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Foreword 

In 2010, we introduced Google Earth Engine at the COP16 International Climate 
Conference. It was the world’s first cloud-native, planetary-scale geospatial data 
analytics platform, designed from the ground-up to democratize access to earth 
observation data and help accelerate the transformation of “pixels to knowledge” 
for societal benefit. Looking back, while nothing like it had existed before (e.g., 
analysis-ready EO data, petapixel-scale processing, easily-accessible from any web 
browser), it seems almost inevitable that such a platform would be invented. A 
set of factors had converged in that moment to shift the dominant paradigm of 
remote sensing from the desktop to the cloud—the release by USGS/NASA of 
Landsat data for free (millions of scenes and petabytes of data, sitting on tapes 
going back to 1972), the advent of large-scale publicly available cloud computing 
such as the Google cloud, and the urgent need for accessible, timely, accurate 
information about the state of the planet and how it was changing, to support better 
decision-making and action on critical environmental and humanitarian issues. 

In particular, the initial impetus for the Google Earth Engine project came from 
Brazilian geoscientists in 2008/9, who asked us if Google could help them stop 
the loss of more than a million acres of Amazon rainforest annually. They had 
already developed the remote sensing techniques to derive valuable information 
from daily updating satellite data, but were struggling to manage and process the 
“brutal” amount of EO data in a timely manner on their desktop computers. Further 
consultation with leading remote sensing scientists convinced us that this was a 
ubiquitous challenge as well as a “Google-scale” one, and so we set off to build 
Earth Engine in close collaboration with the remote sensing community. 

Our first step was to partner with the USGS EROS Data Center team in bringing 
the entire multi-petabyte, multi-decadal Landsat data archive off tapes, and online, 
for the first time. It took three years to create this online “mirror” for Landsat, but 
it was worth it. This novel co-location of big Earth observation data in analysis-
ready form with hundreds of thousands of CPUs for processing created new 
possibilities for characterizing our changing planet. Scientists began developing 
Earth Engine-powered methodologies which mapped, measured, and monitored 
global landscape change and environmental phenomena at unprecedented resolu-
tion, speed, and scale. Early applications included tracking and reducing global 
deforestation, mapping global surface water resources over time, estimating global
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crop yields to enhance food security, mapping and mitigating the risks of extreme 
weather events such as floods and drought, forecasting future risks of vector-borne 
diseases such as malaria, and even predicting where chimpanzees were likely to 
build their nests. 

Since those early days, it has been exciting to witness and support the Earth 
Engine user community as it has grown and thrived, now including more than 
half a million individuals and organizations worldwide. This diverse commu-
nity of scientists, academics, non-profits, governments, and industries has become 
increasingly impactful across a range of disciplines, advancing both the “state 
of the science” as well as the practical, real-world application of global envi-
ronmental remote sensing. To date, the GEE community has collectively (and 
creatively) applied Earth Engine to author more than 20,000 scientific publica-
tions in journals such as Nature, Science and Remote Sensing of Environment. 
They have also developed numerous high-impact environmental monitoring appli-
cations, including Global Forest Watch, Global Fishing Watch, OpenET, Climate 
Engine, MapBiomas, SDG661.app, Restor.eco, Earth Map, Tracemark, and more. 
Every year, we have grown the scale of cloud computation that we serve to support 
the amazing work of this community, and today Earth Engine provides more than 
500 M CPU hours per year (i.e., more than half a billion CPU hours!). 

With our announcement last year that Earth Engine is available through Google 
Cloud Platform as an enterprise-grade service, governments and businesses are 
now relying upon GEE for mission-critical purposes, such as sustainable natural 
resource management, climate and disaster risk resilience, and sustainable sourcing 
of commodities to meet zero-deforestation commitments. In addition, new star-
tups are now applying GEE technology to transform science and EO data into 
innovative sustainability-focused ideas and enterprises. 

So, I am tremendously excited about this book, which has come at the perfect 
time. With Earth Engine’s maturation into such a powerful and flexible environ-
mental monitoring platform, the demand for geospatial data scientists with fluency 
and expertise in Earth Engine is skyrocketing. We are seeing universities all over 
the world creating curricula and teaching courses based on Earth Engine. While 
prior texts for teaching remote sensing reflect the old (desktop) paradigm, modern 
teachers, learners, and practitioners need a new textbook that is written in the lan-
guage of cloud computing. A textbook that embeds familiar technical concepts of 
data structures, image processing and remote sensing in the context and machin-
ery of cloud infrastructure, with its unique ability to process massive, multi-sensor, 
near real-time datasets at unprecedented speed and scale. 

Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and 
Applications is exactly the textbook that we need: comprehensive, authoritative 
and also enjoyable! It deftly and thoroughly covers the fundamental content and 
material required to go from zero to sixty on Earth Engine. The variety of applica-
tions represented can help jump-start and inspire the reader in so many wonderful
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directions. The associated code samples ensure that you can get hands-on and 
productive, immediately and throughout. 

I am especially delighted that this book was authored by such a diverse, 
accomplished group of Earth Engine experts, spanning backgrounds, disciplines, 
geographies, and career-stage (including undergrads to full professors), who vol-
untarily joined together in a common mission to create this much-needed Earth 
Engine reference text. They have made a tremendous contribution to our entire 
global community, aligned with our founding Earth Engine mission to support the 
greater good, and I am forever grateful. 

Looking ahead, this is a time of innovation and evolution in the field of cloud-
powered environmental remote sensing, with new satellites and sensors continually 
launching, producing new types of data (e.g., global atmospheric methane concen-
trations), while also improving spatial, spectral, and temporal resolution of existing 
data sources. Meanwhile, the classical remote sensing machine learning toolkit is 
now expanding to include modern deep learning/AI-based techniques. At Google, 
and together with the GEE community, we are continuing to push this envelope 
by advancing Earth Engine’s fundamental capabilities and applications. For exam-
ple, the recent launch of Dynamic World together with WRI introduced the first 
near real-time, probabilistic, 10 m global landcover mapping dataset based on deep 
learning/AI techniques, with which the GEE community is already driving further 
downstream innovations. 

It has never been a more exciting, important, and relevant time to join this 
field and contribute to generating new knowledge about our changing planet. 
Policymakers and project implementers worldwide are seeking timely, accurate, 
science-based, and data-driven information to guide wiser decision-making and 
action on critical environmental and humanitarian issues. I hope that this book 
will turbo-charge your interest and ability to become proficient in Earth Engine and 
that you will join our growing community of people around the world dedicated 
to making it a better place, now and for generations to come. Enjoy! 

Rebecca Moore 
Director 

Google Earth and Earth Engine 
Google 

Mountain View, USA



Introduction 

Welcome to Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals 
and Applications! This book is the product of more than a year of effort from 
more than a hundred individuals, working in concert to provide this free resource 
for learning how to use this exciting technology for the public good. The book 
includes work from professors, undergraduates, master’s students, PhD students, 
postdocs, and independent consultants. 

The book is broadly organized into two halves. The first half, Fundamentals, 
is a set of 31 labs designed to take you from being a complete Earth Engine novice 
to being a quite advanced user. The second half, Applications, presents you with 
a tour of the world of Earth Engine across 24 chapters, showing how it is used in 
a very wide variety of settings that rely on remote sensing data. 

Using several strategies, we have worked hard to ensure a high-quality body of 
work across 55 chapters, more than 10,000 lines of code, and 250,000 words:

• The text of each chapter has been reviewed for the clarity of the scientific 
content and instructions, on a minimum of three occasions by people working 
independently of each other, for more than 350 detailed chapter reviews.

• The code in each chapter has been reviewed at Google for adherence to best 
practices and subsequently reviewed for consistency with the instructions in the 
book’s text by two Earth Engine experts.

• A professional copy-editing team has worked through the entire book text, 
ensuring that all chapters have a consistent sound and approach, while pre-
serving the voice of the authors. 

Fundamentals 

The goal of the Fundamentals half of the book is to introduce users to Earth Engine 
with a set of sequenced labs that are intended to be done in order. We first illustrate 
the operation of Earth Engine on individual multi-band images, with techniques 
that form the core vocabulary for Earth Engine image processing. We then intro-
duce more complex options for data representation, data enhancements, and data 
interpretation. The tools introduced in those sections build on the core analysis
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strategies, with important techniques that can be highly valuable for addressing 
specialized analysis problems. 

The Fundamentals half of the book is intended to have two main entry points: 
at Chaps. 1 and 12. It is comprised of six thematic parts, described below: 

Part I: Programming and Remote Sensing Basics 

Those who are almost entirely unfamiliar with remote sensing data, or are almost 
entirely unfamiliar with programming, or both, are encouraged to start at the begin-
ning: Part I, Chap. 1 That chapter assumes that the reader has no programming 
experience, and begins with the most fundamental first steps: defining variables, 
printing values, etc. 

The rest of Part I teaches the basics of displaying remote sensing data (Chap. 2), 
gives a brief survey of Earth Engine’s very large data catalog (Chap. 3), and 
presents the vocabulary of remote sensing (Chap. 4), intended for both novices 
and those familiar with remote sensing but just starting with Earth Engine. 

Part II: Interpreting Images 

Part II assumes that you are aware of the topics, terms, and methods encountered 
in Part I. This part illustrates the basic operations that can be done on individ-
ual satellite images. Like in Part I, the chapters are arranged in sequence, here 
with a goal of leading you through how bands of remote sensing images can be 
manipulated to form indices (Chap. 5), which can be classified using a variety 
of supervised and unsupervised techniques (Chap. 6), giving results that can be 
assessed and further adjusted (Chap. 7). 

Part III: Advanced Image Processing 

Part III presents more advanced image processing techniques that can be accessed 
in Earth Engine using operations on a single image. These include finding 
a relationship between two or more bands using regression (Chap. 8), linear 
combinations of bands to produce the tasseled cap and principal components trans-
formations (Chap. 9), morphological operations on classified images to highlight 
or de-emphasize spatial characteristics (Chap. 10), and object-based image analysis 
that groups pixels into spectrally similar spatially contiguous clusters (Chap. 11).
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Part IV: Interpreting Image Series 

Part IV introduces the analysis of time series in Earth Engine. Using long-term 
series of imagery can inform change and stability in land-use and land-cover pat-
terns around the world. This series of chapters begins by presenting the filter, map, 
reduce paradigm (Chap. 12), which is used throughout Earth Engine for manipulat-
ing collections of both vector and raster data. The next chapter shows strategies for 
learning about and visualizing image collections (Chap. 13). Subsequent chapters 
show pixel-by-pixel calculations, including the aggregation of image character-
istics in time (Chap. 14); detection and removal of cloud artifacts (Chap. 15), 
and the detection of change by comparing images at two dates (Chap. 16). Later 
chapters involve assessments that summarize a pixel’s history, at annual scales 
(Chap. 17), in harmonically repeating patterns (Chap. 18), and at sub-annual scales 
(Chap. 19). Long-time series of image classifications can be interpreted for stabil-
ity and change via Bayesian methods (Chap. 20), and lag effects in time series can 
be detected (Chap. 21). 

Part V: Vectors and Tables 

Part V shows how vector data can be used in Earth Engine. This includes upload-
ing vector data and summarizing images within irregular polygons (Chap. 22), 
converting between raster and vector formats (Chap. 23), and computing zonal 
statistics efficiently with sophisticated functions (Chap. 24). The chapters con-
clude with a useful set of advanced vector operations (Chap. 25) and a digitizing 
tool for drawing features that change across the time span of an image collection 
(Chap. 26). 

Part VI: Advanced Topics 

With the foundation provided by the first five parts of the Fundamentals, you will 
be ready to do more complex work with Earth Engine. Part VI reveals some of 
these advanced topics, including advanced techniques for better raster visualization 
(Chap. 27), collaborating with others by sharing scripts and assets (Chap. 28), 
scaling up in time and space in efficient and effective ways (Chap. 29), creating 
apps to share to the wider public (Chap. 30), and linking to outside packages 
(Chap. 31). 

Applications 

Part of the appeal of such an extensive platform in widespread adoption, and one 
of the most satisfying aspects of editing this book project, has been exposure to the 
wide range of applications built on this platform. With thousands of papers now
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published using Earth Engine, the 24 chapters presented here are not intended to 
be a complete survey of who uses Earth Engine nor how it is best used. We have 
worked to find applications and authors who fit the following characteristics: (1) 
they created vibrant work that can be appreciated by both novices and experts; (2) 
the work has one or more unique characteristics that can have appeal beyond the 
scope of the book chapter’s application; and (3) the presentation does not seek to 
be the final word on a subject, but rather as an opening of the subject to others. 

Part VII: Human Applications 

Earth Engine is used for both large-scale and relatively small-scale interpretations 
of images and time series of human activity and influence. These include agricul-
tural environments (Chap. 32), the urban built environment (Chaps. 33 and 34), 
effects on air quality and surface temperature in cities (Chaps. 35 and 36), health 
and humanitarian activities (Chaps. 37 and 38), and the detection of illegal human 
activity under cloud cover (Chap. 39). 

Part VIII: Aquatic and Hydrological Applications 

Earth Engine is also used in the aquatic realm to understand hydrologic patterns 
across large areas. These include detection of subsurface features like ground-
water (Chap. 40) and cover of the sea floor (Chap. 41). Surface water can be 
detected in satellite series, opening the opportunity to detect rapid changes like 
floods (Chap. 42) and to map rivers across the globe (Chap. 43). Human influence 
on hydrological systems can be detected and quantified in patterns of water balance 
and drought (Chap. 44) and changing patterns of the timing of snow (Chap. 45). 

Part IX: Terrestrial Applications 

Some of the many terrestrial applications of Earth Engine close out the book. 
These include the monitoring of active fires using multiple sensors and pre-
sented with user-interface apps (Chap. 46). Mangroves are complex systems that 
have elements of both the terrestrial and aquatic realms; they need to be both 
mapped (Chap. 47) and monitored for change (Chap. 48). Changes in forests can 
include both human degradation and deforestation (Chap. 49); the detection of 
these changes can be aided with the help of multiple sensors (Chap. 50). Analysts 
often need to use location-specific weather data (Chap. 51) and to create randomly 
located points for proper statistical analyses (Chap. 52). Rangelands, a major land 
use worldwide, present subtle changes over long-time periods that require dis-
tinctive techniques (Chap. 53). Finally, conservation of natural resources requires



Introduction xiii

understanding both the effect of precipitation changes on area affected by distur-
bance (Chap. 54) and the effectiveness of protected areas in conserving places as 
intended (Chap. 55). 

Uses of This Book 

We have strived to produce a book that can be used by people working in a very 
wide range of settings: from pre-college students in a classroom, to university 
courses, to professional development workshops, to individuals working alone. The 
first seven Fundamentals chapters are tightly sequenced and assume no program-
ming or remote sensing experience; their intention is to build a base of knowledge 
for novices to succeed. The remaining Fundamentals chapters are sequenced within 
their larger sections. In their introductions, each Fundamentals chapter lists ear-
lier topics and chapter numbers that form the foundation for understanding that 
chapter’s concepts, under the heading “Assumes you know how to…” However, 
although the concepts in the chapters do build on each other, each chapter’s steps 
and data stand alone and do not require that you follow every preceding chapter 
in order to succeed. This should permit you to use individual sections of the book 
to solve specific problems you encounter. The Learning Outcomes index contains 
listings such as “Attaching user-defined metadata to an image when exporting,” 
“Computing zonal summaries of calculated variables for elements in a Feature 
Collection,” and “Using reducers to implement regression between image bands,” 
among more than 150 other examples. The Applications chapters each stand alone 
and provide a guide both to the use of Earth Engine for that issue and to the 
technological details of how that application has been addressed by those authors. 

We Want Your Feedback 

We would like to get your feedback on chapters of the book. This feedback is 
useful in two ways: to make your experience better and to help others who will 
come after. 

(1) Helping others: How hard is a chapter? How long did it take? Would you rec-
ommend it to someone else? What did you learn? Is something confusing? 
Has code stopped working? To review a lab, visit https://bit.ly/EEFA-review 
when you’ve finished. By doing this, you will keep the book current and pro-
vide future book users with your assessment of the strengths and weaknesses 
of each chapter. Please give feedback! 

(2) Helping yourself: What have others already said about a chapter you are plan-
ning to do? How long will it take? How interesting is it? You can see what 
others have said at https://bit.ly/EEFA-reviews-stats.

https://bit.ly/EEFA-review
https://bit.ly/EEFA-reviews-stats
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Other Sources 

After you finish the tutorials of this book, you might consider some additional 
resources that could be of interest.

• Ujaval Gandhi’s “End to End Earth Engine” materials introduce users to some 
of the fundamentals discussed here, while going deeper on several topics.

• Samapriya Roy’s assembled “Awesome Earth Engine Datasets” addresses the 
need to curate the many exciting and useful resources that have been made 
with or for Earth Engine.

• Organizations such as SERVIR, SilvaCarbon, and the World Bank have created 
online tutorials covering some key Earth Engine topics.
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• Earth Engine’s impressive documentation includes a suite of tutorials, written 
by both Googlers and members of the Earth Engine user community, that can 
explain some key concepts. 

Jeffrey A. Cardille 
Nicholas E. Clinton 
Morgan A. Crowley 

David Saah
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Part I 

Programming and Remote Sensing Basics 

In order to use Earth Engine well, you will need to develop basic skills in remote 
sensing and programming. The language of this book is JavaScript, and you will 
begin by learning how to manipulate variables using it. With that base, you will 
learn about viewing individual satellite images, viewing collections of images in 
Earth Engine, and how common remote sensing terms are referenced and used in 
Earth Engine.



1JavaScript and the Earth Engine API 

Ujaval Gandhi 

Overview 
This chapter introduces the Google Earth Engine application programming interface 
(API) and the JavaScript syntax needed to use it. You will learn about the Code 
Editor environment and get comfortable typing, running, and saving scripts. You 
will also learn the basics of JavaScript language, such as variables, data structures, 
and functions. 

Learning Outcomes 

• Familiarity with the Earth Engine Code Editor. 
• Familiarity with the JavaScript syntax. 
• Ability to use the Earth Engine API functions from the Code Editor. 

Assumes you know how to 

• Sign up for an Earth Engine account (See the Google documentation for 
details). 

• Access the Earth Engine Code Editor (See the Google documentation for 
details).
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1.1 Introduction to Theory 

The Earth Engine API 
Google Earth Engine is a cloud-based platform for scientific data analysis. It pro-
vides ready-to-use, cloud-hosted datasets and a large pool of servers. One feature 
that makes Earth Engine particularly attractive is the ability to run large compu-
tations very fast by distributing them across a large pool of servers. The ability 
to efficiently use cloud-hosted datasets and computation is enabled by the Earth 
Engine API. 

An API is a way to communicate with Earth Engine servers. It allows you to 
specify what computation you would like to do and then to receive the results. The 
API is designed so that users do not need to worry about how the computation is 
distributed across a cluster of machines, and the results are assembled. Users of 
the API simply specify what needs to be done. This greatly simplifies the code by 
hiding the implementation detail from the users. It also makes Earth Engine very 
approachable for users who are not familiar with writing code. 

Earth Engine API is designed to be language agnostic. Google provides official 
client libraries to use the API from both JavaScript and Python. The API remains 
largely the same regardless of the programming language you use. The main dif-
ference is the syntax used to call the API functions. Once you learn the syntax for 
programming languages, your code can be adapted easily because they all use the 
same API functions. 

Why JavaScript? 
JavaScript may not be the first choice of programming language for many 
researchers and data scientists, and some may be wondering why this book is 
based on the JavaScript API instead of Python or R. 

The Earth Engine JavaScript API is the most mature and easiest to use when 
getting started. The Earth Engine platform comes with a web-based Code Editor 
that allows you to start using the Earth Engine JavaScript API without any instal-
lation. It also provides additional functionality to display your results on a map, 
save your scripts, access documentation, manage tasks, and more. It has a one-click 
mechanism to share your code with other users—allowing for easy reproducibil-
ity and collaboration. In addition, the JavaScript API comes with a user interface 
library, which allows you to create charts and web-based applications with little 
effort. 

In practice, you do not need to become a JavaScript expert to use Earth Engine. 
The basic syntax described here should be sufficient. A good tip is that if you find 
yourself doing something complicated in JavaScript, it might be done much better 
in Earth Engine. All the important computations in Earth Engine need to use the 
API functions, and even a basic operation—such as adding two numbers in Earth 
Engine—should be done using the Earth Engine API.
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1.2 Practicum 

1.2.1 Section 1: Getting Started in the Code Editor 

The Code Editor is an integrated development environment for the Earth Engine 
JavaScript API. It offers an easy way to type, debug, run, and manage code. Once 
you have followed Google’s documentation on registering for an Earth Engine 
account, you should follow the documentation to open the Code Editor. When you 
first visit the Code Editor, you will see a screen such as the one shown in Fig. 1.1. 

The Code Editor (Fig. 1.1) allows you to type JavaScript code and execute it. 
When you are first learning a new language and getting used to a new program-
ming environment, it is customary to make a program to display the words “Hello 
World.” This is a fun way to start coding that shows you how to give input to 
the program and how to execute it. It also shows where the program displays the 
output. Doing this in JavaScript is quite simple. Copy the following code into the 
center panel. 

print('Hello World'); 

The line of code above uses the JavaScript print function to print the text 
“Hello World” to the screen. Once you enter the code, click the Run button. The

Fig. 1.1 Earth Engine code editor 
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Fig. 1.2 Typing and running code 

output will be displayed on the upper right-hand panel under the Console tab 
(Fig. 1.2.). 

You now know where to type your code, how to run it, and where to look for 
the output. You just wrote your first Earth Engine script and may want to save it. 
Click the Save button (Fig. 1.3).

If this is your first time using the Code Editor, you will be prompted to create 
a home folder. This is a folder in the cloud where all your code will be saved. You 
can pick a name of your choice, but remember that it cannot be changed and will 
forever be associated with your account. A good choice for the name would be 
your Google Account username (Fig. 1.4).

Once your home folder is created, you will be prompted to enter a new repos-
itory. A repository can help you organize and share code. Your account can have 
multiple repositories, and each repository can have multiple scripts inside it. To 
get started, you can create a repository named “default” (Fig. 1.5).

Finally, you will be able to save your script inside the newly created repository. 
Enter the name “hello_world” and click OK (Fig. 1.6).

Once the script is saved, it will appear in the script manager panel (Fig. 1.7). 
The scripts are saved in the cloud and will always be available to you when you 
open the Code Editor.

Now you should be familiar with how to create, run, and save your scripts in 
the Code Editor. You are ready to start learning the basics of JavaScript.
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Fig. 1.3 Saving a script

Fig. 1.4 Creating a home folder
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Fig. 1.5 Creating a new repository

Fig. 1.6 Saving a file

Fig. 1.7 Script manager
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1.2.2 Section 2: JavaScript Basics 

To be able to construct a script for your analysis, you will need to use JavaScript. 
This section covers the JavaScript syntax and basic data structures. In the sections 
that follow, you will see more JavaScript code, noted in a distinct font and with 
shaded background. As you encounter code, paste it into the Code Editor and run 
the script. 

Variables 
In a programming language, variables are used to store data values. In JavaScript, 
a variable is defined using the var keyword followed by the name of the variable. 
The code below assigns the text “San Francisco” to the variable named city. 
Note that the text string in the code should be surrounded by quotes. You are 
free to use either ‘ (single quotes) or “ (double quotes), and they must match 
at the beginning and end of each string. In your programs, it is advisable to be 
consistent—use either single quotes or double quotes throughout a given script 
(the code in this book generally uses single quotes for code). Each statement of 
your script should typically end with a semicolon, although Earth Engine’s code 
editor does not require it. 

var city = 'San Francisco'; 

If you print the variable city, you will get the value stored in the variable 
(San Francisco) printed in the Console. 

print(city); 

When you assign a text value, the variable is automatically assigned the type 
string. You can also assign numbers to variables and create variables of type num-
ber. The following code creates a new variable called population and assigns a 
number as its value. 

var population = 873965; 
print(population);
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Fig. 1.8 JavaScript list 

Lists 
It is helpful to be able to store multiple values in a single variable. JavaScript 
provides a data structure called a list that can hold multiple values. We can create 
a new list using the square brackets [] and adding multiple values separated by a 
comma. 

var cities = ['San Francisco', 'Los Angeles', 'New York', 
'Atlanta']; 
print(cities); 

If you look at the output in the Console, you will see “List” with an expander 
arrow (▷) next to it. Clicking on the arrow will expand the list and show you its 
content. You will notice that along with the four items in the list, there is a number 
next to each value. This is the index of each item. It allows you to refer to each 
item in the list using a numeric value that indicates its position in the list (Fig. 1.8). 

Objects 
Lists allow you to store multiple values in a single container variable. While useful, 
it is not appropriate to store structured data. It is helpful to be able to refer to each 
item with its name rather than its position. Objects in JavaScript allow you to store 
key-value pairs, where each value can be referred to by its key. You can create a 
dictionary using the curly braces {}. The code below creates an object called 
cityData with some information about San Francisco. 

Note a few important things about the JavaScript syntax here. First, we can use 
multiple lines to define the object. Only when we put in the semicolon (;) is the 
command considered complete. This helps format the code to make it more read-
able. Also note the choice of the variable name cityData. The variable contains 
two words. The first word is in lowercase, and the first letter of the second word 
is capitalized. This type of naming scheme of joining multiple words into a sin-
gle variable name is called “camel case.” While it is not mandatory to name your 
variables using this scheme, it is considered a good practice to follow. Functions 
and parameters in the Earth Engine API follow this convention, so your code will 
be much more readable if you follow it too.
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Fig. 1.9 JavaScript object 

var cityData = { 
'city': 'San Francisco', 
'coordinates': [-122.4194, 37.7749], 
'population': 873965 

}; 
print(cityData); 

The object will be printed in the Console. You can see that instead of a numeric 
index, each item has a label. This is known as the key and can be used to retrieve 
the value of an item (Fig. 1.9). 

Functions 
While using Earth Engine, you will need to define your own functions. Functions 
take user inputs, use them to carry out some computation, and send an output back. 
Functions allow you to group a set of operations together and repeat the same 
operations with different parameters without having to rewrite them every time. 
Functions are defined using the function keyword. The code below defines a 
function called greet that takes an input called name and returns a greeting with 
Hello prefixed to it. Note that we can call the function with different input, and it 
generates different outputs with the same code (Fig. 1.10). 

var greet = function(name) { 
    return 'Hello ' + name; 
}; 
print(greet('World')); 
print(greet('Readers')); 

Fig. 1.10 JavaScript 
function output 
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Comments 
While writing code, it is useful to add a bit of text to explain the code or leave 
a note for yourself. It is a good programming practice to always add comments 
in the code explaining each step. In JavaScript, you can prefix any line with two 
forward slashes // to make it a comment. The text in the comment will be ignored 
by the interpreter and will not be executed. 

// This is a comment! 

The Code Editor also provides a shortcut—Ctrl + / on Windows, Cmd + / on 
Mac—to comment or uncomment multiple lines at a time. You can select multiple 
lines and press the key combination to make them all comments. Press again to 
reverse the operation. This is helpful when debugging code to stop certain parts of 
the script from being executed (Fig. 1.11). 

Congratulations! You have learned enough JavaScript to be able to use the Earth 
Engine API. In the next section, you will see how to access and execute Earth 
Engine API functions using JavaScript. 

Code Checkpoint F10a. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 1.11 Commenting multiple lines 
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1.2.3 Section 3: Earth Engine API Basics 

The Earth Engine API is vast and provides objects and methods to do everything 
from simple math to advanced algorithms for image processing. In the Code Editor, 
you can switch to the Docs tab to see the API functions grouped by object types. 
The API functions have the prefix ee (for Earth Engine) (Fig. 1.12). 

Let us learn to use the API. Suppose you want to add two numbers, represented 
by the variables a and b, as below. Make a new script and enter the following: 

var a = 1; 
var b = 2; 

In Sect. 1.2.1, you learned how to store numbers in variables, but not how to 
do any computation. This is because when you use Earth Engine, you do not do 
addition using JavaScript operators. For example, you would not write “var c = a 
+ b” to add the two numbers. Instead, the Earth Engine API provides you with 
functions to do this, and it is important that you use the API functions whenever

Fig. 1.12 Earth Engine API 
docs 
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Fig. 1.13 ee.Number 
module 

you can. It may seem awkward at first, but using the functions, as we will describe 
below, will help you avoid timeouts and create efficient code. 

Looking at the Docs tab, you will find a group of methods that can be called 
on an ee.Number. Expand it to see the various functions available to work with 
numbers. You will see the ee.Number function that creates an Earth Engine 
number object from a value. In the list of functions, there is an add function for 
adding two numbers. That is what you use to add a and b (Fig. 1.13). 

To add a and b, we first create an ee.Number object from variable a with 
ee.Number(a). And then we can use the add(b) call to add the value of b to 
it. The following code shows the syntax and prints the result which, of course, 
is the value 3: 

var result = ee.Number(a).add(b); 
print(result); 

By now, you may have realized that when learning to program in Earth Engine, 
you do not need to deeply learn JavaScript or Python—instead, they are ways 
to access the Earth Engine API. This API is the same whether it is called from 
JavaScript or Python.
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Fig. 1.14 ee.List.sequence function 

Here is another example to drive this point home. Let us say you are working 
on a task that requires you to create a list of years from 1980 to 2020 with a five-
year interval. If you are faced with this task, the first step is to switch to the Docs 
tab and open the ee.List module. Browse through the functions and see if there 
are any functions that can help. You will notice a function ee.List.sequence. 
Clicking on it will bring up the documentation of the function (Fig. 1.14). 

The function ee.List.sequence is able to generate a sequence of numbers 
from a given start value to the end value. It also has an optional parameter 
step to indicate the increment between each number. We can create a ee.List 
of numbers representing years from 1980 to 2020, counting by 5, by calling this 
predefined function with the following values: start = 1980, end = 2020, and step 
= 5. 

var yearList = ee.List.sequence(1980, 2020, 5); 
print(yearList);
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Fig. 1.15 Output of ee.List.sequence function 

The output printed in the Console will show that the variable yearList 
indeed contains the list of years with the correct interval (Fig. 1.15). 

You just accomplished a moderately complex programming task with the help 
of Earth Engine API. 

Code Checkpoint F10b. The book’s repository contains a script that shows what 
your code should look like at this point. 

1.3 Synthesis 

Assignment 1. Suppose you have the following two string variables defined in 
the code below. Use the Earth Engine API to create a new string variable called 
result by combining these two strings. Print it in the Console. The printed value 
should read “Sentinel2A.” 

var mission = ee.String('Sentinel'); 
var satellite = ee.String('2A'); 

Hint: Use the cat function from the ee.String module to “concatenate” 
(join together) the two strings. You will find more information about all available 
functions in the Docs tab of the Code Editor (Fig. 1.16).
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Fig. 1.16 Docs tab showing functions in the ee.String module 

1.4 Conclusion 

This chapter introduced the Earth Engine API. You also learned the basics of 
JavaScript syntax to be able to use the API in the Code Editor environment. We 
hope you now feel a bit more comfortable starting your journey to become an Earth 
Engine developer. Regardless of your programming background or familiarity with 
JavaScript, you have the tools at your disposal to start using the Earth Engine API 
to build scripts for remote sensing analysis.
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2Exploring Images 

Jeff Howarth 

Overview 
Satellite images are at the heart of Google Earth Engine’s power. This chapter teaches 
you how to inspect and visualize data stored in image bands. We first visualize 
individual bands as separate map layers and then explore a method to visualize three 
different bands in a single composite layer. We compare different kinds of composites 
for satellite bands that measure electromagnetic radiation in the visible and non-
visible spectrum. We then explore images that represent more abstract attributes of 
locations and create a composite layer to visualize change over time. 

Learning Outcomes

• Using the Code Editor to load an image.
• Using code to select image bands and visualize them as map layers.
• Understanding true- and false-color composites of images.
• Constructing new multiband images.
• Understanding how additive color works and how to interpret RGB composites. 

Assumes you know how to

• Sign up for an Earth Engine account, open the Code Editor, and save your script 
(Chap. 1).
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2.1 Practicum 

2.1.1 Section 1: Accessing an Image 

To begin, you will construct an image with the Code Editor. In the sections that 
follow, you will see code in a distinct font and with shaded background. As you 
encounter code, paste it into the center panel of the Code Editor and click Run. 

First, copy and paste the following: 

var first_image = ee.Image( 
'LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606'); 

When you click Run, Earth Engine will load an image captured by the Landsat 
5 satellite on June 6, 2000. You will not yet see any output. 

You can explore the image in several ways. To start, you can retrieve metadata 
(descriptive data about the image) by printing the image to the Code Editor’s 
Console panel: 

print(first_image); 

In the Console panel, you may need to click the expander arrows to show the 
information. You should be able to read that this image consists of 19 different 
bands. For each band, the metadata lists four properties, but for now let us simply 
note that the first property is a name or label for the band enclosed in quotation 
marks. For example, the name of the first band is “SR_B1” (Fig. 2.1).

A satellite sensor like Landsat 5 measures the magnitude of radiation in dif-
ferent portions of the electromagnetic spectrum. The first six bands in our image 
(“SR_B1” through “SR_B7”) contain measurements for six different portions of 
the spectrum. The first three bands measure visible portions of the spectrum or 
quantities of blue, green, and red lights. The other three bands measure infrared 
portions of the spectrum that are not visible to the human eye. 

An image band is an example of a raster data model, a method of storing 
geographic data in a two-dimensional grid of pixels, or  picture elements. In remote 
sensing, the value stored by each pixel is often called a Digital Number or DN. 
Depending on the sensor, the pixel value or DN can represent a range of possible 
data values.
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Fig. 2.1 Image metadata printed to Console panel

Some of this information, like the names of the bands and their dimensions 
(number of pixels wide by number of pixels tall), we can see in the metadata. 
Other pieces of information, like the portions of the spectrum measured in each 
band and the range of possible data values, can be found through the Earth Engine 
Data Catalog (which is described in the next two chapters) or with other Earth 
Engine methods. These will be described in more detail later in the book. 

2.1.2 Section 2: Visualizing an Image 

Now, let us add one of the bands to the map as a layer so that we can see it.
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Map.addLayer( 
first_image, //  dataset to display 
{ 

bands: ['SR_B1'], //  band to display 
min: 8000, //  display range  
max: 17000 

}, 
'Layer 1' //  name to show in Layer Manager 

); 

The code here uses the addLayer method of the map in the Code Editor. 
There are four important components of the command above: 

1. first_image: This is the dataset to display on the map. 
2. bands: These are the particular bands from the dataset to display on the map. 

In our example, we displayed a single band named “SR_B1”. 
3. min, max: These represent the lower and upper bounds of values from 

“SR_B1” to display on the screen. By default, the minimum value provided 
(8000) is mapped to black, and the maximum value provided (17,000) is 
mapped to white. The values between the minimum and maximum are mapped 
linearly to grayscale between black and white. Values below 8000 are drawn as 
black. Values above 17,000 are drawn as white. Together, the bands, min, and 
max parameters define visualization parameters, or instructions for data display. 

4. ‘Layer 1’: This is a label for the map layer to display in the Layer Manager. 
This label appears in the dropdown menu of layers in the upper right of the map. 

When you run the code, you might not notice the image displayed unless you pan 
around and look for it. To do this, click and drag the map toward Shanghai, China. 
(You can also jump there by typing “Shanghai” into the Search panel at the top 
of the Code Editor, where the prompt says Search places and datasets…) Over  
Shanghai, you should see a small, dark, slightly angled square. Use the zoom tool 
(the + sign, upper left of map) to increase the zoom level and make the square 
appear larger. 

Can you recognize any features in the image? By comparing it to the standard 
Google Map that appears under the image (as the base layer), you should be able 
to distinguish the coastline. The water near the shore generally appears a little 
lighter than the land, except perhaps for a large, light-colored blob on the land in 
the bottom of the image. 

Let us explore this image with the Inspector tool. When you click on the 
Inspector tab on the right side of the Code Editor (Fig. 2.2, area A), your cursor 
should now look like crosshairs. When you click on a location in the image, the 
Inspector panel will report data for that location under three categories as follows:
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Fig. 2.2 Image data reported through the Inspector panel

• Point: data about the location on the map. This includes the geographic location 
(longitude and latitude) and some data about the map display (zoom level and 
scale).

• Pixels: data about the pixel in the layer. If you expand this, you will see the 
name of the map layer, a description of the data source, and a bar chart. In our 
example, we see that “Layer 1” is drawn from an image dataset that contains 19 
bands. Under the layer name, the chart displays the pixel value at the location 
that you clicked for each band in the dataset. When you hover your cursor over 
a bar, a panel will pop up to display the band name and “band value” (pixel 
value). To find the pixel value for “SR_B1”, hover the cursor over the first 
bar on the left. Alternatively, by clicking on the little blue icon to the right of 
“Layer 1” (Fig. 2.2, area B), you will change the display from a bar chart to a 
dictionary that reports the pixel value for each band.

• Objects: data about the source dataset. Here, you will find metadata about the 
image that looks very similar to what you retrieved earlier when you directed 
Earth Engine to print the image to the Console.
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Let us add two more bands to the map. 

Map.addLayer( 
first_image, 
{ 

bands: ['SR_B2'], 
min: 8000, 
max: 17000 

}, 
'Layer 2', 
0, //  shown 
1 //  opacity 

); 

Map.addLayer( 
first_image, 
{ 

bands: ['SR_B3'], 
min: 8000, 
max: 17000 

}, 
'Layer 3', 
1, //  shown 
0 //  opacity 

); 

In the code above, notice that we included two additional parameters to the 
Map.addLayer call. One parameter controls whether or not the layer is shown 
on the screen when the layer is drawn. It may be either 1 (shown) or 0 (not 
shown). The other parameter defines the opacity of the layer or your ability to 
“see through” the map layer. The opacity value can range between 0 (transparent) 
and 1 (opaque). 

Do you see how these new parameters influence the map layer displays 
(Fig. 2.3)? For Layer 2, we set the shown parameter as 0. For Layer 3, we set 
the opacity parameter as 0. As a result, neither layer is visible to us when we first 
run the code. We can make each layer visible with controls in the Layers manager 
checklist on the map (at top right). Expand this list and you should see the names 
that we gave each layer when we added them to the map. Each name sits between 
a checkbox and an opacity slider. To make Layer 2 visible, click the checkbox 
(Fig. 2.3, area A). To make Layer 3 visible, move the opacity slider to the right 
(Fig. 2.3, area B).
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Fig. 2.3 Three bands from the Landsat image, drawn as three different grayscale layers 

By manipulating these controls, you should notice that these layers are dis-
played as a stack, meaning one on top of the other. For example, set the opacity 
for each layer to be 1 by pushing the opacity sliders all the way to the right. Then, 
make sure that each box is checked next to each layer so that all the layers are 
shown. Now you can identify which layer is on top of the stack by checking and 
unchecking each layer. If a layer is on top of another, unchecking the top layer 
will reveal the layer underneath. If a layer is under another layer in the stack, then 
unchecking the bottom layer will not alter the display (because the top layer will 
remain visible). If you try this on our stack, you should see that the list order 
reflects the stack order, meaning that the layer at the top of the layer list appears 
on the top of the stack. Now, compare the order of the layers in the list to the 
sequence of operations in your script. What layer did your script add first and 
where does this appear in the layering order on the map? 

Code Checkpoint F11a. The book’s repository contains a script that shows what 
your code should look like at this point.
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2.1.3 Section 3: True-Color Composites 

Using the controls in the Layers manager, explore these layers and examine how 
the pixel values in each band differ. Does Layer 2 (displaying pixel values from 
the “SR_B2” band) appear generally brighter than Layer 1 (the “SR_B1” band)? 
Compared with Layer 2, do the ocean waters in Layer 3 (the “SR_B3” band) 
appear a little darker in the north, but a little lighter in the south? 

We can use color to compare these visual differences in the pixel values of each 
band layer all at once as an RGB composite. This method uses the three primary 
colors (red, green, and blue) to display each pixel’s values across three bands. 

To try this, add this code and run it. 

Map.addLayer( 
first_image, 
{ 

bands: ['SR_B3', 'SR_B2', 'SR_B1'], 
min: 8000, 
max: 17000 

}, 
'Natural Color'); 

The result (Fig. 2.4) looks like the world we see and is referred to as a natural-
color composite, because it naturally pairs the spectral ranges of the image bands 
to display colors. Also called a true-color composite, this image shows the red 
spectral band with shades of red, the green band with shades of green, and the 
blue band with shades of blue. We specified the pairing simply through the order 
of the bands in the list: B3, B2, B1. Because bands 3, 2, and 1 of Landsat 5 
correspond to the real-world colors of red, green, and blue, the image resembles 
the world that we would see outside the window of a plane or with a low-flying 
drone.

2.1.4 Section 4: False-Color Composites 

As you saw when you printed the band list (Fig. 2.1), a Landsat image contains 
many more bands than just the three true-color bands. We can make RGB com-
posites to show combinations of any of the bands—even those outside what the 
human eye can see. For example, band 4 represents the near-infrared band, just 
outside the range of human vision. Because of its value in distinguishing envi-
ronmental conditions, this band was included on even the earliest 1970s Landsats. 
It has different values in coniferous and deciduous forests, for example, and can 
indicate crop health. To see an example of this, add this code to your script and 
run it.
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Fig. 2.4 True-color composite

Map.addLayer( 
first_image, 
{ 

bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 8000, 
max: 17000 

}, 
'False Color'); 

In this false-color composite (Fig. 2.5), the display colors no longer pair natu-
rally with the bands. This particular example, which is more precisely referred to 
as a color-infrared composite, is a scene that we could not observe with our eyes, 
but that you can learn to read and interpret. Its meaning can be deciphered logically 
by thinking through what is passed to the red, green, and blue color channels.
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Fig. 2.5 Color-infrared image (a false-color composite) 

Notice how the land on the northern peninsula appears bright red (Fig. 2.5, area 
A). This is because for that area, the pixel value of the first band (which is drawing 
the near-infrared brightness) is much higher relative to the pixel value of the other 
two bands. You can check this by using the Inspector tool. Try zooming into a 
part of the image with a red patch (Fig. 2.5, area B) and clicking on a pixel that 
appears red. Then, expand the “False Color” layer in the Inspector panel (Fig. 2.6, 
area A), click the blue icon next to the layer name (Fig. 2.6, area B), and read the 
pixel value for the three bands of the composite (Fig. 2.6, area C). The pixel value 
for B4 should be much greater than for B3 or  B2.

In the bottom left corner of the image (Fig. 2.5, area C), rivers and lakes appear 
very dark, which means that the pixel value in all three bands is low. However, 
sediment plumes fanning from the river into the sea appear with blue and cyan 
tints (Fig. 2.5, area D). If they look like primary blue, then the pixel value for 
the second band (B3) is likely higher than the first (B4) and third (B2) bands. If 
they appear more like cyan, an additive color, it means that the pixel values of the 
second and third bands are both greater than the first.
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Fig. 2.6 Values of B4, B3, B2 bands for a pixel that appears bright red

In total, the false-color composite provides more contrast than the true-color 
image for understanding differences across the scene. This suggests that other 
bands might contain more useful information as well. We saw earlier that our 
satellite image consisted of 19 bands. Six of these represent different portions 
of the electromagnetic spectrum, including three beyond the visible spectrum, 
that can be used to make different false-color composites. Use the code below 
to explore a composite that shows shortwave infrared, near infrared, and visible 
green (Fig. 2.7).

Map.addLayer( 
first_image, 
{ 

bands: ['SR_B5', 'SR_B4', 'SR_B2'], 
min: 8000, 
max: 17000 

}, 
'Short wave false color');
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Fig. 2.7 Shortwave infrared false-color composite

To compare the two false-color composites, zoom into the area shown in the 
two pictures of Fig. 2.8. You should notice that bright red locations in the left 
composite appear bright green in the right composite. Why do you think that is? 
Does the image on the right show new distinctions not seen in the image on the 
left? If so, what do you think they are?

Code Checkpoint F11b. The book’s repository contains a script that shows what 
your code should look like at this point. 

2.1.5 Section 5: Additive Color System 

Thus far, we have used RGB composites to make a true-color image, in which 
the colors on the screen match the colors in our everyday world. We also used the 
same principles to draw two false-color combinations of optical bands collected by
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Fig. 2.8 Near-infrared versus shortwave infrared false-color composites

the satellite. To be able to read and interpret information from composite images 
generally, it is useful to understand the additive color system. Views of data in Earth 
Engine, and indeed everything drawn on a computer screen, use three channels 
for display (red, green, and blue). The order of the bands in a composite layer 
determines the color channel used to display the DN of pixels. When the DN is 
higher in one band relative to the other two bands, the pixel will appear tinted 
with the color channel used to display that band. For example, when the first 
band is higher relative to the other two bands, the pixel will appear reddish. The 
intensity of the pixel color will express the magnitude of difference between the 
DN quantities. 

The way that primary colors combine to make new colors in an additive color 
system can be confusing at first, especially if you learned how to mix colors by 
painting or printing. When using an additive color system, red combined with 
green makes yellow, green combined with blue makes cyan, and red combined 
with blue makes magenta (Fig. 2.9). Combining all three primary colors makes 
white. The absence of all primary colors makes black. For RGB composites, this 
means that if the pixel value of two bands is greater than that of the third band, the 
pixel color will appear tinted as a combined color. For example, when the pixel 
value of the first and second bands of a composite is higher than that of the third 
band, the pixel will appear yellowish.

2.1.6 Section 6: Attributes of Locations 

So far, we have explored bands as a method for storing data about slices of the 
electromagnetic spectrum that can be measured by satellites. Now, we will work 
toward applying the additive color system to bands that store non-optical and more 
abstract attributes of geographic locations.
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Fig. 2.9 Additive color system

To begin, add this code to your script and run it. 

var lights93 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F101993'); 

print('Nighttime lights', lights93); 

Map.addLayer( 
lights93, 
{ 

bands: ['stable_lights'], 
min: 0, 
max: 63 

}, 
'Lights'); 

This code loads an image of global nighttime lights and adds a new layer to the 
map. Please look at the metadata that we printed to the Console panel. You should 
see that the image consists of four bands. The code selects the “stable_lights” band 
to display as a layer to the map. The range of values for display (0–63) represents 
the minimum and maximum pixel values in this image. As mentioned earlier, you 
can find this range in the Earth Engine Data Catalog or with other Earth Engine 
methods. These will be described in more detail in the next few chapters. 

The global nighttime lights’ image represents the average brightness of night-
time lights at each pixel for a calendar year. For those of us who have sat by a 
window in an airplane as it descends to a destination at night, the scene may look 
vaguely familiar. But, the image is very much an abstraction. It provides us a view 
of the planet that we would never be able to see from an airplane or even from 
space. Night blankets the entire planet in darkness. There are no clouds. In the
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Fig. 2.10 Stable nighttime lights in 1993 

“stable lights” band, there are no ephemeral sources of light. Lightning strikes, 
wildfires, and other transient lights have been removed. It is a layer that aims to 
answer one question about our planet at one point in time: In 1993, how bright 
were Earth’s stable, artificial sources of light? 

With the zoom controls on the map, you can zoom out to see the bright spot 
of Shanghai, the large blob of Seoul to the north and east, the darkness of North 
Korea except for the small dot of Pyongyang, and the dense strips of lights of 
Japan and the west coast of Taiwan (Fig. 2.10). 

2.1.7 Section 7: Abstract RGB Composites 

Now, we can use the additive color system to make an RGB composite that com-
pares stable nighttime lights at three different slices of time. Add the code below 
to your script and run it.
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var lights03 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152003') 
.select('stable_lights').rename('2003'); 

var lights13 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182013') 
.select('stable_lights').rename('2013'); 

var changeImage = lights13.addBands(lights03) 
.addBands(lights93.select('stable_lights').rename('1993')); 

print('change image', changeImage); 

Map.addLayer( 
changeImage, 
{ 

min: 0, 
max: 63 

}, 
'Change composite'); 

This code does a few things. First, it creates two new images, each representing 
a different slice of time. For both, we use the select method to select a band 
(“stable_lights”) and the rename method to change the band name to indicate the 
year it represents. 

Next, the code uses the addBands method to create a new, three-band image 
that we name “changeImage”. It does this by taking one image (lights13) as the 
first band, using another image (lights03) as the second band, and the lights93 
image seen earlier as the third band. The third band is given the name “1993” as 
it is placed into the image. 

Finally, the code prints metadata to the Console and adds the layer to the map 
as an RGB composite using Map.addLayer. If you look at the printed metadata, 
you should see under the label “change image” that our image is composed of three 
bands, with each band named after a year. You should also notice the order of the 
bands in the image: 2013, 2003, 1993. This order determines the color channels 
used to represent each slice of time in the composite: 2013 as red, 2003 as green, 
and 1993 as blue (Fig. 2.11).

We can now read the colors displayed on the layer to interpret different kinds of 
changes in nighttime lights across the planet over two decades. Pixels that appear 
white have high brightness in all three years. You can use the Inspector panel 
to confirm this. Click on the Inspector panel to change the cursor to a crosshair 
and then click on a pixel that appears white. Look under the Pixel category of the 
Inspector panel for the “Change composite” layer. The pixel value for each band 
should be high (at or near 63).
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Fig. 2.11 RGB composite of stable nighttime lights (2013, 2003, 1993)

Many clumps of white pixels represent urban cores. If you zoom into Shanghai, 
you will notice that the periphery of the white-colored core appears yellowish and 
the terminal edges appear reddish. Yellow represents locations that were bright in 
2013 and 2003 but dark in 1993. Red represents locations that appear bright in 
2013 but dark in 2003 and 1993. If you zoom out, you will see that this gradient 
of white core to yellow periphery to red edge occurs around many cities across 
the planet and shows the global pattern of urban sprawl over the 20-year period. 

When you zoom out from Shanghai, you will likely notice that each map layer 
redraws every time you change the zoom level. In order to explore the change com-
posite layer more efficiently, use the Layer manager panel to not show (uncheck) 
all of the layers except for “Change composite.” Now, the map will respond faster 
when you zoom and pan because it will only refresh the single-displayed shown 
layer. 

In addition to urban change, the layer also shows changes in resource extraction 
activities that produce bright lights. Often, these activities produce lights that are 
stable over the span of a year (and therefore included in the “stable lights” band), 
but are not sustained over the span of a decade or more. For example, in the Korea 
Strait (between South Korea and Japan), you can see geographic shifts of fishing 
fleets that use bright halogen lights to attract squid and other sea creatures toward
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the water surface and into their nets. Bluish pixels were likely fished more heavily 
in 1993 and became used less frequently by 2003, while greenish pixels were 
likely fished more heavily in 2003 and less frequently by 2013 (Fig. 2.11). 

Similarly, fossil fuel extraction produces nighttime lights through gas flaring. If 
you pan to North America (Fig. 2.12), red blobs in Alberta and North Dakota and 
a red swath in southeastern Texas all represent places where oil and gas extraction 
was absent in 1993 and 2003 but booming by 2013. Pan over to the Persian Gulf 
and you will see changes that look like holiday lights with dots of white, red, 
green, and blue appearing near each other; these distinguish stable and shifting 
locations of oil production. Blue lights in Syria near the border with Iraq signify 
the abandonment of oil fields after 1993 (Fig. 2.13). Pan further north and you will 
see another “holiday lights” display from oil and gas extraction around Surgut, 
Russia. In many of these places, you can check for oil and gas infrastructure by 
zooming into a colored spot, making the lights layer not visible, and selecting the 
Satellite base layer (upper right). 

As you explore this image, remember to check your interpretations with the 
Inspector panel by clicking on a pixel and reading the pixel value for each band. 
Refer back to the additive color figure to remember how the color system works. 
If you practice this, you should be able to read any RGB composite by knowing 
how colors relate to the relative pixel value of each band. This will empower you

Fig. 2.12 Large red blobs in North Dakota and Texas from fossil fuel extraction in specific years
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Fig. 2.13 Nighttime light changes in the Middle East

to employ false-color composites as a flexible and powerful method to explore and 
interpret geographic patterns and changes on Earth’s surface. 

Code Checkpoint F11c. The book’s repository contains a script that shows what 
your code should look like at this point. 

2.2 Synthesis 

Assignment 1. Compare and contrast the changes in nighttime lights around Dam-
ascus, Syria versus Amman, Jordan. How are the colors for the two cities similar 
and different? How do you interpret the differences? 

Assignment 2. Look at the changes in nighttime lights in the region of Port Har-
court, Nigeria. What kinds of changes do you think these colors signify? What 
clues in the satellite basemap can you see to confirm your interpretation? 

Assignment 3. In the nighttime lights’ change composite, we did not specify the 
three bands to use for our RGB composite. How do you think Earth Engine chose 
the three bands to display? How do you think Earth Engine determined which 
band should be shown with the red, green, and blue channels?
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Assignment 4. Create a new script to make three composites (natural-color, near-
infrared false-color, and shortwave infrared false-color composites) for this image: 

'LANDSAT/LT05/C02/T1_L2/LT05_022039_20050907' 

What environmental event do you think the images show? Compare and contrast 
the natural and false-color composites. What do the false-color composites help 
you see that is more difficult to decipher in the natural-color composite? 

Assignment 5. Create a new script and run this code to view this image over 
Shanghai: 

var image = 
ee.Image('LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606'); 

Map.addLayer( 
image, 
{ 

bands: ['SR_B1'], 
min: 8000, 
max: 17000 

}, 
'Layer 1' 

); 

Map.addLayer( 
image.select('SR_B1'), 
{ 

min: 8000, 
max: 17000 

}, 
'Layer 2' 

); 

Inspect Layer 1 and Layer 2 with the Inspector panel. Describe how the two 
layers differ and explain why they differ.
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2.3 Conclusion 

In this chapter, we looked at how an image is composed of one or more bands, 
where each band stores data about geographic locations as pixel values. We 
explored different ways of visualizing these pixel values as map layers, includ-
ing a grayscale display of single bands and RGB composites of three bands. We 
created natural and false-color composites that use additive color to display infor-
mation in visible and non-visible portions of the spectrum. We examined additive 
color as a general system for visualizing pixel values across multiple bands. We 
then explored how bands and RGB composites can be used to represent more 
abstract phenomena, including different kinds of change over time. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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Learning Outcomes

• Accessing and viewing sets of images in Earth Engine.
• Extracting single scenes from collections of images.
• Applying visualization parameters in Earth Engine to visualize an image. 

Assumes you know how to

• Sign up for an Earth Engine account, open the Code Editor, and save your 
script. (Chap. 1)

• Locate the Earth Engine Inspector and Console tabs and understand their 
purposes (Chap. 1).

• Use the Inspector tab to assess pixel values (Chap. 2). 

3.1 Introduction to Theory 

The previous chapter introduced you to images, one of the core building blocks of 
remotely sensed imagery in Earth Engine. In this chapter, we will expand on this 
concept of images by introducing image collections. Image collections in Earth 
Engine organize many different images into one larger data storage structure. 
Image collections include information about the location, date collected, and other 
properties of each image, allowing you to sift through the ImageCollection 
for the exact image characteristics needed for your analysis. 

3.2 Practicum 

There are many different types of image collections available in Earth Engine. 
These include collections of individual satellite images, pre-made composites that 
combine multiple images into one blended image, classified LULC maps, weather 
data, and other non-optical datasets. Each one of these is useful for different types 
of analyses. For example, one recent study examined the drivers of wildfires in 
Australia (Sulova and Jokar 2021). The research team used the European Center 
for Medium-Range Weather Forecast Reanalysis (ERA5) dataset produced by the 
European Center for Medium-Range Weather Forecasts (ECMWF) and is freely 
available in Earth Engine. We will look at this dataset later in the chapter.
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3.2.1 Section 1: Image Collections: An Organized Set of Images 

If you have no already done so, you add the book’s code repository to the 
Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro 
jects/gee-edu/book into your browser. The book’s scripts will then be available 
in the script manager panel to view, run, or modify. If you have trouble finding the 
repo, you can visit http://bit.ly/EEFA-repo-help for help. 

You saw some of the basic ways to interact with an individual ee.Image in 
Chap. 2. However, depending on how long a remote sensing platform has been 
in operation, there may be thousands or millions of images collected of Earth. In 
Earth Engine, these are organized into an ImageCollection, a specialized data 
type that has specific operations available in the Earth Engine API. Like individual 
images, they can be viewed with Map.addLayer. 

You will learn to work with image collections in complex ways later in the 
book, particularly in Part IV. For now, we will show you how to view and work 
with their most basic attributes and use these skills to view some of the major 
types of image collections in Earth Engine. This chapter will give a brief tour of 
the Earth Engine Data Catalog, which contains decades of satellite imagery and 
much more. We will view some of the different types of datasets in the following 
sections, including climate and weather data, digital elevation models and other 
terrain data, land cover, cropland, satellite imagery, and others. 

View an Image Collection 
The Landsat program from NASA and the United States Geological Survey 
(USGS) has launched a sequence of Earth observation satellites, named Landsat 
1, 2, etc. Landsats have been returning images since 1972, making that collec-
tion of images the longest continuous satellite-based observation of the Earth’s 
surface. We will now view images and basic information about one of the image 
collections that is still growing: collections of scenes taken by the Operational 
Land Imager aboard Landsat 8, which was launched in 2013. Copy and paste the 
following code into the center panel and click Run. While the enormous image 
catalog is accessed, it could take a couple of minutes to see the result in the Map 
area. You may note individual “scenes” being drawn, which equate to the way that 
the Landsat program partitions Earth into “paths” and “rows”. If it takes more than 
a couple of minutes to see the images, try zooming in to a specific area to speed 
up the process.



44 A. P. Nicolau et al.

///// 
// View an Image Collection 
///// 

// Import the Landsat 8 Raw Collection. 
var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1'); 

// Print the size of the Landsat 8 dataset. 
print('The size of the Landsat 8 image collection is:', 
landsat8 
.size()); 

// Try to print the image collection. 
// WARNING! Running the print code immediately below 
produces an error because 
// the Console can not print more than 5000 elements. 
print(landsat8); 

// Add the Landsat 8 dataset to the map as a mosaic. The 
collection is 
// already chronologically sorted, so the most recent pixel 
is displayed. 
Map.addLayer(landsat8, 

{ 
bands: ['B4', 'B3', 'B2'], 
min: 5000, 
max: 15000 

}, 
'Landsat 8 Image Collection'); 

First, let us examine the map output (Fig. 3.1). 
Notice the high amount of cloud cover and the “layered” look. Zoom out if 

needed. This is because Earth Engine is drawing each of the images that make 
up the ImageCollection one on top of the other. The striped look is the

Fig. 3.1 USGS Landsat 8 collection 2 Tier 1 Raw Scenes collection 
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Fig. 3.2 Size of the entire Landsat 8 collection. Note that this number is constantly growing 

Fig. 3.3 Error encountered when trying to print the names and information to the screen for too 
many elements 

result of how the satellite collects imagery. The overlaps between images and the 
individual nature of the images mean that these are not quite ready for analysis; 
we will address this issue in future chapters. 

Now examine the printed size on the Console. It will indicate that there are 
more than a million images in the dataset (Fig. 3.2). If you return to this lab in the 
future, the number will be even larger, since this active collection is continually 
growing as the satellite gathers more imagery. For the same reason, Fig. 3.1 might 
look slightly different on your map because of this. 

Note that printing the ImageCollection returned an error message 
(Fig. 3.3), because calling print on an ImageCollection will write the name 
of every image in the collection to the Console. This is the result of an intentional 
safeguard within Earth Engine. We do not want to see a million image names 
printed to the Console! 

Code Checkpoint F12a. The book’s repository contains a script that shows what 
your code should look like at this point.
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Edit your code to comment out the last two code commands you have written. 
This will remove the call to Map.addLayer that drew every image, and will 
remove the print statement that demanded more than 5000 elements. This will 
speed up your code in subsequent sections. As described in Chap. 1, placing two 
forward slashes (//) at the beginning of a line will make it into a comment, and 
any commands on that line will not be executed. 

Filtering Image Collections 
The ImageCollection data type in Earth Engine has multiple approaches to 
filtering, which helps to pinpoint the exact images you want to view or analyze 
from the larger collection. 

Filter by Date 
One of the filters is filterDate, which allows us to narrow down the date range 
of the ImageCollection. Copy the following code to the center panel (paste 
it after the previous code you had): 

// Filter an Image Collection 
///// 

// Filter the collection by date. 
var landsatWinter = landsat8.filterDate('2020-12-01', 
'2021-03-01'); 

Map.addLayer(landsatWinter, 
{ 

bands: ['B4', 'B3', 'B2'], 
min: 5000, 
max: 15000 

}, 
'Winter Landsat 8'); 

print('The size of the Winter Landsat 8 image collection 
is:', 

landsatWinter.size()); 

Examine the mapped landsatWinter (Fig. 3.4). As described in Chap. 2, 
the 5000 and the 15000 values in the visualization parameters of the 
Map.addLayer function of the code above refer to the minimum and maximum 
of the range of display values.

Now, look at the size of the winter Landsat 8 collection. The number is signif-
icantly lower than the number of images in the entire collection. This is the result 
of filtering the dates to three months in the winter of 2020–2021.
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Fig. 3.4 Landsat 8 winter collection

Filter by Location 
A second frequently used filtering tool is filterBounds. This filter is based 
on a location—for example, a point, polygon, or other geometry. Copy and paste 
the code below to filter and add to the map the winter images from the Land-
sat 8 Image Collection to a point in Minneapolis, Minnesota, USA. Note below 
the Map.addLayer function to add the pointMN to the map with an empty 
dictionary {} for the visParams argument. This only means that we are not 
specifying visualization parameters for this element, and it is being added to the 
map with the default parameters. 

// Create an Earth Engine Point object. 
var pointMN = ee.Geometry.Point([-93.79, 45.05]); 
// Filter the collection by location using the point. 
var landsatMN = landsatWinter.filterBounds(pointMN); 
Map.addLayer(landsatMN, 

{ 
bands: ['B4', 'B3', 'B2'], 
min: 5000, 
max: 15000 

}, 
'MN Landsat 8'); 

// Add the point to the map to see where it is. 
Map.addLayer(pointMN, {}, 'Point MN'); 

print('The size of the Minneapolis Winter Landsat 8 image 
collection is: ', 

landsatMN.size());
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If we uncheck the Winter Landsat 8 layer under Layers, we can see that only 
images that intersect our point have been selected (Fig. 3.5). Zoom in or out as 
needed. Note the printed size of the Minneapolis winter collection—we only have 
seven images. 

Selecting the First Image 
The final operation we will explore is the first function. This selects the first 
image in an ImageCollection. This allows us to place a single image on the 
screen for inspection. Copy and paste the code below to select and view the first 
image of the Minneapolis Winter Landsat 8 Image Collection. In this case, because 
the images are stored in time order in the ImageCollection, it will select the 
earliest image in the set.

Fig. 3.5 Minneapolis winter collection filtered by bounds. The first still represents the map with-
out zoom applied. The collection is shown inside the red circle. The second still represents the map 
after zoom was applied to the region. The red arrow indicates the point (in black) used to filter by 
bounds 
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// Select the first image in the filtered collection. 
var landsatFirst = landsatMN.first(); 
// Display the first image in the filtered collection. 
Map.centerObject(landsatFirst, 7); 
Map.addLayer(landsatFirst, 

{ 
bands: ['B4', 'B3', 'B2'], 
min: 5000, 
max: 15000 

}, 
'First Landsat 8'); 

The first command takes our stack of location-filtered images and selects the 
first image. When the layer is added to the Map area, you can see that only one 
image is returned—remember to uncheck the other layers to be able to visualize 
the full image (Fig. 3.6). We used the Map.centerObject to center the map 
on the landsatFirst image with a zoom level of 7 (zoom levels go from 0 to 
24). 

Fig. 3.6 First Landsat image from the filtered set
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Code Checkpoint F12b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Now that we have the tools to examine different image collections, we will 
explore other datasets. Save your script for your own future use, as outlined in 
Chap. 1. Then, refresh the Code Editor to begin with a new script for the next 
section. 

3.2.2 Section 2: Collections of Single Images 

When learning about image collections in the previous section, you worked with 
the Landsat 8 raw image dataset. These raw images have some important correc-
tions already done for you. However, the raw images are only one of several image 
collections produced for Landsat 8. The remote sensing community has developed 
additional imagery corrections that help increase the accuracy and consistency of 
analyses. The results of each of these different imagery processing paths are stored 
in a distinct ImageCollection in Earth Engine. 

Among the most prominent of these is the ImageCollection meant to min-
imize the effect of the atmosphere between Earth’s surface and the satellite. The 
view from satellites is made imprecise by the need for light rays to pass through 
the atmosphere, even on the clearest day. There are two important ways the atmo-
sphere obscures a satellite’s view: by affecting the amount of sunlight that strikes 
the Earth and by altering electromagnetic energy on its trip from its reflection at 
Earth’s surface to the satellite’s receptors. 

Unraveling those effects is called atmospheric correction, a highly complex pro-
cess whose details are beyond the scope of this book. Thankfully, in addition to the 
raw images from the satellite, each image for Landsat and certain other sensors is 
automatically treated with the most up-to-date atmospheric correction algorithms, 
producing a product referred to as a “surface reflectance” ImageCollection. 
The surface reflectance estimates the ratio of upward radiance at the Earth’s sur-
face to downward radiance at the Earth’s surface, imitating what the sensor would 
have seen if it were hovering a few feet above the ground. 

Let us examine one of these datasets meant to minimize the effects of the 
atmosphere between Earth’s surface and the satellite. Copy and paste the code 
below to import and filter the Landsat 8 surface reflectance data (landsat8SR) 
by date and to a point over San Francisco, California, USA (pointSF). We use 
the first function to select the first image—a single image from March 18, 
2014. By printing the landsat8SRimage image on the Console, and accessing 
its metadata (see Chap. 2), we see that the band names differ from those in the raw 
image (Fig. 3.7). Here, they have the form “SR_B*” as in “Surface Reflectance 
Band *”, where * is the band number. We can also check the date of the image 
by looking at the image “id” (Fig. 3.7). This has the value “20140318”, a string 
indicating that the image was from March 18, 2014.
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Fig. 3.7 Landsat 8 surface reflectance image bands and date 

///// 
// Collections of single images - Landsat 8 Surface Reflectance 
///// 

// Create and Earth Engine Point object over San Francisco. 
var pointSF = ee.Geometry.Point([-122.44, 37.76]); 

// Import the Landsat 8 Surface Reflectance collection. 
var landsat8SR = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2'); 

// Filter the collection and select the first image. 
var landsat8SRimage = landsat8SR.filterDate('2014-03-18', 

'2014-03-19') 
.filterBounds(pointSF) 
.first(); 

print('Landsat 8 Surface Reflectance image', landsat8SRimage);
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Copy and paste the code below to add this image to the map with adjusted R, 
G, and B bands in the “bands” parameter for true-color display (see Chap. 2). 

// Center map to the first image. 
Map.centerObject(landsat8SRimage, 8); 
 
// Add first image to the map. 
Map.addLayer(landsat8SRimage, 
    { 
        bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
        min: 7000, 
        max: 13000 
    }, 
    'Landsat 8 SR'); 

Compare this image (Fig. 3.8) with the raw Landsat 8 images from the previous 
section (Fig. 3.6). Zoom in and out and pan the screen as needed. What do you 
notice? Save your script but don’t start a new one—we will keep adding code to 
this script. 

Fig. 3.8 Landsat 8 surface reflectance scene from March 18, 2014
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Code Checkpoint F12c. The book’s repository contains a script that shows what 
your code should look like at this point. 

3.2.3 Section 3: Pre-made Composites 

Pre-made composites take individual images from image collections across a set 
area or time period and assemble them into a single layer. This can be done 
for many different datasets, including satellite images (e.g., MODIS, Landsat, 
Sentinel), climatological information, forest or vegetation information, and more. 

For example, image collections may have multiple images in one location, as we 
saw in our “filter by location” example above. Some of the images might have a lot 
of cloud cover or other atmospheric artifacts that make the imagery quality poor. 
Other images might be very high quality, because they were taken on sunny days 
when the satellite was flying directly overhead. The compositing process takes all 
of these different images, picks the best ones, and then stitches them together into 
a single layer. The compositing period can differ for different datasets and goals; 
for example, you may encounter daily, monthly, and/or yearly composites. To do 
this manually is more advanced (see, for example, Chap. 15); however, with the 
pre-made composites available in Earth Engine, some of that complex work has 
been done for you. 

MODIS Daily True-Color Imagery 
We will explore two examples of composites made with data from the MODIS 
sensors, a pair of sensors aboard the Terra and Aqua satellites. On these complex 
sensors, different MODIS bands produce data at different spatial resolutions. For 
the visible bands, the lowest common resolution is 500 m (red and NIR are 250 m). 

Let us use the code below to import the MCD43A4.006 MODIS Nadir BRDF-
Adjusted Reflectance Daily 500 m dataset and view a recent image. This dataset is 
produced daily based on a 16-day retrieval period, choosing the best representative 
pixel from the 16-day period. The 16-day period covers about eight days on either 
side of the nominal compositing date, with pixels closer to the target date given a 
higher priority.
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///// 
// Pre-made composites 
///// 

// Import a MODIS dataset of daily BRDF-corrected 
reflectance. 
var modisDaily = ee.ImageCollection('MODIS/006/MCD43A4'); 

// Filter the dataset to a recent date. 
var modisDailyRecent = modisDaily.filterDate('2021-11-01'); 

// Add the dataset to the map. 
var modisVis = { 

bands: [ 
'Nadir_Reflectance_Band1', 
'Nadir_Reflectance_Band4', 
'Nadir_Reflectance_Band3' 

], 
min: 0, 
max: 4000 

}; 
Map.addLayer(modisDailyRecent, modisVis, 'MODIS Daily 
Composite'); 

Uncheck the other layer (“Landsat 8 SR”), zoom out (e.g., country-scale), and 
pan around the image (Fig. 3.9). Notice how there are no clouds in the image, but 
there are some pixels with no data (Fig. 3.10). These are persistently cloudy areas 
that have no clear pixels in the particular period chosen. 

Fig. 3.9 MODIS Daily true-color image
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Fig. 3.10 Examples of gaps on the MODIS Daily true-color image near Denver, Colorado, USA 

MODIS Monthly Burned Areas 
Some of the MODIS bands have proven useful in determining where fires are 
burning and what areas they have burned. A monthly composite product for burned 
areas is available in Earth Engine. Copy and paste the code below. 

// Import the MODIS monthly burned areas dataset. 
var modisMonthly = ee.ImageCollection('MODIS/006/MCD64A1'); 

// Filter the dataset to a recent month during fire season. 
var modisMonthlyRecent = modisMonthly.filterDate('2021-08-01'); 

// Add the dataset to the map. 
Map.addLayer(modisMonthlyRecent, {}, 'MODIS Monthly Burn'); 

Uncheck the other layers, and then pan and zoom around the map. Areas that 
have burned in the past month will show up as red (Fig. 3.11). Can you see where 
fires burned areas of California, USA? In Southern and Central Africa? Northern 
Australia?
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Fig. 3.11 MODIS Monthly Burn image over California 

Code Checkpoint F12d. The book’s repository contains a script that shows what 
your code should look like at this point. 

Save your script and start a new one by refreshing the page. 

3.2.4 Section 4: Other Satellite Products 

Satellites can also collect information about the climate, weather, and various 
compounds present in the atmosphere. These satellites leverage portions of the 
electromagnetic spectrum and how different objects and compounds reflect when 
hit with sunlight in various wavelengths. For example, methane (CH4) reflects the 
760 nm portion of the spectrum. Let us take a closer look at a few of these datasets. 

Methane 
The European Space Agency makes available a methane dataset from Sentinel-5 in 
Earth Engine. Copy and paste the code below to add to the map methane data from 
the first time of collection on November 28, 2018. We use the select function 
(See Chap. 2) to select the methane-specific band of the dataset. We also introduce 
values for a new argument for the visualization parameters of Map.addLayer: 
We use a color palette to display a single band of an image in color. Here, we 
chose varying colors from black for the minimum value to red for the maximum 
value. Values in between will have the color in the order outlined by the palette 
parameter (a list of string colors: black, blue, purple, cyan, green, yellow, red).
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///// 
// Other satellite products 
///// 

// Import a Sentinel-5 methane dataset. 
var methane = 
ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4'); 

// Filter the methane dataset. 
var methane2018 = methane.select( 

'CH4_column_volume_mixing_ratio_dry_air') 
.filterDate('2018-11-28', '2018-11-29') 
.first(); 

// Make a visualization for the methane data. 
var methaneVis = { 

palette: ['black', 'blue', 'purple', 'cyan', 'green', 
'yellow', 'red' 

], 
min: 1770, 
max: 1920 

}; 

// Center the Map. 
Map.centerObject(methane2018, 3); 

// Add the methane dataset to the map. 
Map.addLayer(methane2018, methaneVis, 'Methane'); 

Notice the different levels of methane over the African continent (Fig. 3.12). 

Fig. 3.12 Methane levels over the African continent on November 28, 2018
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Weather and Climate Data 
Many weather and climate datasets are available in Earth Engine. One of these 
is the European Center for Medium-Range Weather Forecast Reanalysis (ERA5) 
dataset used by Sulova and Jokar (2021). Copy and paste the code below to add 
the January 2018 monthly data to the map. 

// Import the ERA5 Monthly dataset 
var era5Monthly = ee.ImageCollection('ECMWF/ERA5/MONTHLY'); 

// Filter the dataset 
var era5MonthlyTemp = 
era5Monthly.select('mean_2m_air_temperature') 

.filterDate('2018-01-01', '2019-01-31') 

.first(); 

// Add the ERA dataset to the map.                  
Map.addLayer(era5MonthlyTemp, 

{ 
palette: ['yellow', 'red'], 
min: 260, 
max: 320 

}, 
'ERA5 Max Monthly Temp'); 

Examine some of the temperatures in this image (Fig. 3.13) by using the 
Inspector tool (see Chap. 2). Pan and zoom out if needed. The units are in Kelvin, 
which is Celsius plus 273.15°. 

Fig. 3.13 ERA5 maximum monthly temperature, January 2018



3 Survey of Raster Datasets 59

Code Checkpoint F12e. The book’s repository contains a script that shows what 
your code should look like at this point. 

Save your script and start a new one by refreshing the page. 

3.2.5 Section 5: Pre-classified Land Use and Land Cover 

Another type of dataset available in Earth Engine is LULC maps that have already 
been classified. Instead of showing how the Earth’s surface looks—that is, the 
visible and other electromagnetic spectrum reflectance detected by satellites— 
these datasets take satellite imagery and use it to assign a label to each pixel 
on Earth’s surface. For example, categories might include vegetation, bare soil, 
built environment (pavement, buildings), and water. 

Let us take a closer look at two of these datasets. 

ESA WorldCover 
The European Space Agency (ESA) provides a global land cover map for the year 
2020 based on Sentinel-1 and Sentinel-2 data. WorldCover uses 11 different land 
cover classes including built-up, cropland, open water, and mangroves. Copy and 
paste the code below to add this image to the map. In this dataset, the band ’Map’ 
already contains a palette color associated with the 11 land cover class values. 

///// 
// Pre-classified Land Use Land Cover 
///// 

// Import the ESA WorldCover dataset. 
var worldCover = 
ee.ImageCollection('ESA/WorldCover/v100').first(); 

// Center the Map. 
Map.centerObject(worldCover, 3); 

// Add the worldCover layer to the map. 
Map.addLayer(worldCover, { 

bands: ['Map'] 
}, 'WorldCover'); 

Examine the WorldCover land cover classification (Fig. 3.14). Compare it with 
some of the satellite imagery we have explored in previous sections. Chapter 4 
shows how to determine the meaning of the colors and values in a dataset like 
this.
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Fig. 3.14 ESA’s 2020 WorldCover map 

Global Forest Change 
Another land cover product that has been pre-classified for you and is available 
in Earth Engine is the Global Forest Change dataset. This analysis was conducted 
between 2000 and 2020. Unlike the WorldCover dataset, this dataset focuses on 
the percent of tree cover across the Earth’s surface in a base year of 2000, and how 
that has changed over time. Copy and paste the code below to visualize the tree 
cover in 2000. Note that in the code below we define the visualization parameters 
as a variable treeCoverViz instead of having its calculation done within the 
Map.addLayer function. 

// Import the Hansen Global Forest Change dataset. 
var globalForest = ee.Image( 

'UMD/hansen/global_forest_change_2020_v1_8'); 

// Create a visualization for tree cover in 2000. 
var treeCoverViz = { 

bands: ['treecover2000'], 
min: 0, 
max: 100, 
palette: ['black', 'green'] 

}; 

// Add the 2000 tree cover image to the map. 
Map.addLayer(globalForest, treeCoverViz, 'Hansen 2000 Tree 
Cover'); 

Notice how areas with high tree cover (e.g., the Amazon) are greener and areas 
with low tree cover are darker (Fig. 3.15). In case you see an error on the Console
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Fig. 3.15 Global Forest Change 2000 tree cover layer 

such as “Cannot read properties of null”, do not worry. Sometimes Earth Engine 
will show these transient errors, but they will not affect the script in any way. 

Copy and paste the code below to visualize the tree cover loss over the past 
20 years. 

// Create a visualization for the year of tree loss over 
the past 20 years. 
var treeLossYearViz = { 

bands: ['lossyear'], 
min: 0, 
max: 20, 
palette: ['yellow', 'red'] 

}; 

// Add the 2000-2020 tree cover loss image to the map. 
Map.addLayer(globalForest, treeLossYearViz, '2000-2020 Year 
of Loss'); 

Leave the previous 2000 tree cover layer checked and analyze the loss layer 
on top of it—yellow, orange, and red areas (Fig. 3.16). Pan and zoom around the 
map. Where has there been recent forest loss (which is shown in red)?

Code Checkpoint F12f. The book’s repository contains a script that shows what 
your code should look like at this point. 

Save your script and start a new one.
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Fig. 3.16 Global Forest Change 2000–2020 tree cover loss (yellow–red) and 2000 tree cover 
(black-green)

3.2.6 Section 6: Other Datasets 

There are many other types of datasets in the Earth Engine Data Catalog that you 
can explore and use for your own analyses. These include global gridded popu-
lation counts, terrain, and geophysical data. Let us explore two of these datasets 
now. 

Gridded Population Count 
The Gridded Population of the World dataset estimates human population for 
each grid cell across the entire Earth’s surface. Copy and paste the code 
below to add the 2000 population count layer. We use a predefined palette 
populationPalette, which is a list of six-digit strings of hexadecimal values 
representing additive RGB colors (as first seen in Chap. 2). Lighter colors corre-
spond to lower population count, and darker colors correspond to higher population 
count.
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///// 
// Other datasets 
///// 

// Import and filter a gridded population dataset. 
var griddedPopulation = ee.ImageCollection( 

'CIESIN/GPWv411/GPW_Population_Count') 
.first(); 

// Predefined palette. 
var populationPalette = [ 

'ffffe7', 
'86a192', 
'509791', 
'307296', 
'2c4484', 
'000066' 

]; 

// Center the Map. 
Map.centerObject(griddedPopulation, 3); 

// Add the population data to the map. 
Map.addLayer(griddedPopulation, 

{ 
min: 0, 
max: 1200, 
'palette': populationPalette 

}, 
'Gridded Population'); 

Pan around the image (Fig. 3.17). What happens when you change the min-
imum and maximum values in the visualization? As described in Chap. 2, the 
minimum and maximum values represent the range of values of the dataset. Iden-
tify a location of interest to you—may be an area near your current location, or 
your hometown. If you click on the Inspector tab, you should be able to find the 
population count (Fig. 3.18).

Digital Elevation Models 
Digital elevation models (DEMs) use airborne and satellite instruments to esti-
mate the elevation of each location. Earth Engine has both local and global DEMs 
available. One of the global DEMs available is the NASADEM dataset, a DEM 
produced from a NASA mission. Copy and paste the code below to import the 
dataset and visualize the elevation band.
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Fig. 3.17 Gridded population count of 2000 

Fig. 3.18 2000 population count for a point near Rio de Janeiro, Brazil
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Fig. 3.19 NASADEM elevation 

// Import the NASA DEM Dataset. 
var nasaDEM = ee.Image('NASA/NASADEM_HGT/001'); 

// Add the elevation layer to the map. 
Map.addLayer(nasaDEM, { 

bands: ['elevation'], 
min: 0, 
max: 3000 

}, 'NASA DEM'); 

Uncheck the population layer and zoom in to examine the patterns of topogra-
phy (Fig. 3.19). Can you see where a mountain range is located? Where is a river 
located? Try changing the minimum and maximum in order to make these features 
more visible. Save your script. 

Code Checkpoint F12g. The book’s repository contains a script that shows what 
your code should look like at this point. 

Take a moment to look through all of the different layers that we have explored 
so far. You can open your scripts one at a time or in different tabs, or even by 
copying the code into one single script. Turn the layers on and off, pan around, 
and zoom in and out accordingly to visualize the different datasets on the map. 

3.3 Synthesis 

Assignment 1. Explore the Earth Engine Data Catalog and find a dataset that is 
near your location. To do this, you can type keywords into the search bar, located 
above the Earth Engine code. Import a dataset into your workspace and filter the 
dataset to a single image. Then, print the information of the image into the Console



66 A. P. Nicolau et al.

and add the image to the map, either using three selected bands or a custom palette 
for one band. 

3.4 Conclusion 

In this chapter, we introduced image collections in Earth Engine and learned how 
to apply multiple types of filters to image collections to identify multiple or a sin-
gle image for use. We also explored a few of the many different image collections 
available in the Earth Engine Data Catalog. Understanding how to find, access, 
and filter image collections is an important step in learning how to perform spatial 
analyses in Earth Engine. 
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4The Remote Sensing Vocabulary 

Karen Dyson , Andréa Puzzi Nicolau , David Saah , 
and Nicholas Clinton 

Overview 
The purpose of this chapter is to introduce some of the principal characteristics of 
remotely sensed images and how they can be examined in Earth Engine. We discuss 
spatial resolution, temporal resolution, and spectral resolution, along with how to 
access important image metadata. You will be introduced to image data from several 
sensors aboard various satellite platforms. At the completion of the chapter, you will 
be able to understand the difference between remotely sensed datasets based on these 
characteristics and how to choose an appropriate dataset for your analysis based on 
these concepts.

K. Dyson · A. P. Nicolau · D. Saah 
Spatial Informatics Group, Pleasanton, CA, USA 
e-mail: kdyson@sig-gis.com 

A. P. Nicolau 
e-mail: apnicolau@sig-gis.com 

K. Dyson · A. P. Nicolau 
SERVIR-Amazonia, Cali, Colombia 

K. Dyson 
Dendrolytics, Seattle, WA, USA 

D. Saah (B) 
University of San Francisco, San Francisco, CA, USA 
e-mail: dssaah@usfca.edu 

N. Clinton 
Google LLC, Mountain View, CA, USA 
e-mail: nclinton@google.com 

© The Author(s) 2024 
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine, 
https://doi.org/10.1007/978-3-031-26588-4_4 

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_4&domain=pdf
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:kdyson@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_4


68 K. Dyson et al.

Learning Outcomes

• Understanding spatial, temporal, and spectral resolution.
• Navigating the Earth Engine Console to gather information about a digital image, 

including resolution and other data documentation. 

Assumes you know how to

• Navigate among Earth Engine result tabs (Chap. 1).
• Visualize images with a variety of false-color band combinations (Chap. 2). 

4.1 Introduction to Theory 

Images and image collections form the basis of many remote sensing analyses 
in Earth Engine. There are many different types of satellite imagery available to 
use in these analyses, but not every dataset is appropriate for every analysis. To 
choose the most appropriate dataset for your analysis, you should consider multi-
ple factors. Among these are the resolution of the dataset—including the spatial, 
temporal, and spectral resolutions—as well as how the dataset was created and its 
quality. 

The resolution of a dataset can influence the granularity of the results, the 
accuracy of the results, and how long it will take the analysis to run, among 
other things. For example, spatial resolution, which you will learn more about 
in Sect. 4.2.1, indicates the amount of Earth’s surface area covered by a single 
pixel. One recent study compared the results of a land use classification (the pro-
cess by which different areas of the Earth’s surface are classified as forest, urban 
areas, etc.) and peak total suspended solids (TSS) loads using two datasets with 
different spatial resolutions. One dataset had pixels representing 900 m2 of the 
Earth’s surface, and the other represented 1 m2. The higher resolution dataset (1 
m2) had higher accuracy for the land use classification and better predicted TSS 
loads for the full study area. On the other hand, the lower resolution dataset was 
less costly and required less analysis time (Fisher et al. 2018). 

Temporal and spectral resolutions can also strongly affect analysis outcomes. 
In the Practicum that follows, we will showcase each of these types of resolu-
tion, along with key metadata types. We will also show you how to find more 
information about the characteristics of a given dataset in Earth Engine.
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4.2 Practicum 

4.2.1 Section 1: Searching for and Viewing Image Collection 
Information 

Earth Engine’s search bar can be used to find imagery and to locate important 
information about datasets in Earth Engine. Let us use the search bar, located above 
the Earth Engine code, to find out information about the Landsat 7 Collection 2 
Raw Scenes. First, type “Landsat 7 collection 2” into the search bar (Fig. 4.1). 
Without hitting Enter, matches to that search term will appear. 

Now, click on USGS Landsat 7 Collection 2 Tier 1 Raw Scenes. A new inset 
window will appear (Fig. 4.2).

The inset window has information about the dataset, including a description, 
bands that are available, image properties, and terms of use for the data across 
the top. Click on each of these tabs and read the information provided. While you 
may not understand all of the information right now, it will set you up for success 
in future chapters. 

On the left-hand side of this window, you will see a range of dates when the data 
are available, a link to the dataset provider’s webpage, and a collection snippet. 
This collection snippet can be used to import the dataset by pasting it into your 
script, as you did in previous chapters. You can also use the large Import button 
to import the dataset into your current workspace. In addition, if you click on the 
See example link, Earth Engine will open a new code window with a snippet of

Fig. 4.1 Searching for Landsat 7 in the search bar 
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Fig. 4.2 Inset window with information about the Landsat 7 dataset

code that shows code using the dataset. Code snippets like this can be very helpful 
when learning how to use a dataset that is new to you. 

For now, click on the small “pop out” button in the upper-right corner of the 
window. This will open a new window with the same information (Fig. 4.3); you 
can keep this new window open and use it as a reference as you proceed.

Switch back to your code window. Your “Landsat 7 collection 2” search term 
should still be in the search bar. This time, click the “Enter” key or click on 
the search magnifying glass icon. This will open a Search results inset window 
(Fig. 4.4).

This more complete search results’ inset window contains short descriptions 
about each of the datasets matching your search, to help you choose which dataset 
you want to use. Click on the Open in Catalog button to view these search results 
in the Earth Engine Data Catalog (Fig. 4.5). Note that you may need to click Enter 
in the data catalog search bar with your phrase to bring up the results in this new 
window.

Now that we know how to view this information, let us dive into some important 
remote sensing terminology.
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Fig. 4.3 Data Catalog page for Landsat 7 with information about the dataset

4.2.2 Section 2: Spatial Resolution 

Spatial resolution relates to the amount of Earth’s surface area covered by a single 
pixel. It is typically referred to in linear units, for a single side of a square pixel: 
for example, we typically say that Landsat 7 has “30 m” color imagery. This means 
that each pixel is 30 m to a side, covering a total area of 900 m2 of the Earth’s 
surface. Spatial resolution is often interchangeably also referred to as the scale, 
as will be seen in this chapter when we print that value. The spatial resolution 
of a given dataset greatly affects the appearance of images and the information in 
them, when you are viewing them on Earth’s surface. 

Next, we will visualize data from multiple sensors that capture data at dif-
ferent spatial resolutions, to compare the effect of different pixel sizes on the 
information and detail in an image. We will be selecting a single image from each 
ImageCollection to visualize. To view the image, we will draw them each as 
a color-IR image, a type of false-color image (described in detail in Chap. 2) that 
uses the infrared, red, and green bands. As you move through this portion of the 
Practicum, zoom in and out to see differences in the pixel size and the image size.
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Fig. 4.4 Search results matching “Landsat 7 collection 2”

MODIS (on the Aqua and Terra satellites) 
As discussed in Chap. 3, the common resolution collected by MODIS for the 
infrared, red, and green bands is 500 m. This means that each pixel is 500 m on a 
side, with a pixel thus representing 0.25 km2 of area on the Earth’s surface. 

Use the following code to center the map on the San Francisco airport at a 
zoom level of 16.
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Fig. 4.5 Earth Engine Data Catalog results for the “Landsat 7 collection 2” search term

////// 
// Explore spatial resolution 
////// 

// Define a region of interest as a point at San Francisco 
airport. 
var sfoPoint = ee.Geometry.Point(-122.3774, 37.6194); 

// Center the map at that point. 
Map.centerObject(sfoPoint, 16);
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Fig. 4.6 Using the search bar for the MODIS dataset 

Fig. 4.7 Rename the imported MODIS dataset 

Let us use what we learned in the previous section to search for, get information 
about, and import the MODIS data into our Earth Engine workspace. Start by 
searching for “MODIS 500” in the Earth Engine search bar (Fig. 4.6). 

Use this to import the “MOD09A1.061 Terra Surface Reflectance 8-day Global 
500 m” ImageCollection. A default name for the import appears at the top 
of your script; change the name of the import to mod09 (Fig. 4.7). 

When exploring a new dataset, you can find the names of bands in images 
from that set by reading the summary documentation, known as the metadata, of 
the dataset. In this dataset, the three bands for a color-IR image are “sur_refl_b02” 
(infrared), “sur_refl_b01” (red), and “sur_refl_b04” (green).
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// MODIS 
// Get an image from your imported MODIS MYD09GA 
collection. 
var modisImage = mod09.filterDate('2020-02-01', '2020-03-
01').first(); 

// Use these MODIS bands for near infrared, red, and green, 
respectively. 
var modisBands = ['sur_refl_b02', 'sur_refl_b01', 
'sur_refl_b04']; 

// Define visualization parameters for MODIS. 
var modisVis = { 

bands: modisBands, 
min: 0, 
max: 3000 

}; 

// Add the MODIS image to the map. 
Map.addLayer(modisImage, modisVis, 'MODIS'); 

In your map window, you should now see something like this (Fig. 4.8). 
You might be surprised to see that the pixels, which are typically referred to 

as “square”, are shown as parallelograms. The shape and orientation of pixels are 
controlled by the “projection” of the dataset, as well as the projection we are

Fig. 4.8 Viewing the MODIS image of the San Francisco airport 
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Fig. 4.9 Using transparency to view the MODIS pixel size in relation to high-resolution imagery 
of the San Francisco airport 

viewing them in. Most users do not have to be very concerned about different 
projections in Earth Engine, which automatically transfers data between different 
coordinate systems as it did here. For more details about projections in general 
and their use in Earth Engine, you can consult the official documentation. 

Let us view the size of pixels with respect to objects on the ground. Turn 
on the satellite basemap to see high-resolution data for comparison by clicking 
on Satellite in the upper-right corner of the map window. Then, decrease the 
layer’s opacity: set the opacity in the Layers manager using the layer’s slider 
(see Chap. 2). The result will look like Fig. 4.9. 

Print the size of the pixels (in meters) by running this code: 

// Get the scale of the data from the NIR band's 
projection: 
var modisScale = modisImage.select('sur_refl_b02') 

.projection().nominalScale(); 

print('MODIS NIR scale:', modisScale); 

In that call, we used the nominalScale function here after accessing the 
projection information from the MODIS NIR band. That function extracts the spa-
tial resolution from the projection information, in a format suitable to be printed to 
the screen. The nominalScale function returns a value just under the stated 500 m 
resolution due to the sinusoidal projection of MODIS data and the distance of
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the pixel from nadir—that is, where the satellite is pointing directly down at the 
Earth’s surface. 

TM (on early Landsat satellites) 
Thematic Mapper (TM) sensors were flown aboard Landsat 4 and 5. TM data 
have been processed to a spatial resolution of 30 m, and were active from 1982 to 
2012. Search for “Landsat 5 TM” and import the result called “USGS Landsat 5 
TM Collection 2 Tier 1 Raw Scenes”. In the same way you renamed the MODIS 
collection, rename the import tm. In this dataset, the three bands for a color-
IR image are called “B4” (infrared), “B3” (red), and “B2” (green). Let us now 
visualize TM data over the airport and compare it with the MODIS data. Note that 
we can either define the visualization parameters as a variable (as in the previous 
code snippet) or place them in curly braces in the Map.addLayer function (as 
in this code snippet). 

When you run this code, the TM image will display. Notice how many 
more pixels are displayed on your screen when compared to the MODIS image 
(Fig. 4.10). 

Fig. 4.10 Visualizing the TM imagery from the Landsat 5 satellite
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// TM 
// Filter TM imagery by location and date. 
var tmImage = tm 

.filterBounds(Map.getCenter()) 

.filterDate('1987-03-01', '1987-08-01') 

.first(); 

// Display the TM image as a false color composite. 
Map.addLayer(tmImage, { 

bands: ['B4', 'B3', 'B2'], 
min: 0, 
max: 100 

}, 'TM'); 

As we did for the MODIS data, let us check the scale. The scale is expressed 
in meters: 

// Get the scale of the TM data from its projection: 
var tmScale = tmImage.select('B4') 

.projection().nominalScale(); 

print('TM NIR scale:', tmScale); 

MSI (on the Sentinel-2 satellites) 
The MultiSpectral Instrument (MSI) flies aboard the Sentinel-2 satellites, which 
are operated by the European Space Agency. The red, green, blue, and near-
infrared bands are captured at 10 m resolution, while other bands are captured at 
20 and 30 m. The Sentinel-2A satellite was launched in 2015 and the 2B satellite 
was launched in 2017. 

Search for “Sentinel 2 MSI” in the search bar, and add the “Sentinel-2 MSI: 
MultiSpectral Instrument, Level-1C” dataset to your workspace. Name it msi. In 
this dataset, the three bands for a color-IR image are called “B8” (infrared), “B4” 
(red), and “B3” (green).
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// MSI 
// Filter MSI imagery by location and date. 
var msiImage = msi 

.filterBounds(Map.getCenter()) 

.filterDate('2020-02-01', '2020-04-01') 

.first(); 

// Display the MSI image as a false color composite. 
Map.addLayer(msiImage, { 

bands: ['B8', 'B4', 'B3'], 
min: 0, 
max: 2000 

}, 'MSI'); 

Compare the MSI imagery with the TM and MODIS imagery, using the opac-
ity slider. Notice how much more detail you can see on the airport terminal and 
surrounding landscape. The 10 m spatial resolution means that each pixel covers 
approximately 100 m2 of the Earth’s surface, a much smaller area than the TM 
imagery (900 m2) or the MODIS imagery (0.25 km2) (Fig. 4.11). 

The extent of the MSI image displayed is also smaller than that for the other 
instruments we have looked at. Zoom out until you can see the entire San Francisco 
Bay. The MODIS image covers the entire globe, the TM image covers the entire 
San Francisco Bay and the surrounding area south toward Monterey, while the 
MSI image captures a much smaller area (Fig. 4.12).

Check the scale of the MSI instrument (in meters):

Fig. 4.11 Visualizing the MSI imagery 
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Fig. 4.12 Visualizing the image size for the MODIS, Landsat 5 (TM instrument), and Sentinel-2 
(MSI instrument) datasets

// Get the scale of the MSI data from its projection: 
var msiScale = msiImage.select('B8') 

.projection().nominalScale(); 
print('MSI scale:', msiScale); 

NAIP 
The National Agriculture Imagery Program (NAIP) is a US government program 
to acquire imagery over the continental USA using airborne sensors. Data are 
collected for each state approximately every three years. The imagery has a spatial 
resolution of 0.5–2 m, depending on the state and the date collected. 

Search for “naip” and import the dataset for “NAIP: National Agriculture 
Imagery Program”. Name the import naip. In this dataset, the three bands for 
a color-IR image are called “N” (infrared), “R” (red), and “G” (green).
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// NAIP 
// Get NAIP images for the study period and region of 
interest. 
var naipImage = naip 

.filterBounds(Map.getCenter()) 

.filterDate('2018-01-01', '2018-12-31') 

.first(); 

// Display the NAIP mosaic as a color-IR composite. 
Map.addLayer(naipImage, { 

bands: ['N', 'R', 'G'] 
}, 'NAIP'); 

The NAIP imagery is even more spatially detailed than the Sentinel-2 MSI 
imagery. However, we can see that our one NAIP image does not totally cover the 
San Francisco airport. If you like, zoom out to see the boundaries of the NAIP 
image as we did for the Sentinel-2 MSI imagery (Fig. 4.13). 

And get the scale, as we did before.

Fig. 4.13 NAIP color-IR composite over the San Francisco airport 
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// Get the NAIP resolution from the first image in the 
mosaic. 
var naipScale = naipImage.select('N') 

.projection().nominalScale(); 

print('NAIP NIR scale:', naipScale); 

Each of the datasets we have examined has a different spatial resolution. By 
comparing the different images over the same location in space, you have seen the 
differences between the large pixels of MODIS, the medium-sized pixels of TM 
(Landsat 5) and MSI (Sentinel-2), and the small pixels of the NAIP. Datasets with 
large-sized pixels are also called “coarse resolution”, those with medium-sized 
pixels are also called “moderate resolution”, and those with small-sized pixels are 
also called “fine resolution”. 

Code Checkpoint F13a. The book’s repository contains a script that shows what 
your code should look like at this point. 

4.2.3 Section 3: Temporal Resolution 

Temporal resolution refers to the revisit time or temporal cadence of a particular 
sensor’s image stream. Revisit time is the number of days between sequential 
visits of the satellite to the same location on the Earth’s surface. Think of this as 
the frequency of pixels in a time series at a given location. 

Landsat 
The Landsat satellites 5 and later are able to image a given location every 16 days. 
Let us use our existing tm dataset from Landsat 5. To see the time series of images 
at a location, you can filter an ImageCollection to an area and date range of 
interest and then print it. For example, to see the Landsat 5 images for three 
months in 1987, run the following code: 

///// 
// Explore Temporal Resolution 
///// 
// Use Print to see Landsat revisit time 
print('Landsat-5 series:', tm 

.filterBounds(Map.getCenter()) 

.filterDate('1987-06-01', '1987-09-01'));
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Fig. 4.14 Landsat image name and feature properties 

// Create a chart to see Landsat 5's 16 day revisit time. 
var tmChart = ui.Chart.image.series({ 

imageCollection: tm.select('B4').filterDate('1987-06-01', 
'1987-09-01'), 

region: sfoPoint 
}).setSeriesNames(['NIR']); 

Expand the features’ property of the printed ImageCollection in 
the Console output to see a List of all the images in the collection. 
Observe that the date of each image is part of the filename (e.g., LAND-
SAT/LT05/C02/T1/LT05_044034_19870628) (Fig. 4.14). 

However, viewing this list does not make it easy to see the temporal resolution 
of the dataset. We can use Earth Engine’s plotting functionality to visualize the 
temporal resolution of different datasets. For each of the different temporal resolu-
tions, we will create a per-pixel chart of the NIR band that we mapped previously. 
To do this, we will use the ui.Chart.image.series function. 

The ui.Chart.image.series function requires you to specify a few 
things in order to calculate the point to chart for each time step. First, we fil-
ter the ImageCollection (you can also do this outside the function and then 
specify the ImageCollection directly). We select the B4 (near-infrared) band and 
then select three months by using filterDate on the ImageCollection. 
Next, we need to specify the location to chart; this is the region argument. We will 
use the sfoPoint variable we defined earlier. 

// Create a chart to see Landsat 5's 16 day revisit time. 
var tmChart = ui.Chart.image.series({ 

imageCollection: tm.select('B4').filterDate('1987-06-
01', 

'1987-09-01'), 
region: sfoPoint 

}).setSeriesNames(['NIR']); 

By default, this function creates a trend line. It is difficult to see precisely when 
each image was collected, so let us create a specialized chart style that adds points 
for each observation.
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// Define a chart style that will let us see the individual 
dates. 
var chartStyle = { 

hAxis: { 
title: 'Date' 

}, 
vAxis: { 

title: 'NIR Mean' 
}, 
series: { 

0: { 
lineWidth: 3, 
pointSize: 6 

} 
}, 

}; 

// Apply custom style properties to the chart. 
tmChart.setOptions(chartStyle); 

// Print the chart. 
print('TM Chart', tmChart); 

When you print the chart, it will have a point each time an image was collected 
by the TM instrument (Fig. 4.15). In the Console, you can move the mouse over 
the different points and see more information. Also note that you can expand the 
chart using the button in the upper-right-hand corner. We will see many more 
examples of charts, particularly in the chapters in Part IV. 

Fig. 4.15 A chart showing the temporal cadence or temporal resolution of the Landsat 5 TM 
instrument at the San Francisco airport
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Sentinel-2 
The Sentinel-2 program’s two satellites are in coordinated orbits, so that each spot 
on Earth gets visited about every 5 days. Within Earth Engine, images from these 
two sensors are pooled in the same dataset. Let us create a chart using the MSI 
instrument dataset we have already imported. 

// Sentinel-2 has a 5 day revisit time. 
var msiChart = ui.Chart.image.series({ 

imageCollection: msi.select('B8').filterDate('2020-06-
01', 

'2020-09-01'), 
region: sfoPoint 

}).setSeriesNames(['NIR']); 

// Apply the previously defined custom style properties to 
the chart. 
msiChart.setOptions(chartStyle); 

// Print the chart. 
print('MSI Chart', msiChart); 

Compare this Sentinel-2 graph (Fig. 4.16) with the Landsat graph you just pro-
duced (Fig. 4.15). Both cover a period of six months, yet there are many more 
points through time for the Sentinel-2 satellite, reflecting the greater temporal 
resolution. 

Code Checkpoint F13b. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 4.16 A chart showing the temporal cadence or temporal resolution of the Sentinel-2 MSI 
instrument at the San Francisco airport 
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4.2.4 Section 4: Spectral Resolution 

Spectral resolution refers to the number and width of spectral bands in which the 
sensor takes measurements. You can think of the width of spectral bands as the 
wavelength intervals for each band. A sensor that measures radiance in multiple 
bands is called a multispectral sensor (generally 3–10 bands), while a sensor with 
many bands (possibly hundreds) is called a hyperspectral sensor; however, these 
are relative terms without universally accepted definitions. 

Let us compare the multispectral MODIS instrument with the hyperspectral 
Hyperion sensor aboard the EO-1 satellite, which is also available in Earth Engine. 

MODIS 
There is an easy way to check the number of bands in an image: 

///// 
// Explore spectral resolution 
///// 

// Get the MODIS band names as an ee.List 
var modisBands = modisImage.bandNames(); 

// Print the list. 
print('MODIS bands:', modisBands); 

// Print the length of the list. 
print('Length of the bands list:', modisBands.length()); 

Note that not all of the bands are spectral bands. As we did with the temporal 
resolution, let us graph the spectral bands to examine the spectral resolution. If you 
ever have questions about what the different bands in the band list are, remember 
that you can find this information by visiting the dataset information page in Earth 
Engine or the data or satellite’s webpage.
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// Graph the MODIS spectral bands (bands 11-17). 

// Select only the reflectance bands of interest. 
var reflectanceImage = modisImage.select( 

'sur_refl_b01', 
'sur_refl_b02', 
'sur_refl_b03', 
'sur_refl_b04', 
'sur_refl_b05', 
'sur_refl_b06', 
'sur_refl_b07' 

); 

As before, we will customize the chart to make it easier to read. 

// Define an object of customization parameters for the 
chart. 
var options = { 

title: 'MODIS spectrum at SFO', 
hAxis: { 

title: 'Band' 
}, 
vAxis: { 

title: 'Reflectance' 
}, 
legend: { 

position: 'none' 
}, 
pointSize: 3 

}; 

And create a chart using the ui.Chart.image.regions function. 

// Make the chart. 
var modisReflectanceChart = ui.Chart.image.regions({ 

image: reflectanceImage, 
regions: sfoPoint 

}).setOptions(options); 

// Display the chart. 
print(modisReflectanceChart);
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Fig. 4.17 Plot of TOA reflectance for MODIS 

The resulting chart is shown in Fig. 4.17. Use the expand button in the upper 
right to see a larger version of the chart than the one printed to the Console. 

EO-1 
Now, let us compare MODIS with the EO-1 satellite’s hyperspectral sensor. Search 
for “eo-1” and import the “EO-1 Hyperion Hyperspectral Imager” dataset. Name 
it eo1. We can look at the number of bands from the EO-1 sensor. 

// Get the EO-1 band names as a ee.List 
var eo1Image = eo1 

.filterDate('2015-01-01', '2016-01-01') 

.first(); 

// Extract the EO-1 band names. 
var eo1Bands = eo1Image.bandNames(); 

// Print the list of band names. 
print('EO-1 bands:', eo1Bands);
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Examine the list of bands that are printed in the Console. Notice how many 
more bands the hyperspectral instrument provides. 

Now let us create a reflectance chart as we did with the MODIS data. 

// Create an options object for our chart. 
var optionsEO1 = { 

title: 'EO1 spectrum', 
hAxis: { 

title: 'Band' 
}, 
vAxis: { 

title: 'Reflectance' 
}, 
legend: { 

position: 'none' 
}, 
pointSize: 3 

}; 

// Make the chart and set the options. 
var eo1Chart = ui.Chart.image.regions({ 

image: eo1Image, 
regions: ee.Geometry.Point([6.10, 81.12]) 

}).setOptions(optionsEO1); 

// Display the chart. 
print(eo1Chart); 

The resulting chart is shown in Fig. 4.18. There are so many bands that their 
names only appear as “…”! 

Fig. 4.18 Plot of TOA reflectance for EO-1 as displayed in the Console. Note the button to expand 
the plot in the upper-right-hand corner
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Fig. 4.19 Expanded plot of TOA reflectance for EO-1 

If we click on the expand icon in the top right corner of the chart, it is a little 
easier to see the band identifiers, as shown in Fig. 4.19. 

Compare this hyperspectral instrument chart with the multispectral chart we 
plotted above for MODIS. 

Code Checkpoint F13c. The book’s repository contains a script that shows what 
your code should look like at this point. 

4.2.5 Section 5: Per-Pixel Quality 

As you saw above, an image consists of many bands. Some of these bands contain 
spectral responses of Earth’s surface, including the NIR, red, and green bands we 
examined in the spectral resolution section. What about the other bands? Some of 
these other bands contain valuable information, like pixel-by-pixel quality-control 
data. 

For example, Sentinel-2 has a QA60 band, which contains the surface 
reflectance quality assurance information. Let us map it to inspect the values. 

///// 
// Examine pixel quality 
///// 

// Sentinel Quality Visualization. 
var msiCloud = msi 

.filterBounds(Map.getCenter()) 

.filterDate('2019-12-31', '2020-02-01') 

.first(); 

Use the Inspector tool to examine some of the values. You may see values of 
0 (black), 1024 (gray), and 2048 (white). The QA60 band has values of 1024 for
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opaque clouds and 2048 for cirrus clouds. Compare the false-color image with the 
QA60 band to see these values. More information about how to interpret these 
complex values is given in Chap. 15, which explains the treatment of clouds. 

Code Checkpoint F13d. The book’s repository contains a script that shows what 
your code should look like at this point. 

4.2.6 Section 6: Metadata 

In addition to band imagery and per-pixel quality flags, Earth Engine allows you 
to access substantial amounts of metadata associated with an image. This can all 
be easily printed to the Console for a single image. 

Let us examine the metadata for the Sentinel-2 MSI. 

///// 
// Metadata 
///// 
print('MSI Image Metadata', msiImage); 

Examine the object you have created in the Console (Fig. 4.20). Expand the 
image name, then the properties object. 

Fig. 4.20 Checking the “CLOUDY_PIXEL_PERCENTAGE” property in the metadata for 
Sentinel-2
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The first entry is the CLOUDY_PIXEL_PERCENTAGE information. Distinct 
from the cloudiness flag attached to every pixel, this is an image-level summary 
assessment of the overall cloudiness in the image. In addition to viewing the value, 
you might find it useful to print it to the screen, for example, or to record a list of 
cloudiness values in a set of images. Metadata properties can be extracted from an 
image’s properties using the get function and printed to the Console. 

// Image-level Cloud info 
var msiCloudiness = msiImage.get('CLOUDY_PIXEL_PERCENTAGE'); 

print('MSI CLOUDY_PIXEL_PERCENTAGE:', msiCloudiness); 

Code Checkpoint F13e. The book’s repository contains a script that shows what 
your code should look like at this point. 

4.3 Synthesis 

Assignment 1. Recall the plots of spectral resolution we created for MODIS and 
EO-1. Create a plot of spectral resolution for one of the other sensors described in 
this chapter. What are the bands called? What wavelengths of the electromagnetic 
spectrum do they correspond to? 

Assignment 2. Recall how we extracted the spatial resolution and saved it to a 
variable. In your code, set the following variables to the scales of the bands shown 
in Table 4.1. 

Assignment 3. Make this point in your code: 
ee.Geometry.Point([-122.30144, 37.80215]). How many  
MYD09A1 images are there in 2017 at this point? Set a variable called 
mod09ImageCount with that value, and print it. How many Sentinel-2 
MSI surface reflectance images are there in 2017 at this point? Set a variable 
called msiImageCount with that value, and print it.

Table 4.1 Three datasets 
and bands to use 

Dataset Band Variable name 

MODIS MYD09A1 sur_refl_b01 modisB01Scale 

Sentinel-2 MSI B5 msiB5Scale 

NAIP R naipScale 
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4.4 Conclusion 

A good understanding of the characteristics of your images is critical to your work 
in Earth Engine and the chapters going forward. You now know how to observe 
and query a variety of remote sensing datasets and can choose among them for 
your work. For example, if you are interested in change detection, you might 
require a dataset with spectral resolution including near-infrared imagery and a 
fine temporal resolution. For analyses at a continental scale, you may prefer data 
with a coarse spatial scale, while analyses for specific forest stands may benefit 
from a very fine spatial scale. 
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Part II 

Interpreting Images 

Now that you know how images are viewed and what kinds of images exist in Earth 
Engine, how do we manipulate them? To gain the skills of interpreting images, you’ll 
work with bands, combining values to form indices and masking unwanted pixels. 
Then, you’ll learn some of the techniques available in Earth Engine for classifying 
images and interpreting the results.
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Learning Outcomes

• Understanding what spectral indices are and why they are useful.
• Being introduced to a range of example spectral indices used for a variety of 

purposes. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I). 

5.1 Introduction to Theory 

Spectral indices are based on the fact that different objects and land covers on 
the Earth’s surface reflect different amounts of light from the Sun at different 
wavelengths. In the visible part of the spectrum, for example, a healthy green 
plant reflects a large amount of green light while absorbing blue and red light— 
which is why it appears green to our eyes. Light also arrives from the Sun at 
wavelengths outside what the human eye can see, and there are large differences 
in reflectances between living and nonliving land covers and between different 
types of vegetation, both in the visible and outside the visible wavelengths. We 
visualized this earlier, in Chaps. 2 and 4 when we mapped color-infrared images 
(Fig. 5.1). 

Fig. 5.1 Mapped color-IR images from multiple satellite sensors that we mapped in Chap. 4. 
The near-infrared spectrum is mapped as red, showing where there are high amounts of healthy 
vegetation
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Fig. 5.2 Graph of the amount of reflectance for different objects on the Earth’s surface at different 
wavelengths in the visible and infrared portions of the electromagnetic spectrum. 1 µm (µm) = 
1000 nm (nm) 

If we graph the amount of light (reflectance) at different wavelengths that an 
object or land cover reflects, we can visualize this more easily (Fig. 5.2). For exam-
ple, look at the reflectance curves for soil and water in the graph below. Soil and 
water both have relatively low reflectance at wavelengths around 300 nm (ultravi-
olet and violet light). Conversely, at wavelengths above 700 nm (red and infrared 
light), soil has relatively high reflectance, while water has very low reflectance. 
Vegetation, meanwhile, generally reflects large amounts of near-infrared light, 
relative to other land covers. 

Spectral indices use math to express how objects reflect light across multiple 
portions of the spectrum as a single number. Indices combine multiple bands, often 
with simple operations of subtraction and division, to create a single value across 
an image that is intended to help to distinguish particular land uses or land covers 
of interest. Using Fig. 5.2, you can imagine which wavelengths might be the most 
informative for distinguishing among a variety of land covers. We will explore a 
variety of calculations made from combinations of bands in the following sections. 

Indices derived from satellite imagery are used as the basis of many remote 
sensing analyses. Indices have been used in thousands of applications, from detect-
ing anthropogenic deforestation to examining crop health. For example, the growth 
of economically important crops such as wheat and cotton can be monitored 
throughout the growing season: Bare soil reflects more red wavelengths, whereas 
growing crops reflect more of the near-infrared (NIR) wavelengths. Thus, calcu-
lating a ratio of these two bands can help monitor how well crops are growing 
(Jackson and Huete 1991).
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5.2 Practicum 

5.2.1 Section 1: Band Arithmetic in Earth Engine 

Many indices can be calculated using band arithmetic in Earth Engine. Band arith-
metic is the process of adding, subtracting, multiplying, or dividing two or more 
bands from an image. Here, we will first do this manually and then show you some 
more efficient ways to perform band arithmetic in Earth Engine. 

Arithmetic Calculation of NDVI 
The red and near-infrared bands provide a lot of information about vegetation 
due to vegetation’s high reflectance in these wavelengths. Take a look at Fig. 5.2 
and note, in particular, that vegetation curves (graphed in green) have relatively 
high reflectance in the NIR range (approximately 750–900 nm). Also note that 
vegetation has low reflectance in the red range (approximately 630–690 nm), 
where sunlight is absorbed by chlorophyll. This suggests that if the red and near-
infrared bands could be combined, they would provide substantial information 
about vegetation. 

Soon after the launch of Landsat 1 in 1972, analysts worked to devise a robust 
single value that would convey the health of vegetation along a scale of −1 to 1.  
This yielded the NDVI, using the formula: 

NDVI = NIR − red 
NIR + red , (5.1) 

where NIR and red refer to the brightness of each of those two bands. As seen in 
Chaps. 2 and 3, this brightness might be conveyed in units of reflectance, radiance, 
or digital number (DN); the NDVI is intended to give nearly equivalent values 
across platforms that use these wavelengths. The general form of this equation 
is called a “normalized difference”—the numerator is the “difference” and the 
denominator “normalizes” the value. Outputs for NDVI vary between −1 and 1. 
High amounts of green vegetation have values around 0.8–0.9. Absence of green 
leaves gives values near 0, and water gives values near −1. 

To compute the NDVI, we will introduce Earth Engine’s implementation of 
band arithmetic. Cloud-based band arithmetic is one of the most powerful aspects 
of Earth Engine, because the platform’s computers are optimized for this type of 
heavy processing. Arithmetic on bands can be done even at planetary scale very 
quickly—an idea that was out of reach before the advent of cloud-based remote 
sensing. Earth Engine automatically partitions calculations across a large number 
of computers as needed and assembles the answer for display. 

As an example, let us examine an image of San Francisco (Fig. 5.3).
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Fig. 5.3 False-color Sentinel-2 imagery of San Francisco and surroundings 

///// 
// Band Arithmetic 
///// 

// Calculate NDVI using Sentinel 2 

// Import and filter imagery by location and date. 
var sfoPoint = ee.Geometry.Point(-122.3774, 37.6194); 
var sfoImage = ee.ImageCollection('COPERNICUS/S2') 

.filterBounds(sfoPoint) 

.filterDate('2020-02-01', '2020-04-01') 

.first(); 

// Display the image as a false color composite. 
Map.centerObject(sfoImage, 11); 
Map.addLayer(sfoImage, { 

bands: ['B8', 'B4', 'B3'], 
min: 0, 
max: 2000 

}, 'False color'); 

The simplest mathematical operations in Earth Engine are the add, subtract, 
multiply, and divide methods. Let us select the near-infrared and red bands 
and use these operations to calculate NDVI for our image.
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// Extract the near infrared and red bands. 
var nir = sfoImage.select('B8'); 
var red = sfoImage.select('B4'); 

// Calculate the numerator and the denominator using 
subtraction and addition respectively. 
var numerator = nir.subtract(red); 
var denominator = nir.add(red); 

// Now calculate NDVI. 
var ndvi = numerator.divide(denominator); 

// Add the layer to our map with a palette. 
var vegPalette = ['red', 'white', 'green']; 
Map.addLayer(ndvi, { 

min: -1, 
max: 1, 
palette: vegPalette 

}, 'NDVI Manual'); 

Examine the resulting index, using the Inspector to pick out pixel values in 
areas of vegetation and non-vegetation if desired (Fig. 5.4). 

Using these simple arithmetic tools, you can build almost any index or develop 
and visualize your own. Earth Engine allows you to quickly and easily calculate 
and display the index across a large area.

Fig. 5.4 NDVI calculated using Sentinel-2. Remember that outputs for NDVI vary between− 1 
and 1. High amounts of green vegetation have values around 0.8–0.9. Absence of green leaves gives 
values near 0, and water gives values near− 1 
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Single-Operation Computation of Normalized Difference for NDVI 
Normalized differences like NDVI are so common in remote sensing that Earth 
Engine provides the ability to do that particular sequence of subtraction, addition, 
and division in a single step, using the normalizedDifference method. This 
method takes an input image, along with bands you specify, and creates a normal-
ized difference of those two bands. The NDVI computation previously created 
with band arithmetic can be replaced with one line of code: 

// Now use the built-in normalizedDifference function to 
achieve the same outcome. 
var ndviND = sfoImage.normalizedDifference(['B8', 'B4']); 
Map.addLayer(ndviND, { 

min: -1, 
max: 1, 
palette: vegPalette 

}, 'NDVI normalizedDiff'); 

Note that the order in which you provide the two bands to 
normalizedDifference is important. We use B8, the near-infrared band, as 
the first parameter, and the red band B4 as the second. If your two computations 
of NDVI do not look identical when drawn to the screen, check to make sure that 
the order you have for the NIR and red bands is correct. 

Using Normalized Difference for NDWI 
As mentioned, the normalized difference approach is used for many different 
indices. Let us apply the same normalizedDifference method to another 
index. 

The Normalized Difference Water Index (NDWI) was developed by Gao (1996) 
as an index of vegetation water content. The index is sensitive to changes in the 
liquid content of vegetation canopies. This means that the index can be used, for 
example, to detect vegetation experiencing drought conditions or differentiate crop 
irrigation levels. In dry areas, crops that are irrigated can be differentiated from 
natural vegetation. It is also sometimes called the Normalized Difference Moisture 
Index (NDMI). NDWI is formulated as follows: 

NDWI = NIR − SWIR 

NIR + SWIR 
, (5.2) 

where NIR is near-infrared, centered near 860 nm (0.86 µm), and SWIR is 
shortwave infrared, centered near 1240 nm (1.24 µm).
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Compute and display NDWI in Earth Engine using the 
normalizedDifference method. Remember that for Sentinel-2, B8 is  
the NIR band and B11 is the SWIR band (refer to Chaps. 2 and 4 to find 
information about imagery bands). 

// Use normalizedDifference to calculate NDWI 
var ndwi = sfoImage.normalizedDifference(['B8', 'B11']); 
var waterPalette = ['white', 'blue']; 
Map.addLayer(ndwi, { 

min: -0.5, 
max: 1, 
palette: waterPalette 

}, 'NDWI'); 

Examine the areas of the map that NDVI identified as having a lot of vegeta-
tion. Notice which are more blue. This is vegetation that has higher water content 
(Fig. 5.5). 

Fig. 5.5 NDWI displayed for Sentinel-2 over San Francisco
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Code Checkpoint F20a. The book’s repository contains a script that shows what 
your code should look like at this point. 

5.2.2 Section 2: Thresholding, Masking, and Remapping Images 

The previous section in this chapter discussed how to use band arithmetic to 
manipulate images. Those methods created new continuous values by combining 
bands within an image. This section uses logical operators to categorize band or 
index values to create a categorized image. 

Implementing a Threshold 
Implementing a threshold uses a number (the threshold value) and logical operators 
to help us partition the variability of images into categories. For example, recall 
our map of NDVI. High amounts of vegetation have NDVI values near 1 and 
non-vegetated areas are near 0. If we want to see what areas of the map have 
vegetation, we can use a threshold to generalize the NDVI value in each pixel as 
being either “no vegetation” or “vegetation”. That is a substantial simplification, 
to be sure, but can help us to better comprehend the rich variation on the Earth’s 
surface. This type of categorization may be useful if, for example, we want to 
look at the proportion of a city that is vegetated. Let us create a Sentinel-2 map 
of NDVI near Seattle, Washington, USA. Enter the code below in a new script 
(Fig. 5.6). 

Fig. 5.6 NDVI image of Sentinel-2 imagery over Seattle, Washington, USA
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// Create an NDVI image using Sentinel 2. 
var seaPoint = ee.Geometry.Point(-122.2040, 47.6221); 
var seaImage = ee.ImageCollection('COPERNICUS/S2') 

.filterBounds(seaPoint) 

.filterDate('2020-08-15', '2020-10-01') 

.first(); 

var seaNDVI = seaImage.normalizedDifference(['B8', 'B4']); 

// And map it. 
Map.centerObject(seaPoint, 10); 
var vegPalette = ['red', 'white', 'green']; 
Map.addLayer(seaNDVI, 

{ 
min: -1, 
max: 1, 
palette: vegPalette 

}, 
'NDVI Seattle'); 

Inspect the image. We can see that vegetated areas are darker green, while non-
vegetated locations are white and water is pink. If we use the Inspector to query 
our image, we can see that parks and other forested areas have an NDVI over 
about 0.5. Thus, it would make sense to define areas with NDVI values greater 
than 0.5 as forested and those below that threshold as not forested. 

Now, let us define that value as a threshold and use it to threshold our vegetated 
areas. 

// Implement a threshold. 
var seaVeg = seaNDVI.gt(0.5); 

// Map the threshold. 
Map.addLayer(seaVeg, 

{ 
min: 0, 
max: 1, 
palette: ['white', 'green'] 

}, 
'Non-forest vs. Forest'); 

The gt method is from the family of Boolean operators—that is, gt is a func-
tion that performs a test in each pixel and returns the value 1 if the test evaluates 
to true, and 0 otherwise. Here, for every pixel in the image, it tests whether the
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Fig. 5.7 Thresholded forest and non-forest image based on NDVI for Seattle, Washington, USA 

NDVI value is greater than 0.5. When this condition is met, the layer seaVeg 
gets the value 1. When the condition is false, it receives the value 0 (Fig. 5.7). 

Use the Inspector tool to explore this new layer. If you click on a green loca-
tion, that NDVI should be greater than 0.5. If you click on a white pixel, the NDVI 
value should be equal to or less than 0.5. 

Other operators in this Boolean family include less than (lt), less than or equal 
to (lte), equal to (eq), not equal to (neq), and greater than or equal to (gte) 
and more. 

Building Complex Categorizations with .where 
A binary map classifying NDVI is very useful. However, there are situations where 
you may want to split your image into more than two bins. Earth Engine provides 
a tool, the where method, that conditionally evaluates to true or false within each 
pixel depending on the outcome of a test. This is analogous to an if statement 
seen commonly in other languages. However, to perform this logic when program-
ming for Earth Engine, we avoid using the JavaScript if statement. Importantly, 
JavaScript if commands are not calculated on Google’s servers and can create 
serious problems when running your code—in effect, the servers try to ship all 
of the information to be executed to your own computer’s browser, which is very 
underequipped for for such enormous tasks. Instead, we use the where clause for 
conditional logic. 

Suppose instead of just splitting the forested areas from the non-forested areas 
in our NDVI, we want to split the image into likely water, non-forested, and 
forested areas. We can use where and thresholds of −0.1 and 0.5. We will start 
by creating an image using ee.Image. We then clip the new image so that it 
covers the same area as our seaNDVI layer (Fig. 5.8).
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// Implement .where. 
// Create a starting image with all values = 1. 
var seaWhere = ee.Image(1) 

// Use clip to constrain the size of the new image. 
.clip(seaNDVI.geometry()); 

// Make all NDVI values less than -0.1 equal 0. 
seaWhere = seaWhere.where(seaNDVI.lte(-0.1), 0); 

// Make all NDVI values greater than 0.5 equal 2. 
seaWhere = seaWhere.where(seaNDVI.gte(0.5), 2); 

// Map our layer that has been divided into three classes. 
Map.addLayer(seaWhere, 

{ 
min: 0, 
max: 2, 
palette: ['blue', 'white', 'green'] 

}, 
'Water, Non-forest, Forest'); 

There are a few interesting things to note about this code that you may not 
have seen before. First, we are not defining a new variable for each where 
call. As a result, we can perform many where calls without creating a new 
variable each time and needing to keep track of them. Second, when we cre-
ated the starting image, we set the value to 1. This means that we could easily 
set the bottom and top values with one where clause each. Finally, while we 
did not do it here, we can combine multiple where clauses using and and or. 
For example, we could identify pixels with an intermediate level of NDVI using 
seaNDVI.gte(−0.1).and(seaNDVI.lt(0.5)).

Masking Specific Values in an Image 
Masking an image is a technique that removes specific areas of an image—those 
covered by the mask—from being displayed or analyzed. Earth Engine allows you 
to both view the current mask and update the mask (Fig. 5.9).

// Implement masking. 
// View the seaVeg layer's current mask. 
Map.centerObject(seaPoint, 9); 
Map.addLayer(seaVeg.mask(), {}, 'seaVeg Mask'); 
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Fig. 5.8 Thresholded water, forest, and non-forest image based on NDVI for Seattle, Washington, 
USA

Fig. 5.9 Existing mask for the seaVeg layer we created previously

You can use the Inspector to see that the black area is masked and the white 
area has a constant value of 1. This means that data values are mapped and 
available for analysis within the white area only. 

Now suppose we only want to display and conduct analyses in the forested 
areas. Let us mask out the non-forested areas from our image. First, we create a 
binary mask using the equals (eq) method.
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// Create a binary mask of non-forest. 
var vegMask = seaVeg.eq(1); 

In making a mask, you set the values you want to see and analyze to be a 
number greater than 0. The idea is to set unwanted values to get the value of 0. 
Pixels that had 0 values become masked out (in practice, they do not appear on 
the screen at all) once we use the updateMask method to add these values to 
the existing mask. 

// Update the seaVeg mask with the non-forest mask. 
var maskedVeg = seaVeg.updateMask(vegMask); 

// Map the updated Veg layer 
Map.addLayer(maskedVeg, 

{ 
min: 0, 
max: 1, 
palette: ['green'] 

}, 
'Masked Forest Layer'); 

Turn off all of the other layers. You can see how the maskedVeg layer now 
has masked out all non-forested areas (Fig. 5.10). 

Map the updated mask for the layer and you can see why this is (Fig. 5.11).

Fig. 5.10 Updated mask now displays only the forested areas. Non-forested areas are masked out 
and transparent 
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Fig. 5.11 Updated mask. Areas of non-forest are now masked out as well (black areas of the 
image) 

// Map the updated mask 
Map.addLayer(maskedVeg.mask(), {}, 'maskedVeg Mask'); 

Remapping Values in an Image 
Remapping takes specific values in an image and assigns them a different value. 
This is particularly useful for categorical datasets, including those you read about 
in Chap. 3 and those we have created earlier in this chapter. 

Let us use the remap method to change the values for our seaWhere layer. 
Note that since we are changing the middle value to be the largest, we will need 
to adjust our palette as well. 

// Implement remapping. 
// Remap the values from the seaWhere layer. 
var seaRemap = seaWhere.remap([0, 1, 2], // Existing values. 
    [9, 11, 10]); // Remapped values. 
 
Map.addLayer(seaRemap, 
    { 
        min: 9, 
        max: 11, 
        palette: ['blue', 'green', 'white'] 
    }, 
    'Remapped Values'); 
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Fig. 5.12 For forested areas, the remapped layer has a value of 10, compared with the original 
layer, which has a value of 2. You may have more layers in your Inspector 

Use the inspector to compare values between our original seaWhere (dis-
played as Water, Non-Forest, Forest) and the seaRemap, marked as “Remapped 
Values”. Click on a forested area and you should see that the Remapped Values 
should be 10, instead of 2 (Fig. 5.12). 

Code Checkpoint F20b. The book’s repository contains a script that shows what 
your code should look like at this point. 

5.3 Synthesis 

Assignment 1. In addition to vegetation indices and other land cover indices, you 
can use properties of different soil types to create geological indices (Drury 1987). 
The Clay Minerals Ratio (CMR) is one of these (Nath et al. 2019). This index 
highlights soils containing clay and alunite, which absorb radiation in the SWIR 
portion (2.0–2.3 µm) of the spectrum. 

CMR = SWIR 1 

SWIR 2 
. 

SWIR 1 should be in the 1.55–1.75 µm range, and SWIR 2 should be 
in the 2.08–2.35 µm range. Calculate and display CMR at the following 
point: ee.Geometry.Point(−100.543, 33.456). Do not forget to use 
Map.centerObject.



5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 113

We have selected an area of Texas known for its clay soils. Compare this with 
an area without clay soils (for example, try an area around Seattle or Tacoma, 
Washington, USA). Note that this index will also pick up roads and other paved 
areas. 

Assignment 2. Calculate the Iron Oxide Ratio, which can be used to detect 
hydrothermally altered rocks (e.g., from volcanoes) that contain iron-bearing 
sulfides which have been oxidized (Segal 1982). 

Here is the formula: 

IOR = Red 
Blue 

. 

Red should be the 0.63–0.69 µm spectral range and blue the 0.45–0.52 µm. 
Using Landsat 8, you can also find an interesting area to map by considering 
where these types of rocks might occur. 

Assignment 3. Calculate the Normalized Difference Built-Up Index (NDBI) for 
the sfoImage used in this chapter. 

The NDBI was developed by Zha et al. (2003) to aid in differentiating urban 
areas (e.g., densely clustered buildings and roads) from other land cover types. 
The index exploits the fact that urban areas, which generally have a great deal of 
impervious surface cover, reflect SWIR very strongly. If you like, refer back to 
Fig. 5.2. 

The formula is: 

NDBI = SWIR − NIR 
SWIR + NIR . 

Using what we know about Sentinel-2 bands, compute NDBI and display it. 
Bonus: Note that, NDBI is the negative of NDWI computed earlier. We can 

prove this by using the JavaScript reverse method to reverse the palette used for 
NDWI in Earth Engine. This method reverses the order of items in the JavaScript 
list. Create a new palette for NDBI using the reverse method and display the map. 
As a hint, here is code to use the reverse method. 

var barePalette = waterPalette.reverse(); 

5.4 Conclusion 

In this chapter, you learned how to select multiple bands from an image and calcu-
late indices. You also learned about thresholding values in an image, slicing them 
into multiple categories using thresholds. It is also possible to work with one set 
of class numbers and remap them quickly to another set. Using these techniques,
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you have some of the basic tools of image manipulation. In subsequent chapters, 
you will encounter more complex and specialized image manipulation techniques, 
including pixel-based image transformations (Chap. 9), neighborhood-based image 
transformations (Chap. 10), and object-based image analysis (Chap. 11). 
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Overview 
Image classification is a fundamental goal of remote sensing. It takes the user from 
viewing an image to labeling its contents. This chapter introduces readers to the 
concept of classification and walks users through the many options for image classi-
fication in Earth Engine. You will explore the processes of training data collection, 
classifier selection, classifier training, and image classification. 

Learning Outcomes

• Running a classification in Earth Engine.
• Understanding the difference between supervised and unsupervised classification.
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• Learning how to use Earth Engine geometry drawing tools.
• Learning how to collect sample data in Earth Engine.
• Learning the basics of the hexadecimal numbering system. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Understand bands and how to select them (Chaps. 3 and 5). 

6.1 Introduction to Theory 

Classification is addressed in a broad range of fields, including mathematics, 
statistics, data mining, machine learning, and more. For a deeper treatment of 
classification, interested readers may see some of the following suggestions: Wit-
ten et al. (2011), Hastie et al. (2009), Goodfellow et al. (2016), Gareth et al. (2013), 
Géron (2019), Müller and Guido (2016), or Witten et al. (2005). In classification, 
the target variable is categorical or discrete, meaning it has a finite number of cat-
egories. Examples include predicting whether an email is spam or not, classifying 
images into different objects, or determining whether a customer will churn or not. 
On the other hand, regression predicts continuous variables, where the target vari-
able can take on any value within a range. Examples include predicting a person’s 
income, the price of a house, or the temperature. Chapter 8 covers the concept and 
application of image regression. 

In remote sensing, image classification is an attempt to categorize all pixels 
in an image into a finite number of labeled land cover and/or land use classes. 
The resulting classified image is a simplified thematic map derived from the orig-
inal image (Fig. 6.1). Land cover and land use information is essential for many 
environmental and socioeconomic applications, including natural resource man-
agement, urban planning, biodiversity conservation, agricultural monitoring, and 
carbon accounting.

Image classification techniques for generating land cover and land use infor-
mation have been in use since the 1980s (Li et al. 2014). Here, we will cover the 
concepts of pixel-based supervised and unsupervised classifications, testing out 
different classifiers. Chapter 11 covers the concept and application of object-based 
classification. 

6.2 Practicum 

It is important to define land use and land cover. Land cover relates to the physical 
characteristics of the surface: Simply put, it documents whether an area of the 
Earth’s surface is covered by forests, water, impervious surfaces, etc. Land use
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Fig. 6.1 Image classification concept

refers to how this land is being used by people. For example, herbaceous vegetation 
is considered a land cover but can indicate different land uses: The grass in a 
pasture is an agricultural land use, whereas the grass in an urban area can be 
classified as a park. 

6.2.1 Section 1: Supervised Classification 

If you have not already done so, you can add the book’s code repository to 
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro 
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The 
book’s scripts will then be available in the script manager panel to view, run, or 
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help 
for help. 

Supervised classification uses a training dataset with known labels and rep-
resenting the spectral characteristics of each land cover class of interest to 
“supervise” the classification. The overall approach of a supervised classification 
in Earth Engine is summarized as follows: 

1. Get a scene. 
2. Collect training data. 
3. Select and train a classifier using the training data. 
4. Classify the image using the selected classifier. 

We will begin by creating training data manually, based on a clear Landsat image 
(Fig. 6.2). Copy the code block below to define your Landsat 8 scene variable and 
add it to the map. We will use a point in Milan, Italy, as the center of the area for 
our image classification.

https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
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Fig. 6.2 Landsat image 

// Create an Earth Engine Point object over Milan. 
var pt = ee.Geometry.Point([9.453, 45.424]); 

// Filter the Landsat 8 collection and select the least 
cloudy image. 
var landsat = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterBounds(pt) 

.filterDate('2019-01-01', '2020-01-01') 

.sort('CLOUD_COVER') 

.first(); 

// Center the map on that image. 
Map.centerObject(landsat, 8); 

// Add Landsat image to the map. 
var visParams = { 

bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 7000, 
max: 12000 

}; 
Map.addLayer(landsat, visParams, 'Landsat 8 image');
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Using the Geometry Tools, we will create points on the Landsat image that 
represent land cover classes of interest to use as our training data. We’ll need to 
do two things: (1) identify where each land cover occurs on the ground, and (2) 
label the points with the proper class number. For this exercise, we will use the 
classes and codes given in Table 6.1. 

In the Geometry Tools, click on the marker option (Fig. 6.3). This will create 
a point geometry which will show up as an import named “geometry.” Click on 
the gear icon to configure this import. 

We will start by collecting forest points, so name the import forest. Import it 
as a FeatureCollection, and then click + Property. Name the new property 
“class” and give it a value of 0 (Fig. 6.4). We can also choose a color to repre-
sent this class. For a forest class, it is natural to choose a green color. You can 
choose the color you prefer by clicking on it, or, for more control, you can use a 
hexadecimal value.

Hexadecimal values are used throughout the digital world to represent specific 
colors across computers and operating systems. They are specified by six values 
arranged in three pairs, with one pair each for the red, green, and blue brightness 
values. If you’re unfamiliar with hexadecimal values, imagine for a moment that 
colors were specified in pairs of base 10 numbers instead of pairs of base 16. In 
that case, a bright pure red value would be “990000”; a bright pure green value 
would be “009900”; and a bright pure blue value would be “000099”. A value like 
“501263” would be a mixture of the three colors, not especially bright, having 
roughly equal amounts of blue and red, and much less green: A color that would 
be a shade of purple. To create numbers in the hexadecimal system, which might

Table 6.1 Land cover 
classes 

Class Class code 

Forest 0 

Developed 1 

Water 2 

Herbaceous 3 

Fig. 6.3 Creating a new layer in the Geometry Imports 



120 A. P. Nicolau et al.

Fig. 6.4 Edit geometry layer properties

feel entirely natural if humans had evolved to have 16 fingers, sixteen “digits” are 
needed: A base 16 counter goes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, then 
10, 11, and so on. Given that counting framework, the number “FF” is like “99” 
in base 10: the largest two-digit number. The hexadecimal color used for coloring 
the letters of the word FeatureCollection in this book, a color with roughly 
equal amounts of blue and red, and much less green, is “7F1FA2”. 

Returning to the coloring of the forest points, the hexadecimal value 
“589400” is a little bit of red, about twice as much green, and no blue: The deep 
green is shown in Fig. 6.4. Enter that value, with or without the “#” in front and 
click OK after finishing the configuration. 

Now, in the Geometry Imports, we will see that the import has been renamed 
forest. Click on it to activate the drawing mode (Fig. 6.5) in order to start 
collecting forest points.

Now, start collecting points over forested areas (Fig. 6.6). Zoom in and out 
as needed. You can use the satellite basemap to assist you, but the basis of your 
collection should be the Landsat image. Remember that the more points you col-
lect, the more the classifier will learn from the information you provide. For now, 
let us set a goal to collect 25 points per class. Click Exit next to Point drawing 
(Fig. 6.5) when finished.

Repeat the same process for the other classes by creating new layers (Fig. 6.7). 
Don’t forget to import using the FeatureCollection option as mentioned
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Fig. 6.5 Activate forest layer to start collection

Fig. 6.6 Forest points

above. For the developed class, collect points over urban areas. For the water 
class, collect points over the Ligurian Sea and also look for other bodies of water, 
like rivers. For the herbaceous class, collect points over agricultural fields. 
Remember to set the “class” property for each class to its corresponding code 
(see Table 6.1) and click Exit once you finalize collecting points for each class 
as mentioned above. We will be using the following hexadecimal colors for the 
other classes: #FF0000 for developed, #1A11FF for water, and #D0741E for 
herbaceous. 

Fig. 6.7 New layer option in Geometry Imports
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You should now have four FeatureCollection imports named forest, 
developed, water, and herbaceous (Fig. 6.8). 

Code Checkpoint F21a. The book’s repository contains a script that shows what 
your code should look like at this point. 

If you wish to have the exact same results demonstrated in this chapter from 
now on, continue beginning with this Code Checkpoint. If you use the points 
collected yourself, the results may vary from this point forward. 

The next step is to combine all the training feature collections into one. Copy 
and paste the code below to combine them into one FeatureCollection 
called trainingFeatures. Here, we use the flatten method to avoid hav-
ing a collection of feature collections—we want individual features within our 
FeatureCollection. 

// Combine training feature collections. 
var trainingFeatures = ee.FeatureCollection([ 

forest, developed, water, herbaceous 
]).flatten(); 

Note: Alternatively, you could use an existing set of reference data. For exam-
ple, the European Space Agency (ESA) WorldCover dataset is a global map of 
land use and land cover derived from ESA’s Sentinel-2 imagery at 10 m reso-
lution. With existing datasets, we can randomly place points on pixels classified

Fig. 6.8 Example of training points 



6 Interpreting an Image: Classification 123

as the classes of interest (if you are curious, you can explore the Earth Engine 
documentation to learn about the ee.Image.stratifiedSample and the 
ee.FeatureCollection.randomPoints methods). The drawback is that 
these global datasets will not always contain the specific classes of interest for 
your region, or may not be entirely accurate at the local scale. Another option is 
to use samples that were collected in the field (e.g., GPS points). In Chap. 22, you 
will see how to upload your own data as Earth Engine assets. 

In the combined FeatureCollection, each Feature point should have a 
property called “class.” The class values are consecutive integers from 0 to 3 (you 
could verify that this is true by printing trainingFeatures and checking the 
properties of the features). 

Now that we have our training points, copy and paste the code below to extract 
the band information for each class at each point location. First, we define the 
prediction bands to extract different spectral and thermal information from differ-
ent bands for each class. Then, we use the sampleRegions method to sample 
the information from the Landsat image at each point location. This method 
requires information about the FeatureCollection (our reference points), 
the property to extract (“class”), and the pixel scale (in meters). 

// Define prediction bands. 
var predictionBands = [ 

'SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 
'SR_B7','ST_B10' 

]; 

// Sample training points. 
var classifierTraining = landsat.select(predictionBands) 

.sampleRegions({ 
collection: trainingFeatures, 
properties: ['class'], 
scale: 30 

}); 

You can check whether the classifierTraining object extracted the 
properties of interest by printing it and expanding the first feature. You should 
see the band and class information (Fig. 6.9).

Now we can choose a classifier. The choice of classifier is not always obvious, 
and there are many options from which to pick—you can quickly expand the 
ee.Classifier object under Docs to get an idea of how many options we 
have for image classification. Therefore, we will be testing different classifiers 
and comparing their results. We will start with a Classification and Regression 
Tree (CART) classifier, a well-known classification algorithm (Fig. 6.10) that has 
been around for decades.
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Fig. 6.9 Example of extracted band information for one point of class 0 (forest)

Fig. 6.10 Example of a decision tree for satellite image classification. Values and classes are 
hypothetical
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Copy and paste the code below to instantiate a CART classifier 
(ee.Classifier.smileCart) and train it. 

//////////////// CART Classifier /////////////////// 

// Train a CART Classifier. 
var classifier = ee.Classifier.smileCart().train({ 

features: classifierTraining, 
classProperty: 'class', 
inputProperties: predictionBands 

}); 

Essentially, the classifier contains the mathematical rules that link labels to 
spectral information. If you print the variable classifier and expand its prop-
erties, you can confirm the basic characteristics of the object (bands, properties, 
and classifier being used). If you print classifier.explain, you can find a 
property called “tree” that contains the decision rules. 

After training the classifier, copy and paste the code below to classify the 
Landsat image and add it to the Map. 

// Classify the Landsat image. 
var classified = 
landsat.select(predictionBands).classify(classifier); 

// Define classification image visualization parameters. 
var classificationVis = { 

min: 0, 
max: 3, 
palette: ['589400', 'ff0000', '1a11ff', 'd0741e'] 

}; 

// Add the classified image to the map. 
Map.addLayer(classified, classificationVis, 'CART 
classified'); 

Note that, in the visualization parameters, we define a palette parameter 
which in this case represents colors for each pixel value (0–3, our class codes). 
We use the same hexadecimal colors used when creating our training points for 
each class. This way, we can associate a color with a class when visualizing the 
classified image in the Map. 

Inspect the result: Activate the Landsat composite layer and the satellite 
basemap to overlay with the classified images (Fig. 6.11). Change the layers’ 
transparency to inspect some areas. What do you notice? The result might not 
look very satisfactory in some areas (e.g., confusion between developed and



126 A. P. Nicolau et al.

Fig. 6.11 CART classification

herbaceous classes). Why do you think this is happening? There are a few 
options to handle misclassification errors: 

• Collect more training data: We can try incorporating more points to have a 
more representative sample of the classes.

• Tune the model: Classifiers typically have “hyperparameters,” which are set 
to default values. In the case of classification trees, there are ways to tune 
the number of leaves in the tree, for example. Tuning models is addressed in 
Chap. 7.

• Try other classifiers: If a classifier’s results are unsatisfying, we can try some 
of the other classifiers in Earth Engine to see if the result is better or different.

• Expand the collection location: It is good practice to collect points across 
the entire image and not just focus on one location. Also, look for pixels of 
the same class that show variability (e.g., for the developed class, building 
rooftops look different than house rooftops; for the herbaceous class, crop 
fields show distinctive seasonality/phenology).

• Add more predictors: We can try adding spectral indices to the input vari-
ables; this way, we are feeding the classifier new, unique information about each 
class. For example, there is a good chance that a vegetation index specialized 
for detecting vegetation health (e.g., NDVI) would improve the developed 
versus herbaceous classification.
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Fig. 6.12 General concept of Random Forest 

For now, we will try another supervised learning classifier that is widely used: 
Random Forest (RF). The RF algorithm (Breiman 2001; Pal  2005) builds on the 
concept of decision trees, but adds strategies to make them more powerful. It 
is called a “forest” because it operates by constructing a multitude of decision 
trees (Fig. 6.12). As mentioned previously, a decision tree creates the rules which 
are used to make decisions. A Random Forest will randomly choose features and 
make observations, build a forest of decision trees and then use the full set of trees 
to estimate the class. It is a great choice when you do not have a lot of insight 
about the training data. 

Copy and paste the code below to train the RF classifier 
(ee.Classifier.smileRandomForest) and apply the classifier to the 
image. The RF algorithm requires, as its argument, the number of trees to build. 
We will use 50 trees.
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/////////////// Random Forest Classifier 
///////////////////// 

// Train RF classifier. 
var RFclassifier = 
ee.Classifier.smileRandomForest(50).train({ 

features: classifierTraining, 
classProperty: 'class', 
inputProperties: predictionBands 

}); 

// Classify Landsat image. 
var RFclassified = 
landsat.select(predictionBands).classify( 

RFclassifier); 

// Add classified image to the map. 
Map.addLayer(RFclassified, classificationVis, 'RF 
classified'); 

Note that in the ee.Classifier.smileRandomForest documentation 
(Docs tab), there is a seed (random number) parameter. Setting a seed allows 
you to exactly replicate your model each time you run it. Any number is acceptable 
as a seed. 

Inspect the result (Fig. 6.13). How does this classified image differ from the 
CART one? Is the classifications better or worse? Zoom in and out and change the 
transparency of layers as needed. In Chap. 7, you will see more systematic ways 
to assess what is better or worse, based on accuracy metrics.

Code Checkpoint F21b. The book’s repository contains a script that shows what 
your code should look like at this point. 

6.2.2 Section 2: Unsupervised Classification 

In an unsupervised classification, we have the opposite process of supervised clas-
sification. Spectral classes are grouped first and then categorized into clusters. 
Therefore, in Earth Engine, these classifiers are ee.Clusterer objects. They 
are “self-taught” algorithms that do not use a set of labeled training data (i.e., 
they are “unsupervised”). You can think of it as performing a task that you have 
not experienced before, starting by gathering as much information as possible. For 
example, imagine learning a new language without knowing the basic grammar, 
learning only by watching a TV series in that language, listening to examples, and 
finding patterns. 

Similar to the supervised classification, unsupervised classification in Earth 
Engine has this workflow:
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Fig. 6.13 Random forest classified image

1. Assemble features with numeric properties in which to find clusters (training 
data). 

2. Select and instantiate a clusterer. 
3. Train the clusterer with the training data. 
4. Apply the clusterer to the scene (classification). 
5. Label the clusters. 

In order to generate training data, we will use the sample method, which 
randomly takes samples from a region (unlike sampleRegions, which takes 
samples from predefined locations). We will use the image’s footprint as the 
region by calling the geometry method. Additionally, we will define the num-
ber of pixels (numPixels) to sample—in this case, 1000 pixels—and define a 
tileScale of 8 to avoid computation errors due to the size of the region. Copy 
and paste the code below to sample 1000 pixels from the Landsat image. You 
should add to the same script as before to compare supervised versus unsupervised 
classification results at the end.
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//////////////// Unsupervised classification 
//////////////// 

// Make the training dataset. 
var training = landsat.sample({ 

region: landsat.geometry(), 
scale: 30, 
numPixels: 1000, 
tileScale: 8 

}); 

Now we can instantiate a clusterer and train it. As with the supervised algo-
rithms, there are many unsupervised algorithms to choose from. We will use the 
k-means clustering algorithm, which is a commonly used approach in remote sens-
ing. This algorithm identifies groups of pixels near each other in the spectral space 
(image x bands) by using an iterative regrouping strategy. We define a number of 
clusters, k, and then the method randomly distributes that number of seed points 
into the spectral space. A large sample of pixels is then grouped into its closest 
seed, and the mean spectral value of this group is calculated. That mean value is 
akin to a center of mass of the points and is known as the centroid. Each iteration 
recalculates the class means and reclassifies pixels with respect to the new means. 
This process is repeated until the centroids remain relatively stable, and only a few 
pixels change from class to class on subsequent iterations (Fig. 6.14). 

Copy and paste the code below to request four clusters, the same number as for 
the supervised classification, in order to directly compare them.

Fig. 6.14 K-means visual concept 
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// Instantiate the clusterer and train it. 
var clusterer = 
ee.Clusterer.wekaKMeans(4).train(training); 

Now copy and paste the code below to apply the clusterer to the image and add 
the resulting classification to the Map (Fig. 6.15). Note that we are using a method 
called randomVisualizer to assign colors for the visualization. We are not 
associating the unsupervised classes with the color palette we defined earlier in the 
supervised classification. Instead, we are assigning random colors to the classes, 
since we do not yet know which of the unsupervised classes best corresponds to 
each of the named classes (e.g., forest, herbaceous). Note that the colors in 
Fig. 6.15 might not be the same as you see on your Map, since they are assigned 
randomly. 

Fig. 6.15 K-means classification
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// Cluster the input using the trained clusterer. 
var Kclassified = landsat.cluster(clusterer); 

// Display the clusters with random colors. 
Map.addLayer(Kclassified.randomVisualizer(), {}, 

'K-means classified - random colors'); 

Inspect the results. How does this classification compare to the previous ones? 
If preferred, use the Inspector to check which classes were assigned to each pixel 
value (“cluster” band) and change the last line of your code to apply the same 
palette used for the supervised classification results (see Code Checkpoint below 
for an example). 

Another key point of classification is the accuracy assessment of the results. 
This will be covered in Chap. 7. 

Code Checkpoint F21c. The book’s repository contains a script that shows what 
your code should look like at this point. 

6.3 Synthesis 

Test if you can improve the classifications by completing the following assign-
ments. 

Assignment 1. For the supervised classification, try collecting more points for each 
class. The more points you have, the more spectrally represented the classes are. 
It is good practice to collect points across the entire composite and not just focus 
on one location. Also look for pixels of the same class that show variability. For 
example, for the water class, collect pixels in parts of rivers that vary in color. For 
the developed class, collect pixels from different rooftops. 

Assignment 2. Add more predictors. Usually, the more spectral information you 
feed the classifier, the easier it is to separate classes. Try calculating and incor-
porating a band of NDVI or the Normalized Difference Water Index (Chap. 5) as  
a predictor band. Does this help the classification? Check for developed areas 
that were being classified as herbaceous or vice versa. 

Assignment 3. Use more trees in the Random Forest classifier. Do you see any 
improvements compared to 50 trees? Note that the more trees you have, the longer 
it will take to compute the results, and that more trees might not always mean 
better results. 

Assignment 4. Increase the number of samples that are extracted from the 
composite in the unsupervised classification. Does that improve the result?
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Assignment 5. Increase the number k of clusters for the k-means algorithm. What 
would happen if you tried 10 classes? Does the classified map result in meaningful 
classes? 

Assignment 6. Test other clustering algorithms. We only used k-means; try other 
options under the ee.Clusterer object. 

6.4 Conclusion 

Classification algorithms are key for many different applications because they 
allow you to predict categorical variables. You should now understand the dif-
ference between supervised and unsupervised classification and have the basic 
knowledge on how to handle misclassifications. By being able to map the land-
scape for land use and land cover, we will also be able to monitor how it changes 
(Part IV). 
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7Accuracy Assessment: Quantifying 
Classification Quality 

Andréa Puzzi Nicolau , Karen Dyson , David Saah , 
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Overview 
This chapter will enable you to assess the accuracy of an image classification. You 
will learn about different metrics and ways to quantify classification quality in Earth 
Engine. Upon completion, you should be able to evaluate whether your classification 
needs improvement and know how to proceed when it does. 

Learning Outcomes

• Learning how to perform accuracy assessment in Earth Engine.
• Understanding how to generate and read a confusion matrix.
• Understanding overall accuracy and the kappa coefficient.
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• Understanding the difference between user’s and producer’s accuracy and the 
difference between omission and commission errors. 

Assumes you know how to

• Create a graph using ui.Chart (Chap. 4).
• Perform a supervised Random Forest image classification (Chap. 6). 

7.1 Introduction to Theory 

Any map or remotely sensed product is a generalization or model that will have 
inherent errors. Products derived from remotely sensed data used for scientific pur-
poses and policymaking require a quantitative measure of accuracy to strengthen 
the confidence in the information generated (Foody 2002; Strahler et al. 2006; 
Olofsson et al. 2014). Accuracy assessment is a crucial part of any classification 
project, as it measures the degree to which the classification agrees with another 
data source that is considered to be accurate, ground-truth data (i.e., “reality”). 

The history of accuracy assessment reveals increasing detail and rigor in the 
analysis, moving from a basic visual appraisal of the derived map (Congalton 
1994; Foody 2002) to the definition of best practices for sampling and response 
designs and the calculation of accuracy metrics (Foody 2002; Stehman 2013; Olof-
sson et al. 2014; Stehman and Foody 2019). The confusion matrix (also called the 
“error matrix”) (Stehman 1997) summarizes key accuracy metrics used to assess 
products derived from remotely sensed data. 

7.2 Practicum 

In Chap. 6, we asked whether the classification results were satisfactory. In remote 
sensing, the quantification of the answer to that question is called accuracy assess-
ment. In the classification context, accuracy measurements are often derived from 
a confusion matrix. 

In a thorough accuracy assessment, we think carefully about the sampling 
design, the response design, and the analysis (Olofsson et al. 2014). Fundamental 
protocols are taken into account to produce scientifically rigorous and transpar-
ent estimates of accuracy and area, which requires robust planning and time. In a 
standard setting, we would calculate the number of samples needed for measuring 
accuracy (sampling design). Here, we will focus mainly on the last step, analy-
sis, by examining the confusion matrix and learning how to calculate the accuracy 
metrics. This will be done by partitioning the existing data into training and testing 
sets.
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7.2.1 Quantifying Classification Accuracy Through a Confusion 
Matrix 

To illustrate some of the basic ideas about classification accuracy, we will revisit 
the data and location of part of Chap. 6, where we tested different classifiers 
and classified a Landsat image of the area around Milan, Italy. We will name 
this dataset ‘data’. This variable is a FeatureCollection with features 
containing the “class” values (Table 7.1) and spectral information of four land 
cover/land use classes: forest, developed, water, and herbaceous (see Figs. 6.8 and 
6.9 for a refresher). We will also define a variable, predictionBands, which 
is a list of bands that will be used for prediction (classification)—the spectral 
information in the data variable. 

The first step is to partition the set of known values into training and testing 
sets in order to have something for the classifier to predict over that it has not been 
shown before (the testing set), mimicking unseen data that the model might see in 
the future. We add a column of random numbers to our FeatureCollection 
using the randomColumn method. Then, we filter the features into about 80% 
for training and 20% for testing using ee.Filter. Copy and paste the code 
below to partition the data and filter features based on the random number. 

// Import the reference dataset. 
var data = ee.FeatureCollection( 

'projects/gee-book/assets/F2-2/milan_data'); 

// Define the prediction bands. 
var predictionBands = [ 

'SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 
'SR_B7','ST_B10','ndvi', 'ndwi' 
]; 

// Split the dataset into training and testing sets. 
var trainingTesting = data.randomColumn(); 
var trainingSet = trainingTesting 

.filter(ee.Filter.lessThan('random', 0.8)); 
var testingSet = trainingTesting 

.filter(ee.Filter.greaterThanOrEquals('random', 0.8));

Table 7.1 Land cover 
classes 

Class Class value 

Forest 0 

Developed 1 

Water 2 

Herbaceous 3 

https://doi.org/10.1007/978-3-031-26588-4_6
https://doi.org/10.1007/978-3-031-26588-4_6
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Table 7.2 Confusion matrix 
for a binary classification 
where the classes are 
“positive” and “negative” 

Actual values 

Positive Negative 

Predicted values Positive TP (true 
positive) 

FP (false 
positive) 

Negative FN (false 
negative) 

TN (true 
negative) 

Note that randomColumn creates pseudorandom numbers in a deterministic 
way. This makes it possible to generate a reproducible pseudorandom sequence by 
defining the seed parameter (Earth Engine uses a seed of 0 by default). In other 
words, given a starting value (i.e., the seed), randomColumn will always provide 
the same sequence of pseudorandom numbers. 

Copy and paste the code below to train a Random Forest classifier with 50 
decision trees using the trainingSet. 

