVisualizer(), {},
'6.3 SNIC Clusters Unsupervised', true, 0);

print('6.3b Per-Segment Unsupervised Results:',
SegmentUnsupervised);
//

When you run the script, that new function will classify the image in layer 5.7,
which is the recoloring of the original image according to the segments shown in
layer 5. Compare the classification of the superpixels (6.3) with the unsupervised
classification of the pixel-by-pixel values (6.1). You should be able to change the
transparency of those two layers to compare them directly.

Question 10. What are the differences between the unsupervised classifications
of the per-pixel and SNIC-interpreted images? Describe the tradeoff between
removing noise and erasing important details.

Code Checkpoint F33d. The book’s repository contains a script that shows what
your code should look like at this point.

11.2.4 Section 4: Classifications with More or Less Categorical
Detail

Recall the variable numberOfUnsupervisedClusters, which directs the k-
means algorithm to partition the dataset into that number of classes. Because the
colors are chosen randomly for layer 6.3, any change to this number typically
results in an entirely different color scheme. Changes in the color scheme can
also occur if you were to use a slightly different study area size between two
runs. Although this can make it hard to compare the results of two unsupervised
algorithms, it is a useful reminder that the unsupervised classification labels do not
necessarily correspond to a single land use/land cover type.

Question 11. Find the numberOfUnsupervisedClusters variable in the
code and set it to different values. You might test it across powers of two: 2, 4,
8, 16, 32, and 64 clusters will all look visually distinct. In your opinion, does one
of them best discriminate between the classes in the image? Is there a particular
number of colors that is too complicated for you to understand?

11 Object-Based Image Analysis 235

Question 12. What concrete criteria could you use to determine whether a
particular unsupervised classification is good or bad for a given goal?

11.2.5 Section 5: Effects of SNIC Parameters

The number of classes controls the partition of the landscape for a given
set of SNIC clusters. The four parameters of SNIC, in turn, influence the
spatial characteristics of the clusters produced for the image. Adjust the
four parameters of SNIC: SNIC_SuperPixelSize, SNIC_Compactness,
SNIC_Connectivity, and SNIC_SeedShape. Although their workings can
be complex, you should be able to learn what characteristics of the SNIC clustering
they control by changing each one individually. At that point, you can explore the
effects of changing multiple values for a single run. Recall that the ultimate goal
of this workflow is to produce an unsupervised classification of landscape objects,
which may relate to the SNIC parameters in very complex ways. You may want
to start by focusing on the effect of the SNIC parameters on the cluster character-
istics (layer 5.3) and then look at the associated unsupervised classification layer
6.

Question 13. What is the effect on the unsupervised classification of SNIC clusters
of changing the parameter SNIC_SuperPixelSize?

Question 14. What is the effect of changing the parameter
SNIC_Compactness?

Question 15. What are the effects of changing the parameters
SNIC_Connectivity and SNIC_SeedShape?

Question 16. For this image, what is the combination of parameters that, in your
subjective judgment, best captures the variability in the scene while minimizing
unwanted noise?

11.3 Synthesis

Assignment 1. Additional images from other remote sensing platforms can be
found in script F33s1 in the book’s repository. Run the classification procedure on
these images and compare the results from multiple parameter combinations.

Assignment 2. Although this exercise was designed to remove or minimize spatial
noise, it does not treat temporal noise. With a careful choice of imagery, you can
explore the stability of these methods and settings for images from different dates.
Because the MODIS sensor, for example, can produce images on consecutive days,
you would expect that the objects identified in a landscape would be nearly iden-
tical from one day to the next. Is this the case? To go deeper, you might contrast
temporal stability as measured by different sensors. Are some sensors more stable

236 M. A. Crowley et al.

in their object creation than others? To go even deeper, you might consider how
you would quantify this stability using concrete measures that could be compared
across different sensors, places, and times. What would these measures be?

11.4 Conclusion

Object-based image analysis is a method for classifying satellite imagery by
segmenting neighboring pixels into objects using pre-segmented objects. The iden-
tification of candidate image objects is readily available in Earth Engine using the
SNIC segmentation algorithm. In this chapter, you applied the SNIC segmentation
and the unsupervised k-means algorithm to satellite imagery. You illustrated how
the segmentation and classification parameters can be customized to meet your
classification objective and to reduce classification noise. Now that you under-
stand the basics of detecting and classifying image objects in Earth Engine, you
can explore further by applying these methods on additional data sources.