// Train the Random Forest Classifier with the 
trainingSet. 
var RFclassifier = 
ee.Classifier.smileRandomForest(50).train({ 

features: trainingSet, 
classProperty: 'class', 
inputProperties: predictionBands 

}); 

Now, let us discuss what a confusion matrix is. A confusion matrix describes the 
quality of a classification by comparing the predicted values to the actual values. 
A simple example is a confusion matrix for a binary classification into the classes 
“positive” and “negative,” as given in Table 7.2. 

In Table 7.2, the columns represent the actual values (the truth), while the rows 
represent the predictions (the classification). “True positive” (TP) and “true nega-
tive” (TN) mean that the classification of a pixel matches the truth (e.g., a water 
pixel correctly classified as water). “False positive” (FP) and “false negative” (FN) 
mean that the classification of a pixel does not match the truth (e.g., a non-water 
pixel incorrectly classified as water).

• TP: classified as positive, and the actual class is positive
• FP: classified as positive, and the actual class is negative
• FN: classified as negative, and the actual class is positive
• TN: classified as negative, and the actual class is negative. 

We can extract some statistical information from a confusion matrix. Let us look 
at an example to make this clearer. Table 7.3 is a confusion matrix for a sample
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Table 7.3 Confusion matrix 
for a binary classification 
where the classes are 
“positive” (forest) and 
“negative” (non-forest) 

Actual values 

Positive Negative 

Predicted values Positive 307 18 

Negative 14 661 

of 1000 pixels for a classifier that identifies whether a pixel is forest (positive) or 
non-forest (negative), a binary classification. 

In this case, the classifier correctly identified 307 forest pixels, wrongly classi-
fied 18 non-forest pixels as forest, correctly identified 661 non-forest pixels, and 
wrongly classified 14 forest pixels as non-forest. Therefore, the classifier was cor-
rect 968 times and wrong 32 times. Let’s calculate the main accuracy metrics for 
this example. 

The overall accuracy tells us what proportion of the reference data was classi-
fied correctly and is calculated as the total number of correctly identified pixels 
divided by the total number of pixels in the sample. 

Overall Accuracy = (TP + TN)/Sample size 

In this case, the overall accuracy is 96.8%, calculated using (307 + 661)/1000. 
Two other important accuracy metrics are the producer’s accuracy and the 

user’s accuracy, also referred to as the “recall” and the “precision,” respectively. 
Importantly, these metrics quantify aspects of per-class accuracy. 

The producer’s accuracy is the accuracy of the map from the point of view 
of the map maker (the “producer”) and is calculated as the number of correctly 
identified pixels of a given class divided by the total number of pixels actually in 
that class. The producer’s accuracy for a given class tells us the proportion of the 
pixels in that class that were classified correctly. 

Producer’s accuracy of the Forest(Positive)class = TP/(TP + FN) 

Producer’s accuracy of the Non - Forest(Negative)class = TN/(TN + FP) 

In this case, the producer’s accuracy for the forest class is 95.6%, which is 
calculated using 307/(307 + 14). The producer’s accuracy for the non-forest class 
is 97.3%, which is calculated from 661/(661 + 18). 

The user’s accuracy (also called the “consumer’s accuracy”) is the accuracy of 
the map from the point of view of a map user and is calculated as the number of 
correctly identified pixels of a given class divided by the total number of pixels 
claimed to be in that class. The user’s accuracy for a given class tells us the 
proportion of the pixels identified on the map as being in that class that are actually 
in that class on the ground. 

User’s accuracy of the Forest (Positive)class = TP/(TP + FP)
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User’s accuracy of the Non - Forest(Negative)class = TN/(TN + FN) 

In this case, the user’s accuracy for the forest class is 94.5%, which is calculated 
using 307/(307+18). The user’s accuracy for the non-forest class is 97.9%, which 
is calculated from 661/(661 + 14). 

Figure 7.1 helps visualize the rows and columns that are used to calculate each 
accuracy. 

It is very common to talk about two types of error when addressing remote 
sensing classification accuracy: omission errors and commission errors. Omission 
errors refer to the reference pixels that were left out of (omitted from) the correct 
class in the classified map. In a two-class system, an error of omission in one class 
will be counted as an error of commission in another class. Omission errors are 
complementary to the producer’s accuracy. 

Omission error = 100% − Producer’s accuracy

Fig. 7.1 Confusion matrix for a binary classification where the classes are “positive” (forest) and 
“negative” (non-forest), with accuracy metrics 
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Commission errors refer to the class pixels that were erroneously classified in 
the map and are complementary to the user’s accuracy. 

Commission error = 100% − User’s accuracy 

Finally, another commonly used accuracy metric is the kappa coefficient, which 
evaluates how well the classification performed as compared to random. The value 
of the kappa coefficient can range from − 1 to 1: A negative value indicates that the 
classification is worse than a random assignment of categories would have been; a 
value of 0 indicates that the classification is no better or worse than random; and 
a positive value indicates that the classification is better than random. 

Kappa Coefficient = observed accuracy − chance agreement 

1 − chance agreement 

The chance agreement is calculated as the sum of the product of row and 
column totals for each class, and the observed accuracy is the overall accuracy. 
Therefore, for our example, the kappa coefficient is 0.927. 

Kappa Coefficient = 0.968 − [(0.321x0.325) + (0.679x0.675)] 
1 − [(0.321x0.325) + (0.679x0.675)] = 0.927 

Now, let’s go back to the script. In Earth Engine, there are API calls for these 
operations. Note that our confusion matrix will be a 4×4 table, since we have 
four different classes. 

Copy and paste the code below to classify the testingSet and get a 
confusion matrix using the method errorMatrix. Note that the classifier auto-
matically adds a property called “classification,” which is compared to the “class” 
property of the reference dataset. 

// Now, to test the classification (verify model's accuracy), 
// we classify the testingSet and get a confusion matrix. 
var confusionMatrix = testingSet.classify(RFclassifier) 

.errorMatrix({ 
actual: 'class', 
predicted: 'classification' 

});
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Copy and paste the code below to print the confusion matrix and accuracy 
metrics. Expand the confusion matrix object to inspect it. The entries represent 
the number of pixels. Items on the diagonal represent correct classification. Items 
off the diagonal are misclassifications, where the class in row i is classified as 
column j (values from 0 to 3 correspond to our class codes: forest, developed, 
water, and herbaceous, respectively). Also expand the producer’s accuracy, user’s 
accuracy (consumer’s accuracy), and kappa coefficient objects to inspect them. 

// Print the results. 
print('Confusion matrix:', confusionMatrix); 
print('Overall Accuracy:', confusionMatrix.accuracy()); 
print('Producers Accuracy:', 
confusionMatrix.producersAccuracy()); 
print('Consumers Accuracy:', 
confusionMatrix.consumersAccuracy()); 
print('Kappa:', confusionMatrix.kappa()); 

How is the classification accuracy? Which classes have higher accuracy com-
pared to the others? Can you think of any reasons why? (Hint: Check where the 
errors in these classes are in the confusion matrix—i.e., being committed and 
omitted.) 

Code Checkpoint F22a. The book’s repository contains a script that shows what 
your code should look like at this point. 

7.2.2 Hyperparameter Tuning 

We can also assess how the number of trees in the Random Forest classifier affects 
the classification accuracy. Copy and paste the code below to create a function that 
charts the overall accuracy versus the number of trees used. The code tests from 5 
to 100 trees at increments of 5, producing Fig. 7.2. (Do not worry too much about 
fully understanding each item at this stage of your learning. If you want to find 
out how these operations work, you can see more in Chaps. 12 and 13).
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// Hyperparameter tuning. 
var numTrees = ee.List.sequence(5, 100, 5); 

var accuracies = numTrees.map(function(t) { 
var classifier = ee.Classifier.smileRandomForest(t) 

.train({ 
features: trainingSet, 
classProperty: 'class', 
inputProperties: predictionBands 

}); 
return testingSet 

.classify(classifier) 

.errorMatrix('class', 'classification') 

.accuracy(); 
}); 

print(ui.Chart.array.values({ 
array: ee.Array(accuracies), 
axis: 0, 
xLabels: numTrees 

}).setOptions({ 
hAxis: { 

title: 'Number of trees' 
}, 
vAxis: { 

title: 'Accuracy' 
}, 
title: 'Accuracy per number of trees' 

})); 

Fig. 7.2 Chart showing accuracy per number of random forest trees
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Code Checkpoint F22b. The book’s repository contains a script that shows what 
your code should look like at this point. 

7.2.3 Spatial Autocorrelation 

We might also want to ensure that the samples from the training set are uncor-
related with the samples from the testing set. This might result from the spatial 
autocorrelation of the phenomenon being predicted. One way to exclude samples 
that might be correlated in this manner is to remove samples that are within some 
distance to any other sample. In Earth Engine, this can be accomplished with a 
spatial join. The following Code Checkpoint replicates Sect. 7.2.1 but with a spa-
tial join that excludes training points that are less than 1000 m distant from testing 
points. 

Code Checkpoint F22c. The book’s repository contains a script that shows what 
your code should look like at this point. 

7.3 Synthesis 

Assignment 1. Based on Sect. 7.2.1, test other classifiers (e.g., a Classification and 
Regression Tree or Support Vector Machine classifier) and compare the accuracy 
results with the Random Forest results. Which model performs better? 

Assignment 2. Try setting a different seed in the randomColumn method and 
see how that affects the accuracy results. You can also change the split between 
the training and testing sets (e.g., 70/30 or 60/40). 

7.4 Conclusion 

You should now understand how to calculate how well your classifier is performing 
on the data used to build the model. This is a useful way to understand how a 
classifier is performing, because it can help indicate which classes are performing 
better than others. A poorly modeled class can sometimes be improved by, for 
example, collecting more training points for that class. 

Nevertheless, a model may work well on training data but work poorly in loca-
tions randomly chosen in the study area. To understand a model’s behavior on 
testing data, analysts employ protocols required to produce scientifically rigorous 
and transparent estimates of the accuracy and area of each class in the study region. 
We will not explore those practices in this chapter, but if you are interested, there 
are tutorials and papers available online that can guide you through the process. 
Links to some of those tutorials can be found in the “For Further Reading” section 
of this book.
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Part III 

Advanced Image Processing 

Once you understand the basics of processing images in Earth Engine, this part will 
present some of the more advanced processing tools available for treating individual 
images. These include creating regressions among image bands, transforming images 
with pixel-based and neighborhood-based techniques, and grouping individual pixels 
into objects that can then be classified.
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Overview 
This chapter introduces the use of regression to interpret imagery. Regression is one 
of the fundamental tools you can use to move from viewing imagery to analyzing 
it. In the present context, regression means predicting a numeric variable for a pixel 
instead of a categorical variable, such as a class label. 

Learning Outcomes

• Learning about Earth Engine reducers.
• Understanding the difference between regression and classification.
• Using reducers to implement regression between image bands.
• Evaluating regression model performance visually and numerically.
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Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, and create masks 

(Part II).
• Understand the characteristics of Landsat data and MODIS data (Chaps. 3, and 

4).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Interpret variability of the NDVI, the Normalized Difference Vegetation Index 

(Chap. 5).
• Have an understanding of regression. 

8.1 Introduction to Theory 

If you have already used regression in other contexts, this approach will be familiar 
to you. Regression in remote sensing uses the same basic concepts as regression 
in other contexts. We determine the strength and characteristics of the relation-
ship between the dependent variable and one or more independent variables to 
better understand or forecast the dependent variable. In a remote-sensing context, 
these dependent variables might be the likelihood of a natural disaster or a species 
occurrence, while independent variables might be bands, indices, or other raster 
datasets like tree height or soil type. 

Importantly, we use regression for numeric dependent variables. Classification, 
which is covered in Chap. 6, is used for categorical dependent variables, such as 
land cover or land use. 

Regression in remote sensing is a very powerful tool that can be used to answer 
many important questions across large areas. For example, in China, researchers 
used a random forest regression algorithm to estimate above-ground wheat biomass 
based on vegetation indices (Zhou et al. 2016). In the United States, researchers 
used regression to estimate bird species richness based on lidar measurements of 
forest canopy (Goetz et al. 2007). In Kenya, researchers estimated tree species 
diversity using vegetation indices including the tasseled cap transformation and 
simple and multivariate regression analysis (Maeda et al. 2014). 

8.2 Practicum 

In general, regression in remote sensing follows a standard set of steps. 

1. Data about known instances of the dependent variable are collected. This might 
be known landslide areas, known areas of species occurrence, etc.
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2. The independent variables are defined and selected. 
3. A regression is run to generate an equation that describes the relationship 

between dependent and independent variables. 
4. Optional: Using this equation and the independent variable layers, you create a 

map of the dependent variable over the entire area. 

While this set of steps remains consistent across regressions, there are multiple 
types of regression functions to choose from, based on the properties of your 
dependent and independent variables, and how many independent variables you 
have. The choice of regression type in remote sensing follows the same logic as in 
other contexts. There are many other excellent online resources and textbooks to 
help you better understand regression and make your choice of regression method. 
Here, we will focus on running regression in Google Earth Engine and some of 
the different options available to you. 

8.2.1 Reducers 

A key goal of working with remote-sensing data is summarizing over space, time, 
and band information to find relationships. Earth Engine provides a large set of 
summary techniques for remote-sensing data, which fall under the collective term 
reducers. 

An example of a reducer of a set of numbers is the median, which finds the 
middle number in a set, reducing the complexity of the large set to a represen-
tative estimate. That reducing operation is implemented in Earth Engine with 
ee.Reducer.median., or for this particularly common operation, with the 
shorthand operation median. 

Reducers can operate on a pixel-by-pixel basis or with awareness of a pixel’s 
surroundings. An example of a reducer of a spatial object is computing the median 
elevation in a neighborhood, which can be implemented in Earth Engine by embed-
ding the call to ee.Reducer.median inside a reduceRegion function. The 
reduceRegion call directs Earth Engine to analyze pixels that are grouped 
across an area, allowing an area like a city block or park boundary to be con-
sidered as a unified unit of interest. Reducers can be used to summarize many 
forms of data in Earth Engine, including image collections, images, lists, and fea-
ture collections. They are encountered throughout the rest of this book in a wide 
variety of settings. 

Reducers can be relatively simple, like the median, or more complex. Imagine a 
1000-person sample of height and weight of individuals: a linear regression would 
reduce the 2000 assembled values to just two: the slope and the intercept. Of 
course the relationship might be weak or strong in a given set; the bigger idea is 
that many operations of simplifying and summarizing large amounts of data can 
be conceptualized using this idea and terminology of reducers.
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In this chapter, we will illustrate reducers through their use in regressions of 
bands in a single image and revisit regressions using analogous operations on time 
series in other parts of the book. 

8.3 Section 1: Linear Fit 

The simplest regression available in Earth Engine is implemented through the 
reducer linearFit. This function is a least squares estimate of a linear function 
with one independent variable and one dependent variable. This regression equa-
tion is written Y = α + β X+ ε, where α is the intercept of the line and β is 
the slope, Y is the dependent variable, X is the independent variable, and ε is the 
error. 

Suppose the goal is to estimate percent tree cover in each Landsat pixel, based 
on known information about Turin, Italy. Below, we will define a geometry that is 
a rectangle around Turin and name it Turin. 

// Define a Turin polygon. 
var Turin = ee.Geometry.Polygon( 

[ 
[ 

[7.455553918110218, 45.258245019259036], 
[7.455553918110218, 44.71237367431335], 
[8.573412804828967, 44.71237367431335], 
[8.573412804828967, 45.258245019259036] 

] 
], null, false); 

// Center on Turin 
Map.centerObject(Turin, 9); 

We need to access data to use as our dependent variable. For this example, 
we will use the “MOD44B.006 Terra Vegetation Continuous Fields Yearly Global 
250 m” dataset. Add the code below to your script. 

var mod44b = ee.ImageCollection('MODIS/006/MOD44B');



8 Interpreting an Image: Regression 153

Note: If the path to that ImageCollection were to change, you would get 
an error when trying to access it. If this happens, you can search for “vegetation 
continuous MODIS” to find it. Then, you could import it and change its name to 
mod44b. This has the same effect as the one line above. 

Next, we will access that part of the ImageCollection that represents 
the global percent tree cover at 250 m resolution from 2020. We’ll access the 
image from that time period using the filterDate command, convert that sin-
gle image to an Image type using the first command, clip it to Turin, and 
select the appropriate band. We then print information about the new image 
percentTree2020 to the Console. 

///// 
// Start Linear Fit 
///// 

// Put together the dependent variable by filtering the 
// ImageCollection to just the 2020 image near Turin and 
// selecting the percent tree cover band. 
var percentTree2020 = mod44b 

.filterDate('2020-01-01', '2021-01-01') 

.first() 

.clip(Turin) 

.select('Percent_Tree_Cover'); 

// You can print information to the console for inspection. 
print('2020 Image', percentTree2020); 

Map.addLayer(percentTree2020, { 
max: 100 

}, 'Percent Tree Cover'); 

Now we need to access data to use as our independent variables. For this exam-
ple, we will use the “USGS Landsat 8 Collection 2 Tier 1 and Real-Time Data Raw 
Scenes.” Add the code below to your script. 

var landsat8_raw = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_RT');
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Note: If the path to that ImageCollection changes, you will get an error 
when trying to access it. If this happens, you can search for “Landsat 8 raw” to 
find it. Then, import it and change its name to landsat8_raw. 

We also need to filter this collection by date and location. We will filter the 
collection to a clear (cloud-free) date in 2020 and then filter by location. 

// Put together the independent variable. 
var landsat8filtered = landsat8_raw 

.filterBounds(Turin.centroid({ 
'maxError': 1 

})) 
.filterDate('2020-04-01', '2020-4-30') 
.first(); 

print('Landsat8 filtered', landsat8filtered); 

// Display the L8 image. 
var visParams = { 

bands: ['B4', 'B3', 'B2'], 
max: 16000 

}; 
Map.addLayer(landsat8filtered, visParams, 'Landsat 8 
Image'); 

Using the centroid function will select images that intersect with the center of 
our Turin geometry, instead of anywhere in the geometry. 

Note that we are using a single image for the purposes of this exercise, but in 
practice you will almost always need to filter an image collection to the boundaries 
of your area of interest and then create a composite. In that case, you would use 
a compositing Earth Engine algorithm to get a cloud-free composite of Landsat 
imagery. If you’re interested in learning more about working with clouds, please 
see Chap. 15. 

Use the bands of the Landsat image to calculate NDVI, which we will use as 
the independent variable: 

// Calculate NDVI which will be the independent variable. 
var ndvi = landsat8filtered.normalizedDifference(['B5', 
'B4']); 

Now we begin to assemble our data in Earth Engine into the correct format. 
First, use the addBands function to create an image with two bands: first, the
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image ndvi, which will act as the independent variable; and second, the image 
percentTree2020 created earlier. 

// Create the training image. 
var trainingImage = ndvi.addBands(percentTree2020); 
print('training image for linear fit', trainingImage); 

Now we can set up and run the regression, using the linear fit reducer over our 
geometry and print the results. Since building the regression model requires assem-
bling points from around the image for consideration, it is implemented using 
reduceRegion rather than reduce (see also Part V). We need to include the 
scale variable (here 30 m, which is the resolution of Landsat). 

// Independent variable first, dependent variable second. 
// You need to include the scale variable. 
var linearFit = trainingImage.reduceRegion({ 

reducer: ee.Reducer.linearFit(), 
geometry: Turin, 
scale: 30, 
bestEffort: true 

}); 

// Inspect the results. 
print('OLS estimates:', linearFit); 
print('y-intercept:', linearFit.get('offset')); 
print('Slope:', linearFit.get('scale')); 

Note the parameter bestEffort in the request to 
ee.Reducer.linearFit. What does it mean? If you had tried to run 
this without the bestEffort: true argument, you would most likely get an 
error: “Image.reduceRegion: Too many pixels in the region.” This means that the 
number of pixels involved has surpassed Earth Engine’s default maxPixels limit 
of 10 million. The reason is the complexity of the regression we are requesting. If 
you’ve ever done a regression using, say, 100 points, you may have seen or made 
a scatter plot with the 100 points on it; now imagine a scatter plot with more 
than 10 million points to envision the scale of what is being requested. Here, the 
limitation is not Earth Engine’s computing capacity, but rather it is more like a 
notification that the code is calling for an especially large computation, and that 
a novice user may not be entirely intending to do something of that complexity. 
The error text points to several ways to resolve this issue. First, we could increase 
maxPixels. Second, we could aggregate at a lower resolution (e.g., increase 
scale from 30 to 50 m). Third, we could set the bestEffort parameter to 
true as we do here, which directs the reducer to use the highest resolution for
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scale without going above maxPixels. Fourth, we could reduce the area for 
the region (that is, make the study area around Turin smaller). Finally, we could 
randomly sample the image stack and use that sample for the regression. 

Finally, let’s apply the regression to the whole NDVI area, which is larger than 
our Turin boundary polygon. The calculation is done with an expression, which 
will be explained further in Chap. 9. 

// Create a prediction based on the linearFit model. 
var predictedTree = ndvi.expression( 

'intercept + slope * ndvi', { 
'ndvi': ndvi.select('nd'), 
'intercept': ee.Number(linearFit.get('offset')), 
'slope': ee.Number(linearFit.get('scale')) 

}); 

print('predictedTree', predictedTree); 

// Display the results. 
Map.addLayer(predictedTree, { 

max: 100 
}, 'Predicted Percent Tree Cover'); 

Your estimates based on NDVI are a higher resolution than the MODIS data 
because Landsat is 30 m resolution (Fig. 8.1). Notice where your estimates agree 
with the MODIS data and where they disagree, if anywhere. In particular, look 
at areas of agriculture. Since NDVI doesn’t distinguish between trees and other 
vegetation, our model will estimate that agricultural areas have higher tree cover 
percentages than the MODIS data (you can use the Inspector tool to verify this).

Code Checkpoint F30a. The book’s repository contains a script that shows what 
your code should look like at this point. 

8.3.1 Section 2: Linear Regression 

The linear regression reducer allows us to increase the number of dependent 
and independent variables. Let’s revisit our model of percent cover and try to 
improve on our linear fit attempt by using the linear regression reducer with more 
independent variables. 

We will use our percentTree dependent variable.
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Fig. 8.1 Estimates of the same area based on MODIS (a) and NDVI (b)
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For our independent variable, let’s revisit our Landsat 8 image collection. 
Instead of using only NDVI, let’s use multiple bands. Define these bands to select: 

////// 
// Start Linear Regression 
////// 

// Assemble the independent variables. 
var predictionBands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 
'B7','B10', 'B11' 
]; 

Now let’s assemble the data for the regression. For the constant term needed by 
the linear regression, we use the ee.Image function to create an image with the 
value (1) at every pixel. We then stack this constant with the Landsat prediction 
bands and the dependent variable (percent tree cover). 

// Create the training image stack for linear regression. 
var trainingImageLR = ee.Image(1) 

.addBands(landsat8filtered.select(predictionBands)) 

.addBands(percentTree2020); 

print('Linear Regression training image:', 
trainingImageLR); 

Inspect your training image to make sure it has multiple layers: a constant term, 
your independent variables (the Landsat bands), and your dependent variable. 

Now we’ll implement the ee.Reducer.linearRegression reducer 
function to run our linear regression. The reducer needs to know how many X, 
or independent variables, and the number of Y, or dependent variables, you have. 
It expects your independent variables to be listed first. Notice that we have used 
reduceRegion rather than just reduce. This is because we are reducing over 
the Turin geometry, meaning that the reducer’s activity is across multiple pix-
els comprising an area, rather than “downward” through a set of bands or an 
ImageCollection. As mentioned earlier, you will likely get an error that 
there are too many pixels included in your regression if you do not use the 
bestEffort variable.
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// Compute ordinary least squares regression coefficients 
using 
// the linearRegression reducer. 
var linearRegression = trainingImageLR.reduceRegion({ 

reducer: ee.Reducer.linearRegression({ 
numX: 10, 
numY: 1 

}), 
geometry: Turin, 
scale: 30, 
bestEffort: true 

}); 

There is also a robust linear regression reducer 
(ee.Reducer.robustLinearRegression). This linear regression 
approach uses regression residuals to de-weight outliers in the data following 
(O’Leary 1990). 

Let’s inspect the results. We’ll focus on the results of 
linearRegression, but the same applies to inspecting the results of the 
robustLinearRegression reducer. 

// Inspect the results. 
print('Linear regression results:', linearRegression); 

The output is an object with two properties. First is a list of coefficients (in the 
order specified by the inputs list) and second is the root-mean-square residual. 

To apply the regression coefficients to make a prediction over the entire area, 
we will first turn the output coefficients into an image, then perform the requisite 
math. 

// Extract the coefficients as a list. 
var coefficients = 
ee.Array(linearRegression.get('coefficients')) 

.project([0]) 

.toList(); 

print('Coefficients', coefficients); 

This code extracts the coefficients from our linear regression and converts them 
to a list. When we first extract the coefficients, they are in a matrix (essentially 10 
lists of 1 coefficient). We use project to remove one of the dimensions from 
the matrix so that they are in the correct data format for subsequent steps.
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Now we will create the predicted tree cover based on the linear regression. 
First, we create an image stack starting with the constant (1) and use addBands 
to add the prediction bands. Next, we multiply each of the coefficients by their 
respective X (independent variable band) using multiply and then sum all of 
these using ee.Reducer.sum in order to create the estimate of our dependent 
variable. Note that we are using the rename function to rename the band (if 
you don’t rename the band, it will have the default name “sum” from the reducer 
function). 

// Create the predicted tree cover based on linear 
regression. 
var predictedTreeLR = ee.Image(1) 

.addBands(landsat8filtered.select(predictionBands)) 

.multiply(ee.Image.constant(coefficients)) 

.reduce(ee.Reducer.sum()) 

.rename('predictedTreeLR') 

.clip(landsat8filtered.geometry()); 

Map.addLayer(predictedTreeLR, { 
min: 0, 
max: 100 

}, 'LR prediction'); 

Carefully inspect this result using the satellite imagery provided by Google and 
the input Landsat data (Fig. 8.2). Does the model predict high forest cover in 
forested areas? Does it predict low forest cover in unforested areas, such as urban 
areas and agricultural areas? Note where the model is making mistakes. Are there 
any patterns? For example, look at the mountainous slopes. One side has a high 
value and the other side has a low value for predicted forest cover. However, it 
appears that neither side of the mountain has vegetation above the treeline. This 
suggests a fault with the model having to do with the aspect of the terrain (the 
compass direction in which the terrain surface faces) and some of the bands used.

When you encounter model performance issues that you find unsatisfactory, you 
may consider adding or subtracting independent variables, testing other regression 
functions, collecting more training data, or all of the above. 

Code Checkpoint F30b. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 8.2 Examining the results of the linear regression model. Note that the two sides of this 
mountain have different forest prediction values, despite being uniformly forested. This suggests 
there might be a fault with the model having to do with the aspect

8.3.2 Section 3: Nonlinear Regression 

Earth Engine also allows the user to perform nonlinear regression. Nonlinear 
regression allows for nonlinear relationships between the independent and depen-
dent variables. Unlike linear regression, which is implemented via reducers, this 
nonlinear regression function is implemented by the classifier library. The clas-
sifier library also includes supervised and unsupervised classification approaches 
that were discussed in Chap. 6 as well as some of the tools used for accuracy 
assessment in Chap. 7. 

For example, a classification and regression tree (CART; see Breiman et al. 
2017) is a machine learning algorithm that can learn nonlinear patterns in your 
data. Let’s reuse our dependent variables and independent variables (Landsat 
prediction bands) from above to train the CART in regression mode. 

For CART we need to have our input data as a feature collection. For more 
on feature collections, see the chapters in Part V. Here, we first need to create a 
training data set based on the independent and dependent variables we used for 
the linear regression section. We will not need the constant term. 

///// 
// Start Non-linear Regression 
///// 
// Create the training data stack. 
var trainingImageCART = 
ee.Image(landsat8filtered.select(predictionBands)) 

.addBands(percentTree2020);
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Now sample the image stack to create the feature collection training data 
needed. Note that we could also have used this approach in previous regressions 
instead of the bestEffort approach we did use. 

// Sample the training data stack. 
var trainingData = trainingImageCART.sample({ 

region: Turin, 
scale: 30, 
numPixels: 1500, 
seed: 5 

}); 

// Examine the CART training data. 
print('CART training data', trainingData); 

Now run the regression. The CART regression function must first be trained 
using the trainingData. For the train function, we need to provide 
the features to use to train (trainingData), the name of the depen-
dent variable (classProperty), and the name of the independent variables 
(inputProperties). Remember that you can find these band names if needed 
by inspecting the trainingData item. 

// Run the CART regression. 
var cartRegression = ee.Classifier.smileCart() 

.setOutputMode('REGRESSION') 

.train({ 
features: trainingData, 
classProperty: 'Percent_Tree_Cover', 
inputProperties: predictionBands 

}); 

Now we can use this object to make predictions over the input imagery and 
display the result:
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// Create a prediction of tree cover based on the CART 
regression. 
var cartRegressionImage = 
landsat8filtered.select(predictionBands) 

.classify(cartRegression, 'cartRegression'); 

Map.addLayer(cartRegressionImage, { 
min: 0, 
max: 100 

}, 'CART regression'); 

Turn on the satellite imagery from Google and examine the output of the CART 
regression using this imagery and the Landsat 8 imagery. 

8.3.3 Section 4: Assessing Regression Performance Through 
RMSE 

A standard measure of performance for regression models is the root-mean-square 
error (RMSE), or the correlation between known and predicted values. The RMSE 
is calculated as follows: 

RMSE =
/∑ (Predictedi − Actuali )2 

n 
(8.1) 

To assess the performance, we will create a sample from the percent tree cover 
layer and from each regression layer (the predictions from the linear fit, the linear 
regression, and CART regression). First, using the ee.Image.cat function, we 
will concatenate all of the layers into one single image where each band of this 
image contains the percent tree cover and the predicted values from the different 
regressions. We use the rename function (Chap. 2) to rename the bands to mean-
ingful names (tree cover percentage and each model). Then we will extract 500 
sample points (the “n” from the equation above) from the single image using the 
sample function to calculate the RMSE for each regression model. We print the 
first feature from the sample collection to visualize its properties—values from the 
percent tree cover and regression models at that point (Fig. 8.3), as an example.
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Fig. 8.3 First point from the sample FeatureCollection showing the actual tree cover percentage 
and the regression predictions. These values may differ from what you see 

///// 
// Calculating RMSE to assess model performance 
///// 

// Concatenate percent tree cover image and all 
predictions. 
var concat = ee.Image.cat(percentTree2020, 

predictedTree, 
predictedTreeLR, 
cartRegressionImage) 

.rename([ 
'TCpercent', 
'LFprediction', 
'LRprediction', 
'CARTprediction' 

]); 

// Sample pixels 
var sample = concat.sample({ 

region: Turin, 
scale: 30, 
numPixels: 500, 
seed: 5 

}); 

print('First feature in sample', sample.first());
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In Earth Engine, the RMSE can be calculated by steps. We first define a function 
to calculate the squared difference between the predicted value and the actual 
value. We do this for each regression result. 

// First step: This function computes the squared 
difference between 
// the predicted percent tree cover and the known percent 
tree cover 
var calculateDiff = function(feature) { 

var TCpercent = ee.Number(feature.get('TCpercent')); 
var diffLFsq = ee.Number(feature.get('LFprediction')) 

.subtract(TCpercent).pow(2); 
var diffLRsq = ee.Number(feature.get('LRprediction')) 

.subtract(TCpercent).pow(2); 
var diffCARTsq = 

ee.Number(feature.get('CARTprediction')) 
.subtract(TCpercent).pow(2); 

// Return the feature with the squared difference set 
to a 'diff' property. 

return feature.set({ 
'diffLFsq': diffLFsq, 
'diffLRsq': diffLRsq, 
'diffCARTsq': diffCARTsq 

}); 
}; 

Now, we can apply this function to our sample and use the reduceColumns 
function to take the mean value of the squared differences and then calculate the 
square root of the mean value.
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// Second step: Calculate RMSE for population of 
 pairs. 
var rmse = ee.List([ee.Number( 

// Map the difference function over the collection. 
sample.map(calculateDiff) 
// Reduce to get the mean squared difference. 
.reduceColumns({ 

reducer: ee.Reducer.mean().repeat(3), 
selectors: ['diffLFsq', 'diffLRsq', 

'diffCARTsq' 
] 

}).get('mean') 
// Flatten the list of lists. 

)]).flatten().map(function(i) { 
// Take the square root of the mean square differences. 
return ee.Number(i).sqrt(); 

}); 

// Print the result. 
print('RMSE', rmse); 

difference 

Note the following (do not worry too much about fully understanding each item 
at this stage of your learning; just keep in mind that this code block calculates the 
RMSE value):

• We start by casting an ee.List since we are calculating three different val-
ues—which is also the reason to cast ee.Number at the beginning. Also, it is 
not possible to map a function to a ee.Number object—another reason why 
we need the ee.List.

• Since we have three predicted values we used repeat(3) for the reducer 
parameter of the reduceColumns function—i.e., we want the mean value for 
each of the selectors (the squared differences).

• The direct output of reduceColumns is a dictionary, so we need to use 
get(’mean’) to get these specific key values.

• At this point, we have a “list of lists,” so we use flatten to dissolve it into 
one list

• Finally, we map the function to calculate the square root of each mean value 
for the three results.

• The RMSE values are in the order of the selectors; thus, the first value is 
the linear fit RMSE, followed by the linear regression RMSE, and finally the 
CART RMSE. 

Inspect the RMSE values on the Console. Which regression performed best? The 
lower the RMSE, the better the result.
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Code Checkpoint F30c. The book’s repository contains a script that shows what 
your code should look like at this point. 

8.4 Synthesis 

Assignment 1. Examine the CART output you just created. How does the non-
linear CART output compare with the linear regression we ran previously? Use 
the inspect tool to check areas of known forest and non-forest (e.g., agricultural 
and urban areas). Do the forested areas have a high predicted percent tree cover 
(will display as white)? Do the non-forested areas have a low predicted percent 
tree cover (will display as black)? Do the alpine areas have low predicted percent 
tree cover, or do they have the high/low pattern based on aspect seen in the linear 
regression? 

Assignment 2. Revisit our percent tree cover regression examples. In these, we 
used a number of bands from Landsat 8, but there are other indices, transforms, 
and datasets that we could use for our independent variables. 

For this assignment, work to improve the performance of this regression. 
Consider adding or subtracting independent variables, testing other regression 
functions, using more training data (a larger geometry for Turin), or all of the 
above. Don’t forget to document each of the steps you take. What model settings 
and inputs are you using for each model run? 

To improve the model, think about what you know about tree canopies and tree 
canopy cover. What spectral signature do the deciduous trees of this region have? 
What indices are useful for detecting trees? How do you distinguish trees from 
other vegetation? If the trees in this region are deciduous, what time frame would 
be best to use for the Landsat 8 imagery? Consider seasonality—how do these 
forests look in summer versus winter? 

Practice your visual assessment skills. Ask critical questions about the results 
of your model iterations. Why do you think one model is better than another? 

8.5 Conclusion 

Regression is a fundamental tool that you can use to analyze remote-sensing 
imagery. Regression specifically allows you to analyze and predict numeric depen-
dent variables, while classification allows for the analysis and prediction of 
categorical variables (see Chap. 6). Regression analysis in Earth Engine is flexible 
and implemented via reducers (linear regression approaches) and via classifiers 
(nonlinear regression approaches). Other forms of regression will be discussed in 
Chap. 18 and the chapters that follow.
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9Advanced Pixel-Based Image 
Transformations 

Karen Dyson , Andréa Puzzi Nicolau , Nicholas Clinton , 
and David Saah 

Overview 

Using bands and indices is often not sufficient for obtaining high-quality image 
classifications. This chapter introduces the idea of more complex pixel-based band 
manipulations that can extract more information for analysis, building on what was 
presented in Part I and Part II. We will first learn how to manipulate images with 
expressions and then move on to more complex linear transformations that leverage 
matrix algebra. 

Learning Outcomes 

• Understanding what linear transformations are and why pixel-based image 
transformations are useful.
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• Learning how to use expressions for band manipulation. 
• Being introduced to some of the most common types of linear transformations. 
• Using arrays and functions in Earth Engine to apply linear transformations to 

images. 

Assumes you know how to 

• Import images and image collections, filter, and visualize (Part I). 
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II). 
• Use drawing tools to create points, lines, and polygons (Chap. 6). 
• Understand basic operations of matrices. 

9.1 Introduction to Theory 

Image transformations are essentially complex calculations among image bands 
that can leverage matrix algebra and more advanced mathematics. In return for 
their greater complexity, they can provide larger amounts of information in a 
few variables, allowing for better classification (Chap. 6), time-series analysis 
(Chaps. 17 through 21), and change detection (Chap. 16) results. They are particu-
larly useful for difficult use cases, such as classifying images with heavy shadow or 
high values of greenness and distinguishing faint signals from forest degradation. 

In this chapter, we explore linear transformations, which are linear combina-
tions of input pixel values. This approach is pixel-based—that is, each pixel in the 
remote sensing image is treated separately. 

We introduce here some of the best-established linear transformations used in 
remote sensing (e.g., tasseled cap transformations) along with some of the newest 
(e.g., spectral unmixing). Researchers are continuing to develop new applications 
of these methods. For example, when used together, spectral unmixing and time-
series analysis (Chaps. 17 through 21.) are effective at detecting and monitoring 
tropical forest degradation (Bullock et al. 2020, Souza et al, 2013). As forest degra-
dation is notoriously hard to monitor and also responsible for significant carbon 
emissions, this represents an important step forward. Similarly, using tasseled cap 
transformations alongside classification approaches allowed researchers to accu-
rately map cropping patterns with high spatial and thematic resolution (Rufin et al. 
2019).



9 Advanced Pixel-Based Image Transformations 171

9.2 Practicum 

In this practicum, we will first learn how to manipulate images with expressions 
and then move on to more complex linear transformations that leverage matrix 
algebra. In Earth Engine, these types of linear transformations are applied by treat-
ing pixels as arrays of band values. An array in Earth Engine is a list of lists, and 
by using arrays, you can define matrices (i.e., two-dimensional arrays), which are 
the basis of linear transformations. Earth Engine uses the word “axis” to refer to 
what are commonly called the rows (axis 0) and columns (axis 1) of a matrix. 

9.2.1 Section 1: Manipulating Images with Expressions 

Arithmetic Calculation of EVI 
The Enhanced Vegetation Index (EVI) is designed to minimize saturation and other 
issues with NDVI, an index discussed in detail in Chap. 5 (Huete et al. 2002). In 
areas of high chlorophyll (e.g., rainforests), EVI does not saturate (i.e., reach max-
imum value) the same way that NDVI does, making it easier to examine variation 
in the vegetation in these regions. The generalized equation for calculating EVI is 

EVI = G × (NIR − Red) 
(NIR + C1 × RED − C2 × Blue + L) 

(9.1) 

where G, C1, C2, and L are constants. You do not need to memorize these values, 
as they have been determined by other researchers and are available online for you 
to look up. For Sentinel-2, the equation is 

EVI = 2.5 × (B8 − B4) 
(B8 + 6 × B4 − 7.5 × B2 + 1) 

(9.2) 

Using the basic arithmetic, we learned previously in 5, let us calculate and then 
display the EVI for the Sentinel-2 image. We will need to extract the bands and 
then divide by 10,000 to account for the scaling in the dataset. You can find out 
more by navigating to the dataset information.
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// Import and filter imagery by location and date. 
var sfoPoint = ee.Geometry.Point(-122.3774, 37.6194); 

var sfoImage = ee.ImageCollection('COPERNICUS/S2') 
.filterBounds(sfoPoint) 
.filterDate('2020-02-01', '2020-04-01') 
.first(); 

Map.centerObject(sfoImage, 11); 

// Calculate EVI using Sentinel 2 

// Extract the bands and divide by 10,000 to account for 
scaling done. 
var nirScaled = sfoImage.select('B8').divide(10000); 
var redScaled = sfoImage.select('B4').divide(10000); 
var blueScaled = sfoImage.select('B2').divide(10000); 

// Calculate the numerator, note that order goes from left 
to right. 
var numeratorEVI = 
(nirScaled.subtract(redScaled)).multiply(2.5); 

// Calculate the denominator. 
var denomClause1 = redScaled.multiply(6); 
var denomClause2 = blueScaled.multiply(7.5); 
var denominatorEVI = nirScaled.add(denomClause1) 

.subtract(denomClause2).add(1); 

// Calculate EVI and name it. 
var EVI = 
numeratorEVI.divide(denominatorEVI).rename('EVI'); 

// And now map EVI using our vegetation palette. 
var vegPalette = ['red', 'white', 'green']; 
var visParams = {min: -1, max: 1, palette: vegPalette}; 

Map.addLayer(EVI, visParams, 'EVI'); 

Using an Expression to Calculate EVI 
The EVI code works (Fig. 9.1), but creating a large number of variables and explic-
itly calling addition, subtraction, multiplication, and division can be confusing and 
introduces the chance for errors. In these circumstances, you can create a function 
to make the steps more robust and easily repeatable. In another simple strategy 
outlined below, Earth Engine has a way to define an expression to achieve the 
same result.
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Fig. 9.1 EVI displayed for sentinel-2 over San Francisco 

Fig. 9.2 Comparison of true color and BAI for the rim fire 

// Calculate EVI. 
var eviExpression = sfoImage.expression({ 

expression: '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 
* BLUE + 1))', 

map: { // Map between variables in the expression and 
images. 

'NIR': sfoImage.select('B8').divide(10000), 
'RED': sfoImage.select('B4').divide(10000), 
'BLUE': sfoImage.select('B2').divide(10000) 

} 
}); 

// And now map EVI using our vegetation palette. 
Map.addLayer(eviExpression, visParams, 'EVI Expression');
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The expression is defined first as a string using human readable names. We then 
define these names by selecting the proper bands. 

Code Checkpoint F31a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Using an Expression to Calculate BAI 
Now that we have seen how expressions work, let us use an expression to calculate 
another index. Martin (1998) developed the Burned Area Index (BAI) to assist in 
the delineation of burn scars and assessment of burn severity. It relies on fires 
leaving ash and charcoal; fires that do not create ash or charcoal and old fires 
where the ash and charcoal have been washed away or covered will not be detected 
well. BAI computes the spectral distance of each pixel to a spectral reference point 
that burned areas tend to be similar to. Pixels that are far away from this reference 
(e.g., healthy vegetation) will have a very small value while pixels that are close 
to this reference (e.g., charcoal from fire) will have very large values. 

BAI = 1
(
(ρcr − Red)2 + (ρcnir − NIR)2

) (9.3) 

There are two constants in this equation: ρcr is a constant for the red band, 
equal to 0.1; and ρcnir is for the NIR band, equal to 0.06. 

To examine burn indices, load an image from 2013 showing the Rim Fire in the 
Sierra Nevada, California mountains. We will use Landsat 8 to explore this fire. 
Enter the code below in a new script. 

// Examine the true-color Landsat 8 images for the 2013 Rim 
Fire. 
var burnImage = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') 

.filterBounds(ee.Geometry.Point(-120.083, 37.850)) 

.filterDate('2013-09-15', '2013-09-27') 

.sort('CLOUD_COVER') 

.first(); 

Map.centerObject(ee.Geometry.Point(-120.083, 37.850), 11); 

var rgbParams = { 
bands: ['B4', 'B3', 'B2'], 
min: 0, 
max: 0.3 

}; 
Map.addLayer(burnImage, rgbParams, 'True-Color Burn 
Image');
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Examine the true-color display of this image. Can you spot the fire? If not, the 
BAI may help. As with EVI, use an expression to compute BAI in Earth Engine, 
using the equation above and what you know about Landsat 8 bands: 

// Calculate BAI. 
var bai = burnImage.expression( 

'1.0 / ((0.1 - RED)**2 + (0.06 - NIR)**2)', { 
'NIR': burnImage.select('B5'), 
'RED': burnImage.select('B4'), 

}); 

Display the result. 

// Display the BAI image. 
var burnPalette = ['green', 'blue', 'yellow', 'red']; 
Map.addLayer(bai, { 

min: 0, 
max: 400, 
palette: burnPalette 

}, 'BAI'); 

The burn area should be more obvious in the BAI visualization (Fig. 9.1, right 
panel). Note that the minimum and maximum values here are larger than what we 
have used for Landsat. At any point, you can inspect a layer’s bands using what 
you have already learned to see the minimum and maximum values, which will 
give you an idea of what to use here. 

Code Checkpoint F31b. The book’s repository contains a script that shows what 
your code should look like at this point. 

9.2.2 Section 2: Manipulating Images with Matrix Algebra 

Now that we have covered expressions, let us turn our attention to linear 
transformations that leverage matrix algebra. 

Tasseled Cap Transformation 
The first of these is the tasseled cap (TC) transformation. TC transformations are a 
class of transformations which, when graphed, look like a wooly hat with a tassel. 
The most common implementation is used to maximize the separation between 
different growth stages of wheat, an economically important crop. As wheat grows, 
the field progresses from bare soil, to green plant development, to yellow plant
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Fig. 9.3 Visualization of the matrix multiplication used to transform the original vector of band 
values (p0) for a pixel to the rotated values (p1) for that same pixel 

ripening, to field harvest. Separating these stages for many fields over a large area 
was the original purpose of the tasseled cap transformation. 

Based on observations of agricultural land covers in the combined near-infrared 
and red spectral space, Kauth and Thomas (1976) devised a rotational transform 
of the form: 

p1 = RT p0 (9.4) 

where p0 is the original p× 1 pixel vector (a stack of the p band values for that 
specific pixel as an array), and the matrix R is an orthonormal basis of the new 
space in which each column is orthogonal to one another (therefore, RT is its 
transpose), and the output p1 is the rotated stack of values for that pixel (Fig. 9.3). 

Kauth and Thomas found R by defining the first axis of their transformed space 
to be parallel to the soil line in Fig. 9.4. The first column was chosen to point along 
the major axis of soils and the values derived from Landsat imagery at a given 
point in Illinois, USA. The second column was chosen to be orthogonal to the first 
column and point toward what they termed “green stuff,” i.e., green vegetation. 
The third column is orthogonal to the first two and points toward the “yellow 
stuff,” e.g., ripening wheat and other grass crops. The final column is orthogonal 
to the first three and is called “nonesuch” in the original derivation—that is, akin 
to noise.

The R matrix has been derived for each of the Landsat satellites, including 
Landsat 5 (Crist 1985), Landsat 7, (Huang et al. 2002) Landsat 8 (Baig et al. 2014), 
and others. We can implement this transform in Earth Engine with arrays. Specif-
ically, let us create a new script and make an array of TC coefficients for Landsat 
5’s Thematic Mapper (TM) instrument:
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Fig. 9.4 Visualization of the tasseled cap transformation. This is a graph of two dimensions of a 
higher dimensional space (one for each band). The NIR and red bands represent two dimensions 
of p0, while the vegetation and soil brightness represent two dimensions of p1. You can see that 
there is a rotation caused by RT

///// 
// Manipulating images with matrices 
///// 

// Begin Tasseled Cap example. 
var landsat5RT = ee.Array([ 

[0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863], 
[-0.2848, -0.2435, -0.5436, 0.7243, 0.0840, -0.1800], 
[0.1509, 0.1973, 0.3279, 0.3406, -0.7112, -0.4572], 
[-0.8242, 0.0849, 0.4392, -0.0580, 0.2012, -0.2768], 
[-0.3280, 0.0549, 0.1075, 0.1855, -0.4357, 0.8085], 
[0.1084, -0.9022, 0.4120, 0.0573, -0.0251, 0.0238] 

]); 

print('RT for Landsat 5', landsat5RT); 

Note that the structure we just made is a list of six lists, which is then converted 
to an Earth Engine ee.Array object. The six-by-six array of values corresponds 
to the linear combinations of the values of the six non-thermal bands of the TM 
instrument: bands 1–5 and 7. To examine how Earth Engine ingests the array, 
view the output of the print function to display the array in the Console. You  
can explore how the different elements of the array match with how the array were 
defined using ee.Array.
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The next steps of this lab center on the small town of Odessa in eastern Wash-
ington, USA. You can search for “Odessa, WA, USA” in the search bar. We use 
the state abbreviation here because this is how Earth Engine displays it. The search 
will take you to the town and its surroundings, which you can explore with the 
Map or Satellite options in the upper right part of the display. In the code below, 
we will define a point in Odessa and center the display on it to view the results at 
a good zoom level. 

Since these coefficients are for the TM sensor at satellite reflectance (top of 
atmosphere), we will access a less-cloudy Landsat 5 scene. We will access the 
collection of Landsat 5 images, filter them, then sort by increasing cloud cover, 
and take the first one. 

// Define a point of interest in Odessa, Washington, USA. 
var point = ee.Geometry.Point([-118.7436019417829, 
47.18135755009023]); 
Map.centerObject(point, 10); 

// Filter to get a cloud free image to use for the TC. 
var imageL5 = ee.ImageCollection('LANDSAT/LT05/C02/T1_TOA') 

.filterBounds(point) 

.filterDate('2008-06-01', '2008-09-01') 

.sort('CLOUD_COVER') 

.first(); 

//Display the true-color image. 
var trueColor = { 

bands: ['B3', 'B2', 'B1'], 
min: 0, 
max: 0.3 

}; 
Map.addLayer(imageL5, trueColor, 'L5 true color'); 

To do the matrix multiplication, first convert the input image from a multi-band 
image (where for each band, each pixel stores a single value) to an array image. 
An array image is a higher-dimension image in which each pixel stores an array 
of values for a band. (Array images are encountered and discussed in more detail 
in part IV.) You will use bands 1–5 and 7 and the toArray function:
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var bands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B7']; 

// Make an Array Image, with a one dimensional array per 
pixel. 
// This is essentially a list of values of length 6, 
// one from each band in variable 'bands.' 
var arrayImage1D = imageL5.select(bands).toArray(); 

// Make an Array Image with a two dimensional array per 
pixel, 
// of dimensions 6x1. This is essentially a one column 
matrix with 
// six rows, with one value from each band in 'bands.' 
// This step is needed for matrix multiplication (p0). 
var arrayImage2D = arrayImage1D.toArray(1); 

The 1 refers to the columns (the “first” axis in Earth Engine) to create a 6 row 
by 1 column array for p0 (Fig. 9.3). 

Next, we complete the matrix multiplication of the tasseled cap linear trans-
formation using the matrixMultiply function, then convert the result back to a 
multi-band image using the arrayProject and arrayFlatten functions: 

//Multiply RT by p0. 
var tasselCapImage = ee.Image(landsat5RT) 

// Multiply the tasseled cap coefficients by the array 
// made from the 6 bands for each pixel. 
.matrixMultiply(arrayImage2D) 
// Get rid of the extra dimensions. 
.arrayProject([0]) 
// Get a multi-band image with TC-named bands. 
.arrayFlatten( 

[ 
['brightness', 'greenness', 'wetness', 

'fourth', 'fifth', 
'sixth' 

] 
]);
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Finally, display the result: 

var vizParams = { 
bands: ['brightness', 'greenness', 'wetness'], 
min: -0.1, 
max: [0.5, 0.1, 0.1] 

}; 
Map.addLayer(tasselCapImage, vizParams, 'TC components'); 

This maps brightness to red, greenness to green, and wetness to 
blue. Your resulting layer will contain a high amount of contrast (Fig. 9.5). Water 
appears blue, healthy irrigated crops are the bright circles, and drier crops are red. 
We have chosen this area near Odessa because it is naturally dry, and the irrigated 
crops make the patterns identified by the tasseled cap transformation particularly 
striking. 

If you would like to see how the array image operations work, you can consider 
building tasselCapImage, one step at a time. You can assign the result of 
matrixMultiply operation to its own variable then map the result. Then, do 
the arrayProject command on that new variable into a second new image 
and map that result. Then, do the arrayFlatten call on that result to produce

Fig. 9.5 Output of the tasseled cap transformation. Water appears blue, green irrigated crops are 
the bright circles, and dry crops are red 
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tasselCapImage as before. You can then use the Inspector tool to view these 
details of how the data is processed as tasselCapImage is built. 

Principal Component Analysis 
Like the TC transform, the principal component analysis (PCA) transform is a 
rotational transform. PCA is an orthogonal linear transformation—essentially, it 
mathematically transforms the data into a new coordinate system where all axes 
are orthogonal. The first axis, also called a coordinate, is calculated to capture the 
largest amount of variance of the dataset, the second captures the second-greatest 
variance, and so on. 

Because these are calculated to be orthogonal, the principal components are 
uncorrelated. PCA can be used as a dimension reduction tool, as most of the 
variation in a dataset with n axes can be captured in n − x axes. This is a very 
brief explanation; if you want to learn more about PCA and how it works, there 
are many excellent statistical texts and online resources on the subject. 

To demonstrate the practical application of PCA applied to an image, import 
the Landsat 8 TOA image, and name it imageL8. First, we will convert it to an 
array image: 

// Begin PCA example. 

// Select and map a true-color L8 image. 
var imageL8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') 

.filterBounds(point) 

.filterDate('2018-06-01', '2018-09-01') 

.sort('CLOUD_COVER') 

.first(); 

var trueColorL8 = { 
bands: ['B4', 'B3', 'B2'], 
min: 0, 
max: 0.3 

}; 
Map.addLayer(imageL8, trueColorL8, 'L8 true color'); 

// Select which bands to use for the PCA. 
var PCAbands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10', 
'B11']; 

// Convert the Landsat 8 image to a 2D array for the later 
matrix 
// computations. 
var arrayImage = imageL8.select(PCAbands).toArray();
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In the next step, use the reduceRegion method and the 
ee.Reducer.covariance function to compute statistics (in this case 
the covariance of bands) for the image. 

// Calculate the covariance using the reduceRegion method. 
var covar = arrayImage.reduceRegion({ 

reducer: ee.Reducer.covariance(), 
maxPixels: 1e9 

}); 

// Extract the covariance matrix and store it as an array. 
var covarArray = ee.Array(covar.get('array')); 

Note that the result of the reduction is an object with one property, array, that 
stores the covariance matrix. We use the ee.Array.get function to extract the 
covariance matrix and store it as an array. 

Now that we have a covariance matrix based on the image, we can perform an 
eigen analysis to compute the eigenvectors that we will need to perform the PCA. 
To do this, we will use the eigen function. Again, if these terms are unfamiliar to 
you, we suggest one of the many excellent statistics textbooks or online resources. 
Compute the eigenvectors and eigenvalues of the covariance matrix: 

//Compute and extract the eigenvectors 
var eigens = covarArray.eigen(); 

The eigen function outputs both eigenvectors and the eigenvalues. 
Since we need the eigenvectors for the PCA, we can use the slice function 
for arrays to extract them. The eigenvectors are stored in the 0th position of 
the 1-axis. 

var eigenVectors = eigens.slice(1, 1); 

Now, we perform matrix multiplication using these eigenVectors and the 
arrayImage we created earlier. This is the same process that we used with the 
tasseled cap components. Each multiplication results in a principal component.
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// Perform matrix multiplication 
var principalComponents = ee.Image(eigenVectors) 

.matrixMultiply(arrayImage.toArray(1)); 

Finally, convert back to a multi-band image and display the first principal 
component (pc1): 

var pcImage = principalComponents 
// Throw out an unneeded dimension, [[]] -> []. 
.arrayProject([0]) 
// Make the one band array image a multi-band image, [] 

-> image. 
.arrayFlatten([ 

['pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7', 
'pc8'] 

]); 

// Stretch this to the appropriate scale. 
Map.addLayer(pcImage.select('pc1'), {}, 'pc1'); 

When first displayed, the PC layer will be all black. Use the layer manager to 
stretch the result in greyscale by hovering over Layers, then PC, and then clicking 
the gear icon next to PC. Note how the range (minimum and maximum values) 
changes based on the stretch you choose. 

What do you observe? Try displaying some of the other principal components. 
How do they differ from each other? What do you think each band is capturing? 
Hint: You will need to recreate the stretch for each principal component you try 
to map. 

Look at what happens when you try to display ‘pc1’, ‘pc3’, and ‘pc4’, for 
example, in a three-band display. Because the values of each principal component 
band differ substantially, you might see a gradation of only one color in your 
output. To control the display of multiple principal component bands together, 
you will need to use lists in order to specify the min and max values individually 
for each principal component band. 

Once you have determined which bands you would like to plot, input the min 
and max values for each band, making sure they are in the correct order.
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//The min and max values will need to change if you map 
different bands or locations. 
var visParamsPCA = { 

bands: ['pc1', 'pc3', 'pc4'], 
min: [-455.09, -2.206, -4.53], 
max: [-417.59, -1.3, -4.18] 

}; 

Map.addLayer(pcImage, visParamsPCA, 'PC_multi'); 

Examine the PCA map (Fig. 9.6). Unlike with the tasseled cap transformation, 
PCA does not have defined output axes. Instead, each axis dynamically captures 
some aspect of the variation within the dataset (if this does not make sense to 
you, please review an online resource on the statistical theory behind PCA). Thus, 
the mapped PCA may differ substantially based on where you have performed the 
PCA and which bands you are mapping. 

Code Checkpoint F31c. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 9.6 Output of the PCA transformation near Odessa, Washington, USA 
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9.2.3 Section 3: Spectral Unmixing 

If we think about a single pixel in our dataset—a 30 × 30 m space correspond-
ing to a Landsat pixel, for instance—it is likely to represent multiple physical 
objects on the ground. As a result, the spectral signature for the pixel is a mixture 
of the “pure” spectra of each object existing in that space. For example, con-
sider a Landsat pixel of forest. The spectral signature of the pixel is a mixture of 
trees, understory, shadows cast by the trees, and patches of soil visible through the 
canopy. 

The linear spectral unmixing model is based on this assumption (Schultz et al. 
2016, Souza 2005). The pure spectra, called endmembers, are from land cover 
classes such as water, bare land, and vegetation. These endmembers represent the 
spectral signature of pure spectra from ground features, such as only bare ground. 
The goal is to solve the following equation for ƒ, the P×1 vector of endmember 
fractions in the pixel: 

p = S f (9.5) 

S is a B × P matrix in which B is the number of bands and the columns are 
P pure endmember spectra and p is the B× 1 pixel vector when there are B bands 
(Fig. 9.7). We know p, and we can define the endmember spectra to get S such 
that we can solve for ƒ. 

We will use the Landsat 8 image for this exercise. In this example, the number 
of bands (B) is six. 

// Specify which bands to use for the unmixing. 
var unmixImage = imageL8.select(['B2', 'B3', 'B4', 'B5', 
'B6', 'B7']);

Fig. 9.7 Visualization of the matrix multiplication used to transform the original vector of band 
values (p) for a pixel to the endmember values (ƒ) for that same pixel 
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The first step is to define the endmembers such that we can define S. We will 
do this by computing the mean spectra in polygons delineated around regions of 
pure land cover. 

Zoom the map to a location with homogeneous areas of bare land, vegetation, 
and water (an airport can be used as a suitable location). Visualize the Landsat 8 
image as a false color composite: 

// Use a false color composite to help define polygons of 
'pure' land cover. 
Map.addLayer(imageL8, { 

bands: ['B5', 'B4', 'B3'], 
min: 0.0, 
max: 0.4 

}, 'false color'); 

For faster rendering, you may want to comment out the previous layers you 
added to the map. 

In general, the way to do this is to draw polygons around areas of pure land 
cover in order to define the spectral signature of these land covers. If you would 
like to do this on your own, here is how. Using the geometry drawing tools, make 
three new layers (thus, P = 3) by selecting the polygon tool and then clicking 
+ new layer. In the first layer, digitize a polygon around pure bare land; in the 
second layer, make a polygon of pure vegetation; in the third layer, make a water 
polygon. Name the imports bare, water, and veg, respectively. You will need 
to use the settings (gear icon) to rename the geometries. 

You can also use this code to specify predefined areas of bare, water, and 
vegetation. This will only work for this example.
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// Define polygons of bare, water, and vegetation. 
var bare = /* color: #d63000 */ ee.Geometry.Polygon( 

[ 
[ 

[-119.29158963591193, 47.204453926034134], 
[-119.29192222982978, 47.20372502078616], 
[-119.29054893881415, 47.20345532330602], 
[-119.29017342955207, 47.20414049800489] 

] 
]), 

water = /* color: #98ff00 */ ee.Geometry.Polygon( 
[ 

[ 
[-119.42904610218152, 47.22253398528318], 
[-119.42973274768933, 47.22020224831784], 
[-119.43299431385144, 47.21390604625894], 
[-119.42904610218152, 47.21326472446865], 
[-119.4271149116908, 47.21868656429651], 
[-119.42608494342907, 47.2217470355224] 

] 
]), 

veg = /* color: #0b4a8b */ ee.Geometry.Polygon( 
[ 

[ 
[-119.13546041722502, 47.04929418944858], 
[-119.13752035374846, 47.04929418944858], 
[-119.13966612096037, 47.04765665820436], 
[-119.13777784581389, 47.04408900535686] 

] 
]); 

Check the polygons you made or imported by charting mean spectra in them 
using ui.Chart.image.regions.
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//Print a chart. 
var lcfeatures = ee.FeatureCollection([ 

ee.Feature(bare, {label: 'bare'}), 
ee.Feature(water, {label: 'water'}), 
ee.Feature(veg, {label: 'vegetation'}) 

]); 

print( 
ui.Chart.image.regions({ 
image: unmixImage, 
regions: lcfeatures, 
reducer: ee.Reducer.mean(), 
scale: 30, 
seriesProperty: 'label', 
xLabels: [0.48, 0.56, 0.65, 0.86, 1.61, 2.2] 

}) 
.setChartType('LineChart') 
.setOptions({ 
title: 'Image band values in 3 regions', 
hAxis: { 
title: 'Wavelength' 

}, 
vAxis: { 
title: 'Mean Reflectance' 

} 
})); 

The xLabels line of code takes the mean of each polygon (feature) at the spec-
tral midpoint of each of the six bands. The numbers ([0.48, 0.56, 0.65, 
0.86, 1.61, 2.2]) represent these spectral midpoints. Your chart should 
look something like Fig. 9.8. 

Fig. 9.8 Mean of the pure land cover reflectance for each band
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Use the reduceRegion method to compute the mean values within the 
polygons you made, for each of the bands. Note that the return value of 
reduceRegion is a Dictionary of numbers summarizing values within the 
polygons, with the output indexed by band name. 

Get the means as a List by calling the values function after computing the 
mean. Note that values return the results in alphanumeric order sorted by the 
keys. This works because B2 − B7 are already alphanumerically sorted, but it will 
not work in cases when they are not already sorted. In those cases, please specify 
the list of band names so that you get them in a known order first. 

// Get the means for each region. 
var bareMean = unmixImage 

.reduceRegion(ee.Reducer.mean(), bare, 30).values(); 
var waterMean = unmixImage 

.reduceRegion(ee.Reducer.mean(), water, 30).values(); 
var vegMean = unmixImage 

.reduceRegion(ee.Reducer.mean(), veg, 30).values(); 

Each of these three lists represents a mean spectrum vector, which is one of the 
columns for our S matrix defined above. Stack the vectors into a 6× 3 Array of 
endmembers by concatenating them along the 1-axis (columns): 

// Stack these mean vectors to create an Array.              
var endmembers = ee.Array.cat([bareMean, vegMean, 
waterMean], 1); 
print(endmembers); 

Use print if you would like to view your new matrix. 
As we have done in the previous sections, we will now convert the 6-band input 

image into an image in which each pixel is a 1D vector (toArray), then into an 
image in which each pixel is a 6× 1 matrix (toArray(1)). This creates p so 
that we can solve the equation above for each pixel. 

// Convert the 6-band input image to an image array. 
var arrayImage = unmixImage.toArray().toArray(1); 

Now that we have everything in place, for each pixel, we solve the equation 
for ƒ:
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// Solve for f. 
var unmixed = ee.Image(endmembers).matrixSolve(arrayImage); 

For this task, we use the matrixSolve function. This function solves for x 
in the equation A ∗ x = B. Here, A is our matrix S and B is the matrix p. 

Finally, convert the result from a two-dimensional array image into a one-
dimensional array image (arrayProject), and then into a zero-dimensional, 
more familiar multi-band image (arrayFlatten). This is the same approach 
we used in the previous sections. The three bands correspond to the estimates of 
bare, vegetation, and water fractions in ƒ: 

// Convert the result back to a multi-band image. 
var unmixedImage = unmixed 

.arrayProject([0]) 

.arrayFlatten([ 
['bare', 'veg', 'water'] 

]); 

Display the result where bare is red, vegetation is green, and water is blue 
(the addLayer call expects bands in order, RGB). Use either code or the layer 
visualization parameter tool to achieve this. Your resulting image should look like 
Fig. 9.9. 

Fig. 9.9 Result of the spectral unmixing example
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Map.addLayer(unmixedImage, {}, 'Unmixed'); 

9.2.4 Section 4: The Hue, Saturation, Value Transform 

Whereas the other three transforms we have discussed will transform the image 
based on spectral signatures from the original image, the hue, saturation, and value 
(HSV) transform is a color transform of the RGB color space. 

Among many other things, it is useful for pan-sharpening, a process by which a 
higher-resolution panchromatic image is combined with a lower-resolution multi-
band raster. This involves converting the multi-band raster RGB to HSV color 
space, swapping the panchromatic band for the value band, then converting back 
to RGB. Because the value band describes the brightness of colors in the original 
image, this approach leverages the higher resolution of the panchromatic image. 

For example, let us pan-sharpen the Landsat 8 scene we have been working 
with in this chapter. In Landsat 8, the panchromatic band is 15 m resolution, while 
the RGB bands are 30 m resolution. We use the rgbToHsv function here—it is 
such a common transform that there is a built-in function for it. 

// Begin HSV transformation example 

// Convert Landsat 8 RGB bands to HSV color space 
var hsv = imageL8.select(['B4', 'B3', 'B2']).rgbToHsv(); 

Map.addLayer(hsv, { 
max: 0.4 

}, 'HSV Transform'); 

Next, we convert the image back to RGB space after substituting the panchro-
matic band for the value band, which appears third in the HSV image. We do 
this by first concatenating the different image bands using the ee.Image.cat 
function and then by converting to RGB.
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Fig. 9.10 Results of the pan-sharpening process (right) compared with the original true-color 
image (left) 

// Convert back to RGB, swapping the image panchromatic 
band for the value. 
var rgb = ee.Image.cat([ 

hsv.select('hue'), 
hsv.select('saturation'), 
imageL8.select(['B8']) 

]).hsvToRgb(); 

Map.addLayer(rgb, { 
max: 0.4 

}, 'Pan-sharpened'); 

In Fig. 9.10, compare the pan-sharpened image to the original true-color image. 
What do you notice? Is it easier to interpret the image following pan-sharpening? 

Code Checkpoint F31d. The book’s repository contains a script that shows what 
your code should look like at this point. 

9.3 Synthesis 

Assignment 1. Write an expression to calculate the normalized burn ratio thermal 
(NBRT) index for the Rim Fire Landsat 8 image (burnImage). 

NBRT was developed based on the idea that burned land has low NIR 
reflectance (less vegetation), high SWIR reflectance (from ash, etc.), and high 
brightness temperature (Holden et al. 2005).
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The formula is 

NBRT =
(
NIR − SWIR × (Thermal 

1000

))

(
NIR + SWIR × (Thermal 

1000

)) (9.6) 

where NIR should be between 0.76 and 0.9 µm, SWIR 2.08 and 2.35 µm, and 
thermal 10.4 and 12.5 µm. 

To display this result, remember that a lower NBRT is the result of more 
burning. 

Bonus: Here is another way to reverse a color palette (note the min and max 
values): 

Map.addLayer(nbrt, { 
min: 1, 
max: 0.9, 
palette: burnPalette 

}, 'NBRT'); 

The difference in this index, before compared with after the fire, can be used 
as a diagnostic of burn severity (see van Wagtendonk et al. 2004). 

9.4 Conclusion 

Linear image transformations are a powerful tool in remote sensing analysis. By 
choosing your linear transformation carefully, you can highlight specific aspects 
of your data that make image classification easier and more accurate. For example, 
spectral unmixing is frequently used in change detection applications like detecting 
forest degradation. By using the endmembers (pure spectra) as inputs to the change 
detection algorithms, the model is better able to detect subtle changes due to the 
removal of some but not all the trees in the pixel. 
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Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks, 

classify images (Part II). 

10.1 Introduction to Theory 

Neighborhood-based image transformations enable information from the pixels 
surrounding a focal pixel to inform the function transforming the value in the 
focal pixel (Fig. 10.1). For example, if your image has some pixels with outlier 
values, you can use a neighborhood-based transformation to diminish the effect 
of the outlier values (here, we would recommend the median; see the Practicum 
section below). This is similar to how a moving average is performed (e.g., loess 
smoothing), but instead of averaging across one dimension (e.g., time), it averages 
across two dimensions (latitude and longitude). 

Neighborhood-based image transformations are a foundational part of many 
remote sensing analysis workflows. For example, edge detection has been a critical 
part of land cover classification research efforts, including using Landsat 5 data in 
Minneapolis-St. Paul, Minnesota, USA (Stuckens et al. 2000), and using Landsat 7 
and higher- resolution data including IKONOS in Accra, Ghana (Toure et al. 2018). 
Another type of neighborhood-based image transformation, the median operation, 
is an important part of remote sensing workflows due to its ability to dampen

Fig. 10.1 Neighborhood surrounds the focal pixel. Different neighborhoods can vary in size and 
shape. The focal pixel is the pixel for which new values are calculated, based on values in the 
neighborhood 
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noise in images or classifications while maintaining edges (see ZhiYong et al. 
2018; Lüttig et al. 2017). We will discuss these methods and others in this chapter. 

10.2 Practicum 

10.2.1 Section 1: Linear Convolution 

Linear convolution refers to calculating a linear combination of pixel values in a 
neighborhood for the focal pixel (Fig. 10.1). 

In Earth Engine, the neighborhood of a given pixel is specified by a kernel. 
The kernel defines the size and shape of the neighborhood and a weight for each 
position in the kernel. To implement linear convolution in Earth Engine, we will 
use the convolve with an ee.Kernel for the argument. 

Convolving an image can be useful for extracting image information at different 
spatial frequencies. For this reason, smoothing kernels are called low-pass filters 
(they let low-frequency data pass through), and edge detection kernels are called 
high-pass filters. In the Earth Engine context, this use of the word “filter” is distinct 
from the filtering of image collections and feature collections seen throughout this 
book. In general in this book, filtering refers to retaining items in a set that have 
specified characteristics. In contrast, in this specific context of image convolution, 
“filter” is often used interchangeably with “kernel” when it is applied to the pixels 
of a single image. This chapter refers to these as “kernels” or “neighborhoods” 
wherever possible, but be aware of the distinction when you encounter the term 
“filter” in technical documentation elsewhere. 

Smoothing 
A square kernel with uniform weights that sum to one is an example of a smooth-
ing kernel. Using this kernel replaces the value of each pixel with the value of a 
summarizing function (usually, the mean) of its neighborhood. Because averages 
are less extreme than the values used to compute them, this tends to diminish image 
noise by replacing extreme values in individual pixels with a blend of surround-
ing values. When using a kernel to smooth an image in practice, the statistical 
properties of the data should be carefully considered (Vaiphasa 2006). 

Let us create and print a square kernel with uniform weights for our smoothing 
kernel. 

// Create and print a uniform kernel to see its weights. 
print('A uniform kernel:', ee.Kernel.square(2)); 

Expand the kernel object in the Console to see the weights. This kernel is 
defined by how many pixels it covers (i.e., radius is in units of pixels). Remem-
ber that your pixels may represent different real-world distances (spatial resolution 
is discussed in more detail in Chap. 4).
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A kernel with radius defined in meters adjusts its size to an image’s pixel size, 
so you cannot visualize its weights, but it is more flexible in terms of adapting 
to inputs of different spatial resolutions. In the next example, we will use kernels 
with radius defined in meters. 

As first explored in Chap. 4, the National Agriculture Imagery Program (NAIP) 
is a U.S. government program to acquire imagery over the continental United 
States using airborne sensors. The imagery has a spatial resolution of 0.5–2 m, 
depending on the state and the date collected. 

Define a new point named point. We will locate it near the small town of 
Odessa in eastern Washington, USA. You can also search for “Odessa, WA, USA” 
in the search bar and define your own point. 

Now filter and display the NAIP ImageCollection. For Washington State, 
there was NAIP imagery collected in 2018. We will use the reduce function in 
order to convert the image collection to an image for the convolution. 

// Define a point of interest in Odessa, Washington, USA. 
var point = ee.Geometry.Point([-118.71845096212049, 

47.15743083101999]); 
Map.centerObject(point); 

// Load NAIP data. 
var imageNAIP = ee.ImageCollection('USDA/NAIP/DOQQ') 

.filterBounds(point) 

.filter(ee.Filter.date('2017-01-01', '2018-12-31')) 

.first(); 

Map.centerObject(point, 17); 

var trueColor = { 
bands: ['R', 'G', 'B'], 
min: 0, 
max: 255 

}; 
Map.addLayer(imageNAIP, trueColor, 'true color'); 

You will notice that the NAIP imagery selected with these operations covers 
only a very small area. This is because the NAIP image tiles are quite small, 
covering only a 3.75 × 3.75 min quarter quadrangle plus a 300 m buffer on all 
four sides. For your own work using NAIP, you may want to use a rectangle or 
polygon to filter over a larger area and the reduce function instead of first. 

Now define a kernel with a 2 m radius with uniform weights to use for 
smoothing.
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// Begin smoothing example. 
// Define a square, uniform kernel. 
var uniformKernel = ee.Kernel.square({ 

radius: 2, 
units: 'meters', 

}); 

Apply the smoothing operation by convolving the image with the kernel we 
have just defined. 

// Convolve the image by convolving with the smoothing 
kernel. 
var smoothed = imageNAIP.convolve(uniformKernel); 
Map.addLayer(smoothed, { 

min: 0, 
max: 255 

}, 'smoothed image'); 

Now, compare the input image with the smoothed image. In Fig. 10.2, notice 
how sharp outlines around, for example, the patch of vegetation or the road stripes 
are less distinct. 

To make the image even more smooth, you can increase the size of the 
neighborhood by increasing the pixel radius. 

Gaussian Smoothing 
A Gaussian kernel can also be used for smoothing. A Gaussian curve is also known 
as a bell curve. Think of convolving with a Gaussian kernel as computing the 
weighted average in each pixel’s neighborhood, where closer pixels are weighted 
more heavily than pixels that are further away. Gaussian kernels preserve lines 
better than the smoothing kernel we just used, allowing them to be used when

Fig. 10.2 Example of the effects of a smoothing convolution on NAIP imagery using a 2 m kernel 
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feature conservation is important, such as in detecting oil slicks (Wang and Hu 
2015). 

// Begin Gaussian smoothing example. 
// Print a Gaussian kernel to see its weights. 
print('A Gaussian kernel:', ee.Kernel.gaussian(2)); 

Now, we will apply a Gaussian kernel to the same NAIP image. 

// Define a square Gaussian kernel: 
var gaussianKernel = ee.Kernel.gaussian({ 

radius: 2, 
units: 'meters', 

}); 

// Convolve the image with the Gaussian kernel. 
var gaussian = imageNAIP.convolve(gaussianKernel); 
Map.addLayer(gaussian, { 

min: 0, 
max: 255 

}, 'Gaussian smoothed image'); 

Pan and zoom around the NAIP image, switching between the two smoothing 
functions. Notice how the Gaussian smoothing preserves more of the detail of the 
image, such as the road lines and vegetation in Fig. 10.3. 

Fig. 10.3 Example of the effects of a Gaussian smoothing kernel on NAIP imagery using a 2 m 
kernel



10 Neighborhood-Based Image Transformation 201

Edge Detection 
Edge detection kernels are used to find rapid changes in remote sensing image 
values. These rapid changes usually signify edges of objects represented in the 
image data. Finding edges is useful for many applications, including identifying 
transitions between land cover and land use during classification. 

A common edge detection kernel is the Laplacian kernel. Other edge detection 
kernels include the Sobel, Prewitt, and Roberts kernels. First, look at the Laplacian 
kernel weights: 

// Begin edge detection example. 
// For edge detection, define a Laplacian kernel. 
var laplacianKernel = ee.Kernel.laplacian8(); 

// Print the kernel to see its weights. 
print('Edge detection Laplacian kernel:', 
laplacianKernel); 

Notice that if you sum all of the neighborhood values, the focal cell value is 
the negative of that sum. Now apply the kernel to our NAIP image and display the 
result: 

// Convolve the image with the Laplacian kernel. 
var edges = imageNAIP.convolve(laplacianKernel); 
Map.addLayer(edges, { 

min: 0, 
max: 255 

}, 'Laplacian convolution image'); 

Edge detection algorithms remove contrast within the image (e.g., between 
fields) and focus on the edge information (Fig. 10.4).

There are also algorithms in Earth Engine that perform edge detection. One of 
these is the Canny edge detection algorithm (Canny 1986), which identifies the 
diagonal, vertical, and horizontal edges by using four separate kernels. 

Sharpening 
Image sharpening, also known as edge enhancement, leverages the edge detection 
techniques we just explored to make the edges in an image sharper. This mimics 
the human eye’s ability to enhance separation between objects via Mach bands. 
To achieve this from a technical perspective, you add the image to the second 
derivative of the image. 

To implement this in Earth Engine, we use a combination of Gaussian ker-
nels through the Difference-of-Gaussians convolution (see Schowengerdt 2006 for
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Fig. 10.4 Example of the effects of Laplacian edge detection on NAIP imagery

details) and then add this to the input image. Start by creating two Gaussian 
kernels: 

// Begin image sharpening example. 
// Define a "fat" Gaussian kernel. 
var fat = ee.Kernel.gaussian({ 

radius: 3, 
sigma: 3, 
magnitude: -1, 
units: 'meters' 

}); 

// Define a "skinny" Gaussian kernel. 
var skinny = ee.Kernel.gaussian({ 

radius: 3, 
sigma: 0.5, 
units: 'meters' 

}); 

Next, combine the two Gaussian kernels into a Difference-of-Gaussians kernel 
and print the result: 

// Compute a difference-of-Gaussians (DOG) kernel. 
var dog = fat.add(skinny); 

// Print the kernel to see its weights. 
print('DoG kernel for image sharpening', dog);
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Fig. 10.5 Example of the effects of difference-of-Gaussians edge sharpening on NAIP imagery 

Finally, apply the new kernel to the NAIP imagery with the convolve com-
mand and then add the DoG convolved image to the original image with the add 
command (Fig. 10.5). 

// Add the DoG convolved image to the original image. 
var sharpened = imageNAIP.add(imageNAIP.convolve(dog)); 
Map.addLayer(sharpened, { 

min: 0, 
max: 255 

}, 'DoG edge enhancement'); 

Code Checkpoint F32a. The book’s repository contains a script that shows what 
your code should look like at this point. 

10.2.2 Section 2: Nonlinear Convolution 

Where linear convolution functions involve calculating a linear combination of 
neighborhood pixel values for the focal pixel, nonlinear convolution functions use 
nonlinear combinations. Both linear and nonlinear convolution use the same con-
cepts of the neighborhood, focal pixel, and kernel. The main difference from a 
practical standpoint is that nonlinear convolution approaches are implemented in 
Earth Engine using the reduceNeighborhood method on images. 

Median 
Median neighborhood filters are used for denoising images. For example, some 
individual pixels in your image may have abnormally high or low values resulting 
from measurement error, sensor noise, or another cause. Using the mean operation 
described earlier to average values within a kernel would result in these extreme
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values polluting other pixels. That is, when a noisy pixel is present in the neigh-
borhood of a focal pixel, the calculated mean will be pulled up or down due to that 
abnormally high- or low-value pixel. The median neighborhood filter can be used 
to minimize this issue. This approach is also useful because it preserves edges 
better than other smoothing approaches, an important feature for many types of 
classification. 

Let us reuse the uniform 5×5 kernel from above (uniformKernel) to imple-
ment a median neighborhood filter. As seen below, nonlinear convolution functions 
are implemented using reduceNeighborhood. 

// Begin median example. 
// Pass a median neighborhood filter using our 
uniformKernel. 
var median = imageNAIP.reduceNeighborhood({ 

reducer: ee.Reducer.median(), 
kernel: uniformKernel 

}); 

Map.addLayer(median, { 
min: 0, 
max: 255 

}, 'Median Neighborhood Filter'); 

Inspect the median neighborhood filter map layer you have just added 
(Fig. 10.6). Notice how the edges are preserved instead of a uniform smooth-
ing seen with the mean neighborhood filter. Look closely at features such as road 
intersections, field corners, and buildings. 

Fig. 10.6 Example of the effects of a median neighborhood filter on NAIP imagery
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Mode 
The mode operation, which identifies the most commonly used number in a set, 
is particularly useful for categorical maps. Methods such as median and mean, 
which blend values found in a set, do not make sense for aggregating nominal data. 
Instead, we use the mode operation to get the value that occurs most frequently 
within each focal pixel’s neighborhood. The mode operation can be useful when 
you want to eliminate individual, rare pixel occurrences, or small groups of pixels 
that are classified differently than their surroundings. 

For this example, we will make a categorical map by thresholding the NIR 
band. First we will select the NIR band and then threshold it at 200 using the gt 
function (see also Chap. 5). Values higher than 200 will map to 1, while values 
equal to or below 200 will map to 0. We will then display the two classes as black 
and green. Thresholding the NIR band in this way is a very rough approximation 
of where vegetation occurs on the landscape, so we will call our layer veg. 

// Mode example 
// Create and display a simple two-class image. 
var veg = imageNAIP.select('N').gt(200); 

// Display the two-class (binary) result. 
var binaryVis = { 

min: 0, 
max: 1, 
palette: ['black', 'green'] 

}; 
Map.addLayer(veg, binaryVis, 'Vegetation categorical 
image'); 

Now use our uniform kernel to compute the mode in each 5× 5 neighborhood. 

// Compute the mode in each 5x5 neighborhood and display 
the result. 
var mode = veg.reduceNeighborhood({ 

reducer: ee.Reducer.mode(), 
kernel: uniformKernel 

}); 

Map.addLayer(mode, binaryVis, 'Mode Neighborhood Filter on 
Vegetation categorical image'); 

The resulting image following the mode neighborhood filter has less individual 
pixel noise and more cohesive areas of vegetation (Fig. 10.7).
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Fig. 10.7 Example of the effects of the mode neighborhood filter on thresholded NAIP imagery 
using a uniform kernel 

Code Checkpoint F32b. The book’s repository contains a script that shows what 
your code should look like at this point. 

10.2.3 Section 3: Morphological Processing 

The idea of morphology is tied to the concept of objects in images. For example, 
suppose the patches of 1 s in the veg image from the previous section repre-
sent patches of vegetation. Morphological processing helps define these objects 
so that the processed images can better inform classification processes, such as 
object-based classification (Chap. 11), and as a post-processing approach to reduce 
noise caused by the classification process. Below are four of the most important 
morphological processing approaches. 

Dilation 
If the classification underestimates the actual distribution of vegetation and con-
tains “holes,” a max operation can be applied across the neighborhood to expand 
the areas of vegetation. This process is known as a dilation (Fig. 10.8).

// Begin Dilation example. 
// Dilate by taking the max in each 5x5 neighborhood. 
var max = veg.reduceNeighborhood({ 

reducer: ee.Reducer.max(), 
kernel: uniformKernel 

}); 

Map.addLayer(max, binaryVis, 'Dilation using max');
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Fig. 10.8 Example of the effects of the dilation on thresholded NAIP imagery using a uniform 
kernel

To explore the effects of dilation, you might try to increase the size of the 
kernel (i.e., increase the radius), or to apply reduceNeighborhood repeat-
edly. There are shortcuts in the API for some common reduceNeighborhood 
actions, including focalMax and focalMin, for example. 

Erosion 
The opposite of dilation is erosion, for decreasing the size of the patches. To effect 
an erosion, a min operation can be applied to the values inside the kernel as each 
pixel is evaluated. 

// Begin Erosion example. 
// Erode by taking the min in each 5x5 neighborhood. 
var min = veg.reduceNeighborhood({ 

reducer: ee.Reducer.min(), 
kernel: uniformKernel 

}); 

Map.addLayer(min, binaryVis, 'Erosion using min'); 

Carefully inspect the result compared to the input (Fig. 10.9). Note that the 
shape of the kernel affects the shape of the eroded patches (the same effect occurs 
in the dilation). Because we used a square kernel, the eroded patches and dilated 
areas are square. You can explore this effect by testing kernels of different shapes.

As with the dilation, note that you can get more erosion by increasing the size 
of the kernel or applying the operation more than once. 

Opening 
To remove small patches of green that may be unwanted, we will perform an 
erosion followed by a dilation. This process is called opening, works to delete
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Fig. 10.9 Example of the effects of the erosion on thresholded NAIP imagery using a uniform 
kernel

Fig. 10.10 Example of the effects of the opening operation on thresholded NAIP imagery using 
a uniform kernel

small details, and is useful for removing noise. We can use our eroded image and 
perform a dilation on it (Fig. 10.10). 

// Begin Opening example. 
// Perform an opening by dilating the eroded image. 
var openedVeg = min.reduceNeighborhood({ 

reducer: ee.Reducer.max(), 
kernel: uniformKernel 

}); 

Map.addLayer(openedVeg, binaryVis, 'Opened image'); 
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Fig. 10.11 Example of the effects of the closing operation on thresholded NAIP imagery using a 
uniform kernel 

Closing 
Finally, the opposite of opening is closing, which is a dilation operation followed 
by an erosion. This series of transformations is used to remove small holes in the 
input patches (Fig. 10.11). 

// Begin Closing example. 
// Perform a closing by eroding the dilated image. 
var closedVeg = max.reduceNeighborhood({ 

reducer: ee.Reducer.min(), 
kernel: uniformKernel 

}); 

Map.addLayer(closedVeg, binaryVis, 'Closed image'); 

Closely examine the difference between each morphological operation and the 
veg input. You can adjust the effect of these morphological operators by adjusting 
the size and shape of the kernel (also called a “structuring element” in this context, 
because of its effect on the spatial structure of the result), or applying the oper-
ations repeatedly. When used for post-processing of, for example, a classification 
output, this process will usually require multiple iterations to balance accuracy 
with class cohesion. 

Code Checkpoint F32c. The book’s repository contains a script that shows what 
your code should look like at this point. 

10.2.4 Section 4: Texture 

The final group of neighborhood-based operations we will discuss is meant to 
detect or enhance the “texture” of the image. Texture measures use a potentially
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complex, usually nonlinear calculation using the pixel values within a neigh-
borhood. From a practical perspective, texture is one of the cues we use (often 
unconsciously) when looking at a remote sensing image in order to identify fea-
tures. Some examples include distinguishing tree cover, examining the type of 
canopy cover, and distinguishing crops. Measures of texture may be used on their 
own or may be useful as inputs to regression, classification, and other analyzes 
when they help distinguish between different types of land cover/land use or other 
features on the landscape. 

There are many ways to assess texture in an image, and a variety of functions 
have been implemented to compute texture in Earth Engine. 

Standard Deviation 
The standard deviation (SD) measures the spread of the distribution of image val-
ues in the neighborhood. A textureless neighborhood, in which there is only one 
value within the neighborhood, has a standard deviation of 0. A neighborhood with 
significant texture will have a high standard deviation, the value of which will be 
influenced by the magnitude of the values within the neighborhood. 

Compute neighborhood SD for the NAIP image by first defining a 7 m radius 
kernel and then using the stdDev reducer with the kernel. 

// Begin Standard Deviation example. 
// Define a big neighborhood with a 7-meter radius kernel. 
var bigKernel = ee.Kernel.square({ 

radius: 7, 
units: 'meters' 

}); 

// Compute SD in a neighborhood. 
var sd = imageNAIP.reduceNeighborhood({ 

reducer: ee.Reducer.stdDev(), 
kernel: bigKernel 

}); 

Map.addLayer(sd, { 
min: 0, 
max: 70 

}, 'SD'); 

The resulting image for our fields somewhat resembles the image for edge 
detection (Fig. 10.12).

You can pan around the example area to find buildings or pasture land and 
examine these features. Notice how local variation and features appear, such as 
the washes (texture variation caused by water) in Fig. 10.13.
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Fig. 10.12 Example of the effects of a standard deviation convolution on an irrigated field in 
NAIP imagery using a 7 m kernel

Fig. 10.13 Example of the effects of a standard deviation convolution on a natural landscape in 
NAIP imagery using a 7 m kernel 

Entropy 
For discrete valued inputs, you can compute entropy in a neighborhood. Broadly, 
entropy is a concept of disorder or randomness. In this case, entropy is an index 
of the numerical diversity in the neighborhood. 

We will compute entropy using the entropy function in Earth Engine and our 
bigKernel structuring element. Notice that if you try to run the entropy on the 
entire NAIP image (imageNAIP), you will get an error that only 32-bit or smaller 
integer types are currently supported. So, let us cast the image to contain an integer 
in every pixel using the int function. We will operate on the near-infrared band 
since it is important for vegetation.
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Fig. 10.14 Example of an entropy convolution of the near-infrared integer band in NAIP imagery 
using a 7 m kernel  

// Begin entropy example. 
// Create an integer version of the NAIP image. 
var intNAIP = imageNAIP.int(); 

// Compute entropy in a neighborhood. 
var entropy = intNAIP.select('N').entropy(bigKernel); 

Map.addLayer(entropy, { 
min: 1, 
max: 3 

}, 'entropy'); 

The resulting entropy image has low values where the 7 m neighborhood around 
a pixel is homogeneous and high values where the neighborhood is heterogeneous 
(Fig. 10.14). 

Gray-Level Co-occurrence Matrices 
The gray-level co-occurrence matrix (GLCM) is based on gray-scale images. It 
evaluates the co-occurrence of similar values occurring horizontally, vertically, or 
diagonally. More formally, the GLCM is computed by forming an M × M matrix 
for an image with M possible DN values, then computing entry i,j as the frequency 
at which DN = i is adjacent to DN = j. In other words, the matrix represents the 
relationship between two adjacent pixels. 

Once the GLCM has been calculated, a variety of texture metrics can be com-
puted based on that matrix. One of these is contrast. To do this, we first use 
the glcmTexture function. This function computes 14 original GLCM met-
rics (Haralick et al. 1973) and four later GLCM metrics (Conners et al.1984). The 
glcmTexture function creates an image where each band is a different metric. Note 
that the input needs to be an integer, so we will use the same integer NAIP layer 
as above, and we need to provide a size for the neighborhood (here, it is 7).



10 Neighborhood-Based Image Transformation 213

// Begin GLCM example. 
// Use the GLCM to compute a large number of texture 
measures. 
var glcmTexture = intNAIP.glcmTexture(7); 
print('view the glcmTexture output', glcmTexture); 

Now let us display the contrast results for the red, green, and blue bands. 
Contrast is the second band and measures the local contrast of an image. 

// Display the 'contrast' results for the red, green and 
blue bands. 
var contrastVis = { 

bands: ['R_contrast', 'G_contrast', 'B_contrast'], 
min: 40, 
max: 1000 

}; 

Map.addLayer(glcmTexture, contrastVis, 'contrast'); 

The resulting image highlights where there are differences in the contrast. For 
example, in Fig. 10.15, we can see that the red band has high contrast within this 
patchy field. 

Spatial Statistics 
Spatial statistics describe the distribution of different events across space and are 
extremely useful for remote sensing (Stein et al. 1998). Uses include anomaly 
detection, topographical analysis including terrain segmentation, and texture anal-
ysis using spatial association, which is how we will use it here. Two interesting

Fig. 10.15 Example of the contrast metric of GLCM for the NIR integer band in NAIP imagery 
using a 7 m kernel  
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texture measures from the field of spatial statistics include local Moran’s I and 
local Geary’s C (Anselin 1995). 

To compute a local Geary’s C with the NAIP image as input, first create a 9 × 
9 kernel and then calculate local Geary’s C. 

// Begin spatial statistics example using Geary's C. 

// Create a list of weights for a 9x9 kernel. 
var list = [1, 1, 1, 1, 1, 1, 1, 1, 1]; 
// The center of the kernel is zero. 
var centerList = [1, 1, 1, 1, 0, 1, 1, 1, 1]; 
// Assemble a list of lists: the 9x9 kernel weights as a 
2-D matrix. 
var lists = [list, list, list, list, centerList, list, 
list, list, list 
]; 
// Create the kernel from the weights. 
// Non-zero weights represent the spatial neighborhood. 
var kernel = ee.Kernel.fixed(9, 9, lists, -4, -4, false); 

Now that we have a kernel, we can calculate the maximum of the four NAIP 
bands and use this with the kernel to calculate local Geary’s C. There is no 
built-in function for Geary’s C in Earth Engine, so we create our own using the 
subtract, pow (power), sum, and divide functions (Chap. 9). 

// Use the max among bands as the input. 
var maxBands = imageNAIP.reduce(ee.Reducer.max()); 

// Convert the neighborhood into multiple bands. 
var neighBands = maxBands.neighborhoodToBands(kernel); 

// Compute local Geary's C, a measure of spatial 
association. 
var gearys = 
maxBands.subtract(neighBands).pow(2).reduce(ee.Reducer 

.sum()) 
.divide(Math.pow(9, 2)); 

Map.addLayer(gearys, { 
min: 20, 
max: 2500 

}, "Geary's C"); 
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Fig. 10.16 Example of Geary’s C for the NAIP imagery using a 9 m kernel 

Inspecting the resulting layer shows that boundaries between fields, building 
outlines, and roads have high values of Geary’s C. This makes sense because 
across bands, there will be high spatial autocorrelation within fields that are 
homogenous, whereas between fields (at the field boundary) the area will be highly 
heterogeneous (Fig. 10.16). 

Code Checkpoint F32d. The book’s repository contains a script that shows what 
your code should look like at this point. 

10.3 Synthesis 

In this chapter, we have explored many different neighborhood-based image trans-
formations. These transformations have practical applications for remote sensing 
image analysis. Using transformation, you can use what you have learned in this 
chapter and in 6 to:

• Use raw imagery (red, green, blue, and near-infrared bands) to create an image 
classification.

• Use neighborhood transformations to create input imagery for an image 
classification and run the image classification.

• Use one or more of the morphological transformations to clean up your image 
classification. 

Assignment 1. Compare and contrast your image classifications when using 
raw imagery compared with using neighborhood transformations. 

Assignment 2. Compare and contrast your unaltered image classification and 
your image classification following morphological transformations.
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10.4 Conclusion 

Neighborhood-based image transformations enable you to extract information 
about each pixel’s neighborhood to perform multiple important operations. Among 
the most important are smoothing, edge detection and definition, morphologi-
cal processing, texture analysis, and spatial analysis. These transformations are 
a foundational part of many larger remote sensing analysis workflows. They may 
be used as imagery pre-processing steps and as individual layers in regression and 
classifications, to inform change detection, and for other purposes. 
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Overview 
Pixel-based classification can include unwanted noise. Techniques for object-based 
image analysis are designed to detect objects within images, making classifications 
that can address this issue of classification noise. In this chapter, you will learn how 
region growing can be used to identify objects in satellite imagery within Earth 
Engine. By understanding how objects can be delineated and treated in an image, 
students can apply this technique to their own images to produce landscape assess-
ments with less extraneous noise. Here, we treat images with an object delineator 
and view the results of simple classifications to view similarities and differences. 
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• Learning about object-based image classification in Earth Engine.
• Controlling noise in images by adjusting different aspects of object segmentation.

M. A. Crowley (B) 
Natural Resources Canada, Canadian Forest Service—Great Lakes Forestry Centre, 1219 Queen 
Street E, Sault Ste Marie, ON, Canada 
e-mail: morgan.crowley@nrcan-rncan.gc.ca 

M. A. Crowley · J. A. Cardille 
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 
Lakeshore, Sainte-Anne-de-Bellevue, QC, Canada 
e-mail: jeffrey.cardille@mcgill.ca 

J. A. Cardille 
Bieler School of Environment, McGill University, 3534 Rue University, Montreal, QC, Canada 

N. Gorelick 
Google Switzerland, Brandschenkestrasse 110, 8002 Zurich, Switzerland 
e-mail: gorelick@google.com 

© The Author(s) 2024 
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine, 
https://doi.org/10.1007/978-3-031-26588-4_11 

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_11&domain=pdf
http://orcid.org/0000-0001-5946-529X
http://orcid.org/0000-0002-4667-9085
http://orcid.org/0000-0002-5548-2436
mailto:morgan.crowley@nrcan-rncan.gc.ca
mailto:jeffrey.cardille@mcgill.ca
mailto:gorelick@google.com
https://doi.org/10.1007/978-3-031-26588-4_11


220 M. A. Crowley et al.

• Understanding differences through time of noise in images.
• Creating and viewing objects from different sensors. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks, 

classify images (Part II).
• Create a function for code reuse (Chap. 1).
• Perform pixel-based supervised and unsupervised classifications (Chap. 6). 

11.1 Introduction to Theory 

Building upon traditional pixel-based classification techniques, object-based image 
analysis classifies imagery into objects using perception-based, meaningful knowl-
edge (Blaschke et al. 2000; Blaschke 2010; Weih and Riggan 2010). Detecting and 
classifying objects in a satellite image are a two-step approach. First, the image 
is segmented using a segmentation algorithm. Second, the landscape objects are 
classified using either supervised or unsupervised approaches. Segmentation algo-
rithms create pixel clusters using imagery information such as texture, color or 
pixel values, shape, and size. Object-based image analysis is especially useful for 
mapping forest disturbances (Blaschke 2010; Wulder et al. 2004) because addi-
tional information and context are integrated into the classification through the 
segmentation process. One object-based image analysis approach available in Earth 
Engine is the Simple Non-Iterative Clustering (SNIC) segmentation algorithm 
(Achanta and Süsstrunk 2017). SNIC is a bottom-up, seed-based segmentation 
algorithm that assembles clusters from neighboring pixels based on parameters of 
compactness, connectivity, and neighborhood size. SNIC has been used in previous 
Earth Engine-based research for mapping land use and land cover (Shafizadeh-
Moghadam et al. 2021; Tassi and Vizzari 2020), wetlands (Mahdianpari et al. 
2018 and 2020, Amani et al. 2019), burned areas (Crowley et al. 2019), sustain-
able development goal indicators (Mariathasan et al. 2019), and ecosystem services 
(Verde et al. 2020). 

11.2 Practicum 

11.2.1 Section 1: Unsupervised Classification 

In earlier chapters (see Chap. 6), you saw how to perform a supervised and unsu-
pervised classification. In this lab, we will focus on object-based segmentation and 
unsupervised classifications—a clean and simple way to look at the spectral and 
spatial variability that is seen by a classification algorithm.
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We will now build a script in several numbered sections, giving you a chance 
to see how it is constructed as well as to observe intermediate and contrasting 
results as you proceed. We will start by defining a function for taking an image 
and breaking it into a set of unsupervised classes. When called, this function will 
divide the image into a specified number of classes, without directly using any 
spatial characteristics of the image. 

Paste the following block into a new script. 

// 1.1 Unsupervised k-Means classification 

// This function does unsupervised clustering classification 
// input = any image. All bands will be used for clustering. 
// numberOfUnsupervisedClusters = tunable parameter for how  

//        many clusters to create. 
var afn_Kmeans = function(input, 
numberOfUnsupervisedClusters, 

defaultStudyArea, nativeScaleOfImage) { 

// Make a new sample set on the input. Here the sample 

// randomly selected spatially. 
var training = input.sample({ 

region: defaultStudyArea, 
scale: nativeScaleOfImage, 
numPixels: 1000 

}); 

var cluster = ee.Clusterer.wekaKMeans( 
numberOfUnsupervisedClusters) 

.train(training); 

// Now apply that clusterer to the raw image that was 
also passed in. 

set is 

var toexport = input.cluster(cluster); 
// The first item is the unsupervised classification. 

Name the band. 
var clusterUnsup = toexport.select(0).rename( 

'unsupervisedClass'); 
return (clusterUnsup); 

}; 

We will also need a function to normalize the band values to a common scale 
from 0 to 1. This will be most useful when we are creating objects. Additionally, 
we will need a function to add the mean to the band name. Paste the following
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functions into your code. Note that, the code numbering skips intentionally from 
1.2 to 1.4; we will add Sect. 1.3 later. 

// 1.2 Simple normalization by maxes function. 
var afn_normalize_by_maxes = function(img, bandMaxes) { 

return img.divide(bandMaxes); 
}; 

// 1.4 Simple add mean to Band Name function 
var afn_addMeanToBandName = (function(i) { 

return i + '_mean'; 
}); 

We will create a section that defines variables that you will be able to adjust. 
One important adjustable parameter is the number of clusters for the clusterer to 
use. Add the following code beneath the function definitions. 

//////////////////////////////////////////////////////////// 
// 2. Parameters to function calls 
//////////////////////////////////////////////////////////// 

// 2.1. Unsupervised KMeans Classification Parameters 
var numberOfUnsupervisedClusters = 4; 

The script will allow you to zoom to a specified area for better viewing and 
exists already in the code repository check points. Add this code below. 

//////////////////////////////////////////////////////////// 
// 2.2. Visualization and Saving parameters 
// For different images, you might want to change the min 
and max 
// values to stretch. Useful for images 2 and 3, the 
normalized images. 
var centerObjectYN = true; 

Now, with these functions, parameters, and flags in place, let us define a new 
image and set image-specific values that will help analyze it. We will put this in 
a new section of the code that contains “if” statements for images from multiple 
sensors. We set up the code like this because we will use several images from 
different sensors in the following sections; therefore, they are preloaded, so all 
that you have to do are to change the parameter “whichImage”. In this particu-
lar Sentinel-2 image, focus on differentiating forest and non-forest regions in the
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Puget Sound, Washington, USA. The script will automatically zoom to the region 
of interest. 

////////////////////////////////////////////////////////// 
// 3. Statements 
////////////////////////////////////////////////////////// 

// 3.1  Selecting Image to Classify 
var whichImage = 1; // will be used to select among images 
if (whichImage == 1) { 

// Image 1. 
// Puget Sound, WA: Forest Harvest 
// (April 21, 2016) 
// Harvested Parcels 
// Clear Parcel Boundaries 
// Sentinel 2, 10m 
var whichCollection = 'COPERNICUS/S2'; 
var ImageToUseID = 

'20160421T191704_20160421T212107_T10TDT'; 
var originalImage = ee.Image(whichCollection + '/' + 
ImageToUseID); 
print(ImageToUseID, originalImage); 
var nativeScaleOfImage = 10; 
var threeBandsToDraw = ['B4', 'B3', 'B2']; 
var bandsToUse = ['B4', 'B3', 'B2']; 
var bandMaxes = [1e4, 1e4, 1e4]; 
var drawMin = 0; 
var drawMax = 0.3; 
var defaultStudyArea = ee.Geometry.Polygon( 

[ 
[ 

[-123.13105468749993, 47.612974066532004], 
[-123.13105468749993, 47.56214700543596], 
[-123.00179367065422, 47.56214700543596], 
[-123.00179367065422, 47.612974066532004] 

] 
]); 

var zoomArea = ee.Geometry.Polygon( 
[ 

[ 
[-123.13105468749993, 47.612974066532004], 
[-123.13105468749993, 47.56214700543596], 
[-123.00179367065422, 47.56214700543596], 
[-123.00179367065422, 47.612974066532004]
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], null, false); 
} 
Map.addLayer(originalImage.select(threeBandsToDraw), { 

min: 0, 
max: 2000 

}, '3.1 '+ ImageToUseID, true, 1); 

] 

Now, let us clip the image to the study area we are interested in, then extract 
the bands to use for the classification process. 

//////////////////////////////////////////////////////////// 
// 4. Image Preprocessing 
//////////////////////////////////////////////////////////// 
var clippedImageSelectedBands = 
originalImage.clip(defaultStudyArea) 

.select(bandsToUse); 
var ImageToUse = 
afn_normalize_by_maxes(clippedImageSelectedBands, 

bandMaxes); 

Map.addLayer(ImageToUse.select(threeBandsToDraw), { 
min: 0.028, 
max: 0.12 

}, 
'4.3 Pre-normalized image', true, 0); 

Now, let us view the per-pixel unsupervised classification, produced using the 
k-means classifier. Note that, as we did earlier, we skip a section of the code 
numbering (moving from Sects. 4 to 6), which we will fill in later as the script is 
developed further.
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//////////////////////////////////////////////////////////// 
// 6. Execute Classifications 
//////////////////////////////////////////////////////////// 

// 6.1 Per Pixel Unsupervised Classification for Comparison 
var PerPixelUnsupervised = afn_Kmeans(ImageToUse, 

numberOfUnsupervisedClusters, defaultStudyArea, 
nativeScaleOfImage); 

Map.addLayer(PerPixelUnsupervised.select('unsupervisedClass' 
) 

.randomVisualizer(), {}, '6.1 Per-Pixel Unsupervised', 
true, 0 
); 
print('6.1b Per-Pixel Unsupervised Results:', 
PerPixelUnsupervised); 

Then, insert this code, so that you can zoom if requested. 

//////////////////////////////////////////////////////////// 
// 7. Zoom if requested 
//////////////////////////////////////////////////////////// 
if (centerObjectYN === true) { 

Map.centerObject(zoomArea, 14); 
} 

Code Checkpoint F33a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Run the script. It will draw the study area in a true-color view (Fig. 11.1), where 
you can inspect the complexity of the landscape as it would have appeared to your 
eye in 2016, when the image was captured.

Note harvested forests of different ages, the spots in the northwest part of the 
study area that might be naturally treeless, and the straight easements for trans-
mission lines in the eastern part of the study area. You can switch Earth Engine to 
satellite view and change the transparency of the drawn layer to inspect what has 
changed in the years since the image was captured. 

As it drew your true-color image, Earth Engine also executed the k-means clas-
sification and added it to your set of layers. Turn up the visibility of layer 6.1 
Per-Pixel Unsupervised, which shows the four-class per-pixel classification result 
using randomly selected colors. The result should look something like Fig. 11.2.

Take a look at the image that was produced, using the transparency slider 
to inspect how well you think the classification captured the variability in 
the landscape and classified similar classes together, then answer the following 
questions.
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Fig. 11.1 True-color Sentinel-2 image from 2016 for the study area

Question 1. In your opinion, what are some of the strengths and weaknesses of 
the map that resulted from your settings? 

Question 2. Part of the image that appears to our eye to represent a single land use 
might be classified by the k-means classification as containing different clusters. 
Is that a problem? Why or why not? 

Question 3. A given unsupervised class might represent more than one land 
use/land cover type in the image. Use the Inspector to find classes for which 
there were these types of overlaps. Is that a problem? Why or why not? 

Question 4. You can change the numberOfUnsupervisedClusters variable 
to be more or less than the default value of 4. Which, if any, of the resulting maps
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Fig. 11.2 Pixel-based unsupervised classification using four-class k-means unsupervised classifi-
cation using bands from the visible spectrum

produce a more satisfying image? Is there an upper limit at which it is hard for 
you to tell whether the classification was successful or not? 

As discussed in earlier chapters, the visible part of the electromagnetic spec-
trum contains only part of the information that might be used for a classification. 
The short-wave infrared bands have been seen in many applications to be more 
informative than the true-color bands. 

Return to your script and find the place where threeBandsToDraw is set. 
That variable is currently set to B4, B3, and B2. Comment out that line and use 
the one below, which will set the variable to B8, B11, and B12. Make the same 
change for the variable bandsToUse. Now, run this modified script, which will
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use three new bands for the classification and also draw them to the screen for 
you to see. You will notice that this band combination provides different contrasts 
among cover types. For example, you might now notice that there are small bodies 
of water and a river in the scene, details that are easy to overlook in a true-color 
image. With numberOfUnsupervisedClusters still set at 4, your resulting 
classification should look like Fig. 11.3. 

Question 5. Did using the bands from outside the visible part of the spectrum 
change any classes so that they are more cleanly separated by land use or land 
cover? Keep in mind that the colors which are randomly chosen in each of the

Fig. 11.3 Pixel-based unsupervised classification using four-class k-means unsupervised classifi-
cation using bands from outside of the visible spectrum 
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images are unrelated—a class colored brown in Fig. 11.2 might well be pink in 
Fig. 11.3. 
Question 6. Experiment with adjusting the numberOfUnsupervised 
Clusters with this new dataset. Is one combination preferable to another, in 
your opinion? Keep in mind that there is no single answer about the usefulness 
of an unsupervised classification beyond asking whether it separates classes of 
importance to the user. 

Code Checkpoint F33b. The book’s repository contains a script that 
shows what your code should look like at this point. In that code, the 
numberOfUnsupervisedClusters is set to 4, and the infrared bands are 
used as part of the classification process. 

11.2.2 Section 2: Detecting Objects in Imagery with the SNIC 
Algorithm 

The noise you noticed in the pixel-based classification will now be improved using 
a two-step approach for object-based image analysis. First, you will segment the 
image using the SNIC algorithm, and then, you will classify it using a k-means 
unsupervised classifier. Return to your script, where we will add a new function. 
Noting that the code’s sections are numbered, find code Sect. 1.2 and add the 
function below beneath it. 

// 1.3 Seed Creation and SNIC segmentation Function 
var afn_SNIC = function(imageOriginal, SuperPixelSize, 
Compactness, 

Connectivity, NeighborhoodSize, SeedShape) { 
var theSeeds = 

ee.Algorithms.Image.Segmentation.seedGrid( 
SuperPixelSize, SeedShape); 

var snic2 = ee.Algorithms.Image.Segmentation.SNIC({ 
image: imageOriginal, 
size: SuperPixelSize, 
compactness: Compactness, 
connectivity: Connectivity, 
neighborhoodSize: NeighborhoodSize, 
seeds: theSeeds 

}); 
var theStack = snic2.addBands(theSeeds); 
return (theStack); 

};
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As you see, the function assembles parameters needed for running SNIC 
(Achanta and Süsstrunk 2017; Crowley et al. 2019), the function that delineates 
objects in an image. A call to SNIC takes several parameters that we will explore. 
Add the following code below code Sect. 2.2. 

// 2.3 Object-growing parameters to change 
// Adjustable Superpixel Seed and SNIC segmentation Parameters: 
// The superpixel seed location spacing, in pixels. 
var SNIC_SuperPixelSize = 16; 
// Larger values cause clusters to be more compact 
(square/hexagonal). 
// Setting this to 0 disables spatial distance weighting. 
var SNIC_Compactness = 0; 
// Connectivity. Either 4 or 8. 
var SNIC_Connectivity = 4; 
// Either 'square' or 'hex'. 
var SNIC_SeedShape = 'square'; 

// 2.4 Parameters that can stay unchanged 
// Tile neighborhood size (to avoid tile boundary artifacts). 
Defaults to 2 * size. 
var SNIC_NeighborhoodSize = 2 * SNIC_SuperPixelSize; 

Now, add a call to the SNIC function. You will notice that it takes the param-
eters specified in code Sect. 11.2.2 and sends them to the SNIC algorithm. Place 
the code below into the script as the code’s Sect. 11.2.5, between Sects. 4 and 6.
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//////////////////////////////////////////////////////////// 
// 5. SNIC Clustering 
//////////////////////////////////////////////////////////// 

// This function returns a multi-banded image that has had 
SNIC 
// applied to it. It automatically determine the new names 
// of the bands that will be returned from the segmentation. 
print('5.1 Execute SNIC'); 
var SNIC_MultiBandedResults = afn_SNIC( 

ImageToUse, 
SNIC_SuperPixelSize, 
SNIC_Compactness, 
SNIC_Connectivity, 
SNIC_NeighborhoodSize, 
SNIC_SeedShape 

); 

var SNIC_MultiBandedResults = SNIC_MultiBandedResults 
.reproject('EPSG:3857', null, nativeScaleOfImage); 

print('5.2 SNIC Multi-Banded Results', 
SNIC_MultiBandedResults); 

Map.addLayer(SNIC_MultiBandedResults.select('clusters') 
.randomVisualizer(), {}, '5.3 SNIC Segment Clusters', 

true, 1); 

var theSeeds = SNIC_MultiBandedResults.select('seeds'); 
Map.addLayer(theSeeds, { 

palette: 'red' 
}, '5.4 Seed points of clusters', true, 1); 

var bandMeansToDraw = 
threeBandsToDraw.map(afn_addMeanToBandName); 
print('5.5 band means to draw', bandMeansToDraw); 
var clusterMeans = 
SNIC_MultiBandedResults.select(bandMeansToDraw); 
print('5.6 Cluster Means by Band', clusterMeans); 
Map.addLayer(clusterMeans, { 

min: drawMin, 
max: drawMax 

}, '5.7 Image repainted by segments', true, 0); 

Now, run the script. It will draw several layers, with the one shown in Fig. 11.4 
on top.
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Fig. 11.4 SNIC clusters, with randomly chosen colors for each cluster 

This shows the work of SNIC on the image sent to it—in this case, on the 
composite of bands 8, 11, and 12. If you look closely at the multicolored layer, 
you can see small red “seed” pixels. To initiate the process, these seeds are created 
and used to form square or hexagonal “superpixels” at the spacing given by the 
parameters passed to the function. The edges of these blocks are then pushed and 
pulled and directed to stop at edges in the input image. As part of the algorithm, 
some superpixels are then merged to form larger blocks, which is why you will 
find that some of the shapes contain two or more seed pixels. 

Explore the structure by changing the transparency of layer 5 to judge how the 
image segmentation performs for the given set of parameter values. You can also 
compare layer 5.7–layer 3.1. Layer 5.7 is a reinterpretation of layer 3.1 in which
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every pixel in a given shape of layer 5.3 is assigned the mean value of the pixels 
inside the shape. When parameterized in a way that is useful for a given project 
goal, parts of the image that are homogeneous will get the same color, while areas 
of high heterogeneity will get multiple colors. 

Now, spend some time exploring the effect of the parameters that control the 
code’s behavior. Use your tests to answer the questions below. 

Question 7. What is the effect on the SNIC clusters of changing the parameter 
SNIC_SuperPixelSize? 

Question 8. What is the effect of changing the parameter SNIC_Compactness? 

Question 9. What are the effects of changing the parameters 
SNIC_Connectivity and SNIC_SeedShape? 

Code Checkpoint F33c. The book’s repository contains a script that shows what 
your code should look like at this point. 

11.2.3 Section 3: Object-Based Unsupervised Classification 

The k-means classifier used in this tutorial is not aware that we would often pre-
fer to have adjacent pixels to be grouped into the same class—it has no sense of 
physical space. This is why you see the noise in the unsupervised classification. 
However, because we have re-colored the pixels in a SNIC cluster to all share 
the exact same band values, k-means will group all pixels of each cluster to have 
the same class. In the best-case scenario, this allows us to enhance our classi-
fication from being pixel-based to reveal clean and unambiguous objects in the 
landscape. In this section, we will classify these objects, exploring the strengths 
and limitations of finding objects in this image. 

Return the SNIC settings to their first values, namely: 

// The superpixel seed location spacing, in pixels. 
var SNIC_SuperPixelSize = 16; 
// Larger values cause clusters to be more compact 
(square/hexagonal). 
// Setting this to 0 disables spatial distance weighting. 
var SNIC_Compactness = 0; 
// Connectivity. Either 4 or 8. 
var SNIC_Connectivity = 4; 
// Either 'square' or 'hex'. 
var SNIC_SeedShape = 'square'; 

As code Sect. 6.2, add this code, which will call the SNIC function and draw 
the results.
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// 6.2 SNIC Unsupervised Classification for Comparison 
var bandMeansNames = bandsToUse.map(afn_addMeanToBandName); 
print('6.2 band mean names returned by segmentation', 
bandMeansNames); 
var meanSegments = 
SNIC_MultiBandedResults.select(bandMeansNames); 
var SegmentUnsupervised = afn_Kmeans(meanSegments, 

numberOfUnsupervisedClusters, defaultStudyArea, 
nativeScaleOfImage); 

Map.addLayer(SegmentUnsupervised.randomVisualizer(), {}, 
'6.3 SNIC Clusters Unsupervised', true, 0); 

print('6.3b Per-Segment Unsupervised Results:', 
SegmentUnsupervised); 
//////////////////////////////////////////////////////////// 

When you run the script, that new function will classify the image in layer 5.7, 
which is the recoloring of the original image according to the segments shown in 
layer 5. Compare the classification of the superpixels (6.3) with the unsupervised 
classification of the pixel-by-pixel values (6.1). You should be able to change the 
transparency of those two layers to compare them directly. 

Question 10. What are the differences between the unsupervised classifications 
of the per-pixel and SNIC-interpreted images? Describe the tradeoff between 
removing noise and erasing important details. 

Code Checkpoint F33d. The book’s repository contains a script that shows what 
your code should look like at this point. 

11.2.4 Section 4: Classifications with More or Less Categorical 
Detail 

Recall the variable numberOfUnsupervisedClusters, which directs the k-
means algorithm to partition the dataset into that number of classes. Because the 
colors are chosen randomly for layer 6.3, any change to this number typically 
results in an entirely different color scheme. Changes in the color scheme can 
also occur if you were to use a slightly different study area size between two 
runs. Although this can make it hard to compare the results of two unsupervised 
algorithms, it is a useful reminder that the unsupervised classification labels do not 
necessarily correspond to a single land use/land cover type. 

Question 11. Find the numberOfUnsupervisedClusters variable in the 
code and set it to different values. You might test it across powers of two: 2, 4, 
8, 16, 32, and 64 clusters will all look visually distinct. In your opinion, does one 
of them best discriminate between the classes in the image? Is there a particular 
number of colors that is too complicated for you to understand?
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Question 12. What concrete criteria could you use to determine whether a 
particular unsupervised classification is good or bad for a given goal? 

11.2.5 Section 5: Effects of SNIC Parameters 

The number of classes controls the partition of the landscape for a given 
set of SNIC clusters. The four parameters of SNIC, in turn, influence the 
spatial characteristics of the clusters produced for the image. Adjust the 
four parameters of SNIC: SNIC_SuperPixelSize, SNIC_Compactness, 
SNIC_Connectivity, and SNIC_SeedShape. Although their workings can 
be complex, you should be able to learn what characteristics of the SNIC clustering 
they control by changing each one individually. At that point, you can explore the 
effects of changing multiple values for a single run. Recall that the ultimate goal 
of this workflow is to produce an unsupervised classification of landscape objects, 
which may relate to the SNIC parameters in very complex ways. You may want 
to start by focusing on the effect of the SNIC parameters on the cluster character-
istics (layer 5.3) and then look at the associated unsupervised classification layer 
6. 

Question 13. What is the effect on the unsupervised classification of SNIC clusters 
of changing the parameter SNIC_SuperPixelSize? 

Question 14. What is the effect of changing the parameter 
SNIC_Compactness? 

Question 15. What are the effects of changing the parameters 
SNIC_Connectivity and SNIC_SeedShape? 

Question 16. For this image, what is the combination of parameters that, in your 
subjective judgment, best captures the variability in the scene while minimizing 
unwanted noise? 

11.3 Synthesis 

Assignment 1. Additional images from other remote sensing platforms can be 
found in script F33s1 in the book’s repository. Run the classification procedure on 
these images and compare the results from multiple parameter combinations. 

Assignment 2. Although this exercise was designed to remove or minimize spatial 
noise, it does not treat temporal noise. With a careful choice of imagery, you can 
explore the stability of these methods and settings for images from different dates. 
Because the MODIS sensor, for example, can produce images on consecutive days, 
you would expect that the objects identified in a landscape would be nearly iden-
tical from one day to the next. Is this the case? To go deeper, you might contrast 
temporal stability as measured by different sensors. Are some sensors more stable
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in their object creation than others? To go even deeper, you might consider how 
you would quantify this stability using concrete measures that could be compared 
across different sensors, places, and times. What would these measures be? 

11.4 Conclusion 

Object-based image analysis is a method for classifying satellite imagery by 
segmenting neighboring pixels into objects using pre-segmented objects. The iden-
tification of candidate image objects is readily available in Earth Engine using the 
SNIC segmentation algorithm. In this chapter, you applied the SNIC segmentation 
and the unsupervised k-means algorithm to satellite imagery. You illustrated how 
the segmentation and classification parameters can be customized to meet your 
classification objective and to reduce classification noise. Now that you under-
stand the basics of detecting and classifying image objects in Earth Engine, you 
can explore further by applying these methods on additional data sources. 
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Part IV 

Interpreting Image Series 

One of the paradigm-changing features of Earth Engine is the ability to access 
decades of imagery without the previous limitation of needing to download all the 
data to a local disk for processing. Because remote-sensing data files can be enor-
mous, this used to limit many projects to viewing two or three images from different 
periods. With Earth Engine, users can access tens or hundreds of thousands of images 
to understand the status of places across decades.
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Jeffrey A. Cardille 

Overview 
The purpose of this chapter is to teach you important programming concepts as they 
are applied in Earth Engine. We first illustrate how the order and type of these opera-
tions can matter with a real-world, non-programming example. We then demonstrate 
these concepts with anImageCollection, a key data type that distinguishes Earth 
Engine from desktop image processing implementations. 

Learning Outcomes

• Visualizing the concepts of filtering, mapping, and reducing with a hypothetical, 
non-programming example.

• Gaining context and experience with filtering an ImageCollection.
• Learning how to efficiently map a user-written function over the images of a 

filtered ImageCollection.
• Learning how to summarize a set of assembled values using Earth Engine reducers. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks 

(Part II).
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12.1 Introduction to Theory 

Prior chapters focused on exploring individual images—for example, viewing the 
characteristics of single satellite images by displaying different combinations of 
bands (Chap. 2), viewing single images from different datasets (Chap 3, and 4), 
and exploring image processing principles (Parts II, III) as they are implemented 
for cloud-based remote sensing in Earth Engine. Each image encountered in those 
chapters was pulled from a larger assemblage of images taken from the same 
sensor. The chapters used a few ways to narrow down the number of images in 
order to view just one for inspection (Part I) or manipulation (Part II, Part III). 

In this chapter and most of the chapters that follow, we will move from the 
domain of single images to the more complex and distinctive world of working 
with image collections, one of the fundamental data types within Earth Engine. 
The ability to conceptualize and manipulate entire image collections distinguishes 
Earth Engine and gives it considerable power for interpreting change and stability 
across space and time. 

When looking for change or seeking to understand differences in an area 
through time, we often proceed through three ordered stages, which we will color 
code in this first explanatory part of the lab: 

1. Filter:: selecting subsets of images based on criteria of interest. 
2. Map: : manipulating each image in a set in some way to suit our goals. 
3. Reduce:: estimating characteristics of the time series. 

For users of other programming languages—R, MATLAB, C, Karel, and many 
others—this approach might seem awkward at first. We explain it below with a 
non-programming example: going to the store to buy milk. 

Suppose you need to go shopping for milk, and you have two criteria for deter-
mining where you will buy your milk: location and price. The store needs to be 
close to your home, and as a first step in deciding whether to buy milk today, you 
want to identify the lowest price among those stores. You do not know the cost of 
milk at any store ahead of time, so you need to efficiently contact each one and 
determine the minimum price to know whether it fits in your budget. If we were 
discussing this with a friend, we might say, “I need to find out how much milk 
costs at all the stores around here”. To solve that problem in a programming lan-
guage, these words imply precise operations on sets of information. We can write 
the following “pseudocode”, which uses words that indicate logical thinking but 
that cannot be pasted directly into a program: 

AllStoresOnEarth.filterNearbyStores.filterStoresWithMilk.getMilkPricesFromEach 
Store.determineTheMinimumValue 

Imagine doing these actions not on a computer but in a more old-fashioned 
way: calling on the telephone for milk prices, writing the milk prices on paper,
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and inspecting the list to find the lowest value. In this approach, we begin with 
AllStoresOnEarth, since there is at least some possibility that we could decide to 
visit any store on Earth, a set that could include millions of stores, with prices 
for millions or billions of items. A wise first action would be to limit ourselves to 
nearby stores. Asking to filterNearbyStores would reduce the number of potential 
stores to hundreds, depending on how far we are willing to travel for milk. Then, 
working with that smaller set, we further filterStoresWithMilk, limiting ourselves 
to stores that sell our target item. At that point in the filtering, imagine that just ten 
possibilities remain. Then, by telephone, we getMilkPricesFromEachStore, making 
a short paper list of prices. We then scan the list to determineTheMinimumValue 
to decide which store to visit. 

In that example, each color plays a different role in the workflow. The 
AllStoresOnEarth set, any one of which might contain inexpensive milk, is an enor-
mous collection. The filtering actions filterNearbyStores and filterStoresWithMilk 
are operations that can happen on any set of stores. These actions take a set of 
stores, do some operation to limit that set, and return that smaller set of stores as 
an answer. The action to getMilkPricesFromEachStore takes a simple idea—calling 
a store for a milk price—and “maps” it over a given set of stores. Finally, with the 
list of nearby milk prices assembled, the action to determineTheMinimumValue , a  
general idea that could be applied to any list of numbers, identifies the cheapest 
one. 

The list of steps above might seem almost too obvious, but the choice and order 
of operations can have a big impact on the feasibility of the problem. Imagine if 
we had decided to do the same operations in a slightly different order: 

AllStoresOnEarth.filterStoresWithMilk.getMilkPricesFromEachStore.filterNearbyStor 
es.determineMinimumValue 

In this approach, we first identify all the stores on Earth that have milk, then 
contact them one by one to get their current milk price. If the contact is done by 
phone, this could be a painfully slow process involving millions of phone calls. It 
would take considerable “processing” time to make each call and careful work to 
record each price onto a giant list. Processing the operations in this order would 
demand that only after entirely finishing the process of contacting every milk pro-
prietor on Earth, we then identify the ones on our list that are not nearby enough 
to visit, then scan the prices on the list of nearby stores to find the cheapest one. 
This should ultimately give the same answer as the more efficient first example, 
but only after requiring so much effort that we might want to give up. 

In addition to the greater order of magnitude of the list size, you can see that 
there are also possible slow points in the process. Could you make a million phone 
calls yourself? Maybe, but it might be pretty appealing to hire, say, 1000 people to 
help. While being able to make a large number of calls in parallel would speed up 
the calling stage, it is important to note that you would need to wait for all 1000 
callers to return their sublists of prices. Why wait? Nearby stores could be on any
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caller’s sublist, so any caller might be the one to find the lowest nearby price. The 
identification of the lowest nearby price would need to wait for the slowest caller, 
even if it turned out that all of that last caller’s prices came from stores on the 
other side of the world. 

This counterexample would also have other complications—such as the need to 
track store locations on the list of milk prices—that could present serious problems 
if you did those operations in that unwise order. For now, the point is to filter, then 
map, then reduce. Below, we will apply these concepts to image collections. 

12.2 Practicum 

12.2.1 Section 1: Filtering Image Collections in Earth Engine 

The first part of the filter, map, reduce paradigm is “filtering” to get a smaller 
ImageCollection from a larger one. As in the milk example, filters take a 
large set of items, limit it by some criterion, and return a smaller set for consid-
eration. Here, filters take an ImageCollection, limit it by some criterion of 
date, location, or image characteristics, and return a smaller ImageCollection 
(Fig. 12.1). 

As described first in Chap. 3, the Earth Engine API provides a set of filters 
for the ImageCollection type. The filters can limit an ImageCollection 
based on spatial, temporal, or attribute characteristics. Filters were used in Parts 
I, II, and III without much context or explanation, to isolate an image from 
an ImageCollection for inspection or manipulation. The information below

Fig. 12.1 Filter, map, reduce as applied to image collections in Earth Engine 
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should give perspective on that work while introducing some new tools for filtering 
image collections. 

Below are three examples of limiting a Landsat 5 ImageCollection by 
characteristics and assessing the size of the resulting set. 

FilterDate This takes an ImageCollection as input and returns an 
ImageCollection whose members satisfy the specified date criteria. We will 
adapt the earlier filtering logic seen in Chap. 3: 

var imgCol = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2'); 
// How many Tier 1 Landsat 5 images have ever been collected? 
print("All images ever: ", imgCol.size()); // A very large 
number 

// How many images were collected in the 2000s? 
var startDate = '2000-01-01'; 
var endDate = '2010-01-01'; 

var imgColfilteredByDate = imgCol.filterDate(startDate, 
endDate); 
print("All images 2000-2010: ", imgColfilteredByDate.size()); 
// A smaller (but still large) number 

After running the code, you should get a very large number for the full set of 
images. You also will likely get a very large number for the subset of images over 
the decade-scale interval. 

FilterBounds It may be that—similar to the milk example—only images near to a 
place of interest are useful for you. As first presented in Part I, filterBounds 
takes an ImageCollection as input and returns an ImageCollection 
whose images surround a specified location. If we take the ImageCollection 
that was filtered by date and then filter it by bounds, we will have filtered the 
collection to those images near a specified point within the specified date interval. 
With the code below, we will count the number of images in the Shanghai vicinity, 
first visited in Chap. 2, from the early 2000s: 

var ShanghaiImage = ee.Image( 
'LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606'); 

Map.centerObject(ShanghaiImage, 9); 

var imgColfilteredByDateHere = 
imgColfilteredByDate.filterBounds(Map 

.getCenter()); 
print("All images here, 2000-2010: ", imgColfilteredByDateHere 
.size()); // A smaller number
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If you could like, you could take a few minutes to explore the behavior of the 
script in different parts of the world. To do that, you would need to comment 
out the Map.centerObject command to keep the map from moving to that 
location each time you run the script. 

Filter by Other Image Metadata As first explained in Chap. 4, the date and 
location of an image are characteristics stored with each image. Another important 
factor in image processing is the cloud cover, an image-level value computed for 
each image in many collections, including the Landsat and Sentinel-2 collections. 
The overall cloudiness score might be stored under different metadata tag names 
in different datasets. For example, for Sentinel-2, this overall cloudiness score is 
stored in the CLOUDY_PIXEL_PERCENTAGE metadata field. For Landsat 5, the 
ImageCollection we are using in this example, the image-level cloudiness 
score is stored using the tag CLOUD_COVER. If you are unfamiliar with how to 
find this information, these skills are first presented in Part I. 

Here, we will access the ImageCollection that we just built using 
filterBounds and filterDate and then further filter the images by the 
image-level cloud cover score, using the filterMetadata function. 

Next, let us remove any images with 50% or more cloudiness. As will be 
described in subsequent chapters working with per-pixel cloudiness information, 
you might want to retain those images in a real-life study, if you feel some values 
within cloudy images might be useful. For now, to illustrate the filtering con-
cept, let us keep only images whose image-level cloudiness values indicate that 
the cloud coverage is lower than 50%. Here, we will take the set already filtered 
by bounds and date and further filter it using the cloud percentage into a new 
ImageCollection. Add this line to the script to filter by cloudiness and print 
the size to the Console. 

var L5FilteredLowCloudImages = imgColfilteredByDateHere 
.filterMetadata('CLOUD_COVER', 'less_than', 50); 

print("Less than 50% clouds in this area, 2000-2010", 
L5FilteredLowCloudImages.size()); // A smaller number 

Filtering in an Efficient Order As you saw earlier in the hypothetical milk exam-
ple, we typically filter, then map, and then reduce, in that order. In the same way 
that we would not want to call every store on Earth, preferring instead to narrow 
down the list of potential stores first, we filter images first in our workflow in Earth 
Engine. In addition, you may have noticed that the ordering of the filters within the 
filtering stage also mattered in the milk example. This is also true in Earth Engine. 
For problems with a non-global spatial component in which filterBounds is 
to be used, it is most efficient to do that spatial filtering first. 

In the code below, you will see that you can “chain” the filter commands, which 
are then executed from left to right. Below, we chain the filters in the same order
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as you specified above. Note that, it gives an ImageCollection of the same 
size as when you applied the filters one at a time. 

var chainedFilteredSet = imgCol.filterDate(startDate, endDate) 
.filterBounds(Map.getCenter()) 
.filterMetadata('CLOUD_COVER', 'less_than', 50); 

print('Chained: Less than 50% clouds in this area, 2000-2010', 
chainedFilteredSet.size()); 

In the code below, we chain the filters in a more efficient order, implementing 
filterBounds first. This, too, gives an ImageCollection of the same size 
as when you applied the filters in the less efficient order, whether the filters were 
chained or not. 

var efficientFilteredSet = imgCol.filterBounds(Map.getCenter()) 
.filterDate(startDate, endDate) 
.filterMetadata('CLOUD_COVER', 'less_than', 50); 

print('Efficient filtering: Less than 50% clouds in this area, 
2000-2010', 

efficientFilteredSet.size()); 

Each of the two chained sets of operations will give the same result as before for 
the number of images. While the second order is more efficient, both approaches 
are likely to return the answer to the Code Editor at roughly the same time for this 
very small example. The order of operations is most important in larger problems 
in which you might be challenged to manage memory carefully. As in the milk 
example in which you narrowed geographically first, it is good practice in Earth 
Engine to order the filters with the filterBounds first, followed by metadata 
filters in order of decreasing specificity. 

Code Checkpoint F40a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Now, with an efficiently filtered collection that satisfies our chosen criteria, we 
will next explore the second stage: executing a function for all of the images in 
the set. 

12.2.2 Section 2: Mapping over Image Collections in Earth Engine 

In Chap. 9, we calculated the Enhanced Vegetation Index (EVI) in very small steps 
to illustrate band arithmetic on satellite images. In that chapter, code was called 
once, on a single image. What if we wanted to compute the EVI in the same way 
for every image of an entire ImageCollection? Here, we use the key tool for
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the second part of the workflow in Earth Engine, a .map command (Fig. 12.1). 
This is roughly analogous to the step of making phone calls in the milk example 
that began this chapter, in which you took a list of store names and transformed it 
through effort into a list of milk prices. 

Before beginning to code the EVI functionality, it is worth noting that the word 
“map” is encountered in multiple settings during cloud-based remote sensing, and 
it is important to be able to distinguish the uses. A good way to think of it is 
that “map” can act as a verb or as a noun in Earth Engine. There are two uses 
of “map” as a noun. We might refer casually to “the map” or more precisely to 
“the Map panel”; these terms refer to the place where the images are shown in 
the code interface. A second way “map” is used as a noun which is to refer to 
an Earth Engine object, which has functions that can be called on it. Examples of 
this are the familiar Map.addLayer and Map.setCenter. Where that use of 
the word is intended, it will be shown in purple text and capitalized in the Code 
Editor. What we are discussing here is the use of .map as a verb, representing the 
idea of performing a set of actions repeatedly on a set. This is typically referred 
to as “mapping over the set”. 

To map a given set of operations efficiently over an entire 
ImageCollection, the processing needs to be set up in a particular way. 
Users familiar with other programming languages might expect to see “loop” 
code to do this, but the processing is not done exactly that way in Earth Engine. 
Instead, we will create a function and then map it over the ImageCollection. 
To begin, envision creating a function that takes exactly one parameter, an 
ee.Image. The function is then designed to perform a specified set of operations 
on the input ee.Image and then, importantly, returns an ee.Image as the last 
step of the function. When we map that function over an ImageCollection, as  
we will illustrate below, the effect is that we begin with an ImageCollection, 
do operations to each image, and receive a processed ImageCollection as 
the output. 

What kinds of functions could we create? For example, you could imagine a 
function taking an image and returning an image whose pixels have the value 1 
where the value of a given band was lower than a certain threshold and 0 otherwise. 
The effect of mapping this function would be an entire ImageCollection of 
images with zeroes and ones representing the results of that test on each image. 
Or, you could imagine a function computing a complex self-defined index and 
sending back an image of that index calculated in each pixel. Here, we will create 
a function to compute the EVI for any input Landsat 5 image and return the one-
band image for which the index is computed for each pixel. Copy and paste the 
function definition below into the Code Editor, adding it to the end of the script 
from the previous section.
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var makeLandsat5EVI = function(oneL5Image) { 
// compute the EVI for any Landsat 5 image. Note it's 

specific to 
// Landsat 5 images due to the band numbers. Don't run this 

exact 
// function for images from sensors other than Landsat 5. 

// Extract the bands and divide by 1e4 to account for 
scaling done. 

var nirScaled = oneL5Image.select('SR_B4').divide(10000); 
var redScaled = oneL5Image.select('SR_B3').divide(10000); 
var blueScaled = oneL5Image.select('SR_B1').divide(10000); 

// Calculate the numerator, note that order goes from left 
to right. 

var numeratorEVI = (nirScaled.subtract(redScaled)).multiply( 
2.5); 

// Calculate the denominator 
var denomClause1 = redScaled.multiply(6); 
var denomClause2 = blueScaled.multiply(7.5); 
var denominatorEVI = nirScaled.add(denomClause1).subtract( 

denomClause2).add(1); 

// Calculate EVI and name it. 
var landsat5EVI = 

numeratorEVI.divide(denominatorEVI).rename( 
'EVI'); 

return (landsat5EVI); 
}; 

It is worth emphasizing that, in general, band names are specific to each 
ImageCollection. As a result, if that function was run on an image without 
the band ‘SR_B4’, for example, the function call would fail. Here, we have empha-
sized in the function’s name that it is specifically for creating EVI for Landsat 
5. 

The function makeLandsat5EVI is built to receive a single image, select the 
proper bands for calculating EVI, make the calculation, and return a one-banded 
image. If we had the name of each image comprising our ImageCollection, 
we could enter the names into the Code Editor and call the function one at a 
time for each, assembling the images into variables and then combining them 
into an ImageCollection. This would be very tedious and highly prone to 
mistakes: lists of items might get mistyped, an image might be missed, etc. Instead, 
as mentioned above, we will use .map. With the code below, let us print the 
information about the cloud-filtered collection and display it, execute the .map 
command, and explore the resulting ImageCollection.
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var L5EVIimages = efficientFilteredSet.map(makeLandsat5EVI); 
print('Verifying that the .map gives back the same number of 
images: ', 

L5EVIimages.size()); 
print(L5EVIimages); 

Map.addLayer(L5EVIimages, {}, 'L5EVIimages', 1, 1); 

After entering and executing this code, you will see a grayscale image. If you 
look closely at the edges of the image, you might spot other images drawn behind it 
in a way that looks somewhat like a stack of papers on a table. This is the drawing 
of the ImageCollection made from the makeLandsat5EVI function. You 
can select the Inspector panel and click on one of the grayscale pixels to view 
the values of the entire ImageCollection. After clicking on a pixel, look for 
the Series tag by opening and closing the list of items. When you open that 
tag, you will see a chart of the EVI values at that pixel, created by mapping the 
makeLandsat5EVI function over the filtered ImageCollection. 

Code Checkpoint F40b. The book’s repository contains a script that shows what 
your code should look like at this point. 

12.2.3 Section 3: Reducing an Image Collection 

The third part of the filter, map, reduce paradigm is “reducing” values in an 
ImageCollection to extract meaningful values (Fig. 12.1). In the milk exam-
ple, we reduced a large list of milk prices to find the minimum value. The Earth 
Engine API provides a large set of reducers for reducing a set of values to a 
summary statistic. 

Here, you can think of each location, after the calculation of EVI has been 
executed through the .map command, as having a list of EVI values on it. Each 
pixel contains a potentially very large set of EVI values; the stack might be 15 
items high in one location and perhaps 200, 2000, or 200,000 items high in another 
location, especially if a looser set of filters had been used. 

The code below computes the mean value, at every pixel, of the 
ImageCollection L5EVIimages created above. Add it at the bottom of your 
code. 

var L5EVImean = L5EVIimages.reduce(ee.Reducer.mean()); 
print(L5EVImean); 
Map.addLayer(L5EVImean, { 

min: -1, 
max: 2, 
palette: ['red', 'white', 'green'] 

}, 'Mean EVI');
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Using the same principle, the code below computes and draws the median value 
of the ImageCollection in every pixel. 

var L5EVImedian = L5EVIimages.reduce(ee.Reducer.median()); 
print(L5EVImedian); 
Map.addLayer(L5EVImedian, { 

min: -1, 
max: 2, 
palette: ['red', 'white', 'green'] 

}, 'Median EVI'); 

There are many more reducers that work with an ImageCollection to pro-
duce a wide range of summary statistics. Reducers are not limited to returning 
only one item from the reduction. The minMax reducer, for example, returns a 
two-band image for each band it is given, one for the minimum and one for the 
maximum. 

The reducers described here treat each pixel independently. In subsequent chap-
ters in Part IV, you will see other kinds of reducers—for example, ones that 
summarize the characteristics in the neighborhood surrounding each pixel. 

Code Checkpoint F40c. The book’s repository contains a script that shows what 
your code should look like at this point. 

12.3 Synthesis 

Assignment 1. Compare the mean and median images produced in Sect. 3 
(Fig. 12.2). In what ways do they look different, and in what ways do they look 
alike? To understand how they work, pick a pixel and inspect the EVI values 
computed. In your opinion, which is a better representative of the dataset?

Assignment 2. Adjust the filters to filter a different proportion of clouds or a 
different date range. What effects do these changes have on the number of images 
and the look of the reductions made from them? 

Assignment 3. Explore the ee.Filter options in the API documentation, and 
select a different filter that might be of interest. Filter images using it, and comment 
on the number of images and the reductions made from them. 

Assignment 4. Change the EVI function so that it returns the original image 
with the EVI band appended by replacing the return statement with this: return 
(oneL5Image.addBands(landsat5EVI)). 

What does the median reducer return in that case? Some EVI values are 0. 
What are the conditions in which this occurs?
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Fig. 12.2 Effects of two reducers on mapped EVI values in a filtered ImageCollection: mean 
image (above) and median image (below)
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Assignment 5. Choose a date and location that is important to you (e.g., your 
birthday and your place of birth). Filter Landsat imagery to get all the low-
cloud imageries at your location within 6 months of the date. Then, reduce 
the ImageCollection to find the median EVI. Describe the image and how 
representative of the full range of values it is, in your opinion. 

12.4 Conclusion 

In this chapter, you learned about the paradigm of filter, map, reduce. You learned 
how to use these tools to sift through, operate on, and summarize a large set of 
images to suit your purposes. Using the Filter functionality, you learned how to 
take a large ImageCollection and filter away images that do not meet your 
criteria, retaining only those images that match a given set of characteristics. Using 
the Map functionality, you learned how to apply a function to each image in an 
ImageCollection, treating each image one at a time and executing a requested 
set of operations on each. Using the Reduce functionality, you learned how to 
summarize the elements of an ImageCollection, extracting summary values 
of interest. In the subsequent chapters of Part IV, you will encounter these concepts 
repeatedly, manipulating image collections according to your project needs using 
the building blocks seen here. By building on what you have done in this chapter, 
you will grow in your ability to do sophisticated projects in Earth Engine. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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13Exploring Image Collections 

Gennadii Donchyts 

Overview 
This chapter teaches how to explore image collections, including their spatiotemporal 
extent, resolution, and values stored in images and image properties. You will learn 
how to map and inspect image collections using maps, charts, and interactive tools 
and how to compute different statistics of values stored in image collections using 
reducers. 

Learning Outcomes

• Inspecting the spatiotemporal extent and resolution of image collections by 
mapping image geometry and plotting image time properties.

• Exploring properties of images stored in an ImageCollection by plotting 
charts and deriving statistics.

• Filtering image collections by using stored or computed image properties.
• Exploring the distribution of values stored in image pixels of an 
ImageCollection through percentile reducers. 

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks 

(Part 2).
• Summarize an ImageCollection with reducers (Chap. 12).
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13.1 Practicum 

In the previous chapter (Chap. 12), the filter, map, reduce paradigm was introduced. 
The main goal of this chapter is to demonstrate some of the ways that those con-
cepts can be used within Earth Engine to better understand the variability of values 
stored in image collections. Section 13.1.1 demonstrates how time-dependent val-
ues stored in the images of an ImageCollection can be inspected using the 
Code Editor user interface after filtering them to a limited spatiotemporal range 
(i.e., geometry and time ranges). Section 13.1.2 shows how the extent of images, 
as well as basic statistics, such as the number of observations, can be visualized 
to better understand the spatiotemporal extent of image collections. Then, Sects. 
13.1.3 and 13.1.4 demonstrate how simple reducers such as mean and median and 
more advanced reducers such as percentiles can be used to better understand how 
the values of a filtered ImageCollection are distributed. 

13.1.1 Section 1: Filtering and Inspecting an Image Collection 

We will focus on the area in and surrounding Lisbon, Portugal. Below, we will 
define a point, lisbonPoint, located in the city; access the very large Landsat 
ImageCollection and limit it to the year 2020 and to the images that contain 
Lisbon; and select bands 6, 5, and 4 from each of the images in the resulting 
filtered ImageCollection. 

// Define a region of interest as a point in Lisbon, Portugal. 
var lisbonPoint = ee.Geometry.Point(-9.179473, 38.763948); 

// Center the map at that point. 
Map.centerObject(lisbonPoint, 16); 

// filter the large ImageCollection to be just images from 2020 
// around Lisbon. From each image, select true-color bands to 
draw 
var filteredIC = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') 

.filterDate('2020-01-01', '2021-01-01') 

.filterBounds(lisbonPoint) 

.select(['B6', 'B5', 'B4']); 

// Add the filtered ImageCollection so that we can inspect 
values 
// via the Inspector tool 
Map.addLayer(filteredIC, {}, 'TOA image collection');
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The three selected bands (which correspond to SWIR1, NIR, and Red) display a 
false-color image that accentuates differences between different land covers (e.g., 
concrete, vegetation) in Lisbon. With the Inspector tab highlighted (Fig. 13.1), 
clicking on a point will bring up the values of bands 6, 5, and 4 from each of the 
images. If you open the Series option, you will see the values through time. For 
the specified point and for all other points in Lisbon (since they are all enclosed in 
the same Landsat scene), there are 16 images gathered in 2020. By following one 
of the graphed lines (in blue, yellow, or red) with your finger, you should be able 
to count that many distinct values. Moving the mouse along the lines will show 
the specific values and the image dates. 

We can also show this kind of chart automatically by making use of the 
ui.Chart function of the Earth Engine API. The following code snippet should 
result in the same chart as we could observe in the Inspector tab, assuming that 
the same pixel is clicked.

Fig. 13.1 Inspect values in an ImageCollection at a selected point by making use of the 
Inspector tool in the Code Editor 
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// Construct a chart using values queried from image 
collection. 
var chart = ui.Chart.image.series({ 

imageCollection: filteredIC, 
region: lisbonPoint, 
reducer: ee.Reducer.first(), 
scale: 10 

}); 

// Show the chart in the Console. 
print(chart); 

Code Checkpoint F41a. The book’s repository contains a script that shows what 
your code should look like at this point. 

13.1.2 Section 2: How Many Images Are There, Everywhere 
on Earth? 

Suppose we are interested to find out how many valid observations we have at 
every map pixel on Earth for a given ImageCollection. This enormously com-
putationally demanding task is surprisingly easy to do in Earth Engine. The API 
provides a set of reducer functions to summarize values to a single number in 
each pixel, as described in Chap. 12. We can apply this reducer, count, to our 
filtered ImageCollection with the code below. We will return to the same 
dataset and filter for 2020, but without the geographic limitation. This will assem-
ble images from all over the world and then count the number of images in each 
pixel. The following code does that count and adds the resulting image to the map 
with a predefined red/yellow/green color palette stretched between values 0 and 
50. Continue pasting the code below into the same script.
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// compute and show the number of observations in an image 
collection 
var count = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') 

.filterDate('2020-01-01', '2021-01-01') 

.select(['B6']) 

.count(); 

// add white background and switch to HYBRID basemap 
Map.addLayer(ee.Image(1), { 

palette: ['white'] 
}, 'white', true, 0.5); 
Map.setOptions('HYBRID'); 

// show image count 
Map.addLayer(count, { 

min: 0, 
max: 50, 
palette: ['d7191c', 'fdae61', 'ffffbf', 'a6d96a', 

'1a9641'] 
}, 'landsat 8 image count (2020)'); 

// Center the map at that point. 
Map.centerObject(lisbonPoint, 5); 

Run the command and zoom out. If the count of images over the entire Earth 
is viewed, the resulting map should look like Fig. 13.2. The created map data may 
take a few minutes to fully load in.

Note the checkered pattern, somewhat reminiscent of a Mondrian painting. To 
understand why the image looks this way, it is useful to consider the overlapping 
image footprints. As Landsat passes over, each image is wide enough to produce 
substantial “sidelap” with the images from the adjacent paths, which are collected 
at different dates according to the satellite’s orbit schedule. In the north–south 
direction, there is also some overlap to ensure that there are no gaps in the data. 
Because these are served as distinct images and stored distinctly in Earth Engine, 
you will find that there can be two images from the same day with the same value 
for points in these overlap areas. Depending on the purposes of a study, you might 
find a way to ignore the duplicate pixel values during the analysis process. 

You might have noticed that we summarized a single band from the original 
ImageCollection to ensure that the resulting image would give a single count 
in each pixel. The count reducer operates on every band passed to it. Since every 
image has the same number of bands, passing an ImageCollection of all 
seven Landsat bands to the count reducer would have returned seven identical 
values of 16 for every point. To limit any confusion from seeing the same number 
seven times, we selected one of the bands from each image in the collection. In 
your own work, you might want to use a different reducer, such as a median
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Fig. 13.2 Number of Landsat 8 images acquired during 2020

operation, that would give different, useful answers for each band. A few of these 
reducers are described below. 

Code Checkpoint F41b. The book’s repository contains a script that shows what 
your code should look like at this point. 

13.1.3 Section 3: Reducing Image Collections to Understand 
Band Values 

As we have seen, you could click at any point on Earth’s surface and see both the 
number of Landsat images recorded there in 2020 and the values of any image in 
any band through time. This is impressive and perhaps mind-bending, given the 
enormous amount of data in play. In this section and the next, we will explore 
two ways to summarize the numerical values of the bands—one straightforward
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way and one more complex but highly powerful way to see what information is 
contained in image collections. 

First, we will make a new layer that represents the mean value of each band 
in every pixel across every image from 2020 for the filtered set, add this layer to 
the layer set, and explore again with the Inspector. The previous section’s count 
reducer was called directly using a sort of simple shorthand, that could be done 
similarly here by calling mean on the assembled bands. In this example, we will 
use the reducer to get the mean using the more general reduce call. Continue 
pasting the code below into the same script. 

// Zoom to an informative scale for the code that follows. 
Map.centerObject(lisbonPoint, 10); 

// Add a mean composite image. 
var meanFilteredIC = filteredIC.reduce(ee.Reducer.mean()); 
Map.addLayer(meanFilteredIC, {}, 

'Mean values within image collection'); 

Now, let us look at the median value for each band among all the values gath-
ered in 2020. Using the code below, calculate the median and explore the image 
with the Inspector. Compare this image briefly to the mean image by eye and by 
clicking in a few pixels in the Inspector. They should have different values, but 
in most places they will look very similar. 

// Add a median composite image. 
var medianFilteredIC = filteredIC.reduce(ee.Reducer.median()); 
Map.addLayer(medianFilteredIC, {}, 

'Median values within image collection'); 

There is a wide range of reducers available in Earth Engine. If you are curious 
about which reducers can be used to summarize band values across a collection of 
images, use the Docs tab in the Code Editor to list all reducers and look for those 
beginning with ee.Reducer. 

Code Checkpoint F41c. The book’s repository contains a script that shows what 
your code should look like at this point.



262 G. Donchyts

13.1.4 Section 4: Compute Multiple Percentile Images 
for an Image Collection 

One particularly useful reducer that can help you better understand the vari-
ability of values in image collections is ee.Reducer.percentile. The 
nth percentile gives the value that is the nth largest in a set. In this con-
text, you can imagine accessing all of the values for a given band in a given 
ImageCollection for a given pixel and sorting them. The 30th percentile, for 
example, is the value 30% of the way along the list from smallest to largest. This 
provides an easy way to explore the variability of the values in image collections 
by computing a cumulative density function of values on a per-pixel basis. The 
following code shows how we can calculate a single 30th percentile on a per-pixel 
and per-band basis for our Landsat 8 ImageCollection. Continue pasting the 
code below into the same script. 

// compute a single 30% percentile 
var p30 = filteredIC.reduce(ee.Reducer.percentile([30])); 

Map.addLayer(p30, { 
min: 0.05, 
max: 0.35 

}, '30%'); 

We can see that the resulting composite image (Fig. 4.1.3) has almost no cloudy 
pixels present for this area. This happens because cloudy pixels usually have higher 
reflectance values. At the lowest end of the values, other unwanted effects like 
cloud or hill shadows typically have very low-reflectance values. This is why this 
30th percentile composite image looks so much cleaner than the mean composite 
image (meanFilteredIC) calculated earlier. Note that, the reducers operate 
per-pixel: adjacent pixels are drawn from different images. This means that one 
pixel’s value could be taken from an image from one date, and the adjacent pixel’s 
value drawn from an entirely different period. Although, like the mean and median 
images, percentile images such as that seen in Fig. 13.3 never existed on a single 
day, composite images allow us to view Earth’s surface without the noise that can 
make analysis difficult.

We can explore the range of values in an entire ImageCollection by view-
ing a series of increasingly bright percentile images, as shown in Fig. 13.4. Paste 
and run the following code.
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Fig. 13.3 Landsat 8 TOA reflectance 30th percentile image computed for ImageCollection 
with images acquired during 2020

var percentiles = [0, 10, 20, 30, 40, 50, 60, 70, 80]; 

// let's compute percentile images and add them as separate 
layers 
percentiles.map(function(p) { 

var image = 
filteredIC.reduce(ee.Reducer.percentile([p])); 

Map.addLayer(image, { 
min: 0.05, 
max: 0.35 

}, p + '%'); 
}); 

Note that, the code adds every percentile image as a separate map layer, so you 
need to go to the Layers control and show/hide different layers to explore dif-
ferences. Here, we can see that low-percentile composite images depict darker, 
low-reflectance land features, such as water and cloud or hill shadows, while 
higher-percentile composite images (> 70% in our example) depict clouds and 
any other atmospheric or land effects corresponding to bright reflectance values.



264 G. Donchyts

Fig. 13.4 Landsat 8 TOA reflectance percentile composite images

Earth Engine provides a very rich API, allowing users to explore image col-
lections to better understand the extent and variability of data in space, time, and 
across bands, as well as tools to analyze values stored in image collections in a 
frequency domain. Exploring these values in different forms should be the first 
step of any study before developing data analysis algorithms. 

Code Checkpoint F41d. The book’s repository contains a script that shows what 
your code should look like at this point. 

13.2 Synthesis 

In the example above, the 30th percentile composite image would be useful for 
typical studies that need cloud-free data for analysis. The “best” composite to use, 
however, will depend on the goal of a study, the characteristics of the given dataset, 
and the location being viewed. You can imagine choosing different percentile com-
posite values if exploring image collections over the Sahara Desert or over Congo, 
where cloud frequency would vary substantially (Wilson and Jetz 2016).
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Assignment 1. Noting that your own interpretation of what constitutes a good 
composite is subjective, create a series of composites of a different location, or 
perhaps a pair of locations, for a given set of dates. 

Assignment 2. Filter to create a relevant dataset—for example, for Landsat 8 or 
Sentinel-2 over an agricultural growing season. Create percentile composites for a 
given location. Which image composite is the most satisfying, and what type of 
project do you have in mind when giving that response? 

Assignment 3. Do you think it is possible to generalize about the relationship 
between the time window of an ImageCollection and the percentile value 
that will be the most useful for a given project, or will every region need to be 
inspected separately? 

13.3 Conclusion 

In this chapter, you have learned different ways to explore image collections using 
Earth Engine in addition to looking at individual images. You have learned that 
image collections in Earth Engine may have global footprints as well as images 
with a smaller, local footprint, and how to visualize the number of images in a 
given filtered ImageCollection. You have learned how to explore the tempo-
ral and spatial extent of images stored in image collections and how to quickly 
examine the variability of values in these image collections by computing simple 
statistics like mean or median, as well as how to use a percentile reducer to better 
understand this variability. 
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Ujaval Gandhi 

Overview 
Many remote sensing datasets consist of repeated observations over time. The inter-
val between observations can vary widely. The Global Precipitation Measurement 
dataset, for example, produces observations of rain and snow worldwide every three 
hours. The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) 
project produces a gridded global dataset at the daily level and also for each five-day 
period (Funk et al. 2015). The Landsat 8 mission produces a new scene of each loca-
tion on Earth every 16 days. With its constellation of two satellites, the Sentinel-2 
mission images every location every five days. 

Many applications, however, require computing aggregations of data at time inter-
vals different from those at which the datasets were produced. For example, for 
determining rainfall anomalies, it is useful to compare monthly rainfall against a 
long-period monthly average. 

While individual scenes are informative, many days are cloudy, and it is use-
ful to build a robust cloud-free time series for many applications. Producing less 
cloudy or even cloud-free composites can be done by aggregating data to form 
monthly, seasonal, or yearly composites built from individual scenes. For example, 
if you are interested in detecting long-term changes in an urban landscape, creating 
yearly median composites can enable you to detect change patterns across long time 
intervals with less worry about day-to-day noise. 

This chapter will cover the techniques for aggregating individual images from a 
time series at a chosen interval. We will take the CHIRPS time series of rainfall for 
one year and aggregate it to create a monthly rainfall time series.
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Learning Outcomes

• Using the Earth Engine API to work with dates.
• Aggregating values from an ImageCollection to calculate monthly, seasonal, 

or yearly images.
• Plotting the aggregated time series at a given location. 

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Create a graph using ui.Chart (Chap. 4).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13).
• Inspect an Image and an ImageCollection, as well as their properties 

(Chap. 13). 

14.1 Introduction to Theory 

CHIRPS is a high-resolution global gridded rainfall dataset that combines satellite-
measured precipitation with ground station data in a consistent, long time-series 
dataset. The data are provided by the University of California, Santa Barbara, and 
are available from 1981 to the present. This dataset is extremely useful in drought 
monitoring and assessing global environmental change over land. The satellite data 
are calibrated with ground station observations to create the final product. 

In this exercise, we will work with the CHIRPS dataset using the pentad. A  
pentad represents the grouping of five days. There are six pentads in a calendar 
month, with five pentads of exactly five days each and one pentad with the remain-
ing three to six days of the month. Pentads reset at the beginning of each month, 
and the first day of every month is the start of a new pentad. Values at a given 
pixel in the CHIRPS dataset represent the total precipitation in millimeters over 
the pentad. 

14.2 Practicum 

14.2.1 Section 1: Filtering an Image Collection 

We will start by accessing the CHIRPS pentad collection and filtering it to create 
a time series for a single year.
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var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 
var startDate = '2019-01-01'; 
var endDate = '2020-01-01'; 
var yearFiltered = chirps.filter(ee.Filter.date(startDate, 
endDate)); 

print(yearFiltered, 'Date-filtered CHIRPS images'); 

The CHIRPS collection contains one image for every pentad. The filtered col-
lection above is filtered to contain one year, which equates to 72 global images. 
If you expand the printed collection in the Console, you will be able to see the 
metadata for individual images; note that, their date stamps indicate that they are 
spaced evenly every five days (Fig. 14.1). 

Each image’s pixel values store the total precipitation during the pentad. With-
out aggregation to a period that matches other datasets, these layers are not very 
useful. For hydrological analysis, we typically need the total precipitation for each 
month or for a season. Let us aggregate this collection so that we have 12 images— 
one image per month, with pixel values that represent the total precipitation for 
that month.

Fig. 14.1 CHIRPS time series for one year 
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Code Checkpoint F42a. The book’s repository contains a script that shows what 
your code should look like at this point. 

14.2.2 Section 2: Working with Dates 

To aggregate the time series, we need to learn how to create and manipulate dates 
programmatically. This section covers some functions from the ee.Date module 
that will be useful. 

The Earth Engine API has a function called ee.Date.fromYMD that is 
designed to create a date object from year, month, and day values. The fol-
lowing code snippet shows how to define a variable containing the year value and 
create a date object from it. Paste the following code in a new script: 

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 
var year = 2019; 
var startDate = ee.Date.fromYMD(year, 1, 1); 

Now, let us determine how to create an end date in order to be able to specify 
a desired time interval. The preferred way to create a date relative to another date 
is using the advance function. It takes two parameters—a delta value and the 
unit of time—and returns a new date. The code below shows how to create a 
date one year in the future from a given date. Paste it into your script. 

var endDate = startDate.advance(1, 'year'); 

Next, paste the code below to perform filtering of the CHIRPS data using these 
calculated dates. After running it, check that you had accurately set the dates by 
looking for the dates of the images inside the printed result. 

var yearFiltered = chirps 
.filter(ee.Filter.date(startDate, endDate)); 

print(yearFiltered, 'Date-filtered CHIRPS images'); 

Another date function that is very commonly used across Earth Engine is 
millis. This function takes a date object and returns the number of milliseconds 
since the arbitrary reference date of the start of the year 1970: 1970-01-
01T00:00:00Z. This is known as the “Unix Timestamp”; it is a standard way 
to convert dates to numbers and allows for easy comparison between dates with 
high precision. Earth Engine objects store the timestamps for images and features
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in special properties called system:time_start and system:time_end. 
Both of these properties need to be supplied with a number instead of dates, and 
the millis function can help you to do that. You can print the result of calling 
this function and check for yourself. 

print(startDate, 'Start date'); 
print(endDate, 'End date'); 

print('Start date as timestamp', startDate.millis()); 
print('End date as timestamp', endDate.millis()); 

We will use the millis function in the next section when we need to set the 
system:time_start and system:time_end properties of the aggregated 
images. 

Code Checkpoint F42b. The book’s repository contains a script that shows what 
your code should look like at this point. 

14.2.3 Section 3: Aggregating Images 

Now, we can start aggregating the pentads into monthly sums. The process of 
aggregation has two fundamental steps. The first is to determine the beginning and 
ending dates of one time interval (in this case, one month), and the second is to 
sum up all of the values (in this case, the pentads) that fall within each interval. To 
begin, we can envision that the resulting series will contain 12 images. To prepare 
to create an image for each month, we create an ee.List of values from 1 to 
12. We can use the ee.List.sequence function, as first presented in Chap. 1, 
to create the list of items of type ee.Number. Continuing with the script of the 
previous section, paste the following code: 

// Aggregate this time series to compute monthly images. 
// Create a list of months 
var months = ee.List.sequence(1, 12); 

Next, we write a function that takes a single month as the input and returns an 
aggregated image for that month. Given beginningMonth as an input parame-
ter, we first create a start and end date for that month based on the year and month 
variables. Then, we filter the collection to find all images for that month. To create 
a monthly precipitation image, we apply ee.Reducer.sum to reduce the six 
pentad images for a month to a single image holding the summed value across the 
pentads. We also expressly set the timestamp properties system:time_start
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and system:time_end of the resulting summed image. We can also set year 
and month, which will help us to filter the resulting collection later. 

// Write a function that takes a month number 
// and returns a monthly image. 
var createMonthlyImage = function(beginningMonth) { 

var startDate = ee.Date.fromYMD(year, beginningMonth, 1); 
var endDate = startDate.advance(1, 'month'); 
var monthFiltered = yearFiltered 

.filter(ee.Filter.date(startDate, endDate)); 

// Calculate total precipitation. 
var total = monthFiltered.reduce(ee.Reducer.sum()); 
return total.set({ 

'system:time_start': startDate.millis(), 
'system:time_end': endDate.millis(), 
'year': year, 
'month': beginningMonth 

}); 
}; 

We now have an ee.List containing items of type ee.Number from 1 to 
12, with a function that can compute a monthly aggregated image for each month 
number. All that is left to do are to map the function over the list. As described 
in Chaps. 12 and 13, the map function passes over each image in the list and 
runs createMonthlyImage. The function first receives the number “1” and 
executes, returning an image to Earth Engine. Then, it runs on the number “2” and 
so on for all 12 numbers. The result is a list of monthly images for each month of 
the year. 

// map() the function on the list of months 
// This creates a list with images for each month in the list 
var monthlyImages = months.map(createMonthlyImage); 

We can create an ImageCollection from this ee.List of images using 
the ee.ImageCollection.fromImages function. 

// Create an ee.ImageCollection. 
var monthlyCollection = 
ee.ImageCollection.fromImages(monthlyImages); 
print(monthlyCollection);
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We have now successfully computed an aggregated collection from the 
source ImageCollection by filtering, mapping, and reducing, as described 
in Chaps. 12 and 13. Expand the printed collection in the Console, and you can 
verify that we now have 12 images in the newly created ImageCollection 
(Fig. 14.2). 

Code Checkpoint F42c. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 14.2 Aggregated time series 
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14.2.4 Section 4: Plotting Time Series 

One useful application of gridded precipitation datasets is to analyze rainfall pat-
terns. We can plot a time-series chart for a location using the newly computed 
time series. We can plot the pixel value at any given point or polygon. Here, we 
create a point geometry for a given coordinate. Continuing with the script of the 
previous section, paste the following code: 

// Create a point with coordinates for the city of 
Bengaluru, India. 
var point = ee.Geometry.Point(77.5946, 12.9716); 

Earth Engine comes with a built-in ui.Chart.image.series function that 
can plot time series. In addition to the imageCollection and region param-
eters, we need to supply a scale value. The CHIRPS data catalog page indicates 
that the resolution of the data is 5566 m, so we can use that as the scale. The 
resulting chart is printed in the Console. 

var chart = ui.Chart.image.series({ 
imageCollection: monthlyCollection, 
region: point, 
reducer: ee.Reducer.mean(), 
scale: 5566, 

}); 
print(chart); 

We can make the chart more informative by adding axis labels and a title. The 
setOptions function allows us to customize the chart using parameters from 
Google Charts. To customize the chart, paste the code below at the bottom of your 
script. The effect will be to see two charts in the editor: one with the old view of 
the data and one with the customized chart.
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var chart = ui.Chart.image.series({ 
imageCollection: monthlyCollection, 
region: point, 
reducer: ee.Reducer.mean(), 
scale: 5566 

}).setOptions({ 
lineWidth: 1, 
pointSize: 3, 
title: 'Monthly Rainfall at Bengaluru', 
vAxis: { 

title: 'Rainfall (mm)' 
}, 
hAxis: { 

title: 'Month', 
gridlines: { 

count: 12 
} 

} 
}); 
print(chart); 

The customized chart (Fig. 14.3) shows the typical rainfall pattern in the city 
of Bengaluru, India. Bengaluru has a temperate climate, with pre-monsoon rains 
in April and May cooling down the city and a moderate monsoon season lasting 
from June to September. 

Code Checkpoint F42d. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 14.3 Monthly rainfall chart 
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14.3 Synthesis 

Assignment 1. The CHIRPS collection contains data for 40 years. Aggregate the 
same collection to yearly images and create a chart for annual precipitation from 
1981 to 2021 at your chosen location. 

Instead of creating a list of months and writing a function to create monthly 
images, we will create a list of years and write a function to create yearly images. 
The code snippet below will help you get started. 

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 

// Create a list of years 
var years = ee.List.sequence(1981, 2021); 

// Write a function that takes a year number 
// and returns a yearly image 
var createYearlyImage = function(beginningYear) { 

// Add your code 
}; 

var yearlyImages = years.map(createYearlyImage); 
var yearlyCollection = 
ee.ImageCollection.fromImages(yearlyImages); 
print(yearlyCollection); 

14.4 Conclusion 

In this chapter, you learned how to aggregate a collection to months and plot the 
resulting time series for a location. This chapter also introduced useful functions 
for working with the dates that will be used across many different applications. 
You also learned how to iterate over a list using the map function. The technique 
of mapping a function over a list or collection is essential for processing data. 
Mastering this technique will allow you to scale your analysis using the parallel 
computing capabilities of Earth Engine. 
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Overview 
The purpose of this chapter is to provide necessary context and demonstrate different 
approaches for image composite generation when using data quality flags, using an 
initial example of removing cloud cover. We will examine different filtering options, 
demonstrate an approach for cloud masking, and provide additional opportunities 
for image composite development. Pixel selection for composite development can 
exclude unwanted pixels—such as those impacted by cloud, shadow, and smoke or 
haze—and can also preferentially select pixels based upon proximity to a target date 
or a preferred sensor type.
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Learning Outcomes

• Understanding and applying satellite-specific cloud mask functions.
• Incorporating images from different sensors.
• Using focal functions to fill in data gaps. 

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

2).
• Use band scaling factors (Chap. 9).
• Perform pixel-based transformations (Chap. 9).
• Use neighborhood-based image transformations (Chap. 10).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13). 

15.1 Introduction to Theory 

Satellite remote sensing is an ideal source of data for monitoring large or remote 
regions. However, cloud cover is one of the most common limitations of opti-
cal sensors in providing continuous time series of data for surface mapping and 
monitoring. This is particularly relevant in tropical, polar, mountainous, and high-
latitude areas, where clouds are often present. Many studies have addressed the 
extent to which cloudiness can restrict the monitoring of various regions (Zhu and 
Woodcock 2012, 2014; Eberhardt et al. 2016; Martins et al. 2018). 

Clouds and cloud shadows reduce the view of optical sensors and completely 
block or obscure the spectral response from Earth’s surface (Cao et al. 2020). 
Working with pixels that are cloud-contaminated can significantly influence the 
accuracy and information content of products derived from a variety of remote 
sensing activities, including land cover classification, vegetation modeling, and 
especially change detection, where unscreened clouds might be mapped as false 
changes (Braaten et al. 2015; Zhu et al. 2015). Thus, the information provided by 
cloud detection algorithms is critical to exclude clouds and cloud shadows from 
subsequent processing steps. 

Historically, cloud detection algorithms derived the cloud information by con-
sidering a single date image and sun illumination geometry (Irish et al. 2006; 
Huang et al. 2010). In contrast, current, more accurate cloud detection algorithms 
are based on the analysis of Landsat time series (Zhu and Woodcock 2014; Zhu 
and Helmer 2018). Cloud detection algorithms inform on the presence of clouds, 
cloud shadows, and other atmospheric conditions (e.g., presence of snow). The 
presence and extent of cloud contamination within a pixel are currently provided 
with Landsat and Sentinel-2 images as ancillary data via quality flags at the pixel
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level. Additionally, quality flags inform on acquisition-related conditions, includ-
ing radiometric saturation and terrain occlusion, which enables us to assess the 
usefulness and convenience of inclusion of each pixel in subsequent analyses. The 
quality flags are ideally suited to reduce users’ manual supervision and maximize 
the automatic processing approaches. 

Most automated algorithms (for classification or change detection, for example) 
work best on images free of clouds and cloud shadows, that cover the full area 
without spatial or spectral inconsistencies. Thus, the image representation over the 
study area should be seamless, containing as few data gaps as possible. Image 
compositing techniques are primarily used to reduce the impact of clouds and 
cloud shadows, as well as aerosol contamination, view angle effects, and data 
volumes (White et al. 2014). Compositing approaches typically rely on the outputs 
of cloud detection algorithms and quality flags to include or exclude pixels from 
the resulting composite products (Roy et al. 2010). Epochal image composites 
help overcome the limited availability of cloud-free imagery in some areas and are 
constructed by considering the pixels from all images acquired in a given period 
(e.g., season, year). 

The information provided by the cloud masks and pixel flags guides the estab-
lishment of rules to rank the quality of the pixels based on the presence of and 
distance of clouds, cloud shadows, or atmospheric haze (Griffiths et al. 2013). 
Higher scores are assigned to pixels with more desirable conditions, based on the 
presence of clouds and other acquisition circumstances, such as acquisition date or 
sensor. Pixels with the highest scores are included in subsequent composite devel-
opment. Image compositing approaches enable users to define the rules that are 
most appropriate for their particular information needs and study area to gener-
ate imagery covering large areas instead of being limited to the analysis of single 
scenes (Hermosilla et al. 2015; Loveland and Dwyer 2012). Moreover, generat-
ing image composites at regular intervals (e.g., annually) allows for the analysis 
of long temporal series over large areas, fulfilling a critical information need for 
monitoring programs. 

15.2 Practicum 

The general workflow to generate a cloud-free composite involves: 

1. Defining your area of interest (AOI). 
2. Filtering (ee.Filter) the satellite ImageCollection to desired parame-

ters. 
3. Applying a cloud mask. 
4. Reducing (ee.Reducer) the collection to generate a composite. 
5. Using the GEE-BAP application to generate annual best-available-pixel image 

composites by globally combining multiple Landsat sensors and images.
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Additional steps may be necessary to improve the composite generated. These 
steps will be explained in the following sections. 

15.2.1 Section 1: Cloud Filter and Cloud Mask 

The first step is to define your AOI and center the map. The goal is to create a 
nationwide composite for the country of Colombia. We will use the Large-Scale 
International Boundary (2017) simplified dataset from the US Department of State 
(USDOS), which contains polygons for all countries of the world. 

// ---------- Section 1 -----------------

// Define the AOI. 
var country = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017') 

.filter(ee.Filter.equals('country_na', 'Colombia')); 

// Center the Map. The second parameter is zoom level. 
Map.centerObject(country, 5); 

We will start creating a composite from the Landsat 8 collection. First, we 
define two time variables: startDate and endDate. Here, we will create a 
composite for the year 2019. Then, we will define a collection for the Landsat 8 
Level 2, Collection 2, Tier 1 variable and filter it to our AOI and time period. We 
define and use a function to apply scaling factors to the Landsat 8 Collection 2 
data.
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// Define time variables. 
var startDate = '2019-01-01'; 
var endDate = '2019-12-31'; 

// Load and filter the Landsat 8 collection. 
var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterBounds(country) 

.filterDate(startDate, endDate); 

// Apply scaling factors. 
function applyScaleFactors(image) { 

var opticalBands = 
image.select('SR_B.').multiply(0.0000275).add(-0.2); 

var thermalBands = 
image.select('ST_B.*').multiply(0.00341802) 

.add(149.0); 
return image.addBands(opticalBands, null, true) 

.addBands(thermalBands, null, true); 
} 

landsat8 = landsat8.map(applyScaleFactors); 

To create a composite we will use the median function, which has the same 
effect as writing reduce(ee.Reducer.median()) as seen in Chap. 12, 
to reduce our ImageCollection to a median composite. Add the resulting 
composite to the map using visualization parameters. 

// Create composite. 
var composite = landsat8.median().clip(country); 

var visParams = { 
bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 0, 
max: 0.2 

}; 
Map.addLayer(composite, visParams, 'L8 Composite');
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The resulting composite (Fig. 15.1) has lots of clouds, especially in the western, 
mountainous regions of Colombia. In tropical regions, it is very challenging to gen-
erate a high-quality, cloud-free composite without first filtering images for cloud 
cover, even if our collection is constrained to only include images acquired dur-
ing the dry season. Therefore, we will filter our collection by the CLOUD_COVER 
parameter to avoid cloudy images, starting with images that have less than 50% 
cloud cover. 

Fig. 15.1 Landsat 8 surface reflectance 2019 median composite of Colombia
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// Filter by the CLOUD_COVER property. 
var landsat8FiltClouds = landsat8 

.filterBounds(country) 

.filterDate(startDate, endDate) 

.filter(ee.Filter.lessThan('CLOUD_COVER', 50)); 

// Create a composite from the filtered imagery. 
var compositeFiltClouds = 
landsat8FiltClouds.median().clip(country); 

Map.addLayer(compositeFiltClouds, visParams, 
'L8 Composite cloud filter'); 

// Print size of collections, for comparison. 
print('Size landsat8 collection', landsat8.size()); 
print('Size landsat8FiltClouds collection', 
landsat8FiltClouds.size()); 

This new composite (Fig. 15.2) looks slightly better than the previous one, but it 
is still very cloudy. Remember to turn off the first layer or adjust the transparency 
to only visualize this new composite. The code prints the size of these collec-
tions, using the size function, to see how many images were left out after we 
applied the cloud cover threshold. (There are 1201 images in the landsat8 col-
lection, compared to 493 in the landsat8FiltClouds collection—indicating 
that many images have cloud cover greater than or equal to 50%.)

Try adjusting the CLOUD_COVER threshold in the landsat8FiltClouds 
variable to different percentages and checking the results. For example, with the 
threshold set to 20% (Fig. 15.3), you can see that many parts of the country have 
image gaps. (Remember to turn off the first layer or adjust its transparency; you 
can also set the shown parameter in the Map.addLayer function to false, so the  
layer does not automatically load.) So, there is a trade-off between a stricter cloud 
cover threshold and data availability. Additionally, even with a cloud filter, some 
areas still present cloud cover.

This is due to persistent cloud cover in some regions of Colombia. However, 
a cloud mask can be applied to improve the results. The Landsat 8 Collection 2 
contains a quality assessment (QA) band called QA_PIXEL that provides useful 
information on certain conditions within the data and allows users to apply per-
pixel filters. Each pixel in the QA band contains unsigned integers that represent 
bit-packed combinations of surface, atmospheric, and sensor conditions.
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Fig. 15.2 Landsat 8 surface reflectance 2019 median composite of Colombia filtered by cloud 
cover less than 50%

We will also use the QA_RADSAT band, which indicates which bands are radio-
metrically saturated. A pixel value of 1 means saturated, so we will be masking 
these pixels.
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Fig. 15.3 Landsat 8 surface reflectance 2019 median composite of Colombia filtered by cloud 
cover less than 20%

As described in Chap. 12, we will create a function to apply a cloud mask to 
an image and then map this function over our collection. The mask is applied by 
using the updateMask function. This function excludes undesired pixels from 
the analysis, i.e., makes them transparent, by taking the mask as the input. You 
will see that this cloud mask function (or similar versions) is used in other chapters 
of the book. Note: Remember to set the cloud cover threshold back to 50 in the 
landsat8FiltClouds variable.
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// Define the cloud mask function. 
function maskSrClouds(image) { 

// Bit 0 - Fill 
// Bit 1 - Dilated Cloud 
// Bit 2 - Cirrus 
// Bit 3 - Cloud 
// Bit 4 - Cloud Shadow 
var qaMask = 

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 
2)).eq(0); 

var saturationMask = image.select('QA_RADSAT').eq(0); 

return image.updateMask(qaMask) 
.updateMask(saturationMask); 

} 

// Apply the cloud mask to the collection. 
var landsat8FiltMasked = landsat8FiltClouds.map(maskSrClouds); 

// Create a composite. 
var landsat8compositeMasked = 
landsat8FiltMasked.median().clip(country); 

Map.addLayer(landsat8compositeMasked, visParams, 'L8 composite 
masked'); 

Since we are dealing with bits, in the maskSrClouds function, we utilized the 
bitwiseAnd and parseInt functions. These functions unpack the bit infor-
mation. A bitwise AND is a binary operation that takes two equal length binary 
representations and performs the logical AND operation on each pair of corre-
sponding bits. Thus, if both bits in the compared positions have the value 1, the 
bit in the resulting binary representation is 1 (1× 1 = 1); otherwise, the result is 0 
(1×0 = 0 and 0 × 0 = 0). The parseInt function parses a string argument (in 
our case, five-character string ‘11111’) and returns an integer of the specified 
numbering system, base 2. 

The resulting composite (Fig. 15.4) shows masked clouds and is more spatially 
exhaustive in coverage compared to previous composites (recall to uncheck the 
previous layers). This is because, when compositing all the images into one, we 
are not considering cloudy pixels anymore, and so the resulting pixels are an actual 
representation of the landscape. However, data gaps due to cloud cover still persist. 
If an annual composite is not specifically required, a first approach is to create a 
two-year composite in order to mitigate the presence of data gaps or to have a 
series of rules that allows for selecting pixels for that particular year. Change the 
startDate variable to 2018-01-01 to include all images from 2018 and 2019 
in the collection. How does the cloud-masked composite (Fig. 15.5) compare to 
the 2019 one?
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Fig. 15.4 Landsat 8 surface reflectance 2019 median composite of Colombia filtered by cloud 
cover less than 50% and with cloud mask applied

The resulting image has substantially fewer data gaps (you can zoom in to 
better see them). Again, if the time period is not a constraint for the creation of 
your composite, you can incorporate more images from a third year, and so on. 

Code Checkpoint F43a. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 15.5 One-year, startDate variable set to 2019-01-01, (left) and two-year, 
startDate variable set to 2018-01-01, (right) median composites with 50% cloud cover 
threshold and cloud mask applied

15.2.2 Section 2: Incorporating Data from Other Satellites 

Another option to reduce the presence of data gaps in cloudy situations is to 
bring in imagery from other sensors acquired during the time period of inter-
est. The Landsat collection spans multiple missions, which have continuously 
acquired uninterrupted data since 1972. Next, we will incorporate Landsat 7 Level 
2, Collection 2, Tier 1 images from 2019 to fill the gaps in the 2019 Landsat 8 
composite. 

To generate a Landsat 7 composite, we apply similar steps to the ones we did 
for Landsat 8, so keep adding code to the same script from Sect. 15.2.1. First, 
define your Landsat 7 collection variable and the scaling function. Then, filter 
the collection, apply the cloud mask (since we know that Colombia has persistent 
cloud cover), and apply the scaling function. Note that we will use the same cloud 
mask function defined above, since the bits’ information for Landsat 7 is the same 
as for Landsat 8. Finally, create the median composite. Paste in the code below 
and change the startDate variable back to 2019-01-01 before executing it to 
create a one-year composite of 2019.
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// ---------- Section 2 -----------------

// Define Landsat 7 Level 2, Collection 2, Tier 1 
collection. 
var landsat7 = 
ee.ImageCollection('LANDSAT/LE07/C02/T1_L2'); 

// Scaling factors for L7. 
function applyScaleFactorsL7(image) { 

var opticalBands = 
image.select('SR_B.').multiply(0.0000275).add(-0.2); 

var thermalBand = 
image.select('ST_B6').multiply(0.00341802).add(149.0); 

return image.addBands(opticalBands, null, true) 
.addBands(thermalBand, null, true); 

} 

// Filter collection, apply cloud mask, and scaling 
factors. 
var landsat7FiltMasked = landsat7 

.filterBounds(country) 

.filterDate(startDate, endDate) 

.filter(ee.Filter.lessThan('CLOUD_COVER', 50)) 

.map(maskSrClouds) 

.map(applyScaleFactorsL7); 

// Create composite. 
var landsat7compositeMasked = landsat7FiltMasked 

.median() 

.clip(country); 

Map.addLayer(landsat7compositeMasked, 
{ 

bands: ['SR_B3', 'SR_B2', 'SR_B1'], 
min: 0, 
max: 0.2 

}, 
'L7 composite masked'); 

Note that we used bands: [‘SR_B3’, ‘SR_B2’, ‘SR_B1’] to visual-
ize the composite because Landsat 7 has different band designations. The sensors 
aboard each of the Landsat satellites were designed to acquire data in different 
ranges along the electromagnetic spectrum. For Landsat 8, the red, green, and 
blue bands are B4, B3, and B2, whereas, for Landsat 7, these same bands are B3, 
B2, and B1, respectively.
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The result is an image with systematic gaps like the one shown in Fig. 15.6 
(remember to turn off the other layers, and zoom in to better see the data gaps). 
Landsat 7 was launched in 1999, but since 2003, the sensor has acquired and 
delivered data with data gaps caused by a scan line corrector (SLC) failure: SLC-
off. Without an operating SLC, the sensor’s line of sight traces a zig-zag pattern 
along the satellite ground track, and as a result, the imaged area is duplicated and 
some areas are missed. When the Level 1 data are processed, the duplicated areas 
are removed, which results in data gaps (Fig. 15.7). For more information about 
Landsat 7 and SLC-off malfunction, please refer to the USGS Landsat 7 website 
(https://www.usgs.gov/landsat-missions/landsat-7). However, even with the SLC-
off malfunction, we can use the Landsat 7 data in our composite. Next, we will 
combine the Landsat 7 and 8 collections. 

Fig. 15.6 One-year Landsat 7 median composite with 50% cloud cover threshold and cloud mask 
applied

https://www.usgs.gov/landsat-missions/landsat-7
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Fig. 15.7 Landsat 7’s SLC-off condition. Source USGS 

Since Landsat’s 7 and 8 have different band designations, first we create a 
function to rename the bands from Landsat 7 to match the names used for Landsat 
8 and map that function over our Landsat 7 collection. 

// Since Landsat 7 and 8 have different band designations, 
// let's create a function to rename L7 bands to match to L8. 
function rename(image) { 

return image.select( 
['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 

'SR_B7'], 
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 

'SR_B7']); 
} 

// Apply the rename function. 
var landsat7FiltMaskedRenamed = 
landsat7FiltMasked.map(rename); 

If you print the first images of both the landsat7FiltMasked and 
landsat7FiltMaskedRenamed collections (Fig. 15.8), you will see that the
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bands were renamed, but not all bands were copied over (SR_ATMOS_OPACITY, 
SR_CLOUD_QA, SR_B6, etc.). To copy these additional bands, simply add them 
to the rename function. You will need to rename SR_B6, so it does not have the 
same name as the new band 5. 

Fig. 15.8 First images of landsat7FiltMasked and landsat7FiltMaskedRenamed, 
respectively
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We merge the two collections using the merge function for 
ImageCollection and mapping over a function to cast the Landsat 7 
input values to 32-bit float using the toFloat function for consistency. To 
merge collections, the number and names of the bands must be the same in each 
collection. We use the select function (Chap. 2) to select the Landsat 8 bands 
that match Landsat 7’s. When creating the new Landsat 7 and 8 composite, if we 
did not select these six bands, we would get an error message for attempting to 
composite a collection that has six bands (Landsat 7) with a collection that has 
19 bands (Landsat 8). 

// Merge Landsat collections. 
var landsat78 = landsat7FiltMaskedRenamed 

.merge(landsat8FiltMasked.select( 
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 

'SR_B7'])) 
.map(function(img) { 

return img.toFloat(); 
}); 

print('Merged collections', landsat78); 

The result is a collection with about 1000 images. Next, we will take the median 
of the values across the ImageCollection. 

// Create Landsat 7 and 8 image composite and add to the Map. 
var landsat78composite = landsat78.median().clip(country); 
Map.addLayer(landsat78composite, visParams, 'L7 and L8 
composite'); 

Comparing the composite generated considering both Landsat 7 and 8 to the 
Landsat 8-only composite, a reduction in the amount of data gaps in the final 
result is evident (Fig. 15.9). The resulting Landsat 7 and 8 image composite still 
has data gaps due to the presence of clouds and Landsat 7’s SLC-off data. Set the 
center of the map to the point with latitude 3.6023 and longitude− 75.0741 to see 
the inset example of Fig. 15.9.

Code Checkpoint F43b. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 15.9 Landsat 8-only composite (left) and Landsat 7 and 8 composite (right) for 2019. Inset 
centered at latitude 3.6023, longitude− 75.0741

15.2.3 Section 3: Best-Available-Pixel Compositing Earth Engine 
Application 

This section presents an Earth Engine application that enables the generation of 
annual best-available-pixel (BAP) image composites by globally combining mul-
tiple Landsat sensors and images: GEE-BAP. Annual BAP image composites are 
generated by choosing optimal observations for each pixel from all available Land-
sat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images within a given year and 
within a given day range from a specified acquisition day of year, in addition to 
other constraints defined by the user. The data accessible via Earth Engine are 
from the USGS free and open archive of Landsat data. The Landsat images used 
are atmospherically corrected to surface reflectance values. Following White et al. 
(2014), a series of scoring functions ranks each pixel observation for (1) acqui-
sition day of year, (2) cloud cover in the scene, (3) distance to clouds and cloud 
shadows, (4) presence of haze, and (5) acquisition sensor. Further information on 
the BAP image compositing approach can be found in Griffiths et al. (2013), and 
detailed information on tuning parameters can be found in White et al. (2014). 

Code Checkpoint F43c. The book’s repository contains information about access-
ing the GEE-BAP interface and its related functions. 

Once you have loaded the GEE-BAP interface (Fig. 15.10) using the instruc-
tions in the Code Checkpoint, you will notice that it is divided into three sections: 
(1) Input/Output options, (2) Pixel scoring options, and (3) Advanced param-
eters. Users indicate the study area, the time period for generating annual BAP 
composites (i.e., start and end years), and the path to store the results in the 
Input/Output options. Users have three options to define the study area. The 
Draw study area option uses the Draw a shape and Draw a rectangle tools to
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define the area of interest. The Upload image template option utilizes an image 
template uploaded by the user in TIFF format. This option is well suited to gener-
ating BAP composites that match the projection, pixel size, and extent to existing 
raster datasets. The Work globally option generates BAP composites for the entire 
globe; note that when this option is selected, complete data download is not avail-
able due to the Earth’s size. With Start year and End year, users can indicate 
the beginning and end of the annual time series of BAP image composites to be 
generated. Multiple image composites are then generated—one composite for each 
year—resulting in a time series of annual composites. For each year, composites 
are uniquely generated utilizing images acquired on the days within the speci-
fied Date range. Produced BAP composites can be saved in the indicated (Path) 
Google Drive folder using the Tasks tab. Results are generated in a tiled, TIFF 
format, accompanied by a CSV file that indicates the parameters used to construct 
the composite. 

As noted, GEE-BAP implements five pixel scoring functions: (1) target acqui-
sition day of year and day range, (2) maximum cloud coverage per scene, (3) 
distance to clouds and cloud shadows, (4) atmospheric opacity, and (5) a penalty 
for images acquired under the Landsat 7 ETM+ SLC-off malfunction. By defining 
the Acquisition day of year and Day range, those candidate pixels acquired closer 
to a defined acquisition day of year are ranked higher. Note that pixels acquired 
outside the day range window are excluded from subsequent composite develop-
ment. For example, if the target day of year is defined as “08-01” and the day range 
as “31,” only those pixels acquired between July 1 and August 31 are considered, 
and the ones acquired closer to August 1 will receive a higher score.

Fig. 15.10 GEE-BAP user interface controls 
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The scoring function Max cloud cover in scene indicates the maximum per-
centage of cloud cover in an image that will be accepted by the user in the BAP 
image compositing process. Defining a value of 70% implies that only those scenes 
with less than or equal to 70% cloud cover will be considered as a candidate for 
compositing. 

The Distance to clouds and cloud shadows scoring function enables the user 
to exclude those pixels identified to contain clouds and shadows by the QA mask 
from the generated BAP, as well as decreasing a pixel’s score if the pixel is within 
a specified proximity of a cloud or cloud shadow. 

The Atmospheric opacity scoring function ranks pixels based on their atmo-
spheric opacity values, which are indicative of hazy imagery. Pixels with opacity 
values that exceed a defined haze expectation (Max opacity) are excluded. Pixels 
with opacity values lower than a defined value (Min opacity) get the maximum 
score. Pixels with values in between these limits are scored following the func-
tions defined by Griffiths et al. (2013). This scoring function is available only for 
Landsat 5 TM and Landsat 7 ETM+ images, which provides the opacity attribute 
in the image metadata file. 

Finally, there is a Landsat 7 ETM+ SLC-off penalty scoring function that de-
emphasizes images acquired following the ETM+ SLC-off malfunction in 2003. 
The aim of this scoring element is to ensure that TM or OLI data, which do not 
have stripes, take precedence over ETM+ when using dates after the SLC failure. 
This allows users to avoid the inclusion of multiple discontinuous small portions 
of images being used to produce the BAP image composites, thus reducing the 
spatial variability of the spectral data. The penalty applied to SLC-off imagery is 
defined directly proportional to the overall score. A large score reduces the chance 
that SLC-off imagery will be used in the composite. A value of 1 prevents SLC-off 
imagery from being used. 

By default, the GEE-BAP application produces image composites using all the 
visible bands. The Spectral index option enables the user to produce selected spec-
tral indices from the resulting BAP image composites. Available spectral indices 
include: Normalized Difference Vegetation Index (NDVI, Fig. 15.11), Enhanced 
Vegetation Index (EVI), and Normalized Burn Ratio (NBR), as well as several 
indices derived from the Tasseled Cap transformation: Wetness (TCW), Greenness 
(TCG), Brightness (TCB), and Angle (TCA). Composited indices are able to be 
downloaded as well as viewed on the map.

GEE-BAP functions can be accessed programmatically, including pixel 
scoring parameters, as well as BAP image compositing (BAP), de-spiking 
(despikeCollection), data-gap infilling (infill), and displaying 
(ShowCollection) functions. The following code sets the scoring param-
eter values, then generates and displays the compositing results (Fig. 15.12) 
for a BAP composite that is de-spiked, with data gaps infilled using temporal 
interpolation. Copy and paste the code below into a new script.
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Fig. 15.11 Example of a global BAP image composite showing NDVI values generated using the 
GEE-BAP user interface

Fig. 15.12 Outcome of the compositing code
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// Define required parameters. 
var targetDay = '06-01'; 
var daysRange = 75; 
var cloudsTh = 70; 
var SLCoffPenalty = 0.7; 
var opacityScoreMin = 0.2; 
var opacityScoreMax = 0.3; 
var cloudDistMax = 1500; 
var despikeTh = 0.65; 
var despikeNbands = 3; 
var startYear = 2015; 
var endYear = 2017; 

// Define study area. 
var worldCountries = 
ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017'); 
var colombia = worldCountries.filter(ee.Filter.eq('country_na', 

'Colombia')); 

// Load the bap library. 
var library = require('users/sfrancini/bap:library'); 

// Calculate BAP. 
var BAPCS = library.BAP(null, targetDay, daysRange, cloudsTh, 

SLCoffPenalty, opacityScoreMin, opacityScoreMax, 
cloudDistMax); 

// Despike the collection. 
BAPCS = library.despikeCollection(despikeTh, despikeNbands, 
BAPCS, 

1984, 2021, true); 

// Infill datagaps. 
BAPCS = library.infill(BAPCS, 1984, 2021, false, true); 

// Visualize the image. 
Map.centerObject(colombia, 5); 
library.ShowCollection(BAPCS, startYear, endYear, colombia, 
false,null); 
library.AddSLider(startYear, endYear); 

Code Checkpoint F43d. The book’s repository contains a script that shows what 
your code should look like at this point.
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15.3 Synthesis 

Assignment 1. Create composites for other cloudy regions or less cloudy 
regions. For example, change the country variable to ‘Cambodia’ or 
‘Mozambique’. Are more gaps present in the resulting composite? Can you 
change the compositing rules to improve this (using Acquisition day of year and 
Day range)? Different regions of the Earth have different cloud seasonal patterns, 
so the most appropriate date windows to acquire cloud-free composites will change 
depending on location. Also be aware that the larger the country, the longer it will 
take to generate the composite. 

Assignment 2. Similarly, try creating composites for the wet and dry seasons of 
a region separately. Compare the two composites. Are some features brighter or 
darker? Is there evidence of drying of vegetation, such as leaf loss or reduction in 
herbaceous ground vegetation? 

Assignment 3. Test different cloud threshold values and see if you can find an 
optimal threshold that balances data gaps against area coverage for your particular 
target date. 

15.4 Conclusion 

We cannot monitor what we cannot see. Image compositing algorithms provide 
robust and transparent tools to address issues with clouds, cloud shadows, haze, 
and smoke in remotely sensed images derived from optical satellite data and 
expand data availability for remote sensing applications. The tools and approaches 
described here should provide you with some useful strategies to aid in mitigating 
the presence of cloud cover in your data. Note that the quality of image outcomes 
is a function of the quality of cloud masking routines applied to the source data to 
generate the various flags that are used in the scoring functions described herein. 
Different compositing parameters can be used to represent a given location as a 
function of conditions that are present at a given point in time and the informa-
tion needs of the end user. Tuning or optimization of compositing parameters is 
possible (and recommended) to ensure best capture of the physical conditions of 
interest. 
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Overview 
This chapter introduces change detection mapping. It will teach you how to make 
a two-date land cover change map using image differencing and threshold-based 
classification. You will use what you have learned so far in this book to produce 
a map highlighting changes in the land cover between two time steps. You will
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first explore differences between the two images extracted from these time steps by 
creating a difference layer. You will then learn how to directly classify change based 
on the information in both of your images. 

Learning Outcomes

• Creating and exploring how to read a false-color cloud-free Landsat composite 
image

• Calculating the normalized burn ratio (NBR) index.
• Creating a two-image difference to help locate areas of change.
• Producing a change map and classifying changes using thresholding. 

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks 

(Part 2). 

16.1 Introduction to Theory 

Change detection is the process of assessing how landscape conditions are chang-
ing by looking at differences in images acquired at different times. This can be 
used to quantify changes in forest cover—such as those following a volcanic erup-
tion, logging activity, or wildfire—or when crops are harvested (Fig. 16.1). For 
example, using time-series change detection methods, Hansen et al. (2013) quan-
tified annual changes in forest loss and regrowth. Change detection mapping is 
important for observing, monitoring, and quantifying changes in landscapes over 
time. Key questions that can be answered using these techniques include identi-
fying whether a change has occurred, measuring the area or the spatial extent of 
the region undergoing change, characterizing the nature of the change, and mea-
suring the pattern (configuration or composition) of the change (MacLeod and 
Congalton 1998).

Many change detection techniques use the same basic premise: that most 
changes on the landscape result in spectral values that differ between pre-event 
and post-event images. The challenge can be to separate the real changes of inter-
est—those due to activities on the landscape—from noise in the spectral signal, 
which can be caused by seasonal variation and phenology, image misregistration, 
clouds and shadows, radiometric inconsistencies, variability in illumination (e.g., 
sun angle, sensor position), and atmospheric effects. 

Activities that result in pronounced changes in radiance values for a sufficiently 
long time period are easier to detect using remote sensing change detection tech-
niques than are subtle or short-lived changes in landscape conditions. Mapping 
challenges can arise if the change event is short-lived, as these are difficult to
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capture using satellite instruments that only observe a location every several days. 
Other types of changes occur so slowly or are so vast that they are not easily 
detected until they are observed using satellite images gathered over a sufficiently 
long interval of time. Subtle changes that occur slowly on the landscape may be 
better suited to more computationally demanding methods, such as time-series 
analysis. Kennedy et al. (2009) provide a nice overview of the concepts and 
tradeoffs involved when designing landscape monitoring approaches. Additional 
summaries of change detection methods and recent advances include Singh (1989), 
Coppin et al. (2004), Lu et al. (2004) and Woodcock et al. (2020). 

For land cover changes that occur abruptly over large areas on the landscape 
and are long-lived, a simple two-date image differencing approach is suitable.

Fig. 16.1 Before and after images of a the eruption of Mount St. Helens in Washington State, 
USA, in 1980 (before, July 10, 1979; after, September 5, 1980); b the Camp Fire in California, 
USA, in 2018 (before, October 7, 2018; after, March 16, 2019); c illegal gold mining in the Madre 
de Dios region of Peru (before, March 31, 2001; after, August 22, 2020); and d shoreline changes 
in Incheon, South Korea (before, May 29, 1981; after, March 11, 2020)
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Fig. 16.1 (continued)

Two-date image differencing techniques are long-established methods for iden-
tifying changes that produce easily interpretable results (Singh 1989). The process 
typically involves four steps: (1) image selection and preprocessing; (2) data trans-
formation, such as calculating the difference between indices of interest [e.g., the 
normalized difference vegetation index (NDVI)] in the pre-event and post-event 
images; (3) classifying the differenced image(s) using thresholding or supervised 
classification techniques; and (4) evaluation. 

16.2 Practicum 

For the practicum, you will select pre-event and post-event image scenes and inves-
tigate the conditions in these images in a false-color composite display. Next, you 
will calculate the NBR index for each scene and create a difference image using 
the two NBR maps. Finally, you will apply a threshold to the difference image to 
establish categories of changed versus stable areas (Fig. 16.2).
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Fig. 16.2 Change detection workflow for this practicum 

16.2.1 Section 1: Preparing Imagery 

Before beginning a change detection workflow, image preprocessing is essential. 
The goal is to ensure that each pixel records the same type of measurement at the 
same location over time. These steps include multitemporal image registration and 
radiometric and atmospheric corrections, which are especially important. A lot of 
this work has been automated and already applied to the images that are avail-
able in Earth Engine. Image selection is also important. Selection considerations 
include finding images with low cloud cover and representing the same phenology 
(e.g., leaf-on or leaf-off). 

The code in the block below accesses the USGS Landsat 8 Level 2, Collection 
2, Tier 1 dataset and assigns it to the variable landsat8. To improve readability 
when working with the Landsat 8 ImageCollection, the code selects bands 
2–7 and renames them to band names instead of band numbers. 

var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 
.select( 

['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'], 
['blue', 'green', 'red', 'nir', 'swir1', 'swir2'] 

); 

Next, you will split the Landsat 8 ImageCollection into two collections, 
one for each time period, and apply some filtering and sorting to get an image for 
each of two time periods. In this example, we know that there are few clouds for 
the months of the analysis; if you are working in a different area, you may need 
to apply some cloud masking or mosaicing techniques (see Chap. 15). 

The code below does several things. First, it creates a new geometry variable 
to filter the geographic bounds of the image collections. Next, it creates a new
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variable for the pre-event image by (1) filtering the collection by the date range of 
interest (e.g., June 2013), (2) filtering the collection by the geometry, (3) sorting 
by cloud cover so the first image will have the least cloud cover, and (4) getting 
the first image from the collection. 

Now repeat the previous step, but assign it to a post-event image variable and 
change the filter date to a period after the pre-event image’s date range (e.g., June 
2020). 

var point = ee.Geometry.Point([-123.64, 42.96]); 
Map.centerObject(point, 11); 

var preImage = landsat8 
.filterBounds(point) 
.filterDate('2013-06-01', '2013-06-30') 
.sort('CLOUD_COVER', true) 
.first(); 

var postImage = landsat8 
.filterBounds(point) 
.filterDate('2020-06-01', '2020-06-30') 
.sort('CLOUD_COVER', true) 
.first(); 

16.2.2 Section 2: Creating False-Color Composites 

Before running any sort of change detection analysis, it is useful to first visualize 
your input images to get a sense of the landscape, visually inspect where changes 
might occur, and identify any problems in the inputs before moving further. As 
described in Chap. 2, false-color composites draw bands from multispectral sensors 
in the red, green, and blue channels in ways that are designed to illustrate contrast 
in imagery. Below, you will produce a false-color composite using SWIR2 in the 
red channel, NIR in the green channel, and red in the blue channel (Fig. 16.3).

Following the format in the code block below, first create a variable visParam 
to hold the display parameters, selecting the SWIR2, NIR, and red bands, with 
values drawn that are between 7750 and 22,200. Next, add the pre-event and post-
event images to the map and click Run. Click and drag the opacity slider on 
the post-event image layer back and forth to view the changes between your two 
images.
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Fig. 16.3 False-color composite using SWIR2, NIR, and red. Vegetation shows up vividly in the 
green channel due to vegetation being highly reflective in the NIR band. Shades of green can be 
indicative of vegetation density; water typically shows up as black to dark blue; and burned or 
barren areas show up as brown

var visParam = { 
'bands': ['swir2', 'nir', 'red'], 
'min': 7750, 
'max': 22200 

}; 
Map.addLayer(preImage, visParam, 'pre'); 
Map.addLayer(postImage, visParam, 'post'); 

16.2.3 Section 3: Calculating NBR 

The next step is data transformation, such as calculating NBR. The advantage 
of using these techniques is that the data, along with the noise inherent in the 
data, have been reduced in order to simplify a comparison between two images.
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Image differencing is done by subtracting the spectral value of the first-date image 
from that of the second-date image, pixel by pixel (Fig. 16.2). Two-date image 
differencing can be used with a single band or with spectral indices, depending on 
the application. Identifying the correct band or index to identify change and finding 
the correct thresholds to classify it are critical to producing meaningful results. 
Working with indices known to highlight the land cover conditions before and after 
a change event of interest is a good starting point. For example, the normalized 
difference water index would be good for mapping water level changes during 
flooding events; the NBR is good at detecting soil brightness; and the NDVI can be 
used for tracking changes in vegetation (although this index does saturate quickly). 
In some cases, using derived band combinations that have been customized to 
represent the phenomenon of interest is suggested, such as using the normalized 
difference fraction index to monitor forest degradation (see Chap. 49). 

Examine changes to the landscape caused by fires using NBR, which measures 
the severity of fires using the equation (NIR − SWIR)/(NIR + SWIR). These bands 
were chosen because they respond most strongly to the specific changes in forests 
caused by fire. This type of equation, a difference of variables divided by their 
sum, is referred to as a normalized difference equation (see Chap. 5). The resulting 
value will always fall between − 1 and 1. NBR is useful for determining whether 
a fire recently occurred and caused damage to the vegetation, but it is not designed 
to detect other types of land cover changes especially well. 

First, calculate the NBR for each time period using the built-in normalized 
difference function. For Landsat 8, be sure to utilize the NIR and SWIR2 bands to 
calculate NBR. Then, rename each image band with the built-in rename function. 

// Calculate NBR. 
var nbrPre = preImage.normalizedDifference(['nir', 'swir2']) 

.rename('nbr_pre'); 
var nbrPost = postImage.normalizedDifference(['nir', 'swir2']) 

.rename('nbr_post'); 

Code Checkpoint F44a. The book’s repository contains a script that shows what 
your code should look like at this point. 

16.2.4 Section 4: Single Date Transformation 

Next, we will examine the changes that have occurred, as seen when comparing 
two specific dates in time. 

Subtract the pre-event image from the post-event image using the subtract 
function. Add the two-date change image to the map with the specialized Fabio 
Crameri batlow color ramp (Crameri et al. 2020). This color ramp is an example of
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a color combination specifically designed to be readable by colorblind and color-
deficient viewers. Being cognizant of your cartographic choices is an important 
part of making a good change map. 

// 2-date change. 
var diff = nbrPost.subtract(nbrPre).rename('change'); 

var palette = [ 
'011959', '0E365E', '1D5561', '3E6C55', '687B3E', 
'9B882E', 'D59448', 'F9A380', 'FDB7BD', 'FACCFA' 

]; 
var visParams = { 

palette: palette, 
min: -0.2, 
max: 0.2 

}; 
Map.addLayer(diff, visParams, 'change'); 

Question 1. Try to interpret the resulting image before reading on. What pat-
terns of change can you identify? Can you find areas that look like vegetation loss 
or gain? 

The color ramp has dark blues for the lowest values, greens, and oranges 
in the midrange and pink for the highest values. We used nbrPre subtracted 
from nbrPost to identify changes in each pixel. Since NBR values are higher 
when vegetation is present, areas that are negative in the change image will repre-
sent pixels that were higher in the nbrPre image than in the nbrPost image. 
Conversely, positive differences mean that an area gained vegetation (Fig. 16.4).

16.2.5 Section 5: Classifying Change 

Once the images have been transformed and differenced to highlight areas under-
going change, the next step is image classification into a thematic map consisting 
of stable and change classes. This can be done rather simply by thresholding the 
change layer, or by using classification techniques such as machine learning algo-
rithms. One challenge of working with simple thresholding of the difference layer 
is knowing how to select a suitable threshold to partition changed areas from stable 
classes. On the other hand, classification techniques using machine learning algo-
rithms partition the landscape using examples of reference data that you provide to 
train the classifier. This may or may not yield better results but does require addi-
tional work to collect reference data and train the classifier. In the end, resources, 
timing, and the patterns of the phenomenon you are trying to map will determine 
which approach is suitable—or perhaps the activity you are trying to track requires
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Fig. 16.4 a Two-date NBR difference; b pre-event image (June 2013) false-color composite; c 
post-event image (June 2020) false-color composite. In the change map (a), areas on the lower 
range of values (blue) depict areas where vegetation has been negatively affected, and areas on the 
higher range of values (pink) depict areas where there has been vegetation gain; the green/orange 
areas have experienced little change. In the pre-event and post-event images (b and c), the green 
areas indicate vegetation, while the brown regions are barren ground

something more advanced, such as a time-series approach that uses more than two 
dates of imagery. 

For this chapter, we will classify our image into categories using a simple, 
manual thresholding method, meaning we will decide the optimal values for when 
a pixel will be considered change or no-change in the image. Finding the ideal 
value is a considerable task and will be unique to each use case and set of inputs 
(e.g., the threshold values for a SWIR2 single-band change would be different from 
the thresholds for NDVI). For a look at a more-advanced method of thresholding, 
check out the thresholding methods in Chap. 42. 

First, you will define two variables for the threshold values for gain and loss. 
Next, create a new image with a constant value of 0. This will be the basis of our 
classification. Reclassify the new image using the where function. Classify loss 
areas as 2 where the difference image is less than or equal to the loss threshold 
value. Reclassify gain areas to 1 where the difference image is greater than or 
equal to the gain threshold value. Finally, mask the image by itself and add the 
classified image to the map (Fig. 16.5). Note: It is not necessary to self-mask the 
image, and in many cases, you might be just as interested in areas that did not 
change as you are in areas that did.
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Fig. 16.5 a Change detection in timber forests of southern Oregon, including maps of the (left 
to right) pre-event false-color composite, post-event false-color composite, difference image, and 
classified change using NBR; b the same map types for an example of change caused by fire in 
southern Oregon. The false-color maps highlight vegetation in green and barren ground in brown. 
The difference images show NBR gain in pink to NBR loss in blue. The classified change images 
show NBR gain in blue and NBR loss in red 

// Classify change 
var thresholdGain = 0.10; 
var thresholdLoss = -0.10; 

var diffClassified = ee.Image(0); 

diffClassified = 
diffClassified.where(diff.lte(thresholdLoss), 2); 
diffClassified = 
diffClassified.where(diff.gte(thresholdGain), 1); 

var changeVis = { 
palette: 'fcffc8,2659eb,fa1373', 
min: 0, 
max: 2 

}; 

Map.addLayer(diffClassified.selfMask(), 
changeVis, 
'change classified by threshold');
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Chapters 17 through 21 present more-advanced change detection algorithms 
that go beyond differencing and thresholding between two images, instead 
allowing you to analyze changes indicated across several images as a time series. 

Code Checkpoint F44b. The book’s repository contains a script that shows what 
your code should look like at this point. 

16.3 Synthesis 

Evaluating any maps you create, including change detection maps, is essential 
to determining whether the method you have selected is appropriate for inform-
ing land management and decision-making (Stehman and Czaplewski 1998), or 
whether you need to iterate on the mapping process to improve the final results. 
Maps generally, and change maps specifically, will always have errors. This is due 
to a suite of factors, such as the geometric registration between images, the cali-
bration between images, the data resolution (e.g., temporal, spectral, radiometric) 
compared to the characteristics of the activity of interest, the complexity of the 
landscape of the study region (topography, atmospheric conditions, etc.), and the 
classification techniques employed (Lu et al. 2004). This means that similar stud-
ies can present different, sometimes controversial, conclusions about landscape 
dynamics (e.g., Cohen et al. 2017). In order to be useful for decision-making, a 
change detection mapping effort should provide the user with an understanding of 
the strengths and weaknesses of the product, such as by presenting omission and 
commission error rates. The quantification of classification quality is presented in 
Chap. 7. 

Assignment 1. Try using a different index, such as NDVI or a Tasseled Cap Trans-
formation, to run the change detection steps, and compare the results with those 
obtained from using NBR. 

Assignment 2. Experiment with adjusting the thresholdLoss and 
thresholdGain values. 

Assignment 3. Use what you have learned in the classification chapter (Chap. 6) 
to run a supervised classification on the difference layer (or layers, if you have 
created additional ones). Hint: To complete a supervised classification, you would 
need reference examples of both the stable and change classes of interest to train 
the classifier. 

Assignment 4. Think about how things like clouds and cloud shadows could 
affect the results of change detection. What do you think the two-date differencing 
method would pick up for images in the same year in different seasons?
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16.4 Conclusion 

In this chapter, you learned how to make a change detection map using two-image 
differencing. The importance of visualizing changes in this way instead of using 
a post-classification comparison, where two classified maps are compared instead 
of two satellite images, is that it avoids multiplicative errors from the classifica-
tions and is better at observing more subtle changes in the landscape. You also 
learned that how you visualize your images and change maps—such as what band 
combinations and color ramps you select, and what threshold values you use for 
a classification map—has an impact on how easily and what types of changes can 
be seen. 

References 

Cohen WB, Healey SP, Yang Z et al (2017) How similar are forest disturbance maps derived from 
different Landsat time series algorithms? Forests 8:98. https://doi.org/10.3390/f8040098 

Coppin P, Jonckheere I, Nackaerts K et al (2004) Digital change detection methods in ecosystem 
monitoring: a review. Int J Remote Sens 25:1565–1596. https://doi.org/10.1080/014311603100 
0101675 

Crameri F, Shephard GE, Heron PJ (2020) The misuse of colour in science communication. Nat 
Commun 11:1–10. https://doi.org/10.1038/s41467-020-19160-7 

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest 
cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693 

Kennedy RE, Townsend PA, Gross JE et al (2009) Remote sensing change detection tools for 
natural resource managers: understanding concepts and tradeoffs in the design of landscape 
monitoring projects. Remote Sens Environ 113:1382–1396. https://doi.org/10.1016/j.rse.2008. 
07.018 

Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 
25:2365–2401. https://doi.org/10.1080/0143116031000139863 

Macleod RD, Congalton RG (1998) A quantitative comparison of change-detection algorithms for 
monitoring eelgrass from remotely sensed data. Photogramm Eng Remote Sens 64:207–216 

Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 
10:989–1003. https://doi.org/10.1080/01431168908903939 

Stehman SV, Czaplewski RL (1998) Design and analysis for thematic map accuracy assessment: 
fundamental principles. Remote Sens Environ 64:331–344. https://doi.org/10.1016/S0034-425 
7(98)00010-8 

Woodcock CE, Loveland TR, Herold M, Bauer ME (2020) Transitioning from change detection to 
monitoring with remote sensing: a paradigm shift. Remote Sens Environ 238:111558. https:// 
doi.org/10.1016/j.rse.2019.111558

https://doi.org/10.3390/f8040098
https://doi.org/10.1080/0143116031000101675
https://doi.org/10.1080/0143116031000101675
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.rse.2008.07.018
https://doi.org/10.1016/j.rse.2008.07.018
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.1080/01431168908903939
https://doi.org/10.1016/S0034-4257(98)00010-8
https://doi.org/10.1016/S0034-4257(98)00010-8
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2019.111558


316 K. Tenneson et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


17Interpreting Annual Time Series 
with LandTrendr 

Robert Kennedy, Justin Braaten, and Peter Clary 

Overview 
Time-series analysis of change can be achieved by fitting the entire spectral trajectory 
using simple statistical models. These allow us to both simplify the time series and 
to extract useful information about the changes occurring. In this chapter, you will 
get an introduction to the use of LandTrendr, one of these time-series approaches 
used to characterize time series of spectral values. 

Learning Outcomes

• Evaluating yearly time-series spectral values to distinguish between true change 
and artifacts.

• Recognizing disturbance and growth signals in the time series of annual spectral 
values for individual pixels.

• Interpreting change segments and translating them to maps.
• Applying parameters in a graphical user interface to create disturbance maps in 

forests.
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Assumes you know how to

• Calculate and interpret vegetation indices (Chap. 5)
• Interpret bands and indices in terms of land surface characteristics (Chap. 5). 

17.1 Introduction to Theory 

Land surface change happens all the time, and satellite sensors witness it. If a 
spectral index is chosen to match the type of change being sought, surface change 
can be inferred from changes in spectral index values. Over time, the progression 
of spectral values witnessed in each pixel tells a story of the processes of change, 
such as growth and disturbance. Time-series algorithms are designed to leverage 
many observations of spectral values over time to isolate and describe changes of 
interest, while ignoring uninteresting change or noise. 

In this lab, we use the LandTrendr time-series algorithms to map change. The 
LandTrendr algorithms apply “temporal segmentation” strategies to distill a mul-
tiyear time series into sequential straight-line segments that describe the change 
processes occurring in each pixel. We then isolate the segment of interest in each 
pixel and make maps of when, how long, and how intensely each process occurred. 
Similar strategies can be applied to more complicated descriptions of the time 
series, as is seen in some of the chapters that follow this one. 

17.2 Practicum 

For this lab, we will use a graphical user interface (GUI) to teach the concepts of 
LandTrendr. 

Code Checkpoint F45a. The book’s repository contains information about access-
ing the LandTrendr interface. 

17.2.1 Section 1: Pixel Time Series 

When working with LandTrendr for the first time in your area, there are two 
questions you must address. 

First, is the change of interest detectable in the spectral reflectance record? If 
the change you are interested in does not leave a pattern in the spectral reflectance 
record, then an algorithm will not be able to find it. 

Second, can you identify fitting parameters that allow the algorithm to capture 
that record? Time-series algorithms apply rules to a temporal sequence of spectral 
values in a pixel and simplify the many observations into more digestible forms, 
such as the linear segments we will work with using LandTrendr. The algorithms
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Fig. 17.1 LandTrendr GUI interface, with the control panel on the left, the Map panel in the 
center, and the reporting panel on the right 

that do the simplification are often guided by parameters that control the way the 
algorithm does its job. 

The best way to begin assessing these questions is to look at the time series 
of individual pixels. In Earth Engine, open and run the script that generates the 
GUI we have developed to easily deploy the LandTrendr algorithms (Kennedy 
et al. 2018). Run the script, and you should see an interface that looks like the one 
shown in Fig. 17.1. 

The LandTrendr GUI consists of three panels: a control panel on the left, a 
reporting panel on the right, and a Map panel in the center. The control panel is 
where all of the functionality of the interface resides. There are several modules, 
and each is accessed by clicking on the double arrow to the right of the title. The 
Map panel defaults to a location in Oregon but can be manually moved anywhere 
in the world. The reporting panel shows messages about how to use functions, as 
well as providing graphical outputs. 

Next, expand the “Pixel Time-Series Options” function. For now, simply use 
your mouse to click somewhere on the map. Wait a few seconds even though it 
looks like nothing is happening—be patient!! The GUI has sent information to 
Earth Engine to run the LandTrendr algorithms at the location you have clicked 
and is waiting for the results. Eventually, you should see a chart appear in the 
reporting panel on the right. Figure 17.2 shows what one pixel looks like in an 
area where the forest burned and began regrowth. Your chart will probably look 
different.

The key to success with the LandTrendr algorithm is interpreting these time 
series. First, let us examine the components of the chart. The x-axis shows the 
year of observation. With LandTrendr, only one observation per year is used to 
describe the history of a pixel; later, we will cover how you control that value. 
The y-axis shows the spectral value of the index that is chosen. In the default
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Fig. 17.2 Typical trajectory for a single pixel. The x-axis shows the year, the y-axis the spectral 
index value, and the title the index chosen. The gray line represents the original spectral val-
ues observed by Landsat, and the red line the result of the LandTrendr temporal segmentation 
algorithms

mode, the normalized burn ratio (as described in Chap. 16). Note that you also 
have the ability to pick more indices using the checkboxes on the control panel 
on the left. Note that we scale floating point (decimal) indices by 1000. Thus, an 
NBR value of 1.0 would be displayed as 1000. 

In the chart area, the thick gray line represents the spectral values observed by 
the satellite for the period of the year selected for a single 30 m Landsat pixel 
at the location you have chosen. The red line is the output from the temporal 
segmentation that is the heart of the LandTrendr algorithms. The title of the chart 
shows the spectral index, as well as the root-mean-square error of the fit. 

To interpret the time series, first know which way is “up” and “down” for the 
spectral index you are interested in. For the NBR, the index goes up in value when 
there is more vegetation and less soil in a pixel. It goes down when there is less 
vegetation. For vegetation disturbance monitoring, this is useful. 

Next, translate that change into the changes of interest for the change processes 
you are interested in. For conifer forest systems, the NBR is useful because it 
drops precipitously when a disturbance occurs, and it rises as vegetation grows. 

In the case of Fig. 17.2, we interpret the abrupt drop as a disturbance, and the 
subsequent rise of the index as regrowth or recovery (though not necessarily to the 
same type of vegetation) (Fig. 17.3).

Tip: LandTrendr is able to accept any index, and advanced users are welcome 
to use indices of their own design. An important consideration is knowing which 
direction indicates “recovery” and “disturbance” for the topic you are interested in. 
The algorithms favor detection of disturbance and can be controlled to constrain 
how quickly recovery is assumed to occur (see parameters below). 

For LandTrendr to have any hope of finding the change of interest, that change 
must be manifested in the gray line showing the original spectral values. If you 
know that some process is occurring and it is not evident in the gray line, what 
can you do?
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Fig. 17.3 For the trajectory in Fig. 17.2, we can identify a segment capturing disturbance based 
on its abrupt drop in the NBR index, and the subsequent vegetative recovery

One option is to change the index. Any single index is simply one view of the 
larger spectral space of the Landsat Thematic Mapper sensors. The change you are 
interested in may cause spectral change in a different direction than that captured 
with some indices. Try choosing different indices from the list. If you click on 
different checkboxes and re-submit the pixel, the fits for all of the different indices 
will appear. 

Another option is to change the date range. LandTrendr uses one value per 
year, but the value that is chosen can be controlled by the user. It is possible that 
the change of interest is better identified in some seasons than others. We use a 
medoid image compositing approach, which picks the best single observation each 
year from a date range of images in an ImageCollection. In the GUI, you can 
change the date range of imagery used for compositing in the Image Collection 
portion of the LandTrendr Options menu (Fig. 17.4).

Change the Start Date and End Date to find a time of year when the distinc-
tion between cover conditions before and during the change process of interest is 
greatest. 

There are other considerations to keep in mind. First, seasonality of vegetation, 
water, or snow often can affect the signal of the change of interest. And because 
we use an ImageCollection that spans a range of dates, it is best to choose a 
date range where there is not likely to be a substantial change in vegetative state 
from the beginning to the end of the date range. Clouds can be a factor too. Some 
seasons will have more cloudiness, which can make it difficult to find good images. 
Often with optical sensors, we are constrained to working with periods where 
clouds are less prevalent, or using wide date ranges to provide many opportunities 
for a pixel to be cloud-free. 

It is possible that no combination of index or data range is sensitive to the 
change of interest. If that is the case, there are two options: try using a different 
sensor and change detection technique, or accept that the change is not discernible. 
This can often occur if the change of interest occupies a small portion of a given 
30 m by 30 m Landsat pixel, or if the spectral manifestation of the change is so 
subtle that it is not spectrally separable from non-changed pixels.
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Fig. 17.4 LandTrendr options menu. Users control the year and date range in the Image Collec-
tion section, the index used for temporal segmentation in the middle section, and the parameters 
controlling the temporal segmentation in the bottom section

Even if you as a human can identify the change of interest in the spectral 
trajectory of the gray line, an algorithm may not be able to similarly track it. To 
give the algorithm a fighting chance, you need to explore whether different fitting 
parameters could be used to match the red fitted line with the gray source image 
line. 

The overall fitting process includes steps to reduce noise and best identify the 
underlying signal. The temporal segmentation algorithms are controlled by fitting 
parameters that are described in detail in Kennedy et al. (2010). You adjust these 
parameters using the Fitting Parameters block of the LandTrendr Options menu. 
Below is a brief overview of what values are often useful, but these will likely 
change as you use different spectral indices. 

First, the minimum observations needed criterion is used to evaluate whether 
a given trajectory has enough unfiltered (i.e., clear observation) years to run the 
fitting. We suggest leaving this at the default of 6.
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The segmentation begins with a noise-dampening step to remove spikes that 
could be caused by unfiltered clouds or shadows. The spike threshold parameter 
controls the degree of filtering. A value of 1.0 corresponds to no filtering, and 
lower values corresponding to more severe filtering. We suggest leaving this at 
0.9; if changed, a range from 0.7 to 1.0 is appropriate. 

The next step is finding vertices. This begins with the start and end year as 
vertex years, progressively adding candidate vertex years based on deviation from 
linear fits. To avoid getting an overabundance of vertex years initially found using 
this method, we suggest leaving the vertex count overshoot at a value of 3. A 
second set of algorithms uses deflection angle to cull back this overabundance to 
a set number of maximum candidate vertex years. 

That number of vertex years is controlled by the max segments parameter. As 
a general rule, your number of segments should be no more than one-third of 
the total number of likely yearly observations. The years of these vertices (X-
values) are then passed to the model-building step. Assuming you are using at 
least 30 years of the archive, and your area has reasonable availability of images, 
a value of 8 is a good starting point. 

In the model-building step, straight-line segments are built by fitting Y-values 
(spectral values) for the periods defined by the vertex years (X-values). The process 
moves from left to right—early years to late years. Regressions of each subse-
quent segment are connected to the end of the prior segment. Regressions are also 
constrained to prevent unrealistic recovery after disturbance, as controlled by the 
recovery threshold parameter. A lower value indicates greater constraint: a value 
of 1.0 means the constraint is turned off; a value of 0.25 means that segments 
that fully recover in faster than four years (4 = 1/0.25) are not permitted. Note: 
This parameter has strong control on the fitting and is one of the first to explore 
when testing parameters. Additionally, the preventOneYearRecovery will disallow 
fits that have one-year-duration recovery segments. This may be useful to prevent 
overfitting of noisy data in environments where such quick vegetative recovery is 
not ecologically realistic. 

Once a model of the maximum number of segments is found, successively sim-
pler models are made by iteratively removing the least informative vertex. Each 
model is scored using a pseudo-f statistic, which penalizes models with more seg-
ments, to create a pseudo p-value for each model. The p-value threshold parameter 
is used to identify all fits that are deemed good enough. Start with a value of 0.05, 
but check to see if the fitted line appears to capture the salient shape and features 
of the gray source trajectory. If you see temporal patterns in the gray line that are 
likely not noise (based on your understanding of the system under study), consider 
switching the p-value threshold to 0.10 or even 0.15. 

Note: Because of temporal autocorrelation, these cannot be interpreted as true f -
and p-values, but rather as relative scalars to distinguish goodness of fit among 
models. If no good models can be found using these criteria based on the p-value 
parameter set by the user, a second approach is used to solve for the Y-value of all
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vertex years simultaneously. If no good model is found, then a straight-line mean 
value model is used. 

From the models that pass the p-value threshold, one is chosen as the final fit. It 
may be the one with the lowest p-value. However, an adjustment is made to allow 
more complicated models (those with more segments) to be picked even if their 
p-value is within a defined proportion of the best-scoring model. That proportion is 
set by the best model proportion parameter. As an example, a best model proportion 
value of 0.75 would allow a more complicated model to be chosen if its score were 
greater than 75% that of the best model. 

17.2.2 Section 2: Translating Pixels to Maps 

Although the full time series is the best description of each pixel’s “life history,” 
we typically are interested in the behavior of all of the pixels in our study area. It 
would be both inefficient to manually visualize all of them and ineffective to try 
to summarize areas and locations. Thus, we seek to make maps. 

There are three post-processing steps to convert a segmented trajectory to a 
map. First, we identify segments of interest; if we are interested in disturbance, 
we find segments whose spectral change indicates loss. Second, we filter out seg-
ments of that type that do not meet criteria of interest. For example, very low 
magnitude disturbances can occur when the algorithm mistakenly finds a pattern 
in the random noise of the signal, and thus, we do not want to include it. Third, 
we extract from the segment of interest something about its character to map on 
a pixel-by-pixel basis: its start year, duration, spectral value, or the value of the 
spectral change. 

Theory: We will start with a single pixel to learn how to interpret a disturbance 
pixel time series in terms of the dominant disturbance segment. For the disturbance 
time series, we have used in figures above, and we can identify the key parameters 
of the segment associated with the disturbance. For the example above, we have 
extracted the actual NBR values of the fitted time series and noted them in a table 
(Fig. 17.5). This is not part of the GUI—it is simply used here to work through 
the concepts.

From the table shown in Fig. 17.5, we can infer several key things about this 
pixel:

• It was likely disturbed between 2006 and 2007. This is because the NBR value 
drops precipitously in the segment bounded by vertices (breakpoints) in 2006 
and 2007.

• The magnitude of spectral change was large: 1175 scaled NBR units out of a 
possible range of 2000 scaled units.

• There were small drops in NBR earlier, which may indicate some subtle loss of 
vegetation over a long period in the pixel. These drops, however, would need 
to be explored in a separate analysis because of their subtle nature.
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Fig. 17.5 Tracking actual values of fitted trajectories to learn how we focus on quantification of 
disturbance. Because we know that the NBR index drops when vegetation is lost and soil exposure 
is increased, we know that a precipitous drop suggests an abrupt loss of vegetation. Although some 
early segments show very subtle change, only the segment between vertex 4 and 5 shows large-
magnitude vegetation loss

• The main disturbance had a disturbance duration of just one year. This abrupt-
ness combined with the high magnitude suggests a major vegetative disturbance 
such as a harvest or a fire.

• The disturbance was then followed by recovery of vegetation, but not to the 
level before the disturbance. Note: Ecologists will recognize the growth signal 
as one of succession, or active revegetation by human intervention. 

Following the three post-processing steps noted in the introduction to this section, 
to map the year of disturbance for this pixel, we would first identify the potential 
disturbance segments as those with negative NBR. Then, we would hone in on the 
disturbance of interest by filtering out potential disturbance segments that are not 
abrupt and/or of small magnitude. This would leave only the high-magnitude and 
short-duration segment. For that segment, the first year that we have evidence of 
disturbance is the first year after the start of the segment. The segment starts in 
2006, which means that 2007 is the first year we have such evidence. Thus, we 
would assign 2007 to this pixel. 

If we wanted to map the magnitude of the disturbance, we would follow the 
same first two steps but then report for the pixel value the magnitude difference 
between the starting and ending segment. 

The LandTrendr GUI provides a set of tools to easily apply the same logic 
rules to all pixels of interest and create maps. Click on the Change Filter Options 
menu. The interface shown in Fig. 17.6 appears.

The first two sections are used to identify the segments of interest. 

Select Vegetation Change Type offers the options of gain or loss, which refer 
to gain or loss of vegetation, with disturbance assumed to be related to loss of 
vegetation. Note: Advanced users can look in the landtrendr.js library in the “cal-
cindex” function to add new indices with gain and loss defined as they choose.
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Fig. 17.6 Menu used to 
post-process disturbance 
trajectories into maps. Select 
vegetation change type and 
sort to hone in on the 
segment type of interest, then 
check boxes to apply 
selective filters to eliminate 
uninteresting changes

The underlying algorithm is built to find disturbance in indices that increase when 
disturbance occurs, so indices such as NBR or NDVI need to be multiplied by (− 
1) before being fed to the LandTrendr algorithm. This is handled in the calcIndex 
function. 

Select Vegetation Change Sort offers various options that allow you to choose the 
segment of interest based on timing or duration. By default, the greatest magnitude 
disturbance is chosen. 

Each filter (magnitude, duration, etc.) is used to further winnow the possible 
segments of interest. All other filters are applied at the pixel scale, but Filter by 
MMU is applied to groups of pixels based on a given minimum mapping unit 
(MMU). Once all other filters have been defined, some pixels are flagged as being 
of interest, and others are not. The MMU filter looks to see how many connected 
pixels have been flagged as occurring in the same year, and omits groups smaller 
in pixel count than the number indicated here (which defaults to 11 pixels, or 
approximately 1 ha). 

If you are following along and making changes, or if you are just using the 
default location and parameters, click the Add Filtered Disturbance Imagery to 
add this to the map. You should see something like Fig. 17.7.

There are multiple layers of disturbance added to the map. Use the map layers 
checkboxes to change which is shown. Magnitude of disturbance, for example,
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Fig. 17.7 Basic output from a disturbance mapping exercise

is a map of the delta change between beginning and endpoints of the segments 
(Fig. 17.8). 

Fig. 17.8 Magnitude of change for the same area
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17.3 Synthesis 

In this chapter, you have learned how to work with annual time series to interpret 
regions of interest. Looking at annual snapshots of the landscape provides three 
key benefits: (1) the ability to view your area of interest without the clouds and 
noise that typically obscure single-day views; (2) gage the amount by which the 
noise-dampened signal still varies from year to year in response to large-scale 
forcing mechanisms; and (3) the ability to view the response of landscapes as they 
recover, sometimes slowly, from disturbance. 

To learn more about LandTrendr, see the assignments below. 

Assignment 1. Find your own change processes of interest. First, navigate the 
map (zooming and dragging) to an area of the world where you are interested in a 
change process, and the spectral index that would capture it. Make sure that the UI 
control panel is open to the Pixel Time-Series Options section. Next, click on the 
map in areas where you know change has occurred, and observe the spectral tra-
jectories in the charts. Then, describe whether the change of interest is detectable 
in the spectral reflectance record and what are its characteristics in different parts 
of the study area. 

Assignment 2. Find a pixel in your area of interest that shows a distinctive dis-
turbance process, as you define it for your topic of interest. Adjust date ranges, 
parameters, etc., using the steps outlined in Sect. 17.2.1 above and then answer 
these questions:

• Question 1. Which index and date range did you use?
• Question 2. Did you need to change fitting parameters to make the algorithm 

find the disturbance? If so, which ones, and why?
• Question 3. How do you know this is a disturbance? 

Assignment 3. Switch the control panel in the GUI to Change Filter Options, and 
use the guidance in Sect. 17.2.2 to set parameters and make disturbance maps.

• Question 4. Do the disturbance year and magnitude as mapped in the image 
match with what you would expect from the trajectory itself?

• Question 5. Can you change some of the filters to create a map where your 
disturbance process is not mapped? If so, what did you change?

• Question 6. Can you change filters to create a map that includes a different 
disturbance process, perhaps subtler, longer duration, etc.? Find a pixel and use 
the “pixel time-series” plotter to look at the time series of those processes. 

Assignment 4. Return to the Pixel Time-Series Options section of the control 
panel, and navigate to a pixel in your area of interest that you believe would show 
a distinctive recovery or growth process, as you define it for your topic of interest. 
You may want to modify the index, parameters, etc., as covered in Sect. 17.2.1 to 
adequately capture the growth process with the fitted trajectories.
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• Question 7. Did you use the same spectral index? If not, why?
• Question 8. Were the fitting parameters the same as those for disturbance? If 

not, what did you change, and why?
• Question 9. What evidence do you have that this is a vegetative growth signal? 

Assignment 5. For vegetation gain mapping, switch the control panel back to 
Change Filter Options and use the guidance in Sect. 17.2.2 to set parameters, 
etc., to make maps of growth.

• Question 10. For the pixel or pixels you found for Assignment 3, does the year 
and magnitude as mapped in the “gain” image match with what you would 
expect from the trajectory itself?

• Question 11. Compare what the map looks like when you run it with and 
without the MMU filter. What differences do you see?

• Question 12. Try changing the recovery duration filter to a very high number 
(perhaps the full length of your archive) and to a very low number (say, one or 
two years). What differences do you see? 

17.4 Conclusion 

This exercise provides a baseline sense of how the LandTrendr algorithm works. 
The key points are learning how to interpret change in spectral values in terms of 
the processes occurring on the ground and then translating those into maps. 

You can export the images you have made here using Download Options. 
Links to materials are available in the chapter checkpoints and LandTrendr doc-
umentation about both the GUI and the script-based versions of the algorithm. 
In particular, there are scripts that handle different components of the fitting and 
mapping process and that allow you to keep track of the fitting and image selection 
criteria. 
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Overview 
The purpose of this chapter is to establish a foundation for time-series analysis of 
remotely sensed data, which is typically arranged as an ordered stack of images. You 
will be introduced to the concepts of graphing time series, using linear modeling to 
detrend time series, and fitting harmonic models to time-series data. At the comple-
tion of this chapter, you will be able to perform analysis of multi-temporal data for 
determining trend and seasonality on a per-pixel basis.
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Learning Outcomes

• Graphing satellite imagery values across a time series.
• Quantifying and potentially removing linear trends in time series.
• Fitting linear and harmonic models to individual pixels in time-series data. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II).
• Create a graph using ui.Chart (Chap. 4).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15). 

18.1 Introduction to Theory 

Many natural and man-made phenomena exhibit important annual, interannual, 
or longer-term trends that recur—that is, they occur at roughly regular intervals. 
Examples include seasonality in leaf patterns in deciduous forests and seasonal 
crop growth patterns. Over time, indices such as the Normalized Difference Veg-
etation Index (NDVI) will show regular increase (e.g., leaf on, crop growth) and 
decrease (e.g., leaf-off, crop senescence), and typically have a long term, if noisy, 
trend such as a gradual increase in NDVI value as an area recovers from a 
disturbance. 

Earth engine supports the ability to do complex linear and nonlinear regressions 
of values in each pixel of a study area. Simple linear regressions of indices can 
reveal linear trends that can span multiple years. Meanwhile, harmonic terms can 
be used to fit a sine wave-like curve. Once you have the ability to fit these functions 
to time series, you can answer many important questions. For example, you can 
define vegetation dynamics over multiple time scales, identify phenology and track 
changes year to year, and identify deviations from the expected patterns (Bradley 
et al. 2007; Bullock et al. 2020). There are multiple applications for these analyses. 
For example, algorithms to detect deviations from the expected pattern can be 
used to identify disturbance events, including deforestation and forest degradation 
(Bullock et al. 2020).
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18.2 Practicum 

18.2.1 Section 1: Multi-temporal Data in Earth Engine 

If you have not already done so, you can add the book’s code repository to 
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro 
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The 
book’s scripts will then be available in the script manager panel to view, run, or 
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help 
for help. 

As explained in Chaps. 12 and 13, a time series in Earth Engine is typi-
cally represented as an ImageCollection. Because of image overlaps, cloud 
treatments, and filtering choices, an ImageCollection can have any of the 
following complex characteristics:

• At each pixel, there might be a distinct number of observations taken from a 
unique set of dates.

• The size (length) of the time series can vary across pixels.
• Data may be missing in any pixel at any point in the sequence (e.g., due to 

cloud masking). 

The use of multi-temporal data in Earth Engine introduces two mind-bending 
concepts, which we will describe below. 

Per-pixel curve fitting. As you have likely encountered in many settings, a func-
tion can be fit through a series of values. In the most familiar example, a function 
of the form y = mx + b can represent a linear trend in data of all kinds. Fitting a 
straight “curve” with linear regression techniques involves estimating m and b for 
a set of x and y values. In a time series, x typically represents time, while y values 
represent observations at specific times. This chapter introduces how to estimate 
m and b for computed indices through time to model a potential linear trend in a 
time series. We then demonstrate how to fit a sinusoidal wave, which is useful for 
modeling rising and falling values, such as NDVI over a growing season. What 
can be particularly mind bending in this setting is the fact that when Earth Engine 
is asked to estimate values across a large area, it will fit a function in every pixel 
of the study area. Each pixel, then, has its own m and b values, determined by the 
number of observations in that pixel, the observed values, and the dates for which 
they were observed. 

Higher-dimension band values: array images. That more complex conception 
of the potential information contained in a single pixel can be represented in a 
higher-order Earth Engine structure: the array image. As you will encounter in 
this lab, it is possible for a single pixel in a single band of a single image to con-
tain more than one value. If you choose to implement an array image, a single pixel 
might contain a one-dimensional vector of numbers, perhaps holding the slope and 
intercept values resulting from a linear regression, for example. Other examples,

https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
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Fig. 18.1 Time series representation of pixel p 

outside the scope of this chapter but used in the next chapter, might employ a 
two-dimensional matrix of values for each pixel within a single band of an image. 
Higher-order dimensions are available, as well as array image manipulations bor-
rowed from the world of matrix algebra. Additionally, there are functions to move 
between the multidimensional array image structure and the more familiar, more 
easily displayed, simple Image type. Some of these array image functions were 
encountered in Chap. 9, but with less explanatory context. 

First, we will give some very basic notation (Fig. 18.1). A scalar pixel at time 
t is given by pt , and a pixel vector by pt . A variable with a “hat” represents an 
estimated value: in this context, p̂t is the estimated pixel value at time t. A time 
series is a collection of pixel values, usually sorted chronologically: {pt ; t = t0 … 
tN }, where t might be in any units, t0 is the smallest, and tN is the largest such t 
in the series. 

18.2.2 Section 2: Data Preparation and Preprocessing 

The first step in analysis of time-series data is to import data of interest and plot 
it at an interesting location. We will work with the USGS Landsat 8 Level 2, Col-
lection 2, Tier 1 ImageCollection and a cloud-masking function (Chap. 15), 
scale the image values, and add variables of interest to the collection as bands. 
Copy and paste the code below to filter the Landsat 8 collection to a point of 
interest over California (variable roi) and specific dates, and to apply the defined 
function. The variables of interest added by the function are: (1) NDVI (Chap. 5), 
(2) a time variable that is the difference between the image’s current year and the 
year 1970 (a start point), and (3) a constant variable with value 1.
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///////////////////// Sections 1 & 2 ///////////////////////////// 

// Define function to mask clouds, scale, and add variables 
// (NDVI, time and a constant) to Landsat 8 imagery. 
function maskScaleAndAddVariable(image) { 

// Bit 0 - Fill 
// Bit 1 - Dilated Cloud 
// Bit 2 - Cirrus 
// Bit 3 - Cloud 
// Bit 4 - Cloud Shadow 
var qaMask = 

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 
2)).eq(0); 

var saturationMask = image.select('QA_RADSAT').eq(0); 

// Apply the scaling factors to the appropriate bands. 
var opticalBands = 

image.select('SR_B.').multiply(0.0000275).add(-
0.2); 

var thermalBands = image.select('ST_B.*').multiply(0.00341802) 
.add(149.0); 

// Replace the original bands with the scaled ones and apply the 
masks. 

var img = image.addBands(opticalBands, null, true) 
.addBands(thermalBands, null, true) 
.updateMask(qaMask) 
.updateMask(saturationMask); 

var imgScaled = image.addBands(img, null, true); 

// Now we start to add variables of interest. 
// Compute time in fractional years since the epoch. 
var date = ee.Date(image.get('system:time_start')); 
var years = date.difference(ee.Date('1970-01-01'), 'year'); 
// Return the image with the added bands. 
return imgScaled 

// Add an NDVI band. 
.addBands(imgScaled.normalizedDifference(['SR_B5', 'SR_B4'])
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.filterBounds(roi) 

.filterDate('2013-01-01', '2018-01-01') 

.map(maskScaleAndAddVariable); 

// Set map center over the ROI. 
Map.centerObject(roi, 6); 

.rename('NDVI')) 
// Add a time band. 
.addBands(ee.Image(years).rename('t')) 
.float() 
// Add a constant band. 
.addBands(ee.Image.constant(1)); 

} 

// Import point of interest over California, USA. 
var roi = ee.Geometry.Point([-121.059, 37.9242]); 

// Import the USGS Landsat 8 Level 2, Collection 2, Tier 1 image 
collection), 
// filter, mask clouds, scale, and add variables. 
var landsat8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

Next, to visualize the NDVI at the point of interest over time, copy and paste 
the code below to print a chart of the time series (Chap. 4) at the location of 
interest (Fig. 18.2). 

// Plot a time series of NDVI at a single location. 
var landsat8Chart = 
ui.Chart.image.series(landsat8sr.select('NDVI'), roi) 

.setChartType('ScatterChart') 

.setOptions({ 
title: 'Landsat 8 NDVI time series at ROI', 
lineWidth: 1, 
pointSize: 3, 

}); 
print(landsat8Chart);

We can add a linear trend line to our chart using the trendlines parameters 
in the setOptions function for image series charts. Copy and paste the code 
below to print the same chart but with a linear trend line plotted (Fig. 18.3). In the 
next section, you will learn how to estimate linear trends over time.
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Fig. 18.2 Time-series representation of pixel p

// Plot a time series of NDVI with a linear trend line 
// at a single location. 
var landsat8ChartTL = 
ui.Chart.image.series(landsat8sr.select('NDVI'), roi) 

.setChartType('ScatterChart') 

.setOptions({ 
title: 'Landsat 8 NDVI time series at ROI', 
trendlines: { 

0: { 
color: 'CC0000' 

} 
}, 
lineWidth: 1, 
pointSize: 3, 

}); 
print(landsat8ChartTL);

Now that we have plotted and visualized the data, lots of interesting analyses 
can be done to the time series by harnessing Earth Engine tools for fitting curves 
through this data. We will see a couple of examples in the following sections. 

Code Checkpoint F46a. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 18.3 Time series representation of pixel p with the trend line in red

18.2.3 Section 3: Estimating Linear Trend Over Time 

Time-series datasets may contain not only trends but also seasonality, both of 
which may need to be removed prior to modeling. Trends and seasonality can 
result in a varying mean and a varying variance over time, both of which define a 
time series as non-stationary. Stationary datasets, on the other hand, have a stable 
mean and variance, and are therefore much easier to model. 

Consider the following linear model, where et is a random error: 

pt = β0 + β1t + et (18.1) 

This is the model behind the trend line added to the chart created in the previous 
section (Fig. 18.3). Identifying trends at different scales is a big topic, with many 
approaches being used (e.g., differencing, modeling). 

Removing unwanted to uninteresting trends for a given problem is often a first 
step to understand complex patterns in time series. There are several approaches 
to remove trends. Here, we will remove the linear trend that is evident in the 
data shown in Fig. 18.3 using Earth Engine’s built-in tools for regression model-
ing. This approach is a useful, straightforward way to detrend data in time series 
(Shumway and Stoffer 2019). Here, the goal is to discover the values of the β’s in 
Eq. 18.1 for each pixel.
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Copy and paste code below into the Code Editor, adding it to the end 
of the script from the previous section. Running this code will fit this trend 
model to the Landsat-based NDVI series using ordinary least squares, using the 
linearRegression reducer (Chap. 8). 

///////////////////// Section 3 ///////////////////////////// 

// List of the independent variable names 
var independents = ee.List(['constant', 't']); 

// Name of the dependent variable. 
var dependent = ee.String('NDVI'); 

// Compute a linear trend.  This will have two bands: 
'residuals' and 
// a 2x1 (Array Image) band called 'coefficients'. 
// (Columns are for dependent variables) 
var trend = landsat8sr.select(independents.add(dependent)) 

.reduce(ee.Reducer.linearRegression(independents.length(), 
1)); 
Map.addLayer(trend, {}, 'trend array image'); 

// Flatten the coefficients into a 2-band image. 
var coefficients = trend.select('coefficients') 

// Get rid of extra dimensions and convert back to a 
regular image 

.arrayProject([0]) 

.arrayFlatten([independents]); 
Map.addLayer(coefficients, {}, 'coefficients image'); 

If you click over a point using the Inspector tab, you will see the pixel values 
for the array image (coefficients “t” and “constant”, and residuals) and two-band 
image (coefficients “t” and “constant”) (Fig. 18.4).

Now, copy and paste the code below to use the model to detrend the original 
NDVI time series and plot the time series chart with the trendlines parameter 
(Fig. 18.5).
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Fig. 18.4 Pixel values of array image and coefficients image

// Compute a detrended series. 
var detrended = landsat8sr.map(function(image) { 

return image.select(dependent).subtract( 

image.select(independents).multiply(coefficients) 
.reduce('sum')) 

.rename(dependent) 

.copyProperties(image, ['system:time_start']); 
}); 

// Plot the detrended results. 
var detrendedChart = ui.Chart.image.series(detrended, roi, 
null, 30) 

.setOptions({ 
title: 'Detrended Landsat time series at ROI', 
lineWidth: 1, 
pointSize: 3, 
trendlines: { 

0: { 
color: 'CC0000' 

} 
}, 

}); 
print(detrendedChart);
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Fig. 18.5 Detrended NDVI time series 

Code Checkpoint F46b. The book’s repository contains a script that shows what 
your code should look like at this point. 

18.2.4 Section 4: Estimating Seasonality with a Harmonic Model 

A linear trend is one of several possible types of trends in time series. Time series 
can also present harmonic trends, in which a value goes up and down in a pre-
dictable wave pattern. These are of particular interest and usefulness in the natural 
world, where harmonic changes in greenness of deciduous vegetation can occur 
across the spring, summer, and autumn. Now, we will return to the initial time 
series (landsat8sr) of Fig.  18.2 and fit a harmonic pattern through the data. 
Consider the following harmonic model, where A is amplitude, ω is frequency, ϕ 
is phase, and et is a random error. 

pt = β0 + β1t + A cos(2πωt − ϕ) + et 
= β0 + β1t + β2 cos(2πωt) + β3 sin(2πωt) + et (18.2) 

Note that β2 = A cos(ϕ) and β3 = A sin(ϕ), implying A = (β2 
2 + β3 

2)½ and 
ϕ = atan(β3/β2) (as described in Shumway and Stoffer 2019). To fit this model 
to an annual time series, set ω = 1 (one cycle per year) and use ordinary least 
squares regression.
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The setup for fitting the model is to first add the harmonic variables (the third 
and fourth terms of Eq. 18.2) to the ImageCollection. Then, fit the model as 
with the linear trend, using the linearRegression reducer, which will yield 
a 4×1 array image. 

///////////////////// Section 4 ///////////////////////////// 

// Use these independent variables in the harmonic 
regression. 
var harmonicIndependents = ee.List(['constant', 't', 'cos', 
'sin']); 

// Add harmonic terms as new image bands. 
var harmonicLandsat = landsat8sr.map(function(image) { 

var timeRadians = image.select('t').multiply(2 * 
Math.PI); 

return image 
.addBands(timeRadians.cos().rename('cos')) 
.addBands(timeRadians.sin().rename('sin')); 

}); 

// Fit the model. 
var harmonicTrend = harmonicLandsat 

.select(harmonicIndependents.add(dependent)) 
// The output of this reducer is a 4x1 array image. 

.reduce(ee.Reducer.linearRegression(harmonicIndependents.leng 
th(), 

1)); 

Now, copy and paste the code below to plug the coefficients into Eq. 18.2 in 
order to get a time series of fitted values and plot the harmonic model time series 
(Fig. 18.6).
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// Turn the array image into a multi-band image of coefficients. 
var harmonicTrendCoefficients = 
harmonicTrend.select('coefficients') 

.arrayProject([0]) 

.arrayFlatten([harmonicIndependents]); 

// Compute fitted values. 
var fittedHarmonic = harmonicLandsat.map(function(image) { 

return image.addBands( 
image.select(harmonicIndependents) 
.multiply(harmonicTrendCoefficients) 
.reduce('sum') 
.rename('fitted')); 

}); 

// Plot the fitted model and the original data at the ROI. 
print(ui.Chart.image.series( 

fittedHarmonic.select(['fitted', 'NDVI']), roi, 
ee.Reducer 

.mean(), 30) 
.setSeriesNames(['NDVI', 'fitted']) 
.setOptions({ 

title: 'Harmonic model: original and fitted values', 
lineWidth: 1, 
pointSize: 3, 

})); 

Fig. 18.6 Harmonic model of NDVI time series 

Returning to the mind-bending nature of curve fitting, it is worth remembering 
that the harmonic waves seen in Fig. 18.6 are the fit of the data to a single point 
across the image. Next, we will map the outcomes of millions of these fits, pixel-
by-pixel, across the entire study area. 

We’ll compute and map the phase and amplitude of the estimated harmonic 
model for each pixel. Phase and amplitude (Fig. 18.7) can give us additional infor-
mation to facilitate remote sensing applications such as agricultural mapping and
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Fig. 18.7 Example of phase and amplitude in harmonic model 

land use and land cover monitoring. Agricultural crops with different phenological 
cycles can be distinguished with phase and amplitude information, something that 
perhaps would not be possible with spectral information alone. 

Copy and paste the code below to compute phase and amplitude from the 
coefficients and add this image to the map (Fig. 18.8). 

// Compute phase and amplitude. 
var phase = harmonicTrendCoefficients.select('sin') 

.atan2(harmonicTrendCoefficients.select('cos')) 
// Scale to [0, 1] from radians. 
.unitScale(-Math.PI, Math.PI); 

var amplitude = harmonicTrendCoefficients.select('sin') 
.hypot(harmonicTrendCoefficients.select('cos')) 
// Add a scale factor for visualization. 
.multiply(5); 

// Compute the mean NDVI. 
var meanNdvi = landsat8sr.select('NDVI').mean(); 

// Use the HSV to RGB transformation to display phase and 
amplitude. 
var rgb = ee.Image.cat([ 

phase, // hue 
amplitude, // saturation (difference from white) 
meanNdvi // value (difference from black) 

]).hsvToRgb(); 

Map.addLayer(rgb, {}, 'phase (hue), amplitude (sat), ndvi 
(val)');
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Fig. 18.8 Phase, amplitude, and NDVI concatenated image 

The code uses the HSV to RGB transformation hsvToRgb for visualization 
purposes (Chap. 9). We use this transformation to separate color components from 
intensity for a better visualization. Without this transformation, we would visual-
ize a very colorful image that would not look as intuitive as the image with the 
transformation. With this transformation, phase, amplitude, and mean NDVI are 
displayed in terms of hue (color), saturation (difference from white), and value 
(difference from black), respectively. Therefore, darker pixels are areas with low 
NDVI. For example, water bodies will appear as black, since NDVI values are 
zero or negative. The different colors are distinct phase values, and the saturation 
of the color refers to the amplitude: whiter colors mean amplitude closer to zero 
(e.g., forested areas), and the more vivid the colors, the higher the amplitude (e.g., 
croplands). Note that if you use the Inspector tool to analyze the values of a pixel, 
you will not get values of phase, amplitude, and NDVI, but the transformed values 
into values of blue, green, and red colors.
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Code Checkpoint F46c. The book’s repository contains a script that shows what 
your code should look like at this point. 

18.2.5 Section 5: An Application of Curve Fitting 

The rich data about the curve fits can be viewed in a multitude of different ways. 
Add the code below to your script to produce the view in Fig. 18.9. The image 
will be a close-up of the area around Modesto, California. 

///////////////////// Section 5 ///////////////////////////// 

// Import point of interest over California, USA. 
var roi = ee.Geometry.Point([-121.04, 37.641]); 

// Set map center over the ROI. 
Map.centerObject(roi, 14); 

var trend0D = trend.select('coefficients').arrayProject([0]) 
.arrayFlatten([independents]).select('t'); 

var anotherView = 
ee.Image(harmonicTrendCoefficients.select('sin')) 

.addBands(trend0D) 

.addBands(harmonicTrendCoefficients.select('cos')); 

Map.addLayer(anotherView, 
{ 

min: -0.03, 
max: 0.03 

}, 
'Another combination of fit characteristics');

The upper image in Fig. 18.9 is a closer view of Fig. 18.8, showing an image 
that transforms the sine and cosine coefficient values and incorporates information 
from the mean NDVI. The lower image draws the sine and cosine in the red and 
blue bands, and extracts the slope of the linear trend that you calculated earlier in 
the chapter, placing that in the green band. The two views of the fit are similarly 
structured in their spatial pattern—both show fields to the west and the city to 
the east. But the pixel-by-pixel variability emphasizes a key point of this chapter: 
that a fit to the NDVI data is done independently in each pixel in the image. 
Using different elements of the fit, these two views, like other combinations of the 
data you might imagine, can reveal the rich variability of the landscape around 
Modesto.
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Fig. 18.9 Two views of the harmonic fits for NDVI for the Modesto, California area

Code Checkpoint F46d. The book’s repository contains a script that shows what 
your code should look like at this point. 

18.2.6 Section 6: Higher-Order Harmonic Models 

Harmonic models are not limited to fitting a single wave through a set of points. 
In some situations, there may be more than one cycle within a given year—for 
example, when an agricultural field is double-cropped. Modeling multiple waves 
within a given year can be done by adding more harmonic terms to Eq. 18.2. The 
code at the following checkpoint allows the fitting of any number of cycles through 
a given point. 

Code Checkpoint F46e. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and edit the code to produce 
the charts in this section.
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Beginning with the repository script, changing the value of the harmonics 
variable will change the complexity of the harmonic curve fit by superimposing 
more or fewer harmonic waves on each other. While fitting higher-order functions 
improves the goodness-of-fit of the model to a given set of data, many of the coef-
ficients may be close to zero at higher numbers or harmonic terms. Figure 18.10 
shows the fit through the example point using one, two, and three harmonic curves. 

Fig. 18.10 Fit with harmonic curves of increasing complexity, fitted for data at a given point
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18.3 Synthesis 

Assignment 1. Fit two NDVI harmonic models for a point close to Manaus, Brazil: 
one prior to a disturbance event and one after the disturbance event (Fig. 18.11). 
You can start with the code checkpoint below, which gives you the point coordi-
nates and defines the initial functions needed. The disturbance event happened 
in mid-December 2014, so set filter dates for the first ImageCollection 
to ’2013-01-01’, ’2014-12-12’, and set the filter dates for the second 
ImageCollection to ‘2014-12-13’, ‘2019-01-01’. Merge both fit-
ted collections and plot both NDVI and fitted values. The result should look like 
Fig. 18.12. 

Code Checkpoint F46s1. The book’s repository contains a script that shows what 
your code should look like at this point. 

What do you notice? Think about how the harmonic model would look if 
you tried to fit the entire period. In this example, you were given the date of 
the breakpoint between the two conditions of the land surface within the time 
series. State-of-the-art land cover change algorithms work by assessing the differ-
ence between the modeled and observed pixel values. These algorithms look for 
breakpoints in the model, typically flagging changes after a predefined number of 
consecutive observations. 

Code Checkpoint F46s2. The book’s repository contains a script that shows what 
your code should look like at this point. 

Fig. 18.11 Landsat 8 images showing the land cover change at a point in Manaus, Brazil; (left) 
July 6, 2014, (right) August 8, 2015
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Fig. 18.12 Fitted harmonic models before and after disturbance events to a given point in the 
Brazilian Amazon 

18.4 Conclusion 

In this chapter, we learned how to graph and fit both linear and harmonic functions 
to time series of remotely sensed data. These skills underpin important tools such 
as Continuous Change Detection and Classification (CCDC, Chap. 19) and Con-
tinuous Degradation Detection (CODED, Chap. 49). These approaches are used 
by many organizations to detect forest degradation and deforestation (e.g., Tang 
et al. 2019; Bullock et al. 2020). These approaches can also be used to identify 
crops (Chap. 32) with high degrees of accuracy (Ghazaryan et al. 2018). 
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19Interpreting Time Series with CCDC 

Paulo Arévalo and Pontus Olofsson 

Overview 
Continuous change detection and classification (CCDC) is a land change monitoring 
algorithm designed to operate on time series of satellite data, particularly Landsat 
data. This chapter focuses on the portion that is the change detection component 
(CCD); you will learn how to run the algorithm, interpret its outputs, and visualize 
coefficients and change information. 

Learning Outcomes

• Exploring pixel-level time series of Landsat observations, as well as the temporal 
segments that CCDC fits to the observations.

• Visualizing the coefficients of the temporal segments in space.
• Visualizing predicted images made from detected temporal segments.
• Visualizing change information.
• Using array image functions.
• Attaching user-defined metadata to an image when exporting. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II).
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• Visualize images with a variety of false-color band combinations (Chap. 2).
• Interpret bands and indices in terms of land surface characteristics (Chap. 5).
• Work with array images (Chaps. 9 and 18).
• Interpret fitted harmonic models (Chap. 18). 

19.1 Introduction to Theory 

“A time series is a sequence of observations taken sequentially in time. … An 
intrinsic feature of a time series is that, typically, adjacent observations are depen-
dent. Time-series analysis is concerned with techniques for the analysis of this 
dependency.” This is the formal definition of time-series analysis by Box et al. 
(1994). In a remote sensing context, the observations of interest are measure-
ments of radiation reflected from the surface of the Earth from the Sun or an 
instrument emitting energy toward Earth. Consecutive measurements made over a 
given area result in a time series of surface reflectance. By analyzing such time 
series, we can achieve a comprehensive characterization of ecosystem and land 
surface processes (Kennedy et al. 2014). The result is a shift away from tradi-
tional, retrospective change detection approaches based on data acquired over the 
same area at two or a few points in time to continuous monitoring of the landscape 
(Woodcock et al. 2020). Previous obstacles related to data storage, preprocessing, 
and computing power have been largely overcome with the emergence of pow-
erful cloud-computing platforms that provide direct access to the data (Gorelick 
et al. 2017). In this chapter, we will illustrate how to study landscape dynamics in 
the Amazon river basin by analyzing dense time series of Landsat data using the 
CCDC algorithm. Unlike LandTrendr (Chap. 17), which uses anniversary images 
to fit straight line segments that describe the spectral trajectory over time, CCDC 
uses all available clear observations. This has multiple advantages, including the 
ability to detect changes within a year and capture seasonal patterns, although 
at the expense of much higher computational demands and more complexity to 
manipulate the outputs, compared to LandTrendr. 

19.2 Practicum 

19.2.1 Section 1: Understanding Temporal Segmentation 
with CCDC 

Spectral change is detected at the pixel level by testing for structural breaks in a 
time series of reflectance. In Earth Engine, this process is referred to as “temporal 
segmentation,” as pixel-level time series are segmented according to periods of 
unique reflectance. It does so by fitting harmonic regression models to all spec-
tral bands in the time series. The model-fitting starts at the beginning of the time 
series and moves forward in time in an “online” approach to change detection. The
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coefficients are used to predict future observations, and if the residuals of future 
observations exceed a statistical threshold for numerous consecutive observations, 
then the algorithm flags that a change has occurred. After the change, a new 
regression model is fit and the process continues until the end of the time series. 
The details of the original algorithm are described in Zhu and Woodcock (2014). 
We have created an interface-based tool (Arévalo et al. 2020) that facilitates the 
exploration of time series of Landsat observations and the CCDC results. 

Code Checkpoint F47a. The book’s repository contains information about access-
ing the CCDC interface. 

Once you have loaded the CCDC interface (Fig. 19.1), you will be able to 
navigate to any location, pick a Landsat spectral band or index to plot, and click 
on the map to see the fit by CCDC at the location you clicked. For this exercise, 
we will study landscape dynamics in the state of Rondônia, Brazil. We can use 
the panel on the left-bottom corner to enter the following coordinates (latitude, 
longitude): − 9.0002, − 62.7223. A point will be added in that location and the 
map will zoom in to it. Once there, click on the point and wait for the chart at the 
bottom to load. This example shows the Landsat time series for the first shortwave 
infrared (SWIR1) band (as blue dots) and the time segments (as colored lines) run 
using CCDC default parameters. The first segment represents stable forest, which 
was abruptly cut in mid-2006. The algorithm detects this change event and fits a 
new segment afterward, representing a new temporal pattern of agriculture. Other 
subsequent patterns are detected as new segments are fitted that may correspond 
to cycles of harvest and regrowth, or a different crop. To investigate the dynamics 
over time, you can click on the points in the chart, and the Landsat images they 
correspond to will be added to the map according to the visualization parameters 
selected for the RGB combination in the left panel. Currently, changes made in 
that panel are not immediate but must be set before clicking on the map.

Pay special attention to the characteristics of each segment. For example, look 
at the average surface reflectance value for each segment. The presence of a 
pronounced slope may be indicative of phenomena like vegetation regrowth or 
degradation. The number of harmonics used in each segment may represent sea-
sonality in vegetation (either natural or due to agricultural practices) or landscape 
dynamics (e.g., seasonal flooding). 

Question 1. While still using the SWIR1 band, click on a pixel that is forested. 
What do the time series and time segments look like? 

19.2.2 Section 2: Running CCDC 

The tool shown above is useful for understanding the temporal dynamics for a 
specific point. However, we can do a similar analysis for larger areas by first 
running the CCDC algorithm over a group of pixels. The CCDC function in Earth 
Engine can take any ImageCollection, ideally one with little or no noise, such 
as a Landsat ImageCollection where clouds and cloud shadows have been
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Fig. 19.1 Landsat time series for the SWIR1 band (blue dots) and CCDC time segments (colored 
lines) showing a forest loss event circa 2006 for a place in Rondônia, Brazil

masked. CCDC contains an internal cloud masking algorithm and is rather robust 
against missed clouds, but the cleaner the data the better. To simplify the process, 
we have developed a function library that contains functions for generating input 
data and processing CCDC results. Paste this line of code in a new script: 

var utils = require( 
'users/parevalo_bu/gee-ccdc-tools:ccdcUtilities/api'); 

For the current exercise, we will obtain an ImageCollection of Landsat 4, 
5, 7, and 8 data (Collection 2 Tier 1) that has been filtered for clouds, cloud shad-
ows, haze, and radiometrically saturated pixels. If we were to do this manually, we 
would retrieve each ImageCollection for each satellite, apply the correspond-
ing filters and then merge them all into a single ImageCollection. Instead, to 
simplify that process, we will use the function getLandsat, included in the “In-
puts” module of our utilities, and then filter the resulting ImageCollection to 
a small study region for the period between 2000 and 2020. The getLandsat 
function will retrieve all surface reflectance bands (renamed and scaled to actual 
surface reflectance units) as well as other vegetation indices. To simplify the exer-
cise, we will select only the surface reflectance bands we are going to use, adding 
the following code to your script:
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var studyRegion = ee.Geometry.Rectangle([ 
[-63.9533, -10.1315], 
[-64.9118, -10.6813] 

]); 

// Define start, end dates and Landsat bands to use. 
var startDate = '2000-01-01'; 
var endDate = '2020-01-01'; 
var bands = ['BLUE', 'GREEN', 'RED', 'NIR', 'SWIR1', 
'SWIR2']; 

// Retrieve all clear, Landsat 4, 5, 7 and 8 observations 
(Collection 2, Tier 1). 
var filteredLandsat = utils.Inputs.getLandsat({ 

collection: 2 
}) 
.filterBounds(studyRegion) 
.filterDate(startDate, endDate) 
.select(bands); 

print(filteredLandsat.first()); 

With the ImageCollection ready, we can specify the CCDC parameters 
and run the algorithm. For this exercise, we will use the default parameters, which 
tend to work reasonably well in most circumstances. The only parameters we will 
modify are the breakpoint bands, date format, and lambda. We will set all the 
parameter values in a dictionary that we will pass to the CCDC function. For the 
break detection process, we use all bands except for the blue and surface tem-
perature bands (‘BLUE’ and ‘TEMP’, respectively). The minObservations 
default value of 6 represents the number of consecutive observations required to 
flag a change. The chiSquareProbability and minNumOfYearsScaler 
default parameters of 0.99 and 1.33, respectively, control the sensitivity of the 
algorithm to detect change and the iterative curve fitting process required to detect 
change. We set the date format to 1, which corresponds to fractional years and 
tends to be easier to interpret. For instance, a change detected in the middle day 
of the year 2010 would be stored in a pixel as 2010.5. Finally, we use the default 
value of lambda of 20, but we scale it to match the scale of the inputs (surface 
reflectance units), and we specify a maxIterations value of 10,000, instead of 
the default of 25,000, which might take longer to complete. Those two parameters 
control the curve fitting process.
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To complete the input parameters, we specify the ImageCollection to use, 
which we derived in the previous code section. Add this code below: 

// Set CCD params to use. 
var ccdParams = { 

breakpointBands: ['GREEN', 'RED', 'NIR', 'SWIR1', 'SWIR2'], 
tmaskBands: ['GREEN', 'SWIR2'], 
minObservations: 6, 
chiSquareProbability: 0.99, 
minNumOfYearsScaler: 1.33, 
dateFormat: 1, 
lambda: 0.002, 
maxIterations: 10000, 
collection: filteredLandsat 

}; 

// Run CCD. 
var ccdResults = 
ee.Algorithms.TemporalSegmentation.Ccdc(ccdParams); 
print(ccdResults); 

Notice that the output ccdResults contains a large number of bands, with 
some of them corresponding to two-dimensional arrays. We will explore these 
bands more in the following section. The process of running the algorithm inter-
actively for more than a handful of pixels can become very taxing to the system 
very quickly, resulting in memory errors. To avoid having such issues, we typically 
export the results to an Earth Engine asset first, and then inspect the asset. This 
approach ensures that CCDC completes its run successfully, and also allows us to 
access the results easily later. In the following sections of this chapter, we will use 
a precomputed asset, instead of asking you to export the asset yourself. For your 
reference, the code required to export CCDC results is shown below, with the flag 
set to false to help you remember to not export the results now, but instead to use 
the precomputed asset in the following sections.
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var exportResults = false 
if (exportResults) { 

// Create a metadata dictionary with the parameters and 
arguments used. 

var metadata = ccdParams; 
metadata['breakpointBands'] = 

metadata['breakpointBands'].toString(); 
metadata['tmaskBands'] = metadata['tmaskBands'].toString(); 
metadata['startDate'] = startDate; 
metadata['endDate'] = endDate; 
metadata['bands'] = bands.toString(); 

// Export results, assigning the metadata as image 
properties. 

// 
Export.image.toAsset({ 

image: ccdResults.set(metadata), 
region: studyRegion, 
pyramidingPolicy: { 

".default": 'sample' 
}, 
scale: 30 

}); 
} 

Note the metadata variable above. This is not strictly required for export-
ing the per-pixel CCDC results, but it allows us to keep a record of important 
properties of the run by attaching this information as metadata to the image. Addi-
tionally, some of the tools we have created to interact with CCDC outputs use this 
user-created metadata to facilitate using the asset. Note also that setting the value 
of pyramidingPolicy to ‘sample’ ensures that all the bands in the output 
have the proper policy. 

As a general rule, try to use pre-existing CCDC results if possible, and if you 
want to try running it yourself outside of this lab exercise, start with very small 
areas. For instance, the study area in this exercise would take approximately 30 min 
on average to export, but larger tiles may take several hours to complete, depending 
on the number of images in the collection and the parameters used. 

Code Checkpoint F47b. The book’s repository contains a script that shows what 
your code should look like at this point.
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19.2.3 Section 3: Extracting Break Information 

We will now start exploring the pre-exported CCDC results mentioned in the pre-
vious section. We will make use of the third-party module palettes, described 
in detail in Chap. 27, that simplifies the use of palettes for visualization. Paste the 
following code in a new script: 

var palettes = require('users/gena/packages:palettes'); 

var resultsPath = 
'projects/gee-book/assets/F4-7/Rondonia_example_small'; 

var ccdResults = ee.Image(resultsPath); 
Map.centerObject(ccdResults, 10); 
print(ccdResults); 

The first line calls a library that will facilitate visualizing the images. The sec-
ond line contains the path to the precomputed results of the CCDC run shown in 
the previous section. The printed asset will contain the following bands:

• tStart: The start date of each time segment
• tEnd: The end date of each time segment
• tBreak: The time segment break date if a change is detected
• numObs: The number of observations used in each time segment
• changeProb: A numeric value representing the change probability for each 

of the bands used for change detection
• *_coefs: The regression coefficients for each of the bands in the input image 

collection
• *_rmse: The model root-mean-square error for each time segment and input 

band
• *_magnitude: For time segments with detected changes, this represents the 

normalized residuals during the change period. 

Notice that next to the band name and band type, there is also the number of 
dimensions (i.e., 1 dimension, 2 dimensions). This is an indication that we are 
dealing with an array image, which typically requires a specific set of functions 
for proper manipulation, some of which we will use in the next steps. We will start 
by looking at the change bands, which are one of the key outputs of the CCDC 
algorithm. We will select the band containing the information on the timing of 
break, and find the number of breaks for a given time range. In the same script, 
paste the code below:
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// Select time of break and change probability array images. 
var change = ccdResults.select('tBreak'); 
var changeProb = ccdResults.select('changeProb'); 

// Set the time range we want to use and get as mask of 
// places that meet the condition. 
var start = 2000; 
var end = 2021; 
var mask = 
change.gt(start).and(change.lte(end)).and(changeProb.eq( 
1)); 
Map.addLayer(changeProb, {}, 'change prob'); 

// Obtain the number of breaks for the time range. 
var numBreaks = mask.arrayReduce(ee.Reducer.sum(), [0]); 
Map.addLayer(numBreaks, { 

min: 0, 
max: 5 

}, 'Number of breaks'); 

With this code, we define the time range that we want to use, and then we 
generate a mask that will indicate all the positions in the image array with breaks 
detected in that range that also meet the condition of having a change probability 
of 1, effectively removing some spurious breaks. For each pixel, we can count 
the number of times that the mask retrieved a valid result, indicating the num-
ber of breaks detected by CCDC. In the loaded layer, places that appear brighter 
will show a higher number of breaks, potentially indicating the conversion from 
forest to agriculture, followed by multiple agricultural cycles. Keep in mind that 
the detection of a break does not always imply a change of land cover. Natural 
events, small-scale disturbances, and seasonal cycles, among others can result in 
the detection of a break by CCDC. Similarly, changes in the condition of the land 
cover in a pixel can also be detected as breaks by CCDC, and some erroneous 
breaks can also happen due to noisy time series or other factors. 

For places with many changes, visualizing the first or last time when a break 
was recorded can be helpful to understand the change dynamics happening in the 
landscape. Paste the code below in the same script:
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// Obtain the first change in that time period. 
var dates = change.arrayMask(mask).arrayPad([1]); 
var firstChange = dates 

.arraySlice(0, 0, 1) 

.arrayFlatten([ 
['firstChange'] 

]) 
.selfMask(); 

var timeVisParams = { 
palette: palettes.colorbrewer.YlOrRd[9], 
min: start, 
max: end 

}; 
Map.addLayer(firstChange, timeVisParams, 'First change'); 

// Obtain the last change in that time period. 
var lastChange = dates 

.arraySlice(0, -1) 

.arrayFlatten([ 
['lastChange'] 

]) 
.selfMask(); 

Map.addLayer(lastChange, timeVisParams, 'Last change'); 

Here, we use arrayMask to keep only the change dates that meet our con-
dition, by using the mask we created previously. We use the function arrayPad 
to fill or “pad” those pixels that did not experience any change and therefore have 
no value in the tBreak band. Then we select either the first or last values in the 
array, and we convert the image from a one-dimensional array to a regular image, 
in order to apply a visualization to it, using a custom palette. The results should 
look like Fig. 19.2.

Finally, we can use the magnitude bands to visualize where and when the largest 
changes as recorded by CCDC have occurred, during our selected time period. We 
are going to use the magnitude of change in the SWIR1 band, masking it and 
padding it in the same way we did before. Paste this code in your script:
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Fig. 19.2 First (top) and last (bottom) detected breaks for the study area. Darker colors represent 
more recent dates, while brighter colors represent older dates. The first change layer shows the clear 
patterns of original agricultural expansion closer to the year 2000. The last change layer shows the 
more recently detected and noisy breaks in the same areas. The thin areas in the center of the image 
have only one time of change, corresponding to a single deforestation event. Pixels with no detected 
breaks are masked and therefore show the basemap underneath, set to show satellite imagery
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// Get masked magnitudes. 
var magnitudes = ccdResults 

.select('SWIR1_magnitude') 

.arrayMask(mask) 

.arrayPad([1]); 

// Get index of max abs magnitude of change. 
var maxIndex = magnitudes 

.abs() 

.arrayArgmax() 

.arrayFlatten([ 
['index'] 

]); 

// Select max magnitude and its timing 
var selectedMag = magnitudes.arrayGet(maxIndex); 
var selectedTbreak = dates.arrayGet(maxIndex).selfMask(); 

var magVisParams = { 
palette: palettes.matplotlib.viridis[7], 
min: -0.15, 
max: 0.15 

}; 
Map.addLayer(selectedMag, magVisParams, 'Max mag'); 
Map.addLayer(selectedTbreak, timeVisParams, 'Time of max 
mag'); 

We first take the absolute value because the magnitudes can be positive or 
negative, depending on the direction of the change and the band used. For exam-
ple, a positive value in the SWIR1 may show a forest loss event, where surface 
reflectance goes from low to higher values. Brighter values in Fig. 19.3 represent 
events of that type. Conversely, a flooding event would have a negative value, 
due to the corresponding drop in reflectance. Once we find the maximum abso-
lute value, we find its position on the array and then use that index to extract the 
original magnitude value, as well as the time when that break occurred.

Code Checkpoint F47c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 2. Compare the “first change” and “last change” layers with the layer 
showing the timing of the maximum magnitude of change. Use the Inspector to 
check the values for specific pixels if necessary. What does the timing of the layers 
tell you about the change processes happening in the area?
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Fig. 19.3 Maximum magnitude of change for the SWIR1 band for the selected study period

Question 3. Looking at the “max magnitude of change” layer, find places show-
ing the largest and the smallest values. What type of changes do you think are 
happening in each of those places? 

19.2.4 Section 4: Extracting Coefficients Manually 

In addition to the change information generated by the CCDC algorithm, we can 
use the coefficients of the time segments for multiple purposes, like land cover 
classification. Each time segment can be described as a harmonic function with 
an intercept, slope, and three pairs of sine and cosine terms that allow the time 
segments to represent seasonality occurring at different temporal scales. These 
coefficients, as well as the root-mean-square error (RMSE) obtained by comparing 
each predicted and actual Landsat value, are produced when the CCDC algorithm 
is run. The following example will show you how to retrieve the intercept coef-
ficient for a segment intersecting a specific date. In a new script, paste the code 
below:
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var palettes = require('users/gena/packages:palettes'); 

var resultsPath = 
'projects/gee-book/assets/F4-7/Rondonia_example_small'; 

var ccdResults = ee.Image(resultsPath); 
Map.centerObject(ccdResults, 10); 
print(ccdResults); 

// Display segment start and end times. 
var start = ccdResults.select('tStart'); 
var end = ccdResults.select('tEnd'); 
Map.addLayer(start, { 

min: 1999, 
max: 2001 

}, 'Segment start'); 
Map.addLayer(end, { 

min: 2010, 
max: 2020 

}, 'Segment end'); 

Check the Console and expand the bands section in the printed image informa-
tion. We will be using the tStart, tEnd, and SWIR1_coefs bands, which are 
array images containing the date when the time segments start, date time segments 
end, and the coefficients for each of those segments for the SWIR1 band. Run the 
code above and switch the map to Satellite mode. Using the Inspector, click any-
where on the images, noticing the number of dates printed and their values for 
multiple clicked pixels. You will notice that for places with stable forest cover, 
there is usually one value for tStart and one for tEnd. This means that for 
those more stable places, only one time segment was fit by CCDC. On the other 
hand, for places with visible transformation in the basemap, the number of dates is 
usually two or three, meaning that the algorithm fitted two or three time segments, 
respectively. To simplify the processing of the data, we can select a single segment 
to extract its coefficients. Paste the code below and re-run the script: 

// Find the segment that intersects a given date. 
var targetDate = 2005.5; 
var selectSegment = 
start.lte(targetDate).and(end.gt(targetDate)); 
Map.addLayer(selectSegment, {}, 'Identified segment');
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In the code above, we set a time of interest, in this case the middle of 2005, and 
then we find the segments that meet the condition of starting before and ending 
after that date. Using the Inspector again, click on different locations and verify 
the outputs. The segment that meets the condition will have a value of 1, and the 
other segments will have a value of 0. We can use this information to select the 
coefficients for that segment, using the code below: 

// Get all coefs in the SWIR1 band. 
var SWIR1Coefs = ccdResults.select('SWIR1_coefs'); 
Map.addLayer(SWIR1Coefs, {}, 'SWIR1 coefs'); 

// Select only those for the segment that we identified 
previously. 
var sliceStart = selectSegment.arrayArgmax().arrayFlatten([ 

['index'] 
]); 
var sliceEnd = sliceStart.add(1); 
var selectedCoefs = SWIR1Coefs.arraySlice(0, sliceStart, 
sliceEnd); 
Map.addLayer(selectedCoefs, {}, 'Selected SWIR1 coefs'); 

In the piece of code above, we first select the array image with the coefficients 
for the SWIR1 band. Then, using the layer that we created before, we find the 
position where the condition is true, and use that to extract the coefficients only 
for that segment. Once again, you can verify that using the Inspector tab. 

Finally, what we have now is the full set of coefficients for the segment that 
intersects the midpoint of 2005. The coefficients are in the following order: inter-
cept, slope, cosine 1, sine 1, cosine 2, sine 2, cosine 3, and sine 3. For this exercise, 
we will extract the intercept coefficient (Fig. 19.4), which is the first element in 
the array, using the code below:

// Retrieve only the intercept coefficient. 
var intercept = selectedCoefs.arraySlice(1, 0, 
1).arrayProject([1]); 
var intVisParams = { 

palette: palettes.matplotlib.viridis[7], 
min: -6, 
max: 6 

}; 
Map.addLayer(intercept.arrayFlatten([ 

['INTP'] 
]), intVisParams, 'INTP_SWIR1');
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Fig. 19.4 Values for the intercept coefficient of the segments that start before and end after the 
midpoint of 2005

Since we run the CCDC algorithm on Landsat surface reflectance images, inter-
cept values should represent the average reflectance of a segment. However, if you 
click on the image, you will see that the values are outside of the 0–1 range. 
This is because the intercept is calculated by the CCDC algorithm for the origin 
(e.g., time 0), and not for the year we requested. In order to retrieve the adjusted 
intercept, as well as other coefficients, we will use a different approach. 

Code Checkpoint F47d. The book’s repository contains a script that shows what 
your code should look like at this point. 

19.2.5 Section 5: Extracting Coefficients Using External Functions 

The code we generated in the previous section allowed us to extract a single coef-
ficient for a single date. However, we typically want to extract a set of multiple 
coefficients and bands that we can use as inputs to other workflows, such as clas-
sification. To simplify that process, we will use the same function library that we 
saw in Sect. 19.2.2. In this section, we will extract and visualize different coeffi-
cients for a single date and produce an RGB image using the intercept coefficients 
for multiple spectral bands for the same date. The first step involves determining 
the date of interest and converting the CCDC results from array images to regular 
multiband images for easier manipulation and faster display. In a new script, copy 
the code below:
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// Load the required libraries. 
var palettes = require('users/gena/packages:palettes'); 
var utils = require( 

'users/parevalo_bu/gee-ccdc-tools:ccdcUtilities/api'); 

// Load the results. 
var resultsPath = 

'projects/gee-book/assets/F4-7/Rondonia_example_small'; 
var ccdResults = ee.Image(resultsPath); 
Map.centerObject(ccdResults, 10); 

// Convert a date into fractional years. 
var inputDate = '2005-09-25'; 
var dateParams = { 

inputFormat: 3, 
inputDate: inputDate, 
outputFormat: 1 

}; 
var formattedDate = utils.Dates.convertDate(dateParams); 

// Band names originally used as inputs to the CCD 
algorithm. 
var BANDS = ['BLUE', 'GREEN', 'RED', 'NIR', 'SWIR1', 
'SWIR2']; 

// Names for the time segments to retrieve. 
var SEGS = ['S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'S7', 'S8', 
'S9', 

'S10' 
]; 

// Transform CCD results into a multiband image. 
var ccdImage = utils.CCDC.buildCcdImage(ccdResults, 
SEGS.length, 

BANDS); 
print(ccdImage); 

In the code above, we define the date of interest (2005-09-25) and convert it 
to the date format in which we ran CCDC, which corresponds to fractional years. 
After that, we specify the band that we used as inputs for the CCDC algorithm. 
Finally, we specify the names we will assign to the time segments, with the list 
length indicating the maximum number of time segments to retrieve per pixel. 
This step is done because the results generated by CCDC are stored as variable-
length arrays. For example, a pixel where there are no breaks detected will have 
one time segment, but another pixel where a single break was detected may have
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one or two segments, depending on when the break occurred. Requesting a pre-
defined maximum number of segments ensures that the structure of the multiband 
image is known, and greatly facilitates its manipulation and display. Once we have 
set these variables, we call a function that converts the result into an image with 
several bands representing the combination of segments requested, input bands, 
and coefficients. You can see the image structure in the Console. 

Finally, to extract a subset of coefficients for the desired bands, we can use a 
function in the imported library, called getMultiCoefs. This function expects 
the following ordered parameters:

• The CCDC results in the multiband format we just generated in the step above.
• The date for which we want to extract the coefficients, in the format in which 

the CCDC results were run (fractional years in our case).
• List of the bands to retrieve (i.e., spectral bands).
• List of coefficients to retrieve, defined as follows: INTP (intercept), SLP 

(slope), COS, SIN, COS32, SIN2, COS3, SIN3, and RMSE.
• A Boolean flag of true or false, indicating whether we want the intercepts 

to be calculated for the input date, instead of being calculated at the origin. If 
true, SLP must be included in the list of coefficients to retrieve.

• List of segment names, as used to create the multiband image in the prior step.
• Behavior to apply if there is no time segment for the requested date: normal 

will retrieve a value only if the date intersects a segment; before or after 
will use the value of the segment immediately before or after the requested 
date, if no segment intersects the date directly. 

// Define bands to select. 
var SELECT_BANDS = ['RED', 'GREEN', 'BLUE', 'NIR']; 

// Define coefficients to select. 
// This list contains all possible coefficients, and the RMSE 
var SELECT_COEFS = ['INTP', 'SLP', 'RMSE']; 

// Obtain coefficients. 
var coefs = utils.CCDC.getMultiCoefs( 

ccdImage, formattedDate, SELECT_BANDS, SELECT_COEFS, true, 
SEGS, 'after'); 

print(coefs); 

// Show a single coefficient. 
var slpVisParams = { 

palette: palettes.matplotlib.viridis[7], 
min: -0.0005, 
max: 0.005 

};
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Map.addLayer(coefs.select('RED_SLP'), slpVisParams, 
'RED SLOPE 2005-09-25'); 

var rmseVisParams = { 
palette: palettes.matplotlib.viridis[7], 
min: 0, 
max: 0.1 

}; 
Map.addLayer(coefs.select('NIR_RMSE'), rmseVisParams, 

'NIR RMSE 2005-09-25'); 

// Show an RGB with three coefficients. 
var rgbVisParams = { 

bands: ['RED_INTP', 'GREEN_INTP', 'BLUE_INTP'], 
min: 0, 
max: 0.1 

}; 
Map.addLayer(coefs, rgbVisParams, 'RGB 2005-09-25'); 

The slope and RMSE images are shown in Fig. 19.5. For the slopes, high pos-
itive values are bright, while large negative values are very dark. Most of the 
remaining forest is stable and has a slope close to zero, while areas that have expe-
rienced transformation and show agricultural activity tend to have positive slopes 
in the RED band, appearing bright in the image. Similarly, for the RMSE image, 
stable forests present more predictable time series of surface reflectance that are 
captured more faithfully by the time segments, and therefore present lower RMSE 
values, appearing darker in the image. Agricultural areas present noisier time series 
that are more challenging to model, and result in higher RMSE values, appearing 
brighter.
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Fig. 19.5 Image showing the slopes (top) and RMSE (bottom) of the segments that intersect the 
requested date 

Finally, the RGB image we created is shown in Fig. 19.6. The intercepts are cal-
culated for the middle point of the time segment intercepting the date we requested, 
representing the average reflectance for the span of the selected segment. In that 
sense, when shown together as an RGB image, they are similar to a composite 
image for the selected date, with the advantage of always being cloud free.

Code Checkpoint F47e. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 19.6 RGB image created using the time segment intercepts for the requested date

19.3 Synthesis 

Assignment 1. Use the time series from the first section of this chapter to explore 
the time series and time segments produced by CCDC in many locations around 
the world. Compare places with different land cover types, and places with more 
stable dynamics (e.g., lakes, primary forests) versus highly dynamic places (e.g., 
agricultural lands, construction sites). Pay attention to the variability in data den-
sity across continents and latitudes, and the effect that data density has on the 
appearance of the time segments. Use different spectral bands and indices and 
notice how they capture the temporal dynamics you are observing. 

Assignment 2. Pick three periods within the temporal study period of the CCDC 
results we used earlier: one near to the start, another in the middle, and the third 
close to the end. For each period, visualize the maximum change magnitude. Com-
pare the spatial patterns between periods, and reflect on the types of disturbances 
that might be happening at each stage. 

Assignment 3. Select the intercept coefficients of the middle date of each of the 
periods you chose in the previous assignment. For each of those dates, load an 
RGB image with the band combination of your choosing (or simply use the Red, 
Green and Blue intercepts to obtain true-color images). Using the Inspector tab, 
compare the values across images in places with subtle and large differences 
between them, as well as in areas that do not change. What do the values tell 
you in terms of the benefits of using CCDC to study changes in a landscape?
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19.4 Conclusion 

This chapter provided a guide for the interpretation of the results from the CCDC 
algorithm for studying deforestation in the Amazon. Consider the advantages of 
such an analysis compared to traditional approaches to change detection, which 
are typically based on the comparison of two or a few images collected over the 
same area. For example, with time-series analysis, we can study trends and sub-
tle processes such as vegetation recovery or degradation, determine the timing of 
land surface events, and move away from retrospective analyses to monitoring 
in near-real time. Through the use of all available clear observations, CCDC can 
detect intra-annual breaks and capture seasonal patterns, although at the expense 
of increased computational requirements and complexity, unlike faster and easier 
to interpret methods based on annual composites, such as LandTrendr (Chap. 17). 
We expect to see more applications that make use of multiple change detection 
approaches (also known as “Ensemble” approaches), and multisensor analyses in 
which data from different satellites are fused (radar and optical, for example) for 
higher data density. 
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Overview 
As the ability to rapidly produce classifications of satellite images grows, it will be 
increasingly important to have algorithms that can shift through them to separate the 
signal from inevitable classification noise. The purpose of this chapter is to explore 
how to update classification time series by blending information from multiple clas-
sifications made from a wide variety of data sources. In this lab, we will explore how 
to update the classification time series of the Roosevelt River found in Fortin et al. 
(2020). That time series began with the 1972 launch of Landsat 1, blending evidence 
from 10 sensors and more than 140 images to show the evolution of the area until 
2016. How has it changed since 2016? What new tools and data streams might we 
tap to understand the land surface through time?
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Learning Outcomes

• Distinguishing between merging sensor data and merging classifications made 
from sensors.

• Working with the Bayesian Updating of Land Cover (BULC) algorithm, in its 
basic form, to blend classifications made across multiple years and sensors.

• Working with the BULC-D algorithm to highlight locations that changed. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks, 

classify images (Part II).
• Create a graph using ui.Chart (Chap. 4).
• Obtain accuracy metrics from classifications (Chap. 7). 

20.1 Introduction to Theory 

When working with multiple sensors, we are often presented with a challenge: 
What to do with classification noise? It is almost impossible to remove all noise 
from a classification. Given the information contained in a stream of classifications, 
however, you should be able to use the temporal context to distinguish noise from 
true changes in the landscape. 

The Bayesian Updating of Land Cover (BULC) algorithm (Cardille and Fortin 
2016) is designed to extract the signal from the noise in a stream of classifications 
made from any number of data sources. BULC’s principal job is to estimate, at 
each time step, the likeliest state of land use and land cover (LULC) in a study 
area given the accumulated evidence to that point. It takes a stack of provisional 
classifications as input; in keeping with the terminology of Bayesian statistics, 
these are referred to as “Events,” because they provide new evidence to the system. 
BULC then returns a stack of classifications as output that represents the estimated 
LULC time series implied by the Events. 

BULC estimates, at each time step, the most likely class from a set given the 
evidence up to that point in time. This is done by employing an accuracy assess-
ment matrix like that seen in Chap. 7. At each time step, the algorithm quantifies 
the agreement between two classifications adjacent in time within a time series. 

If the Events agree strongly, they are evidence of the true condition of the 
landscape at that point in time. If two adjacent Events disagree, the accuracy 
assessment matrix limits their power to change the class of a pixel in the inter-
preted time series. As each new classification is processed, BULC judges the 
credibility of a pixel’s stated class and keeps track of a set of estimates of the 
probability of each class for each pixel. In this way, each pixel traces its own 
LULC history, reflected through BULC’s judgment of the confidence in each of
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the classifications. The specific mechanics and formulas of BULC are detailed in 
Cardille and Fortin (2016). 

BULC’s code is written in JavaScript, with modules that weigh evidence for 
and against change in several ways, while recording parts of the data-weighing 
process for you to inspect. In this lab, we will explore BULC through its graphical 
user interface (GUI), which allows rapid interaction with the algorithm’s main 
functionality. 

20.2 Practicum 

20.2.1 Section 1: Imagery and Classifications of the Roosevelt 
River 

How has the Roosevelt River area changed in recent decades? One way to view 
the area’s recent history is to use Google Earth Timelapse, which shows selected 
annual clear images of every part of Earth’s terrestrial surface since the 1980s. 
(You can find the site quickly with a web search.) Enter “Roosevelt River, Brazil” 
in the search field. For centuries, this area was very remote from agricultural 
development. It was so little known to Westerners that when former US President 
Theodore Roosevelt traversed it in the early 1900s, there was widespread doubt 
about whether his near-death experience there was exaggerated or even entirely 
fictional (Millard 2006). After World War II, the region saw increased agricultural 
development. Fortin et al. (2020) traced four decades of the history of this region 
with satellite imagery. Timelapse, meanwhile, indicates that land cover conversion 
continued after 2016. Can we track it using Earth Engine? 

In this section, we will view the classification inputs to BULC, which were 
made separately from this lab exercise by identifying training points and classify-
ing them using Earth Engine’s regression tree capability. As seen in Table 20.1, 
the classification inputs included Sentinel-2 optical data, Landsat 7, Landsat 8, and 
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
aboard Terra. Though each classification was made with care, they each contain 
noise, with each pixel likely to have been misclassified one or more times. This 
could lead us to draw unrealistic conclusions if the classifications themselves were 
considered as a time series. For example, we would judge it highly unlikely that 
an area represented by a pixel would really be agriculture one day and revert to 
intact forest later in the month, only to be converted to agriculture again soon after, 
and so on. With careful (though unavoidably imperfect) classifications, we would 
expect that an area that had truly been converted to agriculture would consistently 
be classified as agriculture, while an area that remained as forest would be clas-
sified as that class most of the time. BULC’s logic is to detect that persistence, 
extracting the true LULC change and stability from the noisy signal of the time 
series of classifications.

As you have seen in earlier chapters, creating classifications can be very 
involved and time consuming. To allow you to concentrate on BULC’s efforts
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Table 20.1 Images 
classified for updating 
Roosevelt River LULC with 
BULC 

Sensor Date Spatial resolution (m) 

Sentinel-2 2016: February 8 
2017: July 7 
2018: May 28 
2019: June 17 
2020: May 27 
2021: May 27, July 11, 
August 15 

10 

Landsat 7 2017: August 16 30 

Landsat 8 2021: July 18 30 

ASTER 2017: July 15 
2018: August 19 
2019: June 19 
2020: August 8 

15–30

to clean noise from an existing ImageCollection, we have created the classi-
fications already and stored them as an ImageCollection asset. You can view 
the Event time series using the ui.Thumbnail function, which creates an ani-
mation of the elements of the collection. Paste the code below into a new script to 
see those classifications drawn in sequence in the Console. 

var events = ee.ImageCollection( 
'projects/gee-book/assets/F4-8/cleanEvents'); 

print(events, 'List of Events'); 
print('Number of events:', events.size()); 

print(ui.Thumbnail(events, { 
min: 0, 
max: 3, 
palette: ['black', 'green', 'blue', 'yellow'], 
framesPerSecond: 1, 
dimensions: 1000 

})); 

In the thumbnail sequence, the color palette shows Forest (class 1) as green, 
Water (class 2) as blue, and Active Agriculture (class 3) as yellow. Areas with no 
data in a particular Event are shown in black. 

Code Checkpoint F48a. The book’s repository contains a script that shows what 
your code should look like at this point.
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20.2.2 Section 2: Basics of the BULC Interface 

To see if BULC can successfully sift through these Events, we will use BULC’s 
GUI (Fig. 20.1), which makes interacting with the functionality straightforward. 
Code Checkpoint F48b in the book’s repository contains information about 
accessing that interface. 

After you have run the script, BULC’s interface requires that a few parameters 
be set; these are specified using the left panel. Here, we describe and populate each 
of the required parameters, which are shown in red. As you proceed, the default 
red color will change to green when a parameter receives a value.

• The interface permits new runs to be created using the Manual or Automated 
methods. The Automated setting allows information from a previous run to be 
used without manual entry. In this tutorial, we will enter each parameter indi-
vidually using the interface, so you should set this item to Manual by clicking 
once on it.

• Select Type of Image: The interface can accept pre-made Event inputs in 
one of three forms: (1) as a stored ImageCollection; (2) as a single 
multi-banded Image; and (3) as a stream of Dynamic World classifications. 
The classifications are processed in the order they are given, either within 
the ImageCollection or sequentially through the Image bands. For this 
run, select Image Collection from the dropdown menu, then enter the path 
to this collection, without enclosing it in quotes: projects/gee-book/assets/F4-
8/cleanEvents.

Fig. 20.1 BULC interface 
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• Remap: In some settings, you might want to remap the input value to combine 
classes. Leave this empty for now; an example of this is discussed later in the 
lab.

• Number of Classes in Events and Number of Classes to Track: The algorithm 
requires the number of classes in each Event and the number of meaningful 
classes to track to be entered. Here, there are 3 classes in each classification 
(Forest, Water, and Active Agriculture) and 3 classes being tracked. (In the 
BULC-U version of the algorithm (Lee et al. 2018, 2020), these numbers may 
be different when the Events are made using unsupervised classifications, which 
may contain many more classes than are being tracked in a given run.) Mean-
ingful classes are assumed by BULC to begin with 1 rather than 0, while class 
values of 0 in Events are treated as no data. As seen in the thumbnail of Events, 
there are 3 classes; set both of these values to 3.

• The Default Study Area is used by BULC to delimit the location to analyze. 
This value can be pulled from a specially sized Image or set automatically, 
using the extent of the inputs. Set this parameter to Event Geometry, which 
gets the value automatically from the Event collection.

• The Base Land Cover Image defines the initial land cover condition to which 
BULC adds evidence from Events. Here, we are working to update the land 
cover map from the end of 2016, as estimated in Fortin et al. (2020). The 
ending estimated classification from that study has been loaded as an asset and 
placed as the first image in the input ImageCollection. We will direct the 
BULC interface to use this first image in the collection as the base land cover 
image by selecting Top.

• Overlay Approach: BULC can run in multiple modes, which affect the 
outcome of the classification updating. One option, Overlay, overlays each 
consecutive Event with the one prior in the sequence, following Cardille and 
Fortin (2016). Another option, Custom, allows a user-defined constant array to 
be used. For this tutorial, we will choose D (Identity matrix), which uses the 
same transition table for every Event, regardless of how it overlays with the 
Event prior. That table gives a large conditional likelihood to the chance that 
classes agree strongly across the consecutive Event classifications that are used 
as inputs. 
BULC makes relatively small demands on memory since its arithmetic uses 
only multiplication, addition, and division, without the need for complex func-
tion fitting. The specific memory use is tied to the overlay method used. In 
particular, Event-by-Event comparisons (the Overlay setting) are considerably 
more computationally expensive than pre-defined transition tables (the Iden-
tity and Custom settings). The maximum working Event depth is also slightly 
lowered when intermediate probability values are returned for inspection. Our 
tests indicate that with pre-defined truth tables and no intermediate probability 
values returned, BULC can handle updating problems hundreds of Events deep 
across an arbitrarily large area.

• Initialization Approach: If a BULC run of the full intended size ever surpassed 
the memory available, you would be able to break the processing into two or
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more parts using the following technique. First, create a slightly smaller run 
that can complete, and save the final probability image of that run. Because of 
the operation of Bayes’ theorem, the ending probability multi-band image can 
be used as the prior probability to continue processing Events with the same 
answers as if it had been run all at once. For this small run, we will select F 
(First Run).

• Levelers: BULC uses three levelers as part of its processing, as described in 
Cardille and Fortin (2016). The Initialization Leveler creates the initial prob-
ability vector of the initial LULC image; the Transition Leveler dampens 
transitions at each time step, making BULC less reactive to new evidence; and 
the Posterior Leveler ensures that each class retains nonzero probability so that 
the Bayes formula can function properly throughout the run. For this run, set 
the parameters to 0.65, 0.3, and 0.6, respectively. This corresponds to a typical 
set of values that is appropriate when moderate-quality classifications are fed 
to BULC.

• Color Output Palette: We will use the same color palette as what was seen 
in the small script you used to draw the Events, with one exception. Because 
BULC will give a value for the estimated class for every pixel, there are no 
pixels in the study area with missing or masked data. To line up the colors with 
the attainable numbers, we will remove the color ‘black’ from the specifica-
tion. For this field, enter this list: [‘green’, ‘blue’, ‘yellow’]. For all of the text 
inputs, make sure to click outside that field after entering text so that the input 
information is registered; the changing of the text color to green confirms that 
the information was received. 

When you have finished setting the required parameters, the interface will look 
like Fig. 20.2.

Beneath the required parameters is a set of optional parameters that affect which 
intermediate results are stored during a run for later inspection. We are also given 
a choice of returning intermediate results for closer inspection. At this stage, you 
can leave all optional parameters out of the BULC call by leaving them blanked 
or unchecked. 

After clicking the Apply Parameters button at the bottom of the left panel, the 
classifications and parameters are sent to the BULC modules. The Map will move 
to the study area, and after a few seconds, the Console will hold new thumbnails. 
The uppermost thumbnail is a rapidly changing view of the input classifications. 
Beneath that is a thumbnail of the same area as interpreted by BULC. Beneath 
those is a Confidence thumbnail, which is discussed in detail later in this lab. 

The BULC interpretation of the landscape looks roughly like the Event inputs, 
but it is different in two important ways. First, depending on the leveler settings, it 
will usually have less noise than the Event classifications. In the settings above, we 
used the Transition and Posterior levelers to tell BULC to trust past accumulated 
evidence more than a single new image. The second key difference between the 
BULC result and the input classifications is that even when the inputs don’t cover 
the whole area at each time step, BULC provides an estimate in every pixel at each
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Fig. 20.2 Initial settings for the key driving parameters of BULC

time step. To create this continuous classification, if a new classification does not 
have data for some part of the study area (beyond the edge of a given image, for 
example), the last best guess from the previous iteration is carried forward. Simply 
put, the estimate in a given pixel is kept the same until new data arrives. 

Meanwhile, below the Console, the rest of the interface changes when BULC 
is run. The Map panel displays BULC’s classification for the final date: that is, 
after considering the evidence from each of the input classifications. We can use 
the Satellite background to judge whether BULC is accurately capturing the state 
of LULC. This can be done by unselecting the drawn layers in the map layer set 
and selecting Satellite from the choices in the upper-right part of the Map panel. 
Earth Engine’s background satellite images are often updated, so you should see 
something like the right side of Fig. 20.3, though it may differ slightly.
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Fig. 20.3 BULC estimation of the state of LULC at the end of 2021 (left). Satellite backdrop for 
Earth Engine (right), which may differ from what you see due to updates 

Question 1. When comparing the BULC classification for 2021 against the current 
Earth Engine satellite view, what are the similarities and differences? Note that in 
Earth Engine, the copyrighted year numbers at the bottom of the screen may not 
coincide with the precise date of the image shown. 

In the rightmost panel below the Console, the interface offers you multiple 
options for viewing the results. These include: 

1. Movie. This uses the ui.Thumbnail API function to draw the BULC results 
rapidly in the viewer. This option offers you a control on the frame rate (in 
frames per second), and a checkbox affecting the drawing resolution. The high-
resolution option uses the maximum resolution permitted given the function’s 
constraints. A lower resolution setting constructs the thumbnail more quickly, 
but at a loss of detail. 

2. Filmstrip. This produces an image like the Movie option, but allows you to 
move on request through each image. 

3. Mosaic. This draws every BULC result in the panel. Depending on the size of 
the stack of classifications, this could become quite a large set of images. 

4. Zoom. This draws the final BULC classification at multiple scales, with the 
finest-scale image matching that shown in the Map window.
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Question 2. Select the BULC option, then select the Movie tool to view the result, 
and choose a drawing speed and resolution. When viewing the full area, would 
you assess the additional LULC changes since 2016 as being minor, moderate, or 
major compared to the changes that occurred before 2016? Explain the reasoning 
for your assessment. 

20.2.3 Section 3: Detailed LULC Inspection with BULC 

BULC results can be viewed interactively, allowing you to view more detailed 
estimations of the LULC around the study area. We will zoom into a specific area 
where change did occur after 2016. To do that, turn on the Satellite view and 
zoom in. Watching the scale bar in the lower right of the Map panel, continue 
zooming until the scale bar says 5 km. Then, enter “−60.7, −9.83” in the Earth 
Engine search tool, located above the code. The text will be interpreted as a longi-
tude/latitude value and will offer you a nearby coordinate, indicated with a value 
for the degrees West and the degrees South. Click that entry and Earth Engine will 
move to that location, while keeping at the specified zoom level. Let us compare 
the BULC result in this sector against the image from Earth Engine’s satellite view 
that is underneath it (Fig. 20.4). 

BULC captured the changes between 2016 and 2021 with a classification series 
that suggests agricultural development (Fig. 20.4, left). Given the appearance of 
BULC’s 2021 classification, it suggests that the satellite backdrop at the time of 
this writing (Fig. 20.4, right) came from an earlier time period.

Fig. 20.4 Comparison of the final classification of the northern part of the study area to the 
satellite view 
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Now, in the Results panel, select BULC, then Movie. Set your desired frame 
speed and resolution, then select Redraw Thumbnail. Then, zoom the main Map 
even closer to some agriculture that appears to have been established between 
2016 and 2021. Redraw the thumbnail movie as needed to find an interesting set 
of pixels. 

With this finer-scale access to the results of BULC, you can select individual 
pixels to inspect. Move the horizontal divider downward to expose the Inspector 
tab and Console tab. Use the Inspector to click on several pixels to learn their 
history as expressed in the inputted Events and in BULC’s interpretation of the 
noise and signal in the Event series. In a chosen pixel, you might see output that 
looks like Fig. 20.5. It indicates a possible conversion in the Event time series after 
a few classifications of the pixel as Forest. This decreases the confidence that the 
pixel is still Forest (Fig. 20.5, lower panel), but not enough for the Active Agri-
culture class (class 3) to become the dominant probability. After the subsequent 
Event labels the pixel as Forest, the confidence (lower panel) recovers slightly, 
but not to its former level. The next Event classifies the pixel as Active Agricul-
ture, confidently, by interpreting that second Active Agriculture classification, in 
a setting where change was already somewhat suspected after the first non-Forest 
classification. BULC’s label (middle panel) changes to be Active Agriculture at 
that point in the sequence. Subsequent Event classifications as Active Agriculture 
creates a growing confidence that its proper label at the end of the sequence was 
indeed Active Agriculture.

Question 3. Run the code again with the same data, but adjust the three levelers, 
then view the results presented in the Map window and the Results panel. How 
do each of the three parameters affect the behavior of BULC in its results? Use 
the thumbnail to assess your subjective satisfaction with the results, and use the 
Inspector to view the BULC behavior in individual pixels. Can you produce an 
optimal outcome for this given set of input classifications? 

20.2.4 Section 4: Change Detection with BULC-D 

What if we wanted to identify areas of likely change or stability without trying to 
identify the initial and final LULC class? BULC-D is an algorithm that estimates, 
at each time step, the probability of noteworthy change. The example below uses 
the Normalized Burn Ratio (NBR) as a gauge: BULC-D assesses whether the ratio 
has meaningfully increased, decreased, or remained the same. It is then the choice 
of the analyst to decide how to treat these assessed probabilities of stability and 
change. 

BULC-D involves determining an expectation for an index across a user-
specified time period and then comparing new values against that estimation. Using 
Bayesian logic, BULC-D then asks which of three hypotheses is most likely, given 
evidence from the new values to date from that index. The hypotheses are simple: 
Either the value has decreased meaningfully, or it has increased meaningfully, or it
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Fig. 20.5 History for 2016–2020 for a pixel that appeared to have been newly cultivated during 
that period. (above): the input classifications, which suggest a possible conversion from class 1 
(Forest) to class 3 (Active Agriculture) midway through the time series. (middle): BULC’s interpre-
tation of the evidence, which changes its estimated classification based on the evidence, in this case 
after two occurrences of it being classified as Active Agriculture. (below): BULC’s confidence in 
its estimation. This number grows in the initial part of the series as more classifications calling this 
pixel Forest classes are encountered, then drops as conflicting evidence is seen. Eventually, after 
more Active Agriculture classifications are encountered, its confidence in that new class grows
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has not changed substantially compared to the previously established expectation. 
The details of the workings of BULC-D are beyond the scope of this exercise, 
but we provide it as a tool for exploration. BULC-D’s basic framework is the 
following:

• Establish: Fit a harmonic curve with a user-specified number of terms to a 
stream of values from an index, such as the Normalized Difference Vegetation 
Index (NDVI), and NBR.

• Standardize: For each new image, quantify the deviation of the index’s value 
from the expectation on that date.

• Contextualize: Assess the magnitude of that deviation in one of several ordered 
bins.

• Synthesize: Use the BULC framework to adjust the vector of change for the 
three possibilities: the value went down, the value stayed the same, and the 
value went up. 

It is worth noting that BULC-D does not label the change with a LULC category; 
rather, it trains itself to distinguish likely LULC change from expected variability. 
In this way, BULC-D can be thought of as a “sieve” through which you are able 
to identify locations of possible change, isolated from likely background noise. In 
the BULC-D stage, the likeliness of change is identified across the landscape; in 
a separate second stage, the meaning of those changes and any changes to LULC 
classes are identified. We will explore the workings of BULC-D using its GUI. 

Code Checkpoint F48c. The book’s repository contains information about access-
ing that interface. 

After you have run the script to initialize the interface, BULC-D’s interface 
requires a few parameters to be set. For this run of BULC-D, we will set the 
parameters to the following:

• Expectation years: 2020
• Target year: 2021
• Sensors: Landsat and Sentinel
• Index: NBR
• Harmonic fit: Yes, 1 harmonic term. 

Run BULC-D for this area. As a reminder, you should first zoom in enough that 
the scale bar reads “5 km” or finer. Then, search for the location “− 60.7624, − 
9.8542”. When you run BULC-D, a result like Fig. 20.6 is shown for the layer of 
probabilities.

The BULC-D image (Fig. 20.6) shows each pixel as a continuous three-value 
vector along a continuous range; the three values sum to 1. For example, a vector 
with values of [0.85, 0.10, 0.05] would represent an area estimated with high 
confidence according to BULC-D to have experienced a sustained drop in NBR in 
the target period compared to the values set by the expectation data. In that pixel,
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Fig. 20.6 Result for BULC-D for the Roosevelt River area, depicting estimated probability of 
change and stability for 2021

the combination of three colors would produce a value that is richly red. You can 
see Chap. 2 for more information on drawing bands of information to the screen 
using the red–green–blue additive color model in Earth Engine. 

Each pixel experiences its own NBR history in both the expectation period 
and the target year. Next, we will highlight the history of three nearby areas: 
one, marked with a red balloon in your interface, that BULC assessed as having 
experienced a persistent drop in NBR; a second in green assessed to not have 
changed, and a third in blue assessed to have witnessed a persistent NBR increase. 

Figure 20.7 shows the NBR history for the red balloon in the southern part of 
the study area in Fig. 20.4. If you click on that pixel or one like it, you can see 
that, whereas the values were quite stable throughout the growing season for the 
years used to create the pixel’s expectation, they were persistently lower in the 
target year. This is flagged as a likely meaningful drop in the NBR by BULC-D, 
for consideration by the analyst.

Figure 20.8 shows the NBR history for the blue balloon in the southern part 
of the study area in Fig. 20.4. For that pixel, while the values were quite stable 
throughout the growing season for the years used to create the pixel’s expectation, 
they were persistently higher in the target year.

Question 4. Experiment with turning off one of the satellite sensor data sources 
used to create the expectation collection. For example, do you get the same results 
if the Sentinel-2 data stream is not used, or is the outcome different. You might 
make screen captures of the results to compare with Fig. 20.4. How strongly does 
each satellite stream affect the outcome of the estimate? Do differences in the 
resulting estimate vary across the study area?
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Fig. 20.7 NBR history for a pixel with an apparent drop in NBR in the target year (below) as 
compared to the expectation years (above). Pixel is colored a shade of red in Fig. 20.6

Figure 20.8 also shows that, for that pixel, the fit of values for the years used 
to build the expectation showed a sine wave (shown in blue), but with a fit that 
was not very strong. When data for the target year was assembled (Fig. 20.8, 
bottom), the values were persistently above expectation throughout the growing 
season. Note that this pixel was identified as being different in the target year as 
compared to earlier years, which does not rule out the possibility that the LULC 
of the area was changed (e.g., from Forest to Agriculture) during the years used 
to build the expectation collection. BULC-D is intended to be run steadily over a 
long period of time, with the changes marked as they occur, after which point the 
expectation would be recalculated.
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Fig. 20.8 NBR history for a pixel with an apparent increase in NBR in the target year (below) as 
compared to the expectation years (above). Pixel is colored a shade of blue in Fig. 20.6

Figure 20.9 shows the NBR history for the green balloon in the southern part of 
the study area in Fig. 20.4. For that pixel, the values in the expectation collection 
formed a sine wave, and the values in the target collection deviated only slightly 
from the expectation during the target year.
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Fig. 20.9 NBR history for a pixel with no apparent increase or decrease in NBR in the target year 
(below) as compared to the expectation years (above). Pixel is colored a shade of green in Fig. 20.6 

20.2.5 Section 5: Change Detection with BULC and Dynamic 
World 

Recent advances in neural networks have made it easier to develop consistent 
models of LULC characteristics using satellite data. The Dynamic World project 
(Brown et al. 2022) applies a neural network, trained on a very large number of 
images, to each new Sentinel-2 image soon after it arrives. The result is a near-
real-time classification interpreting the LULC of Earth’s surface, kept continually 
up to date with new imagery. 

What to do with the inevitable inconsistencies in a pixel’s stated LULC class 
through time? For a given pixel on a given image, its assigned class label is chosen
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by the Dynamic World algorithm as the maximum class probability given the band 
values on that day. Individual class probabilities are given as part of the dataset 
and could be used to better interpret a pixel’s condition and perhaps its history. 
Future work with BULC will involve incorporating these probabilities into BULC’s 
probability-based structure. For this tutorial, we will explore the consistency of the 
assigned labels in this same Roosevelt River area as a way to illustrate BULC’s 
potential for minimizing noise in this vast and growing dataset. 

20.2.5.1 Section 5.1: Using BULC to Explore and Refine Dynamic 
World Classifications 

Code Checkpoint A48d. The book’s repository contains a script to use to begin 
this section. You will need to load the linked script and run it to begin. 