References

Achanta R, Süsstrunk S (2017) Superpixels and polygons using simple non-iterative clustering. In:
Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017,
pp 4895–4904

Amani M, Mahdavi S, Afshar M et al (2019) Canadian wetland inventory using Google Earth
Engine: the first map and preliminary results. Remote Sens 11:842. https://doi.org/10.3390/RS1
1070842

Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogram Remote
Sens 65:2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

Blaschke T, Lang S, Lorup E et al (2000) Object-oriented image processing in an integrated
GIS/remote sensing environment and perspectives for environmental applications. Environ Inf
Plann Polit Public 2:555–570

Crowley MA, Cardille JA, White JC, Wulder MA (2019) Generating intra-year metrics of wild-
fire progression using multiple open-access satellite data streams. Remote Sens Environ
232:111295. https://doi.org/10.1016/j.rse.2019.111295

Mahdianpari M, Salehi B, Mohammadimanesh F et al (2018) The first wetland inventory map
of Newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the
Google Earth Engine cloud computing platform. Remote Sens 11:43. https://doi.org/10.3390/
rs11010043

Mahdianpari M, Salehi B, Mohammadimanesh F et al (2020) Big data for a big country: the first
generation of Canadian wetland inventory map at a spatial resolution of 10-m using Sentinel-1
and Sentinel-2 data on the Google Earth Engine cloud computing platform. Can J Remote Sens
46:15–33. https://doi.org/10.1080/07038992.2019.1711366

Mariathasan V, Bezuidenhoudt E, Olympio KR (2019) Evaluation of Earth observation solutions
for Namibia’s SDG monitoring system. Remote Sens 11:1612. https://doi.org/10.3390/rs1113
1612

Shafizadeh-Moghadam H, Khazaei M, Alavipanah SK, Weng Q (2021) Google Earth Engine for
large-scale land use and land cover mapping: an object-based classification approach using
spectral, textural and topographical factors. Giscience Remote Sens 58:914–928. https://doi.
org/10.1080/15481603.2021.1947623

https://doi.org/10.3390/RS11070842
https://doi.org/10.3390/RS11070842
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1016/j.rse.2019.111295
https://doi.org/10.3390/rs11010043
https://doi.org/10.3390/rs11010043
https://doi.org/10.1080/07038992.2019.1711366
https://doi.org/10.3390/rs11131612
https://doi.org/10.3390/rs11131612
https://doi.org/10.1080/15481603.2021.1947623
https://doi.org/10.1080/15481603.2021.1947623

11 Object-Based Image Analysis 237

Tassi A, Vizzari M (2020) Object-oriented LULC classification in Google Earth Engine combin-
ing SNIC, GLCM, and machine learning algorithms. Remote Sens 12:1–17. https://doi.org/10.
3390/rs12223776

Verde N, Kokkoris IP, Georgiadis C et al (2020) National scale land cover classification for ecosys-
tem services mapping and assessment, using multitemporal Copernicus EO data and Google
Earth Engine. Remote Sens 12:1–24. https://doi.org/10.3390/rs12203303

Weih RC, Riggan ND (2010) Object-based classification vs. pixel-based classification: compar-
ative importance of multi-resolution imagery. Int Arch Photogram Remote Sens Spat Inf Sci
38:C7

Wulder MA, Skakun RS, Kurz WA, White JC (2004) Estimating time since forest harvest using
segmented Landsat ETM+ imagery. Remote Sens Environ 93:179–187. https://doi.org/10.
1016/j.rse.2004.07.009

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/rs12223776
https://doi.org/10.3390/rs12223776
https://doi.org/10.3390/rs12203303
https://doi.org/10.1016/j.rse.2004.07.009
https://doi.org/10.1016/j.rse.2004.07.009
http://creativecommons.org/licenses/by/4.0/

	11 Object-Based Image Analysis
	11.1 Introduction to Theory
	11.2 Practicum
	11.2.1 Section 1: Unsupervised Classification
	11.2.2 Section 2: Detecting Objects in Imagery with the SNIC Algorithm
	11.2.3 Section 3: Object-Based Unsupervised Classification
	11.2.4 Section 4: Classifications with More or Less Categorical Detail
	11.2.5 Section 5: Effects of SNIC Parameters

	11.3 Synthesis
	11.4 Conclusion
	References