After running the linked script, the BULC interface will initialize. Select 
Dynamic World from the dropdown menu where you earlier selected Image Col-
lection. When you do, the interface opens several new fields to complete. BULC 
will need to know where you are interested in working with Dynamic World, since 
it could be anywhere on Earth. To specify the location, the interface field expects 
a nested list of lists of lists, which is modeled after the structure used inside the 
constructor ee.Geometry.Polygon. (When using drawing tools or specify-
ing study areas using coordinates, you may have noticed this structure.) Enter the 
following nested list in the text field near the Dynamic World option, without 
enclosing it in quotes: 

[[[-61.155, -10.559], [-60.285, -10.559], [-60.285, -9.436], 
[-61.155, -9.436]]] 

Next, BULC will need to know which years of Dynamic World you are inter-
ested in. For this exercise, select 2021. Then, BULC will ask for the Julian days 
of the year that you are interested in. For this exercise, enter 150 for the start day 
and 300 for the end day. Because you selected Dynamic World for analysis in 
BULC, the interface defaults to offering the number 9 for the number of classes 
in Events and for the number of classes to track. This number represents the full 
set of classes in the Dynamic World classification scheme. You can leave other 
required settings shown in green with their default values. For the Color Output 
Palette, enter the following palette without quotes. This will render results in the 
Dynamic World default colors. 

['419BDF', '397D49', '88B053' 
, '7A87C6', 'E49635', 'DFC35A' 
, 'C4281B', 'A59B8F', 'B39FE1']
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Fig. 20.10 BULC classification using default settings for Roosevelt River area for late 2021 

When you have finished, select Apply Parameters at the bottom of the input 
panel. After BULC subsets the Dynamic World dataset to clip out according to the 
dates and location, identifying images from more than 40 distinct dates. The area 
covers two of the tiles in which Dynamic World classifications are partitioned to 
be served, so BULC receives more than 90 classifications. When BULC finishes 
its run, the Map panel will look like Fig. 20.10, BULC’s estimate of the final state 
of the landscape at the end of the classification sequence. 

Let us explore the suite of information returned by BULC about this time period 
in Dynamic World. Enter “Muiraquitã” in the search bar and view the results 
around that area to be able to see the changing LULC classifications within farm 
fields. Then, begin to inspect the results by viewing a Movie of the Events, with 
a data frame rate of 6 frames per second. Because the study area spans multiple 
Dynamic World tiles, you will find that many Event frames are black, meaning 
that there was no data in your sector on that particular image. Because of this, 
and also perhaps because of the very aggressive cloud masking built into Dynamic 
World, viewing Events (which, as a reminder, are the individual classified images 
directly from Dynamic World) can be a very challenging way to look for change 
and stability. BULC’s goal is to sift through those classifications to produce a 
time series that reflects, according to its estimation, the most likely LULC value at 
each time step. View the Movie of the BULC results and ask yourself whether each
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Fig. 20.11 Still frame (right image) from the animation of BULC’s adjusted estimate of LULC 
through time near Muiraquitã 

class is equally well replicated across the set of classifications. A still from midway 
through the Movie sequence of the BULC results can be seen in Fig. 20.11. 

As BULC uses the classification inputs to estimate the state of the LULC at 
each time step, it also tracks its confidence in those estimates. This is shown in 
several ways in the interface.

• You can view a Movie of BULC’s confidence through time as it reacts to 
the consistency or variability of the class identified in each pixel by Dynamic 
World. View that movie now over this area to see the evolution of BULC’s con-
fidence through time of the class of each pixel. A still frame from this movie 
can be seen in Fig. 20.12. The frame and animation indicate that BULC’s con-
fidence is lowest in pixels where the estimate flips between similar categories, 
such as Grass and Shrub and Scrub. It also is low at the edges of land covers, 
even where the covers (such as Forest and Water) are easy to discern from each 
other.

• You can inspect the final confidence estimate from BULC, which is shown as 
a grayscale image in the set of Map layers in the left lower panel. That single 
layer synthesizes how, across many Dynamic World classifications, the confi-
dence in certain LULC classes and locations is ultimately more stable than in 
others. For example, generally speaking, the Forest class is classified consis-
tently across this assemblage of Dynamic World images. Agriculture fields are 
less consistently classified as a single class, as evidenced by their relatively low 
confidence.

• Another way of viewing BULC’s confidence is through the Inspector tab. 
You can click on individual pixels to view their values in the Event time
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Fig. 20.12 Still frame from the animation of changing confidence through time, near Muiraquitã 

series and in the BULC time series, and see BULC’s corresponding confidence 
value changing through time in response to the relative stability of each pixel’s 
classification.

• Another way to view BULC’s confidence estimation is as a hillshade enhance-
ment of the final BULC classification. If you select the Probability Hillshade 
in the set of Map layers, it shows the final BULC classification as a textured 
surface, in which you can see where lower-confidence pixels are classified. 

20.2.5.2 Section 5.2: Using BULC to Visualize Uncertainty 
of Dynamic World in Simplified Categories 

In the previous section, you may have noticed that there are two main types of 
uncertainty in BULC’s assessment of long-term classification confidence. One type 
is due to spatial uncertainty at the edge of two relatively distinct phenomena, like 
the River/Forest boundary visible in Fig. 20.12. These are shown in dark tones 
in the confidence images, and emphasized in the Probability Hillshade. The other 
type of uncertainty is due to some cause of labeling uncertainty, due either (1) to 
the similarity of the classes, or (2) to persistent difficulty in distinguishing two 
distinct classes that are meaningfully different but spectrally similar. An exam-
ple of uncertainty due to similar labels is distinguishing flooded and non-flooded 
wetlands in classifications that contain both those categories. An example of diffi-
culty distinguishing distinct but spectrally similar classes might be distinguishing 
a parking lot from a body of water. 

BULC allows you to remap the classifications it is given as input, compressing 
categories as a way to minimize uncertainty due to similarity among classes. In
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the setting of Dynamic World in this study area, we notice that several classes are 
functionally similar for the purposes of detecting new deforestation: Farm fields 
and pastures are variously labeled on any given Dynamic World classification as 
Grass, Flooded Vegetation, Crops, Shrub and Scrub, Built, or Bare Ground. What 
if we wanted to combine these categories to be similar to the distinctions of the 
classified Events from this lab’s Sect. 20.2.1? The classes in that section were 
Forest, Water, and Active Agriculture. To remap the Dynamic World classification, 
continue with the same run as in Sect. 20.2.5.1. Near where you specified the 
location for clipping Dynamic World, there are two fields for remapping. Select 
the Remap checkbox and in the “from” field, enter (without quotes): 

0, 1, 2, 3, 4, 5, 6, 7, 8 

In the “to” field, enter (without quotes): 

1, 0, 2, 2, 2, 2, 2, 2, 0 

This directs BULC to create a three-class remap of each Dynamic World image. 
Next, in the area of the interface where you specify the palette, enter the same 
palette used earlier: 

['green', 'blue', 'yellow'] 

Before continuing, think for a moment about how many classes you have now. 
From BULC’s perspective, the Dynamic World events will have 3 classes and you 
will be tracking 3 classes. Set both the Number of Classes in Events and Number 
of Classes to Track to 3. Then click Apply Parameters to send this new run to 
BULC. 

The confidence image shown in the main Map panel is instructive (Fig. 20.13). 
Using data from 2020, 2021, and 2022, it indicates that much of the uncertainty 
among the original Dynamic World classifications was in distinguishing labels 
within agricultural fields. When that uncertainty is removed by combining classes, 
the BULC result indicates that a substantial part of the remaining uncertainty is 
at the edges of distinct covers. For example, in the south-central and southern 
part of the frame, much of the uncertainty among classifications in the original 
Dynamic World classifications was due to distinction among the highly similar, 
easily confused classes. Much of what remained (right) after remapping (right) 
formed outlines of the river and the edges between farmland and forest: a graphic 
depiction of the “spatial uncertainty” discussed earlier. Yet not all of the uncer-
tainty was spatial; the thicker, darker areas of uncertainty even after remapping 
(right, at the extreme eastern edge for example) indicates a more fundamental dis-
agreement in the classifications. In those pixels, even when the Agriculture-like 
classes were compressed, there was still considerable uncertainty (likely between
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Fig. 20.13 Final confidence layer from the run with (left) and without (right) remapping to com-
bine similar LULC classes to distinguish Forest, Water, and Active Agriculture near − 60.696W, 
− 9.826S 

Forest and Active Agriculture) in the true state of these areas. These might be 
of further interest: were they places newly deforested in 2020–2022? Were they 
abandoned fields regrowing? Were they degraded at some point? The mapping of 
uncertainty may hold promise for a better understanding of uncertainty as it is 
encountered in real classifications, thanks to Dynamic World. 

Given the tools and approaches presented in this lab, you should now be able to 
import your own classifications for BULC (Sects. 20.2.1, 20.2.2 and 20.2.3), detect 
changes in sets of raw imagery (Sect. 20.2.4), or use Dynamic World’s pre-created 
classifications (Sect. 20.2.5). The following exercises explore this potential. 

20.3 Synthesis 

Assignment 1. For a given set of classifications as inputs, BULC uses three param-
eters that specify how strongly to trust the initial classification, how heavily to 
weigh the evidence of each classification, and how to adjust the confidence at the 
end of each time step. For this exercise, adjust the values of these three parameters 
to explore the strength of the effect they can have on the BULC results. 

Assignment 2. The BULC-D framework produces a continuous three-value vector 
of the probability of change at each pixel. This variability accounts for the mottled 
look of the figures when those probabilities are viewed across space. Use the 
Inspector tool or the interface to explore the final estimated probabilities, both 
numerically and as represented by different colors of pixels in the given example. 
Compare and contrast the mean NBR values from the earlier and later years, which 
are drawn in the Layer list. Then answer the following questions:
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(1) In general, how well does BULC-D appear to be identifying locations of likely 
change? 

(2) Does one type of change (decrease, increase, no change) appear to be mapped 
better than the others? If so, why do you think this is? 

Assignment 3. The BULC-D example used here was for 2021. Run it for 2022 or 
later at this location. How well do results from adjacent years complement each 
other? 

Assignment 4. Run BULC-D in a different area for a year of interest of your 
choosing. How do you like the results? 

Assignment 5. Describe how you might use BULC-D as a filter for distinguishing 
meaningful change from noise. In your answer, you can consider using BULC-
D before or after BULC or some other time-series algorithm, like CCDC or 
LandTrendr. 

Assignment 6. Analyze stability and change with Dynamic World for other parts 
of the world and for other years. For example, you might consider: 

(a) Quebec, Canada, days 150–300 for 2019 and 2020: 

[[[− 71.578, 49.755], [− 71.578, 49.445], [− 70.483, 49.445], [− 70.483, 49.755]]] 

Location of a summer 2020 fire 
(b) Addis Ababa, Ethiopia: [[[38.79, 9.00], [38.79, 8.99], [38.81, 8.99], [38.81, 

9.00]]] 
(c) Calacalí, Ecuador: [[[− 78.537, 0.017], [− 78.537, − 0.047], [− 78.463, − 

0.047], [− 78.463, 0.017]]] 
(d) Irpin, Ukraine: [[[30.22, 50.58], [30.22, 50.525], [30.346, 50.525], [30.346, 

50.58]]] 
(e) A different location of your own choosing. To do this, use the Earth Engine 

drawing tools to draw a rectangle somewhere on Earth. Then, at the top of the 
Import section, you will see an icon that looks like a sheet of paper. Click 
that icon and look for the polygon specification for the rectangle you drew. 
Paste that into the location field for the Dynamic World interface. 

20.4 Conclusion 

In this lab, you have viewed several related but distinct ways to use Bayesian 
statistics to identify locations of LULC change in complex landscapes. While they 
are standalone algorithms, they are each intended to provide a perspective either 
on the likelihood of change (BULC-D) or of extracting signal from noisy classi-
fications (BULC). You can consider using them especially when you have pixels
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that, despite your best efforts, periodically flip back and forth between similar 
but different classes. BULC can help ignore noise, and BULC-D can help reveal 
whether this year’s signal has precedent in past years. 

To learn more about the BULC algorithm, you can view this interactive prob-
ability illustration tool by a link found in script F48s1—Supplemental in the 
book’s repository. In the future, after you have learned how to use the logic of 
BULC, you might prefer to work with the JavaScript code version. To do that, you 
can find a tutorial at the website of the authors. 
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21Exploring Lagged Effects in Time 
Series 

Andréa Puzzi Nicolau , Karen Dyson , David Saah , 
and Nicholas Clinton 

Overview 
In this chapter, we will introduce lagged effects to build on the previous work in mod-
eling time series data. Time-lagged effects occur when an event at one point in time 
impacts dependent variables at a later point in time. You will be introduced to con-
cepts of autocovariance and autocorrelation, cross-covariance and cross-correlation, 
and auto-regressive models. At the end of this chapter, you will be able to examine 
how variables relate to one another across time and to fit time series models that take 
into account lagged events.
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Learning Outcomes

. Using the ee.Join function to create time-lagged collections.

. Calculating autocovariance and autocorrelation.

. Calculating cross-covariance and cross-correlation.

. Fitting auto-regressive models. 

Assumes you know how to:

. Import images and image collections, filter, and visualize (Part I).

. Perform basic image analysis: select bands, compute indices, create masks, 
classify images (Part II).

. Create a graph using ui.Chart (Chap. 4).

. Write a function and map it over an ImageCollection (Chap. 12).

. Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

. Fit linear and nonlinear functions with regression in an ImageCollection 
time series (Chap. 18). 

21.1 Introduction to Theory 

While fitting functions to time series allows you to account for seasonality in 
your models, sometimes, the impact of a seasonal event does not impact your 
dependent variable until the next month, the next year, or even multiple years later. 
For example, coconuts take 18–24 months to develop from flower to harvestable 
size. Heavy rains during the flower development stage can severely reduce the 
number of coconuts that can be harvested months later, with significant negative 
economic repercussions. These patterns—where events in one time period impact 
our variable of interest in later time periods—are important to be able to include 
in our models. 

In this chapter, we introduce lagged effects into our previous discussions on 
interpreting time series data (Chaps. 18 and 19). Being able to integrate lagged 
effects into our time series models allows us to address many important questions. 
For example, streamflow can be accurately modeled by taking into account pre-
vious streamflow, rainfall, and soil moisture; this improved understanding helps 
predict and mitigate the impacts of drought and flood events made more likely 
by climate change (Sazib et al. 2020). As another example, time series lag analy-
sis was able to determine that decreased rainfall was associated with increases in 
livestock disease outbreaks one year later in India (Karthikeyan et al. 2021).
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21.2 Practicum 

21.2.1 Section 1: Autocovariance and Autocorrelation 

If you have not already done so, you can add the book’s code repository to 
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro 
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The 
book’s scripts will then be available in the script manager panel to view, run, or 
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help 
for help. 

Before we dive into autocovariance and autocorrelation, let us set up an area of 
interest and dataset that we can use to illustrate these concepts. We will work with 
a detrended time series (as seen in Chap. 18) based on the USGS Landsat 8 Level 
2, Collection 2, Tier 1 image collection. Copy and paste the code below to filter 
the Landsat 8 collection to a point of interest over California and specific dates, 
and apply the pre-processing function—to mask clouds (as seen in Chap. 15) and 
to scale and add variables of interest (as seen in Chap. 18). 

// Define function to mask clouds, scale, and add variables 
// (NDVI, time and a constant) to Landsat 8 imagery. 
function maskScaleAndAddVariable(image) { 

// Bit 0 - Fill 
// Bit 1 - Dilated Cloud 
// Bit 2 - Cirrus 
// Bit 3 - Cloud 
// Bit 4 - Cloud Shadow 
var qaMask = 

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 
2)).eq(0); 

var saturationMask = image.select('QA_RADSAT').eq(0); 

// Apply the scaling factors to the appropriate bands. 
var opticalBands = 

image.select('SR_B.').multiply(0.0000275).add(-
0.2); 

var thermalBands = 
image.select('ST_B.*').multiply(0.00341802) 

.add(149.0); 

// Replace the original bands with the scaled ones and apply 
the masks. 

var img = image.addBands(opticalBands, null, true) 
.addBands(thermalBands, null, true) 
.updateMask(qaMask) 
.updateMask(saturationMask); 

var imgScaled = image.addBands(img, null, true);
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// Now we start to add variables of interest. 
// Compute time in fractional years since the epoch. 
var date = ee.Date(image.get('system:time_start')); 
var years = date.difference(ee.Date('1970-01-01'), 'year'); 
var timeRadians = ee.Image(years.multiply(2 * Math.PI)); 
// Return the image with the added bands. 
return imgScaled 

// Add an NDVI band. 
.addBands(imgScaled.normalizedDifference(['SR_B5', 

'SR_B4']) 
.rename('NDVI')) 

// Add a time band. 
.addBands(timeRadians.rename('t')) 
.float() 
// Add a constant band. 
.addBands(ee.Image.constant(1)); 

} 

// Import region of interest. Area over California. 
var roi = ee.Geometry.Polygon([ 

[-119.44617458417066,35.92639730653253], 
[-119.07675930096754,35.92639730653253], 
[-119.07675930096754,36.201704711823844], 
[-119.44617458417066,36.201704711823844], 
[-119.44617458417066,35.92639730653253] 

]); 

// Import the USGS Landsat 8 Level 2, Collection 2, Tier 1 
collection, 
// filter, mask clouds, scale, and add variables. 
var landsat8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterBounds(roi) 

.filterDate('2013-01-01', '2018-01-01') 

.map(maskScaleAndAddVariable); 

// Set map center. 
Map.centerObject(roi, 10); 

Next, copy and paste the code below to estimate the linear trend using the 
linearRegression reducer, and remove that linear trend from the time series.
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// List of the independent variable names. 
var independents = ee.List(['constant', 't']); 

// Name of the dependent variable. 
var dependent = ee.String('NDVI'); 

// Compute a linear trend.  This will have two bands: 
'residuals' and 
// a 2x1 band called coefficients (columns are for 
dependent variables). 
var trend = landsat8sr.select(independents.add(dependent)) 

.reduce(ee.Reducer.linearRegression(independents.length(), 
1)); 

// Flatten the coefficients into a 2-band image 
var coefficients = trend.select('coefficients') 

// Get rid of extra dimensions and convert back to a 
regular image 

.arrayProject([0]) 

.arrayFlatten([independents]); 

// Compute a detrended series. 
var detrended = landsat8sr.map(function(image) { 

return image.select(dependent) 
.subtract(image.select(independents).multiply( 

coefficients) 
.reduce('sum')) 

.rename(dependent) 

.copyProperties(image, ['system:time_start']); 
}); 

Now let us turn to autocovariance and autocorrelation. The autocovariance of 
a time series refers to the dependence of values in the time series at time t with 
values at time h = t − lag. The autocorrelation is the correlation between elements 
of a dataset at one time and elements of the same dataset at a different time. 
The autocorrelation is the autocovariance normalized by the standard deviations 
of the covariates. Specifically, we assume our time series is stationary, and define 
the autocovariance and autocorrelation following Shumway and Stoffer (2019). 
Comparing values at time t to the previous values is useful not only for computing 
autocovariance, but also for a variety of other time series analyzes as you will see 
shortly. 

To combine image data with the previous values in Earth Engine, the first step 
is to join the previous values to the current values. To do that, we will use a
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ee.Join function to create what we will call a lagged collection. Copy and paste 
the code below to define a function that creates a lagged collection. 

// Function that creates a lagged collection. 
var lag = function(leftCollection, rightCollection, lagDays) 
{ 

var filter = ee.Filter.and( 
ee.Filter.maxDifference({ 

difference: 1000 * 60 * 60 * 24 * lagDays, 
leftField: 'system:time_start', 
rightField: 'system:time_start' 

}), 
ee.Filter.greaterThan({ 

leftField: 'system:time_start', 
rightField: 'system:time_start' 

})); 

return ee.Join.saveAll({ 
matchesKey: 'images', 
measureKey: 'delta_t', 
ordering: 'system:time_start', 
ascending: false, // Sort reverse chronologically 

}).apply({ 
primary: leftCollection, 
secondary: rightCollection, 
condition: filter 

}); 
}; 

This function joins a collection to itself, using a filter that gets all the images 
before each image’s date that are within a specified time difference (in days) of 
each image. That list of the previous images within the lag time is stored in a 
property of the image called images, sorted reverse chronologically. For example, 
to create a lagged collection from the detrended Landsat imagery, copy and 
paste: 

// Create a lagged collection of the detrended imagery. 
var lagged17 = lag(detrended, detrended, 17);
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Why 17 days? Recall that the temporal cadence of Landsat is 16 days. 
Specifying 17 days in the join gets one previous image, but no more. 

Now, we will compute the autocovariance using a reducer that expects a set of 
one-dimensional arrays as input. So pixel values corresponding to time t need to 
be stacked with pixel values at time t − lag as multiple bands in the same image. 
Copy and paste the code below to define a function to do so, and apply it to merge 
the bands from the lagged collection. 

// Function to stack bands. 
var merge = function(image) { 

// Function to be passed to iterate. 
var merger = function(current, previous) { 

return ee.Image(previous).addBands(current); 
}; 
return 

ee.ImageCollection.fromImages(image.get('images')) 
.iterate(merger, image); 

}; 

// Apply merge function to the lagged collection. 
var merged17 = ee.ImageCollection(lagged17.map(merge)); 

Now, the bands from time t and h are all in the same image. Note that the 
band name of a pixel at time h, ph, was the same as time t, pt (band name is 
“NDVI” in this case). During the merging process, it gets a ‘_1’ appended to it 
(e.g., NDVI_1). 

You can print the image collection to check the band names of one of the 
images. Copy and paste the code below to map a function to convert the merged 
bands to arrays with bands pt and ph, and then reduce it with the covariance 
reducer. We use a parallelScale factor of 8 in the reduce function to avoid 
the computation to run out of memory (this is not always needed). Note that the 
output of the covariance reducer is an array image, in which each pixel stores a 
2 ×2 variance–covariance array. The off-diagonal elements are covariance, which 
you can map directly using the arrayGet function.
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// Function to compute covariance. 
var covariance = function(mergedCollection, band, lagBand) { 

return mergedCollection.select([band, 
lagBand]).map(function( 

image) { 
return image.toArray(); 

}).reduce(ee.Reducer.covariance(), 8); 
}; 

// Concatenate the suffix to the NDVI band. 
var lagBand = dependent.cat('_1'); 

// Compute covariance. 
var covariance17 = ee.Image(covariance(merged17, dependent, 
lagBand)) 

.clip(roi); 

// The output of the covariance reducer is an array image, 
// in which each pixel stores a 2x2 variance-covariance 
array. 
// The off diagonal elements are covariance, which you can 
map 
// directly using: 
Map.addLayer(covariance17.arrayGet([0, 1]), 

{ 
min: 0, 
max: 0.02 

}, 
'covariance (lag = 17 days)'); 

Inspect the pixel values of the resulting covariance image (Fig. 21.1). The 
covariance is positive when the greater values of one variable (at time t) mainly 
correspond to the greater values of the other variable (at time h), and the same 
holds for the lesser values; therefore, the values tend to show similar behavior. In 
the opposite case, when the greater values of a variable correspond to the lesser 
values of the other variable, the covariance is negative.

The diagonal elements of the variance–covariance array are variances. Copy 
and paste the code below to define and map a function to compute correlation 
(Fig. 21.2) from the variance–covariance array.
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Fig. 21.1 Autocovariance image

// Define the correlation function. 
var correlation = function(vcArrayImage) { 

var covariance = ee.Image(vcArrayImage).arrayGet([0, 1]); 
var sd0 = ee.Image(vcArrayImage).arrayGet([0, 0]).sqrt(); 
var sd1 = ee.Image(vcArrayImage).arrayGet([1, 1]).sqrt(); 
return covariance.divide(sd0).divide(sd1).rename( 

'correlation'); 
}; 

// Apply the correlation function. 
var correlation17 = correlation(covariance17).clip(roi); 
Map.addLayer(correlation17, 

{ 
min: -1, 
max: 1 

}, 
'correlation (lag = 17 days)');
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Fig. 21.2 Autocorrelation image

Higher positive values indicate higher correlation between the elements of the 
dataset, and lower negative values indicate the opposite. 

It is worth noting that you can do this for longer lags as well. Of course, that 
images list will fill up with all the images that are within lag of t. Those other 
images are also useful—for example, in fitting auto-regressive models as described 
later. 

Code Checkpoint F49a. The book’s repository contains a script that shows what 
your code should look like at this point. 

21.2.2 Section 2: Cross-Covariance and Cross-Correlation 

Cross-covariance is analogous to autocovariance, except instead of measuring the 
correspondence between a variable and itself at a lag, it measures the correspon-
dence between a variable and a covariate at a lag. Specifically, we will define the 
cross-covariance and cross-correlation according to Shumway and Stoffer (2019).
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You already have all the code needed to compute cross-covariance and cross-
correlation. But you do need a time series of another variable. Suppose, we 
postulate that NDVI is related in some way to the precipitation before the NDVI 
was observed. To estimate the strength of this relationship in every pixel, copy and 
paste the code below to the existing script to load precipitation, join, merge, and 
reduce as previously: 

// Precipitation (covariate) 
var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 

// Join the t-l (l=1 pentad) precipitation images to the 
Landsat. 
var lag1PrecipNDVI = lag(landsat8sr, chirps, 5); 

// Add the precipitation images as bands. 
var merged1PrecipNDVI = 
ee.ImageCollection(lag1PrecipNDVI.map(merge)); 

// Compute and display cross-covariance. 
var cov1PrecipNDVI = covariance(merged1PrecipNDVI, 'NDVI', 

'precipitation').clip(roi); 
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {}, 

'NDVI - PRECIP cov (lag = 5)'); 

// Compute and display cross-correlation. 
var corr1PrecipNDVI = 
correlation(cov1PrecipNDVI).clip(roi); 
Map.addLayer(corr1PrecipNDVI, { 

min: -0.5, 
max: 0.5 

}, 'NDVI - PRECIP corr (lag = 5)');
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Fig. 21.3 Cross-correlation image of NDVI and precipitation with a five-day lag 

What do you observe from this result? Looking at the cross-correlation image 
(Fig. 21.3), do you observe high values where you would expect high NDVI values 
(vegetated areas)? One possible drawback of this computation is that it is only 
based on five days of precipitation, whichever five days came right before the 
NDVI image. 

Perhaps precipitation in the month before the observed NDVI is relevant? Copy 
and paste the code below to test the 30-day lag idea.
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// Join the precipitation images from the previous month. 
var lag30PrecipNDVI = lag(landsat8sr, chirps, 30); 

var sum30PrecipNDVI = 
ee.ImageCollection(lag30PrecipNDVI.map(function( 

image) { 
var laggedImages = ee.ImageCollection.fromImages(image 

.get('images')); 
return ee.Image(image).addBands(laggedImages.sum() 

.rename('sum')); 
})); 

// Compute covariance. 
var cov30PrecipNDVI = covariance(sum30PrecipNDVI, 'NDVI', 
'sum').clip( 

roi); 
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {}, 

'NDVI - sum cov (lag = 30)'); 

// Correlation. 
var corr30PrecipNDVI = 
correlation(cov30PrecipNDVI).clip(roi); 
Map.addLayer(corr30PrecipNDVI, { 

min: -0.5, 
max: 0.5 

}, 'NDVI - sum corr (lag = 30)'); 

Observe that the only change is to the merge method. Instead of merging 
the bands of the NDVI image and the covariate (precipitation), the entire list of 
precipitation is summed and added as a band (eliminating the need for iterate). 

Which changes do you notice between the cross-correlation images—5 days 
lag versus 30 days lag (Fig. 21.4)? You can use the Inspector tool to assess if the 
correlation increased or not at vegetated areas.

As long as there is sufficient temporal overlap between the time series, these 
techniques could be extended to longer lags and longer time series. 

Code Checkpoint F49b. The book’s repository contains a script that shows what 
your code should look like at this point. 

21.2.3 Section 3: Auto-Regressive Models 

The discussion of autocovariance preceded this section in order to introduce the 
concept of lag. Now that you have a way to get the previous values of a variable, 
it is worth considering auto-regressive models. Suppose that pixel values at time
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Fig. 21.4 Cross-correlation image of NDVI and precipitation with a 30-day lag

t depend in some way on the previous pixel values—auto-regressive models are 
time series models that use observations from the previous time steps as input to a 
regression equation to predict the value at the next time step. If you have observed 
significant, non-zero autocorrelations in a time series, this is a good assumption. 
Specifically, you may postulate a linear model such as the following, where pt is 
a pixel at time t, and et is a random error (Chap. 18): 

pt = β0 + β1 pt−1 + β2 pt−2 + et (21.1) 

To fit this model, you need a lagged collection as created previously, except 
with a longer lag (e.g., lag = 34 days). The next steps are to merge the bands then 
reduce with the linear regression reducer. 

Copy and paste the line below to the existing script to create a lagged collection, 
where the images list stores the two previous images: 

var lagged34 = ee.ImageCollection(lag(landsat8sr, 
landsat8sr, 34));
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Copy and paste the code below to merge the bands of the lagged collection 
such that each image has bands at time t and bands at times t − 1, …,  t − lag. 
Note that it is necessary to filter out any images that do not have two previous 
temporal neighbors. 

var merged34 = lagged34.map(merge).map(function(image) { 
return image.set('n', ee.List(image.get('images')) 

.length()); 
}).filter(ee.Filter.gt('n', 1)); 

Now, copy and paste the code below to fit the regression model using the 
linearRegression reducer. 

var arIndependents = ee.List(['constant', 'NDVI_1', 'NDVI_2']); 

var ar2 = merged34 
.select(arIndependents.add(dependent)) 
.reduce(ee.Reducer.linearRegression(arIndependents.length(), 

1)); 

// Turn the array image into a multi-band image of coefficients. 
var arCoefficients = ar2.select('coefficients') 

.arrayProject([0]) 

.arrayFlatten([arIndependents]); 

We can compute the fitted values using the expression function in Earth 
Engine. Because this model is a function of the previous pixel values, which may 
be masked, if any of the inputs to Eq. 21.1 are masked, the output of the equation 
will also be masked. That is why you should use an expression here, unlike the 
previous linear models of time. Copy and paste the code below to compute the 
fitted values.
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// Compute fitted values. 
var fittedAR = merged34.map(function(image) { 

return image.addBands( 
image.expression( 

'beta0 + beta1 * p1 + beta2 * p2', { 
p1: image.select('NDVI_1'), 
p2: image.select('NDVI_2'), 
beta0: arCoefficients.select('constant'), 
beta1: arCoefficients.select('NDVI_1'), 
beta2: arCoefficients.select('NDVI_2') 

}).rename('fitted')); 
}); 

Finally, copy and paste the code below to plot the results (Fig. 21.5). We will 
use a specific point defined as pt. Note the missing values that result from masked 
data. If you run into computation errors, try commenting the Map.addLayer calls 
from the previous sections to save memory. 

// Create an Earth Engine point object to print the time 
series chart. 
var pt = ee.Geometry.Point([-119.0955, 35.9909]); 

print(ui.Chart.image.series( 
fittedAR.select(['fitted', 'NDVI']), pt, ee.Reducer 

.mean(), 30) 

.setSeriesNames(['NDVI', 'fitted']) 

.setOptions({ 
title: 'AR(2) model: original and fitted values', 
lineWidth: 1, 
pointSize: 3, 

}));

At this stage, note that the missing data has become a real problem. Any data 
point for which at least one of the previous points is masked or missing is also 
masked. 

Code Checkpoint F49c. The book’s repository contains a script that shows what 
your code should look like at this point. 

It may be possible to avoid this problem by substituting the output from 
Eq. 21.1 (the modeled value) for the missing or masked data. Unfortunately, the 
code to make that happen is not straightforward. You can check a solution in the 
following Code Checkpoint:
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Fig. 21.5 Observed NDVI and fitted values at selected point

Code Checkpoint F49d. The book’s repository contains a script that shows what 
your code should look like at this point. 

21.3 Synthesis 

Assignment 1. Analyze cross-correlation between NDVI and soil moisture, or 
precipitation and soil moisture, for example. Earth Engine contains different soil 
moisture datasets in its catalog (e.g., NASA-USDA SMAP, NASA-GLDAS). Try 
increasing the lagged time and see if it makes any difference. Alternatively, you 
can pick any other environmental variable/index (e.g., a different vegetation index: 
EVI instead of NDVI, for example) and analyze its autocorrelation. 

21.4 Conclusion 

In this chapter, we learned how to use autocovariance and autocorrelation to 
explore the relationship between elements of a time series at multiple time steps. 
We also explored how to use cross-covariance and cross-correlation to examine 
the relationship between elements of two time series at different points in time. 
Finally, we used auto-regressive models to regress the elements of a time series 
with elements of the same time series at a different point in time. With these skills, 
you can now examine how events in one time period impact your variable of inter-
est in later time periods. While we have introduced the linear approach to lagged 
effects, these ideas can be expanded to more complex models.
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Part V 

Vectors and Tables 

In addition to raster data processing, Earth Engine supports a rich set of vector 
processing tools. This part introduces you to the vector framework in Earth Engine, 
shows you how to create and to import your vector data, and how to combine vector 
and raster data for analyses.
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A. J. Purdy , Ellen Brock, and David Saah 

Overview 
In this chapter, you will learn about features and feature collections and how to use 
them in conjunction with images and image collections in Earth Engine. Maps are 
useful for understanding spatial patterns, but scientists often need to extract statistics 
to answer a question. For example, you may make a false-color composite showing 
which areas of San Francisco are more “green”—i.e., have more healthy vegetation— 
than others, but you will likely not be able to directly determine which block in a 
neighborhood is the most green. This tutorial will demonstrate how to do just that 
by utilizing vectors. 

As described in Chap. 12, an important way to summarize and simplify data in 
Earth Engine is through the use of reducers. Reducers operating across space were 
used in Chap. 8, for example, to enable image regression between bands. More 
generally, chapters in Part III and Part IV used reducers mostly to summarize the 
values across bands or images on a pixel-by-pixel basis. What if you wanted to 
summarize information within the confines of given spatial elements—for example, 
within a set of polygons? In this chapter, we will illustrate and explore Earth Engine’s 
method for doing that, which is through a reduceRegions call.
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Learning Outcomes

. Uploading and working with a shapefile as an asset to use in Earth Engine.

. Creating a new feature using the geometry tools.

. Importing and filtering a feature collection in Earth Engine.

. Using a feature to clip and reduce image values within a geometry.

. Use reduceRegions to summarize an image in irregular neighborhoods.

. Exporting calculated data to tables with Tasks. 

Assumes you know how to

. Import images and image collections, filter, and visualize (Part I).

. Calculate and interpret vegetation indices (Chap. 5).

. Use drawing tools to create points, lines, and polygons (Chap. 6). 

22.1 Introduction to Theory 

In the world of geographic information systems (GIS), data are typically thought 
of in one of two basic data structures: raster and vector. In the previous chapters, 
we have principally been focused on raster data—data using the remote sensing 
vocabulary of pixels, spatial resolution, images, and image collections. Working 
within the vector framework is also a crucial skill to master. If you do not know 
much about GIS, you can find any number of online explainers of the distinctions 
between these data types, their strengths and limitations, and analyzes using both 
data types. Being able to move fluidly between a raster conception and a vector 
conception of the world is powerful and is facilitated with specialized functions 
and approaches in Earth Engine. 

For our purposes, you can think of vector data as information represented as 
points (e.g., locations of sample sites), lines (e.g., railroad tracks), or polygons 
(e.g., the boundary of a national park or a neighborhood). Line data and polygon 
data are built up from points: for example, the latitude and longitude of the sample 
sites, the points along the curve of the railroad tracks, and the corners of the park 
that form its boundary. These points each have a highly specific location on Earth’s 
surface, and the vector data formed from them can be used for calculations with 
respect to other layers. As will be seen in this chapter, for example, a polygon 
can be used to identify which pixels in an image are contained within its borders. 
Point-based data have already been used in earlier chapters for filtering image 
collections by location (see Part I) and can also be used to extract values from an 
image at a point or a set of points (see Chap. 24). Lines possess the dimension of 
length and have similar capabilities for filtering image collections and accessing 
their values along a transect. In addition to using polygons to summarize values 
within a boundary, they can be used for other, similar purposes—for example, to 
clip an image.
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As you have seen, raster features in Earth Engine are stored as an Image or as 
part of an ImageCollection. Using a similar conceptual model, vector data in 
Earth Engine are stored as a Feature or as part of a FeatureCollection. 
Features and feature collections provide useful data to filter images and image 
collections by their location, clip images to a boundary, or statistically summarize 
the pixel values within a region. 

In the following example, you will use features and feature collections to iden-
tify which city block near the University of San Francisco (USF) campus is the 
most green. 

22.2 Practicum 

22.2.1 Section 1: Using Geometry Tools to Create Features 
in Earth Engine 

To demonstrate how geometry tools in Earth Engine work, let us start by creating 
a point, and two polygons to represent different elements on the USF campus. 

Click on the geometry tools in the top left of the Map pane and create a point 
feature. Place a new point where USF is located (see Fig. 22.1). 

Use Google Maps to search for “Harney Science Center” or “Lo Schiavo Center 
for Science.” Hover your mouse over the Geometry Imports to find the + new 
layer menu item and add a new layer to delineate the boundary of a building on 
campus. 

Next, create another new layer to represent the entire campus as a polygon.

Fig. 22.1 Location of the USF campus in San Francisco, California. Your first point should be in 
this vicinity. The red arrow points to the geometry tools 
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Fig. 22.2 Rename the default variable names for each layer in the Imports section of the code at 
the top of your script 

After you create these layers, rename the geometry imports at the top of 
your script. Name the layers usf_point, usf_building, and usf_campus. 
These names are used within the script shown in Fig. 22.2. 

Code Checkpoint F50a. The book’s repository contains a script that shows what 
your code should look like at this point. 

22.2.2 Section 2: Loading Existing Features and Feature 
Collections in Earth Engine 

If you wish to have the exact same geometry imports in this chapter for the rest 
of this exercise, begin this section using the code at the Code Checkpoint above. 

Next, you will load a city block dataset to determine the amount of vegeta-
tion on blocks near USF. The code below imports an existing feature dataset in 
Earth Engine. The Topologically Integrated Geographic Encoding and Referencing 
(TIGER) boundaries are census-designated boundaries that are a useful resource 
when comparing socioeconomic and diversity metrics with environmental datasets 
in the United States. 

// Import the Census Tiger Boundaries from GEE. 
var tiger = ee.FeatureCollection('TIGER/2010/Blocks'); 

// Add the new feature collection to the map, but do not 
display. 
Map.addLayer(tiger, { 

'color': 'black' 
}, 'Tiger', false); 

You should now have the geometry for USF’s campus and a layer added to 
your map that is not visualized for census blocks across the United States. Next, 
we will use neighborhood data to spatially filter the TIGER feature collection for 
blocks near USF’s campus.
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22.2.3 Section 3: Importing Features into Earth Engine 

There are many image collections loaded in Earth Engine, and they can cover a 
very large area that you might want to study. Borders can be quite intricate (for 
example, a detailed coastline), and fortunately, there is no need for you to digitize 
the intricate boundary of a large geographic area. Instead, we will show how to 
find a spatial dataset online, download the data, and load this into Earth Engine as 
an asset for use. 

Find a Spatial Dataset of San Francisco Neighborhoods 
Use your Internet searching skills to locate the “analysis neighborhoods” dataset 
covering San Francisco. This data might be located in a number of places, 
including DataSF, the City of San Francisco’s public-facing data repository. 

After you find the analysis neighborhoods layer, click Export and select Shape-
file (Fig. 22.3). Keep track of where you save the zipped file, as we will load 
this into Earth Engine. Shapefiles contain vector-based data—points, lines, poly-
gons—and include a number of files, such as the location information, attribute 
information, and others. 

Extract the folder to your computer. When you open the folder, you will see 
that there are actually many files. The extensions (.shp,.dbf ,.shx,.prj) all provide a 
different piece of information to display vector-based data. The .shp file provides 
data on the geometry. The .dbf file provides data about the attributes. The .shx file

Fig. 22.3 DataSF Website neighborhood shapefile to download 
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Fig. 22.4 Import an asset as a zipped folder 

is an index file. Lastly, the .prj file describes the map projection of the coordinate 
information for the shapefile. You will need to load all four files to create a new 
feature asset in Earth Engine. 

Upload SF Neighborhoods File as an Asset 
Navigate to the Assets tab (near Scripts). Select New > Table Upload > Shape 
files (Fig. 22.4). 

Select Files and Name Asset 
Click the Select button and then use the file navigator to select the component 
files of the shapefile structure (i.e., .shp, .dbf , .shx, and .prj) (Fig. 22.5). Assign 
an Asset Name so you can recognize this asset.

Uploading the asset may take a few minutes. The status of the upload is pre-
sented under the Tasks tab. After your asset has been successfully loaded, click 
on the asset in the Assets folder and find the collection ID. Copy this text and use 
it to import the file into your Earth Engine analysis. 

Assign the asset to the table (collection) ID using the script below. Note that you 
will need to replace ’path/to/your/asset/assetname’ with the actual 
path copied in the previous step.
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// Assign the feature collection to the variable 
sfNeighborhoods. 
var sfNeighborhoods = ee.FeatureCollection( 

'path/to/your/asset/assetname'); 

// Print the size of the feature collection. 
// (Answers the question how many features?) 
print(sfNeighborhoods.size()); 
Map.addLayer(sfNeighborhoods, { 

'color': 'blue' 
}, 'sfNeighborhoods');

Fig. 22.5 Select the four files extracted from the zipped folder. Make sure each file has the same 
name and that there are no spaces in the file names of the component files of the shapefile structure



430 A. J. Purdy et al.

Note that if you have any trouble with loading the FeatureCollection 
using the technique above, you can follow directions in the Checkpoint script 
below to use an existing asset loaded for this exercise. 

Code Checkpoint F50b. The book’s repository contains a script that shows what 
your code should look like at this point. 

22.2.4 Section 4: Filtering Feature Collections by Attributes 

Filter by Geometry of Another Feature 

First, let us find the neighborhood associated with USF. Use the first point you 
created to find the neighborhood that intersects this point; filterBounds is the 
tool that does that, returning a filtered feature. 

// Filter sfNeighborhoods by USF. 
var usfNeighborhood = 
sfNeighborhoods.filterBounds(usf_point); 

Now, filter the blocks layer by USF’s neighborhood and visualize it on the map. 

// Filter the Census blocks by the boundary of the 
neighborhood layer. 
var usfTiger = tiger.filterBounds(usfNeighborhood); 
Map.addLayer(usfTiger, {}, 'usf_Tiger'); 

Filter by Feature (Attribute) Properties 
In addition to filtering a FeatureCollection by the location of another fea-
ture, you can also filter it by its properties. First, let us print the usfTiger 
variable to the Console and inspect the object. 

print(usfTiger); 

You can click on the feature collection name in the Console to uncover 
more information about the dataset. Click on the columns to learn about what 
attribute information is contained in this dataset. You will notice this feature col-
lection contains information on both housing (’housing10’) and population 
(’pop10’).
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Now, you will filter for blocks with just the right amount of housing units. You 
do not want it too dense, nor do you want too few neighbors. 

Filter the blocks to have fewer than 250 housing units. 

// Filter for census blocks by housing units. 
var housing10_l250 = usfTiger 

.filter(ee.Filter.lt('housing10', 250)); 

Now filter the already-filtered blocks to have more than 50 housing units. 

var housing10_g50_l250 = housing10_l250.filter(ee.Filter.gt( 
'housing10', 50)); 

Now, let us visualize what this looks like. 

Map.addLayer(housing10_g50_l250, { 
'color': 'Magenta' 

}, 'housing'); 

We have combined spatial and attribute information to narrow the set to only 
those blocks that meet our criteria of having between 50 and 250 housing units. 

Print Feature (Attribute) Properties to Console 
We can print out attribute information about these features. The block of code 
below prints out the area of the resultant geometry in square meters. 

var housing_area = housing10_g50_l250.geometry().area(); 
print('housing_area:', housing_area); 

The next block of code reduces attribute information and prints out the mean 
of the housing10 column. 

var housing10_mean = usfTiger.reduceColumns({ 
reducer: ee.Reducer.mean(), 
selectors: ['housing10'] 

}); 

print('housing10_mean', housing10_mean);
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Both of the above sections of code provide meaningful information about each 
feature, but they do not tell us which block is the most green. The next section 
will address that question. 

Code Checkpoint F50c. The book’s repository contains a script that shows what 
your code should look like at this point. 

22.2.5 Section 5: Reducing Images Using Feature Geometry 

Now that we have identified the blocks around USF’s campus that have the right 
housing density, let us find which blocks are the greenest. 

The normalized difference vegetation index (NDVI), presented in detail in 
Chap. 5, is often used to compare the greenness of pixels in different locations. 
Values on land range from 0 to 1, with values closer to 1 representing healthier 
and greener vegetation than values near 0. 

Create an NDVI Image 
The code below imports the Landsat 8 ImageCollection as landsat8. 
Then, the code filters for images in 2021. Lastly, the code sorts the images from 
2021 to find the least cloudy day. 

// Import the Landsat 8 TOA image collection. 
var landsat8 = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA'); 

// Get the least cloudy image in 2015. 
var image = ee.Image( 

landsat8 
.filterBounds(usf_point) 
.filterDate('2015-01-01', '2015-12-31') 
.sort('CLOUD_COVER') 
.first()); 

The next section of code assigns the near-infrared band (B5) to variable nir 
and assigns the red band (B4) to red. Then, the bands are combined together to 
compute NDVI as (nir− red)/(nir + red). 

var nir = image.select('B5'); 
var red = image.select('B4'); 
var ndvi = 
nir.subtract(red).divide(nir.add(red)).rename('NDVI');
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Clip the NDVI Image to the Blocks Near USF 
Next, you will clip the NDVI layer to only show NDVI over USF’s neighborhood. 

The first section of code provides visualization settings. 

var ndviParams = { 
min: -1, 
max: 1, 
palette: ['blue', 'white', 'green'] 

}; 

The second block of code clips the image to our filtered housing layer. 

var ndviUSFblocks = ndvi.clip(housing10_g50_l250); 
Map.addLayer(ndviUSFblocks, ndviParams, 'NDVI image'); 
Map.centerObject(usf_point, 14); 

The NDVI map for all of San Francisco is interesting and shows variability 
across the region. Now, let us compute mean NDVI values for each block of the 
city. 

Compute NDVI Statistics by Block 
The code below uses the clipped image ndviUSFblocks and computes the mean 
NDVI value within each boundary. The scale provides a spatial resolution for the 
mean values to be computed on. 

// Reduce image by feature to compute a statistic e.g. 
mean, max, min etc. 
var ndviPerBlock = ndviUSFblocks.reduceRegions({ 

collection: housing10_g50_l250, 
reducer: ee.Reducer.mean(), 
scale: 30, 

}); 

Now, we will use Earth Engine to find out which block is greenest. 

Export Table of NDVI Data by Block from Earth Engine to Google Drive 
Just as we loaded a feature into Earth Engine, we can export information from 
Earth Engine. Here, we will export the NDVI data, summarized by block, from 
Earth Engine to a Google Drive space so that we can interpret it in a program like 
Google Sheets or Excel.
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Fig. 22.6 Under the Tasks tab, select Run to initiate download 

// Get a table of data out of Google Earth Engine. 
Export.table.toDrive({ 

collection: ndviPerBlock, 
description: 'NDVI_by_block_near_USF' 

}); 

When you run this code, you will notice that you have the Tasks tab highlighted 
on the top right of the Earth Engine Code Editor (Fig. 22.6). You will be prompted 
to name the directory when exporting the data. 

After you run the task, the file will be saved to your Google Drive. You have 
now brought a feature into Earth Engine and also exported data from Earth Engine. 

Code Checkpoint F50d. The book’s repository contains a script that shows what 
your code should look like at this point. 

22.2.6 Section 6: Identifying the Block in the Neighborhood 
Surrounding USF with the Highest NDVI 

You are already familiar with filtering datasets by their attributes. Now, you will 
sort a table and select the first element of the table. 

ndviPerBlock = ndviPerBlock.select(['blockid10', 'mean']); 
print('ndviPerBlock', ndviPerBlock); 
var ndviPerBlockSorted = ndviPerBlock.sort('mean', false); 
var ndviPerBlockSortedFirst = 
ee.Feature(ndviPerBlock.sort('mean', 

false) //Sort by NDVI mean in descending order. 
.first()); //Select the block with the highest NDVI. 

print('ndviPerBlockSortedFirst', ndviPerBlockSortedFirst); 

If you expand the feature of ndviPerBlockSortedFirst in the Console, 
you will be able to identify the blockid10 value of the greenest block and the 
mean NDVI value for that area. 

Another way to look at the data is by exporting the data to a table. Open the 
table using Google Sheets or Excel. You should see a column titled “mean.” Sort
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the mean column in descending order from highest NDVI to lowest NDVI, then 
use the blockid10 attribute to filter our feature collection one last time and 
display the greenest block near USF. 

// Now filter by block and show on map! 
var GreenHousing = usfTiger.filter(ee.Filter.eq('blockid10', 
'#####')); //< Put your id here prepend a 0! 
Map.addLayer(GreenHousing, { 

'color': 'yellow' 
}, 'Green Housing!'); 

Code Checkpoint F50e. The book’s repository contains a script that shows what 
your code should look like at this point. 

22.3 Synthesis 

Now it is your turn to use both feature classes and to reduce data using a geo-
graphic boundary. Create a new script for an area of interest and accomplish the 
following assignments. 

Assignment 1. Create a study area map zoomed to a certain feature class that you 
made. 

Assignment 2. Filter one feature collection using feature properties. 

Assignment 3. Filter one feature collection based on another feature’s location in 
space. 

Assignment 4. Reduce one image to the geometry of a feature in some capacity; 
e.g., extract a mean value or a value at a point. 

22.4 Conclusion 

In this chapter, you learned how to import features into Earth Engine. In 
Sect. 22.2.1, you created new features using the geometry tools and loaded a fea-
ture from Earth Engine’s Data Catalog. In Sect. 22.2.2, you loaded a shapefile 
to an Earth Engine asset. In Sect. 22.2.3, you filtered feature collections based 
on their properties and locations. Finally, in Sects. 22.2.4 and 22.2.5, you used a 
feature collection to reduce an image, then exported the data from Earth Engine. 
Now, you have all the tools you need to load, filter, and apply features to extract 
meaningful information from images using vector features in Earth Engine.
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23Raster/Vector Conversions 

Keiko Nomura and Samuel Bowers 

Overview 
The purpose of this chapter is to review methods of converting between raster and 
vector data formats, and to understand the circumstances in which this is useful. 
By way of example, this chapter focuses on topographic elevation and forest cover 
change in Colombia, but note that these are generic methods that can be applied in 
a wide variety of situations. 

Learning Outcomes

• Understanding raster and vector data in Earth Engine and their differing properties.
• Knowing how and why to convert from raster to vector.
• Knowing how and why to convert from vector to raster.
• Write a function and map it over a FeatureCollection. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Understand distinctions among Image, ImageCollection, Feature, and 
FeatureCollection Earth Engine objects (Part I, Part II, Part V).

• Perform basic image analysis: select bands, compute indices, and create masks 
(Part II).
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• Perform image morphological operations (Chap. 10).
• Understand the filter, map, and reduce paradigm (Chap. 12).
• Write a function and map it over an ImageCollection (Chap. 12).
• Use reduceRegions to summarize an image in irregular shapes (Chap. 22). 

23.1 Introduction to Theory 

Raster data consist of regularly spaced pixels arranged into rows and columns, 
familiar as the format of satellite images. Vector data contain geometry features 
(i.e., points, lines, and polygons) describing locations and areas. Each data format 
has its advantages, and both will be encountered as part of GIS operations. 

Raster data and vector data are commonly combined (e.g., extracting image 
information for a given location or clipping an image to an area of interest); how-
ever, there are also situations in which conversion between the two formats is 
useful. In making such conversions, it is important to consider the key advantages 
of each format. Rasters can store data efficiently where each pixel has a numerical 
value, while vector data can more effectively represent geometric features where 
homogenous areas have shared properties. Each format lends itself to distinctive 
analytical operations, and combining them can be powerful. 

In this exercise, we’ll use topographic elevation and forest change images in 
Colombia as well as a protected area feature collection to practice the conver-
sion between raster and vector formats, and to identify situations in which this is 
worthwhile. 

23.2 Practicum 

23.2.1 Section 1: Raster to Vector Conversion 

23.2.1.1 Section 1.1: Raster to Polygons 
In this section, we will convert an elevation image (raster) to a feature collection 
(vector). We will start by loading the Global Multi-Resolution Terrain Elevation 
Data 2010 and the Global Administrative Unit Layers 2015 dataset to focus on 
Colombia. The elevation image is a raster at 7.5 arc-second spatial resolution 
containing a continuous measure of elevation in meters in each pixel.



23 Raster/Vector Conversions 439

// Load raster (elevation) and vector (colombia) datasets. 
var elevation = 
ee.Image('USGS/GMTED2010').rename('elevation'); 
var colombia = ee.FeatureCollection( 

'FAO/GAUL_SIMPLIFIED_500m/2015/level0') 
.filter(ee.Filter.equals('ADM0_NAME', 'Colombia')); 

// Display elevation image. 
Map.centerObject(colombia, 7); 
Map.addLayer(elevation, { 

min: 0, 
max: 4000 

}, 'Elevation'); 

When converting an image to a feature collection, we will aggregate the categor-
ical elevation values into a set of categories to create polygon shapes of connected 
pixels with similar elevations. For this exercise, we will create four zones of ele-
vation by grouping the altitudes to 0–100 m = 0, 100–200 m = 1, 200–500 m = 
2, and > 500 m = 3. 

// Initialize image with zeros and define elevation zones. 
var zones = ee.Image(0) 

.where(elevation.gt(100), 1) 

.where(elevation.gt(200), 2) 

.where(elevation.gt(500), 3); 

// Mask pixels below sea level (<= 0 m) to retain only 
land areas. 
// Name the band with values 0-3 as 'zone'. 
zones = zones.updateMask(elevation.gt(0)).rename('zone'); 

Map.addLayer(zones, { 
min: 0, 
max: 3, 
palette: ['white', 'yellow', 'lime', 'green'], 
opacity: 0.7 

}, 'Elevation zones');
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We will convert this zonal elevation image in Colombia to polygon shapes, 
which is a vector format (termed a FeatureCollection in Earth Engine), 
using the ee.Image.reduceToVectors method. This will create polygons 
delineating connected pixels with the same value. In doing so, we will use the 
same projection and spatial resolution as the image. Please note that loading the 
vectorized image in the native resolution (232 m) takes time to execute. For faster 
visualization, we set a coarse scale of 1000 m (Fig. 23.1). 

Fig. 23.1 Raster-based elevation (top left) and zones (top right), vectorized elevation zones over-
laid on the raster (bottom-left), and vectorized elevation zones only (bottom-right)
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var projection = elevation.projection(); 
var scale = elevation.projection().nominalScale(); 

var elevationVector = zones.reduceToVectors({ 
geometry: colombia.geometry(), 
crs: projection, 
scale: 1000, // scale 
geometryType: 'polygon', 
eightConnected: false, 
labelProperty: 'zone', 
bestEffort: true, 
maxPixels: 1e13, 
tileScale: 3 // In case of error. 

}); 

print(elevationVector.limit(10)); 

var elevationDrawn = elevationVector.draw({ 
color: 'black', 
strokeWidth: 1 

}); 
Map.addLayer(elevationDrawn, {}, 'Elevation zone polygon'); 

You may have realized that polygons consist of complex lines, including some 
small polygons with just one pixel. That happens when there are no surrounding 
pixels of the same elevation zone. You may not need a vector map with such 
details—if, for instance, you want to produce a regional or global map. We can 
use a morphological reducer focalMode to simplify the shape by defining a 
neighborhood size around a pixel. In this example, we will set the kernel radius as 
four pixels. This operation makes the resulting polygons look much smoother, but 
less precise (Fig. 23.2).
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Fig. 23.2 Before (left) and after (right) applying focalMode 

var zonesSmooth = zones.focalMode(4, 'square'); 
zonesSmooth = 
zonesSmooth.reproject(projection.atScale(scale)); 

Map.addLayer(zonesSmooth, { 
min: 1, 
max: 3, 
palette: ['yellow', 'lime', 'green'], 
opacity: 0.7 

}, 'Elevation zones (smooth)'); 

var elevationVectorSmooth = zonesSmooth.reduceToVectors({ 
geometry: colombia.geometry(), 
crs: projection, 
scale: scale, 
geometryType: 'polygon', 
eightConnected: false, 
labelProperty: 'zone', 
bestEffort: true, 
maxPixels: 1e13, 
tileScale: 3 

});
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var smoothDrawn = elevationVectorSmooth.draw({ 
color: 'black', 
strokeWidth: 1 

}); 
Map.addLayer(smoothDrawn, {}, 'Elevation zone polygon 
(smooth)'); 

We can see now that the polygons have more distinct shapes with many 
fewer small polygons in the new map (Fig. 23.2). It is important to note that 
when you use methods like focalMode (or other, similar methods such as 
connectedComponents and connectedPixelCount), you need to repro-
ject according to the original image in order to display properly with zoom using 
the interactive Code Editor. 

23.2.1.2 Section 1.2: Raster to Points 
Lastly, we will convert a small part of this elevation image into a point vector 
dataset. For this exercise, we will use the same example and build on the code from 
the previous subsection. This might be useful when you want to use geospatial 
data in a tabular format in combination with other conventional datasets such as 
economic indicators (Fig. 23.3). 

The easiest way to do this is to use sample while activating the geometries 
parameter. This will extract the points at the centroid of the elevation pixel.

Fig. 23.3 Elevation point values with latitude and longitude 
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var geometry = ee.Geometry.Polygon([ 
[-89.553, -0.929], 
[-89.436, -0.929], 
[-89.436, -0.866], 
[-89.553, -0.866], 
[-89.553, -0.929] 

]); 

// To zoom into the area, un-comment and run below 
// Map.centerObject(geometry,12); 
Map.addLayer(geometry, {}, 'Areas to extract points'); 

var elevationSamples = elevation.sample({ 
region: geometry, 
projection: projection, 
scale: scale, 
geometries: true, 

}); 

Map.addLayer(elevationSamples, {}, 'Points extracted'); 

// Add three properties to the output table: 
// 'Elevation', 'Longitude', and 'Latitude'. 
elevationSamples = elevationSamples.map(function(feature) { 

var geom = feature.geometry().coordinates(); 
return ee.Feature(null, { 

'Elevation': ee.Number(feature.get( 
'elevation')), 

'Long': ee.Number(geom.get(0)), 
'Lat': ee.Number(geom.get(1)) 

}); 
}); 

// Export as CSV. 
Export.table.toDrive({ 

collection: elevationSamples, 
description: 'extracted_points', 
fileFormat: 'CSV' 

});
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Fig. 23.4 Stratified random sampling over different elevation zones 

We can also extract sample points per elevation zone. Below is an example 
of extracting 10 randomly selected points per elevation zone (Fig. 23.4). You can 
also set different values for each zone using classValues and classPoints 
parameters to modify the sampling intensity in each class. This may be useful, for 
instance, to generate point samples for a validation effort. 

var elevationSamplesStratified = zones.stratifiedSample({ 
numPoints: 10, 
classBand: 'zone', 
region: geometry, 
scale: scale, 
projection: projection, 
geometries: true 

}); 

Map.addLayer(elevationSamplesStratified, {}, 'Stratified 
samples'); 

Code Checkpoint F51a. The book’s repository contains a script that shows what 
your code should look like at this point.
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23.2.1.3 Section 1.3: A More Complex Example 
In this section, we will use two global datasets, one to represent raster formats and 
the other vectors:

• The Global Forest Change (GFC) dataset: a raster dataset describing global tree 
cover and change for 2001–present.

• The World Protected Areas Database: a vector database of global protected 
areas. 

The objective will be to combine these two datasets to quantify rates of deforesta-
tion in protected areas in the ‘arc of deforestation’ of the Colombian Amazon. The 
datasets can be loaded into Earth Engine with the following code: 

// Read input data. 
// Note: these datasets are periodically updated. 
// Consider searching the Data Catalog for newer versions. 
var gfc = 
ee.Image('UMD/hansen/global_forest_change_2020_v1_8'); 
var wdpa = 
ee.FeatureCollection('WCMC/WDPA/current/polygons'); 

// Print assets to show available layers and properties. 
print(gfc); 
print(wdpa.limit(10)); // Show first 10 records. 

The GFC dataset (first presented in detail in Chap. 2) is a global set of rasters 
that quantify tree cover and change for the period beginning in 2001. We’ll use a 
single image from this dataset:

• ‘lossyear’: a categorical raster of forest loss (1–20, corresponding to 
deforestation for the period 2001–2020), and 0 for no change 

The World Database on Protected Areas (WDPA) is a harmonized dataset of global 
terrestrial and marine protected area locations, along with details on the classifi-
cation and management of each. In addition to protected area outlines, we’ll use 
two fields from this database:

• ‘NAME’: the name of each protected area
• ‘WDPA_PID’: a unique numerical ID for each protected area
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To begin with, we’ll focus on forest change dynamics in ‘La Paya’, a small  
protected area in the Colombian Amazon. We’ll first visualize these data using 
the paint command, which is discussed in more detail in Chap. 25. This will 
display the boundary of the La Paya protected area and deforestation in the region 
(Fig. 23.5). 

// Display deforestation. 
var deforestation = gfc.select('lossyear'); 

Map.addLayer(deforestation, { 
min: 1, 
max: 20, 
palette: ['yellow', 'orange', 'red'] 

}, 'Deforestation raster'); 

// Display WDPA data. 
var protectedArea = wdpa.filter(ee.Filter.equals('NAME', 
'La Paya')); 

// Display protected area as an outline (see F5.3 for 
paint()). 
var protectedAreaOutline = ee.Image().byte().paint({ 

featureCollection: protectedArea, 
color: 1, 
width: 3 

}); 

Map.addLayer(protectedAreaOutline, { 
palette: 'white' 

}, 'Protected area'); 

// Set up map display. 
Map.centerObject(protectedArea); 
Map.setOptions('SATELLITE');
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Fig. 23.5 View of the La Paya protected area in the Colombian Amazon (in white) and deforesta-
tion over the period 2001–2020 (in yellows and reds, with darker colors indicating more recent 
changes) 

We can use Earth Engine to convert the deforestation raster to a set of polygons. 
The deforestation data are appropriate for this transformation as each deforestation 
event is labeled categorically by year, and change events are spatially contiguous. 
This is performed in Earth Engine using the ee.Image.reduceToVectors 
method, as described earlier in this section. Figure 23.6 shows a comparison of 
the raster versus vector representations of deforestation within the protected area.
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// Convert from a deforestation raster to vector. 
var deforestationVector = deforestation.reduceToVectors({ 

scale: deforestation.projection().nominalScale(), 
geometry: protectedArea.geometry(), 
labelProperty: 'lossyear', // Label polygons with a 

change year. 
maxPixels: 1e13 

}); 

// Count the number of individual change events 
print('Number of change events:', 
deforestationVector.size()); 

// Display deforestation polygons. Color outline by change 
year. 
var deforestationVectorOutline = ee.Image().byte().paint({ 

featureCollection: deforestationVector, 
color: 'lossyear', 
width: 1 

}); 

Map.addLayer(deforestationVectorOutline, { 
palette: ['yellow', 'orange', 'red'], 
min: 1, 
max: 20 

}, 'Deforestation vector'); 

Fig. 23.6 Raster (left) versus vector (right) representations of deforestation data of the La Paya 
protected area
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Having converted from raster to vector, a new set of operations becomes 
available for post-processing the deforestation data. We might, for instance, be 
interested in the number of individual change events each year (Fig. 23.7): 

Fig. 23.7 Plot of the number of deforestation events in La Paya for the years 2001–2020 

var chart = ui.Chart.feature 
.histogram({ 

features: deforestationVector, 
property: 'lossyear' 

}) 
.setOptions({ 

hAxis: { 
title: 'Year' 

}, 
vAxis: { 

title: 'Number of deforestation events' 
}, 
legend: { 

position: 'none' 
} 

}); 

print(chart); 

There might also be interest in generating point locations for individual change 
events (e.g., to aid a field campaign):
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// Generate deforestation point locations. 
var deforestationCentroids = 
deforestationVector.map(function(feat) { 

return feat.centroid(); 
}); 

Map.addLayer(deforestationCentroids, { 
color: 'darkblue' 

}, 'Deforestation centroids'); 

The vector format allows for easy filtering to only deforestation events of 
interest, such as only the largest deforestation events: 

// Add a new property to the deforestation 
FeatureCollection 
// describing the area of the change polygon. 
deforestationVector = 
deforestationVector.map(function(feat) { 

return feat.set('area', feat.geometry().area({ 
maxError: 10 

}).divide(10000)); // Convert m^2 to hectare. 
}); 

// Filter the deforestation FeatureCollection for only 
large-scale (>10 ha) changes 
var deforestationLarge = 
deforestationVector.filter(ee.Filter.gt( 

'area', 10)); 

// Display deforestation area outline by year. 
var deforestationLargeOutline = ee.Image().byte().paint({ 

featureCollection: deforestationLarge, 
color: 'lossyear', 
width: 1 

}); 

Map.addLayer(deforestationLargeOutline, { 
palette: ['yellow', 'orange', 'red'], 
min: 1, 
max: 20 

}, 'Deforestation (>10 ha)');
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Code Checkpoint F51b. The book’s repository contains a script that shows what 
your code should look like at this point. 

23.2.1.4 Section 1.4: Raster Properties to Vector Fields 
Sometimes we want to extract information from a raster to be included in an 
existing vector dataset. An example might be estimating a deforestation rate for a 
set of protected areas. Rather than performing this task on a case-by-case basis, 
we can attach information generated from an image as a property of a feature. 

The following script shows how this can be used to quantify a deforestation 
rate for a set of protected areas in the Colombian Amazon. 

// Load required datasets. 
var gfc = 
ee.Image('UMD/hansen/global_forest_change_2020_v1_8'); 
var wdpa = 
ee.FeatureCollection('WCMC/WDPA/current/polygons'); 

// Display deforestation. 
var deforestation = gfc.select('lossyear'); 

Map.addLayer(deforestation, { 
min: 1, 
max: 20, 
palette: ['yellow', 'orange', 'red'] 

}, 'Deforestation raster'); 

// Select protected areas in the Colombian Amazon. 
var amazonianProtectedAreas = [ 

'Cordillera de los Picachos', 'La Paya', 'Nukak', 
'Serrania de Chiribiquete', 
'Sierra de la Macarena', 'Tinigua' 

]; 

var wdpaSubset = wdpa.filter(ee.Filter.inList('NAME', 
amazonianProtectedAreas)); 

// Display protected areas as an outline. 
var protectedAreasOutline = ee.Image().byte().paint({ 

featureCollection: wdpaSubset, 
color: 1, 
width: 1 

});
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Map.addLayer(protectedAreasOutline, { 
palette: 'white' 

}, 'Amazonian protected areas'); 

// Set up map display. 
Map.centerObject(wdpaSubset); 
Map.setOptions('SATELLITE'); 

var scale = deforestation.projection().nominalScale(); 

// Use 'reduceRegions' to sum together pixel areas in each 
protected area. 
wdpaSubset = deforestation.gte(1) 

.multiply(ee.Image.pixelArea().divide(10000)).reduceRegions 
({ 

collection: wdpaSubset, 
reducer: ee.Reducer.sum().setOutputs([ 

'deforestation_area']), 
scale: scale 

}); 

print(wdpaSubset); // Note the new 'deforestation_area' 
property. 

The output of this script is an estimate of deforested area in hectares for each 
reserve. However, as reserve sizes vary substantially by area, we can normalize by 
the total area of each reserve to quantify rates of change. 

// Normalize by area. 
wdpaSubset = wdpaSubset.map( 

function(feat) { 
return feat.set('deforestation_rate', 

ee.Number(feat.get('deforestation_area')) 
.divide(feat.area().divide(10000)) // m2 to ha 
.divide(20) // number of years 
.multiply(100)); // to percentage points 

}); 

// Print to identify rates of change per protected area. 
// Which has the fastest rate of loss? 
print(wdpaSubset.reduceColumns({ 

reducer: ee.Reducer.toList().repeat(2), 
selectors: ['NAME', 'deforestation_rate'] 

}));
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Code Checkpoint F51c. The book’s repository contains a script that shows what 
your code should look like at this point. 

23.2.2 Section 2: Vector-To-Raster Conversion 

In Sect. 23.2.1, we used the protected area feature collection as its original vector 
format. In this section, we will rasterize the protected area polygons to produce a 
mask and use this to assess rates of forest change. 

23.2.2.1 Section 2.1: Polygons to a Mask 
The most common operation to convert from vector to raster is the produc-
tion of binary image masks, describing whether a pixel intersects a line or falls 
within a polygon. To convert from vector to a raster mask, we can use the 
ee.FeatureCollection.reduceToImage method. Let’s continue with 
our example of the WDPA database and Global Forest Change data from the 
previous section: 

// Load required datasets. 
var gfc = 
ee.Image('UMD/hansen/global_forest_change_2020_v1_8'); 
var wdpa = 
ee.FeatureCollection('WCMC/WDPA/current/polygons'); 

// Get deforestation. 
var deforestation = gfc.select('lossyear'); 

// Generate a new property called 'protected' to apply to 
the output mask. 
var wdpa = wdpa.map(function(feat) { 

return feat.set('protected', 1); 
}); 

// Rasterize using the new property. 
// unmask() sets areas outside protected area polygons to 
0. 
var wdpaMask = wdpa.reduceToImage(['protected'], 
ee.Reducer.first()) 

.unmask();
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// Center on Colombia. 
Map.setCenter(-75, 3, 6); 

// Display on map. 
Map.addLayer(wdpaMask, { 

min: 0, 
max: 1 

}, 'Protected areas (mask)'); 

We can use this mask to, for example, highlight only deforestation that occurs 
within a protected area using logical operations: 

// Set the deforestation layer to 0 where outside a 
protected area. 
var deforestationProtected = 
deforestation.where(wdpaMask.eq(0), 0); 

// Update mask to hide where deforestation layer = 0 
var deforestationProtected = deforestationProtected 

.updateMask(deforestationProtected.gt(0)); 

// Display deforestation in protected areas 
Map.addLayer(deforestationProtected, { 

min: 1, 
max: 20, 
palette: ['yellow', 'orange', 'red'] 

}, 'Deforestation protected'); 

In the above example, we generated a simple binary mask, but 
reduceToImage can also preserve a numerical property of the input polygons. 
For example, we might want to be able to determine which protected area each 
pixel represents. In this case, we can produce an image with the unique ID of each 
protected area: 

// Produce an image with unique ID of protected areas. 
var wdpaId = wdpa.reduceToImage(['WDPAID'], 
ee.Reducer.first()); 

Map.addLayer(wdpaId, { 
min: 1, 
max: 100000 

}, 'Protected area ID');
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This output can be useful when performing large-scale raster operations, such 
as efficiently calculating deforestation rates for multiple protected areas. 

Code Checkpoint F51d. The book’s repository contains a script that shows what 
your code should look like at this point. 

23.2.2.2 Section 2.2: A More Complex Example 
The reduceToImage method is not the only way to convert a feature collection 
to an image. We will create a distance image layer from the boundary of the pro-
tected area using distance. For this example, we return to the La Paya protected 
area explored in Sect. 23.2.1. 

// Load required datasets. 
var gfc = 
ee.Image('UMD/hansen/global_forest_change_2020_v1_8'); 
var wdpa = 
ee.FeatureCollection('WCMC/WDPA/current/polygons'); 

// Select a single protected area. 
var protectedArea = wdpa.filter(ee.Filter.equals('NAME', 
'La Paya')); 

// Maximum distance in meters is set in the brackets. 
var distance = protectedArea.distance(1000000); 

Map.addLayer(distance, { 
min: 0, 
max: 20000, 
palette: ['white', 'grey', 'black'], 
opacity: 0.6 

}, 'Distance'); 

Map.centerObject(protectedArea); 

We can also show the distance inside and outside of the boundary by using the 
rasterized protected area (Fig. 23.8).
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Fig. 23.8 Distance from the La Paya boundary (left), distance within the La Paya (middle), and 
distance outside the La Paya (right) 

// Produce a raster of inside/outside the protected area. 
var protectedAreaRaster = protectedArea.map(function(feat) 
{ 

return feat.set('protected', 1); 
}).reduceToImage(['protected'], ee.Reducer.first()); 

Map.addLayer(distance.updateMask(protectedAreaRaster), { 
min: 0, 
max: 20000 

}, 'Distance inside protected area'); 

Map.addLayer(distance.updateMask(protectedAreaRaster.unmask 
() 
.not()), { 

min: 0, 
max: 20000 

}, 'Distance outside protected area'); 

Sometimes it makes sense to work with objects in raster imagery. This is an 
unusual case of vector-like operations conducted with raster data. There is a good 
reason for this where the vector equivalent would be computationally burdensome. 

An example of this is estimating deforestation rates by distance to the edge 
of the protected area, as it is common that rates of change will be higher at the 
boundary of a protected area. We will create a distance raster with three zones 
from the La Paya boundary (>1 km, > 2 km, > 3 km, and > 4 km) and to estimate 
the deforestation by distance from the boundary (Fig. 23.9).



458 K. Nomura and S. Bowers

Fig. 23.9 Distance zones (top left) and deforestation by zone (<1 km, < 3 km, and < 5 km) 

var distanceZones = ee.Image(0) 
.where(distance.gt(0), 1) 
.where(distance.gt(1000), 2) 
.where(distance.gt(3000), 3) 
.updateMask(distance.lte(5000)); 

Map.addLayer(distanceZones, {}, 'Distance zones'); 

var deforestation = gfc.select('loss'); 
var deforestation1km = 
deforestation.updateMask(distanceZones.eq(1)); 
var deforestation3km = 
deforestation.updateMask(distanceZones.lte(2)); 
var deforestation5km = 
deforestation.updateMask(distanceZones.lte(3));
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}, 'Deforestation within a 3km buffer'); 
Map.addLayer(deforestation5km, { 

min: 0, 
max: 1, 
opacity: 0.5 

}, 'Deforestation within a 5km buffer'); 

Map.addLayer(deforestation1km, { 
min: 0, 
max: 1 

}, 'Deforestation within a 1km buffer'); 
Map.addLayer(deforestation3km, { 

min: 0, 
max: 1, 
opacity: 0.5 

Lastly, we can estimate the deforestation area within 1 km of the protected area 
but only outside of the boundary. 

var deforestation1kmOutside = deforestation1km 
.updateMask(protectedAreaRaster.unmask().not()); 

// Get the value of each pixel in square meters 
// and divide by 10000 to convert to hectares. 
var deforestation1kmOutsideArea = 
deforestation1kmOutside.eq(1) 

.multiply(ee.Image.pixelArea()).divide(10000); 

// We need to set a larger geometry than the protected area 
// for the geometry parameter in reduceRegion(). 
var deforestationEstimate = deforestation1kmOutsideArea 

.reduceRegion({ 
reducer: ee.Reducer.sum(), 
geometry: protectedArea.geometry().buffer(1000), 
scale: deforestation.projection().nominalScale() 

}); 

print('Deforestation within a 1km buffer outside the 
protected area (ha)', 

deforestationEstimate); 

Code Checkpoint F51e. The book’s repository contains a script that shows what 
your code should look like at this point.
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23.3 Synthesis 

Question 1. In this lab, we quantified rates of deforestation in La Paya. There 
is another protected area in the Colombian Amazon named Tinigua. By modify-
ing the existing scripts, determine how the dynamics of forest change in Tinigua 
compare to those in La Paya with respect to:

• the number of deforestation events;
• the year with the greatest number of change events;
• the mean average area of change events;
• the total area of loss. 

Question 2. In Sect. 23.2.1.4, we only considered losses of tree cover, but 
many protected areas will also have increases in tree cover from regrowth (which 
is typical of shifting agriculture). Calculate growth in hectares using the Global 
Forest Change dataset’s gain layer for the six protected areas in Sect. 23.2.1.4 
by extracting the raster properties and adding them to vector fields. Which has 
the greatest area of regrowth? Is this likely to be sufficient to balance out the 
rates of forest loss? Note: The gain layer shows locations where tree cover has 
increased for the period 2001–2012 (0 = no gain, 1 = tree cover increase), so for 
comparability use deforestation between the same time period of 2001–2012. 

Question 3. In Sect. 23.2.2.2, we considered rates of deforestation in a buffer zone 
around La Paya. Estimate the deforestation rates inside of La Paya using buffer 
zones. Is forest loss more common close to the boundary of the reserve? 

Question 4. Sometimes it’s advantageous to perform processing using raster oper-
ations, particularly at large scales. It is possible to perform many of the tasks 
in Sects. 23.2.1.3 and 23.2.1.4 by first converting the protected area vector to 
raster and then using only raster operations. As an example, can you display only 
deforestation events > 10 ha in La Paya using only raster data? (Hint: Consider 
using ee.Image.connectedPixelCount. You may also want to also look 
at Sect. 23.2.2.1). 

23.4 Conclusion 

In this chapter, you learned how to convert raster to vector and vice versa. More 
importantly, you now have a better understanding of why and when such conver-
sions are useful. The examples should give you practical applications and ideas 
for using these techniques.
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24Zonal Statistics 

Sara Winsemius and Justin Braaten 

Overview 
The purpose of this chapter is to extract values from rasters for intersecting points 
or polygons. We will lay out the process and a function to calculate zonal statistics, 
which includes optional parameters to modify the function, and then apply the process 
to three examples using different raster datasets and combinations of parameters. 

Learning Outcomes

• Buffering points as square or circular regions.
• Writing and applying functions with optional parameters.
• Learning what zonal statistics are and how to use reducers.
• Exporting computation results to a table.
• Copying properties from one image to another. 

Assumes you know how to

• Recognize similarities and differences among Landsat 5, 7, and 8 spectral bands 
(Part I, Part II, Part III).

• Understand distinctions among Image, ImageCollection, Feature, and 
FeatureCollection Earth Engine objects (Part I, Part II, Part V).

• Use drawing tools to create points, lines, and polygons (Chap. 6).
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• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Export calculated data to tables with Tasks (Chap. 22).
• Understand the differences between raster and vector data (Chaps. 22 and 23).
• Write a function and map it over a FeatureCollection (Chap. 23). 

24.1 Introduction to Theory 

Anyone working with field data collected at plots will likely need to summarize 
raster-based data associated with those plots. For instance, they need to know the 
Normalized Difference Vegetation Index (NDVI), precipitation, or elevation for 
each plot (or surrounding region). Calculating statistics from a raster within given 
regions is called zonal statistics. Zonal statistics were calculated in Chaps. 22 
and 23 using ee.Image.ReduceRegions. Here, we present a more general 
approach to calculating zonal statistics with a custom function that works for both 
ee.Image and ee.ImageCollection objects. In addition to its flexibility, 
the reduction method used here is less prone to “Computed value is too large” 
errors that can occur when using ReduceRegions with very large or complex 
ee.FeatureCollection object inputs. 

The zonal statistics function in this chapter works for an Image or an 
ImageCollection. Running the function over an ImageCollection will 
produce a table with values from each image in the collection per point. Image col-
lections can be processed before extraction as needed—for example, by masking 
clouds from satellite imagery or by constraining the dates needed for a particular 
research question. In this tutorial, the data extracted from rasters are exported to a 
table for analysis, where each row of the table corresponds to a unique point-image 
combination. 

In fieldwork, researchers often work with plots, which are commonly recorded 
as polygon files or as a center point with a set radius. It is rare that plots will be 
set directly in the center of pixels from your desired raster dataset, and many field 
GPS units have positioning errors. Because of these issues, it may be important to 
use a statistic of adjacent pixels (as described in Chap. 10) to estimate the central 
value in what’s often called a neighborhood mean or focal mean (Cansler and 
McKenzie 2012; Miller and Thode 2007). 

To choose the size of your neighborhood, you will need to consider your 
research questions, the spatial resolution of the dataset, the size of your field plot, 
and the error from your GPS. For example, the raster value extracted for ran-
domly placed 20 m diameter plots would likely merit use of a neighborhood mean 
when using Sentinel-2 or Landsat 8—at 10 m and 30 m spatial resolution, respec-
tively—while using a thermal band from MODIS (Moderate Resolution Imaging 
Spectroradiometer) at 1000 m may not. While much of this tutorial is written with 
plot points and buffers in mind, a polygon asset with predefined regions will serve 
the same purpose.
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Table 24.1 Parameters for bufferPoints 

Parameter Type Description 

radius Number buffer radius (m) 

[bounds = false] Boolean An optional flag indicating whether to transform buffered point 
(i.e., a circle) to square bounds 

24.2 Practicum 

24.2.1 Section 1: Functions 

Two functions are provided; copy and paste them into your script:

• A function to generate circular or square regions from buffered points.
• A function to extract image pixel neighborhood statistics for a given region. 

24.2.1.1 Section 1.1: Function: BufferPoints(Radius, Bounds) 
Our first function, bufferPoints, returns a function for adding a buffer to 
points and optionally transforming to rectangular bounds (see Table 24.1). 

function bufferPoints(radius, bounds) { 
return function(pt) { 

pt = ee.Feature(pt); 
return bounds ? pt.buffer(radius).bounds() : 

pt.buffer(radius); 
}; 

} 

24.2.1.2 Section 1.2: Function: ZonalStats(Fc, Params) 
The second function, zonalStats, reduces images in an ImageCollection 
by regions defined in a FeatureCollection. Note that reductions can return 
null statistics that you might want to filter out of the resulting feature collection. 
Null statistics occur when there are no valid pixels intersecting the region being 
reduced. This situation can be caused by points that are outside of an image or in 
regions that are masked for quality or clouds. 

This function is written to include many optional parameters (see Table 24.2). 
Look at the function carefully and note how it is written to include defaults that 
make it easy to apply the basic function while allowing customization.
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Table 24.2 Parameters for zonalStats 

Parameter Type Description 

ic ee.ImageCollection Image collection from which to 
extract values 

fc ee.FeatureCollection Feature collection that provides 
regions/zones by which to reduce 
image pixels 

[params] Object An optional Object that provides 
function arguments 

[params.reducer = 
ee.Reducer.mean()] 

ee.Reducer The reducer to apply. Optional 

[params.scale = null] Number A nominal scale in meters of the 
projection to work in. If null, the 
native nominal image scale is used. 
Optional 

[params.crs = null] String The projection to work in. If null, the 
native image Coordinate Reference 
System (CRS) is used. Optional 

[params.bands = null] Array A list of image band names for which 
to reduce values. If null, all bands 
will be reduced. Band names define 
column names in the resulting 
reduction table. Optional 

[params.bandsRename = null] Array A list of desired image band names. 
The length and order must correspond 
to the params.bands list. If null, band 
names will be unchanged. Band 
names define column names in the 
resulting reduction table. Optional 

[params.imgProps = null] Array A list of image properties to include 
in the table of region reduction 
results. If null, all image properties 
are included. Optional 

[params.imgPropsRename = 
null] 

Array A list of image property names to 
replace those provided by 
params.imgProps. The length and 
order must match the 
params.imgProps entries. Optional 

[params.datetimeName = 
‘datetime] 

String The desired name of the datetime 
field. The datetime refers to the 
‘system:time_start’ value of the 
ee.Image being reduced. Optional 

[params.datetimeFormat = 
‘YYYY-MM-dd HH:mm:ss] 

String The desired datetime format. Use 
ISO 8601 data string standards. The 
datetime string is derived from the 
‘system:time_start’ value of the 
ee.Image being reduced. Optional
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var imgRep = ic.first(); 
var nonSystemImgProps = ee.Feature(null)

        .copyProperties(imgRep).propertyNames(); 
if (!_params.bands) _params.bands = imgRep.bandNames(); 
if (!_params.bandsRename) _params.bandsRename = 

_params.bands; 
if (!_params.imgProps) _params.imgProps = 

nonSystemImgProps; 
if (!_params.imgPropsRename) _params.imgPropsRename = 

_params
        .imgProps; 

// Map the reduceRegions function over the image 
collection. 

var results = ic.map(function(img) { 

function zonalStats(ic, fc, params) { 
// Initialize internal params dictionary. 
var _params = { 

        reducer: ee.Reducer.mean(),
        scale: null,
        crs: null,
        bands: null,
        bandsRename: null,
        imgProps: null,
        imgPropsRename: null,
        datetimeName: 'datetime',
        datetimeFormat: 'YYYY-MM-dd HH:mm:ss'
    }; 

// Replace initialized params with provided params. 
if (params) { 

for (var param in params) { 
            _params[param] = params[param] || 
_params[param];
        } 
    } 

// Set default parameters based on an image 
representative.
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var propsFrom = ee.List(_params.imgProps)
            .cat(ee.List([_params.datetimeName, 

'timestamp'])); 
var propsTo = ee.List(_params.imgPropsRename)

            .cat(ee.List([_params.datetimeName, 
'timestamp'])); 

var imgProps = img.toDictionary(propsFrom).rename(
            propsFrom, propsTo); 

// Subset points that intersect the given image. 
var fcSub = fc.filterBounds(img.geometry()); 
// Reduce the image by regions. 
return img.reduceRegions({

                collection: fcSub, 
                reducer: _params.reducer, 

scale: _params.scale, 
crs: _params.crs

            }) 
     // Add metadata to each feature.

            .map(function(f) { 
return f.set(imgProps);

            }); 

// Converts the feature collection of feature 
collections to a single 

//feature collection.
    }).flatten(); 

return results; 
} 

// Select bands (optionally rename), set a datetime 
& timestamp property.

        img = ee.Image(img.select(_params.bands, _params 
                .bandsRename)) 

// Add datetime and timestamp features.
            .set(_params.datetimeName, img.date().format(
                _params.datetimeFormat))

            .set('timestamp', 
img.get('system:time_start')); 

// Define final image property dictionary to set in 
output features.
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24.2.2 Section 2: Point Collection Creation 

Below, we create a set of points that form the basis of the zonal statistics calcu-
lations. Note that a unique plot_id property is added to each point. A unique 
plot or point ID is important to include in your vector dataset for future filtering 
and joining. 

var pts = ee.FeatureCollection([ 
ee.Feature(ee.Geometry.Point([-118.6010, 37.0777]), { 

plot_id: 1 
}), 
ee.Feature(ee.Geometry.Point([-118.5896, 37.0778]), { 

plot_id: 2 
}), 
ee.Feature(ee.Geometry.Point([-118.5842, 37.0805]), { 

plot_id: 3 
}), 
ee.Feature(ee.Geometry.Point([-118.5994, 37.0936]), { 

plot_id: 4 
}), 
ee.Feature(ee.Geometry.Point([-118.5861, 37.0567]), { 

plot_id: 5 
}) 

]); 

print('Points of interest', pts); 

Code Checkpoint F52a. The book’s repository contains a script that shows what 
your code should look like at this point. 

24.2.3 Section 3: Neighborhood Statistic Examples 

The following examples demonstrate extracting raster neighborhood statistics for 
the following:

• A single raster with elevation and slope bands.
• A multiband MODIS time series.
• A multiband Landsat time series. 

In each example, the points created in the previous section will be buffered 
and then used as regions to extract zonal statistics for each image in the image 
collection.
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24.2.3.1 Section 3.1: Topographic Variables 
This example demonstrates how to calculate zonal statistics for a single multiband 
image. This Digital Elevation Model (DEM) contains a single topographic band 
representing elevation. 

Section 3.1.1: Buffer the Points 
Next, we will apply a 45 m radius buffer to the points defined previously by 
mapping the bufferPoints function over the feature collection. The radius is 
set to 45 m to correspond to the 90 m pixel resolution of the DEM. In this case, 
circles are used instead of squares (set the second argument as false, i.e., do not 
use bounds). 

// Buffer the points. 
var ptsTopo = pts.map(bufferPoints(45, false)); 

Section 3.1.2: Calculate Zonal Statistics 
There are two important things to note about the zonalStats function that this 
example addresses:

• It accepts only an ee.ImageCollection, not an ee.Image; single images 
must be wrapped in an ImageCollection.

• It expects every image in the input image collection to have a timestamp prop-
erty named ‘system:time_start’ with values representing milliseconds 
from 00:00:00 UTC on 1 January 1970. Most datasets should have this property, 
if not, one should be added. 

// Import the MERIT global elevation dataset. 
var elev = ee.Image('MERIT/DEM/v1_0_3'); 

// Calculate slope from the DEM. 
var slope = ee.Terrain.slope(elev); 

// Concatenate elevation and slope as two bands of an 
image. 
var topo = ee.Image.cat(elev, slope) 

// Computed images do not have a 'system:time_start' 
property; add one based 

// on when the data were collected. 
.set('system:time_start', ee.Date('2000-01-

01').millis());
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// Wrap the single image in an ImageCollection for use in 
the 
// zonalStats function. 
var topoCol = ee.ImageCollection([topo]); 

Define arguments for the zonalStats function and then run it. Note that we 
are accepting defaults for the reducer, scale, Coordinate Reference System (CRS), 
and image properties to copy over to the resulting feature collection. Refer to the 
function definition above for defaults. 

// Define parameters for the zonalStats function. 
var params = { 

bands: [0, 1], 
bandsRename: ['elevation', 'slope'] 

}; 

// Extract zonal statistics per point per image. 
var ptsTopoStats = zonalStats(topoCol, ptsTopo, params); 
print('Topo zonal stats table', ptsTopoStats); 

// Display the layers on the map. 
Map.setCenter(-118.5957, 37.0775, 13); 
Map.addLayer(topoCol.select(0), { 

min: 2400, 
max: 4200 

}, 'Elevation'); 
Map.addLayer(topoCol.select(1), { 

min: 0, 
max: 60 

}, 'Slope'); 
Map.addLayer(pts, { 

color: 'purple' 
}, 'Points'); 
Map.addLayer(ptsTopo, { 

color: 'yellow' 
}, 'Points w/ buffer'); 

The result is a copy of the buffered point feature collection with new properties 
added for the region reduction of each selected image band according to the given 
reducer. A part of the FeatureCollection is shown in Fig. 24.1. The data 
in that FeatureCollection corresponds to a table containing the information 
of Table 24.3. See Fig. 24.2 for a graphical representation of the points and the 
topographic data being summarized.
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Fig. 24.1 A part of the  FeatureCollection produced by calculating the zonal statistics 

Table 24.3 Example output from zonalStats organized as a table 

plot_id timestamp Datetime elevation slope 

1 946684800000 2000-01-01 00:00:00 2648.1 29.7 

2 946684800000 2000-01-01 00:00:00 2888.2 33.9 

3 946684800000 2000-01-01 00:00:00 3267.8 35.8 

4 946684800000 2000-01-01 00:00:00 2790.7 25.1 

5 946684800000 2000-01-01 00:00:00 2559.4 29.4 

Rows correspond to collection features and columns are feature properties. Note that elevation and 
slope values in this table are rounded to the nearest tenth for brevity

24.2.3.2 Section 3.2: MODIS Time Series 
A time series of MODIS eight-day surface reflectance composites demonstrates 
how to calculate zonal statistics for a multiband ImageCollection that 
requires no preprocessing, such as cloud masking or computation. Note that there 
is no built-in function for performing region reductions on ImageCollection 
objects. The zonalStats function that we are using for reduction is mapping 
the reduceRegions function over an ImageCollection. 

Section 3.2.1: Buffer the Points 
In this example, suppose the point collection represents center points for field plots 
that are 100 ×100 m, and apply a 50 m radius buffer to the points to match the 
size of the plot. Since we want zonal statistics for square plots, set the second
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Fig. 24.2 Sample points and topographic slope. Elevation and slope values for regions intersect-
ing each buffered point are reduced and attached as properties of the points

argument of the bufferPoints function to true, so that square bounds of the 
buffered points are returned. 

var ptsModis = pts.map(bufferPoints(50, true)); 

Section 3.2.2: Calculate Zonal Statistic 
Import the MODIS 500 m global eight-day surface reflectance composite collec-
tion and filter the collection to include data for July, August, and September from 
2015 through 2019. 

var modisCol = ee.ImageCollection('MODIS/006/MOD09A1') 
.filterDate('2015-01-01', '2020-01-01') 
.filter(ee.Filter.calendarRange(183, 245, 

'DAY_OF_YEAR')); 

Reduce each image in the collection by each plot according to the following 
parameters. Note that this time the reducer is defined as the neighborhood median
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(ee.Reducer.median) instead of the default mean, and that scale, CRS, and 
properties for the datetime are explicitly defined. 

// Define parameters for the zonalStats function. 
var params = { 

reducer: ee.Reducer.median(), 
scale: 500, 
crs: 'EPSG:5070', 
bands: ['sur_refl_b01', 'sur_refl_b02', 

'sur_refl_b06'], 
bandsRename: ['modis_red', 'modis_nir', 'modis_swir'], 
datetimeName: 'date', 
datetimeFormat: 'YYYY-MM-dd' 

}; 

// Extract zonal statistics per point per image. 
var ptsModisStats = zonalStats(modisCol, ptsModis, params); 
print('Limited MODIS zonal stats table', 
ptsModisStats.limit(50)); 

The result is a feature collection with a feature for all combinations of plots and 
images. Interpreted as a table, the result has 200 rows (5 plots times 40 images) 
and as many columns as there are feature properties. Feature properties include 
those from the plot asset and the image, and any associated non-system image 
properties. Note that the printed results are limited to the first 50 features for 
brevity. 

24.2.3.3 Section 3.3: Landsat Time Series 
This example combines Landsat surface reflectance imagery across three instru-
ments: Thematic Mapper (TM) from Landsat 5, Enhanced Thematic Mapper Plus 
(ETM + ) from Landsat 7, and Operational Land Imager (OLI) from Landsat 8. 

The following section prepares these collections so that band names are con-
sistent and cloud masks are applied. Reflectance among corresponding bands are 
roughly congruent for the three sensors when using the surface reflectance product; 
therefore, the processing steps that follow do not address inter-sensor harmoniza-
tion. Review the current literature on inter-sensor harmonization practices if you’d 
like to apply a correction. 

Section 3.3.1: Prepare the Landsat Image Collection 
First, define the function to mask cloud and shadow pixels (See Chap. 15 for more 
detail on cloud masking).
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// Mask clouds from images and apply scaling factors. 
function maskScale(img) { 

var qaMask = 
img.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 

2)).eq(0); 
var saturationMask = img.select('QA_RADSAT').eq(0); 

// Apply the scaling factors to the appropriate bands. 
var getFactorImg = function(factorNames) { 

var factorList = 
img.toDictionary().select(factorNames) 

.values(); 
return ee.Image.constant(factorList); 

}; 
var scaleImg = 

getFactorImg(['REFLECTANCE_MULT_BAND_.']); 
var offsetImg = 

getFactorImg(['REFLECTANCE_ADD_BAND_.']); 
var scaled = 

img.select('SR_B.').multiply(scaleImg).add( 
offsetImg); 

// Replace the original bands with the scaled ones and 
apply the masks. 

return img.addBands(scaled, null, true) 
.updateMask(qaMask) 
.updateMask(saturationMask); 

} 

Next, define functions to select and rename the bands of interest for the Oper-
ational Land Imager (OLI) aboard Landsat 8, and for the TM/ETM + imagers 
aboard earlier Landsats. This is important because the band numbers are different 
for OLI and TM/ETM+, and it will make future index calculations easier.
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// Selects and renames bands of interest for Landsat OLI. 
function renameOli(img) { 

return img.select( 
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 

'SR_B7'], 
['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2']); 

} 

// Selects and renames bands of interest for TM/ETM+. 
function renameEtm(img) { 

return img.select( 
['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 

'SR_B7'], 
['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2']); 

} 

Combine the cloud mask and band renaming functions into preparation func-
tions for OLI and TM/ETM+. Add any other sensor-specific preprocessing steps 
that you’d like to the functions below. 

// Prepares (cloud masks and renames) OLI images. 
function prepOli(img) { 

img = maskScale(img); 
img = renameOli(img); 
return img; 

} 

// Prepares (cloud masks and renames) TM/ETM+ images. 
function prepEtm(img) { 

img = maskScale(img); 
img = renameEtm(img); 
return img; 

} 

Get the Landsat surface reflectance collections for OLI, ETM+, and TM sen-
sors. Filter them by the bounds of the point feature collection and apply the 
relevant image preparation function.
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var ptsLandsat = pts.map(bufferPoints(15, true)); 

var oliCol = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 
.filterBounds(ptsLandsat) 
.map(prepOli); 

var etmCol = ee.ImageCollection('LANDSAT/LE07/C02/T1_L2') 
.filterBounds(ptsLandsat) 
.map(prepEtm); 

var tmCol = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2') 
.filterBounds(ptsLandsat) 
.map(prepEtm); 

Merge the prepared sensor collections. 

var landsatCol = oliCol.merge(etmCol).merge(tmCol); 

Section 3.3.2: Calculate Zonal Statistics 
Reduce each image in the collection by each plot according to the fol-
lowing parameters. Note that this example defines the imgProps and 
imgPropsRename parameters to copy over and rename just two selected image 
properties: Landsat image ID and the satellite that collected the data. It also uses 
the max reducer, which, as an unweighted reducer, will return the maximum value 
from pixels that have their centroid within the buffer (see Sect. 24.2.4.1 below for 
more details). 

// Define parameters for the zonalStats function. 
var params = { 

reducer: ee.Reducer.max(), 
scale: 30, 
crs: 'EPSG:5070', 
bands: ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 

'SWIR2'], 
bandsRename: ['ls_blue', 'ls_green', 'ls_red', 

'ls_nir', 
'ls_swir1', 'ls_swir2' 

], 
imgProps: ['SENSOR_ID', 'SPACECRAFT_ID'], 
imgPropsRename: ['img_id', 'satellite'], 
datetimeName: 'date', 
datetimeFormat: 'YYYY-MM-dd' 

};
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// Extract zonal statistics per point per image. 
var ptsLandsatStats = zonalStats(landsatCol, ptsLandsat, 
params) 

// Filter out observations where image pixels were all 
masked. 

.filter(ee.Filter.notNull(params.bandsRename)); 
print('Limited Landsat zonal stats table', 
ptsLandsatStats.limit(50)); 

The result is a feature collection with a feature for all combinations of plots 
and images. 

Section 3.3.3: Dealing with Large Collections 
If your browser times out, try exporting the results (as described in Chap. 29). 
It’s likely that point feature collections that cover a large area or contain many 
points (point-image observations) will need to be exported as a batch task by either 
exporting the final feature collection as an asset or as a CSV/shapefile/GeoJSON 
to Google Drive or GCS. 

Here is how you would export the above Landsat image-point feature collection 
to an asset and to Google Drive. Run the following code, activate the Code Editor 
Tasks tab, and then click the Run button. If you don’t specify your own existing 
folder in Drive, the folder “EEFA_outputs” will be created. 

Export.table.toAsset({ 
collection: ptsLandsatStats, 
description: 'EEFA_export_Landsat_to_points', 
assetId: 'EEFA_export_values_to_points' 

}); 

Export.table.toDrive({ 
collection: ptsLandsatStats, 
folder: 'EEFA_outputs', // this will create a new 

folder if it doesn't exist 
description: 'EEFA_export_values_to_points', 
fileFormat: 'CSV' 

}); 

Code Checkpoint F52b. The book’s repository contains a script that shows what 
your code should look like at this point.
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24.2.4 Section 4: Additional Notes 

24.2.4.1 Section 4.1: Weighted Versus Unweighted Region Reduction 
A region used for calculation of zonal statistics often bisects multiple pixels. 
Should partial pixels be included in zonal statistics? Earth Engine lets you decide 
by allowing you to define a reducer as either weighted or unweighted (or you 
can provide per-pixel weight specification as an image band). A weighted reducer 
will include partial pixels in the zonal statistic calculation by weighting each 
pixel’s contribution according to the fraction of the area intersecting the region. 
An unweighted reducer, on the other hand, gives equal weight to all pixels whose 
cell center intersects the region; all other pixels are excluded from calculation of 
the statistic. 

For aggregate reducers like ee.Reducer.mean and 
ee.Reducer.median, the default mode is weighted, while identifier reducers 
such as ee.Reducer.min and ee.Reducer.max are unweighted. You can 
adjust the behavior of weighted reducers by calling unweighted on them, as 
in ee.Reducer.mean.unweighted. You may also specify the weights by 
modifying the reducer with splitWeights; however, that is beyond the scope 
of this book. 

24.2.4.2 Section 4.2: Copy Properties to Computed Images 
Derived, computed images do not retain the properties of their source image, so 
be sure to copy properties to computed images if you want them included in the 
region reduction table. For instance, consider the simple computation of unscaling 
Landsat SR data: 

// Define a Landsat image. 
var img = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2').first(); 

// Print its properties. 
print('All image properties', img.propertyNames()); 

// Subset the reflectance bands and unscale them. 
var computedImg = 
img.select('SR_B.').multiply(0.0000275).add(-0.2); 

// Print the unscaled image's properties. 
print('Lost original image properties', 
computedImg.propertyNames()); 

Notice how the computed image does not have the source image’s properties 
and only retains the bands information. To fix this, use the copyProperties 
function to add desired source properties to the derived image. It is best practice
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to copy only the properties you really need because some properties, such as those 
containing geometry objects, lists, or feature collections, can significantly increase 
the computational burden for large collections. 

// Subset the reflectance bands and unscale them, keeping 
selected 
// source properties. 
var computedImg = 
img.select('SR_B.').multiply(0.0000275).add(-0.2) 

.copyProperties(img, ['system:time_start', 
'LANDSAT_PRODUCT_ID']); 

// Print the unscaled image's properties. 
print('Selected image properties retained', computedImg 
.propertyNames()); 

Now selected properties are included. Use this technique when returning 
computed, derived images in a mapped function, and in single-image operations. 

24.2.4.3 Section 4.3: Understanding Which Pixels Are Included 
in Polygon Statistics 

If you want to visualize what pixels are included in a polygon for a region reducer, 
you can adapt the following code to use your own region (by replacing geometry), 
dataset, desired scale, and CRS parameters. The important part to note is that the 
image data you are adding to the map is reprojected using the same scale and CRS 
as that used in your region reduction (see Fig. 24.3).

// Define polygon geometry. 
var geometry = ee.Geometry.Polygon( 

[ 
[ 

[-118.6019835717645, 37.079867782687884], 
[-118.6019835717645, 37.07838698844939], 
[-118.60036351751951, 37.07838698844939], 
[-118.60036351751951, 37.079867782687884] 

] 
], null, false); 

// Import the MERIT global elevation dataset. 
var elev = ee.Image('MERIT/DEM/v1_0_3');
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Fig. 24.3 Identifying pixels used in zonal statistics. By mapping the image and vector together, 
you can see which pixels are included in the unweighted statistic. For this example, three pixels 
would be included in the statistic because the polygon covers the center point of three pixels

// Define desired scale and crs for region reduction (for 
image display too). 
var proj = { 

scale: 90, 
crs: 'EPSG:5070' 

};
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The count reducer will return how many pixel centers are overlapped by the 
polygon region, which would be the number of pixels included in any unweighted 
reducer statistic. You can also visualize which pixels will be included in the reduc-
tion by using the toCollection reducer on a latitude/longitude image and 
adding resulting coordinates as feature geometry. Be sure to specify CRS and 
scale for both the region reducers and the reprojected layer added to the map (see 
bullet list below for more details). 

// A count reducer will return how many pixel centers are 
overlapped by the 
// polygon region. 
var count = elev.select(0).reduceRegion({ 

reducer: ee.Reducer.count(), 
geometry: geometry, 
scale: proj.scale, 
crs: proj.crs 

}); 
print('n pixels in the reduction', count.get('dem')); 

// Make a feature collection of pixel center points for 
those that are 
// included in the reduction. 
var pixels = ee.Image.pixelLonLat().reduceRegion({ 

reducer: ee.Reducer.toCollection(['lon', 'lat']), 
geometry: geometry, 
scale: proj.scale, 
crs: proj.crs 

}); 
var pixelsFc = 
ee.FeatureCollection(pixels.get('features')).map( 

function(f) { 
return 

f.setGeometry(ee.Geometry.Point([f.get('lon'), f 
.get('lat') 

])); 
});
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// Display layers on the map. 
Map.centerObject(geometry, 18); 
Map.addLayer( 

elev.reproject({ 
crs: proj.crs, 
scale: proj.scale 

}), 
{ 

min: 2500, 
max: 3000, 
palette: ['blue', 'white', 'red'] 

color: 'white' 
}, 'Geometry'); 
Map.addLayer(pixelsFc, { 

color: 'purple' 
}, 'Pixels in reduction'); 

}, 'Image'); 
Map.addLayer(geometry, { 

Code Checkpoint F52c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Finally, here are some notes on CRS and scale:

• Earth Engine runs reduceRegion using the projection of the image’s first 
band if the CRS is unspecified in the function. For imagery spanning mul-
tiple UTM zones, for example, this would lead to different origins. For some 
functions Earth Engine uses the default EPSG:4326. Therefore, when the oppor-
tunity is presented, such as by the reduceRegion function, it is important to 
specify the scale and CRS explicitly.

• The Map default CRS is EPSG:3857. When looking closely at pixels on the 
map, the data layer scale and CRS should also be set explicitly. Note that 
zooming out after setting a relatively small scale when reprojecting may result 
in memory and/or timeout errors because optimized pyramid layers for each 
zoom level will not be used.

• Specifying the CRS and scale in both the reduceRegion and addLayer 
functions allows the map visualization to align with the information printed in 
the Console.

• The Earth Engine default, WGS 84 lat long (EPSG:4326), is a generic CRS that 
works worldwide. The code above reprojects to EPSG:5070, North American 
Equal Albers, which is a CRS that preserves area for North American locations. 
Use the CRS that is best for your use case when adapting this to your own 
project or maintain (and specify) the CRS of the image using, for example, 
crs: ‘img.projection().crs()’.
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24.3 Synthesis 

Question 1. Look at the MODIS example (Sect. 24.2.3.2), which uses the 
median reducer. Try modifying the reducer to be unweighted, either by specifying 
unweighted or by using an identifier reducer like max. What happens and why? 

Question 2. Calculate zonal statistics for your own buffered points or polygons 
using a raster and reducer of interest. Be sure to consider the spatial scale of the 
raster and whether a weighted or unweighted reducer would be more appropriate 
for your interests. 

If the point or polygon file is stored in a local shapefile or CSV file, first upload 
the data to your Earth Engine assets. All columns in your vector file, such as the 
plot name, will be retained through this process. Once you have an Earth Engine 
table asset ready, import the asset into your script by hovering over the name of 
the asset and clicking the arrow at the right side, or by calling it in your script 
with the following code. 

var pts = ee.FeatureCollection('users/yourUsername/yourAsset'); 

If you prefer to define points or polygons dynamically rather than loading an 
asset, you can add them to your script using the geometry tools. See Chap. 6 and 
22 for more detail on adding and creating vector data. 

Question 3. Try the code from Sect. 24.2.4.3 using the MODIS data and the first 
point from the pts variable. Among other modifications, you will need to create 
a buffer for the point, take a single MODIS image from the collection, and change 
visualization parameters.

• Think about the CRS in the code: The code reprojects to EPSG:5070, but 
MODIS is collected in the sinusoidal projection SR-ORG:6974. Try that CRS 
and describe how the image changes.

• Is the count reducer weighted or unweighted? Give an example of a circum-
stance to use a weighted reducer and an example for an unweighted reducer. 
Specify the buffer size you would use and the spatial resolution of your dataset. 

Question 4. In the examples above, only a single ee.Reducer is passed to 
the zonalStats function, which means that only a single statistic is calculated 
(e.g., zonal mean or median or maximum). What if you want multiple statistics— 
can you alter the code in Sect. 24.2.3.1 to (1) make the point buffer 500 instead of 
45; (2) add the reducer parameter to the params dictionary; and (3) as its argu-
ment, supply a combined ee.Reducer that will calculate minimum, maximum, 
standard deviation, and mean statistics? 

To achieve this you’ll need to chain several ee.Reducer.combine func-
tions together. Note that if you accept all the individual ee.Reducer and
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ee.Reducer.combine function defaults, you’ll run into two problems related 
to reducer weighting differences, and whether or not the image inputs are shared 
among the combined set of reducers. How can you manipulate the individual 
ee.Reducer and ee.Reducer.combine functions to achieve the goal of 
calculating multiple zonal statistics in one call to the zonalStats function? 

24.4 Conclusion 

In this chapter, you used functions containing optional parameters to extract raster 
values for collocated points. You also learned how to buffer points and apply 
weighted and unweighted reducers to get different types of zonal statistics. These 
functions were applied to three examples that differed by raster dataset, reducer, 
spatial resolution, and scale. Lastly, you covered related topics like weighting of 
reducers and buffer visualization. Now you’re ready to apply these ideas to your 
own work! 
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Overview 
This chapter covers advanced techniques for visualizing and analyzing vector data 
in Earth Engine. There are many ways to visualize feature collections, and you will 
learn how to pick the appropriate method to create visualizations, such as a choropleth 
map. We will also cover geoprocessing techniques involving multiple vector layers, 
such as selecting features in one layer by their proximity to features in another layer 
and performing spatial joins. 

Learning Outcomes

. Visualizing any vector dataset and creating a thematic map.

. Understanding joins in Earth Engine.

. Carrying out geoprocessing tasks with vector layers in Earth Engine. 

Assumes you know how to

. Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).

. Write a function and map it over a FeatureCollection (Chaps. 23 
and 24).
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25.1 Practicum 

25.1.1 Section 1: Visualizing Feature Collections 

There is a distinct difference between how rasters and vectors are visualized. While 
images are typically visualized based on pixel values, vector layers use feature 
properties (i.e., attributes) to create a visualization. Vector layers are rendered on 
the Map by assigning a value to the red, green, and blue channels for each pixel 
on the screen based on the geometry and attributes of the features. The functions 
used for vector data visualization in Earth Engine are listed below in increasing 
order of complexity.

. Map.addLayer: As with raster layers, you can add a 
FeatureCollection to the Map by specifying visualization parame-
ters. This method supports only one visualization parameter: color. All 
features are rendered with the specified color.

. draw: This function supports the parameters pointRadius and 
strokeWidth in addition to color. It renders all features of the layer 
with the specified parameters.

. paint: This is a more powerful function that can render each feature with a 
different color and width based on the values in the specified property.

. style: This is the most versatile function. It can apply a different style 
to each feature, including color, pointSize, pointShape, width, 
fillColor, and lineType. 

In the exercises below, we will learn how to use each of these functions and see 
how they can generate different types of maps. 

25.1.1.1 Section 1.1: Creating a Choropleth Map 
We will use the TIGER: US Census Blocks layer, which stores census block 
boundaries and their characteristics within the United States, along with the San 
Francisco neighborhoods layer from Chap. 22 to create a population density map 
for the city of San Francisco. 

We start by loading the census blocks and San Francisco neighborhoods lay-
ers. We use ee.Filter.bounds to filter the census blocks layer to the San 
Francisco boundary.
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var blocks = ee.FeatureCollection('TIGER/2010/Blocks'); 
var roads = ee.FeatureCollection('TIGER/2016/Roads'); 
var sfNeighborhoods = ee.FeatureCollection( 

'projects/gee-book/assets/F5-0/SFneighborhoods'); 

var geometry = sfNeighborhoods.geometry(); 
Map.centerObject(geometry); 

// Filter blocks to the San Francisco boundary. 
var sfBlocks = blocks.filter(ee.Filter.bounds(geometry)); 

The simplest way to visualize this layer is to use Map.addLayer (Fig. 25.1). 
We can specify a color value in the visParams parameter of the function. 
Each census block polygon will be rendered with stroke and fill of the specified 
color. The fill color is the same as the stroke color but has a 66% opacity. 

Fig. 25.1 San Francisco census blocks
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// Visualize with a single color. 
Map.addLayer(sfBlocks, { 

color: '#de2d26' 
}, 'Census Blocks (single color)'); 

The census blocks table has a property named ‘pop10’ containing the pop-
ulation totals as of the 2010 census. We can use this to create a choropleth map 
showing population density. We first need to compute the population density for 
each feature and add it as a property. To add a new property to each feature, we 
can map a function over the FeatureCollection and calculate the new prop-
erty called ‘pop_density’. Earth Engine provides the area function, which 
can calculate the area of a feature in square meters. We convert it to square miles 
and calculate the population density per square mile. 

// Add a pop_density column. 
var sfBlocks = sfBlocks.map(function(f) { 

// Get the polygon area in square miles. 
var area_sqmi = f.area().divide(2.59e6); 
var population = f.get('pop10'); 
// Calculate population density. 
var density = ee.Number(population).divide(area_sqmi); 
return f.set({ 

'area_sqmi': area_sqmi, 
'pop_density': density 

}); 
}); 

Now we can use the paint function to create an image from this 
FeatureCollection using the pop_density property. The paint func-
tion needs an empty image that needs to be cast to the appropriate data type. Let’s 
use the aggregate_stats function to calculate basic statistics for the given 
column of a FeatureCollection. 

// Calculate the statistics of the newly computed column. 
var stats = sfBlocks.aggregate_stats('pop_density'); 
print(stats);
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You will see that the population density values have a large range. We also have 
values that are greater than 100,000, so we need to make sure we select a data type 
that can store values of this size. We create an empty image and cast it to int32, 
which is able to hold large integer values. 

// Create an empty image into which to paint the features. 
// Cast to 32-bit integer which supports storing values 
// up to 2,147,483,647. 

var empty = ee.Image().int32(); 

Now we can use the paint function, seen briefly in Chap. 23, to assign each 
pixel’s value based on the pop_density property. 

var sfBlocksPaint = empty.paint({ 
featureCollection: sfBlocks, 
color: 'pop_density', 

}); 

The result is an image with pixel values representing the population density of 
the polygons. We can now use the standard image visualization method to add this 
layer to the Map (Fig. 25.2). Then, we need to determine minimum and maximum 
values for the visualization parameters. A reliable technique to produce a good 
visualization is to find minimum and maximum values that are within one standard 
deviation. From the statistics that we calculated earlier, we can estimate good 
minimum and maximum values to be 0 and 50,000, respectively.

var palette = ['fee5d9', 'fcae91', 'fb6a4a', 'de2d26', 
'a50f15']; 
var visParams = { 

min: 0, 
max: 50000, 
palette: palette 

}; 
Map.addLayer(sfBlocksPaint.clip(geometry), visParams, 

'Population Density');
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Fig. 25.2 San Francisco population density

25.1.1.2 Section 1.2: Creating a Categorical Map 
Continuing the exploration of styling methods, we will now learn about draw 
and style. These are the preferred methods of styling for points and line layers. 
Let’s see how we can visualize the TIGER: US Census Roads layer to create a 
categorical map. 

We start by filtering the roads layer to the San Francisco boundary and using 
Map.addLayer to visualize it. 

// Filter roads to San Francisco boundary. 
var sfRoads = roads.filter(ee.Filter.bounds(geometry)); 

Map.addLayer(sfRoads, { 
color: 'blue' 

}, 'Roads (default)');
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Fig. 25.3 San Francisco roads rendered with a line width of 2 pixels (left) and a line width of 
1 pixel (right) 

The default visualization renders each line using a width of 2 pixels. The draw 
function provides a way to specify a different line width. Let’s use it to render the 
layer with the same color as before but with a line width of 1 pixel (Fig. 25.3). 

// Visualize with draw(). 
var sfRoadsDraw = sfRoads.draw({ 

color: 'blue', 
strokeWidth: 1 

}); 
Map.addLayer(sfRoadsDraw, {}, 'Roads (Draw)'); 

The road layer has a column called “MTFCC” (standing for the MAF/TIGER 
Feature Class Code). This contains the road priority codes, representing the various 
types of roads, such as primary and secondary. We can use this information to 
render each road segment according to its priority. The draw function doesn’t 
allow us to specify different styles for each feature. Instead, we need to make use 
of the style function.
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The column contains string values indicating different road types as indicated 
in Table 25.1. This full list is available at the MAF/TIGER Feature Class Code 
Definitions page on the US Census Bureau website. 

Let’s say we want to create a map with rules based on the MTFCC values 
shown in Table 25.2. 

Table 25.1 Census Bureau 
road priority codes 

MTFCC Feature class 

S1100 Primary road 

S1200 Secondary road 

S1400 Local neighborhood road, rural road, city street 

S1500 Vehicular trail 

S1630 Ramp 

S1640 Service drive 

S1710 Walkway/pedestrian trail 

S1720 Stairway 

S1730 Alley 

S1740 Private road for service vehicles 

S1750 Internal US Census Bureau use 

S1780 Parking lot road 

S1820 Bike path or trail 

S1830 Bridle path 

S2000 Road median 

Table 25.2 Styling 
parameters for road priority 
codes 

MTFCC Color Line width 

S1100 Blue 3 

S1200 Green 2 

S1400 Orange 1 

All other classes Gray 1
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Let’s define a dictionary containing the styling information. 

var styles = ee.Dictionary({ 
'S1100': { 

'color': 'blue', 
'width': 3 

}, 
'S1200': { 

'color': 'green', 
'width': 2 

}, 
'S1400': { 

'color': 'orange', 
'width': 1 

} 
}); 
var defaultStyle = { 

color: 'gray', 
'width': 1 

}; 

The style function needs a property in the FeatureCollection that con-
tains a dictionary with the style parameters. This allows you to specify a different 
style for each feature. To create a new property, we map a function over the 
FeatureCollection and assign an appropriate style dictionary to a new prop-
erty named ‘style’. Note the use of the get function, which allows us to fetch 
the value for a key in the dictionary. It also takes a default value in case the spec-
ified key does not exist. We make use of this to assign different styles to the three 
road classes specified in Table 25.2 and a default style to all others. 

var sfRoads = sfRoads.map(function(f) { 
var classcode = f.get('mtfcc'); 
var style = styles.get(classcode, defaultStyle); 
return f.set('style', style); 

}); 

Our collection is now ready to be styled. We call the style function to specify 
the property that contains the dictionary of style parameters. The output of the 
style function is an RGB image rendered from the FeatureCollection 
(Fig. 25.4).
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Fig. 25.4 San Francisco roads rendered according to road priority 

var sfRoadsStyle = sfRoads.style({ 
styleProperty: 'style' 

}); 
Map.addLayer(sfRoadsStyle.clip(geometry), {}, 'Roads 
(Style)'); 

Code Checkpoint F53a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Save your script for your own future use, as outlined in Chap. 1. Then, refresh 
the Code Editor to begin with a new script for the next section. 

25.1.2 Section 2: Joins with Feature Collections 

Earth Engine was designed as a platform for processing raster data, and that is 
where it shines. Over the years, it has acquired advanced vector data processing 
capabilities, and users are now able to carry out complex geoprocessing tasks
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within Earth Engine. You can leverage the distributed processing power of Earth 
Engine to process large vector layers in parallel. 

This section shows how you can do spatial queries and spatial joins using mul-
tiple large feature collections. This requires the use of joins. As described for 
Image Collections in Chap. 21, a join allows you to match every item in a collec-
tion with items in another collection based on certain conditions. While you can 
achieve similar results using map and filter, joins perform better and give you 
more flexibility. We need to define the following items to perform a join on two 
collections. 

1. Filter: A filter defines the condition used to select the features from the 
two collections. There is a suite of filters in the ee.Filters mod-
ule that work on two collections, such as ee.Filter.equals and 
ee.Filter.withinDistance. 

2. Join type: While the filter determines which features will be joined, the join 
type determines how they will be joined. There are many join types, including 
simple join, inner join, and save-all join. 

Joins are one of the harder skills to master, but doing so will help you perform 
many complex analysis tasks within Earth Engine. We will go through practical 
examples that will help you understand these concepts and the workflow better. 

25.1.2.1 Section 2.1: Selecting by Location 
In this section, we will learn how to select features from one layer that are within 
a specified distance from features in another layer. We will continue to work with 
the San Francisco census blocks and roads datasets from the previous section. We 
will implement a join to select all blocks in San Francisco that are within 1 km of 
an interstate highway. 

We start by loading the census blocks and roads collections and filtering the 
roads layer to the San Francisco boundary. 

var blocks = ee.FeatureCollection('TIGER/2010/Blocks'); 
var roads = ee.FeatureCollection('TIGER/2016/Roads'); 
var sfNeighborhoods = ee.FeatureCollection( 

'projects/gee-book/assets/F5-0/SFneighborhoods'); 

var geometry = sfNeighborhoods.geometry(); 
Map.centerObject(geometry); 

// Filter blocks and roads to San Francisco boundary. 
var sfBlocks = blocks.filter(ee.Filter.bounds(geometry)); 
var sfRoads = roads.filter(ee.Filter.bounds(geometry));
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As we want to select all blocks within 1 km of an interstate highway, we first 
filter the sfRoads collection to select all segments with the rttyp property 
value of I. 

var interstateRoads = sfRoads.filter(ee.Filter.eq('rttyp', 
'I')); 

We use the draw function to visualize the sfBlocks and 
interstateRoads layers (Fig. 25.5). 

Fig. 25.5 San Francisco blocks and interstate highways
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var sfBlocksDrawn = sfBlocks.draw({ 
color: 'gray', 
strokeWidth: 1 

}) 
.clip(geometry); 

Map.addLayer(sfBlocksDrawn, {}, 'All Blocks'); 
var interstateRoadsDrawn = interstateRoads.draw({ 

color: 'blue', 
strokeWidth: 3 

}) 
.clip(geometry); 

Map.addLayer(interstateRoadsDrawn, {}, 'Interstate Roads'); 

Let’s define a join that will select all the features from the sfBlocks layer 
that are within 1 km of any feature from the interstateRoads layer. We start 
by defining a filter using the ee.Filter.withinDistance filter. We want 
to compare the geometries of features in both layers, so we use a special property 
called ‘.geo’ to compare the collections. By default, the filter will work with 
exact distances between the geometries. If your analysis does not require a very 
precise tolerance of spatial uncertainty, specifying a small non-zero maxError 
distance value will help speed up the spatial operations. A larger tolerance also 
helps when testing or debugging code so you can get the result quickly instead of 
waiting longer for a more precise output. 

var joinFilter = ee.Filter.withinDistance({ 
distance: 1000, 
leftField: '.geo', 
rightField: '.geo', 
maxError: 10 

}); 

We will use a simple join as we just want features from the first (primary) 
collection that match the features from the other (secondary) collection. 

var closeBlocks = ee.Join.simple().apply({ 
primary: sfBlocks, 
secondary: interstateRoads, 
condition: joinFilter 

});
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Fig. 25.6 Selected blocks within 1 km of an interstate highway

We can visualize the results in a different color and verify that the join worked 
as expected (Fig. 25.6). 

var closeBlocksDrawn = closeBlocks.draw({ 
color: 'orange', 
strokeWidth: 1 

}) 
.clip(geometry); 

Map.addLayer(closeBlocksDrawn, {}, 'Blocks within 1km'); 
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25.1.2.2 Section 2.2: Spatial Joins 
A spatial join allows you to query two collections based on the spatial relationship. 
We will now implement a spatial join to count points in polygons. We will work 
with a dataset of tree locations in San Francisco and polygons of neighborhoods 
to produce a CSV file with the total number of trees in each neighborhood. 

The San Francisco Open Data Portal maintains a street tree map dataset that 
has a list of street trees with their latitude and longitude. We will also use the San 
Francisco neighborhood dataset from the same portal. We downloaded, processed, 
and uploaded these layers as Earth Engine assets for use in this exercise. We start 
by loading both layers and using the paint and style functions, covered in 
Sect. 25.1.1, to visualize them (Fig. 25.7). 

Fig. 25.7 San Francisco neighborhoods and trees



502 U. Gandhi

var sfNeighborhoods = ee.FeatureCollection( 
'projects/gee-book/assets/F5-0/SFneighborhoods'); 

var sfTrees = ee.FeatureCollection( 
'projects/gee-book/assets/F5-3/SFTrees'); 

// Use paint() to visualize the polygons with only outline 
var sfNeighborhoodsOutline = ee.Image().byte().paint({ 

featureCollection: sfNeighborhoods, 
color: 1, 
width: 3 

}); 
Map.addLayer(sfNeighborhoodsOutline, { 

palette: ['blue'] 
}, 
'SF Neighborhoods'); 

// Use style() to visualize the points 
var sfTreesStyled = sfTrees.style({ 

color: 'green', 
pointSize: 2, 
pointShape: 'triangle', 
width: 2 

}); 
Map.addLayer(sfTreesStyled, {}, 'SF Trees'); 

To find the tree points in each neighborhood polygon, we will use an 
ee.Filter.intersects filter. 

var intersectFilter = ee.Filter.intersects({ 
leftField: '.geo', 
rightField: '.geo', 
maxError: 10 

}); 

We need a join that can give us a list of all tree features that intersect each 
neighborhood polygon, so we need to use a saving join. A saving join will find all 
the features from the secondary collection that match the filter and store them in a 
property in the primary collection. Once you apply this join, you will get a version 
of the primary collection with an additional property that has the matching features 
from the secondary collection. Here we use the ee.Join.saveAll join, since 
we want to store all matching features. We specify the matchesKey property 
that will be added to each feature with the results.
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var saveAllJoin = ee.Join.saveAll({ 
matchesKey: 'trees', 

}); 

Let’s apply the join and print the first feature of the resulting collection to verify 
(Fig. 25.8). 

var joined = saveAllJoin 
.apply(sfNeighborhoods, sfTrees, intersectFilter); 

print(joined.first()); 

You will see that each feature of the sfNeighborhoods collection now 
has an additional property called trees. This contains all the features from the 
sfTrees collection that were matched using the intersectFilter. We can

Fig. 25.8 Result of the save-all join 
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Fig. 25.9 Final FeatureCollection with the new property 

now map a function over the results and post-process the collection. As our analy-
sis requires the computation of the total number of trees in each neighborhood, 
we extract the matching features and use the size function to get the count 
(Fig. 25.9). 

// Calculate total number of trees within each feature. 
var sfNeighborhoods = joined.map(function(f) { 

var treesWithin = ee.List(f.get('trees')); 
var totalTrees = 

ee.FeatureCollection(treesWithin).size(); 
return f.set('total_trees', totalTrees); 

}); 

print(sfNeighborhoods.first()); 

The results now have a property called total_trees containing the count 
of intersecting trees in each neighborhood polygon. 

The final step in the analysis is to export the results as a CSV file using 
the Export.table.toDrive function. Note that as described in detail in 
Chap. 29, you should output only the columns you need to the CSV file. Sup-
pose we do not need all the properties to appear in the output; imagine that we 
do not need the trees property, for example, in the output. In that case, we can 
create only those columns we want in the manner below, by specifying the other 
selectors parameters with the list of properties to export.
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// Export the results as a CSV. 
Export.table.toDrive({ 

collection: sfNeighborhoods, 
description: 'SF_Neighborhood_Tree_Count', 
folder: 'earthengine', 
fileNamePrefix: 'tree_count', 
fileFormat: 'CSV', 
selectors: ['nhood', 'total_trees'] 

}); 

The final result is a CSV file with the neighborhood names and total numbers 
of trees counted using the join (Fig. 25.10). 

Code Checkpoint F53b. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 25.10 Exported CSV file with tree counts for San Francisco neighborhoods 
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25.2 Synthesis 

Assignment 1. What join would you use if you wanted to know which neighbor-
hood each tree belongs to? Modify the code above to do a join and post-process 
the result to add a neighborhood property to each tree point. Export the results as 
a shapefile. 

25.3 Conclusion 

This chapter covered visualization and analysis using vector data in Earth Engine. 
You should now understand different functions for FeatureCollection visu-
alization and be able to create thematic maps with vector layers. You also learned 
techniques for doing spatial queries and spatial joins within Earth Engine. Earth 
Engine is capable of handling large feature collections and can be effectively used 
for many spatial analysis tasks. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.
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26GEEDiT—Digitizing from Satellite 
Imagery 

James Lea 

Overview 
Earth surface margins and features are often of key interest to environmental scien-
tists. A coastline, the terminus of a glacier, the outline of a landform, and many other 
examples can help illustrate past, present, and potential future environmental change. 
The information gained from these features can be used to achieve greater under-
standing of the underlying processes that are controlling these systems, to monitor 
their responses to ongoing environmental changes, and to assess and inform wider 
socio-economic impacts at local to global scales. 

While it is common practice in remote sensing to automate identification of mar-
gins from imagery, these attempts are not always successful or transferable between 
seasons or locations. Furthermore, in some circumstances, the nature of the mar-
gins that need to be identified means that implementing automated approaches are 
not always necessary, desirable, or even possible. In such cases, user-led manual 
digitization of margins may be the only appropriate way to generate accurate, user-
verified data. However, users who wish to undertake this analysis at scale often face 
the time-consuming challenge of having to download and process large volumes of 
satellite imagery. Furthermore, issues such as internet connection speed, local stor-
age capacity, and computational processing power availability can potentially limit 
or even preclude this style of analysis, leading to a fundamental inequality in the 
ability of users to generate datasets of comparable standards. 

The Google Earth Engine Digitisation Tool (GEEDiT) is built to allow any 
researcher to rapidly access satellite imagery and directly digitize margins as lines or 
polygons. With a simple user interface and no need to download enormous images, 
GEEDiT leverages Earth Engine’s cloud computing power and its access to satellite

J. Lea (B) 
Department of Geography and Planning, School of Environmental Sciences, University of 
Liverpool, Liverpool, UK 
e-mail: j.lea@liverpool.ac.uk 

© The Author(s) 2024 
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine, 
https://doi.org/10.1007/978-3-031-26588-4_26 

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_26&domain=pdf
http://orcid.org/0000-0003-1885-0858
mailto:j.lea@liverpool.ac.uk
https://doi.org/10.1007/978-3-031-26588-4_26


508 J. Lea

image repositories (Lea 2018). When the delineated vector margins are exported, they 
are also appended with standardized metadata from the source imagery. In doing so, 
users can easily trace back to which images associate with which digitized margins, 
facilitating reproducibility, independent verification, and building of easily shareable 
and transferable datasets (e.g., Goliber et al. 2022). Since GEEDiT is used through 
a graphical user interface, it requires no coding ability in Earth Engine to use it. 

GEEDiT has been used for research in glaciology (e.g., Tuckett et al. 2019; Fahrner 
et al. 2021), hydrology (e.g., Boothroyd et al. 2021; Scheingross et al. 2021), and lake 
extent (e.g., Kochtitzky et al. 2020; Field et al. 2021) in addition to other fields. Ver-
sion 2 of GEEDiT was released in early 2022 with improved functionality, usability, 
and access to new datasets. 

Learning Outcomes

. Understanding how to use the GEEDiT v2 interface and export data from it.

. Becoming aware of some of the new functionality introduced in GEEDiT v2.

. Learning about potential options to customize GEEDiT v2 visualization param-
eters. 

Assumes you know how to

. Use drawing tools to create points, lines, and polygons (Chap. 6).

. Recognize similarities and differences among satellite spectral bands (Part I, 
Part II, Part III). 

26.1 Introduction to Theory 

As a tool, GEEDiT came about due to the author’s frustration with the require-
ment to download, process, and visualize significant volumes of satellite imagery 
for simple margin analysis, in addition to the tedious steps required for appending 
comprehensive and consistent metadata to them. GEEDiT was built to take advan-
tage of Earth Engine’s capability for rapid cloud-based data access, processing and 
visualization, and potential for fully automated assignment of metadata. 

GEEDiT allows users to visualize, review, and analyze an image in poten-
tially a few seconds, whereas previously downloading and processing a single 
image would have taken considerably longer in a desktop GIS environment. Con-
sequently, GEEDiT users can obtain margin data from significantly more imagery 
than was previously possible in the time available to them. Users can create larger, 
more spatially and temporally comprehensive datasets compared to traditional 
approaches, with automatically appended metadata also allowing easier dataset 
filtering, and tracing of data back to original source imagery. Where coding-based 
analysis of GEEDiT output is applied, the standardization of metadata also facil-
itates the transferability of code between datasets, and assists in the collation of



26 GEEDiT—Digitizing from Satellite Imagery 509

homogenized margin and feature datasets that have been generated by multiple 
users (e.g., Goliber et al. 2022). 

GEEDiT version 2 (hereafter GEEDiT) was released in January 2022 to provide 
improvements to the user experience of the tool, and the imagery data that it can 
access. Similar to version 1, it is a graphical user interface (GUI) built entirely 
within Earth Engine’s JavaScript API. This chapter provides a walkthrough of 
GEEDiT’s user interface, alongside information on how users can get the most out 
of its functionality. 

26.2 Practicum 

Code Checkpoint F54a. The book’s repository contains information about access-
ing the interface for GEEDiT. 

Below, each step required to extract data from GEEDiT is described, using an 
example of digitizing the margin of a Greenlandic marine terminating glacier. 

26.2.1 Section 1: Loading GEEDiT and Selecting Imagery Options 
and a Location 

Click on the link to GEEDiT v2.02 Tier 1, to open the GUI in a new tab as shown 
in Fig. 26.1. If you are interested in the underlying code, you can view this in the 
Code Editor. Resize the view to maximize the map portion of the Earth Engine 
interface. If the interface does not appear, click the Run button above the Code 
Editor at the top of the page. 

Fig. 26.1 Starting screen of GEEDiT
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26.2.1.1 Section 1.1: Description of Starting Page Interface 
Brief instructions on how to use the GUI are given at the bottom left of the 
interface, while image selection options are provided on the right (Fig. 26.2). 

In this panel, you can define the date range, month range, maximum allowable 
cloud cover, export task frequency, and satellite platforms for the images you want 
to analyze. Each of these is explained in turn below:

. Define start/end dates in YYYY-MM-DD format: These fields provide text 
boxes for you to define the date range of interest. The default start date is 
given as 1950-01-01, and the end date is the date the tool is being run. In this 
example, we use the default settings, so you do not need to make any changes to 
the default values. However, common issues that arise using this functionality 
include: 
– Not entering a date that is compatible with the YYYY-MM-DD for-

mat, including: placing days, months, and years in the wrong order (e.g., 
02-22-2022); and not using ‘-’ as a separator (e.g., 2022/22/02). 

– Entering a date that cannot exist (e.g., 2022-09-31). 
– Not including a leading 0 for single digit days or months (e.g., 2022-2-2). 
– Not entering the full four-digit year (e.g., 22-02-02). 
– Typographical errors.

Fig. 26.2 Options for which images to include for visualization 
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. Month start and month end: These are optional dropdown menus that allow 
users to obtain imagery only from given ranges of months within the previously 
defined date range. If users do not define these, imagery for the full year will be 
returned. In some cases (e.g., analysis of imagery during the austral summer), 
users may wish to obtain imagery from a month range that may span the year 
end (e.g., November–February). For this month range, this can be achieved by 
selecting a start month of 11, and a month end of 2. Given that glacier margins 
are often clearest and easiest to identify during the summer months, set the start 
month to July (7) and end month to September (9).

. Max. cloud cover: This field filters imagery by cloud cover metadata val-
ues that are appended to imagery obtained from optical satellite platforms, 
such as Landsat, Sentinel-2, and ASTER satellites. The names of the meta-
data that hold this information vary between these satellite platforms and 
are ‘CLOUD_COVER’, ‘CLOUDY_PIXEL_PERCENTAGE’, and ‘CLOUD-
COVER’ respectively. Values associated with these image metadata represent 
automatically derived estimates of the percentage cloud cover of an entire image 
scene. These are calculated in different ways for the different satellites depend-
ing on the processing chain performed by NASA/ESA when the imagery was 
acquired. 
Also, note that Sentinel-2 and ASTER imagery footprints are smaller than those 
of Landsat, meaning that 1% cloud cover for a Landsat image will cover a 
larger geographic area than 1% of a Sentinel-2 or ASTER image. Here we use 
the default setting (maximum 20% cloud cover), so you can leave this field 
unchanged.

. Automatically create data export task every n images: This will generate a 
data export task in Earth Engine for every n images viewed, where n is the value 
entered. The reason for including this as an option is that manual digitization 
features from imagery can be time-consuming depending on the level of detail 
required or number of features on an image. While rare, data losses can result 
from internet connection dropout, computer crashes, or the Earth Engine server 
going offline, so exporting digitized data frequently can help guard against this.

. Satellites: This menu provides a list of checkboxes of all the satellite platforms 
from which imagery is available (Table 26.1). Descriptions of aspects of each 
satellite that users should be aware of when using these data for digitizing 
margins are described below.
– ASTER L1T Radiance: The Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) collects both daytime and nighttime 
imagery. (Some images may appear black.) The lack of a blue spectral band 
on ASTER means that it is not possible to visualize imagery as “true color” 
(i.e., red–green–blue), though it does allow imagery to be visualized at up 
to 15 m pixel resolution. The default color channel visualization for ASTER 
within GEEDiT is: B3N, near infrared in the red channel; B02, visible red 
in the green channel; B01, visible green/yellow in the blue channel. 

– Landsat 4 Top of Atmosphere (TOA): The default image collection for 
Landsat 4 and all Landsat satellites listed below are taken from the TOA



512 J. Lea

Table 26.1 Key information for each satellite 

Satellite No. of bands True color? Optical/SAR Date range Resolution (dependent 
on bands used) 

ASTER 14 No Optical 03/00–present Up to 15 m 

Landsat 4 7 Yes Optical 08/82–11/93 Up to 30 m 

Landsat 5 7 Yes Optical 03/84–05/12 Up to 30 m 

Landsat 7 9 Yes Optical 05/99–present Up to 15 m 

Landsat 8 11 Yes Optical 03/13–present Up to 15 m 

Sentinel-1 Up to 4 No SAR 10/14–present Up to 10 m 

Sentinel-2 14 Yes Optical 06/15–present Up to 10 m 

collections where the imagery has been calibrated for top of atmosphere 
reflectance (see Chander et al. 2009). The density of global coverage for 
Landsat 4 is variable, meaning that some regions may not possess any 
available images.

– Landsat 5 TOA: Similar to Landsat 4, Landsat 5 has variable global 
coverage, meaning that some remote regions may have very few or no 
images. 

– Landsat 7 Real-Time Data, TOA Reflectance: Beginning in 2003, a failure 
in the satellite’s scan-line corrector (SLC) mirror has resulted in data gaps 
on Landsat 7 imagery. The impact of this instrument failure is that stripes of 
missing data of increasing width emanate from near the center of the image 
scene, which can lead to challenges in continuous mapping of features or 
margins. The orbit of Landsat has also been drifting since 2017 meaning 
that the time of day when imagery is acquired for a given location has been 
getting earlier. 

– Landsat 8 Real-Time Data, TOA Reflectance: Landsat 8 is automatically 
updated with new imagery as it becomes available. Note that the red, green, 
and blue bands are different for Landsat 8 compared to Landsat 4, 5, and 7 
due to the addition of the coastal aerosol band as band 1. 

– Sentinel-1 SAR GRD: Unlike other satellites that are listed as options in 
GEEDiT, Sentinel-1 is a synthetic aperture radar (SAR) satellite (i.e., it is 
an active source satellite operating in the radio frequency range and does 
not collect visible spectrum imagery). A notable advantage of SAR imagery 
is that it is unaffected by cloud cover (cloud is transparent at radio fre-
quencies) or sun illumination, providing full scene coverage for each image 
acquisition. Sentinel-1 transmits and receives reflected radio waves in either 
the vertical (V) or horizontal (H) polarizations, providing up to four bands 
available in Sentinel-1 data: VV, VH, HH, and HV. In practice, a subset of 
these bands are usually acquired for each Sentinel-1 scene, with GEEDiT 
automatically visualizing the first available band. However, care needs to be 
taken when using this imagery for digitizing margins or features. This arises
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from the satellite being “side-looking,” which results in the location accu-
racy and ground resolution of imagery being variable, especially in areas of 
steep topography. The Sentinel-1 imagery available in Earth Engine is the 
ground range detected (GRD) product, meaning that a global digital eleva-
tion model (DEM) has been used to ortho-correct imagery. However, where 
there is a mismatch between the DEM used for ortho-correction and the 
true surface elevation (e.g., arising from glacier thinning), this may result 
in apparent shifts in topography between images that are non-negligible for 
analysis. This is especially the case where vectors are digitized from imagery 
obtained from both ascending and descending parts of its orbit. The mag-
nitude of these apparent shifts will be dependent on the satellite look angle 
and mismatch between the DEM and true surface elevation, meaning that 
applying corrections without up-to-date DEMs is unfortunately non-trivial. 
For these reasons, it is suggested that where Sentinel-1 imagery is used to 
delineate margins or features that they are used for quantifying relative rather 
than absolute change, and significant care should be taken in the interpreta-
tion of margin and feature data generated from this imagery. As a result of 
these caveats, Sentinel-1 is not selected as a default option for visualization. 

– Sentinel-2 MSI: Level 1C: The image collection included in GEEDiT is the 
Level 1C TOA data that provides global coverage. Also note that the ground 
control and ortho-correction for Sentinel-2 imagery are performed using a 
different DEM compared to Landsat satellites, meaning there may be small 
differences in geolocation consistency between imagery from these different 
platforms. Where margin or feature data from both these platform types are 
combined, users should, therefore, check the level of accuracy it is possible 
to derive, especially where fine scale differences between margins or features 
(e.g., a few pixels) are important (e.g., Brough et al. 2019). 

26.2.1.2 Section 1.2: Visualizing Imagery at a Given Location 
To visualize imagery once the desired options have been defined, zoom into your 
area of interest (in this case, southwest Greenland) and simply click on the map 
where imagery should be loaded. Once this is done, an “Imagery loading” panel 
will appear while GEEDiT collates all imagery for the clicked location that sat-
isfies the image selection options. If lots of imagery is returned, then it may take 
30 s to a minute for the list of images to be obtained. Once GEEDiT has loaded 
this, the vector digitization screen will appear, and the earliest image available 
from the list will be visualized automatically (Fig. 26.3).

26.2.2 Section 2: GEEDiT Digitisation Interface 

26.2.2.1 Section 2.1: Digitizing and Editing Margins and Features 
The GEEDiT digitization interface will load and the first image will appear, pro-
viding you with multiple options to interact with vectors and imagery. However,
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Fig. 26.3 GEEDiT vector digitization screen with first available image for a glacier in southwest 
Greenland visualized

if you wish to begin digitizing straight away, you can do so by clicking directly 
on the image, and double clicking to finish the final vertex of the feature or mar-
gin. By default, vectors will be digitized as a line. However, you can also draw 
polygons by selecting this option from the top left of the screen. 

Once vectors have been digitized, you may wish to modify or delete vectors 
where required. To do this, either click the edit button on the top left panel before 
clicking on the digitized margin that is to be changed, or press the keyboard escape 
key and click to select the margin (Fig. 26.4). The selected vector will show all 
digitized vertices as solid white circles, and the midpoints between vertices as 
semi-transparent circles. Any of these can be dragged using the cursor to modify 
the vector. If you want to delete the entire vector, press your keyboard’s Delete 
key.

In order to begin digitizing again, hover your cursor over the geometry layer at 
the top left of the screen, and click on the relevant layer so that it changes from 
standard to bold typeface (Fig. 26.5). Do not use the “+ new layer” option.

You can then digitize multiple lines and/or polygons to individual images, and 
they will be saved in the geometry layer selected. The name of the geometry 
layer is given in the format t YYYY MM DD HHmm, also providing you with 
information as to the precise time and date that the source image was acquired. 

26.2.2.2 Section 2.2: Moving Between Images 
There are multiple options in GEEDiT for how you can move from the current 
image to the next. Options to move between images are contained in the two panels 
on the right-hand side of the screen (Fig. 26.6). Note that when a new image is 
loaded, the interface creates a new geometry layer for that image, and sets previous 
layers to be not visible on the map (though these can be easily visualized where
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Fig. 26.4 Digitized vector along a glacier terminus that has been selected for editing

Fig. 26.5 To continue adding vectors to the image after editing, select geometry layer to add 
vectors to so that the layer name appears in bold typeface

comparison may be needed). The geometry layer related to the current image will 
be black, while vectors digitized from other imagery will be blue.

To move between images, the first option is to click Next image; if you do, 
the user interface will load image number 2 in the list. Similarly, the Previous 
image button will load the preceding image in the list where one is available. Try 
clicking Next image to bring up image number 2. 

Other options to move between images are provided in the panel on the upper 
right of the screen (Fig. 26.6, right). This panel contains information on which 
satellite the image was acquired by, the date that the image was acquired, and the 
image number. The date and image number are contained within editable textboxes 
and provide two different ways for moving to a new image.
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Fig. 26.6 Options for how to move between images are contained in the two panels on the right-
hand side of the digitization interface

The first option is to edit the text box containing the date of the current image 
(in YYYY-MM-DD format) and allows users to skip to the image in the list that is 
closest in time to the date that they define. Once the new date has been entered, 
the user should press the keyboard enter key to trigger the image to load. GEEDiT 
will then visualize the image that is closest to the user defined date and update the 
value of the text box with the actual date of the image. The second option is to 
change the image number text box value, press enter, and then GEEDiT will load 
that image number from the list of images available. Try each of these options for 
yourself. 

26.2.2.3 Section 2.3: Visualizing Previously Digitized Margins 
or Features on the Current Image 

The geometries of each vector digitized from each image are retained as geometry 
layers in the digitization interface (Fig. 26.5). Consequently, you can re-visualize 
previously digitized vectors on the current image by toggling the checkboxes next 
to each geometry layer, providing a means to briefly check how or if a feature 
has changed between one date or another. In the user interface the margin relating 
to the current image will appear as black, while previously digitized vectors will 
appear as blue (Fig. 26.7). This functionality is not intended as a substitute for 
analysis, but a means for you to quickly check whether change has occurred, thus 
facilitating potential study site identification.

26.2.2.4 Section 2.4: Extra Functionality 
GEEDiT provides the ability to compare between images, for interpreting subtle 
features in the current image. This functionality is contained in the top left panel 
of the digitization interface (Fig. 26.8).

The options in this panel allow users to easily add the images immediately 
preceding and following the current image. Try clicking on these buttons to add 
imagery to the map and use the Remove added images button to remove any 
imagery that has been added to leave only the original image visualized. To aid 
comparison between images, try using the image layer transparency slider bars
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Fig. 26.7 Digitization interface showing a previously digitized margin (blue line, 1999-09-08) 
and the currently visualized image (black line, 2021-10-24)

Fig. 26.8 Top left panel of digitization interface showing options to visualize subsequent and 
previous imagery

contained in the map Layers dropdown in the top right of the digitization interface 
(Fig. 26.9).

When using this option take care to ensure that vectors are digitized directly 
from the current image only (in the case above, 1999-09-08) to ensure data 
consistency. 

26.2.2.5 Section 2.5: Image Quality Flags 
For some margins and features, it may be necessary to note problems that have 
impacted the quality of vector digitization. To aid in this, GEEDiT includes several
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Fig. 26.9 The layers menu as it appears on the digitization interface (left) and how it appears when 
a user hovers the cursor over it (right). The slider bars can be used to toggle image transparency

quality flags for common issues. These are contained in the panel in the bottom 
left of the screen with information from these flags added to vector metadata upon 
export (Fig. 26.10). 

These quality flags help you to subsequently filter any vectors impacted by 
imagery issues that may affect the quality or accuracy of the vector digitization. 
These options are:

. Cloud/shadow affected: The user may wish to flag a vector as having been 
negatively impacted by cloud or shadow.

. Margin checked against different image: This flag is automatically checked 
when you add an image for comparison (see above and Fig. 26.8).

. SLC failure affected: This flag is automatically checked if margins from an 
image that is impacted by the Landsat 7 SLC failure are used (see Sect. 26.2.1, 
Landsat 7 description). You may wish to uncheck this box if vectors that are dig-
itized from SLC failure affected imagery fall within areas that are not impacted 
by image data gaps.

. Only part of margin digitized: When it is only possible for you to digitize part 
of the full feature of interest, then this flag should be checked.

. Text box for user notes: This text box provides the opportunity for you to 
provide brief notes (up to 256 characters) on the vectors digitized. These notes 
will be preserved in the exported data.

Fig. 26.10 Image quality flag options in lower left panel of digitization interface 
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26.2.2.6 Section 2.6: Exporting Data 
Once you have digitized all the vectors that you wish to, or you have reviewed 
enough imagery to automatically trigger an export task (see Sect. 26.2.1 and 
Fig. 26.2), you can export your digitized vectors to your Google Drive or to Earth 
Engine as an asset. To manually trigger an export task, try clicking the Export 
GeoJSON button in the bottom right panel shown on the screen (Fig. 26.6). It is 
important to note that just this step alone will not result in data being exported. To 
execute the export task, go to the Tasks tab next to the Earth Engine Code Editor. 
To access this, you may need to resize the map from the top of the screen to make 
this visible (Fig. 26.11). 

To trigger the export, click the blue Run button in the Tasks tab. This will 
bring up the Earth Engine data export menu (Fig. 26.12). In this menu, the user 
has the option to define the task name (note that this is not how the export will be 
saved, but how the name of the export task will appear in the Tasks tab), the folder 
in Google Drive where the exported file will be saved, the name of the exported 
file, and the format of the exported file. As default, the GeoJSON file format is 
selected, due to its capability of retaining both line and polygon vectors within 
the same file. If users have digitized only lines or only polygons, it is possible to 
export these as shapefiles. However, if a user attempts to export a combination of 
lines and polygons as a single shapefile, this will fail. GeoJSON files can be easily 
imported into GIS platforms, such as QGIS or ArcGIS, while their consistent file 
structure also assists coding-based analysis.

Fig. 26.11 Resizing the map to show the Code Editor (left), and the Tasks tab (right) that can be 
found to the right of the Code Editor panel 
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Fig. 26.12 Earth Engine 
data export menu 

26.2.3 Section 3: Making GEEDiT Fit Your Own Purposes 
(Advanced) 

26.2.3.1 Section 3.1: Changing Default Image Band Combinations 
and Visualization Ranges 

GEEDiT has been designed to visualize, where possible, true color satellite 
imagery at the highest possible spatial resolution. However, for some applica-
tions, margins or features may be identified more easily using different satellite 
image band combinations or minimum/maximum image data ranges. Where this 
is necessary, there are two options available to you: 

1. After an image has been visualized, try manually editing the image bands 
and data range by hovering over the map Layers menu and the image to 
be edited (Fig. 26.9), before clicking the Gear icon that appears next to the 
image name. This will bring up image visualization options that allow editing 
of the image band combination, in addition to a variety of options to define the 
minimum/maximum data values. Try exploring some of the options that this 
provides, and to implement the changes, click the Apply button to re-visualize 
the image using the new band and minimum/maximum visualization options 
(Fig. 26.13). However, note that this will not change the default visualization 
options in GEEDiT, and if you go to the next image, the default visualization 
options will be restored (see below).

2. Changing GEEDiT’s default image band combinations and/or mini-
mum/maximum values requires direct editing GEEDiT’s code within the GEE 
code editor and making changes to the imVisParams variable (Fig. 26.14; 
L420-428 in GEEDiT v2.02). This will allow you to change the default band 
combinations and other image visualization options for each satellite. Once 
changes have been made, click the Run button above the Code Editor for the
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Fig. 26.13 Menu for editing image visualization properties 

Fig. 26.14 Default image visualization parameters for GEEDiT 

changes to take effect. If you are unfamiliar with Earth Engine or JavaScript, 
any changes in GEEDiT’s code should be undertaken with care, given that 
any small formatting errors could result in the tool failing to run or resulting 
in unexpected behavior. It is suggested that users take care not to delete any 
brackets, colons, commas, or inverted commas when editing these visualiza-
tion options. Note that while Sentinel-1 has the HH band selected as default, in 
practice this is not frequently used, as some Sentinel-1 images do not contain 
this band.

26.2.3.2 Section 3.2: Filtering Image Lists by Other Image Metadata 
The GEEDiT user interface is intended to provide a simple means by which 
margins and features can be digitized from satellite imagery. It is purposely not 
designed to provide comprehensive image filtering options so as to retain an intu-
itive, straightforward user experience. However, it is possible to make additions 
to GEEDiT’s code that allow users to filter image collections by other image 
metadata.



522 J. Lea

For example, in order to find imagery that highlights margins or features using 
shadows, users may wish to only digitize from optical imagery where the sun 
angle at the time of image acquisition does not exceed a given value. This can be 
achieved by adding lines that will filter imagery by metadata values to L326-387 
(GEEDiT v2.02). If you wish to do this, then care should be taken to ensure that the 
correct image metadata names are used, and also note that these metadata names 
can vary between satellite platforms. More information on the metadata avail-
able for each satellite platform can be found in the relevant links in Sect. 26.2.1 
where the satellites are described. For more information on how to filter image 
collections, see Chap. 13. 

26.2.3.3 Section 3.3: Changing Image Collections Used in GEEDiT 
For optical satellites, GEEDiT uses real-time TOA image collections for Landsat 
and Sentinel-2, as these provide the highest numbers of images (see Sect. 26.2.1). 
However, in some circumstances, it may be more appropriate to use different image 
collections that are available in Earth Engine (e.g., surface reflectance imagery that 
has been calibrated for atmospheric conditions at the time of acquisition). If this 
is the case, you can change GEEDiT’s code to access this imagery as default 
by updating the image collection paths used to access satellite data (contained 
between L326-387 in GEEDiT v2.02). 

The different image collections available within Earth Engine can be explored 
using the search bar at the top of the screen above the user interface, and users 
should read information relating to each image collection carefully to ensure that 
the data will be appropriate for the task that they wish to undertake. Users should 
also replace paths in a “like for like” fashion (i.e., Landsat 8 TOA replaced with 
Landsat 8 SR), as otherwise this will result in incorrect metadata being appended 
to digitized vectors when they are exported. To do this, try replacing the Landsat 
8 TOA collection with the path name for a Landsat 8 Surface Reflectance image 
collection that can be found using the search bar. Once you have made the changes, 
click Run for them to take effect. 

26.2.3.4 Section 3.4: Saving Changes to GEEDiT Defaults for Future 
Use 

If you have edited GEEDiT to implement your own defaults, then you can save 
this for future use rather than needing to change these settings each time you open 
GEEDiT. This can be easily done by clicking the Save button at the top of the Code 
Editor, allowing you to access your edited GEEDiT version via the Scripts tab to 
the left of the Code Editor. For more information on the Earth Engine interface, 
see Chap. 1. 

26.3 Synthesis 

You should now be familiar with the GEEDiT user interface, its functionality, and 
options to modify default visualization parameters of the tool.
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Assignment 1. Visualize imagery from your own area of interest and digitize 
multiple features or margins using polygons and lines. 

Assignment 2. Export these data and visualize them in an offline environment 
(e.g., QGIS, ArcMap, Matplotlib), and view the metadata associated with each 
vector. Think how these metadata may prove useful when post-processing your 
data. 

Assignment 3. Try modifying the GEEDiT code to change the tool’s default visu-
alization parameters for Landsat 8 imagery to highlight the features that you are 
interested in digitizing (e.g., band combinations and value ranges to highlight 
water, vegetation, etc.). 

Assignment 4. Using information about the wavelengths detected by different 
bands for other optical satellites, change the default visualization parameters for 
Landsat 4, 5, and 7, and Sentinel-2 so that they are consistent with the modified 
Landsat 8 visualization parameters. 

26.4 Conclusion 

This chapter has covered background information to the Earth surface margin and 
feature digitization tool GEEDiT. It provides an introduction to the imagery used 
within GEEDiT and some of the considerations to take into account when dig-
itizing from these, in addition to a walkthrough of how to use GEEDiT and its 
functionality. The final section provides some information on how to edit GEEDiT 
for bespoke purposes, though you are encouraged to do this with care. You will 
be able to confidently use the interface and conceptually understand how the tool 
operates. 
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Part VI 

Advanced Topics 

Although you now know the most basic fundamentals of Earth Engine, there is still 
much more that can be done. The part presents some advanced topics that can help 
expand your skill set for doing larger and more complex projects. These include tools 
for sharing code among users, scaling up with efficient project design, creating apps 
for non-expert users, and combining R with other information processing platforms.



27Advanced Raster Visualization 

Gennadii Donchyts and Fedor Baart 

Overview 
This chapter should help users of Earth Engine to better understand raster data by 
applying visualization algorithms such as hillshading, hill shadows, and custom 
colormaps. We will also learn how image collection datasets can be explored by 
animating them as well as by annotating with text labels, using, e.g., attributes of 
images or values queried from images. 

Learning Outcomes

• Understanding why perceptually uniform colormaps are better to present data and 
using them efficiently for raster visualization.

• Using palettes with images before and after remapping values.
• Adding text annotations when visualizing images or features.
• Animating image collections in multiple ways (animated GIFs, exporting video 

clips, interactive animations with UI controls).
• Adding hillshading and shadows to help visualize raster datasets. 

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
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• Write a function and map it over an ImageCollection (Chap. 12).
• Inspect an Image and an ImageCollection, as well as their properties 

(Chap. 13). 

27.1 Introduction to Theory 

Visualization is the step to transform data into a visual representation. You make 
a visualization as soon as you add your first layer to your map in Google Earth 
Engine. Sometimes you just want to have a first look at a dataset during the explo-
ration phase. But as you move toward the dissemination phase, where you want to 
spread your results, it is good to think about a more structured approach to visu-
alization. A typical workflow for creating visualization consists of the following 
steps:

• Defining the story (what is the message?)
• Finding inspiration (e.g., by making a moodboard)
• Choosing a canvas/medium (here, this is the Earth Engine map canvas)
• Choosing datasets (co-visualized or combined using derived indicators)
• Data preparation (interpolating in time and space, filtering/mapping/reducing)
• Converting data into visual elements (shape and color)
• Adding annotations and interactivity (labels, scales, legend, zoom, time slider). 

A good standard work on all the choices that one can make while creating a 
visualization is provided by the Grammar of Graphics (GoG) by Wilkinson (2005). 
It was the inspiration behind many modern visualization libraries (ggplot, vega). 
The main concept is that you can subdivide your visualization into several aspects. 

In this chapter, we will cover several aspects mentioned in the Grammar of 
Graphics to convert (raster) data into visual elements. The accurate representation 
of data is essential in science communication. However, color maps that visually 
distort data through uneven color gradients or are unreadable to those with color 
vision deficiency remain prevalent in science (Crameri et al. 2020). You will also 
learn how to add annotation text and symbology, while improving your visual-
izations by mixing images with hillshading as you explore some of the amazing 
datasets that have been collected in recent years in Earth Engine. 

27.2 Practicum 

27.2.1 Section 1: Palettes 

In this section, we will explore examples of colormaps to visualize raster data. 
Colormaps translate values to colors for display on a map. This requires a set of
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colors (referred to as a “palette” in Earth Engine) and a range of values to map 
(specified by the min and max values in the visualization parameters). 

There are multiple types of colormaps, each used for a different purpose. These 
include the following: 

Sequential: These are probably the most commonly used colormaps, and are use-
ful for ordinal, interval, and ratio data. Also referred to as a linear colormap, a 
sequential colormap looks like the viridis colormap (Fig. 27.1) from matplotlib. It  
is popular because it is a perceptual uniform colormap, where an equal interval in 
values is mapped to an equal interval in the perceptual colorspace. If you have a 
ratio variable where zero means nothing, you can use a sequential colormap start-
ing at white, transparent, or, when you have a black background, at black—e.g., 
the turku colormap from Crameri (Fig. 27.1). You can use this for variables like 
population count or gross domestic product. 

Fig. 27.1 Examples of colormaps from a variety of packages: viridis from matplotlib, turku from 
Crameri, balance from cmocean, cet-c2 from colorcet and ice from cmocean 

Diverging: This type of colormap is used for visualizing data where you have 
positive and negative values and where zero has a meaning. Later in this tutorial, 
we will use the balance colormap from the cmocean package (Fig. 27.1) to show 
temperature change. 

Circular: Some variables are periodic, returning to the same value after a period 
of time. For example, the season, angle, and time of day are typically represented 
as circular variables. For variables like this, a circular colormap is designed to 
represent the first and last values with the same color. An example is the circular 
cet-c2 colormap (Fig. 27.1) from the colorcet package.
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Semantic: Some colormaps do not map to arbitrary colors but choose colors that 
provide meaning. We refer to these as semantic colormaps. Later in this tutorial, 
we will use the ice colormap (Fig. 27.1) from the cmocean package for our ice 
example. 

Popular sources of colormaps include:

• cmocean (semantic perceptual uniform colormaps for geophysical applications)
• colorcet (set of perceptual colormaps with varying colors and saturation)
• cpt-city (comprehensive overview of colormaps)
• colorbrewer (colormaps with variety of colors)
• Crameri (stylish colormaps for dark and light themes). 

Our first example in this section applies a diverging colormap to temperature. 

// Load the ERA5 reanalysis monthly means. 
var era5 = ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY'); 

// Load the palettes package. 
var palettes = require('users/gena/packages:palettes'); 

// Select temperature near ground. 
era5 = era5.select('temperature_2m'); 

Now we can visualize the data. Here we have a temperature difference. That 
means that zero has a special meaning. By using a divergent colormap, we can give 
zero the color white, which denotes that there is no significant difference. Here, 
we will use the colormap Balance from the cmocean package. The color red is 
associated with warmth, and the color blue is associated with cold. We will choose 
the minimum and maximum values for the palette to be symmetric around zero (− 
2, 2) so that white appears in the correct place. For comparison we also visualize 
the data with a simple [‘blue’, ‘white’, ‘red’] palette. As you can see 
(Fig. 27.2), the Balance colormap has a more elegant and professional feel to it, 
because it uses a perceptual uniform palette and both saturation and value.
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Fig. 27.2 Temperature difference of ERA5 (2011–2020, 1981–1990) using the balance colormap 
from cmocean (right) versus a basic blue-white-red colormap (left) 

// Choose a diverging colormap for anomalies. 
var balancePalette = palettes.cmocean.Balance[7]; 
var threeColorPalette = ['blue', 'white', 'red']; 

// Show the palette in the Inspector window. 
palettes.showPalette('temperature anomaly', 
balancePalette); 
palettes.showPalette('temperature anomaly', 
threeColorPalette); 

// Select 2 time windows of 10 years. 
var era5_1980 = era5.filterDate('1981-01-01', '1991-01-
01').mean(); 
var era5_2010 = era5.filterDate('2011-01-01', '2020-01-
01').mean(); 

// Compute the temperature change. 
var era5_diff = era5_2010.subtract(era5_1980);
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// Show it on the map. 
Map.addLayer(era5_diff, { 

palette: threeColorPalette, 
min: -2, 
max: 2 

}, 'Blue White Red palette'); 

Map.addLayer(era5_diff, { 
palette: balancePalette, 
min: -2, 
max: 2 

}, 'Balance palette'); 

Code Checkpoint F60a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Our second example in this section focuses on visualizing a region of the 
Antarctic, the Thwaites Glacier. This is one of the fast-flowing glaciers that causes 
concern because it loses so much mass that it causes the sea level to rise. If we 
want to visualize this region, we have a challenge. The Antarctic region is in 
the dark for four to five months each winter. That means that we can’t use opti-
cal images to see the ice flowing into the sea. We therefore will use radar images. 
Here, we will use a semantic colormap to denote the meaning of the radar images. 

Let us start by importing the dataset of radar images. We will use the images 
from the Sentinel-1 constellation of the Copernicus program. This satellite uses 
a C-band synthetic-aperture radar and has near-polar coverage. The radar senses 
images using a polarity for the sender and receiver. The collection has images of 
four different possible combinations of sender/receiver polarity pairs. The image 
that we’ll use has a band of the Horizontal/Horizontal polarity (HH). 

// An image of the Thwaites glacier. 
var imageId = 

'COPERNICUS/S1_GRD/S1B_EW_GRDM_1SSH_20211216T041925_2021121 
6T042029_030045_03965B_AF0A'; 

// Look it up and select the HH band. 
var img = ee.Image(imageId).select('HH'); 

For the next step, we will use the palette library. We will stylize the radar images 
to look like optical images, so that viewers can contrast ice and sea ice from water 
(Lhermitte et al. 2020). We will use the Ice colormap from the cmocean package 
(Thyng et al. 2016).
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// Use the palette library. 
var palettes = require('users/gena/packages:palettes'); 

// Access the ice palette. 
var icePalette = palettes.cmocean.Ice[7]; 

// Show it in the console. 
palettes.showPalette('Ice', icePalette); 

// Use  it to visualize the radar data. 
Map.addLayer(img, { 

palette: icePalette, 
min: -15, 
max: 1 

}, 'Sentinel-1 radar'); 

// Zoom to the grounding line of the Thwaites Glacier. 
Map.centerObject(ee.Geometry.Point([-105.45882094907664, -

74.90419580705336 
]), 8); 

If you zoom in Fig. 27.3, you can see how long cracks have recently appeared 
near the pinning point (a peak in the bathymetry that functions as a buttress, see 
Wild et al. 2022) of the glacier.

Code Checkpoint F60b. The book’s repository contains a script that shows what 
your code should look like at this point. 

27.2.2 Section 2: Remapping and Palettes 

Classified rasters in Earth Engine have metadata attached that can help with analy-
sis and visualization. This includes lists of the names, values, and colors associated 
with class. These are used as the default color palette for drawing a classification, 
as seen next. The USGS National Land Cover Database (NLCD) is one such exam-
ple. Let us access the NLCD dataset, name it nlcd, and view it (Fig. 27.4) with 
its built-in palette.
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Fig. 27.3 Ice observed in Antarctica by the Sentinel-1 satellite. The image is rendered using the 
ice color palette stretched to backscatter amplitude values [− 15; 1]

Fig. 27.4 NLCD visualized with default colors for each class
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// Advanced remapping using NLCD. 
// Import NLCD. 
var nlcd = 
ee.ImageCollection('USGS/NLCD_RELEASES/2016_REL'); 

// Use Filter to select the 2016 dataset. 
var nlcd2016 = nlcd.filter(ee.Filter.eq('system:index', 
'2016')) 

.first(); 

// Select the land cover band. 
var landcover = nlcd2016.select('landcover'); 

// Map the NLCD land cover. 
Map.addLayer(landcover, null, 'NLCD Landcover'); 

But suppose you want to change the display palette. For example, you might 
want to have multiple classes displayed using the same color, or use different 
colors for some classes. Let us try having all three urban classes display as dark 
red (‘ab0000’). 

// Now suppose we want to change the color palette. 
var newPalette = ['466b9f', 'd1def8', 'dec5c5', 

'ab0000', 'ab0000', 'ab0000', 
'b3ac9f', '68ab5f', '1c5f2c', 
'b5c58f', 'af963c', 'ccb879', 
'dfdfc2', 'd1d182', 'a3cc51', 
'82ba9e', 'dcd939', 'ab6c28', 
'b8d9eb', '6c9fb8' 

]; 

// Try mapping with the new color palette. 
Map.addLayer(landcover, { 

palette: newPalette 
}, 'NLCD New Palette'); 

However, if you map this, you will see an unexpected result (Fig. 27.5).
This is because the numeric codes for the different classes are not sequential. 

Thus, Earth Engine stretches the given palette across the whole range of values 
and produces an unexpected color palette. To fix this issue, we will create a new 
index for the class values so that they are sequential.
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// Extract the class values and save them as a list. 
var values = 
ee.List(landcover.get('landcover_class_values')); 

// Print the class values to console. 
print('raw class values', values); 

// Determine the maximum index value 
var maxIndex = values.size().subtract(1); 

// Create a new index for the remap 
var indexes = ee.List.sequence(0, maxIndex); 

// Print the updated class values to console. 
print('updated class values', indexes); 

// Remap NLCD and display it in the map. 
var colorized = landcover.remap(values, indexes) 

.visualize({ 
min: 0, 
max: maxIndex, 
palette: newPalette 

}); 
Map.addLayer(colorized, {}, 'NLCD Remapped Colors'); 

Using this remapping approach, we can properly visualize the new color palette 
(Fig. 27.6).

Code Checkpoint F60c. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 27.5 Applying a new palette to a multi-class layer has some unexpected results
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Fig. 27.6 Expected results of the new color palette. All urban areas are now correctly showing as 
dark red and the other land cover types remain their original color

27.2.3 Section 3: Annotations 

Annotations are the way to visualize data on maps to provide additional informa-
tion about raster values or any other data relevant to the context. In this case, this 
additional information is usually shown as geometries, text labels, diagrams, or 
other visual elements. Some annotations in Earth Engine can be added by making 
use of the ui portion of the Earth Engine API, resulting in graphical user inter-
face elements such as labels or charts added on top of the map. However, it is 
frequently useful to render annotations as a part of images, such as by visualizing 
various image properties or to highlight specific areas. 

In many cases, these annotations can be mixed with output images generated 
outside of Earth Engine, e.g., by post-processing exported images using Python 
libraries or by annotating using GIS applications such as QGIS or ArcGIS. How-
ever, annotations could also be also very useful to highlight and/or label specific 
areas directly within the Code Editor. Earth Engine provides a sufficiently rich 
API to turn vector features and geometries into raster images which can serve as 
annotations. We recommend checking the ee.FeatureCollection.style 
function in the Earth Engine documentation to learn how geometries can be 
rendered. 

For textual annotation, we will make use of an external package 
‘users/gena/packages:text’ that provides a way to render strings into 
raster images directly using the Earth Engine raster API. It is beyond the scope of 
the current tutorials to explain the implementation of this package, but internally 
this package makes use of bitmap fonts which are ingested into Earth Engine as 
raster assets and are used to turn every character of a provided string into image 
glyphs, which are then translated to desired coordinates. 

The API of the text package includes the following mandatory and optional 
arguments:
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/** 
* Draws a string as a raster image at a given point. 
* 
* @param {string} str - string to draw 
* @param {ee.Geometry} point - location the the string 
will be drawn 
* @param {{string, Object}} options - optional properties 
used to style text 
*
* The options dictionary may include one or more of the 
following: 
*     fontSize       - 16|18|24|32 - the size of the font 
(default: 16) 
*     fontType       - Arial|Consolas - the type of the 
font (default: Arial) 
*     alignX         - left|center|right (default: left) 
*     alignY         - top|center|bottom (default: top) 
*     textColor      - text color string (default: ffffff 
- white) 
*     textOpacity    - 0-1, opacity of the text (default: 
0.9) 
*     textWidth      - width of the text (default: 1) 
*     outlineColor  - text outline color string (default: 
000000 - black) 
*     outlineOpacity - 0-1, opacity of the text outline 
(default: 0.4) 
*     outlineWidth   - width of the text outlines 
(default: 0) 
*/ 

To demonstrate how to use this API, let us render a simple ‘Hello World!’ 
text string placed at the map center using default text parameters. The code for this 
will be:
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// Include the text package. 
var text = require('users/gena/packages:text'); 

// Configure map (change center and map type). 
Map.setCenter(0, 0, 10); 
Map.setOptions('HYBRID'); 

// Draw text string and add to map. 
var pt = Map.getCenter(); 
var scale = Map.getScale(); 
var image = text.draw('Hello World!', pt, scale); 
Map.addLayer(image); 

Running the above script will generate a new image containing the ‘Hello 
World!’ string placed in the map center. Notice that before calling the 
text.draw() function, we configure the map to be centered at specific coordinates 
(0, 0) and zoom level 10 because map parameters such as center and scale are 
passed as arguments to that text.draw() function. This ensures that the resulting 
image containing string characters is scaled properly. 

When exporting images containing rendered text strings, it is important to use 
proper scale to avoid distorted text strings that are difficult to read, depending on 
the selected font size, as shown in Fig. 27.7. 

Code Checkpoint F60d. The book’s repository contains a script that shows what 
your code should look like at this point. 

These artifacts can be avoided to some extent by specifying a larger font size 
(e.g., 32). However, it is better to render text at the native 1:1 scale to achieve 
best results. The same applies to the text color and outline: They may need to 
be adjusted to achieve the best result. Usually, text needs to be rendered using 
colors that have opposite brightness and colors when compared to the surrounding 
background. Notice that in the above example, the map was configured to have a 
dark background (‘HYBRID’) to ensure that the white text (default color) would

Fig. 27.7 Results of the text.draw call, scaled to 1×: var scale = 
Map.getScale() * 1 (left); 2×: var scale = Map.getScale() * 2 (center); 
and 0.5×: var scale = Map.getScale() * 0.5 (right) 
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be visible. Multiple parameters listed in the above API documentation can be used 
to adjust text rendering. For example, let us switch font size, font type, text, and 
outline parameters to render the same string, as below. Replace the existing one-
line text.draw call in your script with the following code, and then run it again 
to see the difference (Fig. 27.8): 

Fig. 27.8 Rendering text with adjusted parameters (font type: Consolas, fontSize: 32, textColor: 
‘black’, outlineWidth: 1, outlineColor: ‘white’, outlineOpacity: 0.8) 

var image = text.draw('Hello World!', pt, scale, { 
fontSize: 32, 
fontType: 'Consolas', 
textColor: 'black', 
outlineColor: 'white', 
outlineWidth: 1, 
outlineOpacity: 0.8 

}); 

// Add the text image to the map. 
Map.addLayer(image); 

Code Checkpoint F60e. The book’s repository contains a script that shows what 
your code should look like at this point. 

Of course, non-optional parameters such as pt and scale, as well as the text 
string, do not have to be hard-coded in the script; instead, they can be acquired by 
the code using, for example, properties coming from a FeatureCollection. 
Let us demonstrate this by showing the cloudiness of Landsat 8 images as text 
labels rendered in the center of every image. In addition to annotating every image 
with a cloudiness text string, we will also draw yellow outlines to indicate image 
boundaries. For convenience, we can also define the code to annotate an image 
as a function. We will then map that function (as described in Chap. 12) over the 
filtered ImageCollection. The code is as follows:
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var text = require('users/gena/packages:text'); 

var geometry = ee.Geometry.Polygon( 
[ 

[ 
[-109.248, 43.3913], 
[-109.248, 33.2689], 
[-86.5283, 33.2689], 
[-86.5283, 43.3913] 

] 
], null, false); 

Map.centerObject(geometry, 6); 

function annotate(image) { 
// Annotates an image by adding outline border and 

cloudiness 
// Cloudiness is shown as a text string rendered at the 

image center. 

// Add an edge around the image. 
var edge = ee.FeatureCollection([image]) 

.style({ 
color: 'cccc00cc', 
fillColor: '00000000' 

}); 

// Draw cloudiness as text. 
var props = { 

textColor: '0000aa', 
outlineColor: 'ffffff', 
outlineWidth: 2, 
outlineOpacity: 0.6, 
fontSize: 24, 
fontType: 'Consolas' 

}; 
var center = image.geometry().centroid(1); 
var str = 

ee.Number(image.get('CLOUD_COVER')).format('%.2f'); 
var scale = Map.getScale(); 

var textCloudiness = text.draw(str, center, scale, 
props);
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textCloudiness = textCloudiness 
.translate(-scale * 25, 0, 'meters', 'EPSG:3857'); 

// Merge results. 
return ee.ImageCollection([edge, 

textCloudiness]).mosaic(); 
} 

// Select images. 
var images = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA') 

.select([5, 4, 2]) 

.filterBounds(geometry) 

.filterDate('2018-01-01', '2018-01-7'); 

// dim background. 
Map.addLayer(ee.Image(1), { 

palette: ['black'] 
}, 'black', true, 0.5); 

// Show images. 
Map.addLayer(images, { 

min: 0.05, 
max: 1, 
gamma: 1.4 

}, 'images'); 

// Show annotations. 
var labels = images.map(annotate); 
var labelsLayer = ui.Map.Layer(labels, {}, 'annotations'); 
Map.layers().add(labelsLayer); 

// Shift left 25 pixels. 

The result of defining and mapping this function over the filtered set of images 
is shown in Fig. 27.9. Notice that by adding an outline around the text, we can 
ensure the text is visible for both dark and light images. Earth Engine requires 
casting properties to their corresponding value type, which is why we’ve used 
ee.Number (as described in Chap. 1) before generating a formatted string. Also, 
we have shifted the resulting text image 25 pixels to the left. This was necessary to 
ensure that the text is positioned properly. In more complex text rendering applica-
tions, users may be required to compute the text position in a different way using 
ee.Geometry calls from the Earth Engine API: for example, by positioning text 
labels somewhere near the corners.
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Fig. 27.9 Annotating Landsat 8 images with image boundaries, border, and text strings indicating 
cloudiness 

Because we render text labels using the Earth Engine raster API, they are not 
automatically scaled depending on map zoom size. This may cause unwanted arti-
facts; to avoid that, the text labels image needs to be updated every time the map 
zoom changes. To implement this in a script, we can make use of the Map API—in 
particular, the Map.onChangeZoom event handler. The following code snippet 
shows how the image containing text annotations can be re-rendered every time 
the map zoom changes. Add it to the end of your script. 

// re-render (rescale) annotations when map zoom changes. 
Map.onChangeZoom(function(zoom) { 

labelsLayer.setEeObject(images.map(annotate)); 
});
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Code Checkpoint F60f. The book’s repository contains a script that shows what 
your code should look like at this point. 

Try commenting that event handler and observe how annotation rendering 
changes when you zoom in or zoom out. 

27.2.4 Section 4: Animations 

Visualizing raster images as animations is a useful technique to explore changes in 
time-dependent datasets, but also, to render short animations to communicate how 
changing various parameters affects the resulting image—for example, varying 
thresholds of spectral indices resulting in different binary maps or the changing 
geometry of vector features. 

Animations are very useful when exploring satellite imagery, as they allow 
viewers to quickly comprehend dynamics of changes of earth surface or atmo-
spheric properties. Animations can also help to decide what steps should be taken 
next to designing a robust algorithm to extract useful information from satellite 
image time series. Earth Engine provides two standard ways to generate anima-
tions: as animated GIFs, and as AVI video clips. Animation can also be rendered 
from a sequence of images exported from Earth Engine, using numerous tools 
such as ffmpeg or moviepy. However, in many cases, it is useful to have a way to 
quickly explore image collections as animation without requiring extra steps. 

In this section, we will generate animations in three different ways: 

1. Generate animated GIF 
2. Export video as an AVI file to Google Drive 
3. Animate image collection interactively using UI controls and map layers. 

We will use an image collection showing sea ice as an input dataset to generate 
animations with visualization parameters from earlier. However, instead of query-
ing a single Sentinel-1 image, let us generate a filtered image collection with all 
images intersecting with our area of interest. After importing some packages and 
palettes and defining a point and rectangle, we’ll build the image collection. Here, 
we will use point geometry to define the location where the image date label will 
be rendered and the rectangle geometry to indicate the area of interest for the ani-
mation. To do this, we will build the following logic in a new script. Open a new 
script and paste the following code into it:
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// Include packages. 
var palettes = require('users/gena/packages:palettes'); 
var text = require('users/gena/packages:text'); 

var point = /* color: #98ff00 */ ee.Geometry.Point([-
106.15944300895228, -74.58262940096245 

]); 

var rect = /* color: #d63000 */ 
ee.Geometry.Polygon( 

[ 
[ 

[-106.19789515738981, -74.56509549360152], 
[-106.19789515738981, -74.78071448733921], 
[-104.98115931754606, -74.78071448733921], 
[-104.98115931754606, -74.56509549360152] 

] 
], null, false); 

// Lookup the ice palette. 
var palette = palettes.cmocean.Ice[7]; 

// Show it in the console. 
palettes.showPalette('Ice', palette); 

// Center map on geometry. 
Map.centerObject(point, 9); 

// Select S1 images for the Thwaites glacier. 
var images = ee.ImageCollection('COPERNICUS/S1_GRD') 

.filterBounds(rect) 

.filterDate('2021-01-01', '2021-03-01') 

.select('HH') 
// Make sure we include only images which fully contain 

the region geometry. 
.filter(ee.Filter.isContained({ 

leftValue: rect, 
rightField: '.geo' 

})) 
.sort('system:time_start'); 

// Print number of images. 
print(images.size());
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As you see from the last lines of the above code, it is frequently useful to print 
the number of images in an image collection: an example of what’s often known 
as a “sanity check.” 

Here, we have used two custom geometries to configure animations: the green 
pin named point, used to filter image collection and to position text labels drawn 
on top of the image, and the blue rectangle rect, used to define a bounding box 
for the exported animations. To make sure that the point and rectangle geometries 
are shown under the Geometry Imports in the Code Editor, you need to click on 
these variables in the code and then select the Convert link. 

Notice that in addition to the bounds and date filter, we have also used a less 
known isContained filter to ensure that we get only images that fully cover 
our region. To better understand this filter, you could try commenting out the filter 
and compare the differences, observing images with empty (masked) pixels in the 
resulting image collection. 

Code Checkpoint F60g. The book’s repository contains a script that shows what 
your code should look like at this point. 

Next, to simplify the animation API calls, we will generate a composite RGB 
image collection out of satellite images and draw the image’s acquisition date as 
a label on every image, positioned within our region geometry. 

// Render images. 
var vis = { 

palette: palette, 
min: -15, 
max: 1 

}; 

var scale = Map.getScale(); 
var textProperties = { 

outlineColor: '000000', 
outlineWidth: 3, 
outlineOpacity: 0.6 

};
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var imagesRgb = images.map(function(i) { 
// Use the date as the label. 
var label = i.date().format('YYYY-MM-dd'); 
var labelImage = text.draw(label, point, scale, 

textProperties); 

return i.visualize(vis) 
.blend(labelImage) // Blend label image on top. 
.set({ 

label: label 
}); // Keep the text property. 

}); 
Map.addLayer(imagesRgb.first()); 
Map.addLayer(rect, {color:'blue'}, 'rect', 1, 0.5); 

In addition to printing the size of the ImageCollection, we also often 
begin by adding a single image to the map from a mapped collection to see that 
everything works as expected—another example of a sanity check. The resulting 
map layer will look like Fig. 27.10. 

Fig. 27.10 Results of adding the first layer from the RGB composite image collection showing 
Sentinel-1 images with a label blended on top at a specified location. The blue geometry is used to 
define the bounds for the animation to be exported 

Code Checkpoint F60h. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 27.11 Console output after running the animated GIF code snippet, showing the GIF URL 
and an animation shown directly in the Console 

Animation 1: Animated GIF with ui.Thumbnail 
The quickest way to generate an animation in Earth Engine is to use the animated 
GIF API and either print it to the Console or print the URL to download the 
generated GIF. The following code snippet will result in an animated GIF as well 
as the URL to the animated GIF printed to Console. This is as shown in Fig. 27.11: 

// Define GIF visualization parameters. 
var gifParams = { 

region: rect, 
dimensions: 600, 
crs: 'EPSG:3857', 
framesPerSecond: 10 

}; 

// Print the GIF URL to the console. 
print(imagesRgb.getVideoThumbURL(gifParams)); 

// Render the GIF animation in the console. 
print(ui.Thumbnail(imagesRgb, gifParams));
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Earth Engine provides multiple options to specify the size of the resulting video. 
In this example, we specify 600 as the size of the maximum dimension. We also 
specify the number of frames per second for the resulting animated GIF as well 
as the target projected coordinate system to be used (EPSG:3857 here, which 
is the projection used in web maps such as Google Maps and the Code Editor 
background). 

Animation 2: Exporting an Animation with Export.video.toDrive 
Animated GIFs can be useful to generate animations quickly. However, they have 
several limitations. In particular, they are limited to 256 colors, become large for 
larger animations, and most web players do not provide play controls when play-
ing animated GIFs. To overcome these limitations, Earth Engine provides export 
of animations as video files in MP4 format. Let us use the same RGB image col-
lection we have used for the animated GIF to generate a short video. We can ask 
Earth Engine to export the video to the Google Drive using the following code 
snippet: 

Export.video.toDrive({ 
collection: imagesRgb, 
description: 'ice-animation', 
fileNamePrefix: 'ice-animation', 
framesPerSecond: 10, 
dimensions: 600, 
region: rect, 
crs: 'EPSG:3857' 

}); 

Here, many arguments to the Export.video.toDrive function resemble 
the ones we’ve used in the ee.Image.getVideoThumbURL code above. Addi-
tional arguments include description and fileNamePrefix, which are required to 
configure the name of the task and the target file of the video file to be saved to 
Google Drive. Running the above code will result in a new task created under the 
Tasks tab in the Code Editor. Starting the export video task (Fig. 27.12) will result 
in a video file saved in the Google Drive once completed.

Animation 3: The Custom Animation Package 
For the last animation example, we will use the custom package 
‘users/gena/packages:animation’, built using the Earth Engine 
User Interface API. The main difference between this package and the above 
examples is that it generates an interactive animation by adding Map layers 
individually to the layer set, and providing UI controls that allow users to play 
animations or interactively switch between frames. The animate function in 
that package generates an interactive animation of an ImageCollection, as  
described below. This function has a number of optional arguments allowing you
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Fig. 27.12 New export video tasks in the Tasks panel of the Code Editor

to configure, for example, the number of frames to be animated, the number of 
frames to be preloaded, or a few others. The optional parameters to control the 
function are the following:

• maxFrames: maximum number of frames to show (default: 30)
• vis: visualization parameters for every frame (default: {})
• Label: text property of images to show in the animation controls (default: 

undefined)
• width: width of the animation panel (default: ‘600px’)
• compact: show only play control and frame slider (default: false)
• position: position of the animation panel (default: ‘top-center’)
• timeStep: time step (ms) used when playing animation (default: 100)
• preloadCount: number of frames (map layers) to preload (default: all). 

Let us call this function to add interactive animation controls to the current Map: 

// include the animation package 
var animation = require('users/gena/packages:animation'); 

// show animation controls 
animation.animate(imagesRgb, { 
label: 'label', 
maxFrames: 50 

}); 

Before using the interactive animation API, we need to include the correspond-
ing package using require. Here, we provide our pre-rendered image collection 
and two optional parameters (label and maxFrames). The first optional param-
eter label indicates that every image in our image collection has the ‘label’ text 
property. The animate function uses this property to name map layers as well 
as to visualize in the animation UI controls when switching between frames. This 
can be useful when inspecting image collections. The second optional parame-
ter, maxFrames, indicates that the maximum number of animation frames that
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Fig. 27.13 Interactive animation controls when using custom animation API 

we would like to visualize is 50. To prevent the Code Editor from crashing, this 
parameter should not be too large: it is best to keep it below 100. For a much 
larger number of frames, it is better to use the Export video or animated GIF API. 
Running this code snippet will result in the animation control panel added to the 
map as shown in Fig. 27.13. 

It is important to note that the animation API uses asynchronous UI calls to 
make sure that the Code Editor does not hang when running the script. The draw-
back of this is that for complex image collections, a large amount of processing 
is required. Hence, it may take some time to process all images and to visualize 
the interactive animation panel. The same is true for map layer names: they are 
updated once the animation panel is visualized. Also, map layers used to visualize 
individual images in the provided image collection may require some time to be 
rendered. 

The main advantage of the interactive animation API is that it provides a way 
to explore image collections at frame-by-frame basis, which can greatly improve 
our visual understanding of the changes captured in sets of images. 

Code Checkpoint F60i. The book’s repository contains a script that shows what 
your code should look like at this point. 

27.2.5 Section 5: Terrain Visualization 

This section introduces several raster visualization techniques useful to visualize 
terrain data such as:

• Basic hillshading and parameters (light azimuth, elevation)
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• Combining elevation data and colors using HSV transform (Wikipedia, 2022).
• Adding shadows. 

One special type of raster data is data that represents height. Elevation data can 
include topography, bathymetry, but also other forms of height, such as sea surface 
height can be presented as a terrain. 

Height is often visualized using the concept of directional light with a technique 
called hillshading. Because height is such a common feature in our environment, 
we also have an expectancy of how height is visualized. If height is visualized 
using a simple grayscale colormap, it looks very unnatural (Fig. 27.14, top left). By 
using hillshading, data immediately looks more natural (Fig. 27.14, top middle). 

We can further improve the visualization by including shadows (Fig. 27.14, top 
right). A final step is to replace the simple grayscale colormap with a perceptual 
uniform topographic colormap and mix this with the hillshading and shadows 
(Fig. 27.14, bottom). This section explains how to apply these techniques. 

We’ll focus on elevation data stored in raster form. Elevation data is not always 
stored in raster formats. Other data formats include Triangulated Irregular Network

Fig. 27.14 Hillshading with shadows. Steps in visualizing a topographic dataset: (1) top left, 
topography with grayscale colormap; (2) top middle, topography with grayscale colormap and hill-
shading; (3) top right, topography with grayscale colormap, hillshading, and shadows; (4) bottom, 
topography with topographic colormap, hillshading, and shadows 
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(TIN), which allows storing information at varying resolutions and as 3D objects. 
This format allows one to have overlapping geometries, such as bridges with a 
road below it. In raster-based digital elevation models, in contrast, there can only 
be one height recorded for each pixel. 

Let us start by loading data from a digital elevation model. This loads a topo-
graphic dataset from the Netherlands (Algemeen Hoogtebestand Nederland). It is 
a Digital Surface Model, based on airborne LIDAR measurements regridded to 
0.5 m resolution. Enter the following code in a new script. 

var dem = ee.Image('AHN/AHN2_05M_RUW'); 

We can visualize this dataset using a sequential gradient colormap from black 
to white. This results in Fig. 27.14. One can infer which areas are lower and which 
are higher, but the visualization does not quite “feel” like a terrain. 

// Change map style to HYBRID and center map on the 
Netherlands 
Map.setOptions('HYBRID'); 
Map.setCenter(4.4082, 52.1775, 18); 

// Visualize DEM using black-white color palette 
var palette = ['black', 'white']; 
var demRGB = dem.visualize({ 

min: -5, 
max: 5, 
palette: palette 

}); 
Map.addLayer(demRGB, {},'DEM'); 

An important step to visualize terrain is to add shadows created by a distant 
point source of light. This is referred to as hillshading or a shaded relief map. 
This type of map became popular in the 1940s through the work of Edward 
Imhof, who also used grayscale colormaps (Imhof 2015). Here, we’ll use the 
‘gena/packages:utils’ library to combine the colormap image with the 
shadows. That Earth Engine package implements a hillshadeRGB function 
to simplify rendering of images enhanced with hillshading and shadow effects. 
One important argument this function takes is the light azimuth—an angle from 
the image plane upward to the light source (the Sun). This should always be set 
to the top left to avoid bistable perception artifacts, in which the DEM can be 
misperceived as inverted.
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var utils = require('users/gena/packages:utils'); 

var weight = 
0.4; // Weight of Hillshade vs RGB (0 - flat, 1 -

hillshaded). 
var exaggeration = 5; // Vertical exaggeration. 
var azimuth = 315; // Sun azimuth. 
var zenith = 20; // Sun elevation. 
var brightness = -0.05; // 0 - default. 
var contrast = 0.05; // 0 - default. 
var saturation = 0.8; // 1 - default. 
var castShadows = false; 

var rgb = utils.hillshadeRGB( 
demRGB, dem, weight, exaggeration, azimuth, zenith, 
contrast, brightness, saturation, castShadows); 

Map.addLayer(rgb, {}, 'DEM (no shadows)'); 

Standard hillshading only determines per pixel if it will be directed to 
the light or not. One can also project shadows on the map. That is done 
using the ee.Algorithms.HillShadow algorithm. Here, we’ll turn on 
castShadows in the hillshadeRGB function. This results in a more realistic 
map, as can be seen in Fig. 27.14. 

var castShadows = true; 

var rgb = utils.hillshadeRGB( 
demRGB, dem, weight, exaggeration, azimuth, zenith, 
contrast, brightness, saturation, castShadows); 

Map.addLayer(rgb, {}, 'DEM (with shadows)'); 

The final step is to add a topographic colormap. To visualize topographic 
information, one often uses special topographic colormaps. Here, we’ll use the 
oleron colormap from Crameri. The colors get mixed with the shadows using 
the hillshadeRGB function. As you can see in Fig. 27.14, this gives a nice 
overview of the terrain. The area colored in blue is located below sea level.
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var palettes = require('users/gena/packages:palettes'); 
var palette = palettes.crameri.oleron[50]; 

var demRGB = dem.visualize({ 
min: -5, 
max: 5, 
palette: palette 

}); 

var castShadows = true; 

var rgb = utils.hillshadeRGB( 
demRGB, dem, weight, exaggeration, azimuth, zenith, 
contrast, brightness, saturation, castShadows); 

Map.addLayer(rgb, {}, 'DEM colormap'); 

Steps to further improve a terrain visualization include using light sources from 
multiple directions. This allows the user to render terrain to appear more natural. 
In the real world, light is often scattered by clouds and other reflections. 

One can also use lights to emphasize certain regions. To use even more 
advanced lighting techniques, one can use a raytracing engine, such as the R 
rayshader library, as discussed earlier in this chapter. The raytracing engine in 
the Blender 3D program is also capable of producing stunning terrain visualiza-
tions using physical-based rendering, mist, environment lights, and camera effects 
such as depth of field. 

Code Checkpoint F60j. The book’s repository contains a script that shows what 
your code should look like at this point. 

27.3 Synthesis 

To synthesize what you have learned in this chapter, you can do the following 
assignments. 

Assignment 1. Experiment with different color palettes from the 
palettes library. Try combining palettes with image opacity (using 
ee.Image.updateMask call) to visualize different physical features (for 
example, hot or cold areas using temperature and elevation). 

Assignment 2. Render multiple text annotations when generating animations using 
image collection. For example, show other image properties in addition to date or 
image statistics generated using regional reducers for every image. 

Assignment 3. In addition to text annotations, try blending geometry elements 
(lines, polygons) to highlight specific areas of rendered images.
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27.4 Conclusion 

In this chapter, we have learned about several techniques that can greatly improve 
visualization and analysis of images and image collections. Using predefined 
palettes can help to better comprehend and communicate Earth observation data, 
and combining with other visualization techniques such as hillshading and anno-
tations can help to better understand processes studied with Earth Engine. When 
working with image collections, it is often very helpful to analyze their properties 
through time by visualizing them as animations. Usually, this step helps to better 
understand dynamics of the changes that are stored in image collections and to 
develop a proper algorithm to study these changes. 
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28Collaborating in Earth Engine 
with Scripts and Assets 

Sabrina H. Szeto 

Overview 
Many users find themselves needing to collaborate with others in Earth Engine at 
some point. Students may need to work on a group project, people from different 
organizations might want to collaborate on research together, or people may want to 
share a script or an asset they created with others. This chapter will show you how 
to collaborate with others and share your work. 

Learning Outcomes

• Understanding when it is important to share a script or asset.
• Understanding what roles and permission options are available.
• Sharing a script with others.
• Sharing an asset with others.
• Sharing an asset so it can be displayed in an app.
• Sharing a repository with others.
• Seeing who made changes to a script and what changes were made.
• Reverting to a previous version of a script.
• Using the require function to load modules.
• Creating a script to share as a module. 

Assumes you know how to:

• Sign up for an Earth Engine account, open the Code Editor, and save your script 
(Chap. 1).
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28.1 Introduction to Theory 

Many people find themselves needing to share a script when they encounter a 
problem; they wish to share the script with someone else so they can ask a ques-
tion. When this occurs, sharing a link to the script often suffices. The other person 
can then make comments or changes before sending a new link to the modified 
script. 

If you have included any assets from the Asset Manager in your script, you will 
also need to share these assets in order for your script to work for your colleague. 
The same goes for sharing assets to be displayed in an app. 

Another common situation involves collaborating with others on a project. They 
may have some scripts they have written that they want to reuse or modify for the 
new project. Alternatively, several people might want to work on the same script 
together. For this situation, sharing a repository would be the best way forward; 
team members will be able to see who made what changes to a script and even 
revert to a previous version. 

If you or your group members find yourselves repeatedly reusing certain func-
tions for visualization or for part of your analysis, you could use the require 
module to call that function instead of having to copy and paste it into a new script 
each time. You could even make this function or module available to others to use 
via require. 

28.2 Practicum 

Let’s get started. For this lab, you will need to work in small groups or pairs. 

28.2.1 Section 1: Using Get Link to Share a Script 

Copy and paste the following code into the Code Editor. 

print('The author of this script is MyName.'); 

Replace MyName with your name, then click on Save to save the script in your 
home repository. Next, click on the Get Link button and copy the link to this 
script onto your clipboard. Using your email program of choice, send this script 
to one of your group members. 

Now add the following code below the line of code that you pasted earlier. 

print('I just sent this script to GroupMemberName.');
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Replace GroupMemberName with the name of the person you sent this script 
to, then save the script again. Next, click on the Get Link button and copy the 
link to this script onto your clipboard. Using your email program of choice, send 
this script to the same person. 

Question 1. You should also have received two emails from someone in your group 
who is also doing this exercise. Open the first and second links in your Code Editor 
by clicking on them. Is the content of both scripts the same? 

Answer: No, the scripts will be different, because Get Link sends a snapshot of 
the script at a particular point in time. Thus, even though the script was updated, 
the first link does not reflect that change. 

Question 2. What happens when you check the box for Hide code panel or 
Disable auto-run before sharing the script? 

Answer: Hide code panel will minimize the code panel so the person you send the 
script to will see the Map maximized. This is useful when you want to draw the 
person’s attention to the results rather than to the code. To expand the code panel, 
they have to click on the Show code button. Disable auto-run is helpful when 
you do not want the script to start running when the person you sent it to opens 
it. Perhaps your script takes very long to run or requires particular user inputs and 
you just want to share the code with the person. 

28.2.2 Section 2: Sharing Assets from Your Asset Manager 

When you clicked the Get Link button earlier, you may have noticed a note in 
the popup reading: “To give others access to assets in the code snapshot, you may 
need to share them.” If your script uses an asset that you have uploaded into your 
Asset Manager, you will need to share that asset as well. If not, an error message 
will appear when the person you shared the script with tries to run it. 

Before sharing an asset, think about whether you have permission to share it. 
Is this some data that is owned by you, or did you get it from somewhere else? 
Do you need permission to share this asset? Make sure you have the permission 
to share an asset before doing so. 

Now, let’s practice sharing assets. First, navigate to your Asset Manager by 
clicking on the Assets tab in the left panel. If you already have some assets 
uploaded, pick one that you have permission to share. If not, upload one to your 
Asset Manager. If you do not have a shapefile or raster to upload, you can upload 
a small text file. Consult the Earth Engine documentation for how to do this; it 
will take only a few steps. 

Hover your cursor over that asset in your Asset Manager. The asset gets high-
lighted in gray, and three buttons appear to the right of the asset. Click on the first 
button from the left (outlined in red in Fig. 28.1). This icon means “share.”
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Fig. 28.1 Three assets in the Asset Manager 

After you click the share button, a Share Image popup will appear (Fig. 28.2). 
This popup contains information about the path of the asset and the email address 
of the owner. The owner of the asset can decide who can view and edit the asset. 

Click on the dropdown menu whose default option is “Reader” (outlined in red 
in Fig. 28.2). You will see two options for permissions: Reader and Writer. A  
Reader can view the asset, while a Writer can both view and make changes to 
it. For example, a Writer could add a new image to an ImageCollection. A  
Writer can also add other people to view or edit the asset, and a Writer can delete 
the asset. When in doubt, give someone the Reader role rather than the Writer role. 

To share an asset with someone, you can type their email address into the Email 
or domain text field, choose Reader or Writer in the dropdown menu, and then 
click on Add Access. You can also share an asset with everyone with a certain 
email domain, which is useful if you want to share an asset with everyone in your 
organization, for instance.

Fig. 28.2 Share Image popup window 
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If you want to share reading access publicly, then check the box that says 
Anyone can read. Note that you still need to share the link to the asset in order 
for others to access it. The only exceptions to this are when you are using the asset 
in a script and sharing that script using the Get Link button or when you share the 
asset with an Earth Engine app. To do the latter, use the Select an app dropdown 
menu (outlined in orange in Fig. 28.2) and click Add App Access. When you have 
completed making changes, click on the blue Done button to save these changes. 

Question 3. Share an asset with a group member and give them reader access. 
Send them the link to that asset. You will also receive a link from someone else in 
your group. Open that link. What can you do with that asset? What do you need 
to do to import it into a script? 

Answer: You can view details about the asset and import it for use in a script in 
the Code Editor. To import the asset, click on the blue Import button. 

Question 4. Share an asset with a group member and give them writer access. 
Send them the link to that asset. You will also receive a link from someone else 
in your group. Open that link. What can you do with that asset? Try sharing the 
asset with a different group member. 

Answer: You can view details about the asset and import it for use in a script in 
the Code Editor. You can also share the asset with others and delete the asset. 

28.2.3 Section 3: Working with Shared Repositories 

Now that you know how to share assets and scripts, let’s move on to sharing 
repositories. In this section, you will learn about different types of repositories 
and how to add a repository that someone else shared with you. You will also 
learn how to view previous versions of a script and how to revert back to an 
earlier version. 

Earlier, we learned how to share a script using the Get Link button. This link 
shares a code snapshot from a script. This snapshot does not reflect any changes 
made to the script after the time the link was shared. If you want to share a script 
that updates to reflect the most current version when it is opened, you need to 
share a repository with that script instead. 

If you look under the Scripts tab of the leftmost panel in the Code Editor, you 
will see that the first three categories are labeled Owner, Reader, and Writer.

• Repositories categorized under Owner are created and owned by you. No 
one else has access to view or make changes to them until you share these 
repositories.

• Repositories categorized under Reader are repositories to which you have 
reader access. You can view the scripts but not make any changes to them. 
If you want to make any changes, you will need to save the script as a new file 
in a repository that you own.
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• Repositories categorized under Writer are repositories to which you have writer 
access. This means you can view and make changes to the scripts. 

Let’s practice creating and sharing repositories. We will start by making a new 
repository. Click on the red New button located in the left panel. Select Repository 
from the dropdown menu. A New repository popup window will open (Fig. 28.3). 

In the popup window’s text field, type a name for your new repository, such 
as “ForSharing1,” then click on the blue Create button. You will see the new 
repository appear under the Owner category in the Scripts tab (Fig. 28.4). 

Now, share this new repository with your group members: Hover your cursor 
over the repository you want to share. The repository gets highlighted in gray, and 
three buttons appear. Click on the Gear icon (outlined in red in Fig. 28.4). 

A Share Repo popup window appears (Fig. 28.5) which is very similar to 
the Share Image popup window we saw in Fig. 28.2. The method for sharing a

Fig. 28.3 New repository popup window 

Fig. 28.4 Three repositories under the Owner category 
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Fig. 28.5 Share Repo popup window 

repository with a specific user or the general public is the same as for sharing 
assets. 

Type the email address of a group member in the Email or domain text field 
and give this person a writer role by selecting Writer in the dropdown menu, then 
click on Add Access. When you have completed making changes, click on the 
blue Done button to save your changes. 

Your group member should receive an email inviting them to edit the repository. 
Check your email inbox for the repository that your group member has shared with 
you. When you open that email, you will see content similar to what is shown in 
Fig. 28.6.

Now, click on the blue button that says Add [repository path] to your Earth 
Engine Code Editor. You will find the new repository added to the Writer cat-
egory in your Scripts tab. The repository path will contain the username of your 
group member, such as users/username/sharing. 

Now, let’s add a script to the empty repository. Click on the red New button 
in the Scripts tab and select File from the dropdown menu. A Create file popup 
will appear, as shown in Fig. 28.7. Click on the gray arrow beside the default path 
to open a dropdown menu that will allow you to choose the path of the repository 
that your group member shared with you. Type a new File Name in the text field, 
such as “exercise,” then click on the blue OK button to create the file.
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Fig. 28.6 “Invitation to edit” email

Fig. 28.7 Create file popup window 

A new file should now appear in the shared repository in the Writer category. 
If you do not see it, click on the Refresh icon, which is to the right of the red New 
button in the Scripts tab. 

Double-click on the new script in the shared repository to open it. Then, copy 
and paste the following code to your Code Editor. 

print('The owner of this repository is GroupMemberName.'); 

Replace GroupMemberName with the name of your group member, then click 
Save to save the script in the shared repository, which is under the Writer category. 

Now, navigate to the repository under Owner which you shared with your 
group member. Open the new script which they just created by double-clicking it. 

Add the following code below the line of code that you pasted earlier.
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Fig. 28.8 Changes made and previous versions of the script 

Fig. 28.9 Revision history popup window 

print('This script is shared with MyName.'); 

Replace MyName with your name, then save the script. 
Next, we will compare changes made to the script. Click on the Versions icon 

(outlined in red in Fig. 28.8). 
A popup window will appear, titled Revision history, followed by the path of 

the script (Fig. 28.9). There are three columns of information below the title.

• The left column contains the dates on which changes have been made.
• The middle column contains the usernames of the people who made changes.
• The right column contains information about what changes were made. 

The most recent version of the script is shown in the first row, while previous 
versions are listed in subsequent rows. (More advanced users may notice that this 
is actually a Git repository.) 

If you hover your cursor over a row, the row will be highlighted in gray and a 
button labeled Compare will appear. Clicking on this button allows you to com-
pare differences between the current version of the script and a previous version 
in a Version comparison popup window (Fig. 28.10).

In the Version comparison popup, you will see text highlighted in two different 
colors. Text highlighted in red shows code that was present in the older version 
but is absent in the current version (the “latest commit”). Text highlighted in green 
shows code that is present in the current version but that was absent in the older
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Fig. 28.10 Version comparison popup window

version. Generally speaking, text highlighted in red has been removed in the cur-
rent version and text highlighted in green has been added to the current version. 
Text that is not highlighted shows code that is present in both versions. 

Question 5. What text, if any, is highlighted in red when you click on Compare 
in your “exercise” script? 

Answer: No text is highlighted in red, because none was removed between the 
previous and current versions of the script. 

Question 6. What text, if any, is highlighted in green when you click on Compare 
in your “exercise” script? 

Answer: print(‘This script is shared with MyName.’); 

Question 7. What happens when you click on the blue Revert button? 

Answer: The script reverts to the previous version, in which the only line of code 
is 

print('The owner of this repository is GroupMemberName.');
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28.2.4 Section 4: Using the Require Function to Load a Module 

In earlier chapters, you may have noticed that the require function allows you 
to reuse code that has already been written without having to copy and paste it 
into your current script. For example, you might have written a function for cloud 
masking that you would like to use in multiple scripts. Saving this function as 
a module enables you to share the code across your own scripts and with other 
people. Or you might discover a new module with capabilities you need written 
by other authors. This section will show you how to use the require function 
to create and share your own module or to load a module that someone else has 
shared. 

The module we will use is ee-palettes, which enables users to visualize 
raster data using common specialized color palettes (Donchyts et al. 2019). (If 
you would like to learn more about using these color palettes, the ee-palettes 
module is described and illustrated in detail in Chap. F6.0.) The first step is to go 
to this link to accept access to the repository as a reader: https://code.earthengine. 
google.com/?accept_repo=users/gena/packages. 

Now, if you navigate to your Reader directory in the Code Editor, you should 
see a new repository called ‘users/gena/packages’ listed. Look for a script 
called ‘palettes’ and click on it to load it in your Code Editor. 

If you scroll down, you will see that the script contains a nested series of dictio-
naries with lists of hexadecimal color specifications (as described in Chap. F2.1) 
that describe a color palette, as shown in the code block below. For example, the 
color palette named “Algae” stored in the cmocean variable consists of seven 
colors, ranging from dark green to light green (Fig. 28.11). 

Fig. 28.11 Some of the color palettes from the ee-palettes GitHub repository

https://code.earthengine.google.com/?accept_repo=users/gena/packages
https://code.earthengine.google.com/?accept_repo=users/gena/packages
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exports.cmocean = { 
Thermal: { 

7: ['042333', '2c3395', '744992', 'b15f82', 
'eb7958', 'fbb43d', 'e8fa5b' 

] 
}, 
Haline: { 

7: ['2a186c', '14439c', '206e8b', '3c9387', 
'5ab978', 'aad85c', 'fdef9a' 

] 
}, 
Solar: { 

7: ['331418', '682325', '973b1c', 'b66413', 
'cb921a', 'dac62f', 'e1fd4b' 

] 
}, 
Ice: { 

7: ['040613', '292851', '3f4b96', '427bb7', 
'61a8c7', '9cd4da', 'eafdfd' 

] 
}, 
Gray: { 

7: ['000000', '232323', '4a4a49', '727171', 
'9b9a9a', 'cacac9', 'fffffd' 

] 
}, 
Oxy: { 

7: ['400505', '850a0b', '6f6f6e', '9b9a9a', 
'cbcac9', 'ebf34b', 'ddaf19' 

] 
}, 
Deep: { 

7: ['fdfecc', 'a5dfa7', '5dbaa4', '488e9e', 
'3e6495', '3f396c', '281a2c' 

] 
}, 
Dense: { 

7: ['e6f1f1', 'a2cee2', '76a4e5', '7871d5', 
'7642a5', '621d62', '360e24' 

] 
},
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Algae: { 
7: ['d7f9d0', 'a2d595', '64b463', '129450', 

'126e45', '1a482f', '122414' 
] 

}, 
... 

} 

Notice that the variable is named exports.cmocean. Adding exports to 
the name of a function or variable makes it available to other scripts to use, as it 
gets added to a special global variable (Chang 2017). 

To see all the color palettes available in this module, go to https://github.com/ 
gee-community/ee-palettes. 

Now let’s try using the ee-palettes module. Look for a script in the same 
repository called ‘palettes-test’ and click on it to load it in your Code Edi-
tor. When you run the script, you will see digital elevation data from the National 
Aeronautics and Space Administration Shuttle Radar Topography Mission satellite 
visualized using two palettes, colorbrewer.Blues and cmocean.Algae. 
The map will have two layers that show the same data with different palettes. 

The script first imports the digital elevation model data in the Imports section 
of the Code Editor. 

var dem = ee.Image('USGS/SRTMGL1_003'); 

The script then loads the ee-palettes module by using the require 
function. The path to the module, ‘users/gena/packages:palettes’, 
is passed to the function. The require function is then stored in a variable 
named ‘palettes’, which will be used later to obtain the palettes for data 
visualization. 

var palettes = require('users/gena/packages:palettes'); 

As described by Donchyts et al. (2019), “Each palette is defined by a group 
and a name, which are separated by a period (JS object dot notation), and a 
color level. To retrieve a desired palette, use JS object notation to specify the 
group, name, and number of color levels.” We define the color palette Algae 
as palettes.cmocean.Algae[7] because it is part of the group cmocean 
and has 7 color levels. In the next code block, you can see that the palettes (i.e., 
lists of hex colors) have been defined for use by setting them as the value for 
the palette key in the  visParams object supplied to the Map.addLayer 
function.

https://github.com/gee-community/ee-palettes
https://github.com/gee-community/ee-palettes
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// colorbrewer 
Map.addLayer(dem, { 

min: 0, 
max: 3000, 
palette: palettes.colorbrewer.Blues[9] 

}, 'colorbrewer Blues[9]'); 

// cmocean 
Map.addLayer(dem, { 

min: 0, 
max: 3000, 
palette: palettes.cmocean.Algae[7] 

}, 'cmocean Algae[7]'); 

Question 8. Try adding a third layer to the Map with a different color palette from 
ee-palettes. How easy was it to do? 

Now that you have loaded and used a module shared by someone else, you 
can try your hand at creating your own module and sharing it with someone else 
in your group. First, go to the shared repository that you created in Sect. 28.2.3, 
create a new script in that repository, and name it “cloudmasking.” 

Then, go to the Examples repository at the bottom of the Scripts tab and 
select a function from the Cloud Masking repository. Let’s use the Landsat8 
Surface Reflectance cloud masking script as an example. In that script, 
you will see the code shown in the block below. Copy and paste all of it into your 
empty script. 

// This example demonstrates the use of the Landsat 8 
Collection 2, Level 2 
// QA_PIXEL band (CFMask) to mask unwanted pixels. 
function maskL8sr(image) { 

// Bit 0 - Fill 
// Bit 1 - Dilated Cloud 
// Bit 2 - Cirrus 
// Bit 3 - Cloud 
// Bit 4 - Cloud Shadow 
var qaMask = 

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 
2)).eq(0); 

var saturationMask = image.select('QA_RADSAT').eq(0);
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// Apply the scaling factors to the appropriate bands. 
var opticalBands = 

image.select('SR_B.').multiply(0.0000275).add(-
0.2); 

var thermalBands = 
image.select('ST_B.*').multiply(0.00341802) 

.add(149.0); 

// Replace the original bands with the scaled ones and 
apply the masks. 

return image.addBands(opticalBands, null, true) 
.addBands(thermalBands, null, true) 
.updateMask(qaMask) 
.updateMask(saturationMask); 

} 

// Map the function over one year of data. 
var collection = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterDate('2020-01-01', '2021-01-01') 

.map(maskL8sr); 

var composite = collection.median(); 

// Display the results. 
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula 

// Display the results. 
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula 
Map.addLayer(composite, { 

bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 0, 
max: 0.3 

}); 

Note that this code is well-commented and has a header that describes what the 
script does. Do not forget to comment your code and describe what you are doing 
each step of the way. This is a good practice for collaborative coding and for your 
own future reference. 

Imagine that you want to make the maskL8sr function available to other users 
and scripts. To do that, you can turn the function into a module. Copy and paste the 
code from the example code into the new script you created called “cloudmask-
ing.” (Hint: Store the function in a variable starting with exports. Be careful 
that you do not accidentally use Export, which is used to export datasets.) 

Your script should be similar to the following code.
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exports.maskL8sr = function(image) { 
// Bit 0 - Fill 
// Bit 1 - Dilated Cloud 
// Bit 2 - Cirrus 
// Bit 3 - Cloud 
// Bit 4 - Cloud Shadow 
var qaMask = 

image.select('QA_PIXEL').bitwiseAnd(parseInt( 
'11111', 2)).eq(0); 

var saturationMask = image.select('QA_RADSAT').eq(0); 

// Apply the scaling factors to the appropriate bands. 
var opticalBands = 

image.select('SR_B.').multiply(0.0000275) 
.add(-0.2); 

var thermalBands = 
image.select('ST_B.*').multiply(0.00341802) 

.add(149.0); 

// Replace the original bands with the scaled ones and 
apply the masks. 

return image.addBands(opticalBands, null, true) 
.addBands(thermalBands, null, true) 
.updateMask(qaMask) 
.updateMask(saturationMask); 

} 

Next, you will create a test script that makes use of the cloud masking module 
you just made. Begin by creating a new script in your shared repository called 
“cloudmasking-test.” You can modify the last part of the example cloud masking 
script shown in the code block below to use your module.
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// Map the function over one year of data. 
var collection = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterDate('2020-01-01', '2021-01-01') 

.map(maskL8sr); 

var composite = collection.median(); 

// Display the results. 
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula 
Map.addLayer(composite, { 

bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 0, 
max: 0.3 

}); 

Question 9. How will you modify the cloud masking script to use your module? 
What does the script look like? 

Answer: Your code might look something like the code block below. 

// Load the module 
var myCloudFunctions = require( 

'users/myusername/my-shared-repo:cloudmasking'); 

// Map the function over one year of data. 
var collection = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterDate('2020-01-01', '2021-01-01') 

.map(myCloudFunctions.maskL8sr); 

var composite = collection.median(); 

// Display the results. 
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula 
Map.addLayer(composite, { 

bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 0, 
max: 0.3 

});
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28.3 Synthesis 

Apply what you learned in this chapter by setting up a shared repository for your 
project, lab group, or organization. What scripts would you share? What permis-
sions should different users have? Are there any scripts that you would turn into 
modules? 

28.4 Conclusion 

In this chapter, you learned how to collaborate with others in the Earth Engine 
Code Editor through sharing scripts, assets, and repositories. You learned about 
different roles and permissions available for sharing and when it is appropriate to 
use each. In addition, you are now able to see what changes have been made to a 
script and revert to a previous version. Lastly, you loaded and used a module that 
was shared with you and created your own module for sharing. You are now ready 
to start collaborating and developing scripts with others. 
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Overview 
Commonly, when Earth Engine users move from tutorials to developing their own 
processing scripts, they encounter the dreaded error messages, “computation timed 
out” or “user memory limit exceeded.” Computational resources are never unlimited, 
and the team at Earth Engine has designed a robust system with built-in checks to 
ensure that server capacity is available to everyone. This chapter will introduce 
general tips for creating efficient Earth Engine workflows that accomplish users’ 
ambitious research objectives within the constraints of the Earth Engine ecosystem. 
We use two example case studies: (1) extracting a daily climate time series for 
many locations across two decades and (2) generating a regional, cloud-free median 
composite from Sentinel-2 imagery. 

Learning Outcomes

• Understanding constraints on Earth Engine resource use.
• Becoming familiar with multiple strategies to scale Earth Engine operations.
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• Managing large projects and multistage workflows.
• Recognizing when using the Python API may be advantageous to execute large 

batches of tasks. 

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Write a function and map it over an ImageCollection (Chap. 12).
• Export and import results as Earth Engine assets (Chap. 22).
• Understand distinctions among Image, ImageCollection, Feature, and 
FeatureCollection Earth Engine objects (Parts 1, 2 and 5).

• Use the require function to load code from existing modules (Chap. 28). 

29.1 Introduction to Theory 

Parts 1–5 of this book have covered key remote sensing concepts and demonstrated 
how to implement them in Earth Engine. Most exercises have used local-scale 
examples to enhance understanding and complete tasks within a class-length time 
period. But Earth Engine’s power comes from its scalability—the ability to apply 
geospatial processing across large areas and many years. 

How we go from small to large scales is influenced by Earth Engine’s design. 
Earth Engine runs on many individual computer servers, and its functions are 
designed to split up processing onto these servers. This chapter focuses on common 
approaches to implement large jobs within Earth Engine’s constraints. To do so, 
we first discuss Earth Engine’s underlying infrastructure to provide context for 
existing limits. We then cover four core concepts for scaling: 

1. Using best coding practices. 
2. Breaking up jobs across time. 
3. Breaking up jobs across space. 
4. Building a multipart workflow and exporting intermediate assets. 

Earth Engine: Under the Hood 
As you use Earth Engine, you may begin to have questions about how it works and 
how you can use that knowledge to optimize your workflow. In general, the inner 
workings are opaque to users. Typical fixes and approaches that data scientists use to 
manage memory constraints often do not apply. It is helpful to know what users can 
and cannot control and how your scripts translate to Earth Engine’s server operations. 

Earth Engine is a parallel, distributed system (see Gorelick et al. 2017), which 
means that when you submit tasks, it breaks up pieces of your query onto different 
processors to complete them more efficiently. It then collects the results and returns 
them to you. For many users, not having to manually design this parallel, distributed 
processing is a huge benefit. For some advanced users, it can be frustrating to not
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have better control. We would argue that leaving the details up to Earth Engine is a 
huge time-saver for most cases, and learning to work within a few constraints is a 
good time investment. 

One core concept useful to master is the relationship between client-side and 
server-side operations. Client-side operations are performed within your browser 
(for the JavaScript API Code Editor) or local system (for the Python API). These 
include things such as manipulating strings or numbers in JavaScript. Server-side 
operations are executed on Google’s servers and include all of the ee.* functions. 
By using the Earth Engine APIs—JavaScript or Python—you are building a chain 
of commands to send to the servers and later receive the result back. As much as 
possible, you want to structure your code to send all the heavy lifting to Google and 
keep processing off of your local resources. 

In other words, your work in the Code Editor is making a description of a compu-
tation. All ee objects are just placeholders for server-side objects—their actual value 
does not exist locally on your computer. To see or use the actual value, it has to be 
evaluated by the server. If you print an Earth Engine object, it calls getInfo to 
evaluate and return the value. In contrast, you can also work with JavaScript/Python 
lists or numbers locally and do basic JavaScript/Python things to them, like add num-
bers together or loop over items. These are client-side objects. Whenever you bring 
a server-side object into your local environment, there is a computational cost. 

Table 29.1 describes some nuts and bolts about Earth Engine and their implica-
tions. Table 29.2 provides some of the existing limits on individual tasks.

The Importance of Coding Best Practices 
Good code scales better than bad code. But what is good code? Generally, for Earth 
Engine, good code means (1) using Earth Engine’s server-side operators; (2) avoid-
ing multiple passes through the same image collection; (3) avoiding unnecessary 
conversions; and (4) setting the processing scale or sample numbers appropriate for 
your use case, i.e., avoid using very fine scales or large samples without reason. 

We encourage readers to become familiar with the “Coding Best Practices” page 
in the online Earth Engine User Guide. This page provides examples for avoiding 
mixing client- and server-side functions, unnecessary conversions, costly algorithms, 
combining reducers, and other helpful tips. Similarly, the “Debugging Guide–Scaling 
Errors” page of the online Earth Engine User Guide covers some common problems 
and solutions. 

In addition, some Earth Engine functions are more efficient than others. For exam-
ple, Image.reduceRegions is more efficient than Image.sampleRegions, 
because sampleRegions regenerates the geometries under the hood. These types 
of best practices are trickier to enumerate and somewhat idiosyncratic. We encourage 
users to learn about and make use of the Profiler tab, which will track and display 
the resources used for each operation within your script. This can help identify areas 
to focus efficiency improvements. Note that the profiler itself increases resource use, 
so only use it when necessary to develop a script and remove it for production-level 
execution. Other ways to discover best practices include following/posting questions
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Table 29.1 Characteristics of Google Earth engine and implications for running large jobs 

Earth engine characteristics Implications 

A parallel, distributed system Occasionally, doing the exact same thing in 
two different orders can result in different 
processing distributions, impacting the ability 
to complete the task within system limits 

Most processing is done per tile (generally a 
square that is 256× 256 pixels) 

Tasks that require many tiles are the most 
memory intensive. Some functions have a 
tileScale argument that reduces tile size, 
allowing processing-intensive jobs to succeed 
(at the cost of reduced speed) 

Export mode has higher memory and time 
allocations than interactive mode 

It is better to export large jobs. You can export 
to your Earth Engine assets, your Google 
Drive, or Google Cloud Storage 

Some operations are cached temporarily Running the same job twice could result in 
different run times. Occasionally, tasks may 
run successfully on a second try 

Underlying infrastructure is composed of 
clusters of low-end servers 

There is a hard limit on data size for any 
individual server; large computations need to 
be done in parallel using Earth Engine 
functions 

The image processing domain, scale, and 
projection are defined by the specified output 
and applied backward throughout the 
processing chain 

There are not many cases when you will need 
to manually reproject images, and these 
operations are costly. Similarly, manually 
“clipping” images is typically unnecessary 

Table 29.2 Size limits for Earth engine tasks 

Earth engine component Limits 

Interactive mode Can print up to 5000 records. Computations must finish within five 
minutes 

Export mode Jobs have no time limit as long as they continue to make reasonable 
progress (defined roughly as 600 s per feature, 2 h per aggregation, 
and 10 min per tile). If any one tile, feature, or aggregation takes too 
long, the whole job will get canceled. Any jobs that take longer than 
one week to run will likely fail due to Earth Engine’s software update 
release cycles 

Table assets Maximum of 100 million features, 1000 properties (columns), and 
100,000 vertices for a geometry

to GIS StackExchange or the Earth Engine Developer’s Discussion Group, swapping 
code with others, and experimentation.
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29.2 Practicum 

29.2.1 Topic 1: Scaling Across Time 

In this section, we use an example of extracting climate data at features (points 
or polygons) to demonstrate how to scale an operation across many features 
(Sect. 29.2.1.1) and how to break up large jobs by time units when necessary 
(e.g., by years; Sect. 29.2.1.2). 

29.2.1.1 Scaling up with Earth Engine Operators: Annual Daily 
Climate Data 

Earth Engine’s operators are designed to parallelize queries on the backend with-
out user intervention. In many cases, they are sufficient to accomplish a scaling 
operation. 

As an example, we will extract a daily time series of precipitation, maximum 
temperature, and minimum temperature for county polygons in the USA. We will 
use the GRIDMET Climate Reanalysis product (Abatzoglou 2013), which provides 
daily, 4000 m resolution gridded meteorological data from 1979 to the present 
across the contiguous USA. To save time for this practicum, we will focus on the 
states of Indiana, Illinois, and Iowa in the central USA, which together include 
293 counties (Fig. 29.1). 

Fig. 29.1 Map of study area, showing 293 county features within the states of Iowa, Illinois, and 
Indiana in the USA
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This example uses the ee.Image.reduceRegions operator, which extracts 
statistics from an Image for each Feature (point or polygon) in a 
FeatureCollection. We will map the reduceRegions operator over each 
daily image in an ImageCollection, thus providing us with the daily climate 
information for each county of interest. 

Note that although our example uses a climate ImageCollection, this 
approach transfers to any ImageCollection, including satellite imagery, as 
well as image collections that you have already processed, such as cloud masking 
(Chap. 15) or time series aggregation (Chap. 14). 

First, define the FeatureCollection, ImageCollection, and time 
period: 

// Load county dataset. 
// Filter counties in Indiana, Illinois, and Iowa by state 
FIPS code. 
// Select only the unique ID column for simplicity. 
var countiesAll = 
ee.FeatureCollection('TIGER/2018/Counties'); 
var states = ['17', '18', '19']; 
var uniqueID = 'GEOID'; 
var featColl = 
countiesAll.filter(ee.Filter.inList('STATEFP', states)) 

.select(uniqueID); 

print(featColl.size()); 
print(featColl.limit(1)); 

// Visualize target features (create Figure F6.2.1). 
Map.centerObject(featColl, 5); 
Map.addLayer(featColl); 

// specify years of interest 
var startYear = 2020; 
var endYear = 2020; 

// climate dataset info 
var imageCollectionName = 'IDAHO_EPSCOR/GRIDMET'; 
var bandsWanted = ['pr', 'tmmn', 'tmmx']; 
var scale = 4000;
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Printing the size of the FeatureCollection indicates that there are 293 
counties in our subset. Since we want to pull a daily time series for one year, our 
final dataset will have 106,945 rows—one for each county day. 

Note that from our county FeatureCollection, we select only the GEOID 
column, which represents a unique identifier for each record in this dataset. We 
do this here to simplify print outputs; we could also specify which properties 
to include in the export function (see below). 

Next, load and filter the climate data. Note we adjust the end date to January 
1 of the following year, rather than December 31 of the specified year, since the 
filterDate function has an inclusive start date argument and an exclusive end 
date argument; without this modification, the output would lack data for December 
31. 

// Load and format climate data. 
var startDate = startYear + '-01-01'; 

var endYear_adj = endYear + 1; 
var endDate = endYear_adj + '-01-01'; 

var imageCollection = 
ee.ImageCollection(imageCollectionName) 

.select(bandsWanted) 

.filterBounds(featColl) 

.filterDate(startDate, endDate); 

Now, get the mean value for each climate attribute within each county 
feature. Here, we map the ee.Image.reduceRegions call over the 
ImageCollection, specifying an ee.Reducer.mean reducer. The reducer 
will apply to each band in the image, and it returns the FeatureCollection 
with new properties. We also add a ‘date_ymd’ time property extracted from 
the image to correctly associate daily values with their date. Finally, we flatten 
the output to reform a single FeatureCollection with one feature per county 
day.



582 J. M. Deines et al.

// get values at features 
var sampledFeatures = imageCollection.map(function(image) { 

return image.reduceRegions({ 
collection: featColl, 
reducer: ee.Reducer.mean(), 
scale: scale 

}).filter(ee.Filter.notNull( 
bandsWanted)) // drop rows with no data 
.map(function(f) { // add date property 

var time_start = image.get( 
'system:time_start'); 

var dte = ee.Date(time_start).format( 
'YYYYMMdd'); 

return f.set('date_ymd', dte); 
}); 

}).flatten(); 

print(sampledFeatures.limit(1)); 

Note that we include a filter to remove feature-day rows that lacked data. While 
this is less common when using gridded climate products, missing data can be 
common when reducing satellite images. This is because satellite collections come 
in scene tiles, and each image tile likely does not overlap all of our features unless 
it has first been aggregated temporally. It can also occur if a cloud mask has been 
applied to an image prior to the reduction. By filtering out null values, we can 
reduce empty rows. 

Now, explore the result. If we simply print(sampledFeatures) 
we get our first error message: “User memory limit exceeded.” This is 
because we have created a FeatureCollection that exceeds the size 
limits set for interactive mode. How many are there? We could try 
print(sampledFeatures.size()), but due to the larger size, we receive 
a “Computation timed out” message—it is unable to tell us. Of course, we know 
that we expect 293 counties ×365 days = 106,945 features. We can, however, 
check that our reducer has worked as expected by asking Earth Engine for just 
one feature: print(sampledFeatures.limit(1)). 

Here, we can see the precipitation, minimum temperature, and maximum tem-
perature for the county with GEOID = 17,121 on January 1, 2020 (Fig. 29.2; note, 
temperature is in Kelvin units).

Next, export the full FeatureCollection as a CSV to a folder in your 
Google Drive. Specify the names of properties to include. Build part of the file-
name dynamically based on arguments used for year and data scale, so we do not 
need to manually modify the filenames.
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Fig. 29.2 Screenshot of the print output for one feature after the reduceRegions call

// export info 
var exportFolder = 'GEE_scalingUp'; 
var filename = 'Gridmet_counties_IN_IL_IA_' + scale + 'm_' 
+ 

startYear + '-' + endYear; 

// prepare export: specify properties/columns to include 
var columnsWanted = [uniqueID].concat(['date_ymd'], 
bandsWanted); 
print(columnsWanted); 

Export.table.toDrive({ 
collection: sampledFeatures, 
description: filename, 
folder: exportFolder, 
fileFormat: 'CSV', 
selectors: columnsWanted 

}); 

Code Checkpoint F62a. The book’s repository contains a script that shows what 
your code should look like at this point. 

On our first export, this job took about eight minutes to complete, producing 
a dataset 6.8 MB in size. The data is ready for downstream use but may need 
formatting to suit the user’s goals. You can see what the exported CSV looks like 
in Fig. 29.3.
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Fig. 29.3 Top six rows of the exported CSV viewed in Microsoft Excel and sorted by county 
GEOID 

Using the Selectors Argument 
There are two excellent reasons to use the selectors argument in your 
Export.table.toDrive call. First, if the argument is not specified, Earth 
Engine will generate the column names for the exported CSV from the first fea-
ture in your FeatureCollection. If that feature is missing properties, those 
properties will be dropped from the export for all features. 

Perhaps even more important if you are seeking to scale up an analysis, including 
unnecessary columns can greatly increase file size and even processing time. For 
example, Earth Engine includes a “.geo” field that contains a GeoJSON description 
of each spatial feature. For non-simple geometries, the field can be quite large, as it 
lists coordinates for each polygon vertex. For many purposes, it is not necessary to 
include this information for each daily record (here, 365 daily rows per feature). 

For example, when we ran the same job as above but did not use the selectors 
argument, the output dataset was 5.7 GB (versus 6.8 MB!) and the runtime was 
slower. This is a cumbersomely large file, with no real benefit. We generally rec-
ommend dropping the “.geo” column and other unnecessary properties. To retain 
spatial information, a unique identifier for each feature can be used for downstream 
joins with the spatial data or other properties. If working with point data, latitude 
and longitude columns can be added prior to export to maintain easily accessible 
geographic information, although the.geo column for point data is far smaller than 
for irregularly shaped polygon features. 

29.2.1.2 Scaling Across Time by Batching: Get 20 Years of Daily 
Climate Data 

Above, we extracted one year of daily data for our 293 counties. Let us say we 
want to do the same thing, but for 2001–2020. We have already written our script 
to flexibly specify years, so it is fairly adaptable to this new use case:
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// specify years of interest 
var startYear = 2020; 
var endYear = 2020; 

If we only wanted a few years for a small number of features, we could just 
modify the startYear or endYear and proceed. Indeed, our current example is 
modest in size and number of features, and we were able to run 2001–2020 in one 
export job that took about 2 h, with an output file size of 299 MB. However, with 
larger feature collections, or hourly data, we will again start to bump up against 
Earth Engine’s limits. Generally, jobs of this sort do not fail quickly—exports are 
allowed to run as long as they continue making progress (see Table 29.2). It is not 
uncommon, however, for a large job to take well over 24 h to run, or even to fail 
after more than 24 h of run time, as it accumulates too many records or a single 
aggregation fails. For users, this can be frustrating. 

We generally find it simpler to run several small jobs rather than one large job. 
Outputs can then be combined in external software. This avoids any frustration 
with long-running jobs or delayed failures, and it allows parts of the task to be 
run simultaneously. Earth Engine generally executes from 2 to 20 jobs per user at 
a time, depending on overall user load (although 20 is rare). As a counterpoint, 
there is some overhead for generating separate jobs. 

Important note: When running a batch of jobs, it may be tempting to use mul-
tiple accounts to execute subsets of your batch and thus get your shared results 
faster. However, doing so is a direct violation of the Earth Engine terms of service 
and can result in your account(s) being terminated. 

For-Loops: They are Sometimes OK 
Batching jobs in time is a great way to break up a task into smaller units. Other options 
include batching jobs by spatial regions defined by polygons (see Sect. 29.2.2) or  
for computationally heavy tasks, batching by both space and time. 

Because Export functions are client-side functions, however, you cannot create 
an export within an Earth Engine map command. Instead, we need to loop over the 
variable that will define our batches and create a set of export tasks. 

But wait! Are not we supposed to avoid for-loops at all costs? Yes, within a 
computational chain. Here, we are using a loop to send multiple computational 
chains to the server. 

First, we will start with the same script as in Sect. 29.2.1.1, but we will modify 
the start year. We will also modify the desired output filename to be a generic base 
filename, to which we will append the year for each task within the loop (in the next 
step).
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// Load county dataset. 
var countiesAll = 
ee.FeatureCollection('TIGER/2018/Counties'); 
var states = ['17', '18', '19']; 
var uniqueID = 'GEOID'; 
var featColl = 
countiesAll.filter(ee.Filter.inList('STATEFP', states)) 

.select(uniqueID); 

print(featColl.size()); 
print(featColl.limit(1)); 
Map.addLayer(featColl); 

// Specify years of interest. 
var startYear = 2001; 
var endYear = 2020; 

// Climate dataset info. 
var imageCollectionName = 'IDAHO_EPSCOR/GRIDMET'; 
var bandsWanted = ['pr', 'tmmn', 'tmmx']; 
var scale = 4000; 

// Export info. 
var exportFolder = 'GEE_scalingUp'; 
var filenameBase = 'Gridmet_counties_IN_IL_IA_' + scale + 
'm_'; 

Now, modify the code in Sect. 29.2.1.1 to use a looping variable, i, to represent 
each year. Here, we are using standard JavaScript looping syntax, where i will take 
on each value between our startYear (2001) and our endYear (2020) for each 
loop through this section of code, thus creating 20 queries to send to Earth Engine’s 
servers.
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// Initiate a loop, in which the variable i takes on values 
of each year. 
for (var i = startYear; i <= endYear; i++) {        // for 
each year.... 

// Load climate collection for that year. 
var startDate = i + '-01-01'; 

var endYear_adj = i + 1; 
var endDate = endYear_adj + '-01-01'; 
var imageCollection = 

ee.ImageCollection(imageCollectionName) 
.select(bandsWanted) 
.filterBounds(featColl) 
.filterDate(startDate, endDate); 

// Get values at feature collection. 
var sampledFeatures = imageCollection.map(function(image) 

{ 
return image.reduceRegions({ 
collection: featColl, 
reducer: ee.Reducer.mean(),         
tileScale: 1, 
scale: scale 

}).filter(ee.Filter.notNull(bandsWanted))  // remove 
rows without data 

.map(function(f) {                  // add date 
property 

var time_start = image.get('system:time_start'); 
var dte = ee.Date(time_start).format('YYYYMMdd'); 
return f.set('date_ymd', dte); 

}); 
}).flatten(); 

// Prepare export: specify properties and filename. 
var columnsWanted = [uniqueID].concat(['date_ymd'], 

bandsWanted); 
var filename = filenameBase + i; 
Export.table.toDrive({ 
collection: sampledFeatures, 
description: filename,
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folder: exportFolder, 
fileFormat: 'CSV', 
selectors: columnsWanted 

}); 

} 

Code Checkpoint F62b. The book’s repository contains a script that shows what 
your code should look like at this point. 

When we run this script, it builds our computational query for each year, creating 
a batch of 20 individual jobs that will show up in the Task pane (Fig. 29.4). Each 
task name includes the year, since we used our looping variable i to modify the base 
filename we specified. 

We now encounter a downside to creating batch tasks within the JavaScript Code 
Editor: we need to click Run to execute each job in turn. Here, we made this easier 
by programmatically assigning each job the filename we want, so we can hold the 
Cmd/Ctrl key and click Run to avoid the export task option window and only need 
to click once per task. Still, one can imagine that at some number of tasks, one’s 
patience for clicking Run will be exceeded. We assume that number is different for 
everyone. 

Note: If at any time you have submitted several tasks to the server but want to 
cancel them all, you can do so more easily from the Earth Engine Task Manager 
that is linked at the top of the Task pane. You can read about that task manager in 
the Earth Engine User Guide. 

In order to auto-execute jobs in batch mode, we would need to use the Python 
API. Interested users can see the Earth Engine User Guide Python API tutorial for 
further details about the Python API.

Fig. 29.4 Creation of batch tasks for each year 
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29.2.2 Topic 2: Scaling Across Space via Spatial Tiling 

Breaking up jobs in space is another key strategy for scaling operations in Earth 
Engine. Here, we will focus on making a cloud-free composite from the Sentinel-2 
Level 2A Surface Reflectance product. The approach is similar to that in Chap. 15, 
which explores cloud-free compositing. The main difference is that Landsat scenes 
come with a reliable quality band for each scene, whereas the process for Sentinel-
2 is a bit more complicated and computationally intense (see below). 

Our region of interest is the state of Washington in the USA for demonstration 
purposes, but the method will work at much larger continental scales as well. 

Cloud Masking Approach 
While we do not intend to cover the theory behind Sentinel-2 cloud masking, we do 
want to include a brief description of the process to convey the computational needs 
of this approach. 

The Sentinel-2 Level 2A collection does not come with a robust cloud mask. 
Instead, we will build one from related products that have been developed for this pur-
pose. Following the existing Sentinel-2 cloud masking tutorials in the Earth Engine 
guides, this approach requires three Sentinel-2 image collections:

• The Sentinel-2 Level 2A Surface Reflectance product. This is the dataset we want 
to use to build our final composite.

• The Sentinel-2 Cloud Probability Dataset, an ImageCollection that contains 
cloud probabilities for each Sentinel-2 scene.

• The Sentinel-2 Level 1C top-of-atmosphere product. This collection is needed 
to run the Cloud Displacement Index to identify cloud shadows, which is calcu-
lated using ee.Algorithms.Sentinel2.CDI (see Frantz et al. 2018 for 
algorithm description). 

These three image collections all contain 10 m resolution data for every Sentinel-
2 scene. We will join them based on their ‘system:index’ property, so we 
can relate each Level 2A scene with the corresponding cloud probability and cloud 
displacement index. Furthermore, there are two ee.Image.projection steps 
to control the scale when calculating clouds and their shadows. 

To sum up, the cloud masking approach is computationally costly, thus requiring 
some thought when applying it at scale. 

29.2.2.1 Generate a Cloud-Free Satellite Composite: Limits 
to On-the-Fly Computing 

Note: Our focus here is on code structure for implementing spatial tiling. Below, 
we import existing tested functions for cloud masking using the require 
command. 

First, define our region and time of interest; then, load the module containing 
the cloud functions.
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// Set the Region of Interest:Seattle, Washington, United 
States 
var roi = ee.Geometry.Point([-122.33524518034544, 
47.61356183942883]); 

// Dates over which to create a median composite. 
var start = ee.Date('2019-03-01'); 
var end = ee.Date('2019-09-01'); 

// Specify module with cloud mask functions. 
var s2mask_tools = require( 

'projects/gee-edu/book:Part F - Fundamentals/F6 -
Advanced Topics/F6.2 Scaling Up/modules/s2cloudmask.js' 
); 

Next, load and filter our three Sentinel-2 image collections. 

// Sentinel-2 surface reflectance data for the composite. 
var s2Sr = ee.ImageCollection('COPERNICUS/S2_SR') 

.filterDate(start, end) 

.filterBounds(roi) 

.select(['B2', 'B3', 'B4', 'B5']); 

// Sentinel-2 Level 1C data (top-of-atmosphere).  
// Bands B7, B8, B8A and B10 needed for CDI and the cloud 
mask function. 
var s2 = ee.ImageCollection('COPERNICUS/S2') 

.filterBounds(roi) 

.filterDate(start, end) 

.select(['B7', 'B8', 'B8A', 'B10']); 

// Cloud probability dataset - used in cloud mask function 
var s2c = 
ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') 

.filterDate(start, end) 

.filterBounds(roi); 

Now, apply the cloud mask:
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// Join the cloud probability dataset to surface 
reflectance. 
var withCloudProbability = s2mask_tools.indexJoin(s2Sr, 
s2c, 

'cloud_probability'); 

// Join the L1C data to get the bands needed for CDI. 
var withS2L1C = 
s2mask_tools.indexJoin(withCloudProbability, s2, 

'l1c'); 

// Map the cloud masking function over the joined 
collection. 
// Cast output to ImageCollection 
var masked = ee.ImageCollection(withS2L1C.map(s2mask_tools 
.maskImage)); 

Next, generate and visualize the median composite: 

// Take the median, specifying a tileScale to avoid memory 
errors. 
var median = masked.reduce(ee.Reducer.median(), 8); 

// Display the results. 
Map.centerObject(roi, 12); 
Map.addLayer(roi); 

var viz = { 
bands: ['B4_median', 'B3_median', 'B2_median'], 
min: 0, 
max: 3000 

}; 
Map.addLayer(median, viz, 'median'); 

Code Checkpoint F62c. The book’s repository contains a script that shows what 
your code should look like at this point. 

After about 1–3 min, Earth Engine returns our composite to us on the fly 
(Fig. 29.5). Note that panning and zooming to a new area require that Earth Engine 
must again issue the compositing request to calculate the image for new areas. 
Given the delay, this is not a very satisfying way to explore our composite.
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Fig. 29.5 Map view of Seattle, Washington, USA (left), and the corresponding Sentinel-2 com-
posite (right) 

Map.centerObject(roi, 9); 
Map.addLayer(roi); 
Map.addLayer(median, viz, 'median'); 

Fig. 29.6 Error message for exceeding memory limits in interactive mode 

Next, expand our view (set zoom to 9) to exceed the limits of on-the-fly 
computation (Fig. 29.6). 

As you can see, this is an excellent candidate for an export task rather than 
running in “on-the-fly” interactive mode, as above. 

29.2.2.2 Generate a Regional Composite Through Spatial Tiling 
Our goal is to apply the cloud masking method in Sect. 29.2.2.1 to the state of 
Washington, USA. In our testing, we successfully exported one Sentinel-2 com-
posite for this area in about 9 h, but for this tutorial, let us presume we need to 
split the task up to be successful. 

Essentially, we want to split our region of interest up into a regular grid. For 
each grid, we will export a composite image into a new ImageCollection 
asset. We can then load and mosaic our composite for use in downstream scripts 
(see below). 

First, generate a spatial polygon grid (FeatureCollection) of desired size 
over your region of interest (see Fig. 29.7).
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// Specify helper functions. 
var s2mask_tools = require( 

'projects/gee-edu/book:Part F - Fundamentals/F6 -
Advanced Topics/F6.2 Scaling Up/modules/s2cloudmask.js' 
); 

// Set the Region of Interest: Washington, USA. 
var roi = ee.FeatureCollection('TIGER/2018/States') 

.filter(ee.Filter.equals('NAME', 'Washington')); 

// Specify grid size in projection, x and y units (based on 
projection). 
var projection = 'EPSG:4326'; // WGS84 lat lon 
var dx = 2.5; 
var dy = 1.5; 

// Dates over which to create a median composite. 
var start = ee.Date('2019-03-01'); 
var end = ee.Date('2019-09-01'); 

// Make grid and visualize. 
var proj = ee.Projection(projection).scale(dx, dy); 
var grid = roi.geometry().coveringGrid(proj); 

Map.addLayer(roi, {}, 'roi'); 
Map.addLayer(grid, {}, 'grid');

Fig. 29.7 Visualization of the regular spatial grid generated for use in spatial batch processing 
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Fig. 29.8 The “create new 
image collection asset” menu 
in the Code Editor 

Next, create a new, empty ImageCollection asset to use as our export 
destination (Assets > New > Image Collection; Fig. 29.8). Name the image col-
lection ‘S2_composite_WA’ and specify the asset location in your user folder (e.g., 
“path/to/your/asset/s2_composite_WA”). 

Specify the ImageCollection to export to, along with a base name for each 
image (the tile number will be appended in the batch export). 

// Export info. 
var assetCollection = 'path/to/your/asset/s2_composite_WA'; 
var imageBaseName = 'S2_median_'; 

Extract grid numbers to use as looping variables. Note that there is one 
getInfo call here, which should be used sparingly and never within a for-loop 
if you can help it. We use it to bring the number of grid cells we have generated 
onto the client side to set up the for-loop over grids. Note that if your grid has too 
many elements, you may need a different strategy. 

// Get a list based on grid number. 
var gridSize = grid.size().getInfo(); 
var gridList = grid.toList(gridSize);
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Batch generate a composite image task export for each grid via looping: 

// In each grid cell, export a composite 
for (var i = 0; i < gridSize; i++) { 

// Extract grid polygon and filter S2 datasets for this 
region. 

var gridCell = ee.Feature(gridList.get(i)).geometry(); 

var s2Sr = ee.ImageCollection('COPERNICUS/S2_SR') 
.filterDate(start, end) 
.filterBounds(gridCell) 
.select(['B2', 'B3', 'B4', 'B5']); 

var s2 = ee.ImageCollection('COPERNICUS/S2') 
.filterDate(start, end) 
.filterBounds(gridCell) 
.select(['B7', 'B8', 'B8A', 'B10']); 

var s2c = 
ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') 

.filterDate(start, end) 

.filterBounds(gridCell); 

// Apply the cloud mask. 
var withCloudProbability = s2mask_tools.indexJoin(s2Sr, 

s2c, 
'cloud_probability'); 

var withS2L1C = 
s2mask_tools.indexJoin(withCloudProbability, s2, 

'l1c'); 
var masked = 

ee.ImageCollection(withS2L1C.map(s2mask_tools 
.maskImage)); 

// Generate a median composite and export. 
var median = masked.reduce(ee.Reducer.median(), 8); 

// Export. 
var imagename = imageBaseName + 'tile' + i; 
Export.image.toAsset({ 

image: median, 
description: imagename, 
assetId: assetCollection + '/' + imagename, 
scale: 10,
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region: gridCell, 
maxPixels: 1e13 

}); 
} 

Code Checkpoint F62d. The book’s repository contains a script that shows what 
your code should look like at this point. 

Similar to Sect. 29.2.1.2, we now have a list of tasks to execute. We can hold 
the Cmd/Ctrl key and click Run to execute each task (Fig. 29.9). Again, users with 
applications requiring large batches may want to explore the Earth Engine Python 
API, which is well-suited to batching work. The output ImageCollection is 
35.3 GB, so you may not want to execute all (or any) of these tasks but can access 
our pre-generated image, as discussed below. 

In addition to being necessary for very large regions, batch processing can speed 
things up for moderate scales. In our tests, tiles averaged about 1 h to complete. 
Because three jobs in our queue were running simultaneously, we covered the full 
state of Washington in about 4 h (compared to about 9 h when tested for the full 
state of Washington at once). Users should note, however, that there is also an 
overhead to spinning up each batch task. Finding the balance between task size 
and task number is a challenge for most Earth Engine users that becomes easier 
with experience. 

In a new script, load the exported ImageCollection and mosaic for use.

Fig. 29.9 Spatial batch tasks have been generated and are ready to run 
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// load image collection and mosaic into single image 
var assetCollection = 'projects/gee-book/assets/F6-
2/s2_composite_WA'; 
var composite = 
ee.ImageCollection(assetCollection).mosaic(); 

// Display the results 
var geometry = ee.Geometry.Point([-120.5873563817392, 

47.39035206888694 
]); 
Map.centerObject(geometry, 6); 
var vizParams = { 

bands: ['B4_median', 'B3_median', 'B2_median'], 
min: 0, 
max: 3000 

}; 
Map.addLayer(composite, vizParams, 'median'); 

Code Checkpoint F62e. The book’s repository contains a script that shows what 
your code should look like at this point. 

Note the ease, speed, and joy of panning and zooming to explore the 
pre-computed composite asset (Fig. 29.10) compared to the on-the-fly version 
discussed in Sect. 29.2.2.1.

29.2.3 Topic 3: Multistep Workflows and Intermediate Assets 

Often, our goals require several processing steps that cannot be completed within 
one Earth Engine computational chain. In these cases, the best strategy becomes 
breaking down tasks into individual pieces that are created, stored in assets, and 
used across several scripts. Each sequential script creates an intermediate output, 
and this intermediate output becomes the input to the next script. 

As an example, consider the land use classification task of identifying irri-
gated agricultural lands. This type of classification can benefit from several types 
of evidence, including satellite composites, aggregated weather information, soil 
information, and/or crop type locations. Individual steps for this type of work 
might include:

• Generating satellite composites of annual or monthly vegetation indices.
• Processing climate data into monthly or seasonal values.
• Generating random point locations from a ground truth layer for use as a feature 

training dataset and accuracy validation, and extracting composite and weather 
values at these features.
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Fig. 29.10 Sentinel-2 composite covering the state of Washington, loaded from asset. The 
remaining white colors are snow-capped mountains, not clouds

• Training a classifier and applying it, possibly across multiple years; researchers 
will often implement multiple classifiers and compare the performance of 
different methods.

• Implementing post-classification cleaning steps, such as removing “speckle”.
• Evaluating accuracy at ground truth validation points and against government 

statistics using total area per administrative boundary.
• Exporting your work as spatial layers, visualizations, or other formats. 

Multipart workflows can become unwieldy to manage, particularly if there are 
multiple collaborators or the project has a long timeline; it can be difficult to 
remember why each script was developed and where it fits in the overall workflow. 

Here, we provide tips for managing multipart workflows. These are some-
what opinionated and based largely on concepts from “Good Enough Practices 
in Scientific Computing” (Wilson et al. 2017). Ultimately, your personal workflow 
practices will be a combination of what works for you, what works for your larger 
team and organization, and hopefully, what works for good documentation and 
reproducibility.
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Tip 1. Create A Repository For Each Project 
The repository can be considered the fundamental project unit. In Earth Engine, 
sharing permissions are set for each individual repository, so this allows you to share 
a specific project with others (see Chap. 28). 

By default, Earth Engine saves new scripts in a “default” repository specific for 
each user (users/ < username > /default). You can create new repositories on the 
Scripts tab of the Code Editor (Fig. 29.11). 

To adjust permissions for each repository, click on the Gear icon (Fig. 29.12). 
For users familiar with version control, Earth Engine uses a git-based script man-

ager, so each repository can also be managed, edited, and/or synced with your local 
copy or collaborative spaces like GitHub. 

Tip 2. Make a Separate Script for Each Step, and Make Script File Names 
Informative and Self-sorting 
Descriptive, self-sorting filenames are an excellent “good enough” way to keep your 
projects organized. We recommend starting script names with zero-padded numeric 
values to take advantage of default ordering. Because we are generating assets in 
early scripts that are used in later scripts, it is important to preserve the order of your 
workflow. The name should also include short descriptions of what the script does 
(Fig. 29.13).

Fig. 29.11 Code Editor menu for creating new repositories 

Fig. 29.12 Access the sharing and permissions’ menu for each repository by clicking the Gear 
icon 
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Fig. 29.13 Example project 
repository with multiple 
scripts. Using leading 
numbers when naming scripts 
allows you to order them by 
their position in the workflow 

Leaving some decimal places between successive scripts gives you the ability to 
easily insert any additional steps you did not originally anticipate. And, zero-padding 
means that your self-sorting still works once you move into double-digit numbers. 

Other script organization strategies might involve including subfolders to collect 
scripts related to main steps. For example, one could have a subfolder “04_classifiers” 
to keep alternative classification scripts in one place, using a more tree-based file 
structure. Again, each user or group will develop a system that works for them. The 
important part is to have an organizational system. 

Tip 3. Consider Data Types and File Sizes When Storing Intermediates 
Images and image collections are common intermediate file types, since generating 
satellite composites or creating land use classifications tends to be computationally 
intensive. These assets can also be quite large, depending on the resolution and region 
size. Recall that our single-year, subregional Sentinel-2 composite in Sect. 29.2.2 
was about 23 GB. 

Image values can be stored from 8-bit integers to 64-bit double floats (numbers 
with decimals). Higher bits allow for more precision, but have much larger file sizes 
and are not always necessary. For example, if we are generating a land use map with 
five classes, we can convert that to a signed or unsigned 8-bit integer using toInt8 
or toUint8 prior to exporting to asset, which can accommodate 256 unique values. 
This results in a smaller file size. Selectively retaining only bands of interest is also 
helpful to reduce size. 

For cases requiring decimals and precision, consider whether a 32-bit float will 
do the job instead of a 64-bit double—toFloat will convert an image to a 32-bit 
float. If you find that you need to conserve storage, you can also scale float values and 
store as an integer image (image.multiply(100).toInt16(), for example).
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This would retain precision to the second decimal place and reduce file size by a 
factor of two. Note that this may require you to unscale the values in downstream 
use. Ultimately, the appropriate data type will be specific to your needs. 

And of course, as mentioned above under “The Importance of Best Coding 
Practices,” be aware of the scale resolution you are working at, and avoid using 
unnecessarily high resolution when it is not supported by either the input imagery 
or your research goals. 

Tip 4. Consider Google Cloud Platform for Hosting Larger Intermediates 
If you are working with very large or very many files, you can link Earth Engine with 
Cloud Projects on Google Cloud Platform. See the Earth Engine documentation on 
“Setting Up Earth Engine Enabled Cloud Projects” for more information. 

29.3 Synthesis and Conclusion 

Earth Engine is built to be scaled. Scaling up working scripts, however, can present 
challenges when the computations take too long or return results that are too large 
or numerous. We have covered some key strategies to use when you encounter 
memory or computational limits. Generally, they involve (1) optimizing your code 
based on Earth Engine’s functions and infrastructure; (2) working at scales appro-
priate for your data, question, and region of interest and not at higher resolutions 
than necessary; and (3) breaking up tasks into discrete units. 
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30Sharing Work in Earth Engine: Basic 
UI and Apps 

Qiusheng Wu 

Overview 
The purpose of this chapter is to demonstrate how to design and publish Earth 
Engine Apps using both JavaScript and Python. You will be introduced to the 
Earth Engine User Interface JavaScript API and the geemap Python package. Upon 
completion of this chapter, you will be able to publish an Earth Engine App with 
a split-panel map for visualizing land cover change. 

Learning Outcomes

• Designing a user interface for an Earth Engine App using JavaScript.
• Publishing an Earth Engine App for visualizing land cover change.
• Developing an Earth Engine App using Python and geemap.
• Deploying an Earth Engine App using a local computer as a web server.
• Publishing an Earth Engine App using Python and free cloud platforms.
• Creating a conda environment using Anaconda/Miniconda.
• Installing Python packages and using Jupyter Notebook.
• Committing changes to a GitHub repository.
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Assumes you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Use the basic functions and logic of Python. 

30.1 Introduction to Theory 

Earth Engine has a user interface API that allows users to build and publish inter-
active web apps directly from the JavaScript Code Editor. Many readers will have 
encountered a call to ui.Chart in other chapters, but much more interface func-
tionality is available. In particular, users can utilize the ui functions to construct 
an entire graphical user interface (GUI) for their Earth Engine script. The GUI 
may include simple widgets (e.g., labels, buttons, checkboxes, sliders, text boxes) 
as well as more complex widgets (e.g., charts, maps, panels) for controlling the 
GUI layout. A complete list of the ui widgets and more information about panels 
can be found at the links below. Once a GUI is constructed, users can publish the 
App from the JavaScript Code Editor by clicking the Apps button above the script 
panel in the Code Editor.

• Widgets: https://developers.google.com/earth-engine/guides/ui_widgets
• Panels: https://developers.google.com/earth-engine/guides/ui_panels. 

Unlike the Earth Engine JavaScript API, the Earth Engine Python API does 
not provide functionality for building interactive user interfaces. Fortunately, the 
Jupyter ecosystem has ipywidgets, an architecture for creating interactive user 
interface controls (e.g., buttons, sliders, checkboxes, text boxes, dropdown lists) in 
Jupyter notebooks that communicate with Python code. The integration of graphi-
cal widgets into the Jupyter Notebook workflow allows users to configure ad hoc 
control panels to interactively sweep over parameters using graphical widget con-
trols. One very powerful widget is the output widget, which can be used to display 
rich output generated by IPython, such as text, images, charts, and videos. A com-
plete list of widgets and more information about the output widget can be found 
at the links below. By integrating ipyleaflet (for creating interactive maps) and 
ipywidgets (for designing interactive user interfaces), the geemap Python package 
(https://geemap.org) makes it much easier to explore and analyze massive Earth 
Engine datasets via a web browser in a Jupyter environment suitable for interactive 
exploration, teaching, and sharing. Users can build interactive Earth Engine Apps 
using geemap with minimal coding (Fig. 30.1).

• Widgets: https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List. 
html

• Output: https://ipywidgets.readthedocs.io/en/latest/examples/Output%20W 
idget.html.

https://developers.google.com/earth-engine/guides/ui_widgets
https://developers.google.com/earth-engine/guides/ui_panels
https://geemap.org
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/latest/examples/Output%20Widget.html
https://ipywidgets.readthedocs.io/en/latest/examples/Output%20Widget.html
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Fig. 30.1 GUI of geemap in a Jupyter environment

30.2 Practicum 

30.2.1 Section 1. Building an Earth Engine App Using JavaScript 

In this section, you will learn how to design a user interface for an Earth Engine 
App using JavaScript and the Earth Engine User Interface API. Upon completion 
of this section, you will have an Earth Engine App with a split-panel map for 
visualizing land cover change using the Landsat-based United States Geological 
Survey National Land Cover Database (NLCD). 

First, let’s define a function for filtering the NLCD ImageCollection by 
year and select the landcover band. The function returns an Earth Engine 
ui.Map.Layer of the landcover band of the selected NLCD image. Note 
that as of this writing, NLCD spans nine epochs: 1992, 2001, 2004, 2006, 2008, 
2011, 2013, 2016, and 2019. The 1992 data are primarily based on unsupervised 
classification of Landsat data, while the rest of the images rely on the impervi-
ousness data layer for the urban classes and on a decision-tree classification for 
the rest. The 1992 image is not directly comparable to any later editions of NLCD 
(see the Earth Engine Data Catalog for more details, if needed). Therefore, we will 
use only the eight epochs after 2000 in this lab.
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// Get an NLCD image by year. 
var getNLCD = function(year) { 

// Import the NLCD collection. 
var dataset = ee.ImageCollection( 

'USGS/NLCD_RELEASES/2019_REL/NLCD'); 

// Filter the collection by year. 
var nlcd = dataset.filter(ee.Filter.eq('system:index', 

year)) 
.first(); 

// Select the land cover band. 
var landcover = nlcd.select('landcover'); 
return ui.Map.Layer(landcover, {}, year); 

}; 

Our intention is to create a dropdown list so that when a particular epoch is 
selected, the corresponding NLCD image layer will be displayed on the map. We 
will define a dictionary with each NLCD epoch as the key and its corresponding 
NLCD image layer as the value. The keys of the dictionary (i.e., the eight NLCD 
epochs) will be used as the input to the dropdown lists (ui.Select) on the 
split-level map. 

// Create a dictionary with each year as the key 
// and its corresponding NLCD image layer as the value. 
var images = { 

'2001': getNLCD('2001'), 
'2004': getNLCD('2004'), 
'2006': getNLCD('2006'), 
'2008': getNLCD('2008'), 
'2011': getNLCD('2011'), 
'2013': getNLCD('2013'), 
'2016': getNLCD('2016'), 
'2019': getNLCD('2019'), 

}; 

The split-panel map is composed of two individual maps, leftMap 
and rightMap. The map controls (e.g., zoomControl, scaleControl, 
mapTypeControl) will be shown only on rightMap. A control panel 
(ui.Panel) composed of a label (ui.Label) and a dropdown list 
(ui.Select) is added to each map. When an NLCD epoch is selected from a 
dropdown list, the function updateMap will be called to show the corresponding 
image layer of the selected epoch.
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// Create the left map, and have it display the first 
layer. 
var leftMap = ui.Map(); 
leftMap.setControlVisibility(false); 
var leftSelector = addLayerSelector(leftMap, 0, 'top-
left'); 

// Create the right map, and have it display the last 
layer. 
var rightMap = ui.Map(); 
rightMap.setControlVisibility(true); 
var rightSelector = addLayerSelector(rightMap, 7, 'top-
right'); 

// Adds a layer selection widget to the given map, to allow 
users to 
// change which image is displayed in the associated map. 
function addLayerSelector(mapToChange, defaultValue, 
position) { 

var label = ui.Label('Select a year:'); 

// This function changes the given map to show the 
selected image. 

function updateMap(selection) { 
mapToChange.layers().set(0, images[selection]); 

} 

// Configure a selection dropdown to allow the user to 
choose 

// between images, and set the map to update when a 
user 

// makes a selection. 
var select = ui.Select({ 

items: Object.keys(images), 
onChange: updateMap 

}); 
select.setValue(Object.keys(images)[defaultValue], 
true);
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style: { 
position: position 

} 
}); 

mapToChange.add(controlPanel); 
} 

var controlPanel = 
ui.Panel({ 

widgets: [label, select], 

When displaying a land cover classification image on the Map, it would be 
useful to add a legend to make it easier for users to interpret the land cover type 
associated with each color. Let’s define a dictionary that will be used to construct 
the legend. The dictionary contains two keys: names (a list of land cover types) 
and colors (a list of colors associated with each land cover type). The legend 
will be placed in the bottom right of the Map. 

// Set the legend title. 
var title = 'NLCD Land Cover Classification'; 
// Set the legend position. 
var position = 'bottom-right'; 
// Define a dictionary that will be used to make a legend 
var dict = { 

'names': [ 
'11 Open Water', 
'12 Perennial Ice/Snow', 
'21 Developed, Open Space', 
'22 Developed, Low Intensity', 
'23 Developed, Medium Intensity', 
'24 Developed, High Intensity', 
'31 Barren Land (Rock/Sand/Clay)', 
'41 Deciduous Forest', 
'42 Evergreen Forest', 
'43 Mixed Forest', 
'51 Dwarf Scrub', 
'52 Shrub/Scrub', 
'71 Grassland/Herbaceous', 
'72 Sedge/Herbaceous',
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'73 Lichens', 
'74 Moss', 
'81 Pasture/Hay', 
'82 Cultivated Crops', 
'90 Woody Wetlands', 
'95 Emergent Herbaceous Wetlands', 

], 

'colors': [ 
'#466b9f', '#d1def8', '#dec5c5', '#d99282', 
'#eb0000', 

'#b3ac9f', '#68ab5f', '#1c5f2c', '#b5c58f', 
'#af963c', '#ccb879', 

'#dfdfc2', '#d1d182', '#a3cc51', '#82ba9e', 
'#dcd939', '#ab6c28', 

'#b8d9eb', '#6c9fb8', 
] 

}; 

'#ab0000', 

With the legend dictionary defined above, we can now create a panel to hold the 
legend widget and add it to the Map. Each row on the legend widget is composed 
of a color box followed by its corresponding land cover type. 

// Create a panel to hold the legend widget. 
var legend = ui.Panel({ 

style: { 
position: position, 
padding: '8px 15px' 

} 
}); 

// Function to generate the legend. 
function addCategoricalLegend(panel, dict, title) {
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// Creates and styles 1 row of the legend. 
var makeRow = function(color, name) { 

// Create the label that is actually the colored 
box. 

var colorBox = ui.Label({ 
style: { 

backgroundColor: color, 
// Use padding to give the box height and 

width. 
padding: '8px', 
margin: '0 0 4px 0' 

} 
}); 

// Create the label filled with the description 
text. 

var description = ui.Label({ 
value: name, 
style: { 

margin: '0 0 4px 6px' 
} 

}); 

return ui.Panel({ 
widgets: [colorBox, description], 
layout: ui.Panel.Layout.Flow('horizontal') 

}); 
}; 

// Create and add the legend title. 
var legendTitle = ui.Label({ 

value: title, 
style: { 

fontWeight: 'bold', 
fontSize: '18px', 
margin: '0 0 4px 0', 
padding: '0' 

} 
}); 
panel.add(legendTitle); 

var loading = ui.Label('Loading legend...', { 
margin: '2px 0 4px 0' 

}); 
panel.add(loading);
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// Get the list of palette colors and class names from 
the image. 

var palette = dict.colors; 
var names = dict.names; 
loading.style().set('shown', false); 

for (var i = 0; i < names.length; i++) { 
panel.add(makeRow(palette[i], names[i])); 

} 

rightMap.add(panel); 

} 

The last step is to create a split-panel map to hold the linked maps (leftMap 
and rightMap) and tie everything together. When users pan and zoom one map, 
the other map will also be panned and zoomed to the same extent automatically. 
When users select a year from a dropdown list, the image layer will be updated 
accordingly. Users can use the slider to swipe through and visualize land cover 
change easily (Fig. 30.2). Please make sure you minimize the Code Editor and 
maximize the Map so that you can see the dropdown widget in the upper-right 
corner of the map. 

Fig. 30.2 Split-panel map for visualizing land cover change using NLCD
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addCategoricalLegend(legend, dict, title); 

// Create a SplitPanel to hold the adjacent, linked maps. 
var splitPanel = ui.SplitPanel({ 

firstPanel: leftMap, 
secondPanel: rightMap, 
wipe: true, 
style: { 

stretch: 'both' 
} 

}); 

// Set the SplitPanel as the only thing in the UI root. 
ui.root.widgets().reset([splitPanel]); 
var linker = ui.Map.Linker([leftMap, rightMap]); 
leftMap.setCenter(-100, 40, 4); 

Code Checkpoint F63a. The book’s repository contains a script that shows what 
your code should look like at this point. 

30.2.2 Section 2. Publishing an Earth Engine App from the Code 
Editor 

The goal of this section is to publish the Earth Engine App that we created in 
Sect. 30.2.1. The look and feel of interfaces changes often; if the exact windows 
described below change over time, the concepts should remain stable to help you to 
publish your App. First, load the script (see the Code Checkpoint in Sect. 30.2.1) 
into the Code Editor. Then, open the Manage Apps panel by clicking the Apps 
button above the script panel in the Code Editor (Fig. 30.3). 

Now click on the New App button (Fig. 30.4). 
In the Publish New App dialog (Fig. 30.5), choose a name for the App (e.g., 

NLCD Land Cover Change), select a Google Cloud Project, provide a thumbnail to

Fig. 30.3 Apps button in the JavaScript Code Editor 

Fig. 30.4 New App button 
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be shown in the Public Apps Gallery, and specify the location of the App’s source 
code. You may restrict access to the App to a particular Google Group or make it 
publicly accessible. Check Feature this app in your Public Apps Gallery if you 
would like this App to appear in your public gallery of Apps available at https:// 
USERNAME.users.earthengine.app. When all fields are filled out and validated, 
the Publish button will be enabled; click it to complete publishing the App. 

To manage an App from the Code Editor, open the Manage Apps panel 
(Fig. 30.6) by clicking the Apps button above the script panel in the Code Editor 
(Fig. 30.3). There, you can update your App’s configuration or delete the App.

Fig. 30.5 Publish New App dialog 

https://USERNAME.users.earthengine.app
https://USERNAME.users.earthengine.app
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Fig. 30.6 Manage Apps panel 

30.2.3 Section 3. Developing an Earth Engine App Using geemap 

In this section, you will learn how to develop an Earth Engine App using the 
geemap Python package and Jupyter Notebook. The geemap package is available 
on both PyPI (pip) and conda-forge. It is highly recommended that you create a 
fresh conda environment to install geemap. 

Code Checkpoint F63b. The book’s repository contains information about setting 
up a conda environment and installing geemap. 

Once you have launched a Jupyter Notebook in your browser, you can continue 
with the next steps of the lab. 

On the Jupyter Notebook interface, click the New button in the upper-right 
corner and select Python 3 to create a new notebook. Change the name of the 
notebook from “Untitled” to something meaningful (e.g., “nlcd_app”). With the 
newly created notebook, we can start writing and executing Python code. 

First, let’s import the Earth Engine and geemap libraries. Press Alt + Enter to 
execute the code and create a new cell below. 

import ee 
import geemap 

Create an interactive map by specifying the map center (latitude, longitude) and 
zoom level (1–18). If this is the first time you use geemap and the Earth Engine 
Python API, a new tab will open in your browser asking you to authenticate Earth 
Engine. Follow the on-screen instructions to authenticate Earth Engine. 

Map = geemap.Map(center=[40, -100], zoom=4) 
Map
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Retrieve the NLCD 2019 image by filtering the NLCD ImageCollection 
and selecting the landcover band. Display the NLCD 2019 image on the 
interactive Map by using Map.addLayer. 

# Import the NLCD collection. 
dataset = 
ee.ImageCollection('USGS/NLCD_RELEASES/2019_REL/NLCD') 

# Filter the collection to the 2019 product. 
nlcd2019 = dataset.filter(ee.Filter.eq('system:index', 
'2019')).first() 

# Select the land cover band. 
landcover = nlcd2019.select('landcover') 

# Display land cover on the map. 
Map.addLayer(landcover, {}, 'NLCD 2019') 
Map 

Next, add the NLCD legend to the Map. The geemap package has several built-
in legends, including the NLCD legend. Therefore, you can add the NLCD legend 
to the Map by using just one line of code (Map.add_legend). 

title = 'NLCD Land Cover Classification' 
Map.add_legend(legend_title=title, builtin_legend='NLCD') 

Alternatively, if you want to add a custom legend, you can define a leg-
end dictionary with labels as keys and colors as values, then you can use 
Map.add_legend to add the custom legend to the Map.
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legend_dict = { 
'11 Open Water': '466b9f', 
'12 Perennial Ice/Snow': 'd1def8', 
'21 Developed, Open Space': 'dec5c5', 
'22 Developed, Low Intensity': 'd99282', 
'23 Developed, Medium Intensity': 'eb0000', 
'24 Developed High Intensity': 'ab0000', 
'31 Barren Land (Rock/Sand/Clay)': 'b3ac9f', 
'41 Deciduous Forest': '68ab5f', 
'42 Evergreen Forest': '1c5f2c', 
'43 Mixed Forest': 'b5c58f', 
'51 Dwarf Scrub': 'af963c', 
'52 Shrub/Scrub': 'ccb879', 
'71 Grassland/Herbaceous': 'dfdfc2', 
'72 Sedge/Herbaceous': 'd1d182', 
'73 Lichens': 'a3cc51', 
'74 Moss': '82ba9e', 
'81 Pasture/Hay': 'dcd939', 
'82 Cultivated Crops': 'ab6c28', 
'90 Woody Wetlands': 'b8d9eb', 
'95 Emergent Herbaceous Wetlands': '6c9fb8' 

} 
title = 'NLCD Land Cover Classification' 
Map.add_legend(legend_title=title, legend_dict=legend_dict) 

The Map with the NLCD 2019 image and legend should look like Fig. 30.7.
The Map above shows only the NLCD 2019 image. To create an Earth Engine 

App for visualizing land cover change, we need a stack of NLCD images. Let’s 
print the list of system IDs of all available NLCD images. 

dataset.aggregate_array('system:id').getInfo() 

The output should look like this. 

['USGS/NLCD_RELEASES/2019_REL/NLCD/2001', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2004', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2006', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2008', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2011', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2013', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2016', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2019']
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Fig. 30.7 NLCD 2019 image layer displayed in geemap

Select the eight NLCD epochs after 2000. 

years = ['2001', '2004', '2006', '2008', '2011', '2013', 
'2016', '2019'] 

Define a function for filtering the NLCD ImageCollection by year and 
select the ’landcover’ band. 

# Get an NLCD image by year. 
def getNLCD(year): 

# Import the NLCD collection. 
dataset = 

ee.ImageCollection('USGS/NLCD_RELEASES/2019_REL/NLCD') 

# Filter the collection by year. 
nlcd = dataset.filter(ee.Filter.eq('system:index', 

year)).first() 

# Select the land cover band. 
landcover = nlcd.select('landcover'); 
return landcover
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Create an NLCD ImageCollection to be used in the split-panel map. 

# Create an NLCD image collection for the selected years. 
collection = ee.ImageCollection(ee.List(years).map(lambda 
year: getNLCD(year))) 

Print out the list of system IDs of the selected NLCD images covering the 
contiguous United States. 

collection.aggregate_array('system:id').getInfo() 

The output should look like this. 

['USGS/NLCD_RELEASES/2019_REL/NLCD/2001', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2004', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2006', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2008', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2011', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2013', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2016', 
'USGS/NLCD_RELEASES/2019_REL/NLCD/2019'] 

Next, create a list of labels to populate the dropdown list. 

labels = [f'NLCD {year}' for year in years] 
labels 

The output should look like this. 

['NLCD 2001', 
'NLCD 2004', 
'NLCD 2006', 
'NLCD 2008', 
'NLCD 2011', 
'NLCD 2013', 
'NLCD 2016', 
'NLCD 2019']
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Fig. 30.8 Split-panel map for visualizing land cover change with geemap 

The last step is to create a split-panel map by passing the NLCD 
ImageCollection and list of labels to Map.ts_inspector. 

Map.ts_inspector(left_ts=collection, right_ts=collection, 
left_names=labels, right_names=labels) 
Map 

The split-panel map should look like Fig. 30.8.
To visualize land cover change, choose one NLCD image from the left drop-

down list and another image from the right dropdown list, then use the slider to 
swipe through to visualize land cover change interactively. Click the close button 
in the bottom-right corner to close the split-panel map and return to the NLCD 
2019 image shown in Fig. 30.7. 

Code Checkpoint F63c. The book’s repository contains information about what 
your code should look like at this point.
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Fig. 30.9 Output of the terminal running Voilà

30.2.4 Section 4. Publishing an Earth Engine App Using a Local 
Web Server 

In this section, you will learn how to deploy an Earth Engine App using a local 
computer as a web server. Assume that you have completed Sect. 30.2.3 and 
created a Jupyter Notebook named nlcd_app.ipynb. First, you need to down-
load ngrok, a program that can turn your computer into a secure web server and 
connect it to the ngrok cloud service, which accepts traffic on a public address. 
Download ngrok from https://ngrok.com and unzip it to a directory on your com-
puter, then copy nlcd_app.ipynb to the same directory. Open the Anaconda 
Prompt (on Windows) or the Terminal (on macOS/Linux) and enter the following 
commands. Make sure you change /path/to/ngrok/dir to your computer 
directory where the ngrok executable is located, e.g., ~/Downloads. 

cd /path/to/ngrok/dir 
conda activate gee 
voila --no-browser nlcd_app.ipynb 

The output of the terminal should look like this. 
Voilà can be used to run, convert, and serve a Jupyter Notebook as a standalone 

app. Click the link (e.g., http://localhost:8866) shown in the terminal window to 
launch the interactive dashboard. Note that the port number is 8866, which is 
needed in the next step to launch ngrok. Open another terminal and enter the 
following command. 

cd /path/to/ngrok/dir 
ngrok http 8866

https://ngrok.com
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Fig. 30.10 Output of the terminal running ngrok 

The output of the terminal should look like Fig. 30.10. Click the link shown 
in the terminal window to launch the interactive dashboard. The link should look 
like https://random-string.ngrok.io, which is publicly accessible. Anyone with the 
link will be able to launch the interactive dashboard and use the split-panel map to 
visualize NLCD land cover change. Keep in mind that the dashboard might take 
several seconds to load, so please be patient. 

To stop the web server, press Ctrl+C on both terminal windows. See below for 
some optional settings for running Voilà and ngrok. 

To show code cells from your App, run the following from the terminal. 

voila --no-browser --strip_sources=False nlcd_app.ipynb 

To protect your App with a password, run the following. 

ngrok http -auth="username:password" 8866 

30.2.5 Section 5. Publish an Earth Engine App Using Cloud 
Platforms 

In this section, you will learn how to deploy an Earth Engine App on cloud 
platforms, such as Heroku and Google App Engine. Heroku is a “platform as 
a service” that enables developers to build, run, and operate applications entirely

https://random-string.ngrok.io
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in the cloud. It has a free tier with limited computing hours, which would be suf-
ficient for this lab. Follow the steps below to deploy the Earth Engine App on 
Heroku. 

First, go to https://github.com/signup to sign up for a GitHub account if you do 
not have one already. Once your GitHub account has been created, log into your 
account and navigate to the sample app repository: https://github.com/giswqs/ear 
thengine-apps. Click the Fork button in the top-right corner to fork this repository 
into your account. Two important files in the repository are worth mentioning here: 
requirements.txt lists the required packages (e.g., geemap) to run the App, while 
Procfile specifies the commands that are executed by the App on startup. The 
content of Procfile should look like this. 

web: voila --port=$PORT --no-browser --strip_sources=True -
-enable_nbextensions=True --
MappingKernelManager.cull_interval=60 --
MappingKernelManager.cull_idle_timeout=120 notebooks/ 

The above command instructs the server to hide the source code and period-
ically check for idle kernels—in this example, every 60s—and cull them if they 
have been idle for more than 120s. This can avoid idle kernels using up the server 
computing resources. The page served by Voilà will contain a list of any notebooks 
in the notebooks directory. 

Next, go to https://signup.heroku.com to sign up for a Heroku account if you 
do not have one already. Log into your account and click the New button in the 
top-right corner, then choose Create new app from the dropdown list (Fig. 30.11). 

Choose a name for your App (Fig. 30.12). Note that the App name must be 
unique; if an App name has already been taken, you will not be able to use it.

Once the Heroku App has been created, click the Deploy tab and choose 
GitHub as the deployment method. Connect to your GitHub account and enter 
earthengine-apps in the search box. The repository should be listed beneath 
the search box. Click the Connect button to connect the repository to Heroku 
(Fig. 30.13).

Fig. 30.11 Creating a new app in Heroku 

https://github.com/signup
https://github.com/giswqs/earthengine-apps
https://github.com/giswqs/earthengine-apps
https://signup.heroku.com
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Fig. 30.12 Choosing an App name

Fig. 30.13 Connecting a GitHub account to Heroku 

Under the same Deploy tab, scroll down and click Enable Automatic Deploys 
(Fig. 30.14). This will enable Heroku to deploy a new version of the App whenever 
the GitHub repository gets updated.

Since using Earth Engine requires authentication, we need to set the Earth 
Engine token as an environment variable so that the web App can pass the Earth 
Engine authentication. If you have completed Sect. 30.2.3, you have successfully 
authenticated Earth Engine on your computer and the token can be found in the 
following file path, depending on the operating system you are using. Note that 
you might need to show the hidden directories on your computer in order to see 
the .config folder under the home directory.
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Fig. 30.14 Enabling Automatic Deploys on Heroku

Fig. 30.15 Earth Engine authentication token 

Windows: C:\Users\USERNAME\.config\earthengine\credentials 
Linux: /home/USERNAME/.config/earthengine/credentials 
MacOS: /Users/USERNAME/.config/earthengine/credentials 

Open the credentials file using a text editor. Select and copy the long string 
wrapped by the double quotes (Fig. 30.15). Do not include the double quotes in 
the copied string. 

Next, navigate to your web App on Heroku. Click the Settings tab, then 
click Reveal Config Vars on the page. Enter EARTHENGINE_TOKEN as the 
key and paste the string copied above as the value. Click the Add button to set 
EARTHENGINE_TOKEN as an environment variable (Fig. 30.16) that will be used 
by geemap to authenticate Earth Engine.

The last step is to commit some changes to your forked GitHub repository to 
trigger Heroku to build and deploy the App. If you are familiar with Git com-
mands, you can push changes to the repository from your local computer to 
GitHub. If you have not used Git before, you can navigate to your repository 
on GitHub and make changes directly using the browser. For example, you can 
navigate to README.md and click the Edit icon on the page to start editing the 
file. Simply place the cursor at the end of the file and press Enter to add an empty 
line to the file, then click the Commit changes button at the bottom of the page 
to save changes. This should trigger Heroku to build the App. Check the build 
status under the latest activities of the Overview tab. Once the App has been
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Fig. 30.16 Setting the Earth Engine token as an environment variable on Heroku

built and deployed successfully, you can click the Open app button in the top-
right corner to launch the web App (Fig. 30.17). When the App is open in your 
browser, click nlcd_app.ipynb to launch the split-panel map for visualizing 
land cover change. This is the same notebook that we developed in Sect. 30.2.3. 
The App URL should look like this: https://APP-NAME.herokuapp.com/voila/ren 
der/nlcd_app.ipynb. 

Congratulations! You have successfully deployed the Earth Engine App on 
Heroku. 

Code Checkpoint F63d. The book’s repository contains information about what 
your code should look like at this point.

Fig. 30.17 Clicking on the Open app button to launch the web app 

https://APP-NAME.herokuapp.com/voila/render/nlcd_app.ipynb
https://APP-NAME.herokuapp.com/voila/render/nlcd_app.ipynb
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Question 1. What are the pros and cons of designing Earth Engine Apps using 
geemap and ipywidgets, compared to the JavaScript Earth Engine User Interface 
API? 

Question 2. What are the pros and cons of deploying Earth Engine Apps on 
Heroku, compared to a local web server and the Earth Engine Code Editor? 

30.3 Synthesis 

Assignment 1. Replace the NLCD datasets with other multitemporal land cover 
datasets (e.g., United States Department of Agriculture National Agricultural 
Statistics Service Cropland Data Layers, visible in the Earth Engine Data Cata-
log) and modify the web App for visualizing land cover change using the chosen 
land cover datasets. Deploy the web App using multiple platforms (i.e., JavaScript 
Code Editor, ngrok, and Heroku). More land cover datasets can be found at https:// 
developers.google.com/earth-engine/datasets/tags/landcover. 

30.4 Conclusion 

In this chapter, you learned how to design Earth Engine Apps using both the Earth 
Engine User Interface API (JavaScript) and geemap (Python). You also learned 
how to deploy Earth Engine Apps on multiple platforms, such as the JavaScript 
Code Editor, a local web server, and Heroku. The skill of designing and deploying 
interactive Earth Engine Apps is essential for making your research and data prod-
ucts more accessible to the scientific community and the general public. Anyone 
with the link to your web App can analyze and visualize Earth Engine datasets 
without needing an Earth Engine account. 
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Learning Outcomes 

. Becoming familiar with rgee, the Earth Engine R API interface. 

. Integrating rgee with other R packages. 

. Displaying interactive maps. 

. Integrating Python and R packages using reticulate. 

. Combining Earth Engine JavaScript and Python APIs with R. 

Assumes you know how to 

. Install the Python environment (Chap. 30). 

. Use the require function to load code from existing modules (Chap. 28). 

. Use the basic functions and logic of Python. 

. Configure an environment variable and use.Renviron files. 

. Create Python virtual environments. 

31.1 Introduction to Theory 

R is a popular programming language established in statistical science with large 
support in reproducible research, geospatial analysis, data visualization, and much 
more. To get started with R, you will need to satisfy some extra software require-
ments. First, install an up-to-date R version (at least 4.0) in your work environment. 
The installation procedure will vary depending on your operating system (i.e., Win-
dows, Mac, or Linux). Hands-On Programming with R (Garrett Grolemund 2014, 
Appendix A) explains step by step how to proceed. We strongly recommend that 
Windows users install Rtools to avoid compiling external static libraries. 

If you are new to R, a good starting point is the book Geocomputation with 
R (Lovelace et al. 2019) or  Spatial Data Science with Application in R (Pebesma 
and Bivand 2019). In addition, we recommend using an integrated development 
environment (e.g., Rstudio) or a Code Editor (e.g., Visual Studio Code) to create 
a suitable setting to display and interact with R objects. 

The following R packages must be installed (find more information in the R 
manual) in order to go through the practicum section.
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# Use install.packages to install R packages from the CRAN 
repository. 
install.packages('reticulate') # Connect Python with R. 
install.packages('rayshader') # 2D and 3D data 
visualizations in R. 
install.packages('remotes') # Install R packages from 
remote repositories. 
remotes::install_github('r-earthengine/rgeeExtra') # rgee 
extended. 
install.packages('rgee') # GEE from within R. 
install.packages('sf') # Simple features in R. 
install.packages('stars') # Spatiotemporal Arrays and 
Vector Data Cubes. 
install.packages('geojsonio') # Convert data to 'GeoJSON' 
from various R classes. 
install.packages('raster') # Reading, writing, 
manipulating, analyzing and modeling of spatial data. 
install.packages('magick') # Advanced Graphics and Image-
Processing in R 
install.packages('leaflet.extras2') # Extra Functionality 
for leaflet 
install.packages('cptcity') # colour gradients from the 
'cpt-city' web archive 

Earth Engine officially supports client libraries only for the JavaScript and 
Python programming languages. While the Earth Engine Code Editor offers a con-
venient environment for rapid prototyping in JavaScript, the lack of a mechanism 
for integration with local environments makes the development of complex scripts 
tricky. On the other hand, the Python client library offers much versatility, enabling 
support for third-party packages. However, not all Earth and environmental scien-
tists code in Python. Hence, a significant number of professionals are not members 
of the Earth Engine community. In the R ecosystem, rgee (Aybar et al. 2020) tries 
to fill this gap by wrapping the Earth Engine Python API via reticulate. The rgee 
package extends and supports all the Earth Engine classes, modules, and functions, 
working as fast as the other APIs. 

Figure 31.1 illustrates how rgee bridges the Earth Engine platform with the R 
ecosystem. When an Earth Engine request is created in R, rgee transforms this 
piece of code into Python. Next, the Earth Engine Python API converts the Python 
code into JSON. Finally, the JSON file request is received by the server through 
a Web REST API. Users could get the response using the getInfo method by 
following the same path in reverse.
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Fig. 31.1 Simplified diagram of rgee functionality 

31.2 Practicum 

31.2.1 Section 1. Installing rgee 

To run, rgee needs a Python environment with two packages: NumPy and 
earthengine-api. Because instructions change frequently, installation is explained 
at the following checkpoint: 

Code Checkpoint F64a. The book’s repository contains information about setting 
up the rgee environment. 

After installing both the R and Python requirements, you can now initialize your 
Earth Engine account from within R. Consider that R, in contrast to JavaScript 
and Python, supports three distinct Google APIs: Earth Engine, Google Drive, and 
Google Cloud Storage (GCS). 

The Google Drive and GCS APIs will allow you to transfer your Earth Engine 
completed task exports to a local environment automatically. In these practice ses-
sions, we will use only the Earth Engine and Google Drive APIs. Users that are 
interested in GCS can look up and explore the GCS vignette. To initialize your 
Earth Engine account alongside Google Drive, use the following commands.
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# Initialize just Earth Engine 
ee_Initialize() 

# Initialize Earth Engine and GD 
ee_Initialize(drive = TRUE) 

If the Google account is verified and the permission is granted, you will be 
directed to an authentication token. Copy and paste this token into your R con-
sole. Consider that the GCS API requires setting up credentials manually; look up 
and explore the rgee vignette for more information. The verification step is only 
required once; after that, rgee saves the credentials in your system. 

Code Checkpoint F64b. The book’s repository contains information about what 
your code should look like at this point. 

31.2.2 Section 2. Creating a 3D Population Density Map 
with rgee and rayshader 

First, import the rgee, rayshader, and raster packages. 

library(rayshader) 
library(raster) 
library(rgee) 

Initialize the Earth Engine and Google Drive APIs using ee_Initialize. 
Both credentials must come from the same Google account. 

ee_Initialize(drive = TRUE) 

Then, we will access the WorldPop Global Project Population Data dataset. 
In rgee, the Earth Engine spatial classes (ee$Image, ee$ImageCollection, 
and ee$FeatureCollection) have a special attribute called Dataset. Users 
can use it along with autocompletion to quickly find the desired dataset. 

collections <- ee$ImageCollection$Dataset 
population_data <-
collections$CIESIN_GPWv411_GPW_Population_Density 
population_data_max <- population_data$max()
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If you need more information about the Dataset, use 
ee_utils_dataset_display to go to the official documentation in the 
Earth Engine Data Catalog. 

population_data %>% ee_utils_dataset_display() 

The rgee package provides various built-in functions to retrieve data from Earth 
Engine (Aybar et al. 2020). In this example, we use ee_as_raster, which auto-
matically converts an ee$Image (server object) into a RasterLayer (local 
object). 

sa_extent <- ee$Geometry$Rectangle( 
coords = c(-100, -50, -20, 12), 
geodesic = TRUE, 
proj = "EPSG:4326" 

) 

population_data_ly_local <- ee_as_raster( 
image = population_data_max, 
region = sa_extent, 
dsn = "/home/pc-user01/population.tif", # change for your 

own path. 
scale = 5000 

) 

Now, turn a RasterLayer into a matrix suitable for rayshader. 

pop_matrix <- raster_to_matrix(population_data_ly_local) 

Next, modify the matrix population density values, adding: 

. Texture, based on five colors (lightcolor, shadowcolor, leftcolor, 
rightcolor, and centercolor; see rayshader::create_texture 
documentation) 

. Color and shadows (rayshader::sphere_shade)
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pop_matrix %>% 
sphere_shade( 
texture = create_texture("#FFFFFF", "#0800F0", 

"#FFFFFF", "#FFFFFF", "#FFFFFF") 
) %>% 
plot_3d( 
pop_matrix, 
zoom = 0.55, theta = 0, zscale = 100, soliddepth = -24, 
solidcolor = "#525252", shadowdepth = -40, shadowcolor 

= "black", 
shadowwidth = 25, windowsize = c(800, 720) 

) 

Lastly, define a title and subtitle for the plot. Use 
rayshader::render_snapshot to export the final results (Fig. 31.2). 

Fig. 31.2 3D population density map of South America
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text <- paste0( 
"South America\npopulation density", 
strrep("\n", 27), 
"Source:GPWv411: Population Density (Gridded Population 

of the World Version 4.11)" 
) 

render_snapshot( 
filename = "30_poblacionsudamerica.png", 
title_text = text, 
title_size = 20, 
title_color = "black", 
title_font = "Roboto bold", 
clear = TRUE 

) 

Code Checkpoint F64c. The book’s repository contains information about what 
your code should look like at this point. 

31.2.3 Section 3. Displaying Maps Interactively 

Similar to the Code Editor, rgee supports the interactive visualization of spatial 
Earth Engine objects by Map$addLayer. First, let’s import the rgee and cptcity 
packages. The cptcity R package is a wrapper to the cpt-city color gradients web 
archive. 

library(rgee) 
library(cptcity) 
ee_Initialize() 

We will select an ee$Image; in this case, the Shuttle Radar Topography 
Mission 90m (SRTM-90) Version 4. 

dem <- ee$Image$Dataset$CGIAR_SRTM90_V4 

Then, we will set the visualization parameters as a list with the following 
elements. 

. min: value(s) to map to 0 

. Max: value(s) to map to 1
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. palette: a list of CSS-style color strings. 

viz <- list( 
min = 600, 
max = 6000, 
palette = cpt(pal = 'grass_elevation', rev = TRUE) 

) 

Then, we will create a simple display using Map$addLayer. 

m1 <- Map$addLayer(dem, visParams = viz, name = "SRTM", 
shown = TRUE) 

Optionally, you could add a custom legend using Map$addLayer (Fig. 31.3). 

Fig. 31.3 Interactive visualization of SRTM-90 Version 4 elevation values



638 C. Aybar et al.

pal <- Map$addLegend(viz) 
m1 + pal 

The procedure to display ee$Geometry, ee$Feature, and 
ee$FeatureCollections objects is similar to the previous example effected 
on an ee$Image. Users just need to change the arguments: eeObject and 
visParams. 

First, Earth Engine geometries (Fig. 31.4). 

vector <- ee$Geometry$Point(-77.011,-11.98) %>% 
ee$Feature$buffer(50*1000) 

Map$centerObject(vector) 
Map$addLayer(vector) # eeObject is a ee$Geometry$Polygon. 

Next, Earth Engine feature collections (Fig. 31.5).

Fig. 31.4 Polygon buffer surrounding the city of Lima, Peru 
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Fig. 31.5 Building footprints in Lagos, Nigeria 

building <- ee$FeatureCollection$Dataset$ 
`GOOGLE_Research_open-buildings_v1_polygon` 

Map$setCenter(3.389, 6.492, 17) 
Map$addLayer(building) # eeObject is a ee$FeatureCollection 

The rgee functionality also supports the display of ee$ImageCollection 
via Map$addLayers (note the extra “s” at the end). Map$addLayers will 
use the same visualization parameters for all the images (Fig. 31.6). If you need 
different visualization parameters per image, use a Map$addLayer within a for 
loop.
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Fig. 31.6 MOD16A2 total evapotranspiration values (kg/m2/8 day) 

# Define a ImageCollection 
etp <- ee$ImageCollection$Dataset$MODIS_NTSG_MOD16A2_105 
%>% 
ee$ImageCollection$select("ET") %>% 
ee$ImageCollection$filterDate('2014-04-01', '2014-06-01') 

# Set viz params 
viz <- list( 
min = 0,  max = 300, 
palette = cpt(pal = "grass_bcyr", rev = TRUE) 

) 

# Print map results interactively 
Map$setCenter(0, 0, 1) 
etpmap <- Map$addLayers(etp, visParams = viz) 
etpmap 

Another useful rgee feature is the comparison operator (|), which creates a 
slider in the middle of the canvas, permitting quick comparison of two maps. For 
instance, load a Landsat 4 image:
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landsat <- ee$Image('LANDSAT/LT04/C01/T1/LT04_008067_19890917') 

Calculate the Normalized Difference Snow Index. 

ndsi <- landsat$normalizedDifference(c('B3', 'B5')) 

Define a constant value and use ee$Image$gte to return a binary image 
where pixels greater than or equal to that value are set as 1 and the rest are set as 
0. Next, filter 0 values using ee$Image$updateMask. 

ndsiMasked <- ndsi$updateMask(ndsi$gte(0.4)) 

Define the visualization parameters. 

vizParams <- list( 
bands <- c('B5', 'B4', 'B3'), # vector of three bands (R, 

G, B). 
min = 40, 
max = 240, 
gamma = c(0.95, 1.1, 1) # Gamma correction factor. 

) 

ndsiViz <- list( 
min = 0.5, 
max = 1, 
palette = c('00FFFF', '0000FF') 

) 

Center the map on the Huayhuash mountain range in Peru. 

Map$setCenter(lon = -77.20, lat = -9.85, zoom = 10) 

Finally, visualize both maps using the | operator (Fig. 31.7).
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Fig. 31.7 False-color composite over the Huayhuash mountain range, Peru 

m2 <- Map$addLayer(ndsiMasked, ndsiViz, 'NDSI masked') 
m1 <- Map$addLayer(landsat, vizParams, 'false color 
composite') 
m2  | m1 

Code Checkpoint F64d. The book’s repository contains information about what 
your code should look like at this point. 

31.2.4 Section 4. Integrating rgee with Other Python Packages 

As noted in Sect. 31.2.1, rgee set up a Python environment with NumPy and 
earthengine-api in your system. However, there is no need to limit it to just 
two Python packages. In this section, you will learn how to use the Python 
package ndvi2gif to perform a Normalized Difference Vegetation Index (NDVI) 
multi-seasonal analysis in the Ocoña Valley without leaving R. 

Whenever you want to install a Python package, you must run the following.
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library(rgee) 
library(reticulate) 
ee_Initialize() 

The ee_Initialize function not only authenticates your Earth 
Engine account but also helps reticulate to set up a Python envi-
ronment compatible with rgee. After running ee_Initialize, use 
reticulate::install_python to install the desired Python package. 

py_install("ndvi2gif") 

The previous procedure is needed just once for each Python environment. Once 
installed, we simply load the package using reticulate::import. 

ngif <- import("ndvi2gif") 

Then, we define our study area using ee$Geometry$Rectangle (Fig. 31.8) 
and use the leaflet layers control to switch between basemaps.

colca <- c(-73.15315, -16.46289, -73.07465, -16.37857) 
roi <- ee$Geometry$Rectangle(colca) 
Map$centerObject(roi) 
Map$addLayer(roi) 

In ndvi2gif , there is just one class: NdviSeasonality. It has the following 
four public methods. 

. get_export: Exports NDVI year composites in.GeoTIFF format to your 
local folder. 

. get_export_single: Exports single composite as.GeoTIFF to your local 
folder. 

. get_year_composite: Returns the NDVI composites for each year. 

. get_gif: Exports NDVI year composites as a.gif to your local folder. 

To run, the NdviSeasonality constructor needs to define the following 
arguments.
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Fig. 31.8 Rectangle drawn over the Ocoña Valley, Peru

. roi: the region of interest 

. start_year: the initial year to start to create yearly composites 

. end_year: the end year to look for 

. sat: the satellite sensor 

. key: the aggregation rule that will be used to generate the yearly composite. 

For each year, the get_year_composite method generates an NDVI 
ee$Image with four bands, one band per season. Color combination between 
images and bands will allow you to interpret the vegetation phenology over the 
seasons and years. In ndvi2gif, the seasons are defined as follows. 

. winter = c(‘-01-01’, ‘-03-31’) 

. spring = c(‘-04-01’, ‘-06-30’) 

. summer = c(‘-07-01’, ‘-09-30’) 

. autumn = c(‘-10-01’, ‘-12-31’).
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myclass <- ngif$NdviSeasonality( 
roi = roi, 
start_year = 2016L, 
end_year = 2020L, 
sat = 'Sentinel', # 'Sentinel', 'Landsat', 'MODIS', 'sar' 
key = 'max' # 'max', 'median', 'perc_90' 

) 

# Estimate the median of the yearly composites from 2016 to 
2020. 
median <- myclass$get_year_composite()$median() 

# Estimate the median of the winter season composites from 
2016 to 2020. 
wintermax <-
myclass$get_year_composite()$select('winter')$max() 

We can display maps interactively using the Map$addLayer (Fig. 31.9) and 
use the leaflet layers control to switch between basemaps. 

Fig. 31.9 Comparison between the maximum historic winter NDVI and the mean historic NDVI. 
Colors represent the season when the maximum value occurred
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Map$addLayer(wintermax, list(min = 0.1, max = 0.8), 
'winterMax') | 
Map$addLayer(median, list(min = 0.1, max = 0.8), 'median') 

And we can export the results to a GIF format. 

myclass$get_gif() 

To get more information about the ndvi2gif package, visit its GitHub repository. 

Code Checkpoint F64e. The book’s repository contains information about what 
your code should look like at this point. 

31.2.5 Section 5. Converting JavaScript Modules to R 

In recent years, the Earth Engine community has developed a lot of valuable third-
party modules. Some incredible ones are geeSharp, ee-palettes, spectral (Montero 
2021), and LandsatLST (Ermida et al. 2020). While some of these modules have 
been implemented in Python and JavaScript (e.g., geeSharp and spectral), most 
are available only for JavaScript. This is a critical drawback, because it divides the 
Earth Engine community by programming languages. For example, if an R user 
wants to use tagee, the user will have to first translate the entire module to R. 

In order to close this breach, the ee extra Python package has been developed 
to unify the Earth Engine community. The philosophy behind ee extra is that all of 
its extended functions, classes, and methods must be functional for the JavaScript, 
Julia, R, and Python client libraries. Currently, ee extra is the base of the rgeeExtra 
(Aybar et al. 2020) and eemont (Montero 2021) packages. 

To demonstrate the potential of ee extra, let’s study an example from the Land-
sat Land Surface Temperature (LST) JavaScript module. The Landsat LST module 
computes the land surface temperature for Landsat products (Ermida et al. 2020). 
First, we will run it in the Earth Engine Code Editor; then, we will replicate those 
results in R. 

First, JavaScript. In a new script in the Code Editor, we must require the 
Landsat LST module. 

var LandsatLST = require( 
'users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js') 
;



31 Combining R and Earth Engine 647

The Landsat LST module contains a function named collection. This function 
receives the following parameters. 

. The Landsat archive ID 

. The starting date of the Landsat collection 

. The ending date of the Landsat collection 

. The region of interest as geometry 

. A Boolean parameter specifying if we want to use the NDVI for computing a 
dynamic emissivity instead of using the emissivity from ASTER. 

In the following code block, we are going to define all required parameters. 

var geometry = ee.Geometry.Rectangle([-8.91, 40.0, -8.3, 
40.4]); 
var satellite = 'L8'; 
var date_start = '2018-05-15'; 
var date_end = '2018-05-31'; 
var use_ndvi = true; 

Now, with all our parameters defined, we can compute the land surface 
temperature by using the collection method from Landsat LST. 

var LandsatColl = LandsatLST.collection(satellite, 
date_start, date_end, geometry, use_ndvi); 

The result is stored as an ImageCollection in the LandsatColl vari-
able. Now select the first element of the collection as an example by using the 
first method. 

var exImage = LandsatColl.first(); 

This example image is now stored in a variable named ‘exImage’. Let’s dis-
play the LST result on the Map. For visualization purposes, we will define a color 
palette. 

var cmap = ['blue', 'cyan', 'green', 'yellow', 'red']; 

Then, we will center the map in the region of interest.
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Map.centerObject(geometry); 

Finally, let’s display the LST with the cmap color palette by using the 
Map.addLayer method (Fig. 31.10). This method receives the image to visu-
alize, the visualization parameters, the color palette, and the name of the layer to 
show in the layer control. The visualization parameters will be 

. min: 290 (a minimum LST value of 290 K) 

. max: 320 (a maximum LST value of 320 K) 

. palette: cmap (the color palette that was created some steps before). 

The name of the layer in the Map layer set will be LST.

Fig. 31.10 Map illustrating LST, obtained by following the JavaScript example 
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Map.addLayer(exImage.select('LST'), { 
min: 290, 
max: 320, 
palette: cmap 

}, 'LST') 

Code Checkpoint F64f. The book’s repository contains a script that shows what 
your code should look like at this point. 

Now, let’s use R to implement the same logic. As in the previous sections, 
import the R packages: rgee and rgeeExtra. Then, initialize your Earth Engine 
session. 

library(rgee) 
library(rgeeExtra) 
library(reticulate) 

ee_Initialize() 

Install rgeeExtra Python dependencies. 

py_install(packages = c("regex", "ee_extra", 
"jsbeautifier")) 

Using the function rgeeExtra::module loads the JavaScript module. 

LandsatLST <-
module("users/sofiaermida/landsat_smw_lst:modules/Landsat_L 
ST.js") 

The rest of the code is exactly the same as in JavaScript (Fig. 31.11).
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Fig. 31.11 Map illustrating LST, obtained by following the R example 

geometry <- ee$Geometry$Rectangle(c(-8.91, 40.0, -8.3, 
40.4)) 
satellite <- 'L8' 
date_start <- '2018-05-15' 
date_end <- '2018-05-31' 
use_ndvi <- TRUE 

LandsatColl <- LandsatLST$collection(satellite, date_start, 
date_end, geometry, use_ndvi) 
exImage <- LandsatColl$first() 
cmap <- c('blue', 'cyan', 'green', 'yellow', 'red') 

lmod <- list(min = 290, max = 320, palette = cmap) 
Map$centerObject(geometry) 
Map$addLayer(exImage$select('LST'), lmod, 'LST') 

Code Checkpoint F64g. The book’s repository contains information about what 
your code should look like at this point. 

Question 1. When and why might users prefer to use R instead of Python to 
connect to Earth Engine? 

Question 2. What are the advantages and disadvantages of using rgee instead of 
the Earth Engine JavaScript Code Editor?
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31.3 Synthesis 

Assignment 1. Estimate the Gaussian curvature map from a digi-
tal elevation model using rgee and rgeeExtra. Hint: Use the module 
’users/joselucassafanelli/TAGEE:TAGEE-functions’. 

31.4 Conclusion 

In this chapter, you learned how to use Earth Engine and R in the same work-
flow. Since rgee uses reticulate, rgee also permits integration with third-party Earth 
Engine Python packages. You also learned how to use Map$addLayer, which 
works similarly to the Earth Engine User Interface API (Code Editor). Finally, we 
also introduced rgeeExtra, a new R package that extends the Earth Engine API 
and supports JavaScript module execution. 
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Part VII 

Human Applications 

This part covers some of the many Human Applications of Earth Engine. It includes 
demonstrations of how Earth Engine can be used in agricultural and urban settings, 
including for sensing the built environment and the effects it has on air composition 
and temperature. This part also covers the complex topics of human health, illicit 
deforestation activity, and humanitarian actions.



32Agricultural Environments 

Sherrie Wang and George Azzari 

Overview 
The purpose of this chapter is to introduce how datasets and functions available 
in Earth Engine can be used to map agriculture at scale. We will walk through 
an example of mapping crop types in the US Midwest, which is one of the main 
breadbaskets of the world. The skills learned in this chapter will equip you to 
go on to map other agricultural characteristics, such as yields and management 
practices. 

Learning Outcomes

. Classifying crop type in a county in the US Midwest using the Cropland Data 
Layer (CDL) as labels.

. Using ee.Reducer.linearRegression to fit a second-order harmonic 
regression to a crop time series and extract harmonic coefficients.

. Using the Green Chlorophyll Vegetation Index (GCVI) for crop type classification.

. Training a random forest to classify crop type from harmonic coefficients.

. Applying the trained random forest classifier to the study region and assessing its 
performance.
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Helps if you know how to

. Import images and image collections, filter, and visualize (Part 1).

. Create a graph using ui.Chart (Chap. 4).

. Perform basic image analysis: select bands, compute indices, create masks, 
classify images (Part 2).

. Obtain accuracy metrics from classifications (Chap. 7)

. Recognize similarities and differences among satellite spectral bands (Parts 1– 
3).

. Write a function and map it over an ImageCollection (Chap. 12).

. Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

. Fit linear and nonlinear functions with regression in an ImageCollection 
time series (Chap. 18).

. Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23). 

32.1 Introduction to Theory 

Agriculture is one of the primary ways in which humans have altered the surface of 
our planet. Globally, about five billion hectares, or 38% of Earth’s land surface, is 
devoted to agriculture (FAO 2020). About one-third of this is used to grow crops, 
while the other two-thirds are used to graze livestock. 

In the face of a growing human population and changing climate, it is more 
important than ever to manage land resources effectively in order to grow enough 
food for all people while minimizing damage to the environment. Toward this end, 
remote sensing offers a critical source of data for monitoring agriculture. Since 
most agriculture occurs outdoors, sensors on satellites and airplanes can capture 
many crop characteristics. Research has shown that crops’ spectral reflectance over 
time can be used to classify crop types (Wang et al. 2019), predict yield (Burke 
and Lobell 2017), detect crop stress (Ihuoma and Madramootoo 2017), identify 
irrigation (Deines et al. 2017), quantify species diversity (Duro et al. 2014), and 
pinpoint sowing and harvest dates (Jain et al. 2016). Remotely sensed imagery has 
also been key to the rise of precision agriculture, where management practices are 
varied at fine scales to respond to differences in crop needs within a field (Azzari 
et al. 2019; Jin et al. 2017; Seifert et al. 2018). Ultimately, the goal of measuring 
agricultural practices and outcomes is to improve yields and reduce environmental 
degradation.



32 Agricultural Environments 657

32.2 Practicum 

In this practicum, we will use Earth Engine to pull Landsat imagery and classify 
crop types in the US Midwest. The US is the world’s largest producer of corn 
and second-largest producer of soybeans; therefore, maintaining high yields in the 
US is vital for global food security and price stability. Crop type mapping is an 
important prerequisite to using satellite imagery to estimate agricultural produc-
tion. We will show how to obtain features from a time series by fitting a harmonic 
regression and extracting the coefficients. Then we will use a random forest to 
classify crop type, where the ‘ground truth’ labels will come from the Cropland 
Data Layer (CDL) from the US Department of Agriculture. CDL is itself a prod-
uct of a classifier using satellite imagery as input and survey-based ground truth as 
training labels (USDA 2021). We demo crop type classification in the US Midwest 
because CDL allows us to validate our predictions. While using satellite imagery 
to map crop types is already operational in the US, mapping crop types remains 
an open challenge in much of the world. 

32.2.1 Section 1. Pull All Landsat Imagery for the Study Area 

In the Midwest, corn and soybeans dominate the landscape. We will map crop 
types in McLean County, Illinois. This is the county that produces the most corn 
and soybeans in the United States, at 62.9 and 19.3 million bushels, respectively. 
Let’s start by defining the study area and visualizing it (Fig. 32.1). We obtain 
county boundaries from the United States Census Bureau’s TIGER dataset, which 
can be found in the Earth Engine Data Catalog. We extract the McLean County 
feature from TIGER by name and by using Illinois’ FIPS code of 17. 

Fig. 32.1 Location and borders of McLean County, Illinois
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// Define study area. 
var TIGER = ee.FeatureCollection('TIGER/2018/Counties'); 
var region = ee.Feature(TIGER 

.filter(ee.Filter.eq('STATEFP', '17')) 

.filter(ee.Filter.eq('NAME', 'McLean')) 

.first()); 
var geometry = region.geometry(); 
Map.centerObject(region); 
Map.addLayer(region, { 

'color': 'red' 
}, 'McLean County'); 

Next, we import Landsat 7 and 8 imagery, as presented in Part 1. In particular, 
we use Level-2 data, which contains atmospherically corrected surface reflectance 
and land surface temperature. While top-of-atmosphere data will also yield good 
results for many agricultural applications, we prefer data that has been corrected 
for atmospheric conditions when available, since atmospheric variation is just one 
more source of noise in the inputs. 

// Import Landsat imagery. 
var landsat7 = 
ee.ImageCollection('LANDSAT/LE07/C02/T1_L2'); 
var landsat8 = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2'); 

We define a few functions that will make it easier to work with Landsat data. 
The first two functions, renameL7 and renameL8, rename the bands of either 
a Landsat 7 or Landsat 8 image to more intuitive names. For example, instead 
of calling the first band of a Landsat 7 image ‘B1’, we rename it to ‘BLUE’, 
since band 1 captures light in the blue portion of the visible spectrum. Renaming 
also makes it easier to work with Landsat 7 and 8 images together, since the band 
numbering of their sensors (ETM+ and OLI) is different. 

// Functions to rename Landsat 7 and 8 images. 
function renameL7(img) { 

return img.rename(['BLUE', 'GREEN', 'RED', 'NIR', 
'SWIR1', 

'SWIR2', 'TEMP1', 'ATMOS_OPACITY', 'QA_CLOUD', 
'ATRAN', 'CDIST', 
'DRAD', 'EMIS', 'EMSD', 'QA', 'TRAD', 'URAD', 
'QA_PIXEL', 
'QA_RADSAT' 

]); 
}
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function renameL8(img) { 
return img.rename(['AEROS', 'BLUE', 'GREEN', 'RED', 

'NIR', 
'SWIR1', 
'SWIR2', 'TEMP1', 'QA_AEROSOL', 'ATRAN', 'CDIST', 
'DRAD', 'EMIS', 
'EMSD', 'QA', 'TRAD', 'URAD', 'QA_PIXEL', 

'QA_RADSAT' 
]); 

} 

The Landsat 7 Level-2 product has seven surface reflectance and tempera-
ture bands, while the Landsat 8 Level-2 product has eight. Both have a number 
of other bands for image quality, atmospheric conditions, etc. For this chapter, 
we will mostly be concerned with the near-infrared (NIR), short-wave infrared 
(SWIR1 and SWIR2), and pixel quality (QA_PIXEL) bands. Many differences 
among vegetation types can be seen in the NIR, SWIR1, and SWIR2 bands of 
the electromagnetic spectrum. The pixel quality band is important for masking 
out clouds when working with optical imagery (Chap. 15). Below, we define two 
functions: the addMask function to turn the QA_PIXEL bitmask into multiple 
masking layers, and the maskQAClear function to remove all non-clear pixels 
from each image. 

// Functions to mask out clouds, shadows, and other 
unwanted features. 
function addMask(img) { 

// Bit 0: Fill 
// Bit 1: Dilated Cloud 
// Bit 2: Cirrus (high confidence) (L8) or unused (L7) 
// Bit 3: Cloud 
// Bit 4: Cloud Shadow 
// Bit 5: Snow 
// Bit 6: Clear 
//        0: Cloud or Dilated Cloud bits are set 
//        1: Cloud and Dilated Cloud bits are not set 
// Bit 7: Water 
var clear = 

img.select('QA_PIXEL').bitwiseAnd(64).neq(0); 
clear = clear.updateMask(clear).rename(['pxqa_clear']); 

var water = 
img.select('QA_PIXEL').bitwiseAnd(128).neq(0); 

water = water.updateMask(water).rename(['pxqa_water']);
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var cloud_shadow = 
img.select('QA_PIXEL').bitwiseAnd(16).neq(0); 

cloud_shadow = 
cloud_shadow.updateMask(cloud_shadow).rename([ 

'pxqa_cloudshadow' 
]); 

var snow = 
img.select('QA_PIXEL').bitwiseAnd(32).neq(0); 

snow = snow.updateMask(snow).rename(['pxqa_snow']); 

var masks = ee.Image.cat([ 
clear, water, cloud_shadow, snow 

]); 

return img.addBands(masks); 
} 

function maskQAClear(img) { 
return img.updateMask(img.select('pxqa_clear')); 

} 

In addition to the raw bands sensed by ETM+ and OLI, vegetation indices 
(VI) can also help distinguish different vegetation types. Prior work has found the 
Green Chlorophyll Vegetation Index (GCVI) particularly useful for distinguishing 
corn from soybeans in the Midwest (Wang et al. 2019). We will add it as a band 
to each Landsat image. 

// Function to add GCVI as a band. 
function addVIs(img){ 
var gcvi = img.expression('(nir / green) - 1', { 

nir: img.select('NIR'), 
green: img.select('GREEN') 

}).select([0], ['GCVI']); 

return ee.Image.cat([img, gcvi]); 
} 

Now, we are ready to pull Landsat 7 and 8 imagery for our study area and apply 
the above functions. We will access all images from January 1 to December 31, 
2020, that intersect with McLean County. Because different crops have different 
growth characteristics, it is valuable to obtain a time series of images to distinguish
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when crops grow, senesce, and are harvested. Differences in spectral reflectance at 
individual points in time can also be informative. 

// Define study time period. 
var start_date = '2020-01-01'; 
var end_date = '2020-12-31'; 

// Pull Landsat 7 and 8 imagery over the study area between 
start and end dates. 
var landsat7coll = landsat7 

.filterBounds(geometry) 

.filterDate(start_date, end_date) 

.map(renameL7); 

var landsat8coll = landsat8 
.filterDate(start_date, end_date) 
.filterBounds(geometry) 
.map(renameL8); 

Next, we merge the Landsat 7 and Landsat 8 collections, mask out clouds, and 
add GCVI as a band. 

// Merge Landsat 7 and 8 collections. 
var landsat = landsat7coll.merge(landsat8coll) 

.sort('system:time_start'); 

// Mask out non-clear pixels, add VIs and time variables. 
landsat = landsat.map(addMask) 

.map(maskQAClear) 

.map(addVIs); 

We can use a ui.Chart object to visualize the combined Landsat GCVI time 
series at a particular point, which in this case falls in a corn field, according to 
CDL.
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Fig. 32.2 Landsat GCVI time series visualized at a corn point in McLean County, Illinois. A 
higher GCVI corresponds to greater leaf chlorophyll content; the crop can be seen greening up 
in June and senescing in September 

// Visualize GCVI time series at one location. 
var point = ee.Geometry.Point([-88.81417685576481, 

40.579804398254005 
]); 
var landsatChart = 
ui.Chart.image.series(landsat.select('GCVI'), 

point) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Landsat GCVI time series', 
lineWidth: 1, 
pointSize: 3, 

}); 
print(landsatChart); 

You should see the chart shown in Fig. 32.2 in the Earth Engine Console. 
Finally, let’s also take a look at the crop type dataset that we will be using to 

train and evaluate our classifier. We load the CDL image for 2020 and select the 
layer that contains crop type information. 

// Get crop type dataset. 
var cdl = ee.Image('USDA/NASS/CDL/2020').select(['cropland']); 
Map.addLayer(cdl.clip(geometry), {}, 'CDL 2020'); 

Corn fields are visualized in yellow and soybean fields in green in CDL 
(Fig. 32.3).

Code Checkpoint A11a. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 32.3 CDL visualized over McLean County, Illinois. Corn fields are shown in yellow, while 
soybean fields are shown in dark green. Other land cover types include urban areas in gray, 
deciduous forest in teal, and water in blue

Question 1. How many images were taken by Landsat 7 and Landsat 8 over 
McLean County in 2020? 

Question 2. By using ui.Chart, can you qualitatively spot any difference 
between the time series of corn fields and soybean fields? 

32.2.2 Section 2. Add Bands to Landsat Images for Harmonic 
Regression 

Now that we have a collection that combines all available Landsat imagery over 
McLean County in 2020, we can extract features from the time series for crop 
type classification. Harmonic regression is one way to extract features by fitting 
sine and cosine functions to a time series (Chap. 18). Also known as a Fourier 
transform, the harmonic regression is especially well suited for data patterns that 
reappear at regular intervals. 

In particular, we fit a second-order harmonic regression, which takes the form: 

f (t) = a1 cos(2πωt) + b1 sin(2πωt) + a2 cos(4πωt) + b2 sin(4πωt) + c 
(32.1) 

Here, t is the time variable; f (t) is the observed variable to be fit; a, b, and c are 
coefficients found through regression; and ω is a hyperparameter that controls the 
periodicity of the harmonic basis. For this exercise, we will use ω = 1. 

To prepare the collection, we define two functions that add a harmonic basis 
and intercept to the ImageCollection. The first function adds the acquisition 
time of each image as a band to the image in units of years. The function takes an 
image and a reference date as arguments; the new time band is computed relative 
to this reference date.
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// Function that adds time band to an image. 
function addTimeUnit(image, refdate) { 

var date = image.date(); 

var dyear = date.difference(refdate, 'year'); 
var t = 

image.select(0).multiply(0).add(dyear).select([0], ['t']) 
.float(); 

var imageplus = image.addBands(t); 

return imageplus; 
} 

The second function calls addTimeUnit, then takes the sine and cosine of 
each image’s acquisition time and adds them as new bands to each image. We are 
fitting a second-order harmonic regression, so we will add two sine and two cosine 
terms as bands, along with a constant term. The function also allows you to use 
any value of ω (omega). Note that, to create the ‘constant’ band, we divide 
the time band by itself; this results in a band with value 1 and the same mask as 
the time band. 

// Function that adds harmonic basis to an image. 
function addHarmonics(image, omega, refdate) { 

image = addTimeUnit(image, refdate); 
var timeRadians = image.select('t').multiply(2 * 

Math.PI * omega); 
var timeRadians2 = image.select('t').multiply(4 * 

Math.PI * 
omega); 

return image 
.addBands(timeRadians.cos().rename('cos')) 
.addBands(timeRadians.sin().rename('sin')) 
.addBands(timeRadians2.cos().rename('cos2')) 
.addBands(timeRadians2.sin().rename('sin2')) 
.addBands(timeRadians.divide(timeRadians) 

.rename('constant')); 
} 

We have all the tools we need to add the sine and cosine terms to each image— 
we just use map to apply addHarmonics to each image in the collection. We 
use the start_date of January 1, 2020, as the reference date.
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// Apply addHarmonics to Landsat image collection. 
var omega = 1; 
var landsatPlus = landsat.map( 

function(image) { 
return addHarmonics(image, omega, start_date); 

}); 
print('Landsat collection with harmonic basis: ', 
landsatPlus); 

When we print the new ImageCollection, the Console tab should display 
a collection of images with bands that now include cos, sin, cos2, sin2, and 
constant—the terms we just added. 

Code Checkpoint A11b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 3. What assumption are we making about crop spectral reflectance when 
we fit a harmonic regression to a variable like GCVI using ω = 1? What types of 
time series might be better suited for a smaller value of ω? A larger ω? 

Question 4. What happens to the harmonic fit if you change the reference date by 
a quarter of a year? By half of a year? By a full year? 

32.2.3 Section 3. Fit a Harmonic Regression at Each Landsat Pixel 

In the previous section, we added the harmonic basis (cosine, sine, and constant 
terms) to each image in our Landsat collection. Now, we can run a linear regression 
using this basis as the independent variables, and Landsat bands and GCVI as 
the dependent variables. This section defines several functions that will help us 
complete this regression. 

The key step is linear regression performed by the 
ee.Reducer.linearRegression reducer. This reducer takes in two 
parameters: the number of independent variables and the number of dependent 
variables. When applied to an ImageCollection, it expects each image in 
the collection to be composed of its independent variable bands followed by a 
dependent variable band or bands. The reducer returns an array image whose first 
band is an array of regression coefficients computed through linear least squares 
and whose second band is the regression residual. 

The first function we define is called arrayimgHarmonicRegr and helps 
us apply the linear regression reducer to each image.
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// Function to run linear regression on an image. 
function arrayimgHarmonicRegr(harmonicColl, dependent, 
independents) { 

independents = ee.List(independents); 
dependent = ee.String(dependent); 

var regression = harmonicColl 
.select(independents.add(dependent)) 

.reduce(ee.Reducer.linearRegression(independents.length(), 
1)); 

return regression; 
} 

Next, we want to transform the returned array image into an image with each 
coefficient as its own band (Chap. 9). Furthermore, since we will be running har-
monic regressions for multiple Landsat bands, we want to rename the harmonic 
coefficients returned by our regression to match their corresponding band. The 
second function, imageHarmonicRegr, performs these operations. The array 
image is transformed into a multiband image using the functions arrayProject 
and arrayFlatten, and the coefficients for the cosine, sine, and constant terms 
are renamed by adding the band name as a prefix (e.g., the first cosine coefficient 
for the NIR band becomes NIR_cos).
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// Function to extract and rename regression coefficients. 
function imageHarmonicRegr(harmonicColl, dependent, 
independents) { 

var hregr = arrayimgHarmonicRegr(harmonicColl, 
dependent, 

independents); 

independents = ee.List(independents); 
dependent = ee.String(dependent); 

var newNames = independents.map(function(b) { 
return dependent.cat(ee.String('_')).cat(ee.String( 
b)); 

}); 

var imgCoeffs = hregr.select('coefficients') 
.arrayProject([0]) 
.arrayFlatten([independents]) 
.select(independents, newNames); 

return imgCoeffs; 
} 

Finally, the third function is called getHarmonicCoeffs and per-
forms the harmonic regression for all dependent bands by mapping the 
imageHarmonicRegr function over each band. It then creates a multiband 
image comprised of the regression coefficients. 

// Function to apply imageHarmonicRegr and create a multi-
band image. 
function getHarmonicCoeffs(harmonicColl, bands, 
independents) { 

var coefficients = 
ee.ImageCollection.fromImages(bands.map( 

function(band) { 
return imageHarmonicRegr(harmonicColl, band, 

independents); 
})); 

return coefficients.toBands(); 
}
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Now that we have defined all the helper functions, we are ready to apply them to 
our Landsat ImageCollection with the harmonic basis. We are using GCVI, 
NIR, SWIR1, and SWIR2 as the bands for crop type mapping. For each band, we 
have five coefficients from the regression corresponding to the cos, sin, cos2, 
sin2, and constant terms. In total, then, we will end up with 4 ×5 = 20 
harmonic coefficients. After applying getHarmonicCoeffs, we clip the coef-
ficients to the study area and apply a transformation to change the coefficients 
from a 64-bit double data type to a 32-bit integer. This last step allows us to save 
space on storage. 

// Apply getHarmonicCoeffs to ImageCollection. 
var bands = ['NIR', 'SWIR1', 'SWIR2', 'GCVI']; 
var independents = ee.List(['constant', 'cos', 'sin', 
'cos2', 
'sin2']); 
var harmonics = getHarmonicCoeffs(landsatPlus, bands, 
independents); 

harmonics = harmonics.clip(geometry); 
harmonics = harmonics.multiply(10000).toInt32(); 

Let’s take a look at the harmonics that we’ve fit. Following the same logic 
as in Chap. 18, we can compute the fitted values by multiplying the regression 
coefficients with the independent variables. We’ll do this just for GCVI, as we did 
in Sect. 32.2.1. 

// Compute fitted values. 
var gcviHarmonicCoefficients = harmonics 

.select([ 
'3_GCVI_constant', '3_GCVI_cos', 
'3_GCVI_sin', '3_GCVI_cos2', '3_GCVI_sin2' 

]) 
.divide(10000); 

var fittedHarmonic = landsatPlus.map(function(image) { 
return image.addBands( 

image.select(independents) 
.multiply(gcviHarmonicCoefficients) 
.reduce('sum') 
.rename('fitted') 

); 
});
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Fig. 32.4 Landsat GCVI time series (blue line) and fitted harmonic regression (red line) curve 
visualized at a corn point in McLean County, Illinois. While the fit is not perfect, the fitted har-
monic captures the general characteristics of crop green-up and senescence 

Now, we can plot the fitted values along with the original Landsat GCVI time 
series in one chart (Fig. 32.4). 

// Visualize the fitted harmonics in a chart. 
var harmonicsChart = ui.Chart.image.series( 

fittedHarmonic.select( 
['fitted', 'GCVI']), point, ee.Reducer.mean(), 

30) 
.setSeriesNames(['GCVI', 'Fitted']) 
.setOptions({ 

title: 'Landsat GCVI time series and fitted 
harmonic regression values', 

lineWidth: 1, 
pointSize: 3, 

}); 

print(harmonicsChart); 

Before we move on to classifying crop type, we will add CDL as a band to 
the harmonics and export the final image as an asset. Recall that CDL will be 
the source of crop type labels for model training; adding this band now is not 
necessary but makes the labels more accessible at training time. 

// Add CDL as a band to the harmonics. 
var harmonicsPlus = ee.Image.cat([harmonics, cdl]);
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We are ready to export the harmonics we’ve computed to an asset. Exporting 
to an asset is an optional step but can make it easier in the next step to train a 
model. For a larger study area, the operations may time out without the export step 
because computing harmonics is computationally intensive. You should replace 
‘your_asset_path_here/’ and filename below with the place you want 
to save your harmonics. 

// Export image to asset. 
var filename = 'McLean_County_harmonics'; 
Export.image.toAsset({ 
    image: harmonicsPlus, 
    description: filename, 
    assetId: 'your_asset_path_here/' + filename, 
    dimensions: null, 
    region: region, 
    scale: 30, 
    maxPixels: 1e12 
}); 

We visualized the fitted harmonics at one point in the study area; let’s also 
take a look at the coefficients over the entire study area using Map.addLayer. 
Since we can only visualize three bands at a time, we will have to pick three and 
visualize them in false color. Sometimes, it takes a bit of tweaking to visualize 
regression coefficients in false color; below, we transform three fitted GCVI bands 
via division and addition by constants (obtained through trial and error) to obtain 
a nice image for visualization. 

// Visualize harmonic coefficients on map. 
var visImage = ee.Image.cat([ 

harmonics.select('3_GCVI_cos').divide(7000).add(0.6), 
harmonics.select('3_GCVI_sin').divide(7000).add(0.5), 

harmonics.select('3_GCVI_constant').divide(7000).subtract( 
0.6) 

]); 

Map.addLayer(visImage, { 
min: -0.5, 
max: 0.5 

}, 'Harmonic coefficient false color');
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Fig. 32.5 False-color image of harmonic coefficients fitted to GCVI time series in McLean 
County, Illinois 

These harmonic features allow us to see differences between urban land cover, 
water, and what we are currently interested in, crop types. Looking closely at the 
false-color image shown in Fig. 32.5, we can also see striping unrelated to land 
cover throughout the image. This striping, most visible in the bottom right of the 
image, is due to the failure of Landsat 7’s Scan Line Corrector in 2003, which 
resulted in data gaps that occur in a striped pattern across Landsat 7 images. It is 
worth noting that these artifacts can affect classification performance, but exactly 
how much depends on the task. 

Code Checkpoint A11c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 5. What color do forested areas appear as in Fig. 32.5? Urban areas? 
Water? 

Question 6. Comparing the map layers in Figs. 32.5 and 32.3, can you tell 
whether the GCVI cosine, sine, and constant terms capture differences between 
corn and soybean time series? What color do corn fields appear as in the false-color 
visualization? What about soybean fields? 

32.2.4 Section 4. Train and Evaluate a Random Forest Classifier 

We have our features, and we are ready to train a random forest in McLean County 
to classify crop types. As explained in Chap. 6, random forests are a classifier 
available in Earth Engine that can achieve high accuracies while being compu-
tationally efficient. We define a ee.Classifier object with 100 trees and a 
minimum leaf population of 10.
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// Define a random forest classifier. 
var rf = ee.Classifier.smileRandomForest({ 

numberOfTrees: 50, 
minLeafPopulation: 10, 
seed: 0 

}); 

The bands that we will use as features in the classification are the harmonic 
coefficients fitted to the NIR, SWIR1, SWIR2, and GCVI time series at each pixel. 
This may be different from previous classification examples you have seen, where 
band values at one time step are used as dependent variables. Using harmonic 
coefficients is one way to provide information from the temporal dimension to a 
classifier. Temporal information is very useful for distinguishing crop types. 

We can obtain the band names by calling bandNames on the harmonics image 
and removing the CDL band and the system:index band. 

// Get harmonic coefficient band names. 
var bands = harmonicsPlus.bandNames(); 
bands = bands.remove('cropland').remove('system:index'); 

To prepare the CDL band to be the output of classification, we remap the crop 
type values in CDL (corn = 1, soybeans = 5, and over a hundred other crop types) 
to corn taking on a value of 1, soybeans a value of 2, and everything else a value 
of 0. We focus on classifying corn and soybeans for this exercise. 

// Transform CDL into a 3-class band and add to harmonics. 
var cornSoyOther = harmonicsPlus.select('cropland').eq(1) 

.add(harmonicsPlus.select('cropland').eq(5).multiply(2)); 
var dataset = ee.Image.cat([harmonicsPlus.select(bands), 

cornSoyOther]); 

Next, we sample 100 points from McLean County to serve as the training sam-
ple for our model. The classifier will learn to differentiate among corn, soybeans, 
and everything else using this set of points. 

// Sample training points. 
var train_points = dataset.sample(geometry, 30, null, null, 
100, 0); 
print('Training points', train_points);
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Table 32.1 Confusion matrix obtained for the training set 

Predicted crop type 

Other (class 0) Corn (class 1) Soy (class 2) 

Actual crop type Other (class 0) 27 1 1 

Corn (class 1) 2 34 0 

Soy (class 2) 3 4 28 

Training the model is as simple as calling train on the classifier and feeding 
it the training points, the name of the label band, and the names of the input 
bands. To assess model performance on the training set, we can then compute the 
confusion matrix (Chap. 7) by calling confusionMatrix on the model object. 
Finally, we can compute the accuracy by calling accuracy on the confusion 
matrix object. 

// Train the model! 
var model = rf.train(train_points, 'cropland', bands); 
var trainCM = model.confusionMatrix(); 
print('Training error matrix: ', trainCM); 
print('Training overall accuracy: ', trainCM.accuracy()); 

You should see the confusion matrix shown in Table 32.1 on the training set. 
Table 32.1 tells us that the classifier is achieving 89% accuracy on the training 

set. Given that the model is successful on the training set, we next want to explore 
how well it will generalize to the entire study region. To estimate generalization 
performance, we can sample a test set (also called a ‘validation set’) and apply the 
model to that feature collection using classify(model). To keep the amount 
of computation manageable and avoid exceeding Earth Engine’s memory quota, 
we sample 50 test points. 

// Sample test points and apply the model to them. 
var test_points = dataset.sample(geometry, 30, null, null, 
50, 1); 
var tested = test_points.classify(model); 

Next, we can compute the confusion matrix and accuracy on the test set by 
calling errorMatrix(‘cropland’, ‘classification’) followed by 
accuracy on the classified points. The ‘classification’ argument refers to 
the property where the model predictions are stored.
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// Compute the confusion matrix and accuracy on the test 
set. 
var testAccuracy = tested.errorMatrix('cropland', 
'classification'); 
print('Test error matrix: ', testAccuracy); 
print('Test overall accuracy: ', testAccuracy.accuracy()); 

You should see a test set confusion matrix matching (or perhaps almost 
matching) Table 32.2. 

The test set accuracy of the model is lower than the training set accuracy, which 
is indicative of some overfitting and is common when the model is expressive. We 
also see from Table 32.2 that most of the error comes from confusing corn pixels 
with soybean pixels and vice versa. Understanding the errors in your classifier can 
help you build better models in the next iteration. 

Beyond estimating the generalization error, we can actually apply the model to 
the entire study region and see how well the model performs across space. We do 
this by calling classify(model) again on the harmonic image for McLean 
County. We add it to the map to visualize our predictions (Fig. 32.6). 

Table 32.2 Confusion matrix obtained for the test set 

Predicted crop type 

Other (class 0) Corn (class 1) Soy (class 2) 

Actual crop type Other (class 0) 12 1 0 

Corn (class 1) 1 15 2 

Soy (class 2) 1 5 13 

Fig. 32.6 Model predictions of crop type in McLean County, Illinois. Yellow is corn, green is 
soybeans, and gray is other land cover
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// Apply the model to the entire study region. 
var regionClassified = 
harmonicsPlus.select(bands).classify(model); 
var predPalette = ['gray', 'yellow', 'green']; 
Map.addLayer(regionClassified, { 

min: 0, 
max: 2, 
palette: predPalette 

}, 'Classifier prediction'); 

How do our model predictions compare to the CDL labels? We can see where 
the two are equal and where they differ by calling eq on the two images. 

// Visualize agreements/disagreements between prediction 
and CDL. 
Map.addLayer(regionClassified.eq(cornSoyOther), { 

min: 0, 
max: 1 

}, 'Classifier agreement'); 

Figure 32.7 shows agreement between our predictions and CDL labels. When 
visualized this way, some patterns become clear: Many errors occur along field 
boundaries, and sometimes, entire fields are misclassified. 

Code Checkpoint A11d. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 32.7 Prediction agreement with CDL as ground truth labels. White pixels are where our pre-
dictions and CDL agree; black pixels are where they disagree. Errors happen on field boundaries 
and sometimes inside fields as well 
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Question 7. As important as accuracy is for summarizing a classifier’s overall 
performance, we often want to know class-specific performance as well. What are 
the producer’s and user’s accuracies (Chap. 7) for the corn class? For the soybean 
class? For the ‘other’ class? 

Question 8. Investigate the labels of field boundaries. What class is our model clas-
sifying them as, and what class does CDL classify them as? Now investigate the 
GCVI time series and fitted harmonic regressions at field boundaries (Fig. 32.4). 
Do they look different from time series inside fields? Why do you think our model 
is having a hard time classifying field boundary as the CDL class? 

32.3 Synthesis 

When we trained the above classifier to identify crop types, we made many 
choices, such as which type of classifier to use (random forest), which Landsat 
7 bands to use (NIR, SWIR1, SWIR2, GCVI), how to extract features (harmonic 
regression), and how to sample training points (100 uniformly random points). In 
practice, any machine learning task will involve choices like these, and it is impor-
tant to understand how these choices affect the performance of the classifier we 
end up with. To gain an understanding of how some of these choices affect crop 
classification accuracy, try the following: 

Assignment 1. Instead of using only three Landsat bands plus GCVI, add the blue, 
green, and red bands as well. You should end up with 35 harmonic coefficients 
per pixel instead of 20. What happens to the out-of-sample classification accuracy 
when you add these three additional bands as features? 

Assignment 2. Instead of a second-order harmonic regression, try a third-order 
harmonic regression. You should end up with 28 harmonic coefficients per pixel 
instead of 20. What happens to the out-of-sample classification accuracy? 

Assignment 3. Using the original set of features (20 harmonic coefficients), train 
a random forest using 10, 20, 50, 200, 500, and 1000 training points. How does 
the out-of-sample classification accuracy change as the training set size increases? 

Assignment 4. Extra challenge: Instead of using Landsat 7 and 8 as the input 
imagery, perform the same crop type classification using Sentinel-2 data and report 
the out-of-sample classification accuracy.
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32.4 Conclusion 

In this chapter, we showed how to use datasets and functions available in Earth 
Engine to classify crop types in the US Midwest. In particular, we used Landsat 7 
and 8 time series as inputs, extracted features from the time series using harmonic 
regression, obtained labels from the CDL, and predicted crop type with a ran-
dom forest classifier. Remote sensing data can be used to understand many more 
aspects of agriculture beyond crop type, such as crop yields, field boundaries, irri-
gation, tillage, cover cropping, soil moisture, biodiversity, and pest pressure. While 
the exact imagery source, classifier type, and classification task can all differ, the 
general workflow is often similar to what has been laid out in this chapter. Since 
farming sustainably while feeding 11 billion people by 2100 is one of the great 
challenges of this century, we encourage you to continue exploring how Earth 
Engine and remote sensing data can help us understand agricultural environments 
around the world. 
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33Urban Environments 

Michelle Stuhlmacher and Ran Goldblatt 

Overview 
Urbanization has dramatically changed Earth’s surface. This chapter starts with 
a qualitative look at the impact urban expansion has on the landscape, covering 
three existing urban classification schemes that have been created by other remote 
sensing scientists. We look at how these classifications can be used to quantify 
urban areas, and close with instructions on how to perform per-pixel supervised 
image classification to map built-up land cover at any location on Earth and at any 
point in time using Landsat 7 imagery. 

Learning Outcomes

. Creating an animated GIF.

. Implementing quantitative and qualitative analyses with pre-existing urban 
classifications.

. Running your own classification of built-up land cover.

. Quantifying and mapping the extent of urbanization across space and time.
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Helps if you know how to

. Import images and image collections, filter, and visualize (Part 1).

. Use drawing tools to create points lines and polygons (Chap. 6).

. Perform a supervised image classification (Chap. 6).

. Use reduceRegions to summarize an image with zonal statistics in irregular 
shapes (Chaps. 22 and 24). 

33.1 Introduction to Theory 

Urbanization and its consequences have expanded rapidly over the last several 
decades. In 1950, only 30% of the world’s population lived in urban areas, but 
that figure is expected to be 68% by 2050 (United Nations 2019). Already, over 
50% of the world’s population lives in urban areas (United Nations 2019). This 
shift to urban dwelling has helped lift millions of people out of poverty, but it 
is also creating complicated socio-environmental challenges, such as habitat loss, 
urban heat islands, flooding, and greater greenhouse gas emissions (Bazaz et al. 
2018; United Nations 2019). 

An important part of addressing these challenges is understanding urbaniza-
tion trajectories and their consequences. Satellite imagery provides a rich source 
of historic and current information on urbanization all over the globe, and it 
is increasingly being leveraged to contribute to research on urban sustainability 
(Goldblatt et al. 2018; Prakash et al. 2020). In this chapter, we will cover several 
methods for visualizing and quantifying urbanization’s impact on the landscape. 

33.2 Practicum 

33.2.1 Section 1. Time Series Animation 

To start our examination of urban environments, we’ll create a time series ani-
mation (GIF) for a qualitative depiction of the impact of urbanization. We’ll use 
Landsat imagery to visualize how the airport northwest of Bengaluru, India, grew 
between 2010 and 2020. 

First, search for “Gangamuthanahalli” in the Code Editor search bar and click 
on the city name to navigate there. Gangamuthanahalli is home to Kempegowda 
International Airport. Use the Geometry Tools, as shown in Chap. 6, to draw a  
rectangle around the airport.
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Now search for “landsat 8 level 2” and import the “USGS Landsat 8 Level 
2, Collection 2, Tier 1” ImageCollection. Name the import L8. Filter the 
collection by the geometry you created and the date range of interest, 2010–2020. 
Limit cloud cover on land to 3%. 

// Filter collection. 
var collection = L8 

.filterBounds(geometry) 

.filterDate('2010-01-01', '2020-12-31') 

.filter(ee.Filter.lte('CLOUD_COVER_LAND', 3)); 

Next, set up the parameters for creating a GIF. We want to visualize the three 
visible bands over the airport region and cycle through the images at 15 frames 
per second. 

// Define GIF visualization arguments. 
var gifParams = { 

bands: ['SR_B4', 'SR_B3', 'SR_B2'], 
min: 0.07 * 65536, 
max: 0.3 * 65536, 
region: geometry, 
framesPerSecond: 15, 
format: 'gif' 

}; 

Last, render the GIF in the Console. 

// Render the GIF animation in the console. 
print(ui.Thumbnail(collection, gifParams)); 

Code Checkpoint A12a. The book’s repository contains a script that shows what 
your code should look like at this point. 

The GIF gives a qualitative sense of the way the airport has changed. To 
quantify urban environment change (i.e., summing the area of total new imper-
vious surfaces), we often turn to classifications. Section 2 covers pre-existing 
classifications you can leverage to quantify urban extent.
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33.2.2 Section 2. Pre-existing Urban Classifications 

There are several publicly accessible land cover classifications that include urban 
areas as one of their classes. These classifications are a quick way to qualify urban 
extent. In this section, we’ll cover three from the Earth Engine Data Catalog and 
show you how to visualize and quantify the urban classes: (1) the MODIS Land 
Cover Type Yearly Global; (2) the Copernicus CORINE Land Cover; and (3) the 
United States Geological Survey (USGS) National Land Cover Database (NLCD). 
These three classifications vary in their spatial and temporal resolution. For exam-
ple, MODIS is a global dataset, while the NLCD covers only the United States, and 
CORINE covers only the European Union. We’ll explore more of these differences 
later. 

First, start a new code and search for “MODIS land cover.” Find the 
ImageCollection titled “MCD12Q1.006 MODIS Land Cover Type Yearly 
Global 500 m,” import it, and rename it to MODIS. We will first look at the MODIS 
land cover classification over Accra, Ghana: 

// MODIS (Accra) 
// Center over Accra. 
Map.setCenter(-0.2264, 5.5801, 10); 

The Land Cover Type Yearly Global dataset contains multiple classifica-
tions (Fig. 33.1). We will use LC_Type1, the annual classification using the 
International Geosphere-Biosphere Programme (IGBP) categories, in this example.

Select the LC_Type1 band, copy and paste the visualization parameters for 
the classification, and visualize the full classification. 

// Visualize the full classification. 
var MODIS_lc = MODIS.select('LC_Type1'); 
var igbpLandCoverVis = { 

min: 1.0, 
max: 17.0, 
palette: ['05450a', '086a10', '54a708', '78d203', 

'009900', 
'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05', 
'27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8', 
'f9ffa4', '1c0dff' 

], 
}; 
Map.addLayer(MODIS_lc, igbpLandCoverVis, 'IGBP Land 
Cover');
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Fig. 33.1 Metadata of the MODIS land cover classification types

Press Run and view the output with the classification visualization. Use the 
Inspector tab to click on the different colors and determine the land cover classes 
they represent. 

Next, we’re going to visualize only the urban class at points almost two decades 
apart: from 2001 and 2019. We’ll start by filtering for 2019 dates. 

// Visualize the urban extent in 2001 and 2019. 
// 2019 
var MODIS_2019 = MODIS_lc.filterDate(ee.Date('2019-01-
01')); 

Looking at the metadata shows us that the urban class has a value of 13 
(Fig. 33.2), so we’ll select only the pixels with this value and visualize them 
for 2019. To show only the urban pixels, mask the urban image with itself in the 
Map.addLayer command.
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Fig. 33.2 Classes for the LC_Type1 classification 

var M_urb_2019 = MODIS_2019.mosaic().eq(13); 
Map.addLayer(M_urb_2019.mask(M_urb_2019), { 

'palette': 'FF0000' 
}, 'MODIS Urban 2019'); 

Repeat the same steps for 2001, but give it a gray palette to contrast with the 
red palette of 2019. 

var MODIS_2001 = MODIS_lc.filterDate(ee.Date('2001-01-
01')); 
var M_urb_2001 = MODIS_2001.mosaic().eq(13); 
Map.addLayer(M_urb_2001.mask(M_urb_2001), { 

'palette': 'a5a5a5' 
}, 'MODIS Urban 2001'); 

The result is a visualization showing the extent of Accra in 2002 in gray and 
the new urbanization between 2001 and 2019 in red (Fig. 33.3).

Code Checkpoint A12b. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 33.3 Output of MODIS visualization

Next, we’ll look at CORINE. Open a new script, search for “CORINE,” select 
the Copernicus CORINE Land Cover dataset to import, rename it to CORINE, and 
center it over London, England. 

// CORINE (London) 
// Center over London 
Map.setCenter(-0.1795, 51.4931, 10); 

Conducting a similar process to the one we used with MODIS, first select the 
image for 2018. 

// Visualize the urban extent in 2000 and 2018. 
// 2018 (2017-2018) 
var CORINE_2018 = 
CORINE.select('landcover').filterDate(ee.Date( 

'2017-01-01')); 

Why filter by 2017 and not 2018? The description section of CORINE’s meta-
data shows that the time period covered by the 2018 asset includes both 2017 and 
2018. To select the 2018 asset in the code above, we filter by the date of the first
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year. (If you’re curious, you can test what happens when you filter using 2018 as 
the date.) 

The metadata for CORINE shows that the built-up land cover classes range 
from 111 to 133, so we’ll select all classes less than or equal to 133 and visualize 
them in red. 

var C_urb_2018 = CORINE_2018.mosaic().lte(133); //Select 
urban areas 
Map.addLayer(C_urb_2018.mask(C_urb_2018), { 

'palette': 'FF0000' 
}, 'CORINE Urban 2018'); 

Repeat the same steps for 2000, but visualize the pixels in gray. 

// 2000 (1999-2001) 
var CORINE_2000 = 
CORINE.select('landcover').filterDate(ee.Date( 

'1999-01-01')); 
var C_urb_2000 = CORINE_2000.mosaic().lte(133); //Select 
urban areas 
Map.addLayer(C_urb_2000.mask(C_urb_2000), { 

'palette': 'a5a5a5' 
}, 'CORINE Urban 2000'); 

The output shows the extent of London’s built-up land in 2000 in gray, and the 
larger extent in 2018 in red (Fig. 33.4).

Code Checkpoint A12c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Last, we’ll look at NLCD for 2016. Open a new script, search for “NLCD,” 
import the NLCD: USGS National Land Cover Database, rename it to NLCD, and 
center it over Chicago, Illinois, USA. 

// NLCD (Chicago) 
// Center over Chicago. 
Map.setCenter(-87.6324, 41.8799, 10);
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Fig. 33.4 Output of CORINE visualization

Select the landcover classification band and filter it to the 2016 classifica-
tion. Previously, we have done so using the filterDate command, but you can 
also filter on the system:index. 

// Select the land cover band. 
var NLCD_lc = NLCD.select('landcover'); 

// Filter NLCD collection to 2016. 
var NLCD_2016 = NLCD_lc.filter(ee.Filter.eq('system:index', 
'2016')) 

.first(); 
Map.addLayer(NLCD_2016, {}, 'NLCD 2016'); 

Hit Run and view the classification visualization. Use the Inspector tab to 
explore the classification values. The shades of red represent different levels of 
development. Dark red is “Developed, High Intensity” and the lightest pink is 
“Developed, Open Space.” You can look at the metadata description of this dataset 
to learn about the rest of the classes and their corresponding colors.
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One of the benefits of classifications is that you can use them to calculate quan-
titative information such as the area of a specific land cover. Now we’ll cover how 
to do so by summing the high-intensity urban development land cover in Chicago. 
Import a boundary of the city of Chicago and clip the NLCD classification to its 
extent. 

// Calculate the total area of the 'Developed high 
intensity' class (24) in Chicago. 
var Chicago = ee.FeatureCollection( 

'projects/gee-book/assets/A1-2/Chicago'); 

// Clip classification to Chicago 
var NLCD_2016_chi = NLCD_2016.clip(Chicago); 

Select the “Developed, High Intensity” class (24), and mask the class with itself 
(to ensure that we calculate the area of only the highly developed pixels and no 
surrounding ones), then visualize the output. 

// Set class 24 pixels to 1 and mask the rest. 
var NLCD_2016_chi_24 = NLCD_2016_chi.eq(24).selfMask(); 
Map.addLayer(NLCD_2016_chi_24, {}, 
    'Chicago developed high intensity'); 

Multiply the pixels by their area, and use reduceRegions to sum the area 
of the pixels. 

// Area calculation. 
var areaDev = 
NLCD_2016_chi_24.multiply(ee.Image.pixelArea()) 

.reduceRegion({ 
reducer: ee.Reducer.sum(), 
geometry: Chicago.geometry(), 
scale: 30 

}) 
.get('landcover'); 

print(areaDev);
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Table 33.1 Spatial and temporal extents of three classifications 

Pixel size (m) Years available Coverage Number of urban classes 

MODIS 500 m 

CORINE European Union 

NLCD 4 

Code Checkpoint A12d. The book’s repository contains a script that shows what 
your code should look like at this point. 

If everything worked correctly, you should see “203722704.70588234” printed to 
the Console. This means that highly developed land covered about 204,000,000 m2 

(204 km2) in the city of Chicago in 2016. Let’s roughly check this answer by 
looking up the area of the city of Chicago. Chicago is about 234 square miles (~ 
606 km2), which means highly developed areas cover about a third of the city, 
which visually matches what we see in the Map viewer. 

Question 1. Return to your MODIS classification visualization of Accra and look 
at the pixels that became urban between 2002 and 2019. What land cover classes 
were they before they became urbanized? Hint: you will need to change the date 
of your full classification visualization to 2002 in order to answer this question. 

Question 2. Return to your NLCD area calculation. Write new code to calculate 
the area of the highly developed class in Chicago in 2001. How much did the 
highly developed class change between 2001 and 2016? Report your answer in 
square meters. 

Question 3. Fill out Table 33.1 on the spatial and temporal extents of the three 
classifications that we’ve just experimented with (some entries are filled in as an 
example). Based on your table, what are the benefits and the limitations of each 
of the classifications for studying urban areas? 

33.2.3 Section 3. Classifying Urban Areas 

In the previous section, we relied on several LULC classifications to estimate 
the distribution of built-up land cover and its change over time. While for many 
applications these products would be sufficient, for others their temporal or spa-
tial granularity may be a limiting factor. For example, your research question 
may require tracking monthly changes in the distribution of built-up land cover 
or depicting granular intra-city spatial patterns of built-up areas.
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Luckily, with emerging and more accessible machine learning tools—like those 
available in Earth Engine—you can now create your own classification maps, 
including maps that depict the distribution of built-up land cover (Goldblatt et al. 
2016). Machine learning deals with how machines learn rules from examples and 
generalize these rules to new examples. In this section, we will use one of the 
most common supervised machine learning classifiers: Random Forests (Breiman 
2001). 

You will use Landsat 7 imagery to classify built-up land cover in the city of 
Ahmedabad, Gujarat, India, at two points in time, 2020 and 2010. You will hand 
draw polygons (rectangles) representing areas of built-up and not-built-up land 
cover, and then build a Random Forest classifier and train it to predict whether a 
pixel is “built-up” or not. 

First, start a new script. In the search bar, search for “USGS Landsat 7 Collec-
tion 2 Tier 1.” Of the similarly named datasets that come up, select the one with the 
data set specifier “LANDSAT/LE07/C02/T1_L2.” The metadata shows that this is 
an ImageCollection of images collected since 1999 (Fig. 33.5, left) and that 
each pixel is characterized by 11 spectral bands (Fig. 33.5, right). In this exercise, 
we will work only with bands 1–6. Import this ImageCollection and change 
the name of the variable to L7. 

Fig. 33.5 Metadata for the “USGS Landsat 7 Collection 2 Tier 1” dataset
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Fig. 33.6 Location of the surface reflectance code in the Examples repository 

Next, you will create an annual composite for the year 2020 using the Google 
example Landsat457 Surface Reflectance script, located in the Cloud Masking 
Examples folder at the bottom of your Scripts section (Fig. 33.6). 

This function computes surface reflectance. To create a composite for the 
year 2020, use the ee.FilterDate method to identify the images captured 
between January 1, 2020, and December 31, 2020, then map the function over 
that collection.
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// Surface reflectance function from example: 
function maskL457sr(image) { 

var qaMask = 
image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 

2)).eq(0); 
var saturationMask = image.select('QA_RADSAT').eq(0); 
// Apply the scaling factors to the appropriate bands. 
var opticalBands = 

image.select('SR_B.').multiply(0.0000275).add(-
0.2); 

var thermalBand = 
image.select('ST_B6').multiply(0.00341802).add( 

149.0); 

// Replace the original bands with the scaled ones and 
apply the masks. 

return image.addBands(opticalBands, null, true) 
.addBands(thermalBand, null, true) 
.updateMask(qaMask) 
.updateMask(saturationMask); 

} 

// Map the function over one year of data. 
var collection = L7.filterDate('2020-01-01', '2021-01-
01').map( 

maskL457sr); 
var landsat7_2020 = collection.median(); 

Now, in the search bar, search for and navigate to Ahmedabad, India. Add the 
landsat7_2020 composite to the map. Specify the red, green, and blue bands 
to achieve a natural color visualization, noting that in Landsat 7, band 3 (B3) is 
red, band 2 (B2) is green, and band 1 (B1) is blue. Also specify the colors’ stretch 
parameters. In this case, we stretch the values between 0 and 0.3, but feel free to 
experiment with other stretches. 

Map.addLayer(landsat7_2020, { 
bands: ['SR_B3', 'SR_B2', 'SR_B1'], 
min: 0, 
max: 0.3 

}, 'landsat 7, 2020'); 

Code Checkpoint A12e. The book’s repository contains a script that shows what 
your code should look like at this point. 

The next step is probably the most time consuming in this exercise. In super-
vised classification, a classifier is trained with labeled examples to predict the 
labels of new examples. In our case, each training example will be a pixel, labeled
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as either built-up or not-built-up. Rather than selecting pixels for the training set 
one at a time as was done in Chap. 7, you will hand-draw polygons (rectangles) 
and label them as built-up or not-built-up, and assign to each pixel with the label 
of the spatially overlapping polygon. You will create two feature collections: one 
with 50 rectangles over built-up areas (labeled as “1”) and one with 50 examples of 
rectangles over not-built-up areas (labeled as “0”). To do this, follow these steps: 

Start by hand-drawing the not-built-up examples. Click on the rectangle icon in 
the upper-left corner of the screen (Fig. 33.7). Clicking on this icon will create a 
new variable (called geometry). Click on the gear-shaped icon of this imported 
variable. Change the name of the variable to nbu (stands for “not-built-up”) 
(Fig. 8a). Change the Import as parameter from Geometry to FeatureCollec-
tion (Fig. 8b). Click on the + Property button (Fig. 8c), to create a new property 
called “class,” and assign it with a value of 0 (Fig. 8d). You have just created 
a new empty FeatureCollection, where each feature will have a property 
called “class”, with a value of 0 assigned to it. 

The nbu FeatureCollection is now initialized, and empty. You now need 
to populate it with features: In this exercise, you will draw 50 rectangles drawn 
over areas representing not-built-up locations. To identify these areas, you can 
use either the 2020 Landsat 7 scene (landsat7_2020) as the background ref-
erence or use the high-resolution satellite basemap (provided in Earth Engine) 
as reference. Note, however, that you can use the basemap as reference only if 
you classify the current land cover, since Earth Engine’s satellite background is 
continually updated. 

For this exercise, we define “not-built-up” land cover as any type of land cover 
that is not-built-up (this includes vegetation, bodies of water, bare land, etc.). Click 
on the nbu layer you created under Geometry Imports (Fig. 9a) to select it 
(the rectangle button will be highlighted; see Fig. 9b) and draw 50 rectangles 
representing examples of areas that are not-built-up (Fig. 9c). It is important to 
select diverse and representative examples. To avoid exceeding the user memory 
limit, draw relatively small rectangles (see examples in Fig. 33.9).

Fig. 33.7 To hand-draw examples of not-built-up rectangles, click on the rectangle icon in the 
upper-left corner of the screen
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Fig. 33.8 Creating a new FeatureCollection for examples of not-built-up areas: a change 
the name of the  variable  to  nbu; b change the parameter Import as parameter from Geometry to 
FeatureCollection; c click on the + Property button; d to create a new property called “class,” 
and assign to it the value 0

Fig. 33.9 Rectangles representing example locations of not-built-up areas 

Tip: To delete a feature, simply click on Esc, select the feature you want to 
delete, and click Delete. You can also click on Esc if you want to navigate (zoom 
in, zoom out, pan). If you’d like to re-draw a rectangle, click again on the name 
nbu layer under Geometry Imports and modify the geometry. When done, click 
on the Exit button or Esc.
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Fig. 33.10 Creating a new layer for the built-up FeatureCollection To create a new empty feature 
collection of built-up examples, click on the + new layer (at the bottom of the Geometry Imports) 

Note that while adding more examples may improve the accuracy of your clas-
sification, creating too many examples could potentially improve the accuracy of 
the classification of your specific area of interest—but it may not fit well in other 
geographical areas. That is an example of a type of “overfitting,” in which samples 
used to train a model are overly specific to one area and not generalizable to other 
locations. 

Now that you created 50 examples of not-built-up areas, it is time to 
create a second additional FeatureCollection of 50 examples of built-
up areas. As with the not-built-up examples, you will first create an empty 
FeatureCollection and then populate it with example features. 

Important: you will need to create a new layer. Make sure that you do not add 
these new examples to the not-built-up FeatureCollection. To create a new 
layer, click on + new layer (Fig. 33.10). This will create a new variable called 
geometry. 

Click on the gear-shaped icon next to the new variable you just created. Change 
the name of the variable from geometry to bu (stands for built-up) (Fig. 11a). 
Change the Import as parameter from geometry to FeatureCollection (Fig. 11b). 
Click on + Property (Fig. 11c), and create a property called class (Fig. 11d), 
and assign to it a value of 1 (Fig. 11e). Recall that this is the same property name 
you used for the nbu examples. Assign the features with a value “1” (Fig. 11e). 
Also change the color of the bu examples to red (Fig. 11f), representing built-up 
areas. Click OK.

The bu FeatureCollection is now initialized, and empty. To populate 
it with examples of built-up areas, hover over the bu FeatureCollection 
(Fig. 12a), select the rectangle tool (Fig. 12b), and draw 50 rectangles over built-
up areas. Keep (keep the size of the rectangles similar to the not-built-up examples) 
(Fig. 33.12, location ‘c’).

You’ve now created two feature collections: 50 features representing built-
up areas (the variable is called bu), and 50 features representing not-built-up 
areas (the variable is called nbu). Next, you will merge these two feature collec-
tions to create one collection of 100 features. Remember that in both collections, 
you added a property called class; features in the FeatureCollection 
nbu were assigned a value of 0 and features in the FeatureCollection 
nbu were assigned a value of 1. The merged FeatureCollection will also 
include the property class: 50 features with a value of 1 and 50 with a value
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Fig. 33.11 Creating a new FeatureCollection for examples of built-up areas: a change the 
name of the variable to “bu”; b change the parameter Import as parameter from Geometry to 
FeatureCollection; c click on the + Property button; d to create a new property called “class,” 
and assign to it the value 1

Fig. 33.12 Rectangles representing examples of built-up areas. To create these examples, hover 
over the new “bu” feature collection you just created (a), select the rectangle tool (b), and draw 50 
examples of rectangles over built-up areas (c)

of 0. To merge the feature collections, use the method merge. Call the merged 
FeatureCollection with the variable lc. 

var lc = nbu.merge(bu); 

Code Checkpoint A12f. The book’s repository contains a script that shows what 
your code should look like at this point.
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List the properties that the classifier will use to determine whether a pixel is 
built-up or not-built-up. Recall that Landsat 7 has 11 bands; two of them are QA 
Bitmask bands, which likely do not vary by land cover. Create a new variable 
called bands with a list of the bands to be used by the classifier. 

var bands = ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 
'ST_B6', 'SR_B7']; 

Next, you will create the labeled examples (pixels) that will serve as the training 
set of the classifier. Remember that, at this point, the pixels are not yet labeled; you 
labeled only the rectangles (stored in the lc variable), which are not associated 
with the bands of the Landsat pixels. To associate the Landsat pixels with a label, 
you will sample the pixels that overlap with these rectangles and assign them with 
the class of the overlapping rectangle. 

This can be done with the method sampleRegions. Define a new vari-
able and call it training. Under this variable, call the 2020 Landsat composite 
(landsat7_2020), select the relevant bands (the variable bands), and sample 
the overlapping pixels. You will sample the landsat7_2020 pixels that overlap 
with the FeatureCollection lc and copy the property class from each 
feature to the overlapping pixel (each pixel will now include the 9 properties and 
a class, either 1 or 0). Set the argument scale to 30 (30 m—Landsat 7’s spatial 
resolution—is the scale of the projection to sample in). These steps are shown in 
the code block below and were described in Chap. 6. 

var training = landsat7_2020.select(bands).sampleRegions({ 
collection: lc, 
properties: ['class'], 
scale: 30 

}); 

Now it is time to create the classifier. Create an empty Random Forest classi-
fier using the method ee.Classifier.smileRandomForest. You can keep 
most of the arguments’ values as default and only set the number of decision trees 
in the forest (the argument numberOfTrees) to 20. Use the method train 
to train the classifier. This method trains a classifier on a collection of features, 
using the specified numeric properties of each feature as training data. The col-
lection to train on is called training and the name of the property containing 
the class value is called ‘class’. The list of properties (inputProperties) 
to be considered by the classifier is stored in the band’s variable. Note that, by 
default, the classifier predicts the class of the pixel (in this case, “1,” built-up, or 
“0,” not-built-up). You could also set the mode of the classifier to PROBABILITY,
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which will result in the probability that a pixel has the value “1.” In this example, 
we used the default CLASSIFIER mode). 

// Create a random forest classifier with 20 trees. 
var classifier = ee.Classifier.smileRandomForest({ 

numberOfTrees: 20 
}).train({ // Train the classifier. 

// Use the examples we got when we sampled the pixels. 
features: training, 
// This is the class that we want to predict. 
classProperty: 'class', 
// The bands the classifier will use for training and 

classification. 
inputProperties: bands 

}); 

In the previous step, you trained a classifier. Next, you will use the trained 
model to predict that class on new pixels, using the method classify. You’ll 
define a new variable, classified20, which will take the Landsat composite; 
select the relevant bands (the variable bands); and classify this image using the 
trained classifier (called ‘classifier’). 

// Apply the classifier on the 2020 image. 
var classified20 = 
landsat7_2020.select(bands).classify(classifier); 

You can visualize the classification by adding the classified image to the map. In 
our case, we have only two classes (built-up and not-built-up); thus, the classifier’s 
prediction is binary (either “1” for built-up, or “0” for not-built-up). To show only 
the pixels with a value of 1, use the mask method to mask out the pixels with 
a value of 0. Set the visualization parameters to visualize the remaining pixels as 
red, with a transparency of 60%. 

Map.addLayer(classified20.mask(classified20), { 
palette: ['#ff4218'], 
opacity: 0.6 

}, 'built-up, 2020'); 

Code Checkpoint A12g. The book’s repository contains a script that shows what 
your code should look like at this point.
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Lastly, many applications require mapping the extent of built-up land cover at 
more than one point in time (e.g., to understand urbanization processes). As you 
recall, Landsat 7 has been collecting imagery from every location on Earth since 
1999. We can use our trained classifier—which was trained based on Landsat 7 
2020 imagery—to predict the extent of built-up land cover in any year collected 
(with the assumption that the characteristics of a built-up pixel did not change over 
time). In this exercise, you will use the trained classifier to map the built-up land 
cover in 2010. 

First, create a composite for 2010 using the simpleComposite method: 

var landsat7_2010 = L7.filterDate('2010-01-01', '2010-12-
31') 

.map(maskL457sr).median(); 

Now, you can use the classifier to classify the 2010 image using the classify 
method. Classify the 2010 image (landsat7_2010) and add it to the map, this 
time in a yellow color. 

// Apply the classifier to the 2010 image. 
var classified10 = landsat7_2010.select(bands).classify( 

classifier); 
Map.addLayer(classified10.mask(classified10), { 

palette: ['#f1ff21'], 
opacity: 0.6 

}, 'built-up, 2010'); 

The result should be something like what is presented in Fig. 33.13. Built-up 
land cover in 2020 is presented in red, and in 2010 in yellow.

Want to see which areas were developed in the period between 2010 and 2020? 
Create a new variable and call it difference. In this variable, subtract the values 
of 2010 from 2020. Any pixel that changed from “0” in 2010 to “1” in 2020 will 
be assigned with a value of 1. You can then visualize this difference on the map 
in blue. 

var difference = classified20.subtract(classified10); 

Map.addLayer(difference.mask(difference), { 
palette: ['#315dff'], 
opacity: 0.6 

}, 'difference');
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Fig. 33.13 The classified built-up land cover in 2020 (red) and in 2010 (yellow)

Code Checkpoint A12h. The book’s repository contains a script that shows what 
your code should look like at this point. 

If your code worked as expected, you should be able to see the three layers you 
classified: the built-up land cover in 2010, in 2020, and the difference between the 
two. 

Question 4. Calculate the total built-up land cover in Ahmedabad in 2010 and in 
2020. How much built-up area was added to the city? What is the percent increase 
of this growth? 

Note: Use this FeatureCollection, filtered to Ahmedabad, to bound your 
area calculation: 

var indiaAdmin3 = ee.FeatureCollection( 
    'projects/gee-book/assets/A1-2/IndiaAdmin3'); 
var ahmedabad = indiaAdmin3.filterMetadata('VARNAME_3', 
'equals', 
    'Ahmadabad city'); 
Map.addLayer(ahmedabad, {}, 'Ahmedabad city'); 

Question 5. Add two lines to your code to visualize the built-up area that was 
added between 2010 and 2020.
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33.3 Synthesis 

Assignment 1. In this exercise, we mapped built-up land cover with Landsat 7 
imagery. Now try to repeat this exercise using Sentinel-2 as an input to the clas-
sifier. Calculate the total area of built-up land cover in Ahmedabad in 2020, and 
answer the following questions. 

Note, that you can create an annual Sentinel-2 composite by calculating the 
median value of all cloud-free scenes captured in a given year (see an example of 
how to filter by cloud values in Sect. 33.2.1 of this chapter). Note that the property 
that stores the cloudy pixel percentage in the Sentinel-2 ImageCollection is 
‘CLOUDY_PIXEL_PERCENTAGE’. 

Question 6. How do the area totals differ from each other? (Use the Ahmedabad 
FeatureCollection boundary from Question 4)? 

Question 7. Why do you think that is the case? Think about spatial and spectral 
resolutions. 

Question 8. What is the area of the MODIS urban classification in 2019? 

Question 9. Is it larger or smaller than Landsat/Sentinel? Why? 

1. How do the area totals differ from each other? (Use the Ahmedabad FeatureC-
ollectionfeature collection boundary from Question 4 above.) 

2. Why do you think that is the case? Think about spatial and spectral resolutions. 
3. What is the area of the MODIS urban classification in 2019? 
4. Is it larger or smaller than Landsat/Sentinel? Why? 

33.4 Conclusion 

In this chapter, you have learned how to visualize and quantify the magnitude 
and pace of urbanization anywhere in the world. Combined with your knowledge 
from other chapters, you’re now equipped to look at urban heat islands, food and 
water system stresses, and many other socio-environmental impacts of urbanization 
(Bazaz et al. 2018). As more and higher-resolution remote sensing data become 
available, the scope of questions we can answer about urban areas will widen 
and the accuracy of our predictions will improve. This knowledge can be used 
for policy and decision-making, in particular in the context of the United Nations 
Sustainable Development Goals (United Nations 2020; Prakash et al. 2020).



702 M. Stuhlmacher and R. Goldblatt

References 

Bazaz A, Bertoldi P, Buckeridge M et al (2018) Summary for urban policymakers—what the IPCC 
special report on 1.5°C means for cities. IIHS Indian Institute for Human Settlements 

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:101093340 
4324 

Goldblatt R, Stuhlmacher MF, Tellman B et al (2018) Using Landsat and nighttime lights for super-
vised pixel-based image classification of urban land cover. Remote Sens Environ 205:253–275. 
https://doi.org/10.1016/j.rse.2017.11.026 

Goldblatt R, You W, Hanson G, Khandelwal AK (2016) Detecting the boundaries of urban areas 
in India: a dataset for pixel-based image classification in Google Earth Engine. Remote Sens 
8:634. https://doi.org/10.3390/rs8080634 

Prakash M, Ramage S, Kavvada A, Goodman S (2020) Open Earth observations for sustainable 
urban development. Remote Sens 12:1646. https://doi.org/10.3390/rs12101646 

United Nations Department of Economic and Social Affairs (2019) World urbanization prospects: 
the 2018 revision 

United Nations Department of Economic and Social Affairs (2020) The sustainable development 
goals report 2020 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.rse.2017.11.026
https://doi.org/10.3390/rs8080634
https://doi.org/10.3390/rs12101646
http://creativecommons.org/licenses/by/4.0/


34Built Environments 

Erin Trochim 

Overview 
The built environment consists of the human-made physical parts of the environ-
ment, including homes, buildings, streets, open spaces, and infrastructure. This 
chapter will focus on analyzing global infrastructure datasets. 

Learning Outcomes 

• Quantifying road characteristics. 
• Comparing road and transmission line distributions. 
• Contrasting changes in impervious surfaces with flooding. 
• Understanding vector-based versus raster-based approaches. 

Helps if you know how to 

• Create a function for code reuse (Chap. 1). 
• Summarize an ImageCollection with reducers (Chaps. 12 and 12). 
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23). 
• Convert between raster and vector data (Chap. 23). 
• Join elements of vector datasets together (Chap. 25).
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34.1 Introduction to Theory 

Until the recent past, data about the built environment were mostly produced and 
managed at local and regional levels, and global datasets were very rare. Munic-
ipal, state, and national governments require easy access to data in order to plan, 
build, and maintain assets, which can be either privately or publicly owned. In the 
last decade, there has been a push to produce globally consistent data to support 
economic assessment and environmental transitions. The existence of these data 
makes it possible to explore the impact of factors including weather, climate, and 
growth over time. 

Built environment datasets currently available in the Earth Engine Data Catalog 
include the Global Power Plant Database, Open Buildings V1 Polygons (which 
currently includes over half of Africa), and Global Artificial Impervious Area. 
Complementary environmental information includes the Global Flood Database. In 
addition, the Awesome GEE Community Catalog hosts the Global Roads Inventory 
Project, Global Power System, and Global Fixed Broadband and Mobile (Cellular) 
Network Performance collections. 

As will be seen in the rest of this chapter, information on the built environment 
is most often stored as vector data: that is, as points, lines, and polygons. This 
format readily lends itself to representing, for example, bridges as points, roads 
as lines, and buildings as polygons. Many of the built environment datasets listed 
above now have both raster and vector components. It is useful to understand the 
utility of each of these formats and how to extract information between them and 
ancillary datasets. 

34.2 Practicum 

34.2.1 Section 1. Road Characteristics 

We will start by calculating road length using the Global Roads Inventory Project 
(GRIP) dataset (Meijer et al. 2018). This dataset was created to provide a consis-
tent global roadways’ dataset for environmental and biodiversity assessments. For 
this exercise, we will focus on examining the largest countries in Africa, North 
America, and Europe. 

Start by importing the grip4 datasets into Earth Engine using the following 
code, and examine how they look in the Code Editor.



34 Built Environments 705

// Import roads data. 
var grip4_africa = ee.FeatureCollection( 

'projects/sat-io/open-datasets/GRIP4/Africa'), 
grip4_north_america = ee.FeatureCollection( 

'projects/sat-io/open-datasets/GRIP4/North-
America'), 

grip4_europe = ee.FeatureCollection( 
'projects/sat-io/open-datasets/GRIP4/Europe'); 

// Check the roads data sizes. 
print('Grip4 Africa size', grip4_africa.size()); 
print('Grip4 North America size', 
grip4_north_america.size()); 
print('Grip4 Europe size', grip4_europe.size()); 

// Display the roads data. 
Map.addLayer(ee.FeatureCollection(grip4_africa).style({ 

color: '413B3A', 
width: 1 

}), {}, 'Grip4 Africa'); 
Map.addLayer(ee.FeatureCollection(grip4_north_america).styl 
e({ 

color: '413B3A', 
width: 1 

}), {}, 'Grip4 North America'); 
Map.addLayer(ee.FeatureCollection(grip4_europe).style({ 

color: '413B3A', 
width: 1 

}), {}, 'Grip4 Europe'); 

Using the Large Scale International Boundary dataset from the US Office of 
the Geographer, below we will import the simplified country boundaries. After 
calculating the area enclosed by the boundary of each country, we will select 
Algeria, a quite large country with many roads.
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// Import simplified countries. 
var countries = 
ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017'); 

// Add a function to calculate the feature's geometry area. 
// Add the function as a property. 
var addArea = function(feature) { 

return feature.set({ 
areaKm: feature.geometry().area().divide(1000 * 

1000) 
}); // km2 squared 

}; 

// Map the area getting function over the 
FeatureCollection. 
var countriesArea = countries.map(addArea); 

// Filter to the largest country in Africa. 
var Algeria = 
countriesArea.filter(ee.Filter.inList('country_na', [ 

'Algeria' 
])); 

// Display the selected countries. 
Map.addLayer(Algeria.style({ 

fillColor: 'b5ffb4', 
color: '00909F', 
width: 1.0 

}), {}, 'Algeria'); 

Next, we will calculate the road density for Algeria. For this example, we will 
implement a function to join the roads to each of the countries. The approach 
below joins the roads to the countries if there is spatial overlap between the 
features. Then, for each joined road in the specified country, an intersection is 
performed to keep only the portion of the road within the country. The length of 
the road is calculated and added as a property per feature, as is the road density 
per country.
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// This function calculates the road length per country for 
the associated GRIP dataset. 
var roadLength4Country = function(country, grip4) { 

// Join roads to countries. 
var intersectsFilter = ee.Filter.intersects({ 

leftField: '.geo', 
rightField: '.geo', 
maxError: 10 

}); 

var grip4Selected = grip4.filterBounds(country); 

var countriesWithRds = ee.Join.saveAll('roads').apply({ 
primary: country, 
secondary: grip4Selected, 
condition: intersectsFilter 

}).filter(ee.Filter.neq('roads', null)); 

// Return country with calculation of roadLength and 
roadsPerArea. 

return countriesWithRds.map(function(country) { 
var roadsList = ee.List(country.get('roads')); 
var roadLengths = roadsList.map(function(road) { 

return ee.Feature(road).intersection( 
country, 10).length(10); 

}); 
var roadLength = ee.Number(roadLengths.reduce(ee 

.Reducer.sum())); 
return country.set({ 

roadLength: roadLength.divide( 
1000), // Convert to km. 

roadsPerArea: roadLength.divide(ee 
.Number(country.get('areaKm')) 

) 
}); 

}).select(['country_na', 'areaKm', 'roadLength', 
'roadsPerArea' 

]); 
}; 

// Apply the road length function to Algeria. 
var roadLengthAlgeria = roadLength4Country(Algeria, 
grip4_africa);
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Print the roads per area in Algeria. 

// Print the road statistics for Algeria. 
print('Roads statistics in Algeria', roadLengthAlgeria); 

Question 1. How many roads are there in Africa? Hint: Check the size of the 
grip4 Africa dataset. 

Question 2. Which continent has the most roads: Africa, Europe, or North 
America? 

Question 3. How many roads per square kilometer are there in Algeria? 

Question 4. What is the total road length in kilometers in Algeria? 

Code Checkpoint A13a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Earth Engine is powerful, but its processing power is not infinite. If you try 
applying the same code to countries such as Canada and France, it does not run 
very well interactively due to the enormous size of the request. To successfully exe-
cute long-running, complex tasks, you can export results. Exporting forces Earth 
Engine to continue to run for a very long time; in that case, you cannot see the 
results interactively, but you will be able to get an answer for even very large 
problems, and then load the exported data. An example of this is shown below. 

// Export feature collection to drive. 
Export.table.toDrive({ 

collection: roadLengthAlgeria, 
description: 'RoadStatisticsforAlgeria', 
selectors: ['country_na', 'roadLength', 'roadsPerArea'] 

}); 

Let us think about how to simplify this analysis, to see if we can optimize 
the computation in an interactive environment. Print the first feature of the grip4 
Africa feature collection and display it using the following commands. 

// Print the first feature of the grip4 Africa feature 
collection. 
print(grip4_africa.limit(1)); 

Map.setCenter(-0.759, 9.235, 6); 
Map.addLayer(grip4_africa.limit(1), 

{}, 
'Road length comparison');
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Fig. 34.1 Exploring the GRIP datasets by visualizing the first feature in the Africa region. 
According to the feature properties, the road is 0.76, but the unit is not specified. Compare this 
to the scale at the bottom of the Map panel in the Code Editor 

You can find the road in northern Ghana as shown in Fig. 34.1. 
In the Console, examine the properties of the road. Notice that there is an 

existing column called Shape_Leng. The length of each road appears to have 
already been precalculated and included as a value. The length of this road is 
given as 0.76, but the unit is not specified. This looks suspicious in comparison 
to the scale—the road is obviously longer than 0.76 m, kilometers, or miles. It is 
easy to recalculate the length of the lines: use the following code to do so and 
compare the results. 

// This function adds line length in km. 
var addLength = function(feature) { 

return feature.set({ 
lengthKm: feature.length().divide(1000) 

}); 
}; 

// Calculate the line lengths for all roads in Africa. 
var grip4_africaLength = grip4_africa.map(addLength); 

// Compare with other values. 
print('Calculated road length property', 
grip4_africaLength.limit(1)); 

The road in Ghana has a new calculated length of about 84 km, which looks 
accurate.
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Repeat the road calculation analysis, but examine each step. First, filter the road 
data in Africa for Algeria. Visualize the result, taking note of whether any roads 
are included that originate in Algeria but extend into other countries. Then, reduce 
the lengthKm column and calculate the sum in the filtered Algeria road data. 

// Repeat the analysis to calculate the length of all 
roads. 
// Filter the table geographically: only keep roads in 
Algeria. 
var grip4_Algeria = 
grip4_africaLength.filterBounds(Algeria); 

// Visualize the output. 
Map.addLayer(grip4_Algeria.style({ 

color: 'green', 
width: 2.0 

}), {}, 'Algeria roads'); 

// Sum the lengths for roads in Algeria. 
var sumLengthKmAlgeria = ee.Number( 

// Reduce to get the sum. 
grip4_Algeria.reduceColumns(ee.Reducer.sum(), 

['lengthKm']) 
.get('sum') 

); 

// Print the result. 
print('Length of all roads in Algeria', 
sumLengthKmAlgeria); 

Question 5. What is the total recalculated road length in kilometers in Algeria? 

Question 6. Is this higher or lower than the first value? 

Code Checkpoint A13b. The book’s repository contains a script that shows what 
your code should look like at this point. 

The difference in values when recalculating is due to extra roads being included 
in the second calculation. This was due to skipping the joining and intersection of 
the Algeria feature collection. Using only filterBounds to approximate the 
road limits was not as accurate. 

Let us try another method to make this more computationally efficient. Rasterize 
the roads by interpolating the current feature collection into an image, and use 
reduceRegions to calculate the area of the road pixels. For this exercise, set 
the scale as 100 m. In order to convert the area into the appropriate dimension and
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units, divide the results by 1000 and apply a square root to transform the length 
into kilometers. 

// Repeat the analysis again to calculate length of all 
roads using rasters. 
// Convert to raster. 
var empty = ee.Image().float(); 

var grip4_africaRaster = empty.paint({ 
featureCollection: grip4_africaLength, 
color: 'lengthKm' 

}).gt(0); 

Map.addLayer(grip4_africaRaster, { 
palette: ['orange'], 
max: 1 

}, 'Rasterized roads'); 

// Add reducer output to the features in the collection. 
var AlgeriaRoadLength = ee.Image.pixelArea() 

.addBands(grip4_africaRaster) 

.reduceRegions({ 
collection: Algeria, 
reducer: ee.Reducer.sum(), 
scale: 100, 

}).map(function(feature) { 
var num = ee.Number.parse(feature.get('area')); 
return feature.set('length', 

num.divide(1000).sqrt() 
.round()); 

}); 

// Print the first feature to illustrate the result. 
print('Length of all roads in Algeria calculated via 
rasters', ee 

.Number(AlgeriaRoadLength.first().get('length'))); 

Notice that this value is about 13%, or 7000 km, lower than the first estimate. 
Take a look at the rasterized roads’ visualization. With no scale set, it looks very 

similar to the vectors. Zoom in to an area like the example in Fig. 34.2 and examine 
the structure of the vectors, rasters, and roads themselves. Note that, in some areas, 
divided roads are represented by two separate features (vectors). The initial rasters 
match the scale of the vector. One 100 m pixel, though, would cover both roads 
and represent only a single unit length. Understanding how the data represent the
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Fig. 34.2 Examining roads from the GRIP dataset as features (in green) versus rasters (in orange) 
overlaid with transparency on the Map view. There can be offset between datasets and different 
spatial shapes (lines, polygons, and rasters) 

actual built environment is critical for accuracy and precision estimates. There is 
also a tradeoff in computation time and whether the calculations can be performed 
on the fly. 

The advantage to this approach is that the analysis can be performed interac-
tively across much larger areas. We will test this by calculating total road length 
for the largest countries in Africa, North America, and Europe, which are Algeria, 
Canada, and France. 

// Calculate line lengths for all roads in North America 
and Europe. 
var grip4_north_americaLength = 
grip4_north_america.map(addLength); 
var grip4_europeLength = grip4_europe.map(addLength); 

// Merge all vectors. 
var roadLengthMerge = grip4_africaLength.merge( 

grip4_north_americaLength).merge(grip4_europeLength); 

// Convert to raster. 
var empty = ee.Image().float(); 

var roadLengthMergeRaster = empty.paint({ 
featureCollection: roadLengthMerge, 
color: 'roadsPerArea' 

}).gt(0);
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// Add reducer output to the features in the collection. 
var countriesRoadLength = ee.Image.pixelArea() 

.addBands(roadLengthMergeRasterClipped) 

.reduceRegions({ 
collection: countriesSelected, 
reducer: ee.Reducer.sum(), 
scale: 100, 

}).map(function(feature) { 
var num = ee.Number.parse(feature.get('area')); 
return feature.set('length', 

num.divide(1000).sqrt() 
.round()); 

}); 

// Compute totaled road lengths in km, grouped by country. 
print('Length of all roads in Canada', 
countriesRoadLength.filter(ee 

.Filter.equals('country_na', 'Canada')).aggregate_sum( 
'length')); 

print('Length of all roads in France', 
countriesRoadLength.filter(ee 

.Filter.equals('country_na', 'France')).aggregate_sum( 
'length')); 

// Filter to largest countries in Africa, North America and 
Europe. 
var countriesSelected = countries.filter(ee.Filter.inList( 

'country_na', ['Algeria', 'Canada', 'France'])); 

// Clip image to only countries of analysis. 
var roadLengthMergeRasterClipped = roadLengthMergeRaster 

.clipToCollection(countriesSelected); 

Question 7. Which country has the highest total length of roads? 

Question 8. Explore the effect of the scale value 
by reprojecting the rasterized roads (for example, 
Map.addLayer(grip4_africaRaster.reproject({crs: 
‘EPSG:4326’, scale: 100}), {palette: [‘orange’], max: 
1}, ‘Rasterized roads 100 m’)). Does increasing the scale result in 
an over- or underestimation of roads? What is an optimal scale to still allow the 
large calculations to run in real time? 

Code Checkpoint A13c. The book’s repository contains a script that shows what 
your code should look like at this point.
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34.2.2 Section 2. Road and Transmission Line Comparison 

Next, let us compare the overlap between roads and transmission lines, which often 
are found in the same vicinity. We will test this concept by examining the Global 
Power System data (Arderne et al. 2020). 

Let us start by creating a new script and importing data into the Code Editor. 
As in the first exercise, import the GRIP road datasets. We will reuse the same 
addLength function from the previous exercise and apply it to roads in Africa. 
Then, convert the roads to a raster using length in kilometers as the pixel value. 

// Import roads data. 
var grip4_africa = ee.FeatureCollection( 

'projects/sat-io/open-datasets/GRIP4/Africa'), 
grip4_europe = ee.FeatureCollection( 

'projects/sat-io/open-datasets/GRIP4/Europe'), 
grip4_north_america = ee.FeatureCollection( 

'projects/sat-io/open-datasets/GRIP4/North-
America'); 

// Add a function to add line length in km. 
var addLength = function(feature) { 

return feature.set({ 
lengthKm: feature.length().divide(1000) 

}); // km; 
}; 

// Calculate line lengths for all roads in Africa. 
var grip4_africaLength = grip4_africa.map(addLength); 

// Convert the roads to raster. 
var empty = ee.Image().float(); 

var grip4_africaRaster = empty.paint({ 
featureCollection: grip4_africaLength, 
color: 'lengthKm' 

}); 

Next, import the simplified countries again and filter the feature collection, this 
time to all countries on the continent of Africa. 

Import the global power system data that represent transmission lines. For this 
exercise, we will use both the OpenStreetMap and predicted values in this dataset. 
Validation of this dataset included several parts of Africa, so it tends to have higher 
accuracy here than in other parts of the world like the Arctic.
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Apply a filter to the transmission lines’ data to limit the analysis to Africa. 
Calculate the length of the lines and convert it to rasters, as with the roads’ data. 

// Import simplified countries. 
var countries = 
ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017'); 

// Filter to Africa. 
var Africa = countries.filter(ee.Filter.eq('wld_rgn', 
'Africa')); 

// Import global power transmission lines. 
var transmission = ee.FeatureCollection( 

'projects/sat-io/open-datasets/predictive-global-power-
system/distribution-transmission-lines' 
); 

// Filter transmission lines to Africa. 
var transmissionAfrica = transmission.filterBounds(Africa); 

// Calculate line lengths for all transmission lines in 
Africa. 
var transmissionAfricaLength = 
transmissionAfrica.map(addLength); 

// Convert the transmission lines to raster. 
var transmissionAfricaRaster = empty.paint({ 

featureCollection: transmissionAfricaLength, 
color: 'lengthKm' 

}); 

Question 9. In this exercise, we are rasterizing our feature collections to calculate 
spatial association indicators. If the data were left as a feature collection, what 
would be the simplest way of comparing the two datasets in a similar way? 

Code Checkpoint A13d. The book’s repository contains a script that shows what 
your code should look like at this point. 

In order to compare the road and transmission line rasters, they need to be 
stacked together into a single image. It is a good idea to rename the bands to keep 
track of the input values. Clip this dataset to the Africa feature collection in order 
to minimize computation in the following steps.
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// Add roads and transmission lines together into one 
image. 
// Clip to Africa feature collection. 
var stack = grip4_africaRaster 

.addBands(transmissionAfricaRaster) 

.rename(['roads', 'transmission']) 

.clipToCollection(Africa); 

Next, use the following code to calculate the spatial statistics’ local Geary’s C 
(Anselin 1995). This will indicate clustering due to spatial autocorrelation. In this 
case, we are comparing whether roads and transmission lines are located together. 
Geary’s C values of− 1 indicate dispersion, while those of 1 indicate clustering. 

// Calculate spatial statistics: local Geary's C. 
// Create a list of weights for a 9x9 kernel. 
var list = [1, 1, 1, 1, 1, 1, 1, 1, 1]; 

// The center of the kernel is zero. 
var centerList = [1, 1, 1, 1, 0, 1, 1, 1, 1]; 

// Assemble a list of lists: the 9x9 kernel weights as a 2-
D matrix. 
var lists = [list, list, list, list, centerList, list, 
list, list, list 

]; 

// Create the kernel from the weights. 
// Non-zero weights represent the spatial neighborhood. 
var kernel = ee.Kernel.fixed(9, 9, lists, -4, -4, false); 

// Use the max among bands as the input. 
var maxBands = stack.reduce(ee.Reducer.max()); 

// Convert the neighborhood into multiple bands. 
var neighs = maxBands.neighborhoodToBands(kernel);
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// Compute local Geary's C, a measure of spatial 
association 
// - 0 indicates perfect positive autocorrelation/clustered 
// - 1 indicates no autocorrelation/random 
// - 2 indicates perfect negative autocorrelation/dispersed 
var gearys = 
maxBands.subtract(neighs).pow(2).reduce(ee.Reducer.sum()) 

.divide(Math.pow(9, 2)); 

// Convert to a -/+1 scale by: calculating C* = 1 - C 
// - 1 indicates perfect positive autocorrelation/clustered 
// - 0 indicates no autocorrelation/random 
// - -1 indicates perfect negative 
autocorrelation/dispersed 
var gearysStar = ee.Image(1).subtract(gearys); 

Examine the output by creating a custom palette and using a high-contrast 
basemap. The example illustrated in Fig. 34.3 shows how to add a focal max 
to the final image in order to better visualize the results as a raster. The color blue 
indicates values toward − 1 and therefore dispersion, while red represents values 
toward 1 and therefore spatially clustered. 

Fig. 34.3 Results of Geary’s C* spatial autocorrelation between roads and transmission lines in 
South Africa. Red indicates clustering, while blue indicates dispersion. Shorter stretches in this 
example appear to have more co-located linear infrastructure
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// Import palettes. 
var palettes = require('users/gena/packages:palettes'); 

// Create custom palette, blue is negative while red is 
positive autocorrelation/clustered. 
var palette = palettes.colorbrewer.Spectral[7].reverse(); 

// Normalize the image and add it to the map. 
var visParams = { 

min: -1, 
max: 1, 
palette: palette 

}; 

// Display the image. 
Map.setCenter(19.8638, -34.5705, 10); 
Map.addLayer(gearysStar.focalMax(1), visParams, 'local 
Gearys C*'); 

Question 10. What are the characteristics of the roads and transmission lines that 
are clustered? 

Question 11. What are some other local indicators of spatial association? 

Code Checkpoint A13e. The book’s repository contains a script that shows what 
your code should look like at this point. 

Save your script for your own future use, as outlined in Chap. 1. Then, refresh 
the Code Editor to begin with a new script for the next section. 

34.2.3 Section 3. Impervious Surfaces and Flooding 

For our final exercise, we will compare impervious surfaces and flooding over 
time in a new script. The Global Artificial Impervious Area dataset captures 
annual change information at a 30 m resolution of impervious surface area from 
1985 to 2018 (Gong et al. 2020). Impervious surfaces can include a variety of 
built environment surfaces, including anything with pavement or water-resistant 
materials—roads, sidewalks, airports, parking lots, ports, distribution centers, 
rooftops, etc. Artificial impervious areas are important because they are a clear 
representation of human settlements (Gong et al. 2020). 

We will compare these impervious areas with the Global Flood Database, which 
describes flood extent and population characteristics for 913 large flood events 
from 2000 to 2018 at 250 m resolution (Tellman et al. 2021). 

In this example, let us compare the area of impervious surfaces in 2000 ver-
sus 2018 over the satellite-observed historical floodplain. Below, we will load the
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Global Artificial Impervious Area dataset, to display the images and compare the 
data for the two dates. 

// Import Tsinghua FROM-GLC Year of Change to Impervious 
Surface 
var impervious = ee.Image('Tsinghua/FROM-GLC/GAIA/v10'); 

// Use the change year values found in the band. 
// The change year values is described here: 
// https://developers.google.com/earth-
engine/datasets/catalog/Tsinghua_FROM-GLC_GAIA_v10#bands 
// Select only those areas which were impervious by 2000. 
var impervious2000 = impervious.gte(19); 

// Select only those areas which were impervious by 2018. 
var impervious2018 = impervious.gte(1); 

Map.setCenter(-98.688, 39.134, 5); 

// Display the images. 
Map.addLayer( 

impervious2000.selfMask(), 
{ 

min: 0, 
max: 1, 
palette: ['014352', '856F96'] 

}, 
'Impervious Surface 2000'); 

Map.addLayer( 
impervious2018.selfMask(), 
{ 

min: 0, 
max: 1, 
palette: ['014352', '1A492C'] 

}, 
'Impervious Surface 2018'); 

Subtract the two images to find the change between 2018 and 2000, and again 
display the results:
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// Calculate the difference between impervious areas in 
2000 and 2018. 
var imperviousDiff = 
impervious2018.subtract(impervious2000); 

Map.addLayer( 
imperviousDiff.selfMask(), 
{ 

min: 0, 
max: 1, 
palette: ['014352', 'FFBF00'] 

}, 
'Impervious Surface Diff 2000-18'); 

Import the Global Flood Database. Select the ‘flooded’ band, and sum all 
values to create the satellite-observed historical floodplain. Mask out the areas of 
permanent water in the floodplain using the JRC Global Surface Water dataset 
included in the Global Flood Database as the ‘jrc_perm_water’ band. The 
JRC data use the dataset’s original ‘transition’ band. Display the final 
floodplain results: 

// Import the Global Flood Database v1 (2000-2018). 
var gfd = 
ee.ImageCollection('GLOBAL_FLOOD_DB/MODIS_EVENTS/V1'); 

// Map all floods to generate the satellite-observed 
historical flood plain. 
var gfdFloodedSum = gfd.select('flooded').sum(); 

// Mask out areas of permanent water. 
var gfdFloodedSumNoWater = 
gfdFloodedSum.updateMask(gfd.select( 

'jrc_perm_water').sum().lt(1)); 

var durationPalette = ['C3EFFE', '1341E8', '051CB0', 
'001133']; 

Map.addLayer( 
gfdFloodedSumNoWater.selfMask(), 
{ 

min: 0, 
max: 10, 
palette: durationPalette 

}, 
'GFD Satellite Observed Flood Plain');
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Now, we will calculate which states have been developing the great-
est amounts of impervious surfaces in floodplain areas. Start by masking 
out areas in the imperviousDiff image that are not in the floodplains 
(gfdFloodedSumNoWater greater than or equal to 1). Then, we will import 
the first-order administrative Global Administrative Unit Layers from the UN Food 
and Agriculture Organization. Filter this feature collection to administrative names 
(‘ADM0_NAME’) equal to ‘United States of America’. Create an area 
image by multiplying the impervious difference flood image by pixel area. Apply 
a reduceRegions reducer to the area image using the US feature collection 
and an initial scale of 100 m. Sort the output sum by descending order and get 
only the five highest states. Print the output. 

// Mask areas in the impervious difference image that are 
not in flood plains. 
var imperviousDiffFloods = imperviousDiff 

.updateMask(gfdFloodedSumNoWater.gte(1)); 

// Which state has built the most area in the flood plains? 
// Import FAO countries with first level administrative 
units. 
var countries = 
ee.FeatureCollection('FAO/GAUL/2015/level1'); 

// Filter to the United States. 
var unitedStates = 
countries.filter(ee.Filter.eq('ADM0_NAME', 

'United States of America')); 

// Calculate the image area. 
var areaImage = 
imperviousDiffFloods.multiply(ee.Image.pixelArea()); 

// Sum the area image for each state. 
var unitedStatesImperviousDiffFlood = 
areaImage.reduceRegions({ 

collection: unitedStates, 
reducer: ee.Reducer.sum(), 
scale: 100, 

}) // Sort descending. 
.sort('sum', false) 
// Get only the 5 highest states. 
.limit(5);
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// Print state statistics for change in impervious area in 
flood plain. 
print('Impervious-flood change statistics for states in 
US', 

unitedStatesImperviousDiffFlood); 

Question 12. Which state built the highest amount of impervious surfaces on 
satellite-derived floodplains between 2000 and 2018? 

Question 13. Which state built the lowest amount of impervious surfaces on 
satellite-derived floodplains between 2000 and 2018? 

Code Checkpoint A13f. The book’s repository contains a script that shows what 
your code should look like at this point. 

34.3 Synthesis 

Assignment 1. Rerun the first exercise using the first-order administrative Global 
Administrative Unit Layers. Try selecting different countries to explore which ones 
have the highest road density. You will likely need to save the output in order to 
run this analysis. 

Assignment 2. Compute local Geary’s C for roads and transmission lines on other 
continents. Which continent appears to have the strongest clustering? 

Assignment 3. Examine the Global Flood Database in relation to roads in an area 
of your choice. Try country-level analysis. Which country in your area has the 
highest proportion of roads potentially affected by flooding? 

34.4 Conclusion 

In this chapter, we have examined data from the built environment. We started by 
looking at characteristics of roads, then examined the interactions between roads 
and transmission lines, and finished by examining where built environments were 
most commonly developed in floodplains. Data in the built environment can be 
found in both vector and raster forms. We examined analysis using both forms, 
including rasterizing vector data. Our analysis also focused on larger-scale spatial 
analysis at the state, country, and continental levels. Understanding how to do this 
type of analysis allows us to develop a better understanding of these systems as 
more seamless data across temporal and spatial dimensions continue to become 
available.
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Overview 
After high blood pressure and smoking, air pollution is the third-largest risk factor 
for death globally (Murray et al. 2020). Air pollution can therefore be described as a 
global “pandemic” that should arguably be monitored and addressed with the same 
intensity with which the COVID-19 pandemic has been. Remote sensing and cloud 
computing technologies allow us to do so. 

The purpose of this chapter is to explore and analyze gridded air pollution data 
from Sentinel-5P in the context of changes brought about by COVID-19 lockdowns. 
Practical components will include analyzing changes in nitrogen dioxide (NO2) 
concentrations over time and quantifying population-weighted NO2 concentrations 
for selected administrative units. 

Learning Outcomes

• Understanding Sentinel-5P data.
• Quantifying changes in air pollutant concentrations over time.
• Generating a split-panel map to compare two time epochs.
• Calculating population-weighted air pollutant concentrations.
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Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Create a graph using ui.Chart (Chap. 4).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II).
• Use ee.Reducer functions to summarize pixels over an area (Chaps. 8 and 

9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Design user interfaces for an Earth Engine App (Chap. 30). 

35.1 Introduction to Theory 

Air pollution can be generally defined as any chemical, physical, or biological 
agent that alters the natural composition of the atmosphere. Pollutants that are 
of primary concern for public health include particulate matter with diameter less 
than 2.5 µm (PM2.5), carbon monoxide (CO), ozone (O3), NO2, and sulfur dioxide 
(SO2). Globally, chronic exposure to air pollution results in greater loss of life 
than HIV/AIDS, malaria, and tuberculosis combined, and more than an order of 
magnitude more deaths than all forms of violence (Lelieveld et al. 2020). Exposure 
to PM2.5 and O3 is estimated to result in ~ 4.7 million excess deaths annually across 
the globe (Murray et al. 2020), although these estimates range between 3 and 10 
million excess deaths per year, based on the disease categories considered and the 
exposure–response function used (Burnett et al. 2018; Chowdhury et al. 2022). 
Exposure to NO2 may result in 4 million new pediatric asthma cases annually 
(Achakulwisut et al. 2019). 

Knowledge about the global distribution of these air pollutants and their sources 
has improved over the last decade, with the expansion of networks of ground-
based monitors in many countries, the evolution of satellite products, and the 
advancement of complex atmospheric chemistry models. Studies have found that
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more than 70% of the global health burden from air pollution is attributable to 
anthropogenic emissions (Chowdhury et al. 2022; Lelieveld et al. 2019). The main 
anthropogenic sources of air pollution are industries, motor vehicles, power gener-
ation, agricultural activities, and household combustion, while non-anthropogenic 
sources include desert dust, biogenic emissions, forest fires, and even volcanoes. 
The reduction in transport and industrial activity during the COVID-19 lockdowns 
significantly reduced global air pollution levels, thereby highlighting the signifi-
cance of anthropogenic emissions (Venter et al. 2020). In fact, it is estimated that 
the decline in air pollution during the first five months of 2020 resulted in 49,900 
avoided deaths and 89,000 fewer pediatric asthma emergency room visits (Venter 
et al. 2021). 

Despite the recent growth in monitoring networks, the air in most regions 
of Earth is insufficiently monitored, limiting air quality management. Given the 
paucity of ground-based monitoring, alternative monitoring approaches such as 
satellite remote sensing are gaining popularity and becoming more accurate (e.g., 
Griffin et al. 2019). Over the past few decades, we have had increasing access to 
a range of satellite sensors that monitor the contents of Earth’s atmosphere. How-
ever, it is important to note that satellites measure pollutant concentrations in the 
troposphere and stratosphere, which extend for many kilometers above the Earth’s 
surface. As a result, satellite measurements are not necessarily representative of 
the concentrations humans are exposed to on the ground, and consequently, rely-
ing on satellite data alone for human health applications is not advised. However, 
more sophisticated methods combine information from satellite remote sensing 
data, complex atmospheric chemistry models, and ground-based monitors to pro-
vide ground-level concentrations of pollutants with high confidence (Dey et al. 
2020, Donkelar et al. 2021). 

35.2 Practicum 

35.2.1 Section 1: Data Importing and Cleaning 

There is a range of satellite-based datasets on air pollution to choose from in the 
Earth Engine Data Catalog. The main datasets relevant to air pollution include 
the Moderate Resolution Imaging Spectroradiometer and Advanced Very-High-
Resolution Radiometer for monitoring aerosol optical depth (a proxy for PM2.5); 
the Total Ozone Mapping Spectrometer Ozone Monitoring Instrument for monitor-
ing O3; and more recently the TROPOspheric Monitoring Instrument (TROPOMI) 
on board the Sentinel-5 Precursor (Sentinel-5P), which monitors a range of air pol-
lutants. We will use Sentinel-5P in this practicum, but the methods covered here 
are easily transferable to the datasets mentioned above.
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Fig. 35.1 Earth engine data catalog results for the search term “tropomi” 

Now, let’s load the satellite data for this practicum. If you search “tropomi” in 
the Earth Engine Data Catalog, you will see a range of datasets from Sentinel-5P, 
which can all be of value in quantifying air quality (Fig. 35.1). 

Although Sentinel-5 was launched in October 2017, the data available for analy-
sis in Earth Engine are from July 2018 onward. TROPOMI, the sensor on board the 
satellite, is a spectrometer sensing ultraviolet, visible, near-infrared, and shortwave 
infrared wavelengths to monitor NO2, O3, aerosol, methane (CH4), formaldehyde, 
CO, and SO2 in the atmosphere. The swath width of TROPOMI is approximately 
2600 km on the ground, resulting in a global daily coverage with a spatial resolu-
tion of 7×7 km. All of the Sentinel-5P datasets, except CH4, have two versions: 
Near Real-Time (NRTI) and Offline (OFFL); CH4 is available as OFFL only. The 
NRTI assets cover a smaller area than the OFFL assets but appear more quickly 
after acquisition. The OFFL assets have a delayed availability, but each asset con-
tains data from an entire orbit and is arguably easier to work with for retrospective 
analyses. We will use the OFFL NO2 product in this practicum. 

First we need to define an area of interest. Wuhan is infamous for being the 
epicenter of the COVID-19 pandemic and witnessed severe lockdowns. In the next 
section of this practicum, we will test to see if we can detect a reduction in NO2 
during the early 2020 lockdowns in the surrounding province, Hubei. To start, 
in the code below, we import a global dataset of administrative boundaries and
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filter them for intersection with an ee.Geometry.Point object, which appears 
under the Imports section at the top of your script. This geometry has to be 
drawn with the drawing tool and can be moved to a new location to rerun the 
analysis for that administrative boundary. 

After centering the Map on Hubei Province, we will import a population 
dataset, which is necessary for calculating population-weighted exposures in 
Sect. 3 of this practicum. We will use the Gridded Population of the World dataset 
for 2020, which includes a total population count per ~ 1 × 1 km grid (Fig. 35.2). 

Fig. 35.2 Population density over Hubei Province. Brighter areas have higher population counts
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// Import a global dataset of administrative units level 1. 
var adminUnits = ee.FeatureCollection( 

'FAO/GAUL_SIMPLIFIED_500m/2015/level1'); 

// Filter for the administrative unit that intersects 
// the geometry located at the top of this script. 
var adminSelect = adminUnits.filterBounds(geometry); 

// Center the map on this area. 
Map.centerObject(adminSelect, 8); 

// Make the base map HYBRID. 
Map.setOptions('HYBRID'); 

// Add it to the map to make sure you have what you want. 
Map.addLayer(adminSelect, {}, 'selected admin unit'); 

// Import the population count data from Gridded Population of 
the World Version 4. 
var population = ee.ImageCollection( 

'CIESIN/GPWv411/GPW_Population_Count') 
// Filter for 2020 using the calendar range function. 
.filter(ee.Filter.calendarRange(2020, 2020, 'year')) 
// There should be only 1 image, but convert to an image 

using .mean(). 
.mean(); 

// Clip it to your area of interest (only necessary for 
visualization purposes). 
var populationClipped = 
population.clipToCollection(adminSelect); 

// Add it to the map to see the population distribution. 
var popVis = { 

min: 0, 
max: 4000, 
palette: ['black', 'yellow', 'white'], 
opacity: 0.55 

}; 
Map.addLayer(populationClipped, popVis, 'population count'); 

Question 1. There are two other datasets of gridded population in the Earth Engine 
Data Catalog, namely WorldPop and Global Human Settlement Layers. Use the 
search bar to find them and add them to the map to compare them with the Gridded 
Population of the World dataset. Which one looks more realistic in your opinion, 
and why? 

Now it is time to import the NO2 data. As with most optical satellite data, 
there can be things in the atmosphere that contaminate the signal from the object
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or chemical you want to measure. Clouds are a common issue for land surface 
reflectance products (Chap. 15), and they are also an issue when trying to measure 
air pollutant concentrations. In the code below, we create a function to mask out 
pixels with a cloud fraction above 0.3 (i.e., 30% cloud cover). You can test dif-
ferent masking thresholds to see what suits your use case best. After masking out 
cloudy pixels, we create a median composite from images during March 2021. It 
is important to note that we are working with the band that gives measurements for 
the tropospheric vertical column of NO2 and not the stratospheric or total vertical 
column. The troposphere is the closest we can get to ground-level measurements 
with Sentinel-5P. The median image for March 2021 should look like the map 
shown in Fig. 35.3. 

Fig. 35.3 Tropospheric NO2 concentrations over Hubei Province. Hotter colors have higher con-
centrations, while cooler colors have lower concentrations
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// Import the Sentinel-5P NO2 offline product. 
var no2Raw = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2'); 

// Define function to exclude cloudy pixels. 
function maskClouds(image) { 

// Get the cloud fraction band of the image. 
var cf = image.select('cloud_fraction'); 
// Create a mask using 0.3 threshold. 
var mask = cf.lte(0.3); // You can play around with this 

value. 
// Return a masked image. 
return image.updateMask(mask).copyProperties(image); 

} 

// Clean and filter the Sentinel-5P NO2 offline product. 
var no2 = no2Raw 

// Filter for images intersecting our area of interest. 
.filterBounds(adminSelect) 
// Map the cloud masking function over the image collection. 
.map(maskClouds) 
// Select the tropospheric vertical column of NO2 band. 
.select('tropospheric_NO2_column_number_density'); 

// Create a median composite for March 2021 
var no2Median = no2.filterDate('2021-03-01', '2021-04-
01').median(); 

// Clip it to your area of interest (only necessary for 
visualization purposes). 
var no2MedianClipped = no2Median.clipToCollection(adminSelect); 

// Visualize the median NO2. 
var no2Viz = { 

min: 0, 
max: 0.00015, 
palette: ['black', 'blue', 'purple', 'cyan', 'green', 

'yellow', 'red' 
] 

}; 
Map.addLayer(no2MedianClipped, no2Viz, 'median no2 Mar 2021'); 

Code Checkpoint A14a. The book’s repository contains a script that shows what 
your code should look like at this point.
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35.2.2 Section 2: Quantifying and Visualizing Changes 

Next we will test to see if we can visualize a change in NO2 concentrations during 
the 2020 COVID-19 lockdowns. We will compare the median NO2 concentration 
during March 2020 (during which Hubei Province was in lockdown) with the 
median value during March 2019. 

Weather can significantly affect air pollutant concentrations (e.g., wind causing 
long-range transport of smoke), and therefore differences between 2020 and 2019 
could be an artifact of differences in weather. By comparing the same month in 
different years, we partly control for the effects of seasonal weather patterns, but 
not completely. If you would like to control for weather effects more thoroughly, 
see Venter et al. (2020) for details. In the code below, we calculate and visualize 
median composite images for March 2019 and March 2020. The visualization 
makes use of Earth Engine’s comprehensive library of user-interface widgets (see 
Chap. 30 for more details). Specifically, we use the ui.SplitPanel widget to 
compare the two median composites side by side (Fig. 35.4). This widget can be 
set to have a wiping effect where maps are overlaid on top of one another, or a 
side-by-side comparison. 

Fig. 35.4 Split-panel map showing tropospheric NO2 concentrations over Hubei Province for 
March 2019 (left) and March 2020 (right). Hotter colors have higher concentrations, while cooler 
colors have lower concentrations
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orientation: 'horizontal', 
wipe: true, 
style: { 

stretch: 'both' 
} 

}); 
var linker = ui.Map.Linker([leftMap, rightMap]); 

// Make a function to add a label with fancy styling. 
function makeMapLab(lab, position) { 

var label = ui.Label({ 
value: lab, 
style: { 

fontSize: '16px', 
color: '#ffffff', 
fontWeight: 'bold', 
backgroundColor: '#ffffff00', 
padding: '0px' 

} 
}); 

// Define a lockdown NO2 median composite. 
var no2Lockdown = no2.filterDate('2020-03-01', '2020-04-
01') 

.median().clipToCollection(adminSelect); 

// Define a baseline NO2 median using the same month in the 
previous year. 
var no2Baseline = no2.filterDate('2019-03-01', '2019-04-
01') 

.median().clipToCollection(adminSelect); 

// Create a ui map widget to hold the baseline NO2 image. 
var leftMap = ui.Map().centerObject(adminSelect, 
8).setOptions( 

'HYBRID'); 

// Create ta ui map widget to hold the lockdown NO2 image. 
var rightMap = ui.Map().setOptions('HYBRID'); 

// Create a split panel widget to hold the two maps. 
var sliderPanel = ui.SplitPanel({ 

firstPanel: leftMap, 
secondPanel: rightMap,
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var panel = ui.Panel({ 
widgets: [label], 
layout: ui.Panel.Layout.flow('horizontal'), 
style: { 

position: position, 
backgroundColor: '#00000057', 
padding: '0px' 

} 
}); 
return panel; 

} 

// Create baseline map layer, add it to the left map, and 
add the label. 
var no2BaselineLayer = ui.Map.Layer(no2Baseline, no2Viz); 
leftMap.layers().reset([no2BaselineLayer]); 
leftMap.add(makeMapLab('Baseline 2019', 'top-left')); 

// Create lockdown map layer, add it to the right map, and 
add the label. 
var no2LockdownLayer = ui.Map.Layer(no2Lockdown, no2Viz); 
rightMap.layers().reset([no2LockdownLayer]); 
rightMap.add(makeMapLab('Lockdown 2020', 'top-right')); 

// Reset the map interface (ui.root) with the split panel 
widget. 
// Note that the Map.addLayer() calls earlier on in Section 
1 
// will no longer be shown because we have replaced the Map 
widget 
// with the sliderPanel widget. 
ui.root.widgets().reset([sliderPanel]); 

Question 2. Comparing the two maps in the split-panel map, do you find a reduc-
tion in NO2 concentrations during the lockdown? Where is the change in NO2 
concentrations most significant? 

Question 3. How are changes in NO2 concentrations related to population density? 
To help answer this question, you can (1) create a difference image by subtract-
ing the no2Lockdown image from the no2Baseline image, (2) create a new 
ui.Map.Layer for the difference image and the population image created in 
Sect. 35.1, and (3) add these to the left or right map. Hint: You can change the 
opacity of the NO2 layers to aid interpretability.
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Fig. 35.5 Time-series graph showing average NO2 concentrations for Hubei Province during 
March 2019 and March 2020

Exploring the differences in NO2 concentrations as ee.Image objects can be 
visually informative, but quantifying the changes for specific regions requires fur-
ther work. In the code below, we calculate the mean NO2 concentrations for Hubei 
Province by applying a reduceRegion function to each image in the March 
2019 and March 2020 collections. The resulting time series are visualized in the 
chart shown in Fig. 35.5. 

// Create a function to get the mean NO2 for the study 
region 
// per image in the NO2 collection. 
function getConc(collectionLabel, img) { 

return function(img) { 
// Calculate the mean NO2. 
var no2Mean = img.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: adminSelect.geometry(), 
scale: 7000 

}).get('tropospheric_NO2_column_number_density'); 

// Get the day-of-year of the image. 
var doy = img.date().getRelative('day', 'year');
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// Get the concentrations for a baseline and lockdown 
collection 
// and merge for plotting. 
var no2AggChange_forPlotting = no2 

.filterDate('2020-03-01', '2020-04-01') 

.map(getConc('lockdown')) 

.merge(no2.filterDate('2019-03-01', '2019-04-01') 
.map(getConc('baseline'))); 

no2AggChange_forPlotting = no2AggChange_forPlotting 
.filter(ee.Filter.notNull(['conc'])); 

// Make a chart. 
var chart1 = ui.Chart.feature.groups( 

no2AggChange_forPlotting, 'DOY', 'conc', 'type') 
.setChartType('LineChart') 
.setOptions({ 

title: 'DOY time series for mean [NO2] during ' + 
'March 2019 (baseline) and 2020 (lockdown)' 

}); 

// Print it to the console. 
print('Baseline vs lockdown NO2 for the study region by 
DOY', chart1); 

// Return a feature with NO2 concentration and day-
of-year properties. 

return ee.Feature(null, { 
'conc': no2Mean, 
'DOY': doy, 
'type': collectionLabel 

}); 
}; 

}

Code Checkpoint A14b. The book’s repository contains a script that shows 
what your code should look like at this point. 

35.2.3 Section 3: Calculating Population-Weighted Concentrations 

In Sect. 35.2, we used the ee.Reducer.mean reducer in the reduceRegion 
function to get the average NO2 concentration over Hubei Province. However, 
when aggregating pollutant concentrations to define population exposure, we need 
a different approach. Imagine there was a large concentration of NO2 in a rural area 
in the east of Hubei Province where very few people live. If we simply calculated
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the average of all pixels, this rural NO2 anomaly would skew our representation of 
population exposure. Using the population number dataset imported in Sect. 35.1, 
we can calculate the population-weighted exposure (Exp) aggregated across n 
pixels in the area of interest (in this case, Hubei Province) using Eq. A1.4.1 below, 
where Ci is the NO2 concentration and Pi is the subpopulation in pixel i . 

Exp = 
n∑

i 

Pi∑n 
i (P) 

· Ci (35.1) 

In the code below, we map a function to calculate population-weighted exposure 
over all the images in the NO2 ImageCollection. Remember that in Sect. 35.1 
we masked out pixels from images that had a cloud cover value greater than 30%. 
Therefore, an important step in this function is to calculate the percentage of avail-
able Sentinel-5P pixels within Hubei Province per image. We need to decide what 
percentage pixel coverage is enough to calculate a representative average for the 
province. Here we choose 25% for illustrative purposes, but depending on your 
research question, you may want to calculate averages only when you have 100% 
coverage by/from Sentinel-5P that is free of clouds. The contrast between the sim-
ple average and population-weighted average is shown in Fig. 35.6. The difference 
may appear small in this case, but when aggregating over larger areas with greater 
variation in population density, population-weighted averages can be very different 
from simple averages. 

Fig. 35.6 Time-series graph showing average (no2ConcRaw) and population-weighted average 
(no2ConcPopWeighted) NO2 concentrations for Hubei Province in March 2020
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// Define the spatial resolution of the population data. 
var scalePop = 927.67; // See details in GEE Catalogue. 

// Now we define a function that will map over the NO2 
collection 
// and calculate population-weighted concentrations. 
// We will use the formula Exp = SUM {(Pi/P)*Ci}. 
// We can calculate P outside of the function 
// so that it is not computed multiple times for each NO2 image. 
var P = population.reduceRegion({ 

reducer: ee.Reducer.sum(), 
geometry: adminSelect.geometry(), 
scale: scalePop 

}).get('population_count'); 

// And here is the function. 
function getPopWeightedConc(P, region, regionName, img) { 

return function(img) { 
var Ci = img; 
var Pi = population; 
// Calculate the percentage of valid pixels in the 

region. 
// (masked pixels will not be counted). 
var pixelCoverPerc = Ci.gte(0).unmask(0).multiply(100) 

.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: region.geometry(), 
scale: scalePop // Add in the scale of the 

population raster. 
}).get('tropospheric_NO2_column_number_density'); 

// Calculate the per-pixel EXP (see formula above). 
var exp = 

Pi.divide(ee.Image(ee.Number(P))).multiply(Ci); 

// Sum the exp over the region. 
var expSum = exp.reduceRegion({ 

reducer: ee.Reducer.sum(), 
geometry: region.geometry(), 
scale: scalePop 

}).get('population_count');
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// Calculate the mean NO2 - the approach that would 
usually 

// be taken without population weighting. 
var no2Mean = Ci.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: region.geometry(), 
scale: scalePop 

}).get('tropospheric_NO2_column_number_density'); 

// Return a feature with properties 
var featOut = ee.Feature(null, { 

'system:time_start': img.get( 
'system:time_start'), 

'dateString': img.date().format('YYYY-MM-DD'), 
'regionName': regionName, 
'no2ConcPopWeighted': expSum, 
'no2ConcRaw': no2Mean, 
'pixelCoverPerc': pixelCoverPerc 

}); 

return featOut; 
}; 

} 

// Filter the NO2 collection for March 2020 and map the function 
over it. 
var no2Agg_popWeighted = no2.filterDate('2020-03-01', '2020-04-
01') 

.map(getPopWeightedConc(P, adminSelect, 'Wuhan')); 
no2Agg_popWeighted = ee.FeatureCollection(no2Agg_popWeighted); 

// Define the percentage of valid pixels you want in your region 
per time point. 
// Here we choose 25; i.e. only images with at least 25% valid 
NO2 pixels. 
var validPixelPerc = 25; // you can play around with this value 

// Filter the feature collection based on your pixel criteria. 
no2Agg_popWeighted = no2Agg_popWeighted 

.filter(ee.Filter.greaterThanOrEquals('pixelCoverPerc', 
validPixelPerc)); 

print('Population weighted no2 feature collection:', 

no2Agg_popWeighted);
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// Create a feature collection for plotting the mean [NO2] 
// and the mean pop-weighted [NO2] on the same graph. 
var no2Agg_forPlotting = no2Agg_popWeighted.map(function(ft) { 

return ft.set('conc', ft.get('no2ConcPopWeighted'), 
'type', 'no2ConcPopWeighted'); 

}).merge(no2Agg_popWeighted.map(function(ft) { 
return ft.set('conc', ft.get('no2ConcRaw'), 'type', 

'no2ConcRaw'); 
})); 

// Make a chart 
var chart2 = ui.Chart.feature.groups( 

no2Agg_forPlotting, 'system:time_start', 'conc', 'type') 
.setChartType('LineChart') 
.setOptions({ 

title: 'Time series for mean [NO2] and the pop-weighted 
[NO2]' 

}); 

// Print it to the console 
print('Raw vs population-weighted NO2 for the study region', 
chart2); 

Finally, although we can plot this data in Earth Engine, it is often easier to 
process with other statistical software, such as R or Python. So, to conclude, let 
us code for exporting time series of population-weighted averages for more than 
one area of interest (in this case, administrative units). In the code below, we map 
the function over two regions and then export the resulting table as a CSV file to 
Google Drive. 

// Export population-weighted data for multiple regions. 
// First select the regions. This can also be done with 
// .filterBounds() as in Line 9 above. 
var regions = adminUnits 

.filter(ee.Filter.inList('ADM1_NAME', ['Chongqing Shi', 
'Hubei Sheng' 

]));



742 Z. S. Venter and S. Chowdhury

// Map a function over the regions that calculates population-
weighted [NO2]. 
var No2AggMulti_popWeighted = regions.map(function(region) { 

var P = population.reduceRegion({ 
reducer: ee.Reducer.sum(), 
geometry: region.geometry(), 
scale: scalePop 

}).get('population_count'); 
var innerTable = no2.filterDate('2020-03-01', 

'2020-04-01') 
.map(getPopWeightedConc(P, region, region.get( 

'ADM1_NAME'))); 
return innerTable; 

}).flatten(); 
// Remember to filter out readings that have pixel percentage 
cover 
// below your threshold 
No2AggMulti_popWeighted = No2AggMulti_popWeighted 

.filter(ee.Filter.greaterThanOrEquals('pixelCoverPerc', 
validPixelPerc)); 

// Run the export under the 'Tasks' tab on the right 
// and find your CSV file in Google Drive later on. 
Export.table.toDrive({ 

collection: No2AggMulti_popWeighted, 
description: 'no2_popWeighted', 
fileFormat: 'CSV' 

}); 

Code Checkpoint A14c. The book’s repository contains a script that shows 
what your code should look like at this point. 

35.3 Synthesis 

In this practicum, we focused on a particular pollutant (NO2), region (Hubei), and 
time period (March 2019 and March 2020). To reinforce your comprehension and 
understanding, consider the following assignments. 

Assignment 1. How would you run this analysis for a different pollutant? Try 
substituting the NO2 collection with the Sentinel-5P NRTI SO2 collection. Hint: 
The main emission source for SO2 is electricity generation, for which coal is the 
most significant fuel. Use this information to inform your selection of a location 
and time period so that you can detect interesting changes. 

Assignment 2. How would you run this analysis for a different geographic area? 
Try deleting the ee.Geometry.Point at the top of your script and using the 
Geometry Tools to digitize your own point on which to focus the analysis. If you
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are running the latter part of the script, you can also change the list of named 
administrative units. Hint: Add the adminUnits object from Sect. 35.1 of the 
code to the map. You can use the Inspector tab to click on polygons and get the 
name of the administrative unit under the ‘ADM1_NAME’ property. 

Assignment 3. Finally, try changing the dates in the script so that you are compar-
ing two different time periods. Remember that the Sentinel-5P data are available 
from July 2018 onward; defining dates before this will cause the script to throw 
an error. 

35.4 Conclusion 

In this chapter, we covered the basics of importing Sentinel-5P air pollution data, 
comparing changes over time, and calculating population-weighted averages for 
spatial units. Satellite detection of air pollutants is an important tool for monitor-
ing air quality from local to global scales, but ground-station measurements and 
atmospheric modeling are often necessary to draw conclusions about human health 
risk. The fusion of ground-level and satellite data with advanced machine learning 
models to map and forecast air pollution is a growing research field with important 
societal applications (e.g., https://www.iqair.com/). Earth Engine is a well-suited 
and currently underutilized resource to advance this field. 
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36Heat Islands 

TC Chakraborty 

Overview 
In this chapter, you will learn about urban heat islands and how they can be calculated 
from satellite measurements of thermal radiation from the Earth’s surface. 

Learning Outcomes

• Understanding how to derive land surface temperature.
• Understanding how to generate urban and rural references.
• Knowing how to calculate the surface urban heat island intensity. 

Helps if you know how to

• Import, filter, and visualize images (Part I).
• Perform basic image analysis: select bands, compute indices, and create masks 

(Part II).
• Use expressions to perform calculations on image bands (Chap. 9).
• Write a function and map it over an ImageCollection (Chap.12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Conduct basic vector analyses: vectorizing and buffering (Part 5).
• Write a function and map it over a FeatureCollection (Chap. 23 and 24).
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36.1 Introduction to Theory 

Urbanization involves the replacement of natural landscapes with built-up struc-
tures such as buildings, roads, and parking lots. This land cover modification also 
changes the properties of the land surface. These changes can range from how 
much radiation is reflected and absorbed by the surface to how the heat is dissi-
pated from the surface (e.g., removal of vegetation for urban development reduces 
evaporative cooling). These changes in surface properties can modify local weather 
and climate (Kalnay and Cai 2003). The most-studied local climate modification 
due to urbanization is the urban heat island (UHI) effect (Arnfield 2003; Qian 
et al. 2022). The UHI is the phenomenon in which a city is warmer than either its 
surroundings or an equivalent surface that is not urbanized. We have known about 
the UHI effect for almost 200 years (Howard 1833). 

Traditionally, the UHI was defined as the difference in air temperature, mea-
sured by weather stations, between a city and some rural reference outside the city 
(Oke 1982). One issue with this method is that different parts of the city can have 
different air temperatures, making it difficult to capture the UHI for the entire city. 
Using satellite observations in the thermal bands allows us to get another mea-
sure of temperature: the radiometric skin temperature, often known as the land 
surface temperature (LST). We can use LST to calculate a surface UHI (SUHI) 
intensity, including how it varies within cities at the pixel scale (Ngie et al. 2014). 
It is important to stress here that the UHI values observed by satellites and those 
calculated using air temperature measurements can be very different (Chakraborty 
et al. 2017; Hu et al.  2019; Venter et al. 2021). 

36.2 Practicum 

36.2.1 Deriving Land Surface Temperature 

36.2.2 Deriving Land Surface Temperature from MODIS 

Land surface temperature can either be extracted from derived products, such as the 
MODIS Terra and Aqua satellite products (Wan 2006), or estimated directly from 
satellite measurements in the thermal band. We will explore both options using the 
city of New Haven, Connecticut, USA, as the region of interest (Fig. 36.1). We 
will start with the MODIS LST.
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Fig. 36.1 Boundary of New Haven, Connecticut 

We start by loading the feature collection, which, being a census tract-level 
aggregation, we dissolve to get the overall boundary using the union operation. 
The FeatureCollection is added to the map for demonstration: 

// Load feature collection of New Haven's census tracts 
from user assets. 
var regionInt = ee.FeatureCollection( 

'projects/gee-book/assets/A1-5/TC_NewHaven'); 

// Get dissolved feature collection using an error margin 
of 50 meters. 
var regionInt = regionInt.union(50); 

// Set map center and zoom level (Zoom level varies from 1 
to 20). 
Map.setCenter(-72.9, 41.3, 12); 

// Add layer to map. 
Map.addLayer(regionInt, {}, 'New Haven boundary');
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Next we load in the MODIS MYD11A2 version 6 product, which provides 
eight-day composites of LST from the Aqua satellite. This corresponds to an equa-
torial crossing time of roughly 1:30 p.m. during daytime and 1:30 a.m. at night. 
In contrast, the MODIS sensor onboard the Terra platform (MOD11A2 version 6) 
has an overpass of roughly 10:30 a.m. and 10:30 p.m local time. 

// Load MODIS image collection from the Earth Engine data 
catalog. 
var modisLst = ee.ImageCollection('MODIS/006/MYD11A2'); 

// Select the band of interest (in this case: Daytime LST). 
var landSurfTemperature = modisLst.select('LST_Day_1km'); 

We want to focus on only summertime SUHI, so we will create a five-year 
summer composite of LST using a day-of-year filter assembling images from June 
1 (day 152) to August 31 (day 243) in each year: 

// Create a summer filter. 
var sumFilter = ee.Filter.dayOfYear(152, 243); 

// Filter the date range of interest using a date filter. 
var lstDateInt = landSurfTemperature 

.filterDate( ('2014-01-01', '2019-01-01' 

.filter(sumFilter); 

// Take pixel-wise mean of all the images in the 
collection. 
var lstMean = lstDateInt.mean(); 

We now convert this image into LST in degrees Celsius and mask out all the 
water pixels (the high specific heat capacity of water would affect LST, and we 
are focused on land pixels). For the water mask, we use the Global Surface Water 
dataset (Pekel et al. 2016); to convert the pixel values, we use the scaling factor 
for the band from the data provider and then subtract by 273.15 to convert from 
Kelvin to degrees Celsius. The scaling factor can be found in the Earth Engine 
data summary page (Fig. 36.2).
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Fig. 36.2 Scaling factor in the data summary 

Finally, we clip the image using the city boundary and add the layer to the map. 

// Multiply each pixel by scaling factor to get the LST 
values. 
var lstFinal = lstMean.multiply(0.02); 

// Generate a water mask. 
var water = 
ee.Image('JRC/GSW1_0/GlobalSurfaceWater').select( 

'occurrence'); 
var notWater = water.mask().not(); 
// Clip data to region of interest, convert to degree 
Celsius, and mask water pixels. 
var lstNewHaven = lstFinal.clip(regionInt).subtract(273.15) 

.updateMask(notWater); 

// Add layer to map. 
Map.addLayer(lstNewHaven, { 

palette: ['blue', 'white', 'red'], 
min: 25, 
max: 38 

}, 
'LST_MODIS');
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Fig. 36.3 Five-year summer composite of daytime MODIS Aqua LST over New Haven, Con-
necticut. Red pixels show higher LST values and blue pixels have lower values 

Code Checkpoint A15a. The book’s repository contains a script that shows what 
your code should look like at this point. 

36.2.2.1 Section 1.2: Deriving Land Surface Temperature 
from Landsat 

Working with MODIS LST is relatively simple because the data are already pro-
cessed by the NASA team. You can also derive LST from Landsat, which has a 
much finer native resolution (between ~60 m and ~120 m depending on satellite) 
than the ~ 1 km MODIS pixels. However, you need to derive LST yourself from 
the measurements in the thermal bands, which also usually involves some estimate 
of surface emissivity (Li et al. 2013). The surface emissivity (ε) of a material is the 
effectiveness with which it can emit thermal radiation compared to a black body 
at the same temperature and can range from 0 (for a perfect reflector) to 1 (for a 
perfect absorber and emitter). Since the thermal radiation captured by satellites is 
a function of both LST and ε, you need to accurately prescribe or estimate ε to get 
to the correct LST. Let’s consider one such simple method using Landsat 8 data. 

We will start by loading in the Landsat data, cloud screening, and then filtering 
to a time and region of interest. Continuing in the same script, add the following 
code:
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// Function to filter out cloudy pixels. 
function cloudMask(cloudyScene) { 

// Add a cloud score band to the image. 
var scored = 

ee.Algorithms.Landsat.simpleCloudScore(cloudyScene); 

// Create an image mask from the cloud score band and 
specify threshold. 

var mask = scored.select(['cloud']).lte(10); 

// Apply the mask to the original image and return the 
masked image. 

return cloudyScene.updateMask(mask); 
} 

// Load the collection, apply coud mask, and filter to date 
and region of interest. 
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') 

.filterBounds(regionInt) 

.filterDate('2014-01-01', '2019-01-01') 

.filter(sumFilter) 

.map(cloudMask); 

print('Landsat collection', col); 

After creating a median composite as a simple way to further reduce the influ-
ence of clouds, we mask out the water pixels and select the brightness temperature 
band. 

// Generate median composite. 
var image = col.median(); 

// Select thermal band 10 (with brightness temperature). 
var thermal = image.select('B10') 

.clip(regionInt) 

.updateMask(notWater); 

Map.addLayer(thermal, { 
min: 295, 
max: 310, 
palette: ['blue', 'white', 'red'] 

}, 
'Landsat_BT');



752 T C Chakraborty

Brightness temperature (Fig. 36.4) is the temperature equivalent of the infrared 
radiation escaping the top of the atmosphere, assuming the Earth to be a black 
body. It is not the same as the LST, which requires accounting for atmospheric 
absorption and re-emission, as well as the emissivity of the land surface. One 
way to derive pixel-level emissivity is as a function of the vegetation fraction of 
the pixel (Malakar et al. 2018). For this, we start by calculating the Normalized 
Difference Vegetation Index (NDVI) from the Landsat surface reflectance data (see 
Fig. 36.5).

Fig. 36.4 Five-year summer median composite of Landsat brightness temperature over New 
Haven, Connecticut. Red pixels show higher values, and blue pixels have lower values
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Fig. 36.5 Five-year summer median composite of Landsat-derived NDVI over New Haven, Con-
necticut. White pixels show higher NDVI values, and blue pixels have lower values
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// Calculate Normalized Difference Vegetation Index (NDVI) 
// from Landsat surface reflectance. 
var ndvi = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') 

.filterBounds(regionInt) 

.filterDate('2014-01-01', '2019-01-01') 

.filter(sumFilter) 

.median() 

.normalizedDifference(['SR_B5', 
'SR_B4']).rename('NDVI') 

.clip(regionInt) 

.updateMask(notWater); 

Map.addLayer(ndvi, { 
min: 0, 
max: 1, 
palette: ['blue', 'white', 'green'] 

}, 
'ndvi');

To map NDVI for each pixel to the actual fraction of the pixel with vegetation 
(fractional vegetation cover), we next use a relationship based on the range of 
NDVI values for each pixel. 

// Find the minimum and maximum of NDVI.  Combine the 
reducers 
// for efficiency (single pass over the data). 
var minMax = ndvi.reduceRegion({ 

reducer: ee.Reducer.min().combine({ 
reducer2: ee.Reducer.max(), 
sharedInputs: true 

}), 
geometry: regionInt, 
scale: 30, 
maxPixels: 1e9 

}); 
print('minMax', minMax); 

var min = ee.Number(minMax.get('NDVI_min')); 
var max = ee.Number(minMax.get('NDVI_max'));
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// Calculate fractional vegetation. 
var fv = 
ndvi.subtract(min).divide(max.subtract(min)).rename('FV'); 
Map.addLayer(fv, { 

min: 0, 
max: 1, 
palette: ['blue', 'white', 'green'] 

}, 'fv'); 

Now we use an empirical model of emissivity based on this fractional vegetation 
cover (Sekertekin and Bonafoni 2020). 

// Emissivity calculations. 
var a = ee.Number(0.004); 
var b = ee.Number(0.986); 
var em = 
fv.multiply(a).add(b).rename('EMM').updateMask(notWater); 

Map.addLayer(em, { 
min: 0.98, 
max: 0.99, 
palette: ['blue', 'white', 'green'] 

}, 
'EMM'); 

As seen in Fig. 36.6, emissivity is lower over the built-up structures compared 
to over vegetation, which is expected. Note that different models of estimating 
emissivity would lead to some differences in LST values as well as the SUHI 
intensity (Sekertekin and Bonafoni 2020; Chakraborty et al. 2021a). 

Then we combine this emissivity with the brightness temperature to calcu-
late the LST for each pixel using a simple single-channel algorithm, which is 
a linearized approximation of the radiation transfer equation (Ermida et al. 2020).
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Fig. 36.6 Surface emissivity over New Haven, Connecticut, based on vegetation fraction. Green 
pixels show higher values, and white pixels have lower values

// Calculate LST from emissivity and brightness 
temperature. 
var lstLandsat = thermal.expression( 

'(Tb/(1 + (0.001145* (Tb / 1.438))*log(Ep)))-273.15', { 
'Tb': thermal.select('B10'), 
'Ep': em.select('EMM') 

}).updateMask(notWater); 

Map.addLayer(lstLandsat, { 
min: 25, 
max: 35, 
palette: ['blue', 'white', 'red'], 

}, 
'LST_Landsat'); 
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Fig. 36.7 Five-year summer median composite of Landsat-derived LST over New Haven, Con-
necticut. Red pixels show higher LST values, and blue pixels have lower values 

The Landsat-derived values correspond to those of the MODIS Terra daytime 
overpass. Overall, you do see similar patterns in Figs. 36.3 and 36.7, but Landsat 
picks up a lot more heterogeneity than MODIS due to its finer resolution. 

Code Checkpoint A15b. The book’s repository contains a script that shows what 
your code should look like at this point. 

36.2.2.2 Section 1.3: Deriving Land Surface Temperature Using 
the Earth Engine Landsat LST Toolbox 

In the previous section, we explored an LST retrieval algorithm to give an example 
of the standard steps to get to LST from the satellite measurements in the thermal 
bands. In this section, we will use an Earth Engine module developed for this 
purpose to calculate LST (Fig. 36.8).
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Fig. 36.8 Five-year summer median composite of Landsat-derived LST over New Haven, Con-
necticut, using the Statistical Mono-Window algorithm. Red pixels show higher LST values, and 
blue pixels have lower values
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// Link to the module that computes the Landsat LST. 
var landsatLST = require( 

'projects/gee-edu/book:Part A - Applications/A1 - Human 
Applications/A1.5 Heat Islands/modules/Landsat_LST.js'); 

// Select region of interest, date range, and Landsat 
satellite. 
var geometry = regionInt.geometry(); 
var satellite = 'L8'; 
var dateStart = '2014-01-01'; 
var dateEnd = '2019-01-01'; 
var useNdvi = true; 

// Get Landsat collection with additional necessary 
variables. 
var landsatColl = landsatLST.collection(satellite, 
dateStart, dateEnd, 

geometry, useNdvi); 

// Create composite, clip, filter to summer, mask, and 
convert to degree Celsius. 
var landsatComp = landsatColl 

.select('LST') 

.filter(sumFilter) 

.median() 

.clip(regionInt) 

.updateMask(notWater) 

.subtract(273.15); 

Map.addLayer(landsatComp, { 
min: 25, 
max: 38, 
palette: ['blue', 'white', 'red'] 

}, 
'LST_SMW'); 

As an aside, the Landsat Collection 2 products have recently incorporated LST 
bands, which can be processed similar to the MODIS data, but with the bands’ 
own specific offsets and scaling factors. 

Code Checkpoint A15c. The book’s repository contains a script that shows what 
your code should look like at this point. 

36.2.2.3 Section 2: Defining Urban and Rural References 
Now that we have estimates of LST using various products and algorithms, we can 
calculate the rural LST and subtract from the urban LST to get the SUHI intensity.
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There are many ways to estimate the rural reference temperature (Li et al. 2022), 
and we will explore a few of them in this section. 

The simplest and probably the most commonly used method to get the rural 
reference when calculating the SUHI is to generate a buffered area around the 
urban boundary. The exact width of the buffer varies across studies, with buffers 
of 2–30 km in width being used in previous studies (Clinton and Gong 2013; 
Venter et al. 2021; Yao et al. 2019). In Earth Engine, generating such a buffer is 
simple: 

// Function to subtract the original urban cluster from the 
buffered cluster 
// to generate rural references. 
function bufferSubtract(feature) { 

return ee.Feature(feature.geometry() 
.buffer(2000) 
.difference(feature.geometry())); 

} 

var ruralRef = regionInt.map(bufferSubtract); 

Map.addLayer(ruralRef, { 
color: 'green' 

}, 'Buffer_ref'); 

In the script above, a buffered polygon with a 2 km width is generated around 
the urban boundary, and the original urban boundary is subtracted from the 
buffered polygon. The result is shown in Fig. 36.9.

The use of a constant buffer assumes that all urban areas, regardless of size, 
have a similar influence around the city. This may not be true for large cities. In 
fact, there is some evidence that there is a footprint of the SUHI that is dependent 
on the size of the city (Yang et al. 2019; Zhou et al. 2015). As such, another way to 
define the buffered region is to normalize its area by the area of the urban cluster 
it surrounds (Chakraborty et al. 2021b, Peng et al. 2012). One way to do so in 
Earth Engine is by using an iterative method. This method (see code block below) 
uses functions to first calculate buffers of different widths around a geometry and 
then select the buffered region that is closest in size to the original geometry.
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Fig. 36.9 A 2 km buffer around the original city boundary to serve as the rural reference

// Define sequence of buffer widths to be tested. 
var buffWidths = ee.List.sequence(30, 3000, 30); 

// Function to generate standardized buffers (approximately 
comparable to area of urban cluster). 
function bufferOptimize(feature) { 

function buff(buffLength) { 
var buffedPolygon = ee.Feature(feature.geometry() 

.buffer(ee.Number(buffLength))) 
.set({ 

'Buffer_width': ee.Number(buffLength) 
});
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var area = 
buffedPolygon.geometry().difference(feature 

.geometry()).area(); 
var diffFeature = ee.Feature( 

buffedPolygon.geometry().difference(feature 
.geometry())); 

return diffFeature.set({ 
'Buffer_diff': area.subtract(feature.geometry() 

.area()).abs(), 
'Buffer_area': area, 
'Buffer_width': 

buffedPolygon.get('Buffer_width') 
}); 

} 

var buffed = 
ee.FeatureCollection(buffWidths.map(buff)); 

var sortedByBuffer = buffed.sort({ 
property: 'Buffer_diff' 

}); 
var firstFeature = ee.Feature(sortedByBuffer.first()); 
return firstFeature.set({ 

'Urban_Area': feature.get('Area'), 
'Buffer_width': firstFeature.get('Buffer_width') 

}); 
} 

// Map function over urban feature collection. 

var ruralRefStd = regionInt.map(bufferOptimize); 

Map.addLayer(ruralRefStd, { 
color: 'brown' 

}, 'Buffer_ref_std'); 

print('ruralRefStd', ruralRefStd); 

Note how mapping the buff function over a sequence of pre-defined values, 
as done here, does not require loops, which are best avoided when using Earth 
Engine. The same is true of mapping the bufferOptimize function: here it 
is mapped over a FeatureCollection with a single feature, but it would 
work even if regionInt contained multiple features. In this way, nested map 
functions in Earth Engine have the utility of nested loops in other languages. 

Check the printed value on the Console. According to the result, within an 
uncertainty of 30 m, a buffer of 1170 m in width creates a polygon that is roughly
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equal to the area of the city. This function is best to run via export when working 
with large feature collections. 

The final way to define a rural reference does not use a buffer at all, but relies on 
land cover classes to select pixels that are urban versus non-urban (the Simplified 
Urban Extent algorithm; Chakraborty et al. 2020; Chakraborty and Lee 2019). For 
this, we will rely on the NLCD 2016 land cover data (Wickham et al. 2021) and 
create masks for urban and non-urban pixels (Fig. 36.10). 

Fig. 36.10 Urban (red) and rural (blue) pixels in New Haven, Connecticut
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// Select the NLCD land cover data. 
var landCover = 
ee.Image('USGS/NLCD/NLCD2016').select('landcover'); 
var urban = landCover; 

// Select urban pixels in image. 
var urbanUrban = 
urban.updateMask(urban.eq(23).or(urban.eq(24))); 

// Select background reference pixels in the image. 
var nonUrbanVals = [41, 42, 43, 51, 52, 71, 72, 73, 74, 81, 
82]; 
var nonUrbanPixels = 
urban.eq(ee.Image(nonUrbanVals)).reduce('max'); 
var urbanNonUrban = urban.updateMask(nonUrbanPixels); 

Map.addLayer(urbanUrban.clip(regionInt), { 
palette: 'red' 

}, 'Urban pixels'); 
Map.addLayer(urbanNonUrban.clip(regionInt), { 

palette: 'blue' 
}, 'Non-urban pixels'); 

We can then subsequently use these as masks to select urban versus rural LST 
pixels. You will find more about this in the next section. 

Code Checkpoint A15d. The book’s repository contains a script that shows what 
your code should look like at this point. 

36.2.2.4 Section 3: Calculating the Surface Urban Heat Island 
Intensity 

Since the SUHI is the temperature difference between the urban area and the rural 
reference, we will calculate summary temperature values for the urban boundary 
and the different versions of rural reference using the Landsat and MODIS LST.
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// Define function to reduce regions and summarize pixel 
values 
// to get mean LST for different cases. 
function polygonMean(feature) { 

// Calculate spatial mean value of LST for each case 
// making sure the pixel values are converted to °C 

from Kelvin. 
var reducedLstUrb = 

lstFinal.subtract(273.15).updateMask(notWater) 
.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 30 

}); 
var reducedLstUrbMask = 

lstFinal.subtract(273.15).updateMask( 
notWater) 

.updateMask(urbanUrban) 

.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 30 

}); 
var reducedLstUrbPix = 

lstFinal.subtract(273.15).updateMask( 
notWater) 

.updateMask(urbanUrban) 

.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 500 

}); 
var reducedLstLandsatUrbPix = 

landsatComp.updateMask(notWater) 
.updateMask(urbanUrban) 
.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 30 

});
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var reducedLstRurPix = 
lstFinal.subtract(273.15).updateMask( 

notWater) 
.updateMask(urbanNonUrban) 
.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 500 

}); 
var reducedLstLandsatRurPix = 

landsatComp.updateMask(notWater) 
.updateMask(urbanNonUrban) 
.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 30 

}); 

// Return each feature with the summarized LSY values 
as properties. 

return feature.set({ 
'MODIS_LST_urb': reducedLstUrb.get('LST_Day_1km'), 
'MODIS_LST_urb_mask': reducedLstUrbMask.get( 

'LST_Day_1km'), 
'MODIS_LST_urb_pix': reducedLstUrbPix.get( 

'LST_Day_1km'), 
'MODIS_LST_rur_pix': reducedLstRurPix.get( 

'LST_Day_1km'), 
'Landsat_LST_urb_pix': reducedLstLandsatUrbPix.get( 

'LST'), 
'Landsat_LST_rur_pix': reducedLstLandsatRurPix.get( 

'LST') 
}); 

} 

// Map the function over the urban boundary to get mean 
urban and rural LST 
// for cases without any explicit buffer-based boundaries. 
var reduced = regionInt.map(polygonMean); 

As you know from the code above, we extract urban temperature 
from MODIS (’MODIS_LST_urb) and from Landsat and MODIS 
(’MODIS_LST_urb_pix’ and ’Landsat_LST_urb_pix’) after 
considering only the urban pixels within the boundary.
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Corresponding values are also extracted from the rural reference (including 
using only rural reference pixels within the urban boundary). For the buffered 
regions (both using constant width and variable width), we define and call another 
function. 

// Define a function to reduce region and summarize pixel 
values 
// to get mean LST for different cases. 
function refMean(feature) { 

// Calculate spatial mean value of LST for each case 
// making sure the pixel values are converted to °C 

from Kelvin. 
var reducedLstRur = 

lstFinal.subtract(273.15).updateMask(notWater) 
.reduceRegion({ 

reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 30 

}); 
var reducedLstRurMask = 

lstFinal.subtract(273.15).updateMask( 
notWater) 

.updateMask(urbanNonUrban) 

.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: feature.geometry(), 
scale: 30 

}); 
return feature.set({ 

'MODIS_LST_rur': reducedLstRur.get('LST_Day_1km'), 
'MODIS_LST_rur_mask': reducedLstRurMask.get( 

'LST_Day_1km'), 
}); 

}
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// Map the function over the constant buffer rural 
reference boundary one. 
var reducedRural = 
ee.FeatureCollection(ruralRef).map(refMean); 

// Map the function over the standardized rural reference 
boundary. 
var reducedRuralStd = ruralRefStd.map(refMean); 

print('reduced', reduced); 
print('reducedRural', reducedRural); 
print('reducedRuralStd', reducedRuralStd); 

We can print the newly created feature collections to go through these values 
for the different cases. Even though absolute MODIS and Landsat urban LSTs 
are different (29 for Landsat and 34 for MODIS), the SUHI is similar (3.6 C for 
MODIS and 4.8 C from Landsat). As one might expect, when only urban pixels 
are considered within the boundary, the average LST is higher (and lower for rural 
LST). 

The SUHI variability within the city (Fig. 36.11) can then be displayed by 
subtracting the rural LST from the total LST:

// Display SUHI variability within the city. 
var suhi = landsatComp 

.updateMask(urbanUrban) 

.subtract(ee.Number(ee.Feature(reduced.first()) 
.get('Landsat_LST_rur_pix'))); 

Map.addLayer(suhi, { 
palette: ['blue', 'white', 'red'], 
min: 2, 
max: 8 

}, 'SUHI'); 

Code Checkpoint A15e. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 36.11 Spatial variability in SUHI for the period of interest for New Haven, Connecticut. Red 
pixels show higher values and blue pixels show lower values

36.3 Synthesis 

Now that you know the different ways to calculate the SUHI and estimate LST 
using Earth Engine, load in your own city’s feature collection and compare the 
different methods. 

Question 1. What are the SUHI values during summer and winter from the two 
products? 

Question 2. How does a pixel-based urban–rural delineation method compare to a 
buffer-based method for SUHI estimation?
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36.4 Conclusion 

You should now have a good understanding of satellite measurements in the ther-
mal bands, how they can be used to estimate LST, and how we can calculate the 
SUHI using these measurements. 
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37Health Applications 

Dawn Nekorchuk 

Overview 
The purpose of this chapter is to demonstrate how Google Earth Engine may be 
used to support modeling and forecasting of vector-borne infectious diseases such 
as malaria. In doing so, the chapter will also show how Earth Engine may be used 
to gather data for subsequent analyses outside of Earth Engine, the results of which 
can then also be brought back into Earth Engine. 

We will be calculating and exporting data of remotely sensed environmental vari-
ables: precipitation, temperature, and a vegetation water index. These factors can 
impact mosquito life cycles, malaria parasites, and transmission dynamics. These 
data can then be used in R for modeling and forecasting malaria in the Amhara 
region of Ethiopia, using the Epidemic Prognosis Incorporating Disease and Envi-
ronmental Monitoring for Integrated Assessment (EPIDEMIA) system, developed 
by the EcoGRAPH research group at the University of Oklahoma. 

Learning Outcomes

• Extracting and calculating malaria-relevant variables from existing datasets: 
precipitation, temperature, and wetness.

• Importing satellite data and filtering for images over a region and time period.
• Joining two data products to get additional quality information.
• Computing zonal summaries of the calculated variables for elements in a 
FeatureCollection.
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Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

2).
• Use expressions to perform calculations on image bands (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Flatten a table for export to CSV (Chap. 22).
• Use reduceRegions to summarize an image with zonal statistics in irregular 

shapes (Chaps. 22 and 24).
• Write a function and map it over a FeatureCollection (Chaps. 23 and 24). 

37.1 Introduction to Theory 

Vector-borne diseases cause more than 700,000 deaths per year, of which approx-
imately 400,000 are due to malaria, a parasitic infection spread by Anopheles 
mosquitoes (World Health Organization 2018, 2020). The WHO estimates that 
there were around 229 million clinical cases of malaria worldwide in 2019 (WHO 
2020). Environmental factors including temperature, humidity, and rainfall are 
known to be important determinants of malaria risk as these affect mosquito and 
parasite development and life cycles, including larval habitats, mosquito fecun-
dity, growth rates, mortality, and Plasmodium parasite development rates within 
the mosquito vector (Franklinos et al. 2019; Jones et al. 2008; Wimberly et al. 
2021). 

Data from Earth-observing satellites can be used to monitor spatial and tempo-
ral changes in these environmental factors (Ford et al. 2009). These data can be 
incorporated into disease modeling, usually as lagged functions, to help develop 
early warning systems for forecasting outbreaks (Wimberly et al. 2021, 2022). 
Accurate forecasts would allow limited resources for prevention and control to be 
more efficiently and effectively targeted at appropriate locations and times (WHO 
2018). 

To implement near-real-time forecasting, meteorological and climatic data must 
be acquired, processed, and integrated on a regular and frequent basis. Over the 
past 10 years, the Epidemic Prognosis Incorporating Disease and Environmen-
tal Monitoring for Integrated Assessment (EPIDEMIA) project has developed and 
tested a malaria forecasting system that integrates public health surveillance with 
monitoring of environmental and climate conditions. Since 2018, the environmen-
tal data have been acquired using Earth Engine scripts and apps (Wimberly et al. 
2022). In 2019, a local team at Bahir Dar University in Ethiopia had been using 
EPIDEMIA with near-real-time epidemiological data to generate weekly malaria 
early warning reports in the Amhara region of Ethiopia.
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In this example, we are looking at near-real-time environmental conditions that 
affect disease vectors and human transmission dynamics. On longer time scales, 
issues such as climate change can alter vector-borne disease transmission cycles 
and the geographic distributions of various vector and host species (Franklinos 
et al. 2019). More broadly, health applications involving Earth Engine data likely 
align with a One Health approach to complex health issues. Under One Health, a 
core assumption is that environmental, animal, and human health are inextricably 
linked (Mackenzie and Jeggo 2019). 

37.2 Practicum 

The goal of the practicum is to create a download of three environmental variables: 

1. Precipitation. 
2. Mean land surface temperature (LST). 
3. Normalized Difference Water Index (NDWI) spectral index. 

These downloads will be zonal summaries based on our uploaded shapefile of 
woredas (districts) in the Amhara region of Ethiopia. 

The practicum is an extract from the longer Retrieving Environmental Ana-
lytics for Climate and Health (REACH) Earth Engine script (developed by Dr. 
Michael C. Wimberly and Dr. Dawn Nekorchuk) used in the EPIDEMIA project 
(Dr. Michael C. Wimberly, PI). This script also has a more advanced user interface 
for the user to request date ranges for the download of data. Links to this script 
and related apps can be found in the “For Further Reading” section of this book. 

37.2.1 Section 1: Data Import 

To start, we need to import the data we will be working with. The first item is 
an external asset of our study area—these are woredas in the Amhara region of 
Ethiopia. The four that follow are remotely sensed data that we will be processing:

• The Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall estimates 
from Global Precipitation Measurement (GPM) v6.

• Terra Land Surface Temperature and Emissivity 8-Day Global 1 km.
• MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF) 

Adjusted Reflectance Daily 500 m.
• MODIS BRDF-Albedo Quality Daily 500 m.
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// Section 1: Data Import 
var woredas = ee.FeatureCollection( 

'projects/gee-book/assets/A1-
6/amhara_woreda_20170207'); 
// Create region outer boundary to filter products on. 
var amhara = woredas.geometry().bounds(); 
var gpm = ee.ImageCollection('NASA/GPM_L3/IMERG_V06'); 
var LSTTerra8 = ee.ImageCollection('MODIS/061/MOD11A2') 

// Due to MCST outage, only use dates after this for 
this script. 

.filterDate('2001-06-26', Date.now()); 
var brdfReflect = ee.ImageCollection('MODIS/006/MCD43A4'); 
var brdfQa = ee.ImageCollection('MODIS/006/MCD43A2'); 

We can take a look at the woreda boundaries by adding the following code to 
draw it onto the map (Fig. 37.1). See Chap. 25 for more information on visualizing 
feature collections. 

// Visualize woredas with black borders and no fill. 
// Create an empty image into which to paint the features, 
cast to byte. 
var empty = ee.Image().byte(); 
// Paint all the polygon edges with the same number and 
width. 
var outline = empty.paint({ 

featureCollection: woredas, 
color: 1, 
width: 1 

}); 
// Add woreda boundaries to the map. 
Map.setCenter(38, 11.5, 7); 
Map.addLayer(outline, { 

palette: '000000' 
}, 'Woredas'); 

// Visualize woredas with black borders and no fill. 
// Create an empty image into which to paint the features, 
cast to byte. 
var empty = ee.Image().byte(); 
// Paint all the polygon edges with the same number and 
width. 
var outline = empty.paint({ 

featureCollection: woredas, 
color: 1, 
width: 1 

}); 
// Add woreda boundaries to the map. 
Map.setCenter(38, 11.5, 7); 
Map.addLayer(outline, { 

palette: '000000' 
}, 'Woredas');

Code Checkpoint A16a. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 37.1 Woreda (district) boundaries in the Amhara region of Ethiopia

37.2.2 Section 2: Date Preparation 

The user will be requesting the date range for the summarized data, and it is 
expected that they will be looking for near-real-time data. Different data products 
that we are using have different data lags, and some data may not be available in 
the user-requested date range. We will want to get the last available data date, so 
we can properly create and name our export datasets. 

We need daily data, but the LST data are in 8-day composites. For this, we 
will assign the 8-day composite value to each of the eight days in the range. This 
means we also need to acquire the 8-day composite value that covers the requested 
start date (i.e., the previous image).



778 D. Nekorchuk

// Section 2: Handling of dates 

// 2.1 Requested start and end dates. 
var reqStartDate = ee.Date('2021-10-01'); 
var reqEndDate = ee.Date('2021-11-30'); 

// 2.2 LST Dates 
// LST MODIS is every 8 days, and a user-requested date 
will likely not match. 
// We want to get the latest previous image date, 
//  i.e. the date the closest, but prior to, the requested 
date. 
// We will filter later. 
// Get date of first image. 
var LSTEarliestDate = LSTTerra8.first().date(); 
// Filter collection to dates from beginning to requested 
start date. 
var priorLstImgCol = LSTTerra8.filterDate(LSTEarliestDate, 

reqStartDate); 

// Get the latest (max) date of this collection of earlier 
images. 
var LSTPrevMax = priorLstImgCol.reduceColumns({ 

reducer: ee.Reducer.max(), 
selectors: ['system:time_start'] 

}); 
var LSTStartDate = ee.Date(LSTPrevMax.get('max')); 
print('LSTStartDate', LSTStartDate); 

// 2.3 Last available data dates 
// Different variables have different data lags. 
// Data may not be available in user range. 
// To prevent errors from stopping script, 
//  grab last available (if relevant) & filter at end. 

// 2.3.1 Precipitation 
// Calculate date of most recent measurement for gpm (of 
all time). 
var gpmAllMax = gpm.reduceColumns(ee.Reducer.max(), [ 

'system:time_start' 
]); 
var gpmAllEndDateTime = ee.Date(gpmAllMax.get('max')); 
// GPM every 30 minutes, so get just date part.
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var gpmAllEndDate = ee.Date.fromYMD({ 
year: gpmAllEndDateTime.get('year'), 
month: gpmAllEndDateTime.get('month'), 
day: gpmAllEndDateTime.get('day') 

}); 

// If data ends before requested start, take last data 
date, 
// otherwise use requested date. 
var precipStartDate = ee.Date(gpmAllEndDate.millis() 

.min(reqStartDate.millis())); 
print('precipStartDate', precipStartDate); 

// 2.3.2 BRDF 
// Calculate date of most recent measurement for brdf (of 
all time). 
var brdfAllMax = brdfReflect.reduceColumns({ 

reducer: ee.Reducer.max(), 
selectors: ['system:time_start'] 

}); 
var brdfAllEndDate = ee.Date(brdfAllMax.get('max')); 
// If data ends before requested start, take last data 
date, 
// otherwise use the requested date. 
var brdfStartDate = ee.Date(brdfAllEndDate.millis() 

.min(reqStartDate.millis())); 
print('brdfStartDate', brdfStartDate); 
print('brdfEndDate', brdfAllEndDate); 

Code Checkpoint A16b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. Explore the earliest date of LST images you get if you do not 
specifically acquire the previous image. The following code may be useful: 

var naiveLstFilter = LSTTerra8.filterDate(reqStartDate, 
reqEndDate); 
var naiveLstStart = naiveLstFilter.reduceColumns({ 

reducer: ee.Reducer.min(), 
selectors: ['system:time_start'] 

}); 
var naiveLstStartDate = ee.Date(naiveLstStart.get('min')); 
print('naiveLstStartDate', naiveLstStartDate);
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Question 2. Try changing the requested dates to closer to the current date to see 
how the dates for the different data products adjust. If you have a narrow window 
(1–2 weeks), you may find that some data products do not have any data available 
for the requested time period yet. 

37.2.3 Section 3: Precipitation 

Now, we will calculate our precipitation variable for the appropriate date range 
and then perform a zonal summary (see Chap. 24) of our woredas. 

37.2.3.1 Section 3.1: Precipitation Filtering and Dates 
Using the dates when data actually exist in the user-requested date range, we create 
a list of dates for which we will calculate our variable. 

// Section 3: Precipitation 

// Section 3.1: Precipitation filtering and dates 

// Filter gpm by date, using modified start if necessary. 
var gpmFiltered = gpm 

.filterDate(precipStartDate, reqEndDate.advance(1, 
'day')) 

.filterBounds(amhara) 

.select('precipitationCal'); 

// Calculate date of most recent measurement for gpm 
// (in the modified requested window). 
var gpmMax = gpmFiltered.reduceColumns({ 

reducer: ee.Reducer.max(), 
selectors: ['system:time_start'] 

}); 
var gpmEndDate = ee.Date(gpmMax.get('max')); 
var precipEndDate = gpmEndDate; 
print('precipEndDate ', precipEndDate);
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// Create a list of dates for the precipitation time 
series. 
var precipDays = precipEndDate.difference(precipStartDate, 
'day'); 
var precipDatesPrep = ee.List.sequence(0, precipDays, 1); 

function makePrecipDates(n) { 
return precipStartDate.advance(n, 'day'); 

} 
var precipDates = precipDatesPrep.map(makePrecipDates); 

37.2.3.2 Section 3.2: Calculate Daily Precipitation 
In this section, we will map a function over our filtered FeatureCollection 
(gpmFiltered) to calculate the total daily rainfall per day. In this product, pre-
cipitation in millimeters per hour is recorded every half hour, so we will sum the 
day and divide by two. 

// Section 3.2: Calculate daily precipitation 

// Function to calculate daily precipitation: 
function calcDailyPrecip(curdate) { 

curdate = ee.Date(curdate); 
var curyear = curdate.get('year'); 
var curdoy = curdate.getRelative('day', 'year').add(1); 
var totprec = gpmFiltered 

.filterDate(curdate, curdate.advance(1, 'day')) 

.select('precipitationCal') 

.sum() 
//every half-hour 
.multiply(0.5) 
.rename('totprec'); 

return totprec 
.set('doy', curdoy) 
.set('year', curyear) 
.set('system:time_start', curdate); 

}
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// Map function over list of dates. 
var dailyPrecipExtended = 

ee.ImageCollection.fromImages(precipDates.map(calcDailyPrec 
ip)); 

// Filter back to the original user requested start date. 
var dailyPrecip = dailyPrecipExtended 

.filterDate(reqStartDate, precipEndDate.advance(1, 
'day')); 

37.2.3.3 Section 3.3: Summarize Daily Precipitation by Woreda 
In the last section for precipitation, we will calculate a zonal summary, a mean, 
of the rainfall per woreda and flatten for export as a CSV. The exports (of all 
variables) will be all done in Sect. 37.2.7. 

// Section 3.3: Summarize daily precipitation by woreda 

// Filter precip data for zonal summaries. 
var precipSummary = dailyPrecip 

.filterDate(reqStartDate, reqEndDate.advance(1, 
'day')); 

// Function to calculate zonal statistics for precipitation 
by woreda. 
function sumZonalPrecip(image) { 

// To get the doy and year, 
// convert the metadata to grids and then summarize. 
var image2 = image.addBands([ 

image.metadata('doy').int(), 
image.metadata('year').int() 

]); 
// Reduce by regions to get zonal means for each 

county. 
var output = image2.select(['year', 'doy', 'totprec']) 

.reduceRegions({ 
collection: woredas, 
reducer: ee.Reducer.mean(), 
scale: 1000 

}); 
return output; 

}
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// Map the zonal statistics function over the filtered 
precip data. 
var precipWoreda = precipSummary.map(sumZonalPrecip); 
// Flatten the results for export. 
var precipFlat = precipWoreda.flatten(); 

Code Checkpoint A16c. The book’s repository contains a script that shows what 
your code should look like at this point. 

37.2.4 Section 4: Land Surface Temperature 

We will follow a similar pattern of steps for land surface temperatures, though 
first we will calculate the variable (mean LST). Then, we will calculate the daily 
values and summarize them by woreda. 

37.2.4.1 Section 4.1: Calculate LST Variables 
We will use the daytime and nighttime observed values to calculate a mean value 
for the day. We will use the quality layers to mask out poor-quality pixels. Working 
with the bitmask below, we are taking advantage of the fact that bits 6 and 7 are 
at the end, so the rightShift(6) just returns these two. Then, we check if 
they are less than or equal to 2, meaning average LST error <= 3k (see MODIS 
documentation for the meaning of each element in the bit sequence). For more 
information on how to use bitmasks in other situations, see Chap. 15. To convert 
the pixel values, we will use the scaling factor in the data product (0.2) and convert 
from Kelvin to Celsius values (−273.15). See Chap. 36, about Heat Islands, for 
another example using LST data. 

// Section 4: Land surface temperature 

// Section 4.1: Calculate LST variables 

// Filter Terra LST by altered LST start date. 
// Rarely, but at the end of the year if the last image is 
late in the year 
//  with only a few days in its period, it will sometimes 
not grab 
//  the next image. Add extra padding to reqEndDate and 
//  it will be trimmed at the end. 
var LSTFiltered = LSTTerra8 

.filterDate(LSTStartDate, reqEndDate.advance(8, 'day')) 

.filterBounds(amhara) 

.select('LST_Day_1km', 'QC_Day', 'LST_Night_1km', 
'QC_Night');
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// Filter Terra LST by QA information. 
function filterLstQa(image) { 

var qaday = image.select(['QC_Day']); 
var qanight = image.select(['QC_Night']); 
var dayshift = qaday.rightShift(6); 
var nightshift = qanight.rightShift(6); 
var daymask = dayshift.lte(2); 
var nightmask = nightshift.lte(2); 
var outimage = ee.Image(image.select(['LST_Day_1km', 

'LST_Night_1km' 
])); 
var outmask = ee.Image([daymask, nightmask]); 
return outimage.updateMask(outmask); 

} 
var LSTFilteredQa = LSTFiltered.map(filterLstQa); 

// Rescale temperature data and convert to degrees Celsius 
(C). 
function rescaleLst(image) { 

var LST_day = image.select('LST_Day_1km') 
.multiply(0.02) 
.subtract(273.15) 
.rename('LST_day'); 

var LST_night = image.select('LST_Night_1km') 
.multiply(0.02) 
.subtract(273.15) 
.rename('LST_night'); 

var LST_mean = image.expression( 
'(day + night) / 2', { 

'day': LST_day.select('LST_day'), 
'night': LST_night.select('LST_night') 

} 
).rename('LST_mean'); 
return image.addBands(LST_day) 

.addBands(LST_night) 

.addBands(LST_mean); 
} 
var LSTVars = LSTFilteredQa.map(rescaleLst);
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37.2.4.2 Section 4.2: Calculate Daily LST 
Now, using a mapped function over our filtered collection, we will calculate a 
daily value from the 8-day composite value by assigning each of the eight days 
the value of the composite. We will also filter to our user-requested dates, as data 
exist in that range. 

// Section 4.2: Calculate daily LST 

// Create list of dates for time series. 
var LSTRange = LSTVars.reduceColumns({ 

reducer: ee.Reducer.max(), 
selectors: ['system:time_start'] 

}); 
var LSTEndDate = ee.Date(LSTRange.get('max')).advance(7, 
'day'); 
var LSTDays = LSTEndDate.difference(LSTStartDate, 'day'); 
var LSTDatesPrep = ee.List.sequence(0, LSTDays, 1); 

function makeLstDates(n) { 
return LSTStartDate.advance(n, 'day'); 

} 
var LSTDates = LSTDatesPrep.map(makeLstDates); 
// Function to calculate daily LST by assigning the 8-day 
composite summary 
// to each day in the composite period: 
function calcDailyLst(curdate) { 

var curyear = ee.Date(curdate).get('year'); 
var curdoy = ee.Date(curdate).getRelative('day', 

'year').add(1); 
var moddoy = 

curdoy.divide(8).ceil().subtract(1).multiply(8).add( 
1); 

var basedate = ee.Date.fromYMD(curyear, 1, 1); 
var moddate = basedate.advance(moddoy.subtract(1), 

'day');
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var LST_day = LSTVars 
.select('LST_day') 
.filterDate(moddate, moddate.advance(1, 'day')) 
.first() 
.rename('LST_day'); 

var LST_mean = LSTVars 
.select('LST_mean') 
.filterDate(moddate, moddate.advance(1, 'day')) 
.first() 
.rename('LST_mean'); 

return LST_day 
.addBands(LST_night) 
.addBands(LST_mean) 
.set('doy', curdoy) 

var LST_night = LSTVars 

.filterDate(moddate, moddate.advance(1, 'day')) 

.first() 

.rename('LST_night'); 

.select('LST_day') 

.set('year', curyear) 

.set('system:time_start', curdate); 
} 
// Map the function over the image collection 
var dailyLstExtended = 

ee.ImageCollection.fromImages(LSTDates.map(calcDailyLst)); 

// Filter back to original user requested start date 
var dailyLst = dailyLstExtended 

.filterDate(reqStartDate, LSTEndDate.advance(1, 
'day')); 

37.2.4.3 Section 4.3: Summarize Daily LST by Woreda 
In the final section for LST, we will perform a zonal mean of the temperature 
to our woredas and flatten in preparation for export as CSV. The exports (of all 
variables) will be all done in Sect. 37.2.7.
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// Section 4.3: Summarize daily LST by woreda 

// Filter LST data for zonal summaries. 
var LSTSummary = dailyLst 

.filterDate(reqStartDate, reqEndDate.advance(1, 
'day')); 
// Function to calculate zonal statistics for LST by 
woreda: 
function sumZonalLst(image) { 

// To get the doy and year, we convert the metadata to 
grids 

//  and then summarize. 
var image2 = image.addBands([ 

image.metadata('doy').int(), 
image.metadata('year').int() 

]); 
// Reduce by regions to get zonal means for each 

county. 
var output = image2 

.select(['doy', 'year', 'LST_day', 'LST_night', 
'LST_mean']) 

.reduceRegions({ 
collection: woredas, 
reducer: ee.Reducer.mean(), 
scale: 1000 

}); 
return output; 

} 
// Map the zonal statistics function over the filtered LST 
data. 
var LSTWoreda = LSTSummary.map(sumZonalLst); 
// Flatten the results for export. 
var LSTFlat = LSTWoreda.flatten(); 

Code Checkpoint A16d. The book’s repository contains a script that shows what 
your code should look like at this point.
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37.2.5 Section 5: Spectral Index: NDWI 

We will follow a similar pattern of steps for our spectral index, NDWI, as we did 
for precipitation and land surface temperatures: first, calculate the variable(s), then 
calculate the daily values, and finally summarize by woreda. 

37.2.5.1 Section 5.1: Calculate NDWI 
Here, we will focus on NDWI, which we actively used in forecasting malaria. For 
examples on other indices, see Chap. 9. 

The MODIS MCD43A4 product contains simplified band quality information, 
and it is recommended to use the additional quality information in the MCD43A2 
product for your particular application. We will join these two products to apply 
our selected quality information. (Note that we do not have to worry about snow in 
our study area.) For more information on joining image collections, see Chap. 21. 

// Section 5: Spectral index NDWI 

// Section 5.1: Calculate NDWI 

// Filter BRDF-Adjusted Reflectance by date. 
var brdfReflectVars = brdfReflect 

.filterDate(brdfStartDate, reqEndDate.advance(1, 
'day')) 

.filterBounds(amhara) 

.select([ 
'Nadir_Reflectance_Band1', 

'Nadir_Reflectance_Band2', 
'Nadir_Reflectance_Band3', 

'Nadir_Reflectance_Band4', 
'Nadir_Reflectance_Band5', 

'Nadir_Reflectance_Band6', 
'Nadir_Reflectance_Band7' 

], 
['red', 'nir', 'blue', 'green', 'swir1', 'swir2', 

'swir3']);
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// Filter BRDF QA by date. 
var brdfReflectQa = brdfQa 

.filterDate(brdfStartDate, reqEndDate.advance(1, 
'day')) 

.filterBounds(amhara) 

.select([ 
'BRDF_Albedo_Band_Quality_Band1', 
'BRDF_Albedo_Band_Quality_Band2', 
'BRDF_Albedo_Band_Quality_Band3', 
'BRDF_Albedo_Band_Quality_Band4', 
'BRDF_Albedo_Band_Quality_Band5', 
'BRDF_Albedo_Band_Quality_Band6', 
'BRDF_Albedo_Band_Quality_Band7', 
'BRDF_Albedo_LandWaterType' 

], 
['qa1', 'qa2', 'qa3', 'qa4', 'qa5', 'qa6', 'qa7', 

'water']); 

// Join the 2 collections. 
var idJoin = ee.Filter.equals({ 

leftField: 'system:time_end', 
rightField: 'system:time_end' 

}); 
// Define the join. 
var innerJoin = ee.Join.inner('NBAR', 'QA'); 
// Apply the join. 
var brdfJoined = innerJoin.apply(brdfReflectVars, 
brdfReflectQa, 

idJoin); 

// Add QA bands to the NBAR collection. 
function addQaBands(image) { 

var nbar = ee.Image(image.get('NBAR')); 
var qa = ee.Image(image.get('QA')).select(['qa2']); 
var water = 

ee.Image(image.get('QA')).select(['water']); 
return nbar.addBands([qa, water]); 

} 
var brdfMerged = 
ee.ImageCollection(brdfJoined.map(addQaBands));
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// Function to mask out pixels based on QA and water/land 
flags. 
function filterBrdf(image) { 

// Using QA info for the NIR band. 
var qaband = image.select(['qa2']); 
var wband = image.select(['water']); 
var qamask = qaband.lte(2).and(wband.eq(1)); 
var nir_r = 

image.select('nir').multiply(0.0001).rename('nir_r'); 
var swir2_r = 

image.select('swir2').multiply(0.0001).rename( 
'swir2_r'); 

return image.addBands(nir_r) 
.addBands(swir2_r) 
.updateMask(qamask); 

} 
var brdfFilteredVars = brdfMerged.map(filterBrdf); 

// Function to calculate spectral indices: 
function calcBrdfIndices(image) { 

var curyear = 
ee.Date(image.get('system:time_start')).get('year'); 

var curdoy = ee.Date(image.get('system:time_start')) 
.getRelative('day', 'year').add(1); 

var ndwi6 = image.normalizedDifference(['nir_r', 
'swir2_r']) 

.rename('ndwi6'); 
return image.addBands(ndwi6) 

.set('doy', curdoy) 

.set('year', curyear); 
} 
// Map function over image collection. 
brdfFilteredVars = brdfFilteredVars.map(calcBrdfIndices);
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37.2.5.2 Section 5.2: Calculate Daily NDWI 
Similar to the other variables, we will calculate a daily value and filter to our 
user-requested dates, as data exist in that range. 

// Section 5.2: Calculate daily NDWI 

// Create list of dates for full time series. 
var brdfRange = brdfFilteredVars.reduceColumns({ 

reducer: ee.Reducer.max(), 
selectors: ['system:time_start'] 

}); 
var brdfEndDate = ee.Date(brdfRange.get('max')); 
var brdfDays = brdfEndDate.difference(brdfStartDate, 
'day'); 
var brdfDatesPrep = ee.List.sequence(0, brdfDays, 1); 

function makeBrdfDates(n) { 
return brdfStartDate.advance(n, 'day'); 

} 
var brdfDates = brdfDatesPrep.map(makeBrdfDates); 

// List of dates that exist in BRDF data. 
var brdfDatesExist = brdfFilteredVars 

.aggregate_array('system:time_start'); 

// Get daily brdf values. 
function calcDailyBrdfExists(curdate) { 

curdate = ee.Date(curdate); 
var curyear = curdate.get('year'); 
var curdoy = curdate.getRelative('day', 'year').add(1); 
var brdfTemp = brdfFilteredVars 

.filterDate(curdate, curdate.advance(1, 'day')); 
var outImg = brdfTemp.first(); 
return outImg; 

} 
var dailyBrdfExtExists = 

ee.ImageCollection.fromImages(brdfDatesExist.map( 
calcDailyBrdfExists));
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.filterDate(curdate, curdate.advance(1, 'day')); 
var brdfSize = brdfTemp.size(); 
var outImg = ee.Image.constant(0).selfMask() 

.addBands(ee.Image.constant(0).selfMask()) 

.addBands(ee.Image.constant(0).selfMask()) 

.addBands(ee.Image.constant(0).selfMask()) 

.addBands(ee.Image.constant(0).selfMask()) 

.rename(['ndvi', 'evi', 'savi', 'ndwi5', 'ndwi6']) 

.set('doy', curdoy) 

.set('year', curyear) 

.set('system:time_start', curdate) 

.set('brdfSize', brdfSize); 
return outImg; 

} 
// Create filler for all dates. 
var dailyBrdfExtendedFiller = 

ee.ImageCollection.fromImages(brdfDates.map(calcDailyBrdfF 
iller)); 
// But only used if and when size was 0. 
var dailyBrdfExtFillFilt = dailyBrdfExtendedFiller 

.filter(ee.Filter.eq('brdfSize', 0)); 
// Merge the two collections. 
var dailyBrdfExtended = dailyBrdfExtExists 

.merge(dailyBrdfExtFillFilt); 

// Filter back to original user requested start date. 
var dailyBrdf = dailyBrdfExtended 

.filterDate(reqStartDate, brdfEndDate.advance(1, 
'day')); 

// Create empty results, to fill in dates when BRDF data 
does not exist. 
function calcDailyBrdfFiller(curdate) { 

curdate = ee.Date(curdate); 
var curyear = curdate.get('year'); 
var curdoy = curdate.getRelative('day', 'year').add(1); 
var brdfTemp = brdfFilteredVars
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37.2.5.3 Section 5.3: Summarize Daily Spectral Indices by Woreda 
Lastly, in our NDWI section, we will use the mean to summarize the values for 
each of the woredas and prepare for export by flattening the dataset. The exports 
(of all variables) will be all done in Sect. 37.2.7. 

// Section 5.3: Summarize daily spectral indices by woreda 

// Filter spectral indices for zonal summaries. 
var brdfSummary = dailyBrdf 

.filterDate(reqStartDate, reqEndDate.advance(1, 
'day')); 

// Function to calculate zonal statistics for spectral 
indices by woreda: 

function sumZonalBrdf(image) { 
// To get the doy and year, we convert the metadata to 

grids 
//  and then summarize. 
var image2 = image.addBands([ 

image.metadata('doy').int(), 
image.metadata('year').int() 

]); 
// Reduce by regions to get zonal means for each 

woreda. 
var output = image2.select(['doy', 'year', 'ndwi6']) 

.reduceRegions({ 
collection: woredas, 
reducer: ee.Reducer.mean(), 
scale: 1000 

}); 
return output; 

} 

// Map the zonal statistics function over the filtered 
spectral index data. 
var brdfWoreda = brdfSummary.map(sumZonalBrdf); 
// Flatten the results for export. 
var brdfFlat = brdfWoreda.flatten(); 

Code Checkpoint A16e. The book’s repository contains a script that shows what 
your code should look like at this point.
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Question 3. Here, we are only calculating NDWI, which is calculated from the 
near-infrared (NIR) and shortwave infrared 2 (SWIR2) bands. If we wanted to cal-
culate a vegetation index like the Normalized Difference Vegetation Index (NDVI), 
which bands would we need to add? Where in Sects. 37.2.5.1 through 37.2.5.3, 
would we need to add or select the raw bands and/or our new calculated band? 
Note: Fully implementing this is one of the synthesis challenges, so this is a good 
head start! 

37.2.6 Section 6: Map Display 

Here, we will take a look at our calculated variables but prior to zonal summary 
(Fig. 37.2). The full user interface restricts the date to display within the requested 
range, so be mindful in the code below which date you choose to view (we set our 
time range here in code Sect. 2.1, Sect. 37.2.2). 

// Section 6: Map display of calculated environmental 
variables 
var displayDate = ee.Date('2021-10-01'); 

var precipDisp = dailyPrecip 
.filterDate(displayDate, displayDate.advance(1, 

'day')); 
var brdfDisp = dailyBrdf 

.filterDate(displayDate, displayDate.advance(1, 
'day')); 
var LSTDisp = dailyLst 

.filterDate(displayDate, displayDate.advance(1, 
'day')); 

// Select the image (should be only one) from each 
collection. 
var precipImage = precipDisp.first().select('totprec'); 
var LSTmImage = LSTDisp.first().select('LST_mean'); 
var ndwi6Image = brdfDisp.first().select('ndwi6'); 

// Palettes for environmental variable maps: 
var palettePrecip = ['f7fbff', '08306b']; 
var paletteLst = ['fff5f0', '67000d']; 
var paletteSpectral = ['ffffe5', '004529'];
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// Add layers to the map. 
// Show precipitation by default, 
//  others hidden until users picks them from layers drop 
down. 
Map.addLayer({ 

eeObject: precipImage, 
visParams: { 

min: 0, 
max: 20, 
palette: palettePrecip 

}, 
name: 'Precipitation', 
shown: true, 
opacity: 0.75 

}); 

Map.addLayer({ 
eeObject: LSTmImage, 
visParams: { 

min: 0, 
max: 40, 
palette: paletteLst 

}, 
name: 'LST Mean', 
shown: false, 
opacity: 0.75 

}); 

Map.addLayer({ 
eeObject: ndwi6Image, 
visParams: { 

min: 0, 
max: 1, 
palette: paletteSpectral 

}, 
name: 'NDWI6', 
shown: false, 
opacity: 0.75 

});

Code Checkpoint A16f. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 37.2 Calculated total daily precipitation overlaid on woreda boundaries in the Amhara region 
of Ethiopia

37.2.7 Section 7: Exporting 

Two important strengths of Google Earth Engine are the ability to gather and 
process the remotely sensed data all in the cloud and to have the only download 
be a small text file ready to use in the forecasting software. Most of our partners 
on this project were experts in public health and did not have a remote sensing or 
programming background. We also had partners in areas of limited or unreliable 
internet connectivity. We needed something that could be easily usable by our 
users in these types of situations. 

In this section, we will create small text CSV downloads for each of our three 
environmental factors prepared earlier. Each factor may have different data avail-
abilities within the user’s requested range, and these dates will be added to the file 
name to indicate the actual date range of the downloaded data (Fig. 37.3).
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Fig. 37.3 Examples of the three CSV files returned from the script
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// BRDF 
var brdfPrefix = 'Export_Spectral_Data'; 
var brdfLastDate = ee.Date(reqEndDate.millis() 

.min(brdfEndDate.millis())); 
var brdfSummaryEndDate = brdfLastDate 

.format('yyyy-MM-dd').getInfo(); 
var brdfFilename = brdfPrefix 

.concat('_', reqStartDateText, 
'_', brdfSummaryEndDate); 

// 7.2 Export flattened tables to Google Drive 
// Need to click 'RUN in the Tasks tab to configure and 
start each export. 
Export.table.toDrive({ 

collection: precipFlat, 
description: precipFilename, 

// Section 7: Exporting 

// 7.1 Export naming 
var reqStartDateText = reqStartDate.format('yyyy-MM-
dd').getInfo(); 

// Precipitation 
var precipPrefix = 'Export_Precip_Data'; 
var precipLastDate = ee.Date(reqEndDate.millis() 

.min(precipEndDate.millis())); 
var precipSummaryEndDate = precipLastDate 

.format('yyyy-MM-dd').getInfo(); 
var precipFilename = precipPrefix 

.concat('_', reqStartDateText, 
'_', precipSummaryEndDate); 

// LST 
var LSTPrefix = 'Export_LST_Data'; 
var LSTLastDate = ee.Date(reqEndDate.millis() 

.min(LSTEndDate.millis())); 
var LSTSummaryEndDate = LSTLastDate 

.format('yyyy-MM-dd').getInfo(); 
var LSTFilename = LSTPrefix 

.concat('_', reqStartDateText, 
'_', LSTSummaryEndDate); 

selectors: ['wid', 'woreda', 'doy', 'year', 'totprec'] 
}); 

Export.table.toDrive({ 
collection: LSTFlat, 
description: LSTFilename,
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selectors: ['wid', 'woreda', 'doy', 'year', 
'LST_day', 'LST_night', 'LST_mean' 

] 
}); 
Export.table.toDrive({ 

collection: brdfFlat, 
description: brdfFilename, 
selectors: ['wid', 'woreda', 'doy', 'year', 'ndwi6'] 

}); 

Code Checkpoint A16g. The book’s repository contains a script that shows what 
your code should look like at this point. 

In the Earth Engine Tasks tab, click Run to configure and start each export to 
Google Drive. 

37.2.8 Section 8: Importing and Viewing External Analysis Results 

As mentioned at the start of the chapter, the environmental data obtained from 
Earth Engine can be used for infectious disease modeling and forecasting. The 
above Earth Engine code was written in support of EPIDEMIA, a software system 
based in the R language and computing environment for forecasting malaria, and 
was actively used in certain study pilot woredas in the Amhara region of Ethiopia. 
The R system consists of an R package—epidemiar—for generic functions and a 
companion R project for handling all the location-specific data and settings. 

One of the main outputs of EPIDEMIA is the forecasted incidence of malaria 
in each woreda by week from one to eight (or more) weeks in advance. Using 
our publicly available demo project that uses synthetic data (not for use in epi-
demiological study), we created forecasts for week 32 of 2018 made eight weeks 
prior (“knowing” data up to week 24) and also added the observed incidence for 
comparison. (Note: dates and weeks follow International Organization for Stan-
dardization [ISO] standard 8601). These new data can be re-uploaded to Earth 
Engine for further analyses or exploration. 

Starting a new script, you can use Sect. 37.2.8 code that follows to visualize 
the pre-generated demo 2018W32 results (Fig. 37.4).
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// Paint the pilot woredas with different colors for 
forecasted* incidence 
// fc_n_inc here is the forecasted incidence (cut into 
factors) 
// made on (historical) 2018W24 (i.e. 8 weeks in advance). 
// * based on synthetic data for demonstration only. 
// Incidence per 1000 
// 1 : [0 - 0.25) 
// 2 : [0.25 - 0.5) 
// 3 : [0.5 - 0.75) 
// 4 : [0.75 - 1) 
// 5 : > 1 

Map.setCenter(38, 11.5, 7); 

// This is using *synthetic* malaria data. 
// For demonstration only, not to be used for 
epidemiological purposes. 
var epidemiaResults = ee.FeatureCollection( 

'projects/gee-book/assets/A1-
6/amhara_pilot_synthetic_2018W32' 
); 
// Filter to only keep pilot woredas with forecasted 
values. 
var pilot = epidemiaResults 

.filter(ee.Filter.neq('inc_n_fc', null)); 
var nonpilot = epidemiaResults 

.filter(ee.Filter.eq('inc_n_fc', null)); 

// Section 8: Viewing external analyses results 

var empty = ee.Image().byte(); 
var fill_fc = empty.paint({ 

featureCollection: pilot, 
color: 'inc_n_fc', 

}); 
var palette = ['fee5d9', 'fcae91', 'fb6a4a', 'de2d26', 
'a50f15']; 
Map.addLayer( 

fill_fc, { 

palette: palette, 
min: 1, 
max: 5 

},
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'Forecasted Incidence' 
); 

// Paint the woredas with different colors for the 
observed* incidence. 
// * based on synthetic data for demonstration only 

var fill_obs = empty.paint({ 
featureCollection: pilot, 
color: 'inc_n_obs', 

}); 
var palette = ['fee5d9', 'fcae91', 'fb6a4a', 'de2d26', 
'a50f15']; 
// Layer is off by default, users change between the two 
in the map viewer. 
Map.addLayer( 

fill_obs, { 
palette: palette, 

min: 1, 
max: 5 

}, 
'Observed Incidence', 
false 

); 

// Add gray fill for nonpilot woredas (not included in 
study). 
var fill_na = empty.paint({ 

featureCollection: nonpilot 
}); 
Map.addLayer( 

fill_na, { 
palette: 'a1a9a8' 

}, 
'Non-study woredas' 

); 

// Draw borders for ALL Amhara region woredas. 
var outline = empty.paint({ 

featureCollection: epidemiaResults, 
color: 1, 
width: 1
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}); 
// Add woreda boundaries to map. 
Map.addLayer( 

outline, { 
palette: '000000' 

}, 
'Woredas' 

); 

Code Checkpoint A16h. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 37.4 Visualization of forecasted malaria incidence for week 32 of 2018 made during week 
24 (an eight-week lead time). Malaria data are synthetic, for demonstration purposes only. The 
incidence has been categorized into five categories (from lighter to dark red): 0–0.25, 0.25–0.5, 
0.5–0.75, 0.75–1, and greater than 1. Only woredas in the pilot project have values; the rest of the 
Amhara region is marked in gray fill. Another layer available to view is the observed (synthetic) 
incidence rate for 2018W32 
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37.3 Synthesis 

Assignment 1. Calculate other spectral indices: In this chapter, we only calculate 
and export the NDWI from the spectral data. Calculate another index, such as a 
vegetation index like NDVI, Soil Adjusted Vegetation Index (SAVI), or Enhanced 
Vegetation Index (EVI) to the calculations. Think about what bands you will 
need, how to calculate the index, and how to propagate the band through all the 
remaining processing steps (including exporting). 

Assignment 2. Change location: In this chapter, we obtained data for woredas 
in the Amhara region of Ethiopia. Upload or import a new shapefile of different 
locations and acquire environmental data for there instead. Remember that you will 
need to adjust any references to asset-specific fields (as we did here for “woreda”). 
See Chap. 22 for help with uploading assets, if needed. 

37.4 Conclusion 

In this chapter, we saw how Earth Engine can be used to acquire environmental 
data to support external analyses, such as forecasting of malaria, a vector-borne 
disease. An understanding of the biology of the vector (e.g., mosquito, tick) and 
how different environmental conditions can affect the disease system and trans-
mission risk will help identify environmental variables to investigate for use in 
mathematical modeling. 

In this chapter, we obtained data from three different satellite-based datasets: 
rainfall from IMERG/GPM, land surface temperature 8-day composite values from 
MODIS, and the calculation of spectral indices from MODIS bands. We saw how 
to perform zonal summaries to our location of interest and download CSV files 
that are suitable for import into other programs for additional analyses. 

This chapter shows the value of cloud computation and generates small down-
loads for use by professionals who may not have expertise in remote sensing or 
the computing resources that would otherwise be needed. Finally, we saw that 
the results of intermediate processing and work outside of Earth Engine can be 
re-imported for additional analyses within Earth Engine. 

References 

Ford TE, Colwell RR, Rose JB et al (2009) Using satellite images of environmental changes to 
predict infectious disease outbreaks. Emerg Infect Dis 15:1341–1346. https://doi.org/10.3201/ 
eid/1509.081334 

Franklinos LHV, Jones KE, Redding DW, Abubakar I (2019) The effect of global change on 
mosquito-borne disease. Lancet Infect Dis 19:e302–e312. https://doi.org/10.1016/S1473-309 
9(19)30161-6 

Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature 
451:990–993. https://doi.org/10.1038/nature06536

https://doi.org/10.3201/eid/1509.081334
https://doi.org/10.3201/eid/1509.081334
https://doi.org/10.1016/S1473-3099(19)30161-6
https://doi.org/10.1016/S1473-3099(19)30161-6
https://doi.org/10.1038/nature06536


804 D. Nekorchuk

Mackenzie JS, Jeggo M (2019) The one health approach—why is it so important? Trop Med Infect 
Dis 4:88. https://doi.org/10.3390/tropicalmed4020088 

Wimberly MC, de Beurs KM, Loboda TV, Pan WK (2021) Satellite observations and malaria: 
new opportunities for research and applications. Trends Parasitol 37:525–537. https://doi.org/ 
10.1016/j.pt.2021.03.003 

Wimberly MC, Nekorchuk DM, Kankanala RR (2022) Cloud-based applications for accessing 
satellite Earth observations to support malaria early warning. Sci Data 9:1–11. https://doi.org/ 
10.1038/s41597-022-01337-y 

World Health Organization (2018) Malaria surveillance, monitoring and evaluation: a reference 
manual. World Health Organization 

World Health Organization (2020) World Malaria report 2020: 20 years of global progress and 
challenges. World Health Organization 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.3390/tropicalmed4020088
https://doi.org/10.1016/j.pt.2021.03.003
https://doi.org/10.1016/j.pt.2021.03.003
https://doi.org/10.1038/s41597-022-01337-y
https://doi.org/10.1038/s41597-022-01337-y
http://creativecommons.org/licenses/by/4.0/


38Humanitarian Applications 

Jamon Van Den Hoek and Hannah K. Friedrich 

Overview 
The global refugee population has never been as large as it is today, with at least 
26 million refugees living in more than 100 countries. Refugees are international 
migrants who have been forcibly displaced from their home countries due to violence 
or persecution and who cross an international border and settle elsewhere, most often 
in a neighboring country. Remote sensing can help refugee leaders, humanitarian 
agencies, and refugee-hosting countries gain new insights into refugee settlement, 
population, and land cover change dynamics (Maystadt et al. 2020; Van Den Hoek 
et al. 2021). In this chapter, we will examine the value of using satellite imagery and 
satellite-derived data to map a refugee settlement in Uganda, estimate its population, 
and gauge land cover changes in and around the settlement. 

Learning Outcomes

• Using a range of techniques—maps, videos, and charts—to visualize and measure 
land cover changes before and after the establishment of a refugee settlement.

• Understanding the considerations and limitations involved in automated detection 
of refugee settlement boundaries using unsupervised classification.

• Becoming familiar with satellite-derived human settlement and population 
datasets and their application in a refugee settlement context.
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Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks, 

classify images (Part 2).
• Create a graph using ui.Chart (Chap. 4).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Perform pixel-based supervised or unsupervised classification (Chap. 6).
• Use ee.Reducer functions to summarize pixels over an area (Chaps. 8 and 9).
• Perform image morphological operations (Chap. 10).
• Write a function and map it over an ImageCollection (Chap. 12).
• Use reduceRegions to summarize an image with zonal statistics in irregular 

shapes (Chaps. 22 and 24).
• Convert from a vector to a raster representation with reduceToImage 

(Chap. 23).
• Write a function and map it over a FeatureCollection (Chaps. 23 and 24). 

38.1 Introduction to Theory 

In a humanitarian context, remote sensing data and analysis have become essential 
tools for monitoring refugee settlement dynamics both immediately after refugee 
arrival and over the long term. Nonetheless, there remain important challenges 
to characterizing refugee settlement conditions. First, dwellings, roadways, and 
agricultural plots tend to be small in size within refugee settlements and generally 
difficult to detect without the use of very high resolution satellite imagery. Second, 
dwellings and other structures within refugee settlements may be diffusely dis-
tributed and intermixed with vegetation and bare earth. Third, data on settlement 
features, boundaries, and refugee populations are often out of date or otherwise 
inappropriate for detailed geospatial analysis. In this chapter, we will examine 
these challenges and do our best to document refugee settlement dynamics through 
analysis of multi-date Landsat imagery.
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38.2 Practicum 

The study area for this chapter is Pagirinya Refugee Settlement in northwestern 
Uganda (Fig. 38.1a). As of 2020, Uganda was home to 1.4 million refugees, the 
fourth-largest refugee population in the world and the largest in Africa (UNHCR 
2020). Refugees living in Uganda primarily fled violence in South Sudan and 
the Democratic Republic of the Congo, and most live in rural refugee settle-
ments. Pagirinya in particular is home to 36,000 South Sudanese refugees and 
was established in mid-2016. 

In this practicum, we will visualize and document the land cover changes that 
have taken place in Pagirinya (Fig. 38.1b, c), use satellite data to estimate the set-
tlement’s boundary and compare it to the official boundary laid out by the United 
Nations High Commissioner for Refugees (UNHCR), and use satellite-derived 
demographic products to estimate the refugee population within Pagirinya. 

38.2.1 Section 1: Seeing Refugee Settlements from Above 

In preparation for the arrival of refugees, humanitarian actors and refugee settle-
ment planners are often interested in analyzing local land cover conditions before 
a refugee settlement is established. The goal of this first section is to use Land-
sat satellite imagery to characterize initial land cover conditions and land cover 
changes at Pagirinya Refugee Settlement in the years before and following the 
settlement’s establishment in 2016.

Fig. 38.1 Maps of a UNHCR refugee settlements in Uganda, b OpenStreetMap features, road-
ways, and the UNHCR settlement boundary for Pagirinya, and c European Space Agency 2020 
WorldCover land cover at Pagirinya 
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Let’s begin by adding the refugee settlement’s boundary to the Map by loading 
the FeatureCollection of refugee settlement boundaries in Uganda and fil-
tering to Pagirinya Refugee Settlement. We will also initialize the Map to center 
on Pagirinya and default to showing the satellite basemap for visual reference. 

Map.setOptions('SATELLITE'); 

// Load UNHCR settlement boundary for Pagirinya Refugee 
Settlement. 
var pagirinya = ee.Feature(ee.FeatureCollection( 

'projects/gee-book/assets/A1-
7/pagirinya_settlement_boundary' 
).first()); 

Map.addLayer(pagirinya, {}, 'Pagirinya Refugee 
Settlement'); 
Map.centerObject(pagirinya, 14); 

Next, let’s create annual Landsat composites using the Landsat 8 
surface reflectance ImageCollection. We will spatially filter the 
ImageCollection to a buffered settlement boundary and temporally filter to 
2015–2020, which includes the full year before the settlement was established 
and the four years that followed. We will also apply a cloud filter of less than or 
equal to 40% to help ensure that our annual composites are cloud free. 

For better legibility, we will rename the Landsat bands and add three new 
spectral index bands to each image in the ImageCollection using the 
addIndices function, which calculates the Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Building Index (NDBI), and Normalized 
Burn Ratio (NBR) using normalizedDifference. Each of these metrics 
offers a different approach to characterizing land cover conditions and change over 
time. NDVI is commonly used for monitoring vegetation health; NDBI helps to 
characterize impervious and built-up surfaces; and NBR helps to identify land that 
has been cleared with fire, a common practice in our study region. Note that other 
spectral metrics or remote sensing platforms may be better suited for identifying 
refugee settlements in other regions.
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// Create buffered settlement boundary geometry. 
// 500 meter buffer size is arbitrary but large enough 
// to capture area outside of the study settlement. 
var bufferSize = 500; // (in meters) 

// Buffer and convert to Geometry for spatial filtering and 
clipping. 
var bufferedBounds = pagirinya.buffer(bufferSize) 

.bounds().geometry(); 

function addIndices(img) { 
var ndvi = img.normalizedDifference(['nir', 'red']) 

.rename('NDVI'); // NDVI = (nir-red)/(nir+red) 
var ndbi = img.normalizedDifference(['swir1', 'nir']) 

.rename(['NDBI']); // NDBI = (swir1-
nir)/(swir1+nir) 

var nbr = img.normalizedDifference(['nir', 'swir2']) 
.rename(['NBR']); // NBR = (nir-swir2)/(nir+swir2) 

var imgIndices = 
img.addBands(ndvi).addBands(ndbi).addBands(nbr); 

return imgIndices; 
} 

// Create L8 SR Collection 2 band names and new names. 
var landsat8BandNames = ['SR_B2', 'SR_B3', 'SR_B4', 
'SR_B5', 'SR_B6', 'SR_B7']; 

var landsat8BandRename = ['blue', 'green', 'red', 'nir', 
'swir1', 'swir2']; 

// Create image collection. 
var landsat8Sr = 
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2'); 
var ic = ee.ImageCollection(landsat8Sr.filterDate('2015-01-
01', '2020-12-31') 

.filterBounds(bufferedBounds) 

.filter(ee.Filter.lt('CLOUD_COVER', 40)) 

.select(landsat8BandNames, landsat8BandRename).select(landsat8BandNames, landsat8BandRename) 

.map(addIndices)); 

To build annual composites from before and after Pagirinya’s establishment in 
2016, let’s create two temporal subsets of the ImageCollection—one from 
2015 and one from 2017—and use the median function to composite images for 
each time frame (Fig. 38.2). We will also clip our image collections to the buffered 
region around Pagirinya. To visualize the NDVI composites, we will use true-color
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Fig. 38.2 Pre-establishment (left) and post-establishment (right) true-color composites with 
Pagirinya Refugee Settlement boundary overlaid in blue

and false-color visualizations and color palettes, which should help us identify and 
interpret features within and surrounding the settlement boundary. 

// Make annual pre- and post-establishment composites. 
var preMedian = ic.filterDate('2015-01-01', '2015-12-
31').median() 

.clip(bufferedBounds); 
var postMedian = ic.filterDate('2017-01-01', '2017-12-
31').median() 

.clip(bufferedBounds); 

// Import visualization palettes https://github.com/gee-
community/ee-palettes. 
var palettes = require('users/gena/packages:palettes'); 
var greenPalette = palettes.colorbrewer.Greens[9]; 
var prGreenPalette = palettes.colorbrewer.PRGn[9];
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// Set-up "true color" visualization parameters. 
var TCImageVisParam = { 

bands: ['red', 'green', 'blue'], 
gamma: 1, 
max: 13600, 
min: 8400, 
opacity: 1 

}; 

// Set-up "false color" visualization parameters. 
var FCImageVisParam = { 

bands: ['nir', 'red', 'green'], 
gamma: 1, 
min: 9000, 
max: 20000, 
opacity: 1 

}; 

// Display true-color composites. 
Map.addLayer(preMedian, TCImageVisParam, 

'Pre-Establishment Median TC'); 
Map.addLayer(postMedian, TCImageVisParam, 

'Post-Establishment Median TC'); 

'Post-Establishment Median FC'); 

// Display median NDVI composites. 
Map.addLayer(preMedian, { 

min: 0, 
max: 0.7, 
bands: ['NDVI'], 
palette: greenPalette 

}, 'Pre-Establishment Median NDVI'); 

// Display false-color composites. 
Map.addLayer(preMedian, FCImageVisParam, 

'Pre-Establishment Median FC'); 
Map.addLayer(postMedian, FCImageVisParam,
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Map.addLayer(postMedian, { 
min: 0, 
max: 0.7, 
bands: ['NDVI'], 
palette: greenPalette 

}, 'Post-Establishment Median NDVI'); 

// Create an empty byte Image into which we'll paint the 
settlement boundary. 
var empty = ee.Image().byte(); 

// Convert settlement boundary's geometry to an Image for 
overlay. 
var pagirinyaOutline = empty.paint({ 

featureCollection: pagirinya, 
color: 1, 
width: 2 

}); 

// Display Pagirinya boundary in blue. 
Map.addLayer(pagirinyaOutline, 

{ 
palette: '0000FF' 

}, 
'Pagirinya Refugee Settlement boundary');

Now that we have pre- and post-establishment composites to support a visual 
qualitative assessment, let’s make a complementary quantitative assessment by 
measuring pre- and post-establishment differences in median NDVI and plotting 
the distribution of NDVI from both periods. 

// Compare pre- and post-establishment differences in NDVI. 
var diffMedian = postMedian.subtract(preMedian); 
Map.addLayer(diffMedian, 

{ 
min: -0.1, 
max: 0.1, 
bands: ['NDVI'], 
palette: prGreenPalette 

}, 
'Difference Median NDVI');
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}).setSeriesNames(['Pre-Establishment', 'Post-
Establishment']) 

.setOptions({ 
title: 'NDVI Frequency Histogram', 
hAxis: { 

title: 'NDVI', 
titleTextStyle: { 

italic: false, 
bold: true 

}, 
}, 
vAxis: 
{ 

title: 'Count', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
colors: ['cf513e', '1d6b99'] 

}); 
print(prePostNDVIFrequencyChart); 

// Chart the NDVI distributions for pre- and post-
establishment. 
var combinedNDVI = preMedian.select(['NDVI'], ['pre-NDVI']) 

.addBands(postMedian.select(['NDVI'], ['post-NDVI'])); 

var prePostNDVIFrequencyChart = 
ui.Chart.image.histogram({ 

image: combinedNDVI, 
region: bufferedBounds, 
scale: 30 

In addition to the pre- and post-establishment annual composites, let’s create 
an annotated video time series of the full 2015–2020 Landsat 8 surface reflectance 
ImageCollection. We will be able to use this video to view changes at our 
study refugee settlement image by image.
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// Import package to support text annotation. 
var text = require('users/gena/packages:text'); 
var rgbVisParam = { 

bands: ['red', 'green', 'blue'], 
gamma: 1, 
max: 12011, 
min: 8114, 
opacity: 1 

}; 

// Define arguments for animation function parameters. 
var videoArgs = { 

region: bufferedBounds, 
framesPerSecond: 3, 
scale: 10 

}; 

var annotations = [{ 
position: 'left', 
offset: '5%', 
margin: '5%', 
property: 'label', 
scale: 30 

}]; 

function addText(image) { 
var date = 

ee.String(ee.Date(image.get('system:time_start')) 
.format('YYYY-MM-dd')); 

// Set a property called label for each image. 
var image = 

image.clip(bufferedBounds).visualize(rgbVisParam) 
.set({ 

'label': date 
}); 

// Create a new image with the label overlaid using 
gena's package. 

var annotated = text.annotateImage(image, {}, 
bufferedBounds, annotations); 

return annotated; 
}
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// Add timestamp annotation to all images in video. 
var tempCol = ic.map(addText); 

// Click the URL to watch the time series video. 
print('L8 Time Series Video', 
tempCol.getVideoThumbURL(videoArgs)); 

Code Checkpoint A17a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. How would you describe the land cover type in the area in 2015, 
before the establishment of the refugee settlement? Is the land cover consistent 
within the settlement’s boundary in the pre-establishment period? Does the set-
tlement boundary conform to land cover type or condition in any meaningful 
way? 

Question 2. What features (dwellings, roadways, agricultural plots, etc.) present 
the greatest visual difference between the pre- and post-establishment periods? 
Comparing the visual differences in true color, false color, and NDVI with the 
satellite image basemap may be helpful here. 

Question 3. Which of the annual composite visualizations (true color, false color, 
or NDVI) do you prefer for distinguishing the refugee settlement in the post-
establishment period, and why? 

Question 4. How do the range and mode of NDVI values change from pre- to post-
establishment? How might the changes in NDVI distribution correlate to overall 
changes in land cover type in the post-establishment period? 

Question 5. Beyond the rapid establishment of the settlement’s dwellings and 
roads, what changes do you observe in the time series video? Do these changes 
occur within or outside the settlement boundary? What kinds of changes do you 
see in the imagery from 2019 or 2020, well after the settlement was established in 
2016?
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38.2.2 Section 2: Mapping Features Within the Refugee 
Settlement 

In Sect. 38.2.1, we used Landsat data to gauge changes in land cover conditions 
and types, but we can also draw upon data products derived from satellite imagery. 
For instance, satellite-derived building footprints, which represent geometries of 
individual structures and dwellings, are often used to estimate human populations 
and population density in humanitarian contexts and to support the planning and 
delivery of food and other kinds of aid. In this section, we will identify differ-
ent features within Pagirinya, which we will use to create a satellite image-based 
settlement boundary map in Sect. 38.2.3. 

Let’s add to our script from Sect. 38.2.1 by first loading the Open Buildings 
V1 Polygons dataset from the Earth Engine Data Catalog. This dataset includes 
satellite-derived building footprints based on very high resolution (0.5 m) satellite 
imagery, and each footprint has a confidence score. Let’s visualize building foot-
prints with a confidence score above 75% as orange and building footprints with 
a 75% or lower confidence score as purple. 

// Visualize Open Buildings dataset. 
var footprints = ee.FeatureCollection( 

'GOOGLE/Research/open-buildings/v1/polygons'); 
var footprintsHigh = footprints.filter('confidence > 0.75'); 
var footprintsLow = footprints.filter('confidence <= 0.75'); 

Map.addLayer(footprintsHigh, { 
color: 'FFA500' 

}, 'Buildings high confidence'); 
Map.addLayer(footprintsLow, { 

color: '800080' 
}, 'Buildings low confidence'); 

With a map of building footprints in place, let’s turn to examining other features 
of interest that we identified in Sect. 38.2.1. Let’s load a FeatureCollection 
of sample locations of infrastructure, forest, and agriculture visible on the satellite 
basemap as well as a sample of building footprint locations. Note in the print 
output that each feature has a value, which represents the feature type. Let’s 
write a function to use this value property to automatically assign a unique color 
to each feature as part of a style (Fig. 38.3).
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// Load land cover samples. 
var lcPts = ee.FeatureCollection( 

'projects/gee-book/assets/A1-7/lcPts'); 
print('lcPts', lcPts); 

// Create a function to set Feature properties based on 
value. 
var setColor = function(f) { 

var value = f.get('class'); 
var mapDisplayColors = ee.List(['#13a1ed', '#7d02bf', 

'#f0940a', '#d60909' 
]); 
// Use the class as an index to lookup the 

corresponding display color. 
return f.set({ 

style: { 
color: mapDisplayColors.get(value) 

} 
}); 

}; 

// Apply the function and view the results. 
var styled = lcPts.map(setColor); 
Map.addLayer(styled.style({ 

styleProperty: 'style' 
}), {}, 'Land cover samples');

Since we want to use these sample land cover locations to help delineate the 
refugee settlement boundary, these different land cover types should be spectrally 
distinguishable from each other. To see how the spectral values vary among differ-
ent features, let’s create spectral signature plots for the post-establishment period. 
We first need to add the land cover class to the post-establishment composites 
that we made in Sect. 38.2.1 so that the class and spectral value information 
can be referenced together in our spectral signature plots. To do that, let’s use 
reduceToImage to convert our lcPts FeatureCollection to an image, 
lcBand, and then add that image to the post-establishment composite.
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Fig. 38.3 Feature samples across Pagirinya Refugee Settlement (boundary shown in blue)

// Convert land cover sample FeatureCollection to an Image. 
var lcBand = lcPts.reduceToImage({ 

properties: ['class'], 
reducer: ee.Reducer.first() 

}).rename('class'); 

// Add lcBand to the post-establishment composite. 
postMedian = postMedian.addBands(lcBand);
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Now we have a  postMedian image that we can sample at specific sample 
locations and identify not only the spectral values but also the class type. Let’s 
plot the spectral values by class type. Note that since band names are sorted alpha-
betically on the x-axis, nir values are plotted in between green and red and 
are therefore out of order with respect to band wavelengths. 

// Define bands that will be visualized in chart. 
var chartBands = ['blue', 'green', 'red', 'nir', 'swir1', 
'swir2', 'class' 

]; 

print(postMedian, 'postMedian'); 

// Plot median band value for each land cover type. 
var postBandsChart = ui.Chart.image 

.byClass({ 
image: postMedian.select(chartBands), 
classBand: 'class', 
region: lcPts, 
reducer: ee.Reducer.median(), 
scale: 30, 
classLabels: ['Settlement', 'Road', 'Forest', 

'Agriculture' 
], 
xLabels: chartBands 

}) 

.setChartType('ScatterChart') 

.setOptions({ 
title: 'Band Values', 
hAxis: { 

title: 'Band Name', 
titleTextStyle: { 

italic: false, 
bold: true 

}, 
}, 
vAxis: { 

title: 'Reflectance (x1e4)', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
},
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colors: ['#13a1ed', '#7d02 bf', '#f0940a', '#d60909'], 
pointSize: 0, 
lineSize: 5, 
curveType: 'function' 

}); 
print(postBandsChart); 

Remember that we also calculated NDVI, NDBI, and NBR spectral indices in 
Sect. 38.2.1. Since these bands range from − 1 to 1, we have to plot their values 
separately from the Landsat band spectral signature plots above, which use scaled 
reflectance values. 

// Define spectral indices that will be visualized in the 
chart. 
var indexBands = ['NDVI', 'NDBI', 'NBR', 'class']; 

// Plot median index value for each land cover type. 
var postIndicesChart = ui.Chart.image 

.byClass({ 
image: postMedian.select(indexBands), 
classBand: 'class', 
region: lcPts, 
reducer: ee.Reducer.median(), 
scale: 30, 
classLabels: ['Settlement', 'Road', 'Forest', 

'Agriculture' 
], 
xLabels: indexBands 

}) 

.setChartType('ScatterChart') 

.setOptions({ 
title: 'Index Values', 
hAxis: { 

title: 'Index Name', 
titleTextStyle: { 

italic: false, 
bold: true 

}, 
//viewWindow: {min: wavelengths[0], max: 

wavelengths[2]} 
scaleType: 'string' 

},
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vAxis: { 
title: 'Value', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
colors: ['#13a1ed', '#7d02bf', '#f0940a', 

'#d60909'], 
pointSize: 5 

}); 
print(postIndicesChart); 

// Create an empty image into which to paint the features, 
cast to byte. 
var empty = ee.Image().byte(); 

// Paint all the polygon edges with the same number and 
width, display. 
var pagirinyaOutline = empty.paint({ 

featureCollection: pagirinya, 
color: 1, 
width: 2 

}); 

// Map outline of Pagirinya in blue. 
Map.addLayer(pagirinyaOutline, 

{ 
palette: '0000FF' 

}, 
'Pagirinya Refugee Settlement boundary'); 

Code Checkpoint A17b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 6. How would you describe the coverage of the footprints within the 
settlement? Are there sections of the settlement visible in the basemap or the 
post-establishment composite that are missing footprints? 

Question 7. How do NDVI, NDBI, and NBR change from the pre- to post-
establishment period at building footprint locations? 

Question 8. Are the spectral profiles of the four feature types distinct from each 
other? Which profiles are the most similar overall? 

Question 9. Which bands or indices provide the greatest separation between the 
four feature types?
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38.2.3 Section 3: Delineating Refugee Settlement Boundaries 

Now that we have become familiar with the different land cover types and 
the changes that can occur once a refugee settlement is established, let’s turn 
to formally delineating the refugee settlement from its surroundings by map-
ping a settlement boundary. Having information on refugee settlement boundaries 
is helpful for the basic accounting of refugee settlement extent and for confi-
dently attributing land cover or land use changes to a specific refugee settlement 
(Friedrich and Van Den Hoek 2020; Van Den Hoek and Friedrich 2021). In this 
section, we will use a k-means unsupervised classifier to generate a settlement/non-
settlement map that represents land that has been transformed by the refugee 
settlement’s establishment or subsequent use. Note that the settlement boundary 
that we used in Sect. 38.2.1 is a settlement planning boundary established by the 
UNHCR and so represents the land within the formal boundary that potentially 
could be accessed or used by refugees. 

To start making a binary classification that separates settlement from non-
settlement, let’s create a random sample of 500 NDVI values from across the 
post-establishment composite. Remember that the postMedian composite was 
clipped to the 500-m-buffered extent of the UNHCR settlement boundary geom-
etry, so these sample sites should be dispersed inside and outside of the UNHCR 
boundary’s geometry. For parameterization, we only need two values output from 
the classifier (numClusters = 2) and can set the maximum number of iterations 
to a low value of 5 (maxIter = 5) and the seed value to an arbitrary value of 
21. Now let’s apply the classifier to the post-establishment composite, view the 
coverage of settlement (pixel value of 1) and non-settlement (pixel value of 0), 
and visually compare the result with the UNHCR settlement boundary. 

// Create samples to input to a K-means classifier. 
var numPx = 500; 
var samples = postMedian.select('NDVI').sample({ 

scale: 30, // Landsat resolution 
numPixels: numPx, 
geometries: true 

}); 

Map.addLayer(samples, {}, 'K-means samples'); 

// Set-up the parameters for K-means. 
var numClusters = 2; 
var maxIter = 5; 
var seedValue = 21;
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// Seed the classifier using land cover samples. 
var clusterer = ee.Clusterer.wekaKMeans({ 

nClusters: numClusters, 
maxIterations: maxIter, 
seed: seedValue 

}).train(samples); 

// Apply the K-means classifier. 
var kmeansResult = postMedian.cluster(clusterer); 
Map.addLayer(kmeansResult, { 

bands: ['cluster'], 
max: 1, 
min: 0 

}, 'K-means output'); 

The resulting k-means classification looks promising for separating settlement 
from non-settlement pixels, but it has many gaps in settlement coverage as well 
as isolated settlement patches and pixels. To produce a single contiguous settle-
ment coverage, let’s apply spatial morphological operations of dilation and erosion 
on the k-means output. Dilation incrementally expands the boundary of a raster 
dataset, filling gaps and connecting patches along the way. Conversely, erosion 
chips away at the outermost pixels, thereby removing the surplus pixels that were 
added during the dilation step but still maintaining the filled-in gaps. 

We will apply these in sequence, first dilation and then erosion, using 
focal_max and focal_min, respectively; focal_max works as a dilation 
since it outputs the maximum value detected within the kernel, which will always 
be a settlement pixel because the settlement pixel value of 1 is always greater than 
the non-settlement pixel value of 0. Since we just need to do some fine-tuning on 
the boundary of the settlement coverage, we can use a kernel with a small radius 
of 3. Finally, let’s convert the output of the dilation and erosion to a polygon 
FeatureCollection where each contiguous patch of pixels becomes its own 
polygon (Fig. 38.4). Feel free to map the outline of Pagirinya in blue, as above, 
for a helpful visual reference.
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// Define the kernel used for morphological operations. 
var kernel = ee.Kernel.square({ 

radius: 3 
}); 

// Perform a dilation followed by an erosion. 
var kMeansCleaned = kmeansResult 

.focal_max({ 
kernel: kernel, 
iterations: 1 

}) // Dilation 
.focal_min({ 

kernel: kernel, 
iterations: 1 

}); // Erosion 
Map.addLayer(kMeansCleaned, { 

bands: ['cluster'], 
max: 1, 
min: 0 

}, 'K-means cleaned'); 

// Convert cleaned K-means settlement and non-settlement 
coverages to polygons. 
var kMeansCleanedPolygon = kMeansCleaned.reduceToVectors({ 

scale: 30, 
eightConnected: true 

}); 

Map.addLayer(kMeansCleanedPolygon, {}, 'K-Means cleaned 
polygon'); 

// Map outline of Pagirinya in blue. 
Map.addLayer(pagirinyaOutline, 

{ 
palette: '0000FF' 

}, 
'Pagirinya Refugee Settlement boundary');

We have created a usable vector map of settlement and non-settlement poly-
gons, but we are aiming for a single polygon that represents the settlement 
boundary. To filter these polygons to a single polygon that represents the refugee 
settlement’s boundary, let’s use a simple logic rule and select the polygon that has 
the largest overlap (i.e., intersected area) with the UNHCR boundary (Fig. 38.5).
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Fig. 38.4 K-means output before (left) and after (right) dilation and erosion, with Pagirinya 
Refugee Settlement boundary overlaid in blue

// Intersect K-means polygons with UNHCR settlement 
boundary and 
// return intersection area as a feature property. 
var kMeansIntersect = 
kMeansCleanedPolygon.map(function(feat) { 

var boundaryIsect = pagirinya.intersection(feat, ee 
.ErrorMargin(1)); 

return ee.Feature(feat).set({ 
'isectArea': boundaryIsect.area() 

}); 
}); 

// Sort to select the polygon with largest overlap with the 
UNHCR settlement boundary. 
var kMeansBoundary = 
ee.Feature(kMeansIntersect.sort('isectArea', 

false).first()); 
Map.addLayer(kMeansBoundary, {}, 'K-Means Settlement 
Boundary');
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Fig. 38.5 K-means settlement boundary (black) overlaid by UNHCR settlement boundary (blue) 

Code Checkpoint A17c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 10. In your opinion, does the k-means boundary accurately separate the 
settlement from its surroundings? Considering differences between the UNHCR 
boundary and the k-means boundary, comment on potential errors of commission 
(areas that are inaccurately included in the k-means boundary) and omission (areas 
that are inaccurately excluded). 

Question 11. Rather than collecting samples for input to k-means based only on 
NDVI in the postMedian image, adjust the script above to sample from all 
bands in postMedian. How does the resulting settlement polygon differ? Does
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increasing the amount of spectral information available to the classifier improve 
the result? 

Question 12. Rerun the k-means classifier based on the diffMedian image 
from Sect. 38.2.1 rather than the postMedian image while keeping the other 
parameters the same. How does the resulting settlement boundary polygon differ? 

38.2.4 Section 4: Estimating Refugee Population Within 
the Settlement 

Thus far, we have looked at land cover conditions and land cover changes at 
Pagirinya and used that information to help map the extent of the settlement. Let’s 
turn toward using satellite-derived data to estimate the size of the refugee popula-
tion at Pagirinya. Knowing how many refugees are at a settlement is essential for 
gauging the need for food aid and for guiding sustainable development and disas-
ter risk reduction efforts. Satellite-informed population estimates can be useful for 
these purposes, especially if no other data are available. 

In this final section, we will work with several datasets designed to estimate 
the geographic distribution of human populations, each of which is based in part 
on remote sensing detection of buildings. We will analyze population estimates at 
Pagirinya Refugee Settlement from the Global Human Settlement Layer (GHSL), 
High Resolution Settlement Layer (HRSL), and WorldPop data products. To gauge 
the accuracy of these products, we will compare the population estimates with 
UNHCR-recorded refugee population data from September 2020. 

These versions of HRSL and WorldPop are from 2020, and this version of 
GHSL has data for multiple years, most recently 2015. Let’s filter the GHSL 
ImageCollection to only the 2015 dataset. We will also rename all relevant 
bands to ‘population’ for consistency and visualize all population maps using 
the same approach to support a direct comparison. Use the Inspector tool to iden-
tify the different pixel-level values for each population dataset within and around 
Pagirinya. These values represent the human population estimated to be present at 
each pixel.
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Map.centerObject(pagirinya, 14); 

var ghslPop = 
ee.ImageCollection('JRC/GHSL/P2016/POP_GPW_GLOBE_V1') 

.filter(ee.Filter.date('2015-01-01', '2016-01-
01')).first() 

.select(['population_count'], ['population']); 
var hrslPop = ee.Image('projects/gee-book/assets/A1-
7/HRSL') 

.select(['b1'], ['population']); 
var worldPop = ee.ImageCollection( 

'WorldPop/GP/100m/pop_age_sex_cons_unadj') 
.filterMetadata('country', 'equals', 'UGA') 
.first() 
.select(['population']); 

// Set-up visualization to be shared by all population 
datasets. 
var visualization = { 

bands: ['population'], 
min: 0.0, 
max: 50.0, 
palette: ['24126c', '1fff4f', 'd4ff50'] 

}; 

// Map population datasets. 
Map.addLayer(ghslPop, visualization, 'GHSL Pop'); 
Map.addLayer(hrslPop, visualization, 'HRSL Pop'); 
Map.addLayer(worldPop, visualization, 'WorldPop'); 

You will notice that each dataset has a different spatial resolution (also 
commonly referred to as the “scale”). We will need to know these different spa-
tial resolutions when we summarize each dataset’s population estimate across 
Pagirinya using reduceRegion. Once we have a population estimate, we will 
add it to the Pagirinya feature as a new property.
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// Collect spatial resolution of each dataset. 
var ghslPopProjection = ghslPop.projection(); 
var ghslPopScale = ghslPopProjection.nominalScale(); 
print(ghslPopScale, 'GHSL scale'); 

var hrslPopProjection = hrslPop.projection(); 
var hrslPopScale = hrslPopProjection.nominalScale(); 
print(hrslPopScale, 'HRSL scale'); 

var worldPopProjection = worldPop.projection(); 
var worldPopScale = worldPopProjection.nominalScale(); 
print(worldPopScale, 'WorldPop scale'); 

// Summarize population totals for each population product 
at each settlement and 
// assign as new properties to the UNHCR boundary Feature. 
pagirinya = pagirinya.set(ghslPop.select(['population'], 
['GHSL']) 

.reduceRegion({ 
reducer: 'sum', 
scale: ghslPopScale, 
geometry: pagirinya.geometry(), 
maxPixels: 1e9, 

})); 

pagirinya = pagirinya.set(hrslPop.select(['population'], 
['HRSL']) 

.reduceRegion({ 
reducer: 'sum', 
scale: hrslPopScale, 
geometry: pagirinya.geometry(), 
maxPixels: 1e9, 

})); 

pagirinya = pagirinya.set(worldPop.select(['population'], [ 
'WorldPop']) 
.reduceRegion({ 

reducer: 'sum', 
scale: worldPopScale, 
geometry: pagirinya.geometry(), 
maxPixels: 1e9, 

})); 

print(pagirinya, 'Pagirinya with population estimates'); 

Now we have three very different population estimates for Pagirinya based 
on the three population datasets. Let’s see how they compare to the population
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recorded in 2020 by UNHCR, which is also stored as a property of the Pagirinya 
feature. 

To do so, we will simply subtract the UNHCR population total from each 
dataset’s estimated population total and store each difference as a new prop-
erty. A negative difference indicates an underestimation of the UNHCR-recorded 
population, and a positive difference indicates an overestimation. 

// Measure difference between settlement product and UNHCR-
recorded population values. 
var unhcrPopulation = 
ee.Number(pagirinya.get('UNHCR_Pop')); 
var ghslDiff = ee.Number(pagirinya.get('GHSL')).subtract( 

unhcrPopulation); 
var hrslDiff = ee.Number(pagirinya.get('HRSL')).subtract( 

unhcrPopulation); 
var worldPopDiff = 
ee.Number(pagirinya.get('WorldPop')).subtract( 

unhcrPopulation); 

// Update UNHCR boundary Feature with population difference 
properties. 
pagirinya = 
pagirinya.set(ee.Dictionary.fromLists(['GHSL_diff', 

'HRSL_diff', 'WorldPop_diff'], 

[ghslDiff, hrslDiff, worldPopDiff])); 

print('Pagirinya Population Estimations', pagirinya); 

Code Checkpoint A17d. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 13. Visually interpret the coverage of each population dataset alongside 
the building footprint data from Sect. 38.2.2. Which population dataset seems to 
better capture population density at hot spots of building footprints? 

Question 14. Many buildings in Pagirinya are not household dwellings but rather 
administrative offices, shops, food market buildings, etc., and such differences in 
building use are not necessarily considered in generating the population estimates. 
How would the inclusion of non-dwellings in population datasets bias settlement-
level population estimates? 

Question 15. Note that the coverage of the WorldPop population data at Pagirinya 
is not wholly contained within the UNHCR settlement boundary. Is this “spillover” 
better captured by the k-means boundary from Sect. 38.2.3?
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38.3 Synthesis 

You may have noticed that we showed a 2020 land cover map from the European 
Space Agency (ESA) based on Sentinel-1 and Sentinel-2 data in Fig. 38.1c but  
did not make use of those land cover data in the practicum. How would your 
settlement boundary detection approach and results change if you used Sentinel-2 
instead of Landsat data and sampled land cover sites from this ESA dataset? As a 
homework challenge, please complete the following assignment. 

Assignment 1. Use Sentinel-2 surface reflectance data collected in 2020. Col-
lect 20 samples of each land cover class in the ESA land cover product within 
Pagirinya using ee.Image.stratifiedSample. Assess the spectral separa-
bility between land cover classes. Then, run a modified k-means classifier that 
makes use of Sentinel-2 NDVI values collected across the ESA land cover map. 

38.4 Conclusion 

This chapter introduced approaches for characterizing land cover dynamics within 
and surrounding Pagirinya Refugee Settlement using a range of open-access satel-
lite data and geospatial products. We saw that satellite remote sensing approaches 
are effective for characterizing land cover changes before and following the estab-
lishment of Pagirinya in 2016, and for delineating a refugee settlement boundary 
that represents land directly affected by the settlement’s establishment and use. We 
also noted wide disagreement and pronounced inaccuracies in Pagirinya refugee 
population estimates based on satellite-informed human population datasets. This 
chapter shows the value of remote sensing for long-term monitoring of refugee 
settlements as well as the need for deeper integration of humanitarian data and 
scenarios in remote sensing applications. 
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Learning Outcomes 

• Selecting and creating a multi-temporal SAR mosaic. 
• Generating SAR change detection based on a statistical analysis of Sentinel-1 

images. 
• Post-processing of alerts generated by filtering maximum area patches and 

information of forest/non-forest and water bodies. 

Helps if you know how to 

• Import, filter, and visualize images (Part 1). 
• Work with time series data in Earth Engine (Part 4). 
• Write a function and map it over an ImageCollection (Chap. 12). 
• Use the require function to load code from existing modules (Chap. 28). 
• Export results to assets (Chap. 29). 

39.1 Introduction to Theory 

Accelerated demand for natural resources has transformed the Amazon rainfor-
est into a new economic frontier that generates commodities such as agricultural 
products, livestock, and more recently, minerals, especially gold (RAISG 2020). 
In Peru, illegal gold mining is a serious problem that affects local populations in 
the southeastern region of Madre de Dios (Yard et al. 2012; Asner and Tupay-
achi 2017, Alvarez-Berrios et al. (2021). According to Caballero et al. (2018), it 
has led to the deforestation of about 1000 km2 of rainforest, affecting protected 
areas, Indigenous communities, and sustainable management areas. Gold mining 
is carried out throughout the year, even during the rainy season. 

Optical Earth observation satellites have played a very important role in mon-
itoring gold mining deforestation in recent years. Madre de Dios is one of the 
few tropical regions in the world for which there is well-documented informa-
tion on annual forest loss due to this deforestation driver (Asner et al. 2013; 
Asner and Tupayachi 2017; Caballero et al. 2018; Nicolau et al. 2019; Csillick 
and Asner 2020; Aguirre et al. 2021). However, these resources do not reveal the 
progress of illegal mining during the rainy season and at other times when the 
optical images are obscured by clouds. This reduces the window of opportunity 
to know the dynamics of the activity and guide actions to control the advance of 
deforestation. 

Satellite-based SAR sensors obtain information throughout the entire year 
thanks to the ability of microwaves to penetrate cloud cover (Ballère et al. 2021; 
Nicolau et al. 2021). Therefore, we are able to capture changes due to gold min-
ing expansion with SAR data from the European Space Agency (ESA) Sentinel-1 
C-band satellite. In this chapter, we will look at a successful example of how to 
process radar images to generate early warnings of gold mining deforestation.
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39.2 Practicum 

SAR sensors transmit microwave signals at an oblique angle and measure the 
backscattered portion of the signal in order to analyze features on the surface. 
Unlike optical sensors, which are passive, SAR is an active instrument with its 
own source of illumination, and it is one of the few sensing instruments that allows 
full control of the signal polarization on both the transmit and receive paths. The 
majority of today’s SAR sensors are linearly polarized, and transmit horizontally 
and/or vertically polarized wave forms (i.e., SAR bands can be VV, VH, HV, or 
HH). While interpreting optical imagery is similar to interpreting a photograph, 
interpreting SAR data requires a different way of thinking, in that the signal is 
instead responsive in complex ways to surface characteristics such as structure 
and moisture. More information about the theory and concepts behind SAR is 
available in the SAR Handbook (Flores-Anderson et al. 2019). 

The area of study for this chapter is the region surrounding a mining corridor 
located in Madre de Dios in the southern Peruvian Amazon (Fig. 39.1). 

Fig. 39.1 Maps of (a) the area of study in the southern Peruvian Amazon and the expansion of 
alluvial mining activity between (b) 2006 and (c) 2020 

Alluvial gold mining exploitation generates changes in the radar backscattering 
mechanism over forested areas, since it involves deforestation, removal of topsoil, 
excavation, and the use of water for the extraction of gold from the loose sediment. 
Figure 39.2 shows the changes in SAR Sentinel-1 images and a radar backscat-
tering mechanism before (Fig. 39.2a) and after (Fig. 39.2b) the impact of alluvial 
gold mining activity.
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Fig. 39.2 Radar backscattering mechanism from an area affected by alluvial mining activity 
(a) before: backscattering signal from primary forest (volume scattering); (b) after: specular scat-
tering from bearing soil and water as a result of clearing forest cover, removing topsoil, digging 
pits, and using water in the extraction process of gold from the loose sediment 

Therefore, you will learn how to use SAR Sentinel-1 time series to detect 
changes generated by alluvial gold mining activities in forested areas. 

The first step is to create a SAR mosaic for a given period of time and orbit 
pass. Then, we will apply the omnibus Q test algorithm to generate change alerts 
from the SAR Sentinel-1 time series. Finally, we will filter and eliminate potential 
false positive alerts coming from other activities with the same temporal pattern as 
the mining activity (e.g., natural forest loss by river expansion or water over bare 
soil during the rainy season). 

39.2.1 Section 1: Creating a Single SAR Mosaic 

We will use ESA’s Sentinel-1 dual-polarized (VV + VH) in descending orbit pass 
to create a single SAR mosaic over the area of study. Sentinel-1 SAR Ground 
Range Detected (GRD) data (Fig. 39.3) are stored in Earth Engine in two formats: 
logarithmic scale (dB) and the original values (power scale named as FLOAT). We 
will use the latter since mathematical operations should not be applied into data on 
a logarithmic scale. The Sentinel-1 dataset is composed of Level-1 SAR amplitude 
multi-look images preprocessed according to the following steps: orbit metadata
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update, removal of border and thermal noise, radiometric calibration, and terrain 
correction. 

Sentinel-1 imagery available in the Earth Engine data catalog 

Area of study around the mining corridor located in the Madre de Dios region



838 L. Villa et al.

Copy and paste the code below to define the area of study (Fig. 39.1), convert 
this vector to a boundary image, and add it to the map (Fig. 39.4). 

////////////////////////////////////////////////////// 
/// Section One 
////////////////////////////////////////////////////// 

// Define the area of study. 
var aoi = ee.FeatureCollection('projects/gee-
book/assets/A1-8/mdd'); 

// Center the map at the aoi. 
Map.centerObject(aoi, 9); 

// Create an empty image. 
var empty = ee.Image().byte(); 

// Convert the area of study to an EE image object 
// so we can visualize only the boundary. 
var aoiOutline = empty.paint({ 

featureCollection: aoi, 
color: 1, 
width: 2 

}); 

// Select the satellite basemap view. 
Map.setOptions('SATELLITE'); 

// Add the area of study boundary to the map. 
Map.addLayer(aoiOutline, { 

palette: 'red' 
}, 'Area of Study'); 

Next, copy and paste the code below to define two functions, maskAngle and 
getCollection. The first function masks sections of SAR images acquired at 
an incidence angle less than 31° or greater than 45°. The second function filters 
the Sentinel-1 imagery to a specific period of time, region of interest, and orbit 
pass. Note that the Sentinel-1 GRD dataset is imported inside the second function.
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// Function to mask the SAR images acquired with an 
incidence angle 
// lower or equal to  31 and greater or equal to 45 
degrees. 
function maskAngle(image) { 

var angleMask = image.select('angle'); 
return 

image.updateMask(angleMask.gte(31).and(angleMask.lte(45))) 
; 
} 

// Function to get the SAR Collection. 
function getCollection(dates, roi, orbitPass0) { 

var sarCollFloat = 
ee.ImageCollection('COPERNICUS/S1_GRD_FLOAT') 

.filterBounds(roi) 

.filterDate(dates[0], dates[1]) 

.filter(ee.Filter.eq('orbitProperties_pass', 
orbitPass0)); 

return sarCollFloat.map(maskAngle).select(['VV', 
'VH']); 
} 

Copy and paste the code below to import the Sentinel-1 collection, define time 
variables (a list of dates) and the orbit pass variable, apply the functions, create a 
mosaic by using the mosaic function, and clip the mosaic to the study area. 

// Define variables: the period of time and the orbitpass. 
var listOfDates = ['2021-08-01', '2021-08-12']; 
var orbitPass = 'DESCENDING'; 

// Apply the function to get the SAR mosaic. 
var sarImageColl = getCollection(listOfDates, aoi, 
orbitPass) 

.mosaic() 

.clip(aoi); 
print('SAR Image Mosaic', sarImageColl); 

Before adding the mosaic to the map, it’s important to scale the values to a 
logarithmic scale (log10().multiply(10.0)). The parameters of visualiza-
tion (sarVis) should be taken between 3 and −23 dB (decibels). Copy and paste 
the code below to do so and to add the mosaic to the map (Fig. 39.5). The code 
creates a scaled image and draws it using visualization parameters set through trial 
and error.
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Fig. 39.5 SAR Sentinel-1 mosaic generated in previous section 

// Apply logarithmic scale. 
var sarImageScaled = sarImageColl.log10().multiply(10.0); 

// Visualize results. 
var sarVis = { 

bands: ['VV', 'VH', 'VV'], 
min: [-18, -23, 3], 
max: [-4, -11, 15] 

}; 
Map.addLayer(sarImageScaled, sarVis, 'Sentinel-1 / SAR 
Mosaic'); 

Code Checkpoint A18a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. How many bands (polarizations) does Sentinel-1 have over the area 
of study? 

Question 2. Using the Inspector tool, explore the values from the VV and VH 
bands over different land covers. Which one do you think is better able to detect 
forested areas?
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39.2.2 Section 2: Creating a SAR Mosaic Time Series 

We will reuse most of the code from Sect. 39.2.1, only changing the period of 
time and not applying the mosaic function just yet. Start this section by opening 
the following code checkpoint. 

Code Checkpoint A18b. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and paste code below into it. 

Expand the SAR ImageCollection in the Console and note that it is com-
posed of 30 elements. To create a time series of mosaics, we need to define two 
additional functions (getDates and mosaicSAR). The first function converts 
the format of the date from milliseconds to format ‘YYYY-MM-dd’. The second 
function filters the SAR ImageCollection using the list of dates and gener-
ates a mosaic. The result is an ImageCollection of mosaics per date. Copy and 
paste the code below to define these two functions. 

// Function to get dates in 'YYYY-MM-dd' format. 
function getDates(dd) { 

return ee.Date(dd).format('YYYY-MM-dd'); 
} 

// Function to get a SAR Mosaic clipped to the study area. 
function mosaicSAR(dates1) { 

dates1 = ee.Date(dates1); 
var imageFilt = sarImageColl 

.filterDate(dates1, dates1.advance(1, 'day')); 
return imageFilt.mosaic() 

.clip(aoi) 

.set({ 
'system:time_start': dates1.millis(), 
'dateYMD': dates1.format('YYYY-MM-dd') 

}); 
} 

Now, copy and paste the code below to generate a list of dates without duplicate 
elements (i.e., where there are images from the same dates in the collection, we 
only keep one). We avoid duplicates by using the ee.List.distinct and the 
getDates functions and output an ImageCollection of mosaics per date.
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// Function to get a SAR Collection of mosaics by date. 
var datesMosaic = ee.List(sarImageColl 

.aggregate_array('system:time_start')) 
.map(getDates) 
.distinct(); 

// Get a SAR List and Image Collection of mosaics by date. 
var getMosaicList = datesMosaic.map(mosaicSAR); 
var getMosaicColl = ee.ImageCollection(getMosaicList); 
print('get Mosaic Collection', getMosaicColl); 

Finally, copy and paste the code below to set the visualization parameter 
(sarVis) and add two SAR mosaics filtered by the date of acquisition as an 
example (one from 2021-01-04 and the other from 2021-12-18; Fig. 39.6). 

Fig. 39.6 SAR Sentinel-1 mosaics generated in Sect. 39.2.2. The  Inspector tool shows a compar-
ison between before and after values of VV and VH SAR bands
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// Visualize results. 
var sarVis = { 

bands: ['VV', 'VH', 'VV'], 
min: [-18, -23, 3], 
max: [-4, -11, 15] 

}; 

var image1 = getMosaicColl 
.filter(ee.Filter.eq('dateYMD', '2021-01-04')) 
.first().log10().multiply(10.0); 

var image2 = getMosaicColl 
.filter(ee.Filter.eq('dateYMD', '2021-12-18')) 
.first().log10().multiply(10.0); 

Map.addLayer(image1, sarVis, 'Sentinel-1 | 2021-01-04'); 
Map.addLayer(image2, sarVis, 'Sentinel-1 | 2021-12-18'); 

Note that we applied the logarithmic scale for visualization purposes. Zoom in 
and switch between the layers to note the differences between the images. 

Code Checkpoint A18c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 3. How many images were taken by Sentinel-1 over the area of study 
between 2018-01-01 and 2020-01-01? 

Question 4. Using the Inspector tool, explore the temporal changes of the values 
from VV and VH bands over new mining areas. 

39.2.3 Section 3: Generate SAR Change Detection 

There are different methods for detecting changes using SAR data. In this case, 
we will use a SAR change detection method based on Canty et al. (2020). 

This methodology allows us to identify changes for a series of ‘k’ uncorre-
lated SAR images using a pixel-based omnibus likelihood ratio test statistic Q for 
covariance matrices (

∑
i, i = 1... k), based on a Wishart distribution. The Q test is 

defined by 

ln Q = n

(

pk ln k + 
k∑

i=1 

ln |Xi | −  k ln

|
|
|
|
|

k∑

i=1 

Xi

|
|
|
|
|

)

where Xi = n∑* (with ∑* being the maximum likelihood estimate of the covari-
ance matrices ∑i), ‘n’ the number of looks, and ‘p’ the dimensionality of the 
covariance matrices (with p = 2 for dual polarización SAR data). The | · | denotes 
the determinant.
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The Q test is an omnibus test statistic because it evaluates the equality of several 
covariance matrices simultaneously. Thus, this test statistic tests the null hypothesis 
(no change, H0) against alternative hypothesis (change, H1) using SAR time series 
pixel-based data and the level of significance (probability that the null hypothesis 
H0 is true, also known as p-value) estimated in each iteration. 

In the first iteration, the first two first images in the time series are tested (null 
hypothesis of no change against the alternative of change): 

(1) H0 : ∑1 = ∑2 against H1 : ∑1 /= ∑2 → Null hypothesis rejected? 

If the null hypothesis (H0) is not rejected, then the test continues including the 
values of the next image in the series: 

(B) H0 : ∑1 = ∑2 = ∑3 against H1 : ∑1 = ∑2 /= ∑3 → Null hypothesis 
rejected? 

However, if the null hypothesis is rejected in this iteration, then the interval of 
time for this change is labeled and the test is restarted from there. 

The explanation of the Omnibus likelihood ratio test statistic is beyond the 
scope of this chapter but more details can be found in Canty et al. (2020). 

The next steps correspond to obtaining a single change detection output image 
using the time series of mosaics generated in Sect. 39.2.2. 

To do so, we will use modules adapted from the original JavaScript libraries by 
Canty et al. (2020). Beginning from the last code checkpoint from Sect. 39.2.2, 
copy and paste the code below to import the adapted modules and define a variable 
that stores the number of images in our collection. This number will be used later 
on for visualization purposes. 

// Libraries of SAR Change Detection (version modified). 
// The original version can be found in: 
// users/mortcanty/changedetection 
var omb = require( 

'projects/gee-edu/book:Part A - Applications/A1 -
Human Applications/A1.8 Monitoring Gold Mining Activity 
Using SAR/modules/omnibusTest_v1.1' 
); 
var util = require( 

'projects/gee-edu/book:Part A - Applications/A1 -
Human Applications/A1.8 Monitoring Gold Mining Activity 
Using SAR/modules/utilities_v1.1' 
); 

// Count the length of the list of dates of the time-
series. 
var countDates = datesMosaic.size().getInfo();
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Before applying the SAR change algorithm, we need to define the input param-
eters such as the significance and the reducer to be applied (median in this 
case). The result is an ee.Dictionary that contains several images: among 
these are cmap, smap, fmap, bmap. The cmap image shows the occurrence of 
the most recent significant change, smap shows the first significant change, fmap 
shows the frequency of significant changes, and bmap shows the interval in which 
each significant change occurred. 

Copy and paste the code below to define such variables, apply the algorithm to 
the list of SAR mosaics (getMosaicList), and extract the results. 

// Run the algorithm and print the results. 
var significance = 0.0001; 
var median = true; 
var result = ee.Dictionary(omb.omnibus(getMosaicList, 
significance, 

median)); 
print('result', result); 

// Change maps generated (cmap, smap, fmap and bmap) 
// are detailed in the next commented lines. 

// cmap: the interval in which the most recent significant 
change occurred (single-band). 
// smap: the interval in which the first significant 
change occurred (single-band). 
// fmap: the frequency of significant changes (single-
band). 
// bmap: the interval in which each significant change 
occurred ((k − 1)-band). 

// Extract and print the images result 
// (cmap, smap, fmap and bmap) from the ee.Dictionary. 
var cmap = ee.Image(result.get('cmap')).byte(); 
var smap = ee.Image(result.get('smap')).byte(); 
var fmap = ee.Image(result.get('fmap')).byte(); 
var bmap = ee.Image(result.get('bmap')).byte(); 

The values for cmap, smap, and bmap are numbers that correspond to dates. 
These are the dates that are stored in the datesMosaic list. For example, the 
pixel value of 0 corresponds to the first date (2021-01-04), the pixel value of 1 
corresponds to the second date (2021-01-16), and so on (Fig. 39.7).

If we want to export the resulting images, we need to also export the list of 
dates. To do so, we need to create a FeatureCollection since we can’t cur-
rently export lists directly in Earth Engine. Copy and paste the code below to
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Fig. 39.7 List of dates to be exported as a CSV file. Each value (index) is associated with a 
specific date of change of the raster file (smap)
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create a FeatureCollection where each feature contains the date informa-
tion as a property. We are also printing the dates in order to visualize the pixel-date 
association (expand the list on the Console to see it.) 

// Build a Feature Collection from Dates. 
var fCollectionDates = ee.FeatureCollection(datesMosaic 

.map(function(element) { 
return ee.Feature(null, { 

prop: element 
}); 

})); 
print('Dates', datesMosaic); 

Now, we can add the results to the map. Copy and paste the code below to 
define visualizations parameters, make a legend that associates date numbers with 
colors, and add the resulting images (Fig. 39.8).To load results faster, change the 
Map.centerObject function at the top of the script to Map.setCenter 
(−70.003, −12.849, 12)—we are zooming in to a specific area—and 
leave only the smap layer checked under the Layers panel. 

Fig. 39.8 SAR change detection results from applying the Q test algorithm
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// Visualization parameters. 
var jet = ['black', 'blue', 'cyan', 'yellow', 'red']; 
var vis = { 

min: 0, 
max: countDates, 
palette: jet 

}; 

// Add resulting images and legend to the map. 
Map.add(util.makeLegend(vis)); 
Map.addLayer(cmap, vis, 'cmap - recent change 
(unfiltered)'); 
Map.addLayer(smap, vis, 'smap - first change 
(unfiltered)'); 
Map.addLayer(fmap.multiply(2), vis, 'fmap*2 - frequency of 
changes'); 

Now, copy and paste the code below to export two items to Google Drive: 
fCollectionDates, the dates of SAR images processed (Fig. 39.7); and 
smap, the image of the first significant change (Fig. 39.8). 

//  Export the Feature Collection with the dates of 
change. 
var exportDates = Export.table.toDrive({ 

collection: fCollectionDates, 
folder: 'datesChangesDN', 
description: 'dates', 
fileFormat: 'CSV' 

}); 
// Export the image of the first significant changes. 
var exportImgChanges = Export.image.toAsset({ 

image: smap, 
description: 'smap', 
assetId: 'your_asset_path_here/' + 'smap', 
region: aoi, 
scale: 10, 
maxPixels: 1e13 

}); 

Code Checkpoint A18d. The book’s repository contains a script that shows what 
your code should look like at this point.



39 Monitoring Gold Mining Activity Using SAR 849

Question 5. What is the difference between the smap and cmap images? 

Question 6. How does the FeatureCollection fCollectionDate relate 
to the change maps smap, cmap, and fmap? 

39.2.4 Section 4: Filtering and Post-processing Alerts 

As explained earlier in the Practicum, the smap results need to be filtered in 
order to eliminate possible false positives. The false positives are associated with 
the forest loss due to river morphology and the presence of muddy water bodies 
(Fig. 39.2). 

In this section, we will explore different options to filter false positives and, 
therefore, post-process the results generated. 

Like we did in previous sections, copy and paste the code below into a new 
script to import the study area and the exported smap image. Remember that our 
analysis covered 30 Sentinel-1 images from distinct dates. 

////////////////////////////////////////////////////// 
/// Section Four 
////////////////////////////////////////////////////// 

// Define the area of study. 
var aoi = ee.FeatureCollection('projects/gee-
book/assets/A1-8/mdd'); 

// Center the map. 
Map.centerObject(aoi, 10); 

// Create an empty image. 
var empty = ee.Image().byte(); 
// Convert the area of study to an EE image object so we 
can visualize 
// only the boundary. 
var aoiOutline = empty.paint({ 

featureCollection: aoi, 
color: 1, 
width: 2 

}); 

// Select the satellite basemap view. 
Map.setOptions('SATELLITE');
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// Add the area of study boundary to the map. 
Map.addLayer(aoiOutline, { 

palette: 'red' 
}, 'Area of Study'); 

// Import the smap result from section 3. 
var changeDetect = ee.Image('projects/gee-book/assets/A1-
8/smap'); 

// Visualization parameters. 
var countDates = 30; 
var jet = ['black', 'blue', 'cyan', 'yellow', 'red']; 
var vis = { 

min: 0, 
max: countDates, 
palette: jet 

}; 

// Add results to the map. 
Map.addLayer(changeDetect, vis, 'Change Map Unfiltered'); 

Next, copy and paste the code below to import from the Earth Engine data cat-
alog and add to the map all the sources of information for filtering false positives: 
Shuttle Radar Topography Mission (SRTM) digital elevation data, Hansen Global 
Forest Change data, and JRC Global Surface Water data (Fig. 39.9).
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Fig. 39.9 Layers used to filter false positives alerts: (a) SRTM elevation, red color shows areas 
over 1000 m above sea level; (b) SRTM slope, red color shows areas with slope over 15°; 
(c) Hansen Global Forest Change, green color shows forested areas updated to 2020; (d) JRC  
Yearly Water Classification History, blue color shows the maximum extent of water surface 
detected from 1984 to 2020 

// Digital Elevation Model SRTM. 
// https://developers.google.com/earth-
engine/datasets/catalog/USGS_SRTMGL1_003 
var srtm = ee.Image('USGS/SRTMGL1_003').clip(aoi); 
var slope = ee.Terrain.slope(srtm); 
var srtmVis = { 

min: 0, 
max: 1000, 
palette: ['black', 'blue', 'cyan', 'yellow', 'red'] 

}; 
Map.addLayer(srtm, srtmVis, 'SRTM Elevation'); 
var slopeVis = { 

min: 0, 
max: 15, 
palette: ['black', 'blue', 'cyan', 'yellow', 'red'] 

}; 
Map.addLayer(slope, slopeVis, 'SRTM Slope');
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// Hansen Global Forest Change v1.8 (2000-2020) 
// https://developers.google.com/earth-
engine/datasets/catalog/UMD_hansen_global_forest_change_20 
20_v1_8 
var gfc = 
ee.Image('UMD/hansen/global_forest_change_2020_v1_8').clip 
( 

aoi); 
var forest2020 = gfc.select('treecover2000') 

.gt(0) 

.updateMask(gfc.select('loss') 
.neq(1)) 

.selfMask(); 
Map.addLayer(forest2020, 

{ 
min: 0, 
max: 1, 
palette: ['black', 'green'] 

}, 
'Forest cover 2020'); 

// JRC Yearly Water Classification History, v1.3 (Updated 
until Dec 2020). 
// https://developers.google.com/earth-

engine/datasets/catalog/JRC_GSW1_3_GlobalSurfaceWater 
var waterJRC = 
ee.Image('JRC/GSW1_3/GlobalSurfaceWater').select( 

'max_extent'); 
var waterVis = { 

min: 0, 
max: 1, 
palette: ['blue', 'black'] 

}; 
Map.addLayer(waterJRC.eq(0), waterVis, 'Water Bodies until 
2020'); 

You can toggle these layers on and off, zoom in and out, and inspect pixel 
values to analyze them. 

The SRTM elevation layer (‘SRTM Elevation’) and the slope (‘SRTM 
Slope’) derived from it with ee.Terrain.slope show red areas that corre-
spond to an altitude over 1000 m above sea level and a slope over 15°, compared 
to blue areas, which are closer to sea level or to flat terrain. We chose these options 
because mining activity in this region is located in lowlands. Furthermore, the SAR 
Sentinel-1 data provided by Earth Engine are not radiometric-terrain corrected. So,
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steep slopes (> 15°) generate distortions in SAR images, and therefore, potential 
false changes between two or more images taken at different times. 

The Hansen Global Forest Change data are composed of forested areas in 2000 
(the ‘treecover2000’ band) and the forest loss between 2001 and 2020. In 
this sense, the binary layer ‘Forest cover 2020’ previously generated and 
added shows in green the forested areas updated until 2020, with all the non-
forested and the forest loss between 2001 and 2020 areas masked. 

The JRC Yearly Water Classification History data show surface water extent 
and change between 1984 and 2020. The binary layer ‘Water Bodies until 
2020’ previously added shows in blue the water bodies’ maximum extent 
between 1984 and 2020. Non-water bodies are shown in black. 

Note that alluvial mining expansion pattern in the study area is associated with 
primary forest loss and the appearance of new surface water patches (Fig. 39.2). 

Now, we will filter the false positives based on thresholds. We will mask any 
pixel in smap marked as changeover areas greater than 1000 m above sea level, 
slope greater than 15° according to the SRTM data (classified as forest until 2020 
by the Hansen data), and that are not classified as water bodies by the JRC dataset. 
Copy and paste below to add the filtered results to the map. 

// Apply filters through masks. 
var alertsFiltered = changeDetect 

.updateMask(srtm.lt(1000)) 

.updateMask(slope.lt(15)) 

.updateMask(forest2020.eq(1)) 

.updateMask(waterJRC.eq(0)) 

.selfMask(); 

// Add filtered results to the map. 
Map.addLayer(alertsFiltered, 

{ 
min: 0, 
max: countDates, 
palette: jet 

}, 
'Change Map Filtered', 
1); 

We can still improve the results a bit more. Copy and paste the code below to 
define and apply a function that eliminates small pixel patches and isolated pixels. 
We do this because we know that in this area, mining activities occur in areas of 
at least 0.5 ha.
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// Function to filter small patches and isolated pixels. 
function filterMinPatchs(alerts0, minArea0, maxSize0) { 

var pixelCount = 
alerts0.gt(0).connectedPixelCount(maxSize0); 

var minPixelCount = ee.Image(minArea0).divide(ee.Image 
.pixelArea()); 
return 

alerts0.updateMask(pixelCount.gte(minPixelCount)); 
} 

// Apply the function and visualize the filtered results. 
var alertsFiltMinPatchs = filterMinPatchs(alertsFiltered, 
10000, 200); 

Map.addLayer(alertsFiltMinPatchs, vis, 
'Alerts Filtered - Minimum Patches'); 

Turn off all the other layers to visualize the filtered result. By analyzing the 
results without the filters and with the filters, we can see that we eliminated most 
of the false positives (Fig. 39.10). 

Finally, we can export the outcome. Copy and paste the code below to export 
to the Drive.

Fig. 39.10 A comparison of results, after (‘Alerts Filtered - Minimum Patches’) 
and before filtering false positives (‘Change Map Unfiltered’) 
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// Export filtered results to the Drive. 
Export.image.toDrive({ 

image: alertsFiltMinPatchs, 
description: 'alertsFiltered', 
folder: 'alertsFiltered', 
region: aoi, 
scale: 10, 

}); 

Code Checkpoint A18e. The book’s repository contains a script that shows what 
your code should look like at this point. 

39.3 Synthesis 

In this chapter, we mapped the changes generated by the alluvial mining activity 
over a forested area and between a period of time using Sentinel-1 SAR time 
series. For this, we separated the methodology into three steps. First, we were able 
to build a time series from Sentinel-1 mosaics. Second, we estimate all the changes 
based on the omnibus Q test change detection algorithm. Finally, we filter the 
detected changes based on existing forest/non-forest, water bodies, and elevation 
data, and a minimum mapping unit in order to retrieve the changes generated by 
the alluvial mining activity only. 

Now, it’s your turn to explore the use of the methodology. 

Assignment 1. In this chapter, we applied the methodology for a given SAR orbit. 
Describe how we could identify the different SAR orbits over a specific area of 
study. 

Assignment 2. Describe whether these alerts, which are generated by a change 
detection algorithm, are different for the ascending or descending orbit over our 
area of study. 

39.4 Conclusion 

In this chapter, you have learned how to analyze the changes generated by allu-
vial mining activity over forested areas based on the application of a SAR change 
detection methodology. This is possible because of the significant impact gener-
ated by this activity over the environment (that is, the deforestation and the use 
of water in the alluvial gold wash machine) that is reflected in the backscatter 
signal of SAR data. This methodology can be applied to other study cases since 
a good understanding of the principles of change detection has been achieved in 
this chapter and complemented by Chaps. 16 through 21.



856 L. Villa et al.

References 

Aguirre GA, Robles RRC, Duarez FMG et al (2021) Dinámica de la pérdida de bosques en el 
sureste de la Amazonia peruana: Un estudio de caso en Madre de Dios. Ecosistemas 30:2175. 
https://doi.org/10.7818/ECOS.2175 

Álvarez-Berríos N, L’Roe J, Naughton-Treves L (2021) Does formalizing artisanal gold mining 
mitigate environmental impacts? Deforestation evidence from the Peruvian Amazon. Environ 
Res Lett 16:64052. https://doi.org/10.1088/1748-9326/abede9 

Asner GP, Tupayachi R (2017) Accelerated losses of protected forests from gold mining in the 
Peruvian Amazon. Environ Res Lett 12:94004. https://doi.org/10.1088/1748-9326/aa7dab 

Asner GP, Llactayo W, Tupayachi R, Luna ER (2013) Elevated rates of gold mining in the Ama-
zon revealed through high-resolution monitoring. Proc Natl Acad Sci U S A 110:18454–18459. 
https://doi.org/10.1073/pnas.1318271110 

Ballère M, Bouvet A, Mermoz S et al (2021) SAR data for tropical forest disturbance alerts in 
French Guiana: benefit over optical imagery. Remote Sens Environ 252:112159. https://doi.org/ 
10.1016/j.rse.2020.112159 

Caballero Espejo J, Messinger M, Román-Dañobeytia F et al (2018) Deforestation and forest 
degradation due to gold mining in the Peruvian Amazon: a 34-year perspective. Remote Sens 
10:1903. http://doi.org/10.20944/preprints201811.0113.v1 

Canty MJ, Nielsen AA, Conradsen K, Skriver H (2020) Statistical analysis of changes in Sentinel-
1 time series on the Google Earth Engine. Remote Sens 12:46. https://doi.org/10.3390/rs1201 
0046 

Csillik O, Asner GP (2020) Near-real time aboveground carbon emissions in Peru. PLoS One 
15:e0241418. https://doi.org/10.1371/journal.pone.0241418 

Flores-Anderson AI, Herndon KE, Thapa RB, Cherrington E (2019) The SAR handbook: compre-
hensive methodologies for forest monitoring and biomass estimation 

Nicolau AP, Herndon K, Flores-Anderson A, Griffin R (2019) A spatial pattern analysis of forest 
loss in the Madre de Dios region, Peru. Environ Res Lett 14:124045. https://doi.org/10.1088/ 
1748-9326/ab57c3 

Nicolau AP, Flores-Anderson A, Griffin R et al (2021) Assessing SAR C-band data to effectively 
distinguish modified land uses in a heavily disturbed Amazon forest. Int J Appl Earth Obs 
Geoinf 94:102214. https://doi.org/10.1016/j.jag.2020.102214 

RAISG (2020) Amazonia under pressure. https://atlas2020.amazoniasocioambiental.org/en. 
Accessed 25 Feb 2022 

Yard EE, Horton J, Schier JG et al (2012) Mercury exposure among artisanal gold miners in Madre 
de Dios, Peru: a cross-sectional study. J Med Toxicol 8:441–448 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.7818/ECOS.2175
https://doi.org/10.1088/1748-9326/abede9
https://doi.org/10.1088/1748-9326/aa7dab
https://doi.org/10.1073/pnas.1318271110
https://doi.org/10.1016/j.rse.2020.112159
https://doi.org/10.1016/j.rse.2020.112159
http://doi.org/10.20944/preprints201811.0113.v1
https://doi.org/10.3390/rs12010046
https://doi.org/10.3390/rs12010046
https://doi.org/10.1371/journal.pone.0241418
https://doi.org/10.1088/1748-9326/ab57c3
https://doi.org/10.1088/1748-9326/ab57c3
https://doi.org/10.1016/j.jag.2020.102214
https://atlas2020.amazoniasocioambiental.org/en
http://creativecommons.org/licenses/by/4.0/


Part VIII 

Aquatic and Hydrological Applications 

Earth Engine’s global scope and long time series allow analysts to understand the 
water cycle in new and unique ways. These include surface water in the form of 
floods and river characteristics, long-term issues of water balance, and the detection 
of subsurface ground water.



40Groundwater Monitoring with GRACE 

A. J. Purdy and J. S. Famiglietti 

Overview 
The following tutorial details how to use observations from the Gravity Recovery 
and Climate Experiment (GRACE) to evaluate changes in groundwater storage for 
a large river basin. Here, you will learn how to apply remote sensing estimates of 
total water storage anomalies, land surface model output, and in situ observations to 
resolve groundwater storage changes in California’s Central Valley. The following 
method has been applied to study water storage changes around the world, and can 
be ported to quantify groundwater storage change for major river basins. 

Learning Outcomes

. Plotting changes in total water storage using GRACE.

. Mapping trends in water storage.

. Resolving changes in groundwater storage for a river basin.

. Import image collections and create image collections from assets.

. Create charts by reducing an ImageCollection with a feature geometry.
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Helps if you know how to

. Use expressions to perform calculations on image bands (Chap. 9).

. Write a function and map it over an ImageCollection (Chap. 12).

. Fit linear and nonlinear functions with regression in an ImageCollection 
time series (Chap. 18).

. Use ee.Join to join one ImageCollection to another to compute differ-
ences (Chap. 21).

. Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23). 

40.1 Introduction to Theory 

Since 2002, GRACE and the follow-on mission, GRACE-FO, have provided a new 
vantage to track changes in water resources (Tapley et al. 2004). GRACE holds the 
unique ability to directly track changes in total water storage anomalies (TWSa), 
according to the following equation: 

TWSa = CANa + SWa + SMa + SWEa + GWa (40.1) 

where CANa is canopy water storage anomaly, SWa is the surface water anomaly, 
SMa is the soil moisture anomaly, SWEa is the snow water equivalent anomaly, 
and GWa is the groundwater storage anomaly. 

By utilizing supplemental observations from other remote sensing platforms 
and land surface models and rearranging Eq. 40.1, scientists have been able to 
resolve changes in groundwater storage within major river basins around the planet 
(Famiglietti 2014). From Bangladesh (Purdy et al. 2019) and India (Rodell et al. 
2009) to the Middle East (Voss et al. 2013) and the American Southwest (Cas-
tle et al. 2014), the problem of declining groundwater storage has emerged with 
varying levels of severity (Richey et al. 2015). Along with many other regions 
around the world, California shares an overreliance on groundwater (Famiglietti 
et al. 2011). This tutorial demonstrates the analytical steps to resolve groundwater 
storage changes using GRACE for California’s Central Valley. 

40.2 Practicum 

40.2.1 Section 1: Exploring the Study Area 

Evaluating changes in hydrologic storage requires examining change within a 
hydrologically connected system. Watersheds and basins represent areas of land 
where precipitation drains to a common point. We will use already-generated 
basins from the Watershed Boundary Dataset (WBD) to delineate the drainage area
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for California’s Central Valley. The WBD includes hydrologic unit codes (HUCs) 
to identify connected basins within the United States. 

In the following sections of code, we will load three basins by their unique four-
digit HUCs and merge the basins together. To accomplish this task, we will use 
the ee.Filter.inList function to filter the basins variable by the ‘huc4’ 
property, extracting three to a variable basin. 

// Import Basins. 
var basins = ee.FeatureCollection('USGS/WBD/2017/HUC04'); 

// Extract the 3 HUC 04 basins for the Central Valley. 
var codes = ['1802', '1803', '1804']; 
var basin = basins.filter(ee.Filter.inList('huc4', codes)); 

// Add the basin to the map to show the extent of our 
analysis. 
Map.centerObject(basin, 6); 
Map.addLayer(basin, { 

color: 'green' 
}, 'Central Valley Basins', true, 0.5); 

40.2.1.1 Section 1.1: Map the Extent of Agriculture in the Region 
To get a sense for the extent of agriculture in California, we can visualize all 
cultivated land in the Central Valley. This will map where the greatest need for 
water occurs. 

var landcover = ee.ImageCollection('USDA/NASS/CDL') 
.filter(ee.Filter.date('2019-01-01', '2019-12-31')) 
.select('cultivated'); 

Map.addLayer(landcover.first().clip(basin), {}, 'Cropland', 
true, 

0.5); 

The extent of cultivated lands shows up as a translucent purple (Fig. 40.1).

40.2.1.2 Section 1.2: Load Reservoir Locations 
California has over 150 reservoirs distributed across the state. These reservoirs vary 
in size and capacity, and the regions of the state that they support. For the Central
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Fig. 40.1 California’s 
Central Valley Basin, 
including agricultural lands

Valley, water conveyance infrastructure allows the transport of water from north to 
south. We will use our basin boundary to select the reservoirs within our basin to 
quantify changes in surface water storage. The list of reservoirs was gathered from 
the California Department of Water Resources’ Data Exchange Center (CDEC). 
For an application in another study region, acquiring in situ surface water storage 
would be required to resolve that region’s groundwater storage changes. 

// This table was generated using the index from the CDEC 
website 
var res = ee.FeatureCollection( 

'projects/gee-book/assets/A2-1/ca_reservoirs_index'); 
// Filter reservoir locations by the Central Valley 
geometry 
var res_cv = res.filterBounds(basin); 
Map.addLayer(res_cv, { 

'color': 'blue' 
}, 'Reservoirs'); 

The blue dots that now appear on the map represent the distribution of water 
storage across the Central Valley. Water conveyance infrastructure and natural 
rivers deliver water to farms across the valley. Despite all these reservoirs, many



40 Groundwater Monitoring with GRACE 863

water users continue to rely on groundwater to meet their needs. A 2011 study 
detailed the magnitude of this reliance using gravity-sensing satellites (Famiglietti 
et al. 2011). The next sections of this chapter reveal how to resolve groundwater 
storage changes using these methods. 

Code Checkpoint A21a. The book’s repository contains a script that shows what 
your code should look like at this point. 

40.2.2 Section 2: Tracking Total Water Storage Changes 
in California with GRACE 

GRACE can directly track changes in TWSa. Changes in TWSa indicate which 
regions are gaining or losing water. 

40.2.2.1 Section 2.1: Import GRACE Data and Plot Changes in Total 
Water Storage in California 

First, we will import the image collection and select the proper band to chart. 

var GRACE = 
ee.ImageCollection('NASA/GRACE/MASS_GRIDS/MASCON_CRI'); 
// Subset GRACE for liquid water equivalent dataset 
var basinTWSa = GRACE.select('lwe_thickness'); 

The GRACE data imported here have already been processed to provide units of 
TWSa. The data contained in this dataset are units of “equivalent water thickness” 
anomalies. GRACE hydrologic data are presented as anomalies because GRACE 
does not directly observe the gravitational pull of only water. The gravity observed 
also includes Earth’s surface (e.g., mountains). To disentangle the signal of water, 
we can look at changes relative to a longer term mean gravity signal. The anoma-
lies represent the difference between a given month’s observation and a multi-year 
mean. We will now plot TWSa for basins in a large part of California (Fig. 40.2).
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Fig. 40.2 TWSa for the Sacramento-San Joaquin Basin 

// Make plot of TWSa for Basin Boundary 
var TWSaChart = ui.Chart.image.series({ 

imageCollection: basinTWSa.filter(ee.Filter.date( 
'2003-01-01', '2016-12-31')), 

region: basin, 
reducer: ee.Reducer.mean(), 

}) 
.setOptions({ 

title: 'TWSa', 
hAxis: { 

format: 'MM-yyyy' 
}, 
vAxis: { 

title: 'TWSa (cm)' 
}, 
lineWidth: 1, 

}); 
print(TWSaChart); 

In the Console, you will see a plot of TWSa. Notice the seasonality and interan-
nual variations in TWSa. Winter months reveal periods of maximum water storage 
due to snowpack, full reservoirs, and wet soil. Summer and early fall reveal less 
TWSa, as the snow has melted, reservoir water has been used, and soil is drying 
out. Additionally, summer months are periods when groundwater is extracted and 
used to supplement a limited surface water supply. Evidence of drought emerged 
through declining TWSa between 2006–2009 and 2012–2017. 

Next, we will look at the trend in TWSa for the entire period of record.
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40.2.2.2 Section 2.2: Estimate the Linear Trend in TWSa Over Time 
As presented in Chap. 18, Earth Engine can fit linear models to time series data, 
with unique linear fits for each pixel based on the values through time. Consider 
the following linear model, where et is a random error: 

pt = β0 + β1t + et(1) (40.2) 

This is the model behind the trendline added to the chart we just created. This 
model is useful for detrending data and reducing non-stationarity in the time series. 
The goal of the regression is to discover the values of the β’s in each pixel. 

To fit this trend model to the GRACE-based TWSa series using ordinary least 
squares, we can use the linearRegression reducer. 

// Compute Trend for each pixel to map regions of most 
change 
var addVariables = function(image) { 

// Compute time in fractional years since the epoch. 
var date = ee.Date(image.get('system:time_start')); 
var years = date.difference(ee.Date('2003-01-01'), 

'year'); 
// Return the image with the added bands. 
return image 

// Add a time band. 
.addBands(ee.Image(years).rename('t').float()) 
// Add a constant band. 
.addBands(ee.Image.constant(1)); 

}; 
var cvTWSa = 
basinTWSa.filterBounds(basin).map(addVariables); 
print(cvTWSa); 
// List of the independent variable names 
var independents = ee.List(['constant', 't']); 

// Name of the dependent variable. 
var dependent = ee.String('lwe_thickness'); 
// Compute a linear trend.  This will have two bands: 
'residuals' and 
// a 2x1 band called coefficients (columns are for 
dependent variables). 
var trend = cvTWSa.select(independents.add(dependent)) 

.reduce(ee.Reducer.linearRegression(independents.length(), 
1));
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The image of coefficients, computed below, is a two-band image in which each 
pixel contains values for β0 and β1. The β1 value will represent the temporal 
slope for the GRACE mascon. 

// Flatten the coefficients into a 2-band image 
var coefficients = trend.select('coefficients') 

.arrayProject([0]) 

.arrayFlatten([independents]); 

Next, we can visualize the GRACE trends to capture the spatial scales on which 
GRACE can resolve TWSa. GRACE is adept at capturing these changes only for 
larger basins. 

// Create a layer of the TWSa slope to add to the map 
var slope = coefficients.select('t'); 
// Set visualization parameters to represent positive 
(blue) & negative (red) trends 
var slopeParams = { 

min: -3.5, 
max: 3.5, 
palette: ['red', 'white', 'blue'] 

}; 
Map.addLayer(slope.clip(basin), slopeParams, 'TWSa Trend', 
true, 

0.75); 

The slope layer reveals that the Tulare Basin (the southernmost basin in the 
Central Valley) experienced the largest negative changes in TWSa over the time 
period (Fig. 40.3). Darker reds indicate greater negative change, and blue repre-
sents positive change. This is a result of the region not receiving winter rain or 
snow and having the most junior surface water rights in the Central Valley.

The next steps in this chapter will review how to unpack the TWSa signal to 
resolve changes in groundwater storage anomalies for the basin. 

Code Checkpoint A21b. The book’s repository contains a script that shows what 
your code should look like at this point. 

40.2.3 Section 3: Tracking Changes in Soil Water Storage 
and Snow Water Equivalent in California 

The Global Land Data Assimilation System (GLDAS) utilizes multiple land sur-
face models to globally resolve fluxes in storage of water (like soil moisture and
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Fig. 40.3 Slope in TWSa for California. Darker reds indicate greater declines in total water 
storage. Blue represents increases in water storage. White represents no change in water storage

snow) and energy at a three-hour frequency (Rodell et al. 2004). An example of 
how to convert three-hourly GLDAS snow water equivalent to annual SWEa for 
2003 can be found in script A21s1 in the book’s repository. Running the supple-
mental script is an optional part of this lab: it is added to provide clarity on how 
the image assets were created for each GLDAS variable in this chapter. 

For the next analysis, you will be starting with a script that imports the GLDAS 
SMa and SWEa processed by the methods above. GLDAS estimates of soil mois-
ture and snow water equivalent are resolved at a three-hour temporal frequency. 
Therefore, we have taken the time to reduce the GLDAS data to annual means 
from the three-hour estimates. 

Additionally, we aggregated monthly GRACE observations to annual average 
estimates to improve the efficiency of running this analysis. More experienced 
users can adapt these methods to resolve monthly changes. However, it should 
be noted that to replicate the same methods at a monthly cadence would require 
the interpolation of missing months of GRACE observations. Please use the code 
starting point below, as the script imports the necessary assets to complete the final 
analysis.
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40.2.3.1 Section 3.1: Load GLDAS Soil Moisture Images 
from an Asset to an Image Collection 

Code Checkpoint A21c. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and paste code below into it. 

When you run the script, you will see a number of assets being imported and 
an annual time series of GRACE. Additionally, the script is set to convert the list 
of annual mean soil moisture images to an ImageCollection. 

var gldas_sm_list = ee.List([sm2003, sm2004, sm2005, 
sm2006, sm2007, 

sm2008, sm2009, sm2010, sm2011, sm2012, sm2013, sm2014, 
sm2015, sm2016 

]); 
var sm_ic = ee.ImageCollection.fromImages(gldas_sm_list); 

Before we compute groundwater storage anomalies from GRACE and GLDAS 
data following Eq. 40.1, we should inspect the units to ensure that our math is 
sound. In the search bar of Earth Engine, search for “GLDAS” and click on 
GLDAS-2.1: Global Land Data Assimilation System, then navigate to Bands to 
see what the units are for ‘RootMoist_inst’ and ‘SWE_inst’. 

The units for GLDAS are currently showing as kg/m2. We need to con-
vert the soil moisture and snow values to equivalent water depth units of 
centimeters. Define the following conversion variable and map this over the 
ImageCollection. As described in Chaps. 12 and 13, mapping over an 
ImageCollection is similar to running a loop: You apply the same function 
to each image and return the value back to the ImageCollection. 

var kgm2_to_cm = 0.10; 
var sm_ic_ts = sm_ic.map(function(img) { 

var date = ee.Date.fromYMD(img.get('year'), 1, 1); 
return 

img.select('RootMoist_inst').multiply(kgm2_to_cm) 
.rename('SMa').set('system:time_start', date); 

}); 

In addition to converting the units, the code renames the variable and sets 
properties such as ‘system:time_start’, which is necessary in Earth 
Engine to plot data and compare it with other image collections. Note that 
you might print out the variables sm_ic and sm_ic_ts to explore the differ-
ences between them. You should notice the new band name and properties (e.g., 
‘system:time_start’). 

Next, plot the data to evaluate soil moisture anomalies during the study period.
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// Make plot of SMa for Basin Boundary 
var SMaChart = ui.Chart.image.series({ 

imageCollection: sm_ic_ts.filter(ee.Filter.date( 
'2003-01-01', '2016-12-31')), 

region: basin, 
reducer: ee.Reducer.mean(), 
scale: 25000 

}) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Soil Moisture anomalies', 
trendlines: { 

0: { 
color: 'CC0000' 

} 
}, 
hAxis: { 

format: 'MM-yyyy' 
}, 
vAxis: { 

title: 'SMa (cm)' 
}, 
lineWidth: 2, 
pointSize: 2 

}); 
print(SMaChart); 

You may notice that SMa is of a similar magnitude to TWSa but is slightly out 
of phase with TWSa. 

40.2.3.2 Section 3.2: Load GLDAS Snow Water Equivalent Images 
from an Asset to an Image Collection 

Use similar code to load the snow water equivalent data to Earth Engine. 

var gldas_swe_list = ee.List([swe2003, swe2004, swe2005, 
swe2006, 

swe2007, swe2008, swe2009, swe2010, swe2011, swe2012, 
swe2013, swe2014, swe2015, swe2016 

]); 
var swe_ic = ee.ImageCollection.fromImages(gldas_swe_list); 

Next, convert the snow values to equivalent water depth units of centimeters.
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var swe_ic_ts = swe_ic.map(function(img) { 
var date = ee.Date.fromYMD(img.get('year'), 1, 1); 
return 

img.select('SWE_inst').multiply(kgm2_to_cm).rename( 
'SWEa').set('system:time_start', date); 

}); 

Next, we will visualize the new ImageCollection. If you did not do the 
previous step, your code here will not run. 

// Make plot of SWEa for Basin Boundary 
var SWEaChart = ui.Chart.image.series({ 

imageCollection: swe_ic_ts.filter(ee.Filter.date( 
'2003-01-01', '2016-12-31')), 

region: basin, 
reducer: ee.Reducer.mean(), 
scale: 25000 

}) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Snow Water Equivalent anomalies', 
trendlines: { 

0: { 
color: 'CC0000' 

} 
}, 
hAxis: { 

format: 'MM-yyyy' 
}, 
vAxis: { 

title: 'SWEa (cm)' 
}, 
lineWidth: 2, 
pointSize: 2 

}); 
print(SWEaChart); 

You successfully plotted soil moisture and snow water equivalent (Fig. 40.4). 
You may notice that SWEa is much smaller in magnitude than the other two 
variables.

Code Checkpoint A21d. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 40.4 Time-series charts of SMa and SWEa in units of equivalent water height (centimeters)

40.2.4 Section 4: Importing a Table of Surface Water Storage 

Reservoir storage data from the California Data Exchange Center (CDEC) facili-
tated computing Surface Water storage anomalies (SWa) for the Sacramento-San 
Joaquin Basin. Surface water storage, unlike the other components of water stor-
age, is not represented in land surface models. Instead, SWa is sourced from in situ 
observations. Here, the reservoir storage observations were summed for the Cen-
tral Valley and then total converted to annual anomalies to directly compare with 
SWEa and SMa. Prior to reading the table of reservoir storage, we compute the 
area from the combined HUC8 basins. 

// Extract geometry to convert time series of anomalies in 
km3 to cm 
var area_km2 = basin.geometry().area().divide(1000 * 1000); 
var km_2_cm = 100000;
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Next, the imported table res_table is converted to an ImageCollection 
of constant values to facilitate combining the data with GRACE and GLDAS-
resolved water storage anomalies. 

// Convert csv to image collection 
var res_list = res_table.toList(res_table.size()); 
var yrs = res_list.map(function(ft) { 

return ee.Date.fromYMD(ee.Feature(ft).get('YEAR'), 1, 
1); 
}); 
var SWanoms = res_list.map(function(ft) { 

return 
ee.Image.constant(ee.Feature(ft).get('Anom_km3')); 
}); 
var sw_ic_ts = ee.ImageCollection.fromImages( 

res_list.map( 
function(ft) { 

var date = 
ee.Date.fromYMD(ee.Feature(ft).get('YEAR'), 

1, 1); 
return ee.Image.constant(ee.Feature(ft).get( 

'Anom_km3')).divide(area_km2).multiply( 
km_2_cm).rename('SWa').set( 
'system:time_start', date); 

} 
) 

); 

Plot SWa in equivalent units of centimeters per year (Fig. 40.5). 

Fig. 40.5 Time-series chart of SWa in units of equivalent water height (centimeters)
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// Create a time series of Surface Water Anomalies 
var SWaChart = ui.Chart.image.series({ 

imageCollection: sw_ic_ts.filter(ee.Filter.date( 
'2003-01-01', '2016-12-31')), 

region: basin, 
reducer: ee.Reducer.mean(), 
scale: 25000 

}) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Surface Water anomalies', 
trendlines: { 

0: { 
color: 'CC0000' 

} 
}, 
hAxis: { 

format: 'MM-yyyy' 
}, 
vAxis: { 

title: 'SWa (cm)' 
}, 
lineWidth: 2, 
pointSize: 2 

}); 
print(SWaChart); 

The chart shows that surface water anomalies are of a similar magnitude to 
soil moisture anomalies. As expected, SWa decreases during each drought period 
in California (2006–2008 and 2012–2016). These reservoir storage declines show 
use is greater than inputs during each period. 

Now, we will combine the previous datasets to resolve changes in groundwater 
during the period of record. Unfortunately, it’s still hard to quantify change without 
having all the variables on one plot. It might be best to compute the differences 
via Eq. 40.1 from the introductory paragraph at the top of the document. 

Code Checkpoint A21e. The book’s repository contains a script that shows what 
your code should look like at this point. 

40.2.5 Section 5: Combining Image Collections 

Here, you will see how to combine multiple image collections and compute dif-
ferences via an expression. We will start by joining the GLDAS image collections 
together. This is accomplished with the ee.Join.inner function.
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// Combine GLDAS & GRACE Data to compute change in human 
accessible water 
var filter = ee.Filter.equals({ 

leftField: 'system:time_start', 
rightField: 'system:time_start' 

}); 
// Create the join. 
var joindata = ee.Join.inner(); 
// Join GLDAS data 
var firstJoin = 
ee.ImageCollection(joindata.apply(swe_ic_ts, sm_ic_ts, 

filter)); 
var join_1 = firstJoin.map(function(feature) { 

return ee.Image.cat(feature.get('primary'), 
feature.get( 

'secondary')); 
}); 
print('Joined', join_1); 

Next, we join the reservoir data. 

// Repeat to append Reservoir Data now 
var secondJoin = ee.ImageCollection(joindata.apply(join_1, 
sw_ic_ts, 

filter)); 
var res_GLDAS = secondJoin.map(function(feature) { 

return ee.Image.cat(feature.get('primary'), 
feature.get( 

'secondary')); 
}); 

Lastly, we need to repeat this step by joining GRACE to the output from the 
last join.
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// Repeat to append GRACE now 
var thirdJoin = 
ee.ImageCollection(joindata.apply(res_GLDAS, GRACE_yr, 

filter)); 
var GRACE_res_GLDAS = thirdJoin.map(function(feature) { 

return ee.Image.cat(feature.get('primary'), 
feature.get( 

'secondary')); 
}); 

Take a moment to print out the ImageCollection GRACE_res_GLDAS. 
To resolve groundwater storage changes in the basin, one can rearrange Eq. 40.1 

to solve for GWa. Here we assume canopy storage anomalies are very small 
relative to other storage components and ignore them in the equation below. 

GWa = TWSa − SWa − SMa − SWEa (40.3) 

To execute this step, we map an expression across an ImageCollection to 
produce a new variable named GWa. 

// Compute groundwater storage anomalies 
var GWa = 
ee.ImageCollection(GRACE_res_GLDAS.map(function(img) { 

var date = ee.Date.fromYMD(img.get('year'), 1, 1); 
return img.expression( 

'TWSa - SWa - SMa - SWEa', { 
'TWSa': img.select('TWSa'), 
'SMa': img.select('SMa'), 
'SWa': img.select('SWa'), 
'SWEa': img.select('SWEa') 

}).rename('GWa').copyProperties(img, [ 
'system:time_start' 

]); 
})); 
print('GWa', GWa); 

You can see how the variable img is used to extract bands from the combined 
ImageCollection and create a new one with just one band. 

We’ll plot this to see how groundwater storage is changing (Fig. 40.6).
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Fig. 40.6 Time-series chart of GWa in units of equivalent water height (centimeters) 

// Chart Results 
var GWaChart = ui.Chart.image.series({ 

imageCollection: GWa.filter(ee.Filter.date('2003-
01-01', 

'2016-12-31')), 
region: basin, 
reducer: ee.Reducer.mean(), 
scale: 25000 

}) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Changes in Groundwater Storage', 
trendlines: { 

0: { 
color: 'CC0000' 

} 
}, 
hAxis: { 

format: 'MM-yyyy' 
}, 
vAxis: { 

title: 'GWa (cm)' 
}, 
lineWidth: 2, 
pointSize: 2 

}); 
print(GWaChart); 

You can see how reliant California is on groundwater. The chart shows large 
declines during recent drought periods. Using the chart, you can estimate how 
much groundwater was used during the 2012–2016 drought period. In the Console,
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hover your mouse over the chart and jot down the value for GWa in 2012 and in 
2016. You will use this information, in addition to the area and unit conversion, to 
estimate groundwater usage during this period in cubic kilometers. 

// Now look at the values from the start of 2012 to the end 
of 2016 drought. 
// 2012 -3.874 cm --> 2016 -16.95 cm 
// This is a ~13 cm / 100000 (cm/km) * Area 155407 km2 = 
var loss_km3 = ee.Number(-3.874).subtract(-
16.95).divide(km_2_cm) 

.multiply(area_km2); 
print('During the 2012-2016 drought, CA lost ', loss_km3, 

'km3 in groundwater'); 

Code Checkpoint A21f. The book’s repository contains a script that shows what 
your code should look like at this point. 

40.3 Synthesis 

Assignment 1. This chapter provides a roadmap to monitor changes in groundwa-
ter storage at a basin scale using observations of TWSa from the GRACE satellites 
and hydrologic data from GLDAS. Now you can apply these methods to another 
river basin anywhere in the world. 

40.4 Conclusion 

In this chapter, we reviewed how GRACE observations can be used to estimate 
changes in water storage for a region of interest like California’s Central Valley. 
Specifically, this chapter demonstrated how to combine equivalent water thick-
ness observations from GRACE with model simulations of soil moisture, snow 
water equivalent, and in situ reservoir storage observations to quantify ground-
water storage declines. Along the way, some advanced Earth Engine skills were 
explored, including creating an ImageCollection from a table and joining 
multiple image collections. Earth Engine users now have the skills and the knowl-
edge of GRACE observations to apply this methodology to other regions around 
the world.
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Dimitris Poursanidis , Aurélie C. Shapiro , 
and Spyridon Christofilakos 

Overview 
Shallow-water coastal benthic habitats, which can comprise seagrasses, sandy soft 
bottoms, and coral reefs are essential ecosystems, supporting fisheries, providing 
coastal protection, and sequestering ‘blue’ carbon. Multispectral satellite imagery, 
particularly with blue and green spectral bands, can penetrate clear, shallow water, 
allowing us to identify what lies on the seafloor. In terrestrial habitats, atmospheric 
and topographic corrections are important, whereas in shallow waters, it is essential to 
correct the effects of the water column, as different depths can change the reflectance 
observed by the satellite sensor. Once you know the water depth, you can accurately 
assess benthic habitats such as seagrass, sand, and coral. In this chapter, we will 
describe how to estimate water depth from high-resolution Planet data and map 
benthic habitats.
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Learning Outcomes

• Separating land from water with a supervised classification.
• Removing surface sunglint and wave glint.
• Correcting for water depth to derive bottom surface reflectance through a 

regression approach.
• Identifying and classifying benthic habitats using machine learning.
• Developing regression models to estimate water depth using training data.
• Evaluating training data and model accuracy. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks, 

classify images (Part 2).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Perform a supervised Random Forest image classification (Chap. 6).
• Obtain accuracy metrics from classifications (Chap. 7).
• Use reducers to implement linear regression between image bands (Chap. 8).
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).
• Convert between raster and vector data (Chap. 23). 

41.1 Introduction to Theory 

Coastal benthic habitats include several ecosystems across the globe. One com-
mon element is the seagrass meadow, a significant component of coastal marine 
ecosystems (UNEP/MAP 2009). Seagrass meadows are among the most produc-
tive habitats in the coastal zone, performing essential ecosystem functions and 
providing essential ecosystem services (Duarte et al. 2013), such as water oxy-
genation and nutrient provision, seafloor and beach stabilization (as sediment is 
controlled and trapped within the rhizomes of the meadows), carbon burial, and 
nursery areas and refuge for commercial and endemic species (Boudouresque et al. 
2012; Vassallo et al. 2013; Campagne et al. 2014). 

However, seagrass meadows are experiencing a global decline due to intensive 
human activities and climate change (Boudouresque et al. 2009). Threats from 
climate change include sea surface temperature increases and sea level rise, as 
well as more frequent and intensive storms (Pergent et al. 2014). These threats 
represent a pressing challenge for coastal management and are predicted to have 
deleterious effects on seagrasses. 

Several programs have focused on coastal seabed mapping, and a wide range 
of methods have been utilized for mapping seagrasses (Poursanidis et al. 2021; 
Borfecchia et al. 2013; Eugenio et al. 2015). Satellite remote sensing has been
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employed for the mapping of seagrass meadows and coral reefs in several areas 
(Goodman et al. 2011; Hedley et al. 2016; Knudby and Nordlund 2011; Koedsin 
et al. 2016; Lyons et al. 2012). 

In this chapter, we will show you how to map coastal habitats using high-
resolution Earth observation data from Planet with updated field data collected in 
the same period as the imagery acquisition. You will learn how to calculate coastal 
bathymetry using high-quality field data and machine learning regression methods. 
In the end, you will be able to adapt the code and use your own data to work in 
your own coastal area of interest, which can be tropical or temperate as long as 
there are clear waters up to 30 m deep. 

41.2 Practicum 

41.2.1 Section 1: Inputting Data 

The first step is to define the data that you will work on. By uploading raster 
and vector data via the Earth Engine asset inventory, you will be able to analyze 
and process them through the Earth Engine API. The majority of satellite data 
are stored with values scaled by 10,000 and truncated in order to occupy less 
memory. In this setting, it is crucial to scale them back to their physical values 
before processing them. 

// Section 1 
// Import and display satellite image. 
var planet = ee.Image('projects/gee-book/assets/A2-
2/20200505_N2000') 

.divide(10000); 

Map.centerObject(planet, 12); 
var visParams = { 

bands: ['b3', 'b2', 'b1'], 
min: 0.17, 
max: 0.68, 
gamma: 0.8 

}; 
Map.addLayer({ 

eeObject: planet, 
visParams: visParams, 
name: 'planet initial', 
shown: true 

});
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Code Checkpoint A22a. The book’s repository contains a script that shows what 
your code should look like at this point. 

41.2.2 Section 2: Preprocessing Functions 

Code Checkpoint A22b. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and paste code below into it. 
When you run the script, you will see several assets being imported for water, 
land, sunglint, and sandy patches to correct for the water column. 

With the Planet imagery imported into Earth Engine, we now need to pre-
pare for the classification and bathymetry procedures that will follow. The aim 
of the preprocessing is to correct or minimize spectral alterations due to physical 
conditions like sunglint, waves, and the water column. The landmask function 
below will remove the land area from our image in order to focus on the marine 
area of interest. This prevents the land reflectance values, which are relatively 
high, from biasing the main process of classification over dark water with low 
reflectance. To implement this step, we will perform a supervised classification 
to obtain the land/water mask. To prepare for the classification, we drew water 
and land geometry imports and set them as a FeatureCollection with prop-
erty ‘class’ and values 1 and 0, respectively (Fig. 41.1). We will employ the 
Normalized Difference Water Index (NDWI) (Gao 1996) using a Random For-
est classifier (Breiman 2001). Due to the distinct spectral reflectances of terrain 
and water surfaces, there is no need to ensure a balanced dataset between the two 
classes. However, the size of the training dataset is still important and therefore, the 
more the better. For this task, we create ‘line’ geometries because we can get more 
training points than ‘point’ geometries with fewer clicks. For more information 
regarding generating training lines, points or polygons, please see Chap. 6.
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Fig. 41.1 Labeling of land and water regions using lines in preparation for the Random Forests 
classification 

// Section 2 
// Mask based to NDWI and RF. 
function landmask(img) { 

var ndwi = img.normalizedDifference(['b2', 'b4']); 
var training = ndwi.sampleRegions(land.merge(water), 

['class'], 
3); 

var trained = ee.Classifier.smileRandomForest(10) 
.train(training, 'class'); 

var classified = ndwi.classify(trained); 
var mask = classified.eq(1); 

return img.updateMask(mask); 
} 

var maskedImg = landmask(planet); 

Map.addLayer(maskedImg, visParams, 'maskedImg', false); 

Sunglint is a phenomenon that occurs when the sun angle and the sensor are 
positioned such that there is a mirror-like reflection at the water surface. In areas 
of glint, we cannot detect reflectance from the ocean floor. This will affect image
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Fig. 41.2 Identification of areas with sunglint. Raising the gamma parameter during the visual-
ization makes the phenomenon appear more intense, making it easier to draw the glint polygons

processing and needs to be corrected. The user adds polygons identifying areas of 
glint (Fig. 41.2), and these areas aid the linear model to remove sunglint areas in 
the whole image extend (Hedley et al. 2005). 

// Sun-glint correction. 
function sunglintRemoval(img) { 

var linearFit1 = img.select(['b4', 
'b1']).reduceRegion({ 

reducer: ee.Reducer.linearFit(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12, 
bestEffort: true, 

}); 
var linearFit2 = img.select(['b4', 

'b2']).reduceRegion({ 
reducer: ee.Reducer.linearFit(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12,
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bestEffort: true, 
}); 
var linearFit3 = img.select(['b4', 

'b3']).reduceRegion({ 
reducer: ee.Reducer.linearFit(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12, 
bestEffort: true, 

}); 

var slopeImage = ee.Dictionary({ 
'b1': linearFit1.get('scale'), 
'b2': linearFit2.get('scale'), 
'b3': linearFit3.get('scale') 

}).toImage(); 

var minNIR = img.select('b4').reduceRegion({ 
reducer: ee.Reducer.min(), 
geometry: sunglint, 
scale: 3, 
maxPixels: 1e12, 
bestEffort: true, 

}).toImage(['b4']); 

return img.select(['b1', 'b2', 'b3']) 

.subtract(slopeImage.multiply((img.select('b4')).subtract( 
minNIR))) 

.addBands(img.select('b4')); 
} 
var sgImg = sunglintRemoval(maskedImg); 
Map.addLayer(sgImg, visParams, 'sgImg', false);

Question 1. If you design more polygons for sunglint correction, can you see 
any improvement in the results visually and by examining values in pixels? Keep 
in mind that in already drawn rectangles (sunglint polygons), you cannot draw 
free-shaped polygons or lines. Try instead adding some more points or rectangles.
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You can design more polygons, or select areas with severe or moderate sunglint 
to see how the site selection influences the final results. 

The Depth Invariant Index (DIV) is a tool that creates a proxy image that helps 
minimize the bias of the spectral values due to the water column during classifi-
cation and bathymetry procedures. Spectral signatures tend to be affected by the 
depth of the water column due to suspended material and the absorption of light. 
A typical result is that shallow seagrasses and deeper sandy seafloors will have 
similar spectral signatures. The correction of that error is based on the correlation 
between depth and logged bands (Lyzenga 1981). 

In our example, the correction of water column alterations is based on the ratio 
of the green and blue bands, because of their higher penetrating properties com-
pared to the red and near-infrared (NIR) bands. As in the previous functions, 
a requirement for this procedure is to identify sandy patches in different depth 
ranges. If needed, you can use the satellite image layer to do so. 

Since we will use log values in the current step, it is crucial to transform all 
the negative values to positive before estimating DIV and since the majority of the 
values are in optically deep waters, the value 0.0001 will be assigned to values 
less than 0 in an attempt to avoid altering the pixels with positive values at the 
coastal zone. Moreover, a low-pass filter will be applied to normalize the observed 
noise that occurred during the previous steps (see Chap. 10). 

// DIV procedure. 
function kernel(img) { 

var boxcar = ee.Kernel.square({ 
radius: 2, 
units: 'pixels', 
normalize: true 

}); 
return img.convolve(boxcar); 

} 

function makePositive(img) { 
return img.where(img.lte(0), 0.0001); 

}
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maxPixels: 1e12, 
bestEffort: true, 

}); 

var covarMatrix = 
ee.Array(covariance.get('array')); 

var var1 = covarMatrix.get([0, 0]); 
var var2 = covarMatrix.get([1, 1]); 
var covar = covarMatrix.get([0, 1]);var covar = covarMatrix.get([0, 1]); 

var a = 
var1.subtract(var2).divide(covar.multiply(2)); 

var attenCoeffRatio = 
a.add(((a.pow(2)).add(1)).sqrt()); 

var depthInvariantIndex = img.expression( 
'image1 - (image2 * coeff)', { 

'image1': imageLog.select([x]), 
'image2': imageLog.select([y]), 
'coeff': attenCoeffRatio 

}); 

function div(img) { 
var band1 = ee.List(['b1', 'b2', 'b3', 'b1', 'b2']); 
var band2 = ee.List(['b3', 'b3', 'b2', 'b2', 'b1']); 
var nband = ee.List(['b1b3', 'b2b3', 'b3b2', 'b1b2', 

'b2b1']); 

for (var i = 0; i < 5; i += 1) { 
var x = band1.get(i); 
var y = band2.get(i); 
var z = nband.get(i); 

var imageLog = img.select([x, y]).log(); 

var covariance = imageLog.toArray().reduceRegion({ 
reducer: ee.Reducer.covariance(), 
geometry: DIVsand, 
scale: 3,
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Question 2. How can the selection of sandy patches influence the final result? 
Sandy patches can also include signals from sparse seagrass or other types 

of benthic cover. Select different areas of variable depths and therefore different 
spectral reflectance to explore the changes in the final DIV result. 

Code Checkpoint A22c. The book’s repository contains a script that shows what 
your code should look like at this point. 

41.2.3 Section 3: Supervised Classification 

To create accurate classifications, it is beneficial for the training data set to be cre-
ated from in situ data. This is especially important in marine remote sensing, due to 
dynamic, varying ecosystems. In our example, all the reference data were acquired 
during scientific dives. The reference data consist of three classes: SoftBottom 
for sandy patches, rockyBottom for rocky patches, and pO for posidonia-seagrass 
patches. Here, we provide a dataset that will be split using a 70–30% partitioning 
strategy into training and validation data (see Chap. 6) and is already pre-loaded 
in the assets of this book.
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// Section 3, classification 
// Import of reference data and split. 
var softBottom = ee.FeatureCollection( 

'projects/gee-book/assets/A2-2/SoftBottom'); 
var rockyBottom = ee.FeatureCollection( 

'projects/gee-book/assets/A2-2/RockyBottom'); 
var pO = ee.FeatureCollection('projects/gee-book/assets/A2-
2/PO'); 

var sand = ee.FeatureCollection.randomPoints(softBottom, 
150).map( 

function(s) { 
return s.set('class', 0); 

}).randomColumn(); 
var sandT = sand.filter(ee.Filter.lte('random', 
0.7)).aside(print, 

'sand training'); 
var sandV = sand.filter(ee.Filter.gt('random', 
0.7)).aside(print, 

'sand validation'); 
Map.addLayer(sandT, { 

color: 'yellow' 
}, 'Sand Training', false); 
Map.addLayer(sandV, { 

color: 'yellow' 
}, 'Sand Validation', false); 

var hard = ee.FeatureCollection.randomPoints(rockyBottom, 
79).map( 

function(s) { 
return s.set('class', 1); 

}).randomColumn(); 
var hardT = hard.filter(ee.Filter.lte('random', 
0.7)).aside(print, 

'hard training'); 
var hardV = hard.filter(ee.Filter.gt('random', 
0.7)).aside(print, 

'hard validation');
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For this procedure, we chose the ee.Classifier.libsvm classifier 
because of its established performance in aquatic environments (Poursanidis et al. 
2018; da Silveira et al. 2021). The function below does the classification and also 
estimates overall user’s and producer’s accuracy (see Chap. 7): 

// Classification procedure. 
function classify(img) { 

var mergedT = ee.FeatureCollection([sandT, hardT, 
posiT]) 

.flatten(); 
var training = img.sampleRegions(mergedT, ['class'], 

3); 
var trained = ee.Classifier.libsvm({ 

kernelType: 'RBF', 
gamma: 1, 
cost: 500 

}).train(training, 'class'); 
var classified = img.classify(trained); 

var mergedV = ee.FeatureCollection([sandV, hardV, 
posiV]) 

.flatten(); 
var accuracyCol = classified.unmask().reduceRegions({ 

collection: mergedV, 
reducer: ee.Reducer.first(), 
scale: 10 

});
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var classificationErrorMatrix = 
accuracyCol.errorMatrix({ 

actual: 'class', 
predicted: 'first', 
order: [0, 1, 2] 

}); 
var classNames = ['soft_bot', 'hard_bot', 'seagrass']; 
var accuracyOA = classificationErrorMatrix.accuracy(); 
var accuraccyCons = ee.Dictionary.fromLists({ 

keys: classNames, 
values: 

classificationErrorMatrix.consumersAccuracy() 
.toList() 
.flatten() 

}); 
var accuracyProd = ee.Dictionary.fromLists({ 

keys: classNames, 
values: 

classificationErrorMatrix.producersAccuracy() 
.toList() 
.flatten() 

}); 

var classificationErrormatrixArray = 
classificationErrorMatrix 

.array(); 

var arrayToDatatable = function(array) { 
var classesNames = ee.List(classNames); 

function toTableColumns(s) { 
return { 

id: s, 
label: s, 
type: 'number' 

}; 
} 
var columns = classesNames.map(toTableColumns); 

function featureToTableRow(f) { 
return { 

c: ee.List(f).map(function(c) {
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return { 
v: c 

}; 
}) 

}; 
} 
var rows = array.toList().map(featureToTableRow); 
return ee.Dictionary({ 

cols: columns, 
rows: rows 

}); 
}; 

var dataTable = 
arrayToDatatable(classificationErrormatrixArray) 

.evaluate(function(dataTable) { 
print('------------- Error matrix -------------

', 
ui.Chart(dataTable, 'Table') 
.setOptions({ 

pageSize: 15 
}), 
'rows: reference, cols: mapped'); 

}); 
print('Overall Accuracy', accuracyOA); 
print('Users accuracy', accuraccyCons); 
print('Producers accuracy', accuracyProd); 
return classified; 

} 

var svmClassification = classify(divImg); 
var svmVis = { 

min: 0, 
max: 2, 
palette: ['ffffbf', 'fc8d59', '91cf60'] 

}; 
Map.addLayer(svmClassification, svmVis, 'classification'); 

Code Checkpoint A22d. The book’s repository contains a script that shows what 
your code should look like at this point.



41 Benthic Habitats 893

41.2.4 Section 4: Bathymetry by Random Forests Regression 

For the bathymetry procedure, we will exploit the setOutputMode 
(‘REGRESSION’) option of ee.Classifier.smile RandomForest. 
For this example, reference data came from a sonar that was mounted on a boat. 
In contrast to the classification accuracy assessment, the accuracy assessment of 
bathymetry is based on R2 and the root-mean-square error (RMSE). 

With regard to visualization of the resulting bathymetry, we have to consider 
the selection of colors and their physical meanings. In the classification, which is 
a categorical image, we use a diverging palette, while in bathymetry, which shows 
a continuous value, we should use a sequential palette. Tip: ‘cold’ colors better 
convey depth. For the satellite-derived bathymetry, we use pre-loaded assets with 
the in situ depth measurement. The quality of these measurements is crucial to the 
success of the classifier. 

// Section 4, Bathymetry 
// Import and split training and validation data for the 
bathymetry. 
var depth = ee.FeatureCollection( 

'projects/gee-book/assets/A2-
2/DepthDataTill09072020_v2'); 
depth = depth.randomColumn(); 
var depthT = depth.filter(ee.Filter.lte('random', 0.7)); 
var depthV = depth.filter(ee.Filter.gt('random', 0.7)); 
Map.addLayer(depthT, { 

color: 'black' 
}, 'Depth Training', false); 
Map.addLayer(depthV, { 

color: 'gray' 
}, 'Depth Validation', false); 

So that every pixel contains at most one measurement, the vector depth assets 
are rasterized prior to using them for the regression.



894 D. Poursanidis et al.

function vector2image(vector) { 
var rasterisedVectorData = vector 

.filter(ee.Filter.neq('Depth', 
null)) // Filter out NA depth values. 

.reduceToImage({ 
properties: ['Depth'], 
reducer: ee.Reducer.mean() 

}); 
return (rasterisedVectorData); 

} 

var depthTImage = vector2image(depthT) 
.aside(Map.addLayer, { 

color: 'white' 
}, 'Depth Training2', false); 

var depthVImage = vector2image(depthV) 
.aside(Map.addLayer, { 

color: 'white' 
}, 'Depth Validation2', false); 

Finally, we need to enter down and execute the function to calculate the satellite 
derived bathymetry function, based on the Random Forest classifier. 

function rfbathymetry(img) { 
var training = img.sampleRegions({ 

collection: depthT, 
scale: 3 

}); 

var regclass = ee.Classifier.smileRandomForest(15) 
.train(training, 'Depth'); 

var bathyClass = img 

.classify(regclass.setOutputMode('REGRESSION')).rename( 
'Depth'); 

var sdbEstimate = bathyClass.clip(depthV); 

// Prepare data by putting SDB estimated data and in 
situ data 

// in one image to compare them afterwards. 
var imageI = ee.Image.cat([sdbEstimate, depthVImage]); 
// Calculate covariance.
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// Print together, so that they appear in the same 
output. 

print('R²', rSqr, 'RMSE', rmse); 
return bathyClass; 

} 

var rfBathymetry = rfbathymetry(divImg); 
var bathyVis = { 

min: -50, 
max: 0, 
palette: ['084594', '2171b5', '4292c6', '6baed6', 

'9ecae1', 'c6dbef', 'deebf7', 'f7fbff' 
] 

}; 
Map.addLayer(rfBathymetry, bathyVis, 'bathymetry'); 

var covariance = imageI.toArray().reduceRegion({ 
reducer: ee.Reducer.covariance(), 
geometry: depthV, 
scale: 3, 
bestEffort: true, 
maxPixels: 1e9 

}); 
var covarMatrix = ee.Array(covariance.get('array')); 
var rSqr = covarMatrix.get([0, 1]).pow(2) 

.divide(covarMatrix.get([0, 0]) 
.multiply(covarMatrix.get([1, 1]))); 

var deviation = depthVImage.select('mean') 
.subtract(sdbEstimate.select('Depth')).pow(2); 

var rmse = ee.Number(deviation.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: depthV, 
scale: 3, 
bestEffort: true, 
maxPixels: 1e12 

}).get('mean')) 
.sqrt();.sqrt(); 

Question 3. Does the selection of different color ramps lead to misinterpretations? 
By choosing different color ramps for the same data set, you can see how visual 

interpretation can be changed based on color. Trying different color ramps will 
reveal how some can better visualize the final results for further use in maritime 
spatial planning activities, while others, including commonly seen rainbow ramps, 
can lead to erroneous decisions.
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Code Checkpoint A22e. The book’s repository contains a script that shows what 
your code should look like at this point. 

41.3 Synthesis 

With what you learned in this chapter, you can analyze Earth observation data— 
here, specifically from the Planet Cubesat constellation—to create your own map 
of coastal benthic habitats and coastal bathymetry for a specific case study. Feel 
free to test out the approach in another part of the world using your own data or 
open-access data, or use your own training data for a more refined classification 
model. 

You can add your own point data to the map, collected via a fieldwork campaign 
or by visually interpreting the imagery, and merge with the training data to improve 
a classification, or clean areas that need to be removed by drawing polygons and 
masking them in the classification. 

For the bathymetry, you can select different calibration/validation ratio 
approaches and test the optimum ratio of splitting to see how it influences the 
final bathymetry map. You can also add a smoothing filter to create a visually 
smoother image of coastal bathymetry. 

41.4 Conclusion 

Many coastal habitats, especially seagrass meadows, are dynamic ecosystems that 
change over time and can be lost through natural and anthropogenic causes. 

The power of Earth Engine lies in its cloud-based, lightning-fast, automated 
approach to workflows, especially its processing power. This process would take 
days when performed offline in traditional remote sensing software, especially over 
large areas. And the Earth Engine approach is not only fast but also consistent: 
The same method can be applied to images from different dates to assess habitat 
changes over time, both gain and loss. 

The availability of Planet imagery allows us to use a high-resolution prod-
uct. Natively, Earth Engine hosts the archives of Sentinel-2 and Landsat data. 
The Landsat archive spans from 1984 to the present, while Sentinel-2, a higher-
resolution product, is available from 2017 to today. All of this imagery can be used 
in the same workflow in order to map benthic habitats and monitor their changes 
over time, allowing us to understand the past of the coastal seascape and envision 
its future.
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42Surface Water Mapping 

K. Markert , G. Donchyts , and A. Haag 

Overview 
In this chapter, you will learn the step-by-step implementation of an efficient and 
robust approach for mapping surface water. You will also learn how the extracted 
surface water information can be used in conjunction with historical surface water 
information to extract flooded areas. This chapter will focus mostly on the use of 
Sentinel-1 Synthetic Aperture Radar (SAR) data, but the approaches apply to both 
SAR and optical remotely sensed data. 

Learning Outcomes

• Applying Otsu thresholding techniques for surface water mapping.
• Understanding the considerations of global versus adaptive histogram sampling.
• Implementing an adaptive histogram sampling approach.
• Extracting flooded areas from a surface water map. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Chaps. 2 and 3).
• Create a graph using ui.Chart (Chap. 4).
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• Write a function and map it over an ImageCollection (Chap. 12).
• Understand basics of working with Synthetic Aperture Radar images 

(Chap. 39). 

42.1 Introduction to Theory 

Flooding impacts more people than any other environmental hazard, and flood 
exposure is expected to increase in the future (Tellman et al. 2021). Remote sens-
ing data plays a pivotal role in mapping historical flood zones and producing 
spatial maps of flood events that can be used to guide response efforts (Oddo 
and Bolten 2019). Oftentimes, flood maps need to be created and delivered to dis-
aster managers within hours of image acquisition. Thus, computationally efficient 
approaches are required to reduce latency. Furthermore, these approaches need to 
produce accurate results without increasing processing time. 

Image thresholding is an efficient method for mapping surface water (Schu-
mann et al. 2009). Among the numerous methods available for image thresholding, 
a popular one is ‘Otsu’s method’ (Otsu 1979). Otsu’s method is a histogram-based 
thresholding approach where the inter-class variance between two classes, a fore-
ground class and a background class, is maximized. As this approach assumes that 
only two classes are present within an image, which is rarely the case, methods 
have been developed (Donchyts et al. 2016; Cao et al. 2019) to constrain histogram 
sampling to areas that are more likely to represent a bimodal histogram of water/no 
water. Otsu’s method applied on such a constrained histogram provides a more 
accurate estimation of a water threshold without sacrificing the computational 
efficiency of the method. 

This chapter explores surface water mapping using Otsu’s method and walks 
through an adaptive thresholding technique initially developed by Donchyts et al. 
2016 and applied on optical imagery, then adapted by Markert et al. 2020 for 
detecting surface water in SAR imagery. Furthermore, the resulting surface water 
map will be compared with the Joint Research Centre’s (JRC) Global Surface 
Water dataset (Pekel et al. 2016) to extract the flooded areas. This chapter will 
focus on the use of Sentinel-1 (S1) SAR data, but the concepts apply to other 
satellite imagery where we can distinguish water. 

42.2 Practicum 

42.2.1 Otsu Thresholding 

Otsu’s method is widely used for determining the optimal threshold of an image 
with two classes. In this section, we will explore the use of Otsu’s method 
for segmenting water using an image-wide histogram (also known as a global 
histogram).
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We will start by accessing Sentinel-1 data. We will focus our analysis on South-
east Asia, which experiences yearly flooding and so provides plenty of good test 
cases. To do this, we will assign the Sentinel-1 collection to a variable and filter 
by space, time, and metadata properties to get our image for processing. 

// Define a point in Cambodia to filter by location. 
var point = ee.Geometry.Point(104.9632, 11.7686); 

Map.centerObject(point, 11); 

// Get the Sentinel-1 collection and filter by space/time. 
var s1Collection = ee.ImageCollection('COPERNICUS/S1_GRD') 

.filterBounds(point) 

.filterDate('2019-10-05', '2019-10-06') 

.filter(ee.Filter.eq('orbitProperties_pass', 
'ASCENDING')) 

.filter(ee.Filter.eq('instrumentMode', 'IW')); 

// Grab the first image in the collection. 
var s1Image = s1Collection.first(); 

Now, we can add our image to the map. 

// Add the Sentinel-1 image to the map. 
Map.addLayer(s1Image, { 

min: -25, 
max: 0, 
bands: 'VV' 

}, 'Sentinel-1 image'); 

The map should now have a Sentinel-1 image in Cambodia that looks like 
Fig. 42.1.

Now that we have our image, we can begin our processing to extract surface 
water information using Otsu’s threshold. Otsu’s thresholding algorithm uses his-
tograms, so we will need to create one for the pixels of the image. Otsu’s method 
works on a single band of values, so we will use the VV band from Sentinel-
1, as seen in Fig. 42.1. Earth Engine allows us to easily calculate a histogram 
using the reducer ee.Reducer.histogram applied across the image using 
the reduceRegion operation:
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// Specify band to use for Otsu thresholding. 
var band = 'VV'; 

// Define a reducer to calculate a histogram of values. 
var histogramReducer = ee.Reducer.histogram(255, 0.1); 

// Reduce all of the image values. 
var globalHistogram = ee.Dictionary( 

s1Image.select(band).reduceRegion({ 
reducer: histogramReducer, 
geometry: s1Image.geometry(), 
scale: 90, 
maxPixels: 1e10 

}).get(band) 
); 

// Extract out the histogram buckets and counts per bucket. 
var x = ee.List(globalHistogram.get('bucketMeans')); 
var y = ee.List(globalHistogram.get('histogram')); 

// Define a list of values to plot. 
var dataCol = ee.Array.cat([x, y], 1).toList(); 

// Define the header information for data. 
var columnHeader = ee.List([ 

[ 
{ 

label: 'Backscatter', 
role: 'domain', 
type: 'number' 

}, 
{ 

label: 'Values', 
role: 'data', 
type: 'number' 

}, ] 
]); 

// Concat the header and data for plotting. 
var dataTable = columnHeader.cat(dataCol);
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// Create plot using the ui.Chart function with the 
dataTable. 
// Use 'evaluate' to transfer the server-side table to the 
client. 
// Define the chart and print it to the console. 
dataTable.evaluate(function(dataTableClient) { 

var chart = ui.Chart(dataTableClient) 
.setChartType('AreaChart') 
.setOptions({ 

title: band + ' Global Histogram', 
hAxis: { 

title: 'Backscatter [dB]', 
viewWindow: { 

min: -35, 
max: 15 

} 
}, 
vAxis: { 

title: 'Count' 
} 

}); 
print(chart); 

}); 

After running that code, you should see the chart in Fig. 42.2 printed in the 
Console. This is the histogram of values across the image. 

In the histogram, the data points are heavily concentrated around −9 dB. We  
can see a small peak of low backscatter values around −22 dB; these are the likely

Fig. 42.2 Histogram of values from the Sentinel-1 VV image from October 5, 2019 
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open-water values. The SAR signal bounces off large, smooth surfaces like water, 
so likely open-water values are low, and non-water values are high. 

How should we split the histogram into two parts to create a high-quality parti-
tion of the image into two classes? That is the job of Otsu’s thresholding algorithm. 
Earth Engine does not have a built-in function for Otsu’s method, so we will create 
a function that implements the algorithm’s logic. This function takes in a histogram 
as input, applies the algorithm, and returns a single value where Otsu’s method 
suggests breaking the histogram into two parts. (More information about Otsu’s 
method can be found in the ‘For Further Reading’ section of this book.) 

function otsu(histogram) { 
// Make sure histogram is an ee.Dictionary object. 
histogram = ee.Dictionary(histogram); 
// Extract relevant values into arrays. 
var counts = ee.Array(histogram.get('histogram')); 
var means = ee.Array(histogram.get('bucketMeans')); 
// Calculate single statistics over arrays 
var size = means.length().get([0]); 
var total = counts.reduce(ee.Reducer.sum(), 

[0]).get([0]); 
var sum = 

means.multiply(counts).reduce(ee.Reducer.sum(), [0]) 
.get([0]); 

var mean = sum.divide(total); 
// Compute between sum of squares, where each mean 

partitions the data. 

var indices = ee.List.sequence(1, size); 
var bss = indices.map(function(i) { 

var aCounts = counts.slice(0, 0, i); 
var aCount = aCounts.reduce(ee.Reducer.sum(), [0]) 

.get([0]); 
var aMeans = means.slice(0, 0, i); 
var aMean = aMeans.multiply(aCounts) 

.reduce(ee.Reducer.sum(), [0]).get([0]) 

.divide(aCount); 
var bCount = total.subtract(aCount); 
var bMean = sum.subtract(aCount.multiply(aMean)) 

.divide(bCount);
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return aCount.multiply(aMean.subtract(mean).pow(2)) 
.add( 

bCount.multiply(bMean.subtract(mean).pow(2))); 
}); 
// Return the mean value corresponding to the maximum 

BSS. 
return means.sort(bss).get([-1]); 

} 

When the threshold is calculated, it can be applied to the imagery, and we can 
inspect where it falls within our histogram. The following code creates a new array 
of values and checks where the threshold is so that we can see how the algorithm 
performed. 

// Apply otsu thresholding. 
var globalThreshold = otsu(globalHistogram); 
print('Global threshold value:', globalThreshold); 

// Create list of empty strings that will be used for 
annotation. 
var thresholdCol = ee.List.repeat('', x.length()); 
// Find the index where the bucketMean equals the 
threshold. 
var threshIndex = x.indexOf(globalThreshold); 
// Set the index to the annotation text. 
thresholdCol = thresholdCol.set(threshIndex, 'Otsu 
Threshold');
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return row.add(ee.String(thresholdCol.get(i))); 
}); 

// Concat the header and data for plotting. 
dataTable = columnHeader.cat(dataCol); 

// Create plot using the ui.Chart function with the 
dataTable. 
// Use 'evaluate' to transfer the server-side table to the 
client. 
// Define the chart and print it to the console. 
dataTable.evaluate(function(dataTableClient) { 

// Redefine the column header information with annotation 
column. 
columnHeader = ee.List([ 

[ 
{ 

label: 'Backscatter', 
role: 'domain', 
type: 'number' 

}, 
{ 

label: 'Values', 
role: 'data', 
type: 'number' 

}, 
{ 

label: 'Threshold', 
role: 'annotation', 
type: 'string' 

}] 
]); 

// Loop through the data rows and add the annotation 
column. 
dataCol = ee.List.sequence(0, 
x.length().subtract(1)).map(function( 
i) { 

i = ee.Number(i); 
var row = ee.List(dataCol.get(i));
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} 
var chart = ui.Chart(dataTableClient) 

.setChartType('AreaChart') 

.setOptions({ 
title: band + 

' Global Histogram with Threshold 
annotation', 

hAxis: { 
title: 'Backscatter [dB]', 
viewWindow: { 

min: -35, 
max: 15 

} 
}, 
vAxis: { 

title: 'Count' 
}, 
annotations: { 

style: 'line' 
} 

}); 
print(chart); 

}); 

// loop through the client-side table and set empty 
strings to null 

for (var i = 0; i < dataTableClient.length; i++) { 
if (dataTableClient[i][2] === '') { 

dataTableClient[i][2] = null; 
} 

Once you have run the above code, you should see another histogram chart that 
looks like Fig. 42.3. Note the addition of the text and light vertical line indicating 
the location of the threshold value.

We can see that the threshold is around −15 dB, which is about halfway 
between the two peaks. We can now apply that threshold on the imagery and 
inspect how the extracted water looks compared to the original image. Using the 
code below, we apply the threshold and add the water image to the map (Fig. 42.4).
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Fig. 42.3 Histogram of values from the Sentinel-1 VV image with the threshold calculated using 
Otsu’s method

// Apply the threshold on the image to extract water. 
var globalWater = s1Image.select(band).lt(globalThreshold); 

// Add the water image to the map and mask 0 (no-water) 
values. 
Map.addLayer(globalWater.selfMask(), 

{ 
palette: 'blue' 

}, 
'Water (global threshold)');

The results look promising. The blue areas overlap with the low backscatter 
(specular reflectance) that is representative of open water in C-band SAR imagery. 
However, upon closer inspection we can see that the extracted water overestimates 
in some areas (Fig. 42.5).

We see an overestimation as large local errors may be introduced when cal-
culating a constant threshold for distinguishing water from land when using an 
image-wide histogram. It is due to this issue that algorithms have been devel-
oped to constrain the histogram sampling and estimate a more locally contextual 
threshold. 

Code Checkpoint A23a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. Do some reading on Otsu’s method (the Wikipedia page has a good 
description). How does Otsu’s threshold work? What underlying assumptions does 
Otsu’s threshold make? 

Question 2. Based on the results and your understanding of Otsu’s thresholding, 
why do you think the calculated histogram overestimated water areas?
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Fig. 42.5 Close-up inspection of extracted surface water. The extracted water is toggled on and 
off to illustrate where global Otsu thresholding overestimated water

42.2.2 Adaptive Thresholding 

Surface water usually constitutes only a small fraction of the overall land cover 
within an Earth observation image. This makes it harder to apply threshold-based 
methods to extract water. The challenge is to establish a varying threshold that can 
be derived automatically. In images that show flooding, like the one from the pre-
vious section, this limitation is not so significant. Nevertheless, this section walks 
through an adaptive thresholding technique designed to overcome the challenges 
of using a global threshold. 

The method we will discuss was developed by Donchyts et al. (2016) and 
applied to the Modified Normalized Difference Water Index (MNDWI) from Land-
sat 8 imagery. The algorithm finds edges within the image, buffers the areas around 
the identified edges, and uses the buffered area to sample a histogram for Otsu 
thresholding. This approach assumes that the edges detected are from water. The 
result is a bimodal histogram from the area around water edges that can be used
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to calculate a refined threshold. The overall workflow of the algorithm is shown 
in Fig. 42.6.

This approach was refined by Markert et al. (2020), where the main change is 
that instead of calculating the edges on the raw values (from an index or other-
wise), an initial segmentation threshold is provided to create a binary image as 
input for the edge detection. This overcomes issues with SAR speckle and other 
artifacts, as well as with any edges being defined from other classes that are present 
in imagery (e.g., urban areas or forests). The defined edges are then filtered by 
length to omit small edges that can occur and can skew the histogram sampling. 
This requires that a few parameters be tuned, namely the initial threshold, edge 
length, and buffer size. Here, we define a few of those parameters. 

// Define parameters for the adaptive thresholding. 
// Initial estimate of water/no-water for estimating the 
edges 
var initialThreshold = -16; 
// Number of connected pixels to use for length 
calculation. 
var connectedPixels = 100; 
// Length of edges to be considered water edges. 
var edgeLength = 20; 
// Buffer in meters to apply to edges. 
var edgeBuffer = 300; 
// Threshold for canny edge detection. 
var cannyThreshold = 1; 
// Sigma value for gaussian filter in canny edge detection. 
var cannySigma = 1; 
// Lower threshold for canny detection. 
var cannyLt = 0.05; 

With these parameters defined, we can begin the process of constraining the 
histogram sampling. 

// Get preliminary water. 
var binary = s1Image.select(band).lt(initialThreshold) 

.rename('binary'); 

// Get projection information to convert buffer size to 
pixels. 
var imageProj = s1Image.select(band).projection();
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// Get canny edges. 
var canny = ee.Algorithms.CannyEdgeDetector({ 

image: binary, 
threshold: cannyThreshold, 
sigma: cannySigma 

}); 

// Process canny edges. 

// Get the edges and length of edges. 
var connected = canny.updateMask(canny).lt(cannyLt) 

.connectedPixelCount(connectedPixels, true); 

// Mask short edges that can be noise. 
var edges = connected.gte(edgeLength); 

// Calculate the buffer in pixel size. 
var edgeBufferPixel = 
ee.Number(edgeBuffer).divide(imageProj 

.nominalScale()); 

// Buffer the edges using a dilation operation. 
var bufferedEdges = 
edges.fastDistanceTransform().lt(edgeBufferPixel); 

// Mask areas not within the buffer . 
var edgeImage = 
s1Image.select(band).updateMask(bufferedEdges); 

Now that we have the edge information and the data to sample processed, 
we can visually inspect what the algorithm is doing. Here, we will display the 
calculated edges as well as the buffered edges to highlight which data is being 
sampled. 

// Add the detected edges and buffered edges to the map. 
Map.addLayer(edges, { 

palette: 'red' 
}, 'Detected water edges'); 
var edgesVis = { 

palette: 'yellow', 
opacity: 0.5 

}; 
Map.addLayer(bufferedEdges.selfMask(), edgesVis, 

'Buffered water edges');
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Fig. 42.7 Results from the water edge detection process, where the edges are shown in red (top 
image) and the buffered edges highlighting the sampling regions in yellow (bottom image) 

You should now have the data added to the map, which should look like the 
images in Fig. 42.7 when zoomed in. 

At this point, we have our regions that we want to sample that are more rep-
resentative of a bimodal histogram, and we have masked out areas that we don’t 
want to sample. Now, we can calculate the histogram as before and make a plot 
(Fig. 42.8).

Fig. 42.8 Histogram of values from the Sentinel-1 VV image using the adaptive thresholding
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// Reduce all of the image values. 
var localHistogram = ee.Dictionary( 

edgeImage.reduceRegion({ 
reducer: histogramReducer, 
geometry: s1Image.geometry(), 
scale: 90, 
maxPixels: 1e10 

}).get(band) 
); 

// Apply otsu thresholding. 
var localThreshold = otsu(localHistogram); 
print('Adaptive threshold value:', localThreshold); 

// Extract out the histogram buckets and counts per bucket. 
var x = ee.List(localHistogram.get('bucketMeans')); 
var y = ee.List(localHistogram.get('histogram')); 

// Define a list of values to plot. 
var dataCol = ee.Array.cat([x, y], 1).toList(); 

// Concat the header and data for plotting. 
var dataTable = columnHeader.cat(dataCol); 

// Create list of empty strings that will be used for 
annotation. 
var thresholdCol = ee.List.repeat('', x.length()); 
// Find the index that bucketMean equals the threshold. 
var threshIndex = x.indexOf(localThreshold); 
// Set the index to the annotation text. 
thresholdCol = thresholdCol.set(threshIndex, 'Otsu 
Threshold'); 

// Redefine the column header information now with 
annotation col. 
columnHeader = ee.List([ 

[ 
{ 

label: 'Backscatter', 
role: 'domain', 
type: 'number' 

},
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{ 
label: 'Values', 
role: 'data', 
type: 'number' 

}, 
{ 

label: 'Threshold', 
role: 'annotation', 
type: 'string' 

}] 
]); 

// Loop through the data rows and add the annotation col. 
dataCol = ee.List.sequence(0, 
x.length().subtract(1)).map(function( 
i) { 

i = ee.Number(i); 
var row = ee.List(dataCol.get(i)); 
return row.add(ee.String(thresholdCol.get(i))); 

}); 

// Concat the header and data for plotting. 
dataTable = columnHeader.cat(dataCol); 

// Create plot using the ui.Chart function with the 
dataTable. 
// Use 'evaluate' to transfer the server-side table to the 
client. 
// Define the chart and print it to the console. 
dataTable.evaluate(function(dataTableClient) { 

// Loop through the client-side table and set empty 
strings to null. 

for (var i = 0; i < dataTableClient.length; i++) { 
if (dataTableClient[i][2] === '') { 

dataTableClient[i][2] = null; 
} 

} 
var chart = ui.Chart(dataTableClient) 

.setChartType('AreaChart') 

.setOptions({ 
title: band + 

' Adaptive Histogram with Threshold 
annotation',
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hAxis: { 
title: 'Backscatter [dB]', 
viewWindow: { 

min: -35, 
max: 15 

} 
}, 
vAxis: { 

title: 'Count' 
}, 
annotations: { 

style: 'line' 
} 

}); 
print(chart); 

});

We can see from the histogram that we have two distinct peaks. This meets 
the assumption of Otsu thresholding that only two classes are present within an 
image, which allows the algorithm to more accurately calculate the threshold for 
water. The last thing left to do is to apply the calculated adaptive threshold on the 
imagery and add it to the map (Fig. 42.9).

Fig. 42.9 Extracted surface water using the adaptive Otsu thresholding method for Sentinel-1 VV 
image (top image) and close-up inspection of extracted surface water for almost the same area as 
in Sect. 42.2.1 (bottom image)
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// Apply the threshold on the image to extract water. 
var localWater = s1Image.select(band).lt(localThreshold); 

// Add the water image to the map and mask 0 (no-water) 
values. 
Map.addLayer(localWater.selfMask(), 

{ 
palette: 'darkblue' 

}, 
'Water (adaptive threshold)');

It can be seen from the resulting images that the adaptive thresholding technique 
produces a reasonable surface water map. Furthermore, the resulting threshold 
value was −15.799, as compared to −14.598 from the global thresholding. A 
lower threshold in this case means less surface water area extracted. However, less 
surface water area does not necessarily mean more accuracy. There needs to be a 
balance between producer’s and user’s accuracy. 

Now that we have a surface water map and we are moderately confident that it 
represents the actual surface water for that day, we can begin to identify flooded 
areas by differencing our map with historical information. 

Code Checkpoint A23b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 3. Why do we apply an initial threshold to the SAR imagery prior to 
detecting edges? What happens to the detected edges if we do not apply an initial 
threshold? Explain why you are or are not getting a difference in detected edges. 
Recall that we defined some parameters for the Canny edge detection. Show a 
comparison. 

Question 4. Compare the threshold calculated with the adaptive technique to the 
global threshold. In your own words, explain why the two thresholds are different. 

Question 5. Change the parameters used for the adaptive thresholding to see how 
the results change. Which parameters is the algorithm most sensitive to? 

42.2.3 Extracting Flood Areas 

Up to this point, we have been mapping surface water, which includes permanent 
and seasonal water that was observed by the sensor. What we need to do now 
is to identify areas from our image that are considered permanent water. There 
are typically two approaches to mapping flooded areas with a thematic surface 
water map: (1) comparing pre- and post-event images to estimate changes; or (2) 
comparing extracted surface water with historically observed permanent water.
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To achieve the goal of flood mapping, we will use the historical JRC Global 
Surface Water dataset to define permanent water and then find the difference to 
extract flooded areas. We already have our post-event surface water map. Now, we 
need to access and use the JRC data. 

// Get the previous 5 years of permanent water. 

// Get the JRC historical yearly dataset. 
var jrc = ee.ImageCollection('JRC/GSW1_3/YearlyHistory') 

// Filter for historical data up to date of interest. 
.filterDate('1985-01-01', s1Image.date()) 
// Grab the 5 latest images/years. 
.limit(5, 'system:time_start', false); 

Because this data is a yearly classification of permanent and seasonal water, we 
need to reclassify the imagery to just permanent water. 

var permanentWater = jrc.map(function(image) { 
// Extract out the permanent water class. 
return image.select('waterClass').eq(3); 
// Reduce the collection to get information on if a 

pixel has 
// been classified as permanent water in the past 5 

years. 
}).sum() 
// Make sure we have a value everywhere. 
.unmask(0) 
// Get an image of 1 if permanent water in the past 5 

years, otherwise 0. 
.gt(0) 
// Mask for only the water image we just calculated. 
.updateMask(localWater.mask()); 

// Add the permanent water layer to the map. 
Map.addLayer(permanentWater.selfMask(), 

{ 
palette: 'royalblue' 

}, 
'JRC permanent water');
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The final thing we need to do is apply a simple differencing between the surface 
water map from Sentinel-1 and the JRC permanent water (Fig. 42.10). 

// Find areas where there is not permanent water, but water 
is observed. 
var floodImage = permanentWater.not().and(localWater); 

// Add flood image to map. 
Map.addLayer(floodImage.selfMask(), { 

palette: 'firebrick' 
}, 'Flood areas'); 

There are nuances associated with comparing optically derived water informa-
tion (like from JRC) with SAR water maps. For example, any surface that is large 
enough and smooth can ‘look’ like water in SAR imagery because of specular 
reflectance and can be wrongly classified as a flooded area. Examples of this are 
airports, exposed channel beds, and highways. It should also be noted that there is a 
component of seasonal flooding—flooding that occurs every year and is expected. 
Currently, our flood map contains areas of seasonal flooding as well. Therefore, 
to accurately map the “abnormal” area of a flood, we’d also have to account for 
seasonal patterns. Lastly, rivers are in constant flux, changing patterns, and even 
change due to flooding events, so comparing historical observations with flood-
ing events may yield some areas that have changed. Therefore, comparing pre-
and post-event imagery from the same sensor is best. However, it is challenging to 
define events in seasonal flooding (such as this case), making a pre- and post-event 
comparison a little more complicated. 

Code Checkpoint A23c. The book’s repository contains a script that shows what 
your code should look like at this point.

Fig. 42.10 Extracted flood areas by comparing the calculated surface water map against the JRC 
permanent water data. Bottom image shows a close-up of the flood map around the confluence of 
the Mekong and Tonle Sap rivers near Phnom Penh, Cambodia 
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42.3 Synthesis 

In this chapter, we covered a common image segmentation method, Otsu’s thresh-
olding, and applied it to map surface water using Sentinel-1 SAR imagery. 
Furthermore, we illustrated an image processing technique to constrain the his-
togram sampling for input into the Otsu thresholding method. Lastly, we created 
a flood map from the segmented surface water map using historical permanent 
surface water data. You should now have a good grasp on the Otsu threshold-
ing technique for surface water mapping, understand the considerations of global 
versus localized histogram sampling, be able to implement an adaptive histogram 
sampling approach, and take a surface water map and convert it to a flood map. 

Assignment 1. Identify a flooding event of interest (a good source is https://flo 
odlist.com) and walk through the process of creating a flood map for the event 
you chose. Do you notice anything different with the resulting flood map? Make 
note of the identified threshold value. Does the threshold value represent water 
versus no-water areas? Keep in mind the physical properties of SAR—some areas 
naturally have low backscatter like water does. 

Assignment 2. In your own words, describe the difference between a surface water 
map and a flood map. Conceptually, what do you need to take into consideration 
when extracting flood areas? 

Assignment 3. Find a pre-event Sentinel-1 image for the case we have gone 
through, extract surface water from the pre-event image, and compare it to 
the post-event image. Do you find differences in the flood areas derived from 
pre/post-comparison versus historical comparison? 

Assignment 4. Refactor the code to make the adaptive thresholding algorithm 
and flood mapping into a callable function that can be mapped over an image 
collection. 

42.4 Conclusion 

It should be noted that Sentinel-1 SAR imagery ideally should undergo prepro-
cessing to remove the effects of terrain and speckle in imagery, as in Mullissa 
et al. (2021), before applying surface water mapping algorithms. However, SAR 
preprocessing is outside the scope of this chapter. 

There are many more sophisticated algorithms for mapping surface water from 
satellite imagery (such as Mayer et al. 2021). The application illustrated in this 
chapter is meant to highlight a practical workflow for mapping surface water and 
floods that can be implemented in Earth Engine.

https://floodlist.com
https://floodlist.com
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43River Morphology 

Xiao Yang , Theodore Langhorst , and Tamlin M. Pavelsky 

Overview 
The purpose of this chapter is to showcase Earth Engine’s application in fluvial 
hydrology and geomorphology. Specifically, we show examples demonstrating how 
to use Earth Engine to extract a river’s centerline and width, and how to calculate the 
bank erosion rate. At the end of this chapter, you will be able to distinguish rivers 
from other water bodies, perform basic morphological analyses, and detect changes 
in river form over time. 

Learning Outcomes 

• Working with Landsat surface water products. 
• Calculating river centerline location and width. 
• Quantifying river bank erosion. 

Helps if you know how to 

• Import images and image collections, filter, and visualize (Part I). 
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II). 
• Perform image morphological operations (Chap. 10). 
• Write a function and map it over an ImageCollection (Chap. 12).
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• Use reduceRegions to summarize an image with zonal statistics in irregular 
shapes (Chaps. 22 and 24). 

• Work with vector data (Chap. 23) 

43.1 Introduction to Theory 

The shape of a river viewed from above, known as its “planview geometry,” can 
reveal many things about the river, including its morphological evolution and the 
flow of water and sediment within its channel. For example, hydraulic geometry 
establishes that a river’s width and its discharge satisfy a power-law relation (rating 
curve). Thus, one can use such a relationship to monitor a river’s discharge from 
river widths derived from remote sensing images (Smith et al. 1996). Similarly, in 
addition to the natural variability of river size, rivers also adjust their courses on the 
landscape as water flows from the headwaters toward lowland downstream regions. 
These adjustments result in meandering, lateral variations in a river’s course result-
ing from the erosion and accretion of sediment along the banks. Many tools have 
been developed to study morphological changes of rivers using remotely sensed 
images. 

Early remote sensing of river form was done by manual interpretation of aerial 
imagery, but advances in computing power have facilitated and the volume of 
imagery from satellites has necessitated automated processing. The RivWidth soft-
ware (Pavelsky and Smith 2008) first presented an automated method for river 
width extraction, and RivWidthCloud (RWC) (Yang et al. 2020) later applied and 
expanded these methods to Earth Engine. Similarly, methods for detecting changes 
in river form have evolved from simple tools that track hand-drawn river center-
lines (Shields et al. 2000) to automated methods that can process entire basins 
(Constantine et al. 2014; Rowland et al. 2016). This progression toward automated 
software for studies in fluvial geomorphology has paired well with the capabilities 
of Earth Engine, and as a result, many tools are being built for large-scale analysis 
in the cloud (Boothroyd et al. 2021). 

43.2 Practicum 

43.2.1 Creating and Analyzing a Single River Mask 

In this section, we will prepare an image and calculate some simple morphological 
attributes of a river. To do this, we will use a pre-classified image of surface water 
occurrence, identify which pixels represent the river and channel bars, and finally 
calculate the centerline, width, and bank characteristics.
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43.2.1.1 Isolate River from Water Surface Occurrence Map 

Code Checkpoint A24a. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and paste code below into it. 

The script includes our example area of interest (in the variable aoi) and two 
helper functions for reprojecting data to the local UTM coordinates. We force this 
projection and scale for many of our map layers because we are trying to observe 
and measure the river morphology. As data is viewed at different zoom levels, the 
shapes and apparent connectivity of many water bodies will change. To allow a 
given dataset to be viewed with the same detail at multiple scales, we can force 
the data to be reprojected, as we do here. 

The Joint Research Centre’s surface water occurrence dataset (Pekel et al. 2016) 
classified the entire Landsat 5, 7, and 8 history and produced annual maps that 
identify seasonal and permanent water classes. Here, we will include both seasonal 
and permanent water classes (represented by pixel values of≥ 2) as water pixels 
(with value = 1) and the rest as non-water pixels (with value = 0). In this section, 
we will look at only one image at a time by choosing the image from the year 
2000 (Fig. 1a). In the code below, bg serves as a dark background layer for other 
map layers to be seen easily.

// IMPORT AND VISUALIZE SURFACE WATER MASK. 
// Surface water occurrence dataset from the JRC (Pekel et 
al., 2016). 
var jrcYearly = 
ee.ImageCollection('JRC/GSW1_3/YearlyHistory'); 

// Select the seasonal and permanent pixels image 
representing the year 2000 
var watermask = jrcYearly.filter(ee.Filter.eq('year', 
2000)).first() 

.gte(2).unmask(0) 

.clip(aoi); 

Map.centerObject(aoi); 
Map.addLayer(ee.Image.constant(0), { 

min: 0, 
palette: ['black'] 

}, 'bg', false); 
Map.addLayer(watermask, {}, 'watermask', false);
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Fig. 43.1 a Water mask; b filled water mask with prior centerline points; c channel mask; d river 
mask

Next, we clean up the water mask by filling in small gaps by performing 
a closing operation (dilation followed by erosion). Areas of non-water pixels 
inside surface water bodies in the water mask may represent small channel 
bars, which we will fill in to create a simplified water mask. We identify these 
bars using a vectorization; however, you could do a similar operation with the 
connectedPixelCount method for bars up to 256 pixels in size (Fig. 1b). Fill-
ing in these small bars in the river mask improves the creation of a new centerline 
later in the lab.
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// REMOVE NOISE AND SMALL ISLANDS TO SIMPLIFY THE TOPOLOGY. 

// a. Image closure operation to fill small holes. 
watermask = watermask.focal_max().focal_min(); 

// b. Identify small bars and fill them in to create a 
filled water mask. 
var MIN_SIZE = 2E3; 
var barPolys = watermask.not().selfMask() 

.reduceToVectors({ 
geometry: aoi, 
scale: 30, 
eightConnected: true 

}) 
.filter(ee.Filter.lte('count', MIN_SIZE)); // Get small 

polys. 
var filled = watermask.paint(barPolys, 1); 

Map.addLayer(rpj(filled), { 
min: 0, 
max: 1 

}, 'filled water mask', false); 

Note here that we forced reprojection of the map layer using the helper function 
rpj. This means we have to be careful to keep our domain small enough to be 
processed at the set scale when doing the calculation on the fly in the Code Editor; 
otherwise, we will run out of memory. The reprojection may not be necessary when 
exporting the output using a task. 

In the following step, we extract water bodies in the water mask that correspond 
to rivers. We will define a river mask (Fig. 1d) to be pixels that are connected to 
the river centerline according to the filled water mask. The channel mask (Fig. 1c) 
is defined also by connectivity but excludes the small bars, which will give us more 
accurate widths and areas for change detection in Sects. 43.2.1.2 and 43.2.1.3. 

We can extract the river mask by checking the water pixels’ connectivity to 
a provided river location database. Specifically, we use the Earth Engine method 
cumulativeCost to identify connectivity between the filled water mask and 
the pixels corresponding to the river dataset. By inverting the filled mask, the 
cost to traverse water pixels is 0, and the cost over land pixels is 1. Pixels in 
the cost map with a value of 0 are entirely connected to the Surface Water and 
Ocean Topography (SWOT) Mission River Database (SWORD) centerline points 
by water, and pixels with values greater than 0 are separated from SWORD by 
land. The SWORD data, which were loaded as assets in the starter script, have 
some points located on land, either because the channel bifurcates or because 
the channel has migrated, so we must exclude those from our cumulative cost 
parameter source, or they will appear as single pixels of 0 in our cost map.
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The maxDistance parameter must be set to capture maximum distance 
between centerline points and river pixels. In a single-threaded river with an accu-
rate centerline, the ideal maxDistance value would be about half the river width. 
However, in reality, the centerlines are not perfect, and large islands may separate 
pixels from their nearest centerline. Unfortunately, increasing maxDistance has 
a large computational penalty, so some tweaking is required to get an optimal 
value. We can set geodeticDistance to false to regain some computational 
efficiency, because we are not worried about the accuracy of the distances. 

// IDENTIFYING RIVERS FROM OTHER TYPES OF WATER BODIES. 
// Cumulative cost mapping to find pixels connected to a 
reference centerline. 
var costmap = filled.not().cumulativeCost({ 

source: watermask.and(ee.Image().toByte().paint(sword, 
1)), 

maxDistance: 3E3, 
geodeticDistance: false 

}); 

var rivermask = costmap.eq(0).rename('riverMask'); 
var channelmask = rivermask.and(watermask); 

Map.addLayer(sword, { 
color: 'red' 

}, 'sword', false); 
Map.addLayer(rpj(costmap), { 

min: 0, 
max: 1E3 

}, 'costmap', false); 
Map.addLayer(rpj(rivermask), {}, 'rivermask', false); 
Map.addLayer(rpj(channelmask), {}, 'channelmask', false); 

Code Checkpoint A24b. The book’s repository contains a script that shows what 
your code should look like at this point. 

43.2.1.2 Obtain River Centerline and Width 
After processing the image to create a river mask, we will use existing functions 
from RivWidthCloud to process the image further to obtain river centerlines and 
widths. Here, we will call RivWidthCloud functions directly, taking advantage of 
the ability to use functions from another Earth Engine script (using the require 
functionality to load another script as a module). We will explain the usage and 
purpose of the RivWidthCloud functions used here.
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There are three major steps involved in obtaining river widths from a given 
river mask: 

1. Calculate one-pixel-width river centerlines. 
2. Estimate the direction orthogonal to the flow direction for each centerline pixel. 
3. Quantify river width on the channel mask along the orthogonal directions. 

Extract River Centerline 
We rely on morphological image analysis techniques to extract a river centerline. 
This process involves three steps: 

1. Using distance transform to enhance pixels near the centerline of the river. 
2. Using gradient to further isolate the centerline pixel having local minimal 

gradient values. 
3. Cleaning the raw centerline by removing spurious centerlines. 

First, a distance transform is applied to the river mask, resulting in a raster image 
where the value of each water pixel in the river mask is replaced by the closest 
distance to the shore. This step is done by using the CalcDistanceMap function 
from RWC. From Fig. 2a, we can see that, in the distance transform, the center of 
the river has the highest values.

// Import existing functions from RivWidthClo 
var riverFunctions = 

ud. 
(require 

); 
var clFunctions = 
'users/eeProject/RivWidthCloudPaper:functions_river.js' 

(require 

'users/eeProject/RivWidthCloudPaper:functions_centerline_wi 

); 
dth.js' 

//Calculate distance from shoreline using distance 
tra 

var distance = clFunctions. 

nsform. 

(rivermask, CalcDistanceMap , 
scale); 

256 

.Map (rpj(distance), { 
min: 
addLayer 

, 
max: 

0 

}, 
500 

, false);'distance raster'
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Fig. 43.2 Steps extracting river centerline: a distance transform of a river mask; b gradient of the 
distance map (a); c raw centerline after skeletonization; d centerline after pruning

Second, to isolate the centerline of the river, we apply a gradient calculation 
to the distance raster. If we treat the distance raster as a digital elevation model 
(DEM), then the locations of the river centerline can be visualized as ridgelines. 
They will thus have minimal gradient value. The gradient calculation is important, 
as it converts a local property of the centerline (local maximum distance) to a 
global property (global minimal gradient) to allow extraction of the centerline 
with a fixed gradient threshold (Fig. 2b). We use a 0.9 threshold (recommended 
for RivWidth (Pavelsky and Smith 2008) and RWC) to extract the centerline pixels 
from the gradient image. However, the resulting initial centerline is not always one 
pixel wide. To ensure a one-pixel-wide centerline, iterative image skeletonization 
is applied to thin the initial centerline (Fig. 2c).
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// Calculate gradient of the distance raster. 
// There are three different ways (kernels) to calculate 
the gradient. 
// By default, the function used the second approach. 
// For details on the kernels, please see the source code 
for this function. 
var gradient = clFunctions.CalcGradientMap(distance, 2, 
scale); 
Map.addLayer(rpj(gradient), {}, 'gradient raster', false); 

// Threshold the gradient raster and derive 1px width 
centerline using skeletonization. 

var centerlineRaw = 
clFunctions.CalcOnePixelWidthCenterline(rivermask, 

gradient, 0.9); 
var raw1pxCenterline = rpj(centerlineRaw).eq(1).selfMask(); 
Map.addLayer(raw1pxCenterline, { 

palette: ['red'] 
}, 'raw 1px centerline', false); 

Third, the centerline from the previous step will have noise along the shore-
line and will have spurious branches resulting from side channels or irreg-
ular channel forms that need to be pruned. The pruning function in RWC, 
CleanCenterline, works by first identifying end pixels of the centerline 
(i.e., centerline pixels with only one neighboring pixel) and then erasing pixels 
along the centerline pixels starting from the end pixels for a distance specified 
by MAXDISTANCE_BRANCH_REMOVAL. It will stop if the specified distance is 
reached or the erasing encounters a joint pixel (i.e., pixels having more than two 
neighboring pixels). After pruning, the final centerline should look like Fig. 2d.
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// Prune the centerline to remove spurious branches. 
var MAXDISTANCE_BRANCH_REMOVAL = 500; 
// Note: the last argument of the CleanCenterline function 
enables removal of the pixels so that the resulting 
centerline will have 1px width in an 8-connected way. Once 
it is done, it doesn’t need to be done the second time 
(thus it equals false) 
var cl1px = clFunctions 

.CleanCenterline(centerlineRaw, 
MAXDISTANCE_BRANCH_REMOVAL, true); 
var cl1px = clFunctions 

.CleanCenterline(cl1px, MAXDISTANCE_BRANCH_REMOVAL, 
false); 
var final1pxCenterline = rpj(cl1px).eq(1).selfMask(); 
Map.addLayer(final1pxCenterline, { 

palette: ['red'] 
}, 'final 1px centerline', false); 

Estimate Cross-Sectional Direction 
Now we will use the centerline we obtained from the previous step to help us 
measure the widths of the river. River width is often measured along the direction 
perpendicular to the flow, which we will approximate using the course of its center-
line. To estimate cross-sectional directions, we convolve the centerline image with 
a customized kernel. The square 9×9 kernel has been designed so that each pixel 
on its rim has the radian value of the angle between the line connecting the rim 
pixel and the center of the kernel and the horizontal x-axis (radian angle 0). The 
convolution works by overlapping the center of the kernel with the centerline and 
calculating the average of the values of the rim pixels that overlap the centerline 
pixels, which corresponds to the cross-sectional direction of the particular center-
line point under consideration. Here, we use the function CalculateAngle to 
estimate the cross-sectional angles. The resulting raster will replace each centerline 
pixel with the value of the cross-sectional directions in degrees.
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// Calculate perpendicular direction for the cleaned 
centerline. 
var angle = clFunctions.CalculateAngle(cl1px); 
var angleVis = { 

min: 0, 
max: 360, 
palette: ['#ffffd4', '#fed98e', '#fe9929', '#d95f0e', 

'#993404' 
] 

}; 
Map.addLayer(rpj(angle), angleVis, 'cross-sectional 
directions', 

false); 

Quantify River Widths 
To estimate river width, we will be using the RWC function rwGen_waterMask. 
This function can take any binary water mask image as input to calculate river 
widths, so long as the band name is “waterMask” and contains the following 
three properties: (1) crs—UTM projection code, (2) scale—native spatial res-
olution, and (3) image_id—acting as an identifier for the output widths. This 
function works by first processing the input water mask to create all the interme-
diate images mentioned before (channel mask, river mask, centerline, and angle 
image). Then, it creates a FeatureCollection of cross-sectional lines, each 
centered on one centerline pixel (from the centerline raster) along the direction 
estimated in the “Estimate Cross-Sectional Direction” section (from the angle 
raster) and with a length three times longer than the distance from the center-
line point to the closest shoreline pixel (obtained from the distance raster). This 
FeatureCollection is then used in the Image.reduceRegions method 
as the FeatureCollection input. With a mean reducer, the result denotes the 
ratio between the actual river width and the length of the line segment (which 
is known). Thus, the final river width can be estimated by multiplying the ratio 
with the length of each line segment in the FeatureCollection. However, 
the scaling factor of 3 is chosen empirically, and can over- or underestimate the 
maximum extent of river width. This is because the width, scaled by 3, is the min-
imal distance from centerline pixels to the nearest shoreline pixels. When aligning 
line segments along the directions orthogonal to the river centerline, we might 
encounter situations when the length of these segments is too short to cover the 
width of the river (underestimation) or too long that they overlap with neighboring
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river reaches (overestimation). In both cases, the end(s) of the line segment over-
laps with a pixel identified as “water” in the channel mask. Thus, additional steps 
are taken to flag these measurements. 

The rwGen_waterMask takes four arguments—maximum search distance 
(unit: meter) to label river pixels, maximum size of islands (unit: pixel) to be 
filled in to calculate river mask, distance (unit: meter) to be pruned to clean the 
raw centerline, and the area of interest to carry out the width calculation. The 
output of the rwc function is a FeatureCollection with each feature having 
the properties listed in Table 43.1. 

// Estimate width. 
var rwcFunction = require( 

'users/eeProject/RivWidthCloudPaper:rwc_watermask.js'); 
var rwc = rwcFunction.rwGen_waterMask(4000, 333, 500, aoi); 
watermask = 
ee.Image(watermask.rename(['waterMask']).setMulti({ 

crs: crs, 
scale: 30, 
image_id: 'aoi' 

})); 

var widths = rwc(watermask); 
print('example width output', widths.first());

Table 43.1 Output variables from the rwc function 

longitude Longitude of the centerline point 

latitude Latitude of the centerline point 

width Wetted river width measured at the centerline point 

orthogonalDirection Angle of the cross-sectional direction at the centerline point 

flag_elevation Mean elevation across the river surface (unit: meter) based on 
MERIT DEM 

image_id Image ID of the input image 

crs The projection of the input image 

endsInWater Indicates inaccurate width due to the insufficient length of the 
cross-sectional segment that was used to measure the river width 

endsOverEdge Indicates calculated width too close to the edge of the image 
such that the width can be inaccurate 
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43.2.1.3 Bank Morphology 
In addition to a river’s centerline and width, we can also extract information about 
the banks of the river, such as their aspect and total length. To identify the banks, 
we simply dilate the channel mask and compare it to the original channel mask. 
The difference in these images represents the land pixels adjacent to the channel 
mask. 

var bankMask = channelmask.focal_max(1).neq(channelmask); 

Next, we will calculate the aspect, or compass direction, of the bank faces. We 
use the Image.cumulativeCost method with the entire river channel as our 
source to create a new image (bankDistance) with increasing values away from 
the river channel, similar to an elevation map of river banks. In this image, the 
banks will “slope” toward the river channel and we can take advantage of the 
terrain methods in EE. We will call the Terrain.aspect method on the bank 
distance and select the bank pixels by applying the bank mask. In the end, our bank 
aspect data will give us the direction from each bank pixel toward the center of 
the channel. These data could be useful for interpreting any directional preferences 
in erosion as a result of geological features or thawed permafrost soils from solar 
radiation. 

var bankDistance = channelmask.not().cumulativeCost({ 
source: channelmask, 
maxDistance: 1E2, 
geodeticDistance: false 

}); 

var bankAspect = ee.Terrain.aspect(bankDistance) 
.multiply(Math.PI).divide(180) 
.mask(bankMask).rename('bankAspect'); 

Last, we calculate the length represented by each bank pixel by convolving the 
bank mask with a Euclidean distance kernel. Sections of bank oriented along the 
pixel edges will have a value of 30 m per pixel, whereas a diagonal section will 
have a value of

√
2 * 30 m per pixel.
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var distanceKernel = ee.Kernel.euclidean({ 
radius: 30, 
units: 'meters', 
magnitude: 0.5 

}); 
var bankLength = bankMask.convolve(distanceKernel) 

.mask(bankMask).rename('bankLength'); 

var radianVis = { 
min: 0, 
max: 2 * Math.PI, 
palette: ['red', 'yellow', 'green', 'teal', 'blue', 

'magenta', 
'red' 

] 
}; 
Map.addLayer(rpj(bankAspect), radianVis, 'bank aspect', 
false); 
Map.addLayer(rpj(bankLength), { 

min: 0, 
max: 60 

}, 'bank length', false); 

Code Checkpoint A24c. The book’s repository contains a script that shows what 
your code should look like at this point. 

43.2.2 Multitemporal River Width 

Refresh the Code Editor to begin with a new script for this section. 
In Sect. 43.2.1.2, we walked through the process of extracting the river center-

line and width from a given water mask. In that section, we intentionally unpacked 
the different steps used to extract river centerline and width so that readers can: 
(1) get an intuitive idea of how the image processes work step by step and see 
the resulting images at each stage; (2) combine these functions to answer differ-
ent questions (e.g., readers might only be interested in river centerlines instead 
of getting all the way to widths). In this section, we will walk you through how 
to use some high-level functions in RivWidthCloud to more efficiently implement 
these steps across multiple water mask images to extract time series of widths at 
a given location. To do this, we need to provide two inputs: a point of interest 
(longitude, latitude) and a collection of binary water masks. The code below re-
introduces a helper function to convert between projections, then accesses other 
data and functionality.
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var getUTMProj = function(lon, lat) { 
// Given longitude and latitude in decimal degrees, 
// return EPSG string for the corresponding UTM 

projection. See: 
// https://apollomapping.com/blog/gtm-finding-a-utm-

zone-number-easily 
// https://sis.apache.org/faq.html 
var utmCode = 

ee.Number(lon).add(180).divide(6).ceil().int(); 
var output = ee.Algorithms.If({ 

condition: ee.Number(lat).gte(0), 
trueCase: ee.String('EPSG:326').cat(utmCode 

.format('%02d')), 
falseCase: ee.String('EPSG:327').cat(utmCode 

.format('%02d')) 
}); 
return (output); 

}; 

// IMPORT AND VISUALIZE SURFACE WATER MASK 
// Surface water occurrence dataset from the JRC (Pekel et 
al., 2016). 
var jrcYearly = 
ee.ImageCollection('JRC/GSW1_3/YearlyHistory'); 
var poi = ee.Geometry.LineString([ 

[110.77450764660864, 30.954167027937988], 
[110.77158940320044, 30.950633845897112] 

]); 

var rwcFunction = require( 
'users/eeProject/RivWidthCloudPaper:rwc_watermask.js'); 

Remember that the widths from Sect. 43.2.1.2 are stored in a 
FeatureCollection with multiple width values from different locations 
along a centerline. To extract the multitemporal river width for a particular 
location along a river, we only need one width measurement from each water 
mask. Here, we choose the width for the centerline pixel that is nearest to the 
given point of interest using the function getNearestCl. This function takes 
the width FeatureCollection from Sect. 43.2.1.2 as input and returns a 
feature corresponding to the width closest to the point of interest.



940 X. Yang et al.

// Function to identify the nearest river width to a given 
location. 
var GetNearestClGen = function(poi) { 

var temp = function(widths) { 
widths = widths.map(function(f) { 

return f.set('dist2cl', f.distance(poi, 
30)); 

}); 

return ee.Feature(widths.sort('dist2cl', true) 
.first()); 

}; 
return temp; 

}; 
var getNearestCl = GetNearestClGen(poi); 

Then, we will need to use the map method on the input collection of water 
masks to apply the rwc to all the water mask images. This will result in a 
FeatureCollection, each feature of which will contain the width quantified 
from one image (Fig. 43.3). 

Fig. 43.3 River width time series upstream of the Three Gorges Dam in China. The series shows 
the abrupt increase in river width around the year 2003, when the dam was completed
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// Multitemporal width extraction. 
var polygon = poi.buffer(2000); 
var coords = poi.centroid().coordinates(); 
var lon = coords.get(0); 
var lat = coords.get(1); 
var crs = getUTMProj(lon, lat); 
var scale = ee.Number(30); 

var multiwidths = 
ee.FeatureCollection(jrcYearly.map(function(i) { 

var watermask = i.gte(2).unmask(0); 

watermask = ee.Image(watermask.rename(['waterMask']) 
.setMulti({ 

crs: crs, 
scale: scale, 
image_id: i.getNumber('year') 

})); 
var rwc = rwcFunction.rwGen_waterMask(2000, 333, 300, 

polygon); 
var widths = rwc(watermask) 

.filter(ee.Filter.eq('endsInWater', 0)) 

.filter(ee.Filter.eq('endsOverEdge', 0)); 

return ee.Algorithms.If(widths.size(), getNearestCl( 
widths), null); 

}, true)); 

var widthTs = ui.Chart.feature.byFeature(multiwidths, 
'image_id', [ 

'width' 
]) 
.setOptions({ 

hAxis: { 
title: 'Year', 
format: '####' 

}, 
vAxis: { 

title: 'Width (meter)' 
}, 
title: 'River width time series upstream of the 

Three Gorges Dam'
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}); 
print(widthTs); 

Map.centerObject(polygon); 
Map.addLayer(polygon, {}, 'area of width calculation'); 

Code Checkpoint A24d. The book’s repository contains a script that shows what 
your code should look like at this point. 

43.2.3 Riverbank Erosion 

In this section, we will apply the methods we developed in Sect. 43.2.1 to multiple 
images, calculate the amount of bank erosion, and summarize our results back 
onto our centerline. Before doing so, we will create a new script that wraps the 
masking and morphology code in Sects. 43.2.1.1 and 43.2.1.3 into a function called 
makeChannelmask that has one argument for the year. We return an image with 
bands for all of the masks and bank calculations, plus a property named ‘year’ 
that contains the year argument. If you have time, you could try to create this 
function on your own and then compare with our implementation of it, in the next 
code checkpoint. Note that we would not expect that your code would look the 
same, but it should ideally have the same functionality. 

Code Checkpoint A24e. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and paste code below into it. 

Change Detection 
We will use a section of the Madre de Dios River as our study area for this example 
because it migrates very quickly, more than 30 m per year in some locations. Our 
methods will work best if the two channel masks partially overlap everywhere 
along the length of the river; if there is a gap between the two masks, we will 
underestimate the amount of change and not be able to calculate the direction of 
change. As such, we will pick the years 2015 and 2020 for our example. However, 
in other locations, you may want to increase the time span in order to observe 
more change. We first create these two sets of channel masks and add them to the 
map (Fig. 4a).
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Fig. 43.4 Single meander bend of the Madre de Dios River in Bolivia, showing areas of erosion 
and accretion: a channel mask from 2015 in blue and channel mask from 2020 in red at 50% 
transparency; b pixels that represent erosion between 2015 and 2020 

var masks1 = makeChannelmask(2015); 
var masks2 = makeChannelmask(2020); 
Map.centerObject(aoi, 13); 
var year1mask = 
rpj(masks1.select('channelmask').selfMask()); 
Map.addLayer(year1mask, { 
    palette: ['blue'] 
}, 'year 1'); 
var year2mask = 
rpj(masks2.select('channelmask').selfMask()); 
Map.addLayer(year2mask, { 
    palette: ['red'] 
}, 'year 2', true, 0.5); 

Next, we create an image to represent the eroded area (Fig. 4b). We can quickly 
calculate this by comparing the channel mask in year 2 to the inverse water mask 
from year 1. In alluvial river systems, avulsions and meander cutoffs can leave 
fragments of old channels near the river. If the river meanders back into these 
water bodies, we want to be careful not to count these as fully eroded, which is 
why we need to compare our river pixels in year 2 (channel mask) to the land 
pixels in year 1 (inverse water mask). If you were to compare only the channel 
masks from year to year, water in the floodplains that is captured by the channel 
migration would be falsely counted as erosion.
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// Pixels that are now the river channel but were 
previously land. 
var erosion = masks2.select('channelmask') 

.and(masks1.select('watermask').not()).rename('erosion'); 
Map.addLayer(rpj(erosion).selfMask(), {}, 'erosion', 
false); 

Now we are going to approximate the direction of erosion. We will define 
the direction of erosion by the shortest path through the eroded area from each 
bank pixel in year 1 to any of the bank pixels in year 2. In reality, meander-
ing rivers often translate their shape downvalley, which breaks our definition of 
the shortest path between banks. However, the shortest path produces a reason-
able approximation in most cases and is easy to calculate. We will again use 
Image.cumulativeCost to measure the distance using the erosion image as 
our cost surface. The erosion image has to be dilated by 1 pixel to compensate for 
the missing edge pixels in the gradient calculations and masked in order to limit 
the cost paths to within the eroded area. 

// Erosion distance assuming the shortest distance between 
banks. 
var erosionEndpoints = 
erosion.focal_max(1).and(masks2.select( 

'bankMask')); 
var erosionDistance = erosion.focal_max(1).selfMask() 

.cumulativeCost({ 
source: erosionEndpoints, 
maxDistance: 1E3, 
geodeticDistance: true 

}).rename('erosionDistance'); 
Map.addLayer(rpj(erosionDistance), 

{ 
min: 0, 
max: 300 

}, 
'erosion distance', 
false);
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Now we can use the same Terrain.aspect method that we used for the 
bank aspect to calculate the direction of the shortest path along our cost surface. 
You could also calculate this direction (and the bank aspect in Sect. 43.2.1.3) using 
the Image.gradient method and then calculating the tangent of the resulting 
x and y components. 

// Direction of the erosion following slope of distance. 
var erosionDirection = ee.Terrain.aspect(erosionDistance) 
    .multiply(Math.PI).divide(180) 
    .clip(aoi) 
    .rename('erosionDirection'); 
erosionDistance = erosionDistance.mask(erosion); 
Map.addLayer(rpj(erosionDirection), 
    { 
        min: 0, 
        max: Math.PI 
    }, 
    'erosion direction', 
    false); 

Connecting to the Centerline 
We now have all of our change metrics calculated as images in Earth Engine. We 
could export these and make maps and figures using these data. However, when 
analyzing a lot of river data, we often want to look at long profiles of a river 
or tributary networks in a watershed. In order to do this, we will use reducers 
to summarize our raster data back onto our vector centerline. The first step is to 
identify which pixels should be assigned to which centerline points. We will start 
by calculating a single image representing the distance to any SWORD centerline 
point with the FeatureCollection.distance method. Next, we will use 
a convolution with the Laplacian kernel (Chap. 10) as an edge detection method 
on our distance raster. By convolving the distance to the nearest SWORD node 
with the Laplacian kernel, we are calculating the second derivative of distance 
and can find the locations where the distance surface starts sloping toward another 
SWORD point.
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// Distance to nearest SWORD centerline point. 
var distance = sword.distance(2E3).clip(aoi); 
 
// Second derivatives of distance. 
// Finding the 0s identifies boundaries between centerline 
points. 
var concavityBounds = 
distance.convolve(ee.Kernel.laplacian8()) 
    .gte(0).rename('bounds'); 
 
Map.addLayer(rpj(distance), { 
    min: 0, 
    max: 1E3 
}, 'distance', false); 
Map.addLayer(rpj(concavityBounds), {}, 'bounds', false); 

Next, we need to create an image where each pixel’s value is set to the unique 
node identifier of the nearest SWORD centerline point. We will create a two-band 
image, where the first band is the concavity boundaries found in the last step, and 
the second band has the unique node identifiers painted on their location. When 
we reduce this image using the Image.reduceConnectedComponents 
method, we set all pixels in each region with the corresponding node ID. Last, 
we need to dilate these pixels to fill in the boundary gaps using a call to the 
Image.focalMode method (Fig. 43.5).

// Reduce the pixels according to the concavity boundaries, 
// and set the value to SWORD node ID.  Note that focalMode 
is used 
// to fill in the empty pixels that were the boundaries. 
var swordImg = ee.Image(0).paint(sword, 
'node_id').rename('node_id') 

.clip(aoi); 
var nodePixels = concavityBounds.addBands(swordImg) 

.reduceConnectedComponents({ 
reducer: ee.Reducer.max(), 
labelBand: 'bounds' 

}).focalMode({ 
radius: 3, 
iterations: 2 

}); 
Map.addLayer(rpj(nodePixels).randomVisualizer(), 

{}, 
'node assignments', 
false);
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Fig. 43.5 Section of the Madre de Dios River where each pixel is assigned to its closest centerline 
node

Summarizing the Data 
The final step in this section is to apply a reducer that uses our nodePixels 
image from the previous step to group our raster data. We will com-
bine the reducer.forEach and reducer.group methods into our own 
custom function that we can use with different reducers to get our final 
results. The reducer.forEach method sets up a different reducer and 
output for each band in our image, which is necessary when we use the 
reducer.group method. The reducer.group method is conceptually sim-
ilar to reducer.reduceRegions, except our regions are defined by an 
image band instead of by polygons. In some cases, the group method is much 
faster than the reducer.reduceRegions method, particularly if you were 
to have to convert your regions to polygons in order to provide the input to 
reducer.reduceRegions. The grouped reducers in our function return a list 
of dictionaries. However, it is much easier to work with feature collections, so we 
will map over the list and create a FeatureCollection before returning from 
the function.
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// Set up a custom reducing function to summarize the data. 
var groupReduce = function(dataImg, nodeIds, reducer) { 

// Create a grouped reducer for each band in the data 
image. 

var groupReducer = reducer.forEach(dataImg.bandNames()) 
.group({ 

groupField: dataImg.bandNames().length(), 
groupName: 'node_id' 

}); 

// Apply the grouped reducer. 
var statsList = dataImg.addBands(nodeIds).clip(aoi) 

.reduceRegion({ 
reducer: groupReducer, 
scale: 30, 

}).get('groups'); 

// Convert list of dictionaries to FeatureCollection. 
var statsOut = ee.List(statsList).map(function(dict) { 

return ee.Feature(null, dict); 
}); 
return ee.FeatureCollection(statsOut); 

}; 

For some variables—such as the erosion, the channel mask, or the bank 
length—we want the total number of pixels or bank length, so we will use the 
Reducer.sum method with our grouped reducer function. For our aspect and 
directional variables, we need to use the Reducer.circularMean method to 
find the mean direction. The returned variables sumStats and angleStats 
are feature collections with properties for our reduced data and the corresponding 
node ID.
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var dataMask = masks1.addBands(masks2).reduce(ee.Reducer 
    .anyNonZero()); 
 
var sumBands = ['watermask', 'channelmask', 'bankLength']; 
var sumImg = erosion 
    .addBands(masks1, sumBands) 
    .addBands(masks2, sumBands); 
var sumStats = groupReduce(sumImg, nodePixels, 
ee.Reducer.sum()); 
 
var angleImg = erosionDirection 
    .addBands(masks1, ['bankAspect']) 
    .addBands(masks2, ['bankAspect']); 
var angleStats = groupReduce(angleImg, nodePixels, 
ee.Reducer 
    .circularMean()); 

Finally, we will join these two new feature collections to our original centerline 
data and print the results (Fig. 43.6).

var vectorData = sword.filterBounds(aoi).map(function(feat) 
{ 

var nodeFilter = ee.Filter.eq('node_id', feat.get( 
'node_id')); 

var sumFeat = sumStats.filter(nodeFilter).first(); 
var angleFeat = angleStats.filter(nodeFilter).first(); 
return feat.copyProperties(sumFeat).copyProperties( 

angleFeat); 
}); 

print(vectorData); 
Map.addLayer(vectorData, {}, 'final data'); 

Code Checkpoint A24f. The book’s repository contains a script that shows what 
your code should look like at this point. 

This workflow can be used to add many new properties to the river centerlines 
based on raster calculations. For example, we calculated the amount of erosion 
between these two years, but you could use very similar code to calculate the 
amount of accretion that occurred. Other interesting properties of the river, like the 
slope of the banks from a DEM, could be calculated and added to our centerline 
dataset.



950 X. Yang et al.

Fig. 43.6 Updated list of properties in our centerline dataset; new properties are outlined in 
black. The erosion and mask fields are in units of pixels, but you could convert to area using the 
Image.pixelArea method on the masks

43.3 Synthesis 

Assignment 1. RivWidthCloud can estimate individual channel width in the case 
of multichannel rivers. Change the AOI to a multichannel river and observe the 
resulting centerline and width data. Note down things you think are different from 
the single-channel case.
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Assignment 2. Answer the following question. When rivers experience both vari-
able width over time and bank migration, how can we apply the methods in this 
chapter to distinguish these two types of changes? 

43.4 Conclusion 

In this chapter, we provide ways in which Earth Engine can be used to aid river 
planview morphological studies. In the first half of the chapter, we show how to 
distinguish river pixels from other types of water bodies, as well as how to extract 
river centerline, river width, bank aspect, and length. In the second half of the 
chapter, we give examples of how to apply these methods to multitemporal image 
collections to estimate changes in river widths for rivers that have stable channels 
and to estimate bank erosion for rivers that tend to meander quickly. The analysis 
makes use of both raster- and vector-based methods provided by Earth Engine to 
help quantify river morphology. More importantly, these methods can be applied 
at scale. 
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44Water Balance and Drought 

Ate Poortinga , Quyen Nguyen, Nyein Soe Thwal , 
and Andréa Puzzi Nicolau 

Overview 
In this chapter, you will learn simple water balance calculations using remote sensing-
derived products related to precipitation and evapotranspiration. You will work at the 
river basin scale and perform time-series analysis, while comparing the data series 
with remote sensing vegetation and drought indices using the Earth Engine platform. 
You will also overlay the various indices with a land cover map to estimate potential 
drought impacts throughout the region. 

Learning Outcomes

• Understanding the basics of remote sensing-derived precipitation and evapotran-
spiration products.

• Calculating monthly aggregate statistics.
• Performing time-series analysis.
• Calculating vegetation and drought indices.
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Helps if you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Create a graph using ui.Chart (Chap. 4).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

2).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13).
• Aggregate data to build a time series (Chap. 14).
• Work with CHIRPS rainfall data (Chap. 14)
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15). 

44.1 Introduction to Theory 

Water is vital for sustaining human life, ensuring food security, generating power, 
and supporting industrial processes in river basins. Both terrestrial and aquatic 
ecosystems are dependent on water to provide valuable ecosystem services, not 
only for the current generation but also for generations in the future. Managing the 
complex flow paths of water to and from these different water-use sectors requires 
a quantitative understanding of hydrological processes. Quantitative insights are 
necessary to help manage water consumption more efficiently by means of reten-
tion, withdrawals, and land use change. Managers need background data to help 
them optimize water allocation to sectors without further depleting the natural 
capital in the basin. 

The water balance (Fig. 44.1) is the key concept in understanding the avail-
ability of water resources in a hydrological system. The water balance includes 
both input and extractions of water. In its simplest form, the water balance can 
be defined as Eq. (44.1). Inputs to the hydrological system are defined by precip-
itation (P; rainfall and snow). Extractions for the system are from runoff (Q) and 
evapotranspiration (ET), with evapotranspiration denoting the sum of evaporation 
from the land surface plus transpiration from plants. Water balance changes in 
groundwater and soil storage are indicated by ΔS. 

P = Q + ET + ΔS (44.1)

A hydrological system, also referred to as river basin or drainage basin, is any 
land area where precipitation collects and drains off into a common outlet. The 
hydrological processes between upstream and downstream are interconnected: For 
example, extractions of water resources upstream will impact the amount of avail-
able downstream water resources. Similarly, upstream activities such as logging 
and swidden agriculture might impact the quality of downstream water resources. 
Figure 44.2 shows the boundaries of the Lower Mekong River Basin, which cov-
ers parts of Laos, Thailand, Cambodia, Myanmar, and Vietnam. Water is a shared
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Fig. 44.1 The key 
components of the 
hydrological cycle

resource among the countries, although each country has its own legal framework 
to maintain and protect water supplies. A quantitative understanding of this shared 
resource is imperative to formulating effective management strategies.

In the following exercises, we will calculate the main components of the water 
balance and link them with vegetation growth, drought information, and land cover 
information in the Lower Mekong Basin. 

44.2 Practicum 

44.2.1 Section 1: Calculating Monthly Precipitation 

If you have not already done so, you can add the book’s code repository to 
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro 
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The 
book’s scripts will then be available in the script manager panel to view, run, or 
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help 
for help. 

Precipitation has been measured for many centuries (Strangeways 2010). The 
traditional method is point measurement, which was standardized in the previ-
ous century to make measurements comparable in space and time. Figure 44.3 
shows a conventional weather station used to measure various weather-related 
parameters, including the amount of rainfall. Although statistical methods exist 
to calculate area averaged rainfall from weather stations, the limited number of 
data points remains a constraint, especially in developing countries and sparsely 
populated regions where the density of weather stations is low. Satellites can fill

https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
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Fig. 44.2 The upper and 
lower Mekong River Basin

this information gap, as they observe the planet at a regular interval with calibrated 
sensors.

The Tropical Rainfall Measuring Mission (TRMM), a joint mission of the Japan 
Aerospace Exploration Agency (JAXA) and NASA, was a notable effort to monitor 
and study tropical rainfall (Kummerow et al. 1998). The satellite, which operated 
for 17 years, contained various instruments to measure clouds and cloud struc-
tures in order to advance understanding of the global energy and water cycles. 
The Global Precipitation Measurement (GPM; Fig. 44.4) mission is the successor, 
with the primary aim of making frequent (every 2–3 h) observations of Earth’s 
precipitation (Hou et al. 2014). A wide variety of data products are available for 
both TRMM and GPM. Precipitation estimates are derived from the Precipitation 
Radar (PR), TRMM Microwave Imager (TMI), Visible Infrared Scanner (VIRS), 
Clouds and Earth’s Radiant Energy System (CERES), and Lightning Imaging Sen-
sor (LSI). Frequently used products of TRMM have a spatial resolution of 0.25° 
(~ 25 km), whereas GPM has a higher resolution of 0.1° (~ 10 km). Data is avail-
able on a 3-h time interval. The data can be obtained through NASA but also can 
be accessed from the Earth Engine data repository.
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Fig. 44.3 Conventional weather station that measures various parameters, including precipitation

Fig. 44.4 The satellite for the Global Precipitation Measurement (GPM) mission
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The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data 
is a quasi-global rainfall dataset (Funk et al. 2015) covering more than 35 years. 
CHIRPS provides precipitation information at a 0.5° (~ 5 km) spatial resolution. 
The dataset estimates precipitation by combining data from observing meteorolog-
ical stations with satellite data. CHIRPS data is available at intervals from daily 
to annual and can be very valuable in hydrology studies, as it provides a long 
and consistent time series with precipitation estimates at a relatively high spatial 
resolution. 

Below is the code and an exercise to calculate monthly precipitation using these 
satellite data. 

We begin by importing our area of interest, the Lower Mekong River Basin 
(Fig. 44.5). 

Fig. 44.5 The lower 
Mekong Basin
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// Import the Lower Mekong boundary. 
var mekongBasin = ee.FeatureCollection( 

'projects/gee-book/assets/A2-5/lowerMekongBasin'); 

// Center the map. 
Map.centerObject(mekongBasin, 5); 

// Add the Lower Mekong Basin boundary to the map. 
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin'); 

In the next step, we set the start and end dates for our analysis. We create a list 
for both years and months, which we will later use to iterate over. 

// Set start and end years. 
var startYear = 2010; 
var endYear = 2020; 

// Create two date objects for start and end years. 
var startDate = ee.Date.fromYMD(startYear, 1, 1); 
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1); 

// Make a list with years. 
var years = ee.List.sequence(startYear, endYear); 

// Make a list with months. 
var months = ee.List.sequence(1, 12); 

We import the CHIRPS ImageCollection and select the imagery for the 
relevant dates, as presented in Chap. 14. Note that we used the pentad time series; 
each image in this collection contains the accumulated rainfall for five days. The 
daily product is also available in Earth Engine. The pentad dataset was used 
rather than the daily data product to reduce the number of computations needed to 
aggregate the data. 

// Import the CHIRPS dataset. 
var CHIRPS = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 
 
// Filter for the relevant time period. 
CHIRPS = CHIRPS.filterDate(startDate, endDate); 
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The year and month lists are used in the function below to calculate the monthly 
rainfall. We use a server-side nested loop where we first map over the years (2010, 
2011, … 2020) and then map over the months (1, 2, … 12). This returns an image 
with the total rainfall for each month. We set the year, month, and timestamp 
(’system:time_start’) for each image and flatten the image to turn the 
object into a single ImageCollection. 

// We apply a nested loop where we first map over 
// the relevant years and then map over the relevant 
// months. The function returns an image with the total 
(sum) 
// rainfall for each month. A flatten is applied to convert 
a 
// feature collection of features into a single feature 
collection. 
var monthlyPrecip = ee.ImageCollection.fromImages( 

years.map(function(y) { 
return months.map(function(m) { 

var w = CHIRPS.filter(ee.Filter 
.calendarRange(y, y, 'year')) 

.filter(ee.Filter.calendarRange(m, m, 
'month')) 

.sum(); 
return w.set('year', y) 

.set('month', m) 

.set('system:time_start', ee.Date 
.fromYMD(y, m, 1)); 

}); 
}).flatten() 

); 

Add a layer with the monthly mean precipitation to the map and calculate a 
chart with monthly mean precipitation (Fig. 44.6).
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// Add the layer with monthly mean. Note that we clip for 
the Mekong river basin. 
var precipVis = { 

min: 0, 
max: 250, 
palette: 'white, blue, darkblue, red, purple' 

}; 

Map.addLayer(monthlyPrecip.mean().clip(mekongBasin), 
precipVis, 
'2015 precipitation'); 

// Set the title and axis labels for the chart. 
var title = { 

title: 'Monthly precipitation', 
hAxis: { 

title: 'Time' 
}, 
vAxis: { 

title: 'Precipitation (mm)' 
}, 

}; 

// Plot the chart using the Mekong boundary. 
var chartMonthly = ui.Chart.image.seriesByRegion({ 

imageCollection: monthlyPrecip, 
regions: mekongBasin.geometry(), 
reducer: ee.Reducer.mean(), 
band: 'precipitation', 
scale: 5000, 
xProperty: 'system:time_start' 

}).setSeriesNames(['P']) 
.setOptions(title) 
.setChartType('ColumnChart'); 

// Print the chart. 
print(chartMonthly);

Code Checkpoint A25a. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 44.6 Mean precipitation in the Lower Mekong Basin (left) and the monthly average precip-
itation (right)

44.2.2 Section 2: Calculating Monthly Evapotranspiration 

Measuring evapotranspiration at large scales is important for assessing climate and 
anthropogenic effects on natural and agricultural ecosystems (Kustas and Norman 
1996). Methods exist to measure ET at a field scale, but those methods cannot 
be extrapolated to larger areas. Traditional ways of estimating ET have been to 
use reference ET, derived from various weather-related parameters, with a crop 
coefficient. However, there are large uncertainties due to, for example, spatial and 
temporal heterogeneity and data gaps. Satellite information can be very useful as 
it provides spatially and temporally dense information for ET estimation. 

Different methods exist to map ET from remote sensing data, including simple 
empirical models that relate spectral reflectance with ET, vegetation index models, 
energy budget, and deterministic models (Courault et al. 2005). Fundamentally, 
however, ET is governed by the energy budget and driving variables such as sur-
face temperature. The total amount of available net radiant energy is divided into 
a soil heat flux and the atmospheric convective fluxes, which are the sensible heat 
flux (H) and latent energy exchanges (LE). This essentially means that the tem-
perature decreases when energy is used for ET. Indeed, there are different ways 
to further quantify the different energy fluxes in more detail, and there is a wide 
body of scientific literature that describes those methods. 

There are different readily available ET products derived from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS), including Atmosphere-Land 
Exchange Inverse (ALEXI; Anderson et al. 1997; Mecikalski et al. 1999), the 
operational Simplified Surface Energy Balance (SSEB; Senay et al. 2013), CSIRO 
MODIS Rescaled Evapotranspiration (CMRSET; Guerschman et al. 2009), and 
MOD16. The MOD16 algorithm is based on the logic of the Penman–Monteith 
equation, which uses daily meteorological reanalysis data and eight-day remotely
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sensed vegetation property dynamics from MODIS as inputs. The MOD16 prod-
uct is available in the Earth Engine assets, and we will use this product for ET 
estimation in the next exercise. 

First, we start a new script and repeat the first two steps of the previous section 
by copying and pasting the following code: 

// Import the Lower Mekong boundary. 
var mekongBasin = ee.FeatureCollection( 

'projects/gee-book/assets/A2-5/lowerMekongBasin'); 

// Center the map. 
Map.centerObject(mekongBasin, 5); 

// Add the Lower Mekong Basin boundary to the map. 
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin'); 

// Set start and end years. 
var startYear = 2010; 
var endYear = 2020; 

// Create two date objects for start and end years. 
var startDate = ee.Date.fromYMD(startYear, 1, 1); 
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1); 

// Make a list with years. 
var years = ee.List.sequence(startYear, endYear); 

// Make a list with months. 
var months = ee.List.sequence(1, 12); 

We import the MOD16 dataset and select the ET band, which represents total 
evapotranspiration. 

// Import the MOD16 dataset. 
var mod16 = 
ee.ImageCollection('MODIS/006/MOD16A2').select('ET'); 
 
// Filter for the relevant time period. 
mod16 = mod16.filterDate(startDate, endDate); 
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We use the same function to calculate monthly values as in the previous section. 
Note that we multiply by 0.1 as a scaling factor. The scaling factor can be found 
in the description of the dataset in Earth Engine. Scaling factors are applied to 
reduce the required storage capacity by changing the data type. 

// We apply a nested loop where we first map over  
// the relevant years and then map over the relevant  
// months. The function returns an image with the total 
(sum) 
// evapotranspiration for each month. A flatten is applied 
to convert a 
// collection of collections into a single collection. 
// We multiply by 0.1 because of the ET scaling factor.  
var monthlyEvap = ee.ImageCollection.fromImages( 
    years.map(function(y) { 
        return months.map(function(m) { 
            var w = mod16.filter(ee.Filter 
                    .calendarRange(y, y, 'year')) 
                .filter(ee.Filter.calendarRange(m, m, 
                    'month')) 
                .sum() 
                .multiply(0.1); 
            return w.set('year', y) 
                .set('month', m) 
                .set('system:time_start', ee.Date 
                    .fromYMD(y, m, 1)); 
 
        }); 
    }).flatten() 
); 

We use the code below to visualize the results (Fig. 44.7). Note that we changed 
the color of the bar chart and applied the reducer on a 500 m spatial resolution.
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// Add the layer with monthly mean. Note that we clip for 
the Mekong river basin. 
var evapVis = { 

min: 0, 
max: 140, 
palette: 'red, orange, yellow, blue, darkblue' 

}; 

Map.addLayer(monthlyEvap.mean().clip(mekongBasin), 
evapVis, 
'Mean monthly ET'); 

// Set the title and axis labels for the chart. 
var title = { 

title: 'Monthly evapotranspiration', 
hAxis: { 

title: 'Time' 
}, 
vAxis: { 

title: 'Evapotranspiration (mm)' 
}, 
colors: ['red'] 

}; 

// Plot the chart using the Mekong boundary. 
var chartMonthly = ui.Chart.image.seriesByRegion({ 

imageCollection: monthlyEvap, 
regions: mekongBasin.geometry(), 
reducer: ee.Reducer.mean(), 
band: 'ET', 
scale: 500, 
xProperty: 'system:time_start' 

}).setSeriesNames(['ET']) 
.setOptions(title) 
.setChartType('ColumnChart'); 

// Print the chart. 
print(chartMonthly);
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Fig. 44.7 Mean ET in the lower Mekong basin (left) and the monthly average ET (right) 

Code Checkpoint A25b. The book’s repository contains a script that shows what 
your code should look like at this point. 

44.2.3 Section 3: Monthly Water Balance 

We learned that the water balance is calculated using precipitation, evapotran-
spiration, runoff, and storage changes (Eq. 44.1). In the previous two sections, 
we calculated the monthly precipitation (P) on a 5 km  spatial resolution and the 
monthly evapotranspiration (ET) on a 500 m spatial resolution. In Eq. (44.2), we 
rearrange Eq. (44.1) so that we can calculate the portion of Q and ΔS on a pixel 
level and aggregate that information to a basin level. 

P − ET  = Q + ΔS (44.2) 

In this section, we will use the previous data to calculate the monthly water 
balance. First, we set the dates and import the relevant ImageCollection, as  
shown in the previous sections. Copy and paste the code below in a new script.
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// Import the Lower Mekong boundary. 
var mekongBasin = ee.FeatureCollection( 
    'projects/gee-book/assets/A2-5/lowerMekongBasin'); 
 
// Center the map. 
Map.centerObject(mekongBasin, 5); 
 
// Add the Lower Mekong Basin boundary to the map. 
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin'); 
 
// Set start and end years. 
var startYear = 2010; 
var endYear = 2020; 
 
// Create two date objects for start and end years. 
var startDate = ee.Date.fromYMD(startYear, 1, 1); 
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1); 
 
// Make a list with years. 
var years = ee.List.sequence(startYear, endYear); 
 
// Make a list with months. 
var months = ee.List.sequence(1, 12); 
 
// Import the CHIRPS dataset. 
var CHIRPS = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 
 
// Filter for relevant time period. 
CHIRPS = CHIRPS.filterDate(startDate, endDate); 
 
// Import the MOD16 dataset. 
var mod16 = 
ee.ImageCollection('MODIS/006/MOD16A2').select('ET'); 
 
// Filter for relevant time period. 
mod16 = mod16.filterDate(startDate, endDate); 
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Now we use the function that we used earlier to calculate monthly ET and P to 
calculate the water balance. 

// We apply a nested loop where we first map over  
// the relevant years and then map over the relevant  
// months. The function returns an image with P - ET 
// for each month. A flatten is applied to convert an 
// collection of collections into a single collection. 
var waterBalance = ee.ImageCollection.fromImages( 
    years.map(function(y) { 
        return months.map(function(m) { 
 
            var P = CHIRPS.filter(ee.Filter 
                    .calendarRange(y, y, 'year')) 
                .filter(ee.Filter.calendarRange(m, m, 
                    'month')) 
                .sum(); 
 
            var ET = mod16.filter(ee.Filter 
                    .calendarRange(y, y, 'year')) 
                .filter(ee.Filter.calendarRange(m, m, 
                    'month')) 
                .sum() 
                .multiply(0.1); 
 
            var wb = P.subtract(ET).rename('wb'); 
 
            return wb.set('year', y) 
                .set('month', m) 
                .set('system:time_start', ee.Date 
                    .fromYMD(y, m, 1)); 
 
        }); 
    }).flatten() 
); 
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Next, we add the monthly mean water balance to the map and calculate the 
monthly water balance (Fig. 44.8). Note that negative numbers in the map indicate 
regions with an overall surplus of ET, whereas negative monthly water balances 
indicate a surplus ET for the whole region. 

// Add layer with monthly mean. note that we clip for the 
Mekong river basin. 
var balanceVis = { 
    min: -50, 
    max: 200, 
    palette: 'red, orange, yellow, blue, darkblue, purple' 
}; 
 
Map.addLayer(waterBalance.mean().clip(mekongBasin), 
    balanceVis, 
    'Mean monthly water balance'); 
 
// Set the title and axis labels for the chart. 
var title = { 
    title: 'Monthly water balance', 
    hAxis: { 
        title: 'Time' 
    }, 
    vAxis: { 
        title: 'Evapotranspiration (mm)' 
    }, 
    colors: ['green'] 
}; 
 
// Plot the chart using the Mekong boundary. 
var chartMonthly = ui.Chart.image.seriesByRegion({ 
        imageCollection: waterBalance, 
        regions: mekongBasin.geometry(), 
        reducer: ee.Reducer.mean(), 
        band: 'wb', 
        scale: 500, 
        xProperty: 'system:time_start' 
    }).setSeriesNames(['WB']) 
    .setOptions(title) 
    .setChartType('ColumnChart'); 
 
// Print the chart. 
print(chartMonthly); 
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Fig. 44.8 Mean water balance in the lower Mekong basin (left) and the monthly average water 
balance (right) 

Code Checkpoint A25c. The book’s repository contains a script that shows what 
your code should look like at this point. 

44.2.4 Section 4: Vegetation and Drought Indices 

Calculating vegetation indices is a common practice when working with remote 
sensing data. The Normalized Difference Vegetation Index (NDVI; Rouse et al. 
1973) and Enhanced Vegetation Index (EVI; Chap. 9) (Huete et al. 1994) are 
among the most commonly used. Vegetation indices rely on the absorption and 
reflection spectra of chlorophyll, often including the red band, where absorption 
is high, and near infrared, where reflection is high. Vegetation indices are often 
used to measure crop health and density, but they can also be used to measure, 
for example, biophysical health over longer time periods (Poortinga et al. 2018). 
Vegetation indices can be calculated from the spectral reflectance, but readily avail-
able products can be used as well. The latter have been processed and contain, for 
example, corrections for outliers and artifacts. 

Besides vegetation indices, there are many other indices to describe specific 
natural phenomena or detect specific land surface features. These indices often rely 
on simple band ratios or more sophisticated formulas containing multiple bands. 
Drought indices are another category of important indicators as they enable us 
to depict spatiotemporal drought patterns in great detail. This can be particularly 
useful for remote areas where people rely on local agriculture for their livelihoods 
but production data is scarce. In the next exercise, we will be using the Moisture 
Stress Index (MSI; Vogelmann and Rock 1985), as this index has been shown to 
be highly related to soil moisture. Equation (44.3) shows that MSI is calculated
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from the shortwave infrared (SWIR) and near infrared (NIR) bands. 

MSI = SWIR/NIR (44.3) 

In this section, we use the EVI product for the vegetation index from MODIS. 
This data is collected daily and can be used for calculation of the monthly vege-
tation index. You may note that we import the readily available EVI product and 
also import the spectral reflectance dataset. 

We first import all the relevant datasets and define the period of interest, as in 
the other exercises, starting a new script. 

// Import the Lower Mekong boundary. 
var mekongBasin = ee.FeatureCollection( 

'projects/gee-book/assets/A2-5/lowerMekongBasin'); 

// Center the map. 
Map.centerObject(mekongBasin, 5); 

// Add the Lower Mekong Basin boundary to the map. 
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin'); 

// Set start and end years. 
var startYear = 2010; 
var endYear = 2020; 

// Create two date objects for start and end years. 
var startDate = ee.Date.fromYMD(startYear, 1, 1); 
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1); 

// Make a list with years. 
var years = ee.List.sequence(startYear, endYear); 

// Make a list with months. 
var months = ee.List.sequence(1, 12);
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// Import the CHIRPS dataset. 
var CHIRPS = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 

// Filter for relevant time period. 
CHIRPS = CHIRPS.filterDate(startDate, endDate); 

// Import the MOD16 dataset. 
var mod16 = 
ee.ImageCollection('MODIS/006/MOD16A2').select('ET'); 

// Filter for relevant time period. 
mod16 = mod16.filterDate(startDate, endDate); 

// Import and filter the MOD13 dataset. 
var mod13 = ee.ImageCollection('MODIS/006/MOD13A1'); 
mod13 = mod13.filterDate(startDate, endDate); 

// Select the EVI. 
var EVI = mod13.select('EVI'); 

// Import and filter the MODIS Terra surface reflectance 
dataset. 
var mod09 = ee.ImageCollection('MODIS/006/MOD09A1'); 
mod09 = mod09.filterDate(startDate, endDate); 

Two steps are needed to calculate the MSI. First, we need to remove the clouds 
and cloud shadows. This can be done by using the StateQA quality band that 
comes with the MOD09 product. After all the artifacts have been removed, we 
can calculate the MSI in the next function. 

// We use a function to remove clouds and cloud shadows. 
// We map over the mod09 image collection and select the 
StateQA band. 
// We mask pixels and return the image with clouds and 
cloud shadows masked. 
mod09 = mod09.map(function(image) { 

var quality = image.select('StateQA'); 
var mask = image.and(quality.bitwiseAnd(1).eq( 

0)) // No clouds. 
.and(quality.bitwiseAnd(2).eq(0)); // No cloud 

shadow. 

return image.updateMask(mask); 
});
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// We use a function to calculate the Moisture Stress 
Index. 
// We map over the mod09 image collection and select the 
NIR and SWIR bands 
// We set the timestamp and return the MSI. 
var MSI = mod09.map(function(image) { 

var nirband = image.select('sur_refl_b02'); 
var swirband = image.select('sur_refl_b06'); 

var msi = swirband.divide(nirband).rename('MSI') 
.set('system:time_start', image.get( 

'system:time_start')); 
return msi; 

}); 

We use the same nested loop as the previous sections, but now we calculate all 
layers and return an image where the layers are included as bands. Note that EVI 
and MOD16 are multiplied by the scale factor. For P, ET, and WB, we calculate 
the sum; for MSI and EVI, we calculate the mean. 

// We apply a nested loop where we first map over 
// the relevant years and then map over the relevant 
// months. The function returns an image with bands for 
// water balance (wb), rainfall (P), evapotranspiration 
(ET), 
// EVI and MSI for each month. A flatten is applied to 
// convert an collection of collections 
// into a single collection. 
var ic = ee.ImageCollection.fromImages( 

years.map(function(y) { 
return months.map(function(m) { 

// Calculate rainfall. 
var P = CHIRPS.filter(ee.Filter 

.calendarRange(y, y, 'year')) 
.filter(ee.Filter.calendarRange(m, m, 

'month')) 
.sum(); 

// Calculate evapotranspiration. 
var ET = mod16.filter(ee.Filter 

.calendarRange(y, y, 'year')) 
.filter(ee.Filter.calendarRange(m, m, 

'month')) 
.sum() 
.multiply(0.1);
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// Calculate EVI. 
var evi = EVI.filter(ee.Filter 

.calendarRange(y, y, 'year')) 
.filter(ee.Filter.calendarRange(m, m, 

'month')) 
.mean() 
.multiply(0.0001); 

// Calculate MSI. 
var msi = MSI.filter(ee.Filter 

.calendarRange(y, y, 'year')) 
.filter(ee.Filter.calendarRange(m, m, 

'month')) 
.mean(); 

// Calculate monthly water balance. 
var wb = P.subtract(ET).rename('wb'); 

// Return an image with all images as bands. 
return ee.Image.cat([wb, P, ET, evi, msi]) 

.set('year', y) 

.set('month', m) 

.set('system:time_start', ee.Date 
.fromYMD(y, m, 1)); 

}); 
}).flatten() 

); 

We display the monthly mean EVI and MSI and show the time series 
(Fig. 44.9).
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// Add the mean monthly EVI and MSI to the map. 
var eviVis = { 

min: 0, 
max: 0.7, 
palette: 'red, orange, yellow, green, darkgreen' 

}; 

Map.addLayer(ic.select('EVI').mean().clip(mekongBasin), 
eviVis, 
'EVI'); 

var msiVis = { 
min: 0.25, 
max: 1, 
palette: 'darkblue, blue, yellow, orange, red' 

}; 

Map.addLayer(ic.select('MSI').mean().clip(mekongBasin), 
msiVis, 
'MSI'); 

// Define the water balance chart and print it to the 
console. 
var chartWB = 

ui.Chart.image.series({ 
imageCollection: ic.select(['wb', 'precipitation', 

'ET']), 
region: mekongBasin, 
reducer: ee.Reducer.mean(), 
scale: 5000, 
xProperty: 'system:time_start' 

}) 
.setSeriesNames(['wb', 'P', 'ET']) 
.setOptions({ 

title: 'water balance', 
hAxis: { 

title: 'Date', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
},
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vAxis: { 
title: 'Water (mm)', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
lineWidth: 1, 
colors: ['green', 'blue', 'red'], 
curveType: 'function' 

}); 

// Print the water balance chart. 
print(chartWB); 

// Define the indices chart and print it to the console. 
var chartIndices = 

ui.Chart.image.series({ 
imageCollection: ic.select(['EVI', 'MSI']), 
region: mekongBasin, 
reducer: ee.Reducer.mean(), 
scale: 5000, 
xProperty: 'system:time_start' 

}) 
.setSeriesNames(['EVI', 'MSI']) 
.setOptions({ 

title: 'Monthly indices', 
hAxis: { 

title: 'Date', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
vAxis: { 

title: 'Index', 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
lineWidth: 1,
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Fig. 44.9 Monthly mean EVI (left), monthly mean MSI (middle), and the time series for the water 
balance (top right) and indices (bottom right) 

colors: ['darkgreen', 'brown'], 
curveType: 'function' 

}); 

// Print the indices chart. 
print(chartIndices); 

Code Checkpoint A25d. The book’s repository contains a script that shows what 
your code should look like at this point. 

44.2.5 Section 5: Partitioning Water Resources and Mapping 
Drought Impacts 

Historical and near-real-time remote-sensing-derived data can be very useful to 
assess the impact on the ground. For example, overlaying information layers 
on water resources with land cover information enables us to partition water 
resources by land cover and investigate consumptive use of, for example, differ-
ent agricultural commodities. Overlaying land cover with vegetation and drought 
indicators helps to investigate land cover categories that are most impacted by 
water shortage. It also helps to assess the impacts on crop production and food 
security (Poortinga et al. 2019), as well as potential environmental impacts, includ-
ing impacts on biodiversity. However, in many cases, maps are produced and 
updated only infrequently and are often not accompanied by appropriate accuracy 
assessment information and documentation (Saah et al. 2019). Therefore, SERVIR-
Mekong developed a time series of yearly land cover maps covering the greater 
Mekong region, including the Lower Mekong Basin (Saah et al. 2020; Potapov
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Fig. 44.10 Land cover map 
of the Lower Mekong Basin 

et al. 2019; Poortinga et al. 2020). Figure 44.10 shows the land cover map of 
2018. 

44.2.5.1 Section 5.1: Annual Classifications 
In the following subsections, we illustrate annual land cover maps and a variety 
of interpretations of them. The annual maps can be accessed using script A25s1— 
Annual in the book repository. 

Note: if you get an error related to “too many concurrent aggregations” in this 
last script link or the following ones, try re-running the script.
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Fig. 44.11 The amount of P (left) and ET (right) per land cover category 

44.2.5.2 Section 5.2: Precipitation and Evapotranspiration 
An example of partitioning water inputs and consumption is shown in Fig. 44.11. 
Here we calculate the mean P and ET for each land cover category using the 
land cover map. We can see that the largest portions of water are being used by 
cropland and agriculture; plantations also consume a large portion of the water. 
The pie charts can be created and viewed using script A25s2—PET in the book 
repository. 

44.2.5.3 Section 5.3: Monthly Water Balance 
We can apply a similar overlaying method of partitioning for the water balance. 
Figure 44.12 shows the monthly water balance for deciduous forest, evergreen 
broadleaf, cropland, and rice. It can be seen that a large portion of the water 
stored in the wet season is used by forest and cropland in the dry season. The 
area of paddy rice is smaller, so the total water consumption in the dry season 
of those categories is smaller. The monthly water balance charts can be found in 
script A25s3—Monthly in the book repository. 

Fig. 44.12 Water balance for four different land cover categories: deciduous forest, evergreen 
broadleaf, cropland, and rice
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44.2.5.4 Section 5.4: Per-class Water Balance Across Seasons 
Partitioning can also be done per land cover category. In Fig. 44.13, we calculated 
the EVI and MSI for four land cover categories. There are very distinct patterns: 
we see little variation in the signal from the EVI but large variations for the decid-
uous forest. For cropland, we found a signal that closely corresponds to the yearly 
dry and wet seasons, whereas we see multiple cropping seasons per year. The 
long time series enables us to investigate deviations from the mean, which in turn 
provides valuable information on, for example, potential drought impacts. The per-
class water balance charts can be found in script A25s4—Per Class Balance in 
the book repository.

44.3 Synthesis 

With what you learned in this chapter, you can analyze large-scale hydrological 
processes in a river basin. The approach can be applied for any river basin in the 
world using your own data or the open-access data in the exercises. 

Assignment 1. Test the approach in another part of the world using your own data 
or open-access data, or use your own training data for a more refined classification 
model. 

Assignment 2. For further analysis, we encourage you to (1) replace MODIS with 
data from the Visible Infrared Imaging Radiometer Suite (VIIRS); (2) replace the 
CHIRPS data with the Integrated Multi-satellite Retrievals for GPM (IMERG) 
data and change the time intervals; and (3) use a different land cover map for 
partitioning the water resources.
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Fig. 44.13 EVI and MSI per land cover category
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44.4 Conclusion 

A safe and sustainable supply of water is essential for drinking, washing, cleaning, 
cooking, and growing food. However, water is often a scarce resource that needs 
to be managed in a sustainable and equitable way. Satellite data products in Earth 
Engine can help us to map the quantity of water in space and time. It enables us 
to partition water according to its consumptive use and evaluate how this affects a 
wide variety of important functions within a water basin. 
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Overview 
The purpose of this chapter is to demonstrate how to produce annual maps repre-
senting the first day within a year on which a given pixel reaches 0% snow cover. It 
also provides suggestions for summarizing and visualizing the results over time and 
space. 

Learning Outcomes

• Generating and using a date band in image compositing.
• Applying temporal filtering to an ImageCollection.
• Identifying patterns of seasonal snowmelt.
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Helps if you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

2).
• Work with time-series data in Earth Engine (Part 4).
• Fit linear and nonlinear functions with regression in an ImageCollection 

time series (Chap. 18). 

45.1 Introduction to Theory 

The timing of annual seasonal snowmelt (Fig. 45.1) and any potential change in 
that timing have broad ecological implications and thus impact human livelihoods, 
particularly in and around high-latitude and mountainous systems. The annual 
melting of accumulated winter snowfall, one of the most important phases of the 
hydrologic cycle within these regions, provides the dominant source of water for 
streamflow and groundwater recharge for approximately one sixth of the global 
population (Musselman et al. 2017; Barnhart et al. 2016; Bengtsson 1976). The 
timing of snowmelt in the Arctic and Antarctic influences the length of the growing 
season, and consistent snow cover throughout the winter insulates vegetation from 
harsh temperatures and wind (Duchesne et al. 2012; Kudo et al. 1999). In moun-
tainous regions, such as the Himalayas, snowmelt is a major source of freshwater 
downstream (Barnhart et al. 2016) and is essential in recharging groundwater. 

Fig. 45.1 Arctic polar stereographic projection showing the pattern of snowmelt timing in the 
Northern Hemisphere. The image shows the first day in 2018 on which each pixel no longer con-
tained snow, as detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) Snow 
Cover Daily Global product. The color grades from purple (earlier) to yellow (later)
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This seasonal water resource is one of the fastest-changing hydrologic systems 
under Earth’s warming climate, and these changes will broadly impact regional 
economies and ecosystem functioning and increase the potential for flood hazards 
(Musselman et al. 2017; IPCC 2007; Beniston 2012; Allan and Casillo 2007; Bar-
nett and Lettenmaier 2005). An analysis focusing on the Yamal Peninsula in the 
northwestern Siberian tundra found that the timing of snowmelt (calculated using 
the methods outlined here) was an important predictor of differences in ecosystem 
functioning across the landscape (Tassone et al. 2020). 

The anticipated warmer temperatures will alter the type and onset of pre-
cipitation. Multiple regions, including the Rocky Mountains of North America, 
have already measured a reduction in snowpack volume, and warmer temperatures 
have shifted precipitation from snowfall to rain, causing snowmelt to occur earlier 
(Barnhart et al. 2016; Clow 2010; Harpold et al. 2012). 

This tutorial demonstrates how to calculate the first day of no snow annually 
at the pixel level, providing the user with the ability to track the seasonal and 
interannual variability in the timing of snowmelt toward a better understanding 
of how the hydrological cycles of higher-latitude and mountainous regions are 
responding to climate change. 

45.2 Practicum 

45.2.1 Section 1: Identifying the First Day of 0% Snow Cover 

This section covers building an ImageCollection where each image is a 
mosaic of pixels that describe the first day in a given year that 0% snow cover 
was recorded. Snow cover is defined by the MODIS Normalized Difference Snow 
Index (NDSI) Snow Cover Daily Global product. The general workflow is as 
follows. 

1. Define the date range to consider for analysis. 
2. Define a function that adds date information as bands to snow cover images. 
3. Define an analysis mask. 
4. For each year: 

a. Filter the ImageCollection to observations from the given year. 
b. Add date bands to the filtered images. 
c. Identify the first day of the year without any snow per pixel. 
d. Apply an analysis mask to the image mosaic. 
e. Summarize the findings with a series of visualizations. 

45.2.1.1 Section 1.1: Define the Date Range 
First, we specify the day of year (DOY) on which to start the search for the first day 
with 0% snow cover. For applications in the Northern Hemisphere, you will likely 
want to start with January 1 (DOY 1). However, if you are studying snowmelt 
timing in the Southern Hemisphere (e.g., the Andes), where snowmelt can occur
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on dates on either side of January 1, it is more appropriate to start the year on July 
1 (DOY 183), for instance. In this calculation, a year is defined as the 365 days 
beginning from the specified startDoy. 

var startDoy = 1; 

Then, we define the years to start and end tracking snow cover fraction. All 
years in the range will be included in the analysis. 

var startYear = 2000; 
var endYear = 2019; 

45.2.1.2 Section 1.2: Define the Date Bands 
Next, we will define a function to add several date bands to the images; the added 
bands will be used in a future step. Each image has a metadata timestamp property, 
but since we will be creating annual image mosaics composed of pixels from many 
different images, the date needs to be encoded per pixel as a value in an image 
band so that it is retained in the final mosaics. The function encodes:

• Calendar DOY (calDoy): enumerated DOY from January 1.
• Relative DOY (relDoy): enumerated DOY from a given startDoy.
• Milliseconds elapsed since the Unix epoch (millis).
• Year (year): Note that the year is tied to the startDoy. For example, if the 
startDoy is set at 183, the analysis will cross into the next calendar year, 
and the year given to all pixels will be the earlier year, even if a particular 
image was collected on or after January 1 of the subsequent year. 

Additionally, two global variables are initialized (startDate and startYear) 
that will be redefined iteratively in a subsequent step.
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var startDate; 
var startYear; 
 
function addDateBands(img) { 
    // Get image date. 
    var date = img.date(); 
    // Get calendar day-of-year. 
    var calDoy = date.getRelative('day', 'year'); 
    // Get relative day-of-year; enumerate from user-
defined startDoy. 
    var relDoy = date.difference(startDate, 'day'); 
    // Get the date as milliseconds from Unix epoch. 
    var millis = date.millis(); 
    // Add all of the above date info as bands to the snow 
fraction image. 
    var dateBands = ee.Image.constant([calDoy, relDoy, 
millis, 
            startYear 
        ]) 
        .rename(['calDoy', 'relDoy', 'millis', 'year']); 
    // Cast bands to correct data type before returning 
the image. 
    return img.addBands(dateBands) 
        .cast({ 
            'calDoy': 'int', 
            'relDoy': 'int', 
            'millis': 'long', 
            'year': 'int' 
        }) 
        .set('millis', millis); 
} 

45.2.1.3 Section 1.3: Define an Analysis Mask 
Here is the opportunity to define a mask for your analysis. This mask can be used 
to constrain the analysis to certain latitudes, land cover types, geometries, etc. In 
this case, we will (1) mask out water so that the analysis is confined to pixels over 
landforms only, (2) mask out pixels that have very few days of snow cover, and (3) 
mask out pixels that are snow covered for a good deal of the year (e.g., glaciers). 

Import the MODIS Land/Water Mask dataset, select the ‘water_mask’ 
band, and set all land pixels to value 1. 

var waterMask = 
ee.Image('MODIS/MOD44W/MOD44W_005_2000_02_24') 

.select('water_mask') 

.not();
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Import the MODIS Snow Cover Daily Global 500 m product and select the 
‘NDSI_Snow_Cover’ band. 

var completeCol = ee.ImageCollection('MODIS/006/MOD10A1') 
    .select('NDSI_Snow_Cover'); 

Mask pixels based on the frequency of snow cover. 

// Pixels must have been 10% snow covered for at least 2 
weeks in 2018. 
var snowCoverEphem = completeCol.filterDate('2018-01-01', 
        '2019-01-01') 
    .map(function(img) { 
        return img.gte(10); 
    }) 
    .sum() 
    .gte(14); 
 
// Pixels must not be 10% snow covered more than 124 days 
in 2018. 
var snowCoverConst = completeCol.filterDate('2018-01-01', 
        '2019-01-01') 
    .map(function(img) { 
        return img.gte(10); 
    }) 
    .sum() 
    .lte(124); 

Combine the water mask and the snow cover frequency masks. 

var analysisMask = 
waterMask.multiply(snowCoverEphem).multiply( 

snowCoverConst); 

45.2.1.4 Section 1.4: Identify the First Day of the Year Without Snow 
per Pixel, per Year 

Make a list of the years to process. The input variables were defined in 
Sect. 45.2.1.1. 

var years = ee.List.sequence(startYear, endYear); 
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Map the following function over the list of years. For each year, identify the 
first day with 0% snow cover. 

1. Define the start and end dates to filter the dataset for the given year. 
2. Filter the ImageCollection by the date range. 
3. Add the date bands to each image in the filtered collection. 
4. Sort the filtered collection by date. (Note: To determine the first day with snow 

accumulation in the fall, reverse sort the filtered collection.) 
5. Make a mosaic using the min reducer to select the pixel with 0 (minimum) 

snow cover. Since the collection is sorted by date, the first image with 0 snow 
cover is selected. This operation is conducted per pixel to build the complete 
image mosaic. 

6. Apply the analysis mask to the resulting mosaic. 

An ee.List of images is returned. 

var annualList = years.map(function(year) { 
// Set the global startYear variable as the year being 

worked on so that 
// it will be accessible to the addDateBands mapped to 

the collection below. 
startYear = year; 
// Get the first day-of-year for this year as an 

ee.Date object. 
var firstDoy = ee.Date.fromYMD(year, 1, 1); 
// Advance from the firstDoy to the user-defined 

startDay; subtract 1 since 
// firstDoy is already 1. Set the result as the global 

startDate variable so 
// that it is accessible to the addDateBands mapped to 

the collection below. 
startDate = firstDoy.advance(startDoy - 1, 'day'); 
// Get endDate for this year by advancing 1 year from 

startDate. 
// Need to advance an extra day because end date of 

filterDate() function 
// is exclusive. 
var endDate = startDate.advance(1, 'year').advance(1, 

'day'); 
// Filter the complete collection by the start and end 

dates just defined.
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var yearCol = completeCol.filterDate(startDate, 
endDate); 

// Construct an image where pixels represent the first 
day within the date 

// range that the lowest snow fraction is observed. 
var noSnowImg = yearCol 

// Add date bands to all images in this particular 
collection. 

.map(addDateBands) 
// Sort the images by ascending time to identify 

the first day without 
// snow. Alternatively, you can use 

.sort('millis', false) to 
// reverse sort (find first day of snow in the 

fall). 
.sort('millis') 
// Make a mosaic composed of pixels from images 

that represent the 
// observation with the minimum percent snow cover 

(defined by the 
// NDSI_Snow_Cover band); include all associated 

bands for the selected 
// image. 
.reduce(ee.Reducer.min(5)) 
// Rename the bands - band names were altered by 

previous operation. 
.rename(['snowCover', 'calDoy', 'relDoy', 

'millis', 
'year' 

]) 
// Apply the mask. 
.updateMask(analysisMask) 
// Set the year as a property for filtering by 

later. 
.set('year', year); 

// Mask by minimum snow fraction - only include pixels 
that reach 0 

// percent cover. Return the resulting image. 
return 

noSnowImg.updateMask(noSnowImg.select('snowCover') 
.eq(0)); 

});
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Convert the ee.List of images to an ImageCollection. 

var annualCol = ee.ImageCollection.fromImages(annualList); 

Code Checkpoint A26a. The book’s repository contains a script that shows what 
your code should look like at this point. 

45.2.2 Section 2: Data Summary and Visualization 

The following is a series of examples for how to display and explore the “first 
DOY with no snow” dataset you just generated.

• These examples refer to the calendar date (calDoy band) when displaying and 
incorporating date information in calculations. If you are using a date range 
that begins on any day other than January 1 (DOY 1) you may want to replace 
calDoy with relDoy in all cases below.

• Results may appear different as you zoom in and out of the Map because of tile 
aggregation, which is described in the Earth Engine documentation. It is best to 
view Map data interactively with a relatively high zoom level. Additionally, for 
any analysis where a function provides a scale parameter (e.g., region reduction, 
exporting results), it is best to define it with the native resolution of the dataset 
(500 m).

• MODIS cloud masking can influence results. If there are a number of sequen-
tially masked image pixel observations (e.g., clouds, poor quality), the actual 
date of the first observation with 0% snow cover may be earlier than identified 
in the image time series. Regional patterns may be less influenced by this bias 
than local results. For local results, please inspect image masks to understand 
their influence on the dates near snowmelt timing. 

45.2.2.1 Section 2.1: Single-Year Map 
Filter a single year from the collection (2018 in the example below) and display 
the image to the Map to see spatial patterns of snowmelt timing. Setting the min 
and max parameters of the visArgs variable to a narrow range around expected 
snowmelt timing is important for getting a good color stretch.
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// Define a year to visualize. 
var thisYear = 2018; 
 
// Define visualization arguments. 
var visArgs = { 
    bands: ['calDoy'], 
    min: 150, 
    max: 200, 
    palette: [ 
        '0D0887', '5B02A3', '9A179B', 'CB4678', 'EB7852', 
        'FBB32F', 'F0F921' 
    ] 
}; 
 
// Subset the year of interest. 
var firstDayNoSnowYear = 
annualCol.filter(ee.Filter.eq('year', 
    thisYear)).first(); 
 
// Display it on the map. 
Map.setCenter(-95.78, 59.451, 5); 
Map.addLayer(firstDayNoSnowYear, visArgs, 
    'First day of no snow, 2018'); 

Running this code produces something similar to Fig. 45.2. The color represents 
the DOY when 0% snow cover was first observed per pixel (blue is earlier, yellow 
is later).

One can notice a number of interesting patterns. Frozen lakes have been shown 
to decrease air temperatures in adjacent pixels, resulting in delayed snowmelt 
(Rouse et al. 1997; Salomonson and Appel 2004; Wang and Derksen 2008). Addi-
tionally, the protected estuaries of the Northwest Passages have earlier dates of no 
snow compared to the landscapes exposed to the currents and winds of the North-
ern Atlantic. Latitude, elevation, and proximity to ocean currents are the strongest 
determinants in this region. 

Note that pixels representing glaciers that did not get removed by the analysis 
mask can produce anomalies in the data. Since glaciers are generally snow covered, 
the DOY with the least snow cover according to the MODIS Snow Cover Daily 
Global product is presented in the Map. In Fig. 45.2, this is evident in the abrupt 
transition within alpine areas of Baffin Island (white pixels represent glaciers in 
this case). 

45.2.2.2 Section 2.2: Year-to-Year Difference Map 
Compare year-to-year difference in snowmelt timing by selecting two years of 
interest from the collection and subtracting them. Here, we are calculating the 
difference in snowmelt timing between 2005 and 2015.
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Fig. 45.2 Thematic map representing the first DOY with 0% snow cover. Color grades from blue 
to yellow as the DOY increases

// Define the years to difference. 
var firstYear = 2005; 
var secondYear = 2015; 

// Calculate difference image. 
var firstImg = annualCol.filter(ee.Filter.eq('year', 
firstYear)) 

.first().select('calDoy'); 
var secondImg = annualCol.filter(ee.Filter.eq('year', 
secondYear)) 

.first().select('calDoy'); 
var dif = secondImg.subtract(firstImg); 

// Define visualization arguments. 
var visArgs = { 

min: -15, 
max: 15, 
palette: ['b2182b', 'ef8a62', 'fddbc7', 'f7f7f7', 

'd1e5f0', 
'67a9cf', '2166ac' 

] 
}; 

// Display it on the map. 
Map.setCenter(95.427, 29.552, 8); 
Map.addLayer(dif, visArgs, '2015-2005 first day no snow 
dif');
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Fig. 45.3 Year-to-year (2005–2015) difference map of the Himalayas on the Nepal–China border. 
Color grades from red to blue, with red indicating an earlier date of no snow in 2015 and blue 
indicating a later date of no snow in 2015. White areas indicate little or no change 

Running this code produces something similar to Fig. 45.3. The color represents 
the difference, in each pixel, between the 2005 and 2015 DOY when 0% snow 
cover was first observed. Red represents a negative change (an earlier no-snow 
date in 2015), blue represents a positive change (a later no-snow date in 2015), 
and white represents a negligible or no change in the no-snow dates for 2005 and 
2015. 

45.2.2.3 Section 2.3: Trend Analysis Mapping 
It is also possible to identify trends in the shifting first DOY with no snow by 
calculating the slope through a pixel’s time-series points. Here, the slope for each 
pixel is calculated with year as the x variable and the first DOY with no snow as 
the y variable.
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// Calculate slope image. 
var slope = annualCol.sort('year').select(['year', 
'calDoy']) 
    .reduce(ee.Reducer.linearFit()).select('scale'); 
 
// Define visualization arguments. 
var visArgs = { 
    min: -1, 
    max: 1, 
    palette: ['b2182b', 'ef8a62', 'fddbc7', 'f7f7f7', 
        'd1e5f0', '67a9cf', '2166ac' 
    ] 
}; 
 
// Display it on the map. 
Map.setCenter(11.25, 59.88, 6); 
Map.addLayer(slope, visArgs, '2000-2019 first day no snow 
slope'); 

The result is a map (Fig. 45.4) where red represents a negative slope (pro-
gressively earlier first DOY with no snow), white represents a slope of 0, and 
blue represents a positive slope (progressively later first DOY with no snow). In 
southern Norway and Sweden, the trend in the first DOY with no snow between 
2002 and 2019 appears to be influenced by various factors. Coastal areas exhibit 
progressively earlier first DOY of no snow than inland areas; however, high vari-
ability in slopes can be observed around fjords and in mountainous regions. This 
map reveals the complexity of seasonal snow dynamics in these areas.

Note that goodness-of-fit calculations are not measured here, nor is significance 
considered. While a slope can indicate regional trends, more local trends should be 
investigated using a time-series chart (see the next section). Interannual variability 
can be influenced by masked pixels, as described above. 

45.2.2.4 Section 2.4: Time-Series Chart 
To visually understand the temporal patterns of the first DOY with no snow 
through time, we can display our results in a time-series chart. In this case, we have 
defined a circle with a radius of 500 m around a point of interest and calculated 
the annual mean first DOY with no snow for pixels within that circle.
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Fig. 45.4 Map representing the slope of the first DOY with no snow cover between 2000 and 
2019. The slope represents the overall trend. Color grades from red (negative slope) to blue (pos-
itive slope). White indicates areas of little to no change

// Define an AOI. 
var aoi = ee.Geometry.Point(-94.242, 65.79).buffer(1e4); 
Map.addLayer(aoi, null, 'Area of interest'); 
 
// Calculate annual mean DOY of AOI. 
var annualAoiMean = 
annualCol.select('calDoy').map(function(img) { 
    var summary = img.reduceRegion({ 
        reducer: ee.Reducer.mean(), 
        geometry: aoi, 
        scale: 1e3, 
        bestEffort: true, 
        maxPixels: 1e14, 
        tileScale: 4, 
    }); 
    return ee.Feature(null, summary).set('year', img.get( 
        'year')); 
}); 
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// Print chart to console. 
var chart = ui.Chart.feature.byFeature(annualAoiMean, 
'year', 
        'calDoy') 
    .setOptions({ 
        title: 'Regional mean first day of year with no 
snow cover', 
        legend: { 
            position: 'none' 
        }, 
        hAxis: { 
            title: 'Year', 
            format: '####' 
        }, 
        vAxis: { 
            title: 'Day-of-year' 
        } 
    }); 
print(chart); 

Code Checkpoint A26b. The book’s repository contains a script that shows what 
your code should look like at this point. 

As is evident in the displayed results (Fig. 45.5), the first DOY with no snow 
was mostly stable from 2000 to 2012; following this, it has become more erratic. 

Fig. 45.5 Annual mean first DOY with no snow time series for pixels within a small region of 
interest
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45.3 Synthesis 

Assignment 1. In Sect. 45.2.2.4, a time-series chart for a region of interest was 
generated. Suppose you wanted to compare several regions in the same chart; 
how would you change the code to achieve this? For instance, try plotting the 
first DOY of no snow at points (− 69.271, 65.532) and (− 104.484, 65.445) in 
the same chart. Some helpful functions include ee.Image.reduceRegions, 
ee.FeatureCollection.flatten, and ui.Chart.feature.groups. 

Assignment 2. The objective of this chapter was to identify the first DOY of 0% 
snow cover. However, Sect. 45.2.1.4 provides a suggestion for altering the code to 
identify the last day of 0% snow cover. Can you modify the code to achieve this 
result? 

Assignment 3. How could you determine regions that are often masked dur-
ing the time of year when snowmelt occurs? (The results from such regions 
might not be reliable.) Hint: Think about how you can use the mask 
function on images and investigate the ‘NDSI_Snow_Cover_Class’ and 
‘Snow_Albedo_Daily_Tile_Class’ bands. 

45.4 Conclusion 

In this chapter, we provided a method to identify the annual, per pixel, first DOY 
with no snow from MODIS snow cover image data. The result can be used to 
investigate patterns of seasonal snowmelt spatially and temporally. The method 
relied on adding a date band to each image in the collection, temporal sorting, 
and ImageCollection reduction. We demonstrated several different ways to 
analyze the results using map and chart interpretation, image differencing, and 
linear regression. 
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Part IX 

Terrestrial Applications 

Earth’s terrestrial surface is analyzed regularly by satellites, in search of both change 
and stability. These are of great interest to a wide cross-section of Earth Engine users, 
and projects across large areas illustrate both the challenges and opportunities for 
life on Earth. Chapters in this part illustrate the use of Earth Engine for disturbance, 
understanding long-term changes of rangelands, and creating optimum study sites.
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Overview 
Fire monitoring across the world benefits from raw satellite imagery and processed 
fire mapping datasets. Google Earth Engine supports fire monitoring throughout 
fire seasons with satellite data from sources like Landsat 8, Sentinel-2, and Moder-
ate Resolution Imaging Spectroradiometer (MODIS), and by hosting multiple fire 
datasets from the Geostationary Operational Environmental Satellite (GOES) and 
the Fire Information for Resource Management System (FIRMS). In this chapter, 
you will access, process, and explore three fire monitoring datasets available in the 
data catalog. By the end of this chapter, you will learn how to use the Code Editor 
and user apps to summarize and compare the characteristics of fires, fire seasons, 
and fire monitoring datasets. 

Learning Outcomes 

• Accessing and visualizing fire monitoring datasets in the JavaScript UI. 
• Adjusting previously drafted code to calculate fire characteristics in the JavaScript 

UI for a fire of your choice. 
• Exploring fire metrics and visualization with user apps.
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• Identifying pros and cons of different fire datasets for a variety of monitoring 
objectives. 

Helps if you know how to: 

• Import images and image collections, filter, and visualize (Part 1). 
• Write a function and map it over an ImageCollection (Chap. 12). 
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23). 
• Design user interfaces for an Earth Engine App (Chap. 30). 
• Access and interact with previously made Earth Engine user apps (Chap. 30). 

46.1 Introduction to Theory 

Fire has many roles around the world. It is both a naturally occurring ecological 
process in fire-prone regions and a tool used by humans for land and resource 
management. However, fires and their emissions continue to have more extreme 
impacts as human settlements expand, climatic conditions become less predictable, 
and fire seasons lengthen (Jolly et al. 2015). To better identify and quantify the 
effects of fires across the globe, it is vital to monitor fires using various methods, 
including hand-drawn maps, ground-based sensors, GPS tracking, aerial surveys, 
imagery collection, and satellite-based data (Andela et al. 2017; Archibald et al. 
2009; Nogueira et al. 2017; Stinson et al. 2011; Veraverbeke et al. 2014). 

Different sources of satellite imagery can be used to visualize fire conditions 
and progressions, calculate band ratios reflecting disturbance and fire severity, and 
map burned areas with training data-informed classification algorithms (Crowley 
et al. 2019a, b; Hawbaker et al. 2017; Hermosilla et al. 2018; Parks 2014; Parks 
et al. 2019; Veraverbeke et al. 2014). Many premade fire datasets are readily avail-
able for monitoring global fire locations, extents, and progressions (Andela et al. 
2019; Chuvieco et al. 2016; Giglio et al. 2016; Humber et al. 2019). In the case 
of existing fire datasets available for large spatial and temporal extents, remote 
sensing scientists apply their robust classification algorithms on satellite imagery 
and other geospatial data. Earth Engine makes fire monitoring more accessible by 
sharing multiple data sources in the data catalog so users can easily access and 
process these data to meet their desired objectives (Liu and Crowley 2021).
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46.2 Practicum 

46.2.1 Section 1: Fire Datasets in Google Earth Engine 

In the following example, we use MODIS and GOES datasets (Table 46.1) to map  
the Bobcat Fire, a megafire that burned 115,796 acres in Los Angeles County, 
California, in September 2020. 

First, we need to define temporal and spatial variables to filter the datasets, 
namely the approximate ignition coordinates and start date of the fire. 

// Define the location of the fire. 
var lon = -117.868; 
var lat = 34.241; 
var zoom = 9; 

// Filter datasets to a specific date range: 
// start date of fire. 
var inYear = 2020; 
var inMonth = 9; 
var inDay = 6; 

Using the ignition date (September 6, 2020), we can define separate date ranges 
to filter the active fire and burned area datasets to account for differences in the 
temporal structure of the datasets, i.e., daily versus monthly. Here, we set the 
temporal filter range for active fire datasets as the two-week period starting from 
the ignition date and for the burned area dataset as the month of September. The 
duration variables can be modified according to the fire of interest.

Table 46.1 MODIS and GOES fire mapping datasets available in the Google Earth Engine data 
catalog 

Satellite/sensor Dataset Variable Resolution Dataset coverage 

MODIS Terra, 
MODIS Aqua* 

MOD/MYD14A1 Active fires 1 km, daily Global, 2001 to 
present 

MCD64A1 Burned area 500 m, monthly** Global, 2001 to 
present 

GOES-16, 
GOES-17* 

FDCF Active fires 2 km,  every 15 min North/South 
America, 2017 to 
present 

* MODIS Terra (from 2000), MODIS Aqua (from 2002), GOES-16 (from 2016), GOES-17 (from 
2017) 
** Can be disaggregated into daily resolution using the MCD64A1 burn date variable 
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var durationAF = 15; // in days 
var durationBA = 1; // in months 

// Date range for active fires. 
var startDateAF = ee.Date.fromYMD(inYear, inMonth, inDay); 
var endDateAF = startDateAF.advance(durationAF, 'day'); 

// Date range for burned area. 
var startDateBA = ee.Date.fromYMD(inYear, inMonth, 1); 
var endDateBA = startDateBA.advance(durationBA, 'month'); 

With these input variables defined, we can preprocess the fire datasets. We 
will upload a high-resolution reference perimeter provided by the U.S. National 
Interagency Fire Center (NIFC) and then add the MODIS and GOES datasets from 
the Earth Engine data catalog. 

Reference Fire Perimeter 
The NIFC produces wildland fire perimeters using information from local fire 
agencies. For this tutorial, we uploaded the NIFC perimeter for the Bobcat Fire, 
converting it from a shapefile to an Earth Engine asset. We will access the asset 
from the book repository and use it as a reference layer to compare with the 
MODIS and GOES datasets. 

// -------------------------------
// 1. Reference Perimeter (WFIGS) 
// -------------------------------
// Note: each fire has multiple versions, so here we are 
// filtering WFIGS by the name of the fire, sorting the 
// area of the filtered polygons in descending order, 
// and retrieving the polygon with the highest area. 
var WFIGS = ee.FeatureCollection( 

'projects/gee-book/assets/A3-1/WFIGS'); 
var reference = 
ee.Feature(WFIGS.filter(ee.Filter.eq('irwin_In_1', 

'BOBCAT')) 
.sort('poly_Acres', false).first()); 

MODIS Active Fire Products 
The gridded 1 km MODIS active fire datasets, MOD14A1 (Terra) and MYD14A1 
(Aqua), have daily collection rates and global coverage (Giglio et al. 2016; Giglio 
2010). The MODIS sensor is mounted on the two separate satellites, Terra and 
Aqua, both operated by NASA for environmental monitoring. Here, we define two
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functions to process the fire mask and fire radiative power (FRP) variables. The 
fire mask provides a categorical classification of the confidence in fire detection, 
where values ≥ 7 indicate that fire is present. FRP is a continuous variable that is a 
proxy for fire intensity, in units of megawatts (MW). Note that MODIS FRP must 
be multiplied by 0.1 to be in units of MW. 

// -------------------------------
// 2. MODIS active fire datasets 
// -------------------------------
// MOD14A1, MYD14A1 = MODIS/Terra and Aqua active fires and 
thermal anomalies 
// resolution: daily, gridded at 1km in sinusoidal 
projection (SR-ORG:6974) 
// variables: fire mask (FireMask), fire radiative power in 
MW (MaxFRP) 
// satellite overpasses: Terra (10:30am/pm local time), 
Aqua (1:30am/pm local time) 

// Define the Earth Engine paths for MOD14A1 and MYD14A1, 
collection 6. 
var mod14a1 = ee.ImageCollection('MODIS/006/MOD14A1'); 
var myd14a1 = ee.ImageCollection('MODIS/006/MYD14A1'); 

// Filter the datasets according to the date range. 
var mod14a1Img = mod14a1.filterDate(startDateAF, 
endDateAF); 
var myd14a1Img = myd14a1.filterDate(startDateAF, 
endDateAF); 

var getFireMask = function(image) { 
// Fire Mask (FireMask): values ≥ 7 are active fire 

pixels 
return image.select('FireMask').gte(7); 

}; 

var getMaxFRP = function(image) { 
// FRP (MaxFRP): MaxFRP needs to be scaled by 0.1 to be 

in units of MW. 
return image.select('MaxFRP').multiply(0.1); 

}; 

// Define the active fire mask (count of active fire 
pixels). 
var mod14a1ImgMask = mod14a1Img.map(getFireMask).sum(); 
var myd14a1ImgMask = myd14a1Img.map(getFireMask).sum();
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// Define the total FRP (MW). 
var mod14a1ImgFrp = mod14a1Img.map(getMaxFRP).sum(); 
var myd14a1ImgFrp = myd14a1Img.map(getMaxFRP).sum(); 

MODIS Burned Area Product 
The gridded 500 m MODIS burned area dataset, MCD64A1, is monthly with 
global coverage but can be disaggregated to daily resolution with its burn date 
variable (Giglio et al. 2016; Humber et al. 2019). Here, we define a function to 
retrieve the burn date. 

// ------------------------------
// 3. MODIS burned area dataset 
// ------------------------------
// MCD64A1 = MODIS/Terra and Aqua combined burned area 
// resolution: monthly, gridded at 500m in sinusoidal 
projection (SR-ORG:6974), 
// can be disaggregated to daily resolution 
// variables: burn date as day of year (BurnDate) 

// Define the Earth Engine paths for MCD64A1, collection 6. 
var mcd64a1 = ee.ImageCollection('MODIS/006/MCD64A1'); 

var getBurnDate = function(image) { 
// burn day of year (BurnDate) 
return image.select('BurnDate'); 

}; 

// Define the burned area mask. 
var mcd64a1Img = mcd64a1.filterDate(startDateBA, 
endDateBA); 
var mcd64a1ImgMask = mcd64a1Img.map(getBurnDate).min(); 

GOES Active Fire Products 
The gridded 2 km GOES-16 (East) and GOES-17 (West) active fire datasets cover 
North and South America in the full disk version (FDCF) with a temporal revisit 
rate of 15-min increments (Hall et al. 2019; Schroeder et al. 2008). The two 
GOES satellites are operated by the National Oceanic and Atmospheric Adminis-
tration (NOAA) and are primarily used for meteorological monitoring. Note that 
the pixel orientation and shape differ between GOES-16 and GOES-17 because of 
the different viewing angles of the two satellites.
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// ------------------------------
// 4. GOES 16/17 active fires 
// ------------------------------
// GOES-16/17 - geostationary satellites over North/South 
America 
// resolution: every 10-30 minutes, 2 km 
// variables: fire mask (Mask), FRP (Power) 

// Define the Earth Engine paths for GOES-16/17. 
var goes16 = ee.ImageCollection('NOAA/GOES/16/FDCF'); 
var goes17 = ee.ImageCollection('NOAA/GOES/17/FDCF'); 

var filterGOES = ee.Filter.calendarRange(0, 0, 'minute'); 

// Filter the datasets according to the date range. 
var goes16Img = goes16.filterDate(startDateAF, endDateAF) 

.filter(filterGOES); 
var goes17Img = goes17.filterDate(startDateAF, endDateAF) 

.filter(filterGOES); 

var getFireMask = function(image) { 
// fire mask (Mask): values from 10-35 are active fire 

pixels, 
// see the description for QA values to filter out low 

confidence fires 
return 

image.select('Mask').gte(10).and(image.select('Mask') 
.lte(35)); 

}; 

var getFRP = function(image) { 
// FRP (Power), in MW 
return image.select('Power'); 

}; 

// Define the active fire mask (count of active fire 
pixels). 
var goes16ImgMask = goes16Img.map(getFireMask).sum(); 
var goes17ImgMask = goes17Img.map(getFireMask).sum(); 
// Define the total FRP (MW). 
var goes16ImgFrp = goes16Img.map(getFRP).sum(); 
var goes17ImgFrp = goes17Img.map(getFRP).sum();
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Now, we will visualize the three datasets, along with the reference Bobcat Fire 
perimeter, and plot the layers on the Earth Engine interactive map. 

// -------------------------------
// 5. Map Visualization - Layers 
// -------------------------------
// Use the 'Layers' dropdown menu on the map panel to 
toggle on and off layers. 
Map.addLayer(mod14a1ImgMask.selfMask(), { 

palette: 'orange' 
}, 'MOD14A1'); 
Map.addLayer(myd14a1ImgMask.selfMask(), { 

palette: 'red' 
}, 'MYD14A1'); 

Map.addLayer(mcd64a1ImgMask.selfMask(), { 
palette: 'black' 

}, 'MCD64A1'); 

Map.addLayer(goes16ImgMask.selfMask(), { 
palette: 'skyblue' 

}, 'GOES16', false); 
Map.addLayer(goes17ImgMask.selfMask(), { 

palette: 'purple' 
}, 'GOES17', false); 

Map.setCenter(lon, lat, 9); 

We can also visualize the datasets side by side as shown in Fig. 46.1 by using 
the ui.Panel and ui.Map.Linker using the code provided by the “Linked 
Maps” script under Examples > User Interface in the Scripts panel.
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Fig. 46.1 Side-by-side panel comparison of the Bobcat Fire as seen in (clockwise from top left) 
MODIS active fires, GOES-16/17 active fires, MODIS burned area, and a reference fire perimeter 
from the WFIGS dataset 

// ------------------------------------
// 6. Map Visualization - Panel Layout 
// ------------------------------------

// Define the panel layout. 
var panelNames = [ 

'MODIS active fires', // panel 0 - top left 
'MODIS burned area', // panel 1 - bottom left 
'GOES active fires', // panel 2 - top right 
'Reference' // panel 3 - bottom right 

]; 

// Create a map for each visualization option. 
var maps = []; 
panelNames.forEach(function(name, index) { 

var map = ui.Map(); 
map.setControlVisibility({ 

fullscreenControl: false 
});
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if (index === 0) { 
map.addLayer(mod14a1ImgMask.selfMask(), { 

palette: 'orange' 
}, 'MOD14A1'); 
map.addLayer(myd14a1ImgMask.selfMask(), { 

palette: 'red' 
}, 'MYD14A1'); 
map.add(ui.Label(panelNames[0], { 

fontWeight: 'bold', 
position: 'bottom-left' 

})); 
} 
if (index == 1) { 

map.addLayer(mcd64a1ImgMask.selfMask(), { 
palette: 'black' 

}, 'MCD64A1'); 
map.add(ui.Label(panelNames[1], { 

fontWeight: 'bold', 
position: 'bottom-left' 

})); 
} 
if (index == 2) { 

map.addLayer(goes16ImgMask.selfMask(), { 
palette: 'skyblue' 

}, 'GOES16'); 
map.addLayer(goes17ImgMask.selfMask(), { 

palette: 'purple' 
}, 'GOES17'); 
map.add(ui.Label(panelNames[2], { 

fontWeight: 'bold', 
position: 'bottom-left' 

})); 
} 
if (index == 3) { 

map.addLayer(reference, {}, 'Reference'); 
map.add(ui.Label(panelNames[3], { 

fontWeight: 'bold', 
position: 'bottom-left' 

})); 
} 
maps.push(map); 

});



46 Active Fire Monitoring 1015

var linker = ui.Map.Linker(maps); 
// Make a label for the main title of the app. 
var title = ui.Label( 

'Visualizing Fire Datasets in Google Earth Engine', { 
stretch: 'horizontal', 
textAlign: 'center', 
fontWeight: 'bold', 
fontSize: '24px' 

}); 

// Define a map grid of 2x2 sub panels. 
var mapGrid = ui.Panel( 

[ 
ui.Panel([maps[0], maps[1]], null, { 

stretch: 'both' 
}), 
ui.Panel([maps[2], maps[3]], null, { 

stretch: 'both' 
}) 

], 
ui.Panel.Layout.Flow('horizontal'), { 

stretch: 'both' 
} 

); 
maps[0].setCenter(lon, lat, zoom); 

// Add the maps and title to the ui.root(). 
ui.root.widgets().reset([title, mapGrid]); 
ui.root.setLayout(ui.Panel.Layout.Flow('vertical')); 

Code Checkpoint A31a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. How does the burned area classification (i.e., burned versus unburned) 
and the spatial resolution (i.e., pixel size) differ across the three datasets? 

Question 2. There appears to be a gap in fire activity between the MODIS incident 
data and burned area map for the Bobcat Fire, as shown in the split-panel app. 
What differences in the datasets might account for the mismatched fire classifi-
cations? Hint: Use https://worldview.earthdata.nasa.gov/ to examine raw MODIS 
imagery of the fire location and date. 

Question 3. How does the temporal resolution of 15 min for GOES impact 
monitoring fires in the event of smoke and haze?

https://worldview.earthdata.nasa.gov/
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46.2.2 Section 2: In-Depth Visualization and Analysis of Fires 
in Earth Engine Apps 

Earth Engine Apps help to curate in-depth visualization and analysis of fires. Here 
we present two apps using datasets from the Earth Engine public data catalog. 

In the remainder of this chapter, you will use these two apps to learn more 
about the Bobcat Fire and to explore findings from the two datasets. 

App 1: FIRMS Active Fires 
FIRMS currently monitors active fires detected by MODIS, Visible Infrared Imag-
ing Radiometer Suite (VIIRS), and NOAA-20 in near real time. FIRMS retains the 
coordinates of the centroid of pixels where one or more active fires are detected. 
The FIRMS dataset in the Earth Engine data catalog includes only MODIS active 
fires, gridded at 1 km spatial resolution. Note that the FIRMS dataset is meant for 
exploratory rather than rigorous scientific analyzes. 

The “FIRMS Active Fires” Earth Engine app allows users to visualize the 
spatial and temporal variation in FIRMS active fires within a defined region. 

Code Checkpoint A31b. The book’s repository contains information about 
accessing the app. 

Using the control panel, you can specify the date range (start year, end year, 
and day-of-year range) and draw a region of interest using either a rectangle or a 
polygon. The map shows the number of years that one or more active fires were 
detected in each pixel. The chart panel shows the total daily fire counts within the 
region as a timeseries, where each color represents a different year (Fig. 46.2). 
You can also change the chart type to display the cumulative active fire count. 

Fig. 46.2 Bobcat Fire in the Earth Engine app FIRMS Active Fires. The chart panel on the lower 
right displays the history of active fires in the Bobcat Fire area from July–November in the years 
2010–2020. The map layer shows the number of years in each pixel that had at least one active fire
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Question 4. Navigate to the Bobcat Fire using the ignition coordinates (longitude, 
latitude). Using the satellite or map base layer, draw a polygon similar to the one 
shown in a Fig. 46.2. Submit your task and confirm your results with the above 
details. 

Code Checkpoint A31c. The book’s repository contains information about how 
your app should look at this point. 

Question 5. Examine the chart. Approximately how many days did the fire actively 
burn? Hint: Hover over the chart and compare the first DOY value and the final 
DOY value. 

App 2: U.S. Fire Dashboard 
In a more advanced app, the “U.S. Fire Dashboard”, GOES-16/17 gridded active 
fires are used to calculate a smoothed burn perimeter for the various wildfires 
in 2020 by modifying the code from the Google Earth Engine Medium article, 
“How to generate wildfire boundary maps with Earth Engine” (Restif and Hoffman 
2020). The code takes advantage of the different GOES-16 and GOES-17 pixel 
orientation and shape to downscale the burn classification to a finer resolution 
than that of the native GOES imagery. In the following example, we will use this 
app to visualize how the Bobcat Fire progressed in space and time from ignition 
(Fig. 46.3). 

Code Checkpoint A31d. The book’s repository contains information about 
accessing the app.

Fig. 46.3 Bobcat Fire in the Earth Engine app U.S. Fire Dashboard. The map displays the 
smoothed burn perimeter derived from GOES active fires, where the color gradient represents the 
confidence in the classification of the burned area. The black line shows the burn perimeter derived 
from pixels with > 90% confidence. The charts on the left-hand panel show the evolution of the 
Bobcat Fire in terms of its cumulative area and spatial growth 
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Fig. 46.4 Bobcat Fire in the Earth Engine app U.S. Fire Dashboard (https://globalfires.earthe 
ngine.app/view/us-fire-dashboard). The left-hand panel shows the burn severity derived from 
Sentinel-2A surface reflectance. The right-hand panel shows the confidence of the burned area clas-
sification derived from GOES active fires. The black line in both panels shows the burn perimeter 
derived from pixels having > 90% confidence 

Question 6. Navigate to the Bobcat Fire using the dropdown panel at the top right 
corner of the app and wait a few minutes for the results to load. Examine the fire 
progression chart drawn at the top of the left panel. How many hours did it take 
for the fire to reach its maximum burned area? Now examine the animated fire 
progression GIF at the bottom of the left panel. What direction did the Bobcat 
Fire burn? 

Question 7. Now drag the split panel from the left to reveal a second panel. Use 
the drop-down menu on the legend to navigate to the burn severity option. Let 
the results load and you will see a burn severity map calculated from Sentinel-2 
imagery in the left-hand panel. For this question, consider all burn severities as 
burned area. Where do the Sentinel-2 map and the GOES map for the Bobcat Fire 
agree on the burned area (Fig. 46.4)? Where do they disagree? 

Question 8. Having explored the different datasets and the two apps, what features 
would you include in your own wildfire mapping app? Explore additional data 
sources in the Synthesis section to get more inspiration for your app. 

46.3 Synthesis 

Assignment 1. You are now familiar with three fire datasets available in Earth 
Engine. Table 46.2 presents some additional fire datasets that are also available in 
the data catalog. Use the example codes written in each dataset’s description in 
the data catalog to load and explore the datasets in the Code Editor.

https://globalfires.earthengine.app/view/us-fire-dashboard
https://globalfires.earthengine.app/view/us-fire-dashboard
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Table 46.2 Additional external fire mapping datasets that can be uploaded into Google Earth 
Engine 

Dataset Variable Resolution Geographic 
coverage 

Temporal extent 

FireCCI51 Burned area 250 m raster, daily Global 2001–2019 

GlobFire fire 
event 

Fire boundaries Polygon, daily and 
final 

Global 2001–2021 

MODIS FIRMS 
near-real-time 
hotspot 

Active fires 1 km, daily Global 2000–present 

For each dataset, we describe their variable type, resolution, geographic coverage, and temporal 
extent features 

Assignment 2. While Earth Engine provides access to many existing fire datasets, 
there are other commonly used fire mapping datasets that are also quite useful for 
examining active and past fires. Select and import one of the external fire datasets 
shown in Table 46.3 into Earth Engine as a personal asset to compare it with the 
active fire datasets already loaded in your script. 

Assignment 3. In addition to comparing active fire maps using the datasets sug-
gested in Tables 46.2 and 46.3, you can examine fire conditions and impacts using 
ancillary datasets readily available in Earth Engine. For example, you can overlay 
the fire datasets with vegetation conditions and fire regimes from the LANDFIRE 
program to better understand the ecological context of active fires. 

Select one ancillary dataset to load from the data catalog and explore it along-
side an active fire dataset. Land cover datasets such as MODIS, the USGS National 
Land Cover Database, and Copernicus Global Land Cover can help indicate types 
of fires and where they are occurring. By examining active fire maps with aerosol 
and other emission data from Sentinel-5P and MODIS Multi-Angle Implementa-
tion of Atmospheric Correction, you can begin to identify relationships between

Table 46.3 Additional external fire-related datasets that can be uploaded into Google Earth 
Engine 

Dataset Variable Resolution Geographic 
coverage 

Temporal extent 

Monitoring trends in 
burn severity 

Burned severity 
and perimeters 

30 m, final United States 1984–2019 

Canadian national 
fire database 

Fire locations, 
perimeters, and 
burned area 

30 m, final Canada 1980–2020 

Landsat burned area Burned area 30 m, 8-day United States 1984–present 

For each dataset, we describe their variable type, resolution, geographic coverage, and temporal 
extent features 
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fires and air quality. These are just some of the many analyzes you can explore 
using ancillary datasets that are already on hand in the data catalog. 

46.4 Conclusion 

Earth Engine provides access to multiple fire monitoring datasets that are useful 
for tracking active fires throughout fire seasons and retrospectively for prior years. 
In this chapter, you examined one fire using three datasets (MODIS active fire, 
MODIS burned areas, and GOES active fire). You learned how to access, visualize, 
and analyze the raster datasets by adjusting code in the Code Editor and interacting 
with the data in premade user apps. By comparing the fire mapping characteristics 
of each dataset, you learned how to weigh the pros and cons of existing datasets 
for meeting fire mapping objectives. Now that you understand the basics of what 
we look for in fire mapping, you can compare additional fire datasets available 
in Earth Engine, or explore how to make your dataset using satellite and other 
geospatial data. 
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47Mangroves 

Aurélie Shapiro 

Overview 
Mangrove ecosystems are tropical coastal forests that are adapted to saltwater envi-
ronments. Their unique qualities of existing primarily in moist environments at low 
elevation along shorelines, lack of seasonality, and compact pattern make them rel-
atively easy to identify in satellite images. In this chapter, we present a series of 
automated steps, including water masking, to extract mangroves from a fusion of 
optical and active radar data. Furthermore, as global mangrove datasets are readily 
available in Google Earth Engine, we present an approach to automatically extract 
training data from existing information, saving time and effort in your supervised 
classification. The method can be adapted to create subsequent maps from your own 
results to produce changes in mangrove ecosystems over time. 

Learning Outcomes

• Fusing Sentinel-1 and -2 optical/radar sensors.
• Sampling points on an image to create training and testing datasets.
• Calculating additional indices to add to the image stack.
• Applying an automatic water masking function and buffering to focus classifica-

tion on coastal areas likely to have mangroves.
• Understanding supervised classification with random forests using automatically 

derived training data.
• Evaluating training and model accuracy.
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Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II).
• Perform pixel-based supervised or unsupervised classification (Chap. 6).
• Use expressions to do calculations on image bands (Chap. 9).
• Perform image morphological operations (Chap. 10).
• Create or access image mosaics (Chap. 15).
• Interpret Otsu’s method for partitioning a histogram (Chap. 42). 

47.1 Introduction to Theory 

Mangrove forests consist of specialized species adapted to saltwater environ-
ments located in tropical and subtropical latitudes. They are highly productive 
environments that provide essential services, notably the storage of blue carbon, 
stabilization and protection of coastlines from storms and coastal events, and the 
provision of nurseries for fish (Alongi, 2002). Mangroves also enhance associated 
coral reef ecosystems, which are crucial to supporting local livelihoods (Bryan-
Brown et al.  2020). Over 1.3 billion people live in tropical coastal areas and rely 
on mangrove and associated ecosystems for their health, safety, and livelihood. 
It is therefore important to map, monitor, and quantify their change over time in 
order to properly conserve and restore them. 

In this chapter, we will review the basic process for mapping mangroves using 
Sentinel-1 and -2 imagery. Mangroves are particularly recognizable in satellite 
imagery by their wetness—these ecosystems thrive at the water/land interface, 
making them easy to distinguish with satellite sensors that are sensitive to veg-
etation and water. We use sensor fusion to combine the advantages of radar and 
optical satellite imagery. For optical data, we extract relevant vegetation and water 
indices to discern mangroves, and we use active radar data for its capacity to mask 
water and derive canopy texture information. 

In this chapter, we will show you how to evaluate mangroves at 10 m resolution 
using a fusion of optical and radar sensors (Sentinel-1 and -2) and derived indices. 
We will also implement automatic water masking (see also Chap. 42) and a random 
forest machine-learning supervised (see Chaps. 40 and 41) classification, to which 
you can potentially add your own improvements as needed. 

If you are interested in learning more about mangrove mapping with Earth 
Engine, a thorough workflow for analyzing Landsat imagery for mangroves with 
a light graphic user interface is presented as the Google Earth Engine Mangrove 
Mapping Methodology (GEMMM) in Yancho et al. (2020). The advantages of 
this approach are the evaluation of the shoreline buffer areas, assessment of high-
and low-tide imagery, a user-friendly interface, and the freely available and well-
explained code.
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47.2 Practicum 

Several assets are provided for you to work with. As a first step, define the area of 
interest (aoi) and view it. In this case, we choose the Sundarbans ecosystem on the 
border of India and Bangladesh, which is an iconic mangrove forest (also known 
for its mysterious native tiger population) and a simple example to showcase water 
masking and mangrove mapping: 

// Create an ee.Geometry. 
var aoi = ee.Geometry.Polygon([ 

[ 
[88.3, 22.61], 
[90, 22.61], 
[90, 21.47], 
[88.3, 21.47] 

] 
]); 

// Locate a coordinate in the aoi with land and water. 
var point = ee.Geometry.Point([89.2595, 21.7317]); 

// Position the map. 
Map.centerObject(point, 13); 
Map.addLayer(aoi, {}, 'AOI'); 

// Sentinel-1 wet season data. 
var wetS1 = ee.Image( 

'projects/gee-book/assets/A3-
2/wet_season_tscan_2020'); 
// Sentinel-1 dry season data. 
var dryS1 = ee.Image( 

'projects/gee-book/assets/A3-
2/dry_season_tscan_2020'); 
// Sentinel-2 mosaic. 
var S2 = ee.Image('projects/gee-book/assets/A3-
2/Sundarbans_S2_2020'); 

We will fuse radar and optical data at 10 m resolution for this exercise using 
multi-temporal composites that were developed using the Food and Agriculture 
Organization (FAO) freely available SEPAL (https://sepa.io), which is a cloud-
based image and data processing platform that has several modules built on Earth 
Engine. The available recipes let you choose dates and processing parameters 
and export composites directly to your Earth Engine account. For radar, we used

https://sepa.io
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SEPAL to produce two composite “timescan” images - one for the wet sea-
son and one for dry season) created from multi-temporal statistics derived from 
multiple Sentinel-1 images, a compilation of all filtered, terrain-corrected images 
that are available in Earth Engine for a certain time period (Esch et al. 2018, 
Mulissa et al. 2021, Vollrath et al. 2020). Additionally, the SEPAL platform cal-
culates statistics (standard deviation, minimum, maximum) of different bands. We 
developed two timescan images for the 2020 dry (March to September) and wet 
(October to April) seasons of the study area. 

The Sentinel-2 optical composite was also generated in SEPAL, applying 
the bidirectional reflectance distribution function (BRDF) correction to surface 
reflectance corrected images and producing the median value of all cloud-free 
pixels for 2020. 

You will now access both exported SEPAL composites using the Code Editor. 

//Visualize the input data. 
var s1VisParams = { 

bands: ['VV_min', 'VH_min', 'VVVH_ratio_min'], 
min: -36, 
max: 3 

}; 
var s2VisParams = { 

bands: ['swir1', 'nir', 'red'], 
min: 82, 
max: 3236 

}; 

Map.addLayer(dryS1, s1VisParams, 'S1 dry', false); 
Map.addLayer(wetS1, s1VisParams, 'S1 wet', false); 
Map.addLayer(S2, s2VisParams, 'S2 2020'); 

47.2.1 Section 1: Deriving Additional Indices 

It is a good idea to complement your data stack with additional indices (see 
Chap. 5) that are relevant to mangroves—such as indices sensitive to water, 
greenness, and vegetation (see Wang et al. 2018). You can add these via band 
calculations and equations, and we will present several here. But the list of indices 
is virtually endless; what is useful can depend on the location.
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To compute the normalized vegetation index (NDVI) using an existing Earth 
Engine NDVI function, add this line: 

var NDVI = S2.normalizedDifference(['nir', 
'red']).rename(['NDVI']); 

You can also use an image expression (see Chap. 9) for any calculation, such 
as a band ratio: 

var ratio_swir1_nir = S2.expression( 
'swir1/(nir+0.1)', { 

'swir1': S2.select('swir1'), 
'nir': S2.select('nir') 

}) 
.rename('ratio_swir1_nir_wet'); 

You add the rename function so you can recognize the band more easily in 
your data stack. You create a data stack by adding the different indices to the input 
image by using addBands and the name of the index or expression. Don’t forget 
to add your Sentinel-1 data too: 

var data_stack = 
S2.addBands(NDVI).addBands(ratio_swir1_nir).addBands( 

dryS1).addBands(wetS1).addBands(S2); 

And finally, you can see the names of all your bands by entering: 

print(data_stack); 

Question 1. What other indices could be useful for mapping mangroves? 

There are a number of useful articles on mangrove mapping that provide assess 
the value of additional indices; if you know how they are calculated, you can add 
them to your data stack with image expressions. 

Code Checkpoint A32a. The book’s repository contains a script that shows what 
your code should look like at this point.
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47.2.2 Section 2: Automatic Water Masking and Buffering 

As explained above, mangroves are found close to coastlines, which tend to be at 
low elevations. The next steps involve automatic water masking to delineate land 
from sea; then we will use an existing dataset to buffer the area of interest so that 
we are only mapping mangroves where we would expect to find them. 

We will use the Canny edge detector and Otsu thresholding (Donchyts et al. 
2016) approach to automatically detect water. For this, we use the point provided 
at the beginning of the script that is located near land and water. The function 
will then automatically identify an appropriate threshold that delineates land pix-
els from water, based on the calculation of edges in a selected region with both 
land and water. This approach is also demonstrated in Chap. 42 using different 
parameters and settings, where it is described in detail. 

Paste the code below to add functionality that can compute the threshold, detect 
edges, and create the water mask: 

/*** 
* This script computes surface water mask using 
* Canny Edge detector and Otsu thresholding. 
* See the following paper for details: 
* http://www.mdpi.com/2072-4292/8/5/386 
* 
* Author: Gennadii Donchyts 
* Contributors: Nicholas Clinton 
* 
*/ 

/*** 
* Return the DN that maximizes interclass variance in B5 
(in the region). 
*/ 

var otsu = function(histogram) { 
histogram = ee.Dictionary(histogram);
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varvar counts = counts = eeee..ArrayArray(histogram.(histogram.getget(('histogram''histogram'));)); 
varvar means = means = eeee..ArrayArray(histogram.(histogram.getget(('bucketMeans''bucketMeans'));)); 
varvar size = means.size = means.lengthlength().().getget([([00]);]); 
varvar total = counts.total = counts.reducereduce((eeee..Reducer.sumReducer.sum(),(), 

[[00]).]).getget([([00]);]); 
varvar sum = sum = 

means.means.multiplymultiply(counts).(counts).reducereduce((eeee..Reducer.sumReducer.sum(), [(), [00])]) 
..getget([([00]);]); 

varvar mean = sum.mean = sum.dividedivide(total);(total); 

varvar indices = indices = eeee..List.sequenceList.sequence((11, size);, size); 

// Compute between sum of squares, where each mean // Compute between sum of squares, where each mean 
partitions the data.partitions the data. 

varvar bss = indices.bss = indices.mapmap((functionfunction(i) {(i) { 
varvar aCounts = counts.aCounts = counts.sliceslice((00,, 00, i);, i); 
varvar aCount = aCounts.aCount = aCounts.reducereduce((eeee..Reducer.sumReducer.sum(), [(), [00])]) 

..getget([([00]);]); 
varvar aMeans = means.aMeans = means.sliceslice((00,, 00, i);, i); 
varvar aMean = aMeans.aMean = aMeans.multiplymultiply(aCounts)(aCounts) 

..reducereduce((eeee..Reducer.sumReducer.sum(), [(), [00]).]).getget([([00])]) 

..dividedivide(aCount);(aCount); 
varvar bCount = total.bCount = total.subtractsubtract(aCount);(aCount); 
varvar bMean = sum.bMean = sum.subtractsubtract(aCount.(aCount.multiplymultiply(aMean))(aMean)) 

..dividedivide(bCount);(bCount); 
returnreturn aCount.aCount.multiplymultiply(aMean.(aMean.subtractsubtract(mean).(mean).powpow( ( 

22)).)).addadd(( 
bCount.bCount.multiplymultiply(bMean.(bMean.subtractsubtract(mean).(mean).powpow( ( 

22)));))); 
});}); 

// Return the mean value corresponding to the maximum // Return the mean value corresponding to the maximum 
BSS.BSS. 

returnreturn means.means.sortsort(bss).(bss).getget([([-1-1]);]); 
};}; 

/***/*** 
* Compute a threshold using Otsu method (bimodal).* Compute a threshold using Otsu method (bimodal). 
*/*/
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function computeThresholdUsingOtsu(image, scale, bounds, 
cannyThreshold, 
cannySigma, minValue, debug) { 
// Clip image edges. 
var mask = image.mask().gt(0) 

.focal_min(ee.Number(scale).multiply(3), 'circle', 
'meters'); 

// Detect sharp changes. 
var edge = ee.Algorithms.CannyEdgeDetector(image, 

cannyThreshold, 
cannySigma); 

edge = edge.multiply(mask); 

// Buffer around NDWI edges. 
var edgeBuffer = edge 

.focal_max(ee.Number(scale).multiply(1), 'square', 
'meters'); 

var imageEdge = image.mask(edgeBuffer); 

// Compute threshold using Otsu thresholding. 
var buckets = 100; 
var hist = ee.Dictionary(ee.Dictionary(imageEdge 

.reduceRegion({ 
reducer: ee.Reducer.histogram(buckets), 
geometry: bounds, 
scale: scale, 
maxPixels: 1e9 

})) 
.values() 
.get(0)); 

var threshold = ee.Number(ee.Algorithms.If({ 
condition: hist.contains('bucketMeans'), 
trueCase: otsu(hist), 
falseCase: 0.3 

})); 

if (debug) {
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Map.addLayer(edge.mask(edge), { 
palette: ['ff0000'] 

}, 'edges', false); 
print('Threshold: ', threshold); 
print(ui.Chart.image.histogram(image, bounds, 

scale, 
buckets)); 

print(ui.Chart.image.histogram(imageEdge, bounds, 
scale, 

buckets)); 
} 

return minValue !== 'undefined' ? 
threshold.max(minValue) : 

threshold; 
} 

var bounds = ee.Geometry(Map.getBounds(true)); 

var image = data_stack; 
print('image', image); 

var ndwi_for_water = image.normalizedDifference(['green', 
'nir']); 
var debug = true; 
var scale = 10;var cannyThreshold = 0.9; 
var cannySigma = 1; 
var minValue = -0.1; 
var th = computeThresholdUsingOtsu(ndwi_for_water, scale, 
bounds, 

cannyThreshold, cannySigma, minValue, debug); 

print('th', th); 

function getEdge(mask) { 
return mask.subtract(mask.focal_min(1)); 

} 

var water_mask = 
ndwi_for_water.mask(ndwi_for_water.gt(th));
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th.evaluate(function(th) { 
Map.addLayer(water_mask, { 

palette: '0000ff' 
}, 'water mask (th=' + th + ')'); 

}); 

You’ll notice that new layers are loaded in the map, which include the edge 
detection and a water mask that identifies all marine and surface water (Fig. 47.1). 

Fig. 47.1 Automatic water mask identifies all open and surface water pixels
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Question 2. Is the point well located to appropriately identify the water mask? 
What happens with turbid water? 

Move the point around and see if it improves the automatic water masking. 
Turbid water can be an issue and may not be detected by the mask. Be certain that 
these muddy waters are not classified as mangrove later on. 

Next, we create the land mask by inverting the water mask, and removing 
any areas with elevation greater than 40 m above sea level using the NASADEM 
(Digital Elevation Model from NASA) data collection. This will ensure we aren’t 
erroneously mapping mangroves far inland, where they don’t occur. You can of 
course change the elevation threshold according to your study area. 

// Create land mask area. 
var land = water_mask.unmask(); 
var land_mask = land.eq(0); 
Map.addLayer(land_mask, {}, 'Land mask', false); 

// Remove areas with elevation greater than mangrove 
elevation threshold. 
var elev_thresh = 40; 
var dem = 
ee.Image('NASA/NASADEM_HGT/001').select('elevation'); 
var elev_mask = dem.lte(elev_thresh); 
var land_mask = land_mask.updateMask(elev_mask); 

Next, we will buffer the area of interest to restrict the analysis only to areas 
where mangroves might realistically be found. For this, we will use the Global 
Mangrove Dataset from 2000 available in Earth Engine (note: this is one of sev-
eral mangrove datasets; you could also have used other datasets such as Global 
Mangrove Watch or any other available raster data.) 

The Global Mangrove Dataset was derived from Landsat 2000 (Giri et al. 2011); 
we will buffer 1000 m around it. The 1000 m buffer allows for the possibility that 
some mangroves were missed in the original map, and that mangroves might have 
expanded in some areas since 2000. You can change the buffer distance to any 
value suitable for your study area.
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// Load global mangrove dataset as reference for training. 
var mangrove_ref = 
ee.ImageCollection('LANDSAT/MANGROVE_FORESTS') 

.filterBounds(aoi) 

.first() 

.clip(aoi); 
Map.addLayer(mangrove_ref, { 

palette: 'Green' 
}, 'Reference Mangroves', false); 

// Buffer around known mangrove area with a specified 
distance. 
var buffer_dist = 1000; 
var mang_buffer = mangrove_ref 

.focal_max(buffer_dist, 'square', 'meters') 

.rename('mangrove_buffer'); 
Map.addLayer(mang_buffer, {}, 'Mangrove Buffer', false); 

Question 3. Can the buffer distance or elevation threshold be changed to cap-
ture more mangroves or remove extra areas where mangroves aren’t likely to be 
found—and that we don’t need to classify? We don’t want to miss any mangrove 
areas, but we also want an efficient code that does not process large areas that can’t 
be mangroves, which can add processing complexity and commit easily avoidable 
errors. To restrict the processing to the potential mangrove area, can you change 
the buffer distance or elevation threshold to best capture the area you are interested 
in? 

We will now mask the mangrove buffer, create the area to classify, and mask it 
from the data stack.
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// Mask land from mangrove buffer. 
var area_to_classify = 
mang_buffer.updateMask(land_mask).selfMask(); 
Map.addLayer(area_to_classify, 

{}, 
'Mangrove buffer with water and elevation mask', 
false); 

var image_to_classify = 
data_stack.updateMask(area_to_classify); 
Map.addLayer(image_to_classify, 

{ 
bands: ['swir1', 'nir', 'red'], 
min: 82, 
max: 3236 

}, 
'Masked Data Stack', 
false); 

Code Checkpoint A32b. The book’s repository contains a script that shows 
what your code should look like at this point. 

47.2.3 Section 3: Creating Training Data and Running 
and Evaluating a Random Forest Classification 

We will now automatically select mangrove and non-mangrove locations as train-
ing data for our model. We use morphological image processing (see Chap. 10) to  
select areas deep inside the reference mangrove dataset as areas we can be sure are 
mangroves, because mangrove forests tend to be lost or deforested at edges rather 
than in the interior. Using the same theory, we select areas far away from man-
grove edges as our non-forest areas. This approach allows us to use a relatively 
older dataset from 2000 for current data training. We will extract mangrove and 
non-mangrove from the reference data. First we create the feature layers to store 
our training data.
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// Create training data from existing data 
// Class values: mangrove = 1, not mangrove = 0 
var ref_mangrove = mangrove_ref.unmask(); 
var mangroveVis = { 

min: 0, 
max: 1, 
palette: ['grey', 'green'] 

}; 
Map.addLayer(ref_mangrove, mangroveVis, 'mangrove = 1'); 

// Class values: not mangrove = 1 and mangrove = 0 
var notmang = ref_mangrove.eq(0); 
var notMangroveVis = { 

min: 0, 
max: 1, 
palette: ['grey', 'red'] 

}; 
Map.addLayer(notmang, notMangroveVis, 'not mangrove = 1', 
false); 

We then use erosion and dilation (as described in Chap. 10) to identify areas 
at the center of mangrove forests and far from outside edges. We put every-
thing together in a training layer where mangroves = 1, non-mangroves = 2, 
and everything else = 0. 

// Define a kernel for core mangrove areas. 
var kernel = ee.Kernel.circle({ 

radius: 3 
}); 

// Perform a dilation to identify core mangroves. 
var mang_dilate = ref_mangrove 

.focal_min({ 
kernel: kernel, 
iterations: 3 

}); 
var mang_dilate = mang_dilate.updateMask(mang_dilate); 
var mang_dilate = 
mang_dilate.rename('auto_train').unmask(); 
Map.addLayer(mang_dilate, {}, 'Core mangrove areas to 
sample', false);
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// Do the same for non-mangrove areas. 
var kernel1 = ee.Kernel.circle({ 

radius: 3 
}); 
var notmang_dilate = notmang 

.focal_min({ 
kernel: kernel1, 
iterations: 2 

}); 
var notmang_dilate = 
notmang_dilate.updateMask(notmang_dilate); 
var notmang_dilate = 
notmang_dilate.multiply(2).unmask().rename( 

'auto_train'); 
Map.addLayer(notmang_dilate, {}, 'Not mangrove areas to 
sample', 

false); 

// Core mangrove = 1, core non mangrove = 2, neither = 0. 
var train_labels = 
notmang_dilate.add(mang_dilate).clip(aoi); 
var train_labels = 
train_labels.int8().updateMask(area_to_classify); 
var trainingVis = { 

min: 0, 
max: 2, 

Question 4. How do the kernel radius and iteration parameters identify or miss 
important core mangrove areas? 

To obtain good training data, we want samples located throughout the area of 
interest. Sometimes, if the mangroves occur in very small patches, if the radius is 
too large, or if there are too many iterations, we don’t end up with enough core 
forest to sample. 

Change the parameters to see what works best for you. You may need to zoom 
in to see the core mangrove areas. 

The next step is the supervised classification (see Chap. 6). We will collect 
random samples from the training areas to train and run the random forest classi-
fier. We will conduct two classifications. One is for creating the map and another 
for validation, to obtain the test accuracy and determine how consistent the training 
areas are between two random samples.
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// Begin Classification. 
// Get image and bands for training - including automatic 
training band. 
var trainingImage = 
image_to_classify.addBands(train_labels); 
var trainingBands = trainingImage.bandNames(); 
print(trainingBands, 'training bands'); 

// Get training samples and classify. 
// Select the number of training samples per class. 
var numPoints = 2000; 
var numPoints2 = 2000; 

var training = trainingImage.stratifiedSample({ 
numPoints: 0, 
classBand: 'auto_train', 
region: aoi, 
scale: 100, 
classValues: [1, 2], 
classPoints: [numPoints, numPoints2], 
seed: 0, 
dropNulls: true, 
tileScale: 16, 

}); 

var validation = trainingImage.stratifiedSample({ 
numPoints: 0, 
classBand: 'auto_train', 
region: aoi, 
scale: 100, 
classValues: [1, 2], 
classPoints: [numPoints, numPoints2], 
seed: 1, 
dropNulls: true, 
tileScale: 16, 

}); 
// Create a random forest classifier and train it. 
var nTrees = 50; 
var classifier = ee.Classifier.smileRandomForest(nTrees) 

.train(training, 'auto_train'); 

classified = image_to_classify.classify(classifier);var
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// Classify the test set. 
var validated = validation.classify(classifier); 

// Get a confusion matrix representing resubstitution 
accuracy. 
var trainAccuracy = classifier.confusionMatrix(); 
print('Resubstitution error matrix: ', trainAccuracy); 
print('Training overall accuracy: ', 
trainAccuracy.accuracy()); 
var testAccuracy = validated.errorMatrix('mangrove', 

'classification'); 

The training accuracy is over 99%, which is very good. According to the sub-
stitution matrix, only a few training points seem to be confused when they are 
randomly replaced. 

In addition, we can estimate variable importance, or how much each band in 
the data stack contributes to the final random forest model. These are always good 
metrics to observe, as you can remove the least important bands from the training 
image if you need to improve the classification. 

var dict = classifier.explain(); 
print('Explain:', dict); 
var variable_importance = ee.Feature(null, 
ee.Dictionary(dict).get( 

'importance')); 

// Chart variable importance. 
var chart = 
ui.Chart.feature.byProperty(variable_importance) 

.setChartType('ColumnChart') 

.setOptions({ 
title: 'Random Forest Variable Importance', 
legend: { 

position: 'none' 
}, 
hAxis: { 

title: 'Bands' 
}, 
vAxis: { 

title: 'Importance' 
} 

}); 
print(chart);
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Question 5. What are the most important bands in the classification model? 

Question 6. Based on the chart, is one of the sensors more important in the 
classification model? Which bands? Why do you think that is? 

Next, we will visualize the final classification. We can apply a filter to remove 
individual pixels of one class, which effectively applies a minimum mapping unit 
(MMU). In this case, any areas with fewer than 25 connected pixels are filtered 
out. 

var classificationVis = { 
min: 1, 
max: 2, 
palette: ['green', 'grey'] 

}; 
Map.addLayer(classified, classificationVis, 

'Mangrove Classification'); 

// Clean up results to remove small patches/pixels. 
var mang_only = classified.eq(1); 
// Compute the number of pixels in each connected mangrove 
patch 
// and apply the minimum mapping unit (number of pixels). 
var mang_patchsize = mang_only.connectedPixelCount(); 

//mask pixels based on the number of connected neighbors 
var mmu = 25; 
var mang_mmu = mang_patchsize.gte(mmu); 
var mang_mmu = classified.updateMask(mang_mmu).toInt8(); 
Map.addLayer(mang_mmu, classificationVis, 'Mangrove Map 
MMU'); 

Your map window should resemble Fig. 47.2 with mangroves in green, and 
non-mangroves in gray.

Code Checkpoint A32c. The book’s repository contains a script that shows what 
your code should look like at this point. 

In the Console window, you’ll see the substitution matrix, training accuracy, and 
a chart of variable importance. 

Question 7. Do you notice any errors in the map? Omissions or commissions? 
How does the map compare to 2000?
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Fig. 47.2 Final mangrove classification

Question 8. You should be able to see small differences in the mangrove extent 
since 2000. What do you see? What could be the causes for the changes? 

Question 9. How does the MMU parameter change the output map? 

Try out different values and see what the results look like. 

47.3 Synthesis 

Assignment 1. With what you learned in this chapter, you can fuse Sentinel-1 and
-2 data to create your own map of mangroves for anywhere in the world. You 
might now test out the approach in another part of the world, or use your own 
training data for a more refined classification model. You can add your own point 
data in the map and merge with the training data to improve a classification, or 
clean areas that need to be removed by drawing polygons and masking them in 
the classification.
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Assignment 2. You can also add more indices, remove ones that aren’t as infor-
mative, create a map using earlier imagery, use the later date classification as 
reference data, and look for differences via post-classification change. Additional 
indices can be found in script A32s1—Supplemental in the book’s repository. 
Using these other indices, does that change your estimation of what areas are 
stable mangrove, and where have we observed gains or losses? 

47.4 Conclusion 

Mangroves are dynamic ecosystems that can expand over time, and can also be lost 
through natural and anthropogenic causes. The power of Earth Engine lies in the 
cloud-based, lightning-fast, automated approach to workflows, particularly with 
automated training data collection. This process would take days when performed 
offline in traditional remote sensing software, especially over large areas. The Earth 
Engine approach is not only fast but also consistent. The same method can be 
applied to images from different dates to assess mangrove changes over time—both 
gain and loss. 
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48Mangroves II—Change Mapping 

Celio de Sousa, David Lagomasino, and Lola Fatoyinbo 

Overview 
The purpose of this chapter is to present two methods of land cover extent change 
detection: map-to-map and map-to-image using anomaly data. In a map-to-map 
approach, changes are extracted by subtracting a two-date pair of land cover extent 
maps: that is, time 2 (T2) extent minus time 1 (T1) extent. By comparison, a map-
to-image approach uses a baseline extent map within which changes are calculated 
based on a T2 image where the change classes are defined by threshold values. In 
this chapter, we will perform a map-to-map change detection between two mangrove 
extent maps from 2000 and 2020 and also perform a vegetation index anomaly 
analysis to detect changes within a mangrove extent map from the year 2000 in 
Guinea, West Africa. 

Learning Outcomes

• Performing change detection by contrasting two pre-existent mangrove extent 
maps.

• Harmonizing across Landsat generations to create consistent long-term series.
• Calculating the anomaly of a given vegetation index based on its long-term average 

value.
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• Performing change detection by interpreting vegetation index anomalies. 

Helps if you know how to

• Recognize similarities and differences among satellite spectral bands (Part I, 
Part II, Part III).

• Perform basic image analysis: select bands, compute indices, create masks (Part 
II).

• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Perform a supervised image classification (Chap. 6).
• Work with array images (Chaps. 9 and 18).
• Use expressions to perform calculations on image bands (Chap. 9).
• Summarize an image with reduceRegion (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Perform a two-period change detection (Chap. 16). 

48.1 Introduction to Theory 

Mangrove forests are among the most productive ecosystems on Earth, provid-
ing a wide range of critical economic, ecological, and societal services. However, 
mangroves worldwide have undergone intense conversion, with human-related dis-
turbances being one of the main causes of global mangrove loss in recent decades 
(Goldberg et al. 2020). Thus, regular monitoring of the dynamics of mangrove 
ecosystems worldwide is key for establishing better coastal management policies 
and mangrove conservation initiatives. 

Readily available, low-cost, and repeated-coverage remote sensing data pro-
vides numerous advantages for monitoring mangrove forests and detecting changes 
in the landscape over time. In this context, the Landsat data archive, which 
covers more than 35 years, has been widely used for mapping land cover dynam-
ics worldwide. Most notably, the Landsat mission coupled with Google Earth 
Engine’s computing infrastructure have been leveraged to develop widely used 
global datasets at 30 m spatial resolution, such as the global forest cover (Hansen 
et al. 2013) and global mangrove extent (Bunting et al. 2018) datasets. 

However, as extensively explored in the literature, change detection using 
remotely sensed data is challenged by several factors, including (but not limited 
to) the following: spatial, spectral, thematic, and temporal constraints, atmospheric 
conditions, high cloud-coverage, and differences in sensors’ spectral characteris-
tics. These differences may have a direct effect on the ability to accurately detect 
and monitor changes in the landscape, including mangrove forests. As explored 
by Roy et al. (2016), the Landsat TM/ETM + and OLI sensors present small but 
potentially significant differences between their spectral characteristics, with the
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greatest differences in the near-infrared (NIR) and the shortwave infrared (SWIR) 
bands—the most important spectral bands for vegetation studies. 

In this chapter, we take advantage of the statistical functions presented in Roy 
et al. (2016) to transform between the comparable TM/ETM + and OLI bands in 
order to ensure inter-sensor harmonized spectral information and temporal conti-
nuity. We will use this harmonized Landsat TM/ETM + /OLI collection to derive 
anomaly-based changes in mangrove extent over 21 years (2000–2020) in Guinea, 
West Africa. 

48.2 Practicum 

48.2.1 Section 1: Map-To-Map Change Detection 

Previous chapters demonstrated how to perform a general supervised classification, 
as well as how to apply those classifiers and functions to create a mangrove extent 
map (Chap. 47). In this section, we will build upon those techniques to perform a 
map-to-map change analysis. Paste the code below into a new script, which will 
access pre-created assets for two time periods: 2000 and 2020. 

var areaOfstudy = ee.FeatureCollection( 
'projects/gee-book/assets/A3-3/Border5km'); 

var mangrove2000 = ee.Image( 
'projects/gee-book/assets/A3-3/MangroveGuinea2000_v2'); 

var mangrove2020 = ee.Image( 
'projects/gee-book/assets/A3-3/MangroveGuinea2020_v2'); 

Start by setting the map center around Conakry, Guinea, and adding your 2000 
and 2020 mangrove extent to the map using a color of your choice and naming 
them ‘Mangrove Extent 2000’ and ‘Mangrove Extent 2020’: 

Map.setCenter(-13.6007, 9.6295, 10); 
// Sets the map center to Conakry, Guinea 
Map.addLayer(areaOfstudy, {}, 'Area of Study'); 
Map.addLayer(mangrove2000, { 

palette: '#16a596' 
}, 'Mangrove Extent 2000'); 
Map.addLayer(mangrove2020, { 

palette: '#9ad3bc' 
}, 'Mangrove Extent 2020');
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Because the assets have the value of 1 (one) assigned to mangrove pixels and 
0 (zero) to everything else, you can derive losses and gains from both mangrove 
extent maps with a simple subtraction of T1 (2000) from T2 (2020). The value 
of 1 has been assigned to mangrove pixels and everything else has been masked. 
For the mathematical operation between the two layers to work, every pixel has to 
have a value assigned to it. In this case, you can unmask previously masked pixels 
and assign the value 0 to them using unmask(0). Finally, subtract T1 from T2 
into a new variable change: 

var mang2020 = mangrove2020.unmask(0); 
var mang2000 = mangrove2000.unmask(0); 
var change = mang2020.subtract(mang2000) 

.clip(areaOfstudy); 

Pixels in the raster change will have values of− 1, 0, or 1, which represent 
loss/conversion, no change, and gains, respectively:

• − 1 = no mangroves in 2020, mangroves in 2000 (0− 1 = −  1);
• 0 = mangroves in 2020, mangroves in 2000 (1 − 1 = 0);
• 1 = mangroves in 2020, no mangroves in 2000 (1− 0 = 1) 

Finally, add change to the map: 

var paletteCHANGE = [ 
'red', // Loss/conversion 
'white', // No Change 
'green', // Gain/Expansion 

]; 

Map.addLayer(change, { 
min: -1, 
max: 1, 
palette: paletteCHANGE 

}, 'Changes 2000-2020'); 

You can calculate the area of expansion/conversion by isolating the pixels of 
gain/loss from the change into gain and loss. Then, calculate the area of 
each pixel using ee.Image.pixelArea and multiplying by the count of pixels in 
gain and loss using multiply. The default unit is square meters (m2). You 
can use divide to transform into square kilometers (divide(1000000)) or 
hectares (divide(10000)). Finally, use ee.Reducer.sum to sum all area 
values for both gain and loss and print them to the Console (Fig. 48.1).
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Fig. 48.1 Map-to-map changes in mangrove extent in Guinea from 2000–2020 

// Calculate the area of each pixel 
var gain = change.eq(1); 
var loss = change.eq(-1); 

var gainArea = 
gain.multiply(ee.Image.pixelArea().divide(1000000)); 
var lossArea = 
loss.multiply(ee.Image.pixelArea().divide(1000000)); 

// Sum all the areas 
var statsgain = gainArea.reduceRegion({ 

reducer: ee.Reducer.sum(), 
scale: 30, 
maxPixels: 1e14 

}); 

var statsloss = lossArea.reduceRegion({ 
reducer: ee.Reducer.sum(), 
scale: 30, 
maxPixels: 1e14 

}); 

print(statsgain.get('classification'), 
'km² of new mangroves in 2020'); 

print(statsloss.get('classification'), 
'of mangrove was lost in 2020');
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Map.addLayer(gain.selfMask(), { 
palette: 'green' 

}, 'Gains'); 
Map.addLayer(loss.selfMask(), { 

palette: 'red' 
}, 'Loss'); 

Code Checkpoint A33a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. What are some of the issues that may arise when using a map-to-map 
change detection? Explain how these different dates may affect the classification 
output and, consequently, the change output. 

48.2.2 Section 2: Map-To-Image Change Detection 

Using the mangrove extent you created in the previous section, we will look at 
another way to detect changes without having to classify an image. In this case, 
change classes are defined by threshold values of a specific metric, such as a 
vegetation index or a spectral image band. In this section, we will take advantage 
of the Landsat archive to create an average reference value of a given vegetation 
index at an earlier date T1 and see how it compares to its later value at T2. 

The first assumption of this approach is that changes will happen within a buffer 
zone from the baseline extent. Start by setting the baseline extent and buffer zone 
using focal_max: 

var buffer = 1000; // In meters 
var extentBuffer = mangrove2000.focal_max(buffer, 'circle', 
'meters'); 
Map.addLayer(mangrove2000, { 

palette: '#000000' 
}, 'Baseline', false); 
Map.addLayer(extentBuffer, { 

palette: '#0e49b5', 
opacity: 0.3 

}, 'Mangrove Buffer', false);
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48.2.2.1 Harmonizing Landsat 5/7/8 Image Collections 
As described in the beginning of this chapter, the Landsat TM/ETM + and OLI 
sensors present differences between their spectral characteristics. Thus, to ensure 
inter-sensor harmonized spectral information and temporal continuity, we will har-
monize the entire Landsat image archive using the statistical functions presented 
in Roy et al. (2016). For that, start by defining the temporal parameters for the 
harmonization: 

var startYear = 1984; 
var endyear = 2020; 
var startDay = '01-01'; 
var endDay = '12-31'; 

Next, we will create several functions for the harmonization of the Landsat 
archive: 

Harmonization Function: harmonizationRoy uses the regression coefficients 
(slopes and intercepts) retrieved from Roy et al. (2016) and performs a linear 
transformation of ETM + spectral space to OLI spectral space: 

var harmonizationRoy = function(oli) { 
var slopes = ee.Image.constant([0.9785, 0.9542, 0.9825, 

1.0073, 1.0171, 0.9949 
]); 
var itcp = ee.Image.constant([-0.0095, -0.0016, -

0.0022, -
0.0021, -0.0030, 0.0029 

]); 
var y = oli.select(['B2', 'B3', 'B4', 'B5', 'B6', 

'B7'], [ 
'B1', 'B2', 'B3', 'B4', 'B5', 'B7' 

]) 
.resample('bicubic') 
.subtract(itcp.multiply(10000)).divide(slopes) 
.set('system:time_start', 

oli.get('system:time_start')); 
return y.toShort(); 

};
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Retrieve a Particular Sensor Function: getSRcollection will be used to 
retrieve individual sensor collections based on the temporal parameters and the 
harmonization function above. Additionally, this function will mask cloud, cloud 
shadow, and snow based on the Landsat quality assessment bands: 

var getSRcollection = function(year, startDay, endYear, 
endDay, 

sensor) { 
var srCollection = ee.ImageCollection('LANDSAT/' + 

sensor + 
'/C01/T1_SR') 

.filterDate(year + '-' + startDay, endYear + '-' + 
endDay) 

.map(function(img) { 
var dat; 
if (sensor == 'LC08') { 

dat = harmonizationRoy(img.unmask()); 
} else { 

dat = img.select(['B1', 'B2', 'B3', 'B4', 
'B5', 'B7' 

]) 
.unmask() 
.resample('bicubic') 
.set('system:time_start', img.get( 

'system:time_start')); 
} 
// Cloud, cloud shadow and snow mask. 
var qa = img.select('pixel_qa'); 
var mask = qa.bitwiseAnd(8).eq(0).and( 

qa.bitwiseAnd(16).eq(0)).and( 
qa.bitwiseAnd(32).eq(0)); 

return dat.mask(mask); 
}); 

return srCollection; 
}; 

Combining the Collections Function: getCombinedSRcollection will 
merge all the individual L5/L7/L8 collections into one:
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var getCombinedSRcollection = function(year, startDay, 
endYear, 

endDay) { 
var lt5 = getSRcollection(year, startDay, endYear, 

endDay, 
'LT05'); 

var le7 = getSRcollection(year, startDay, endYear, 
endDay, 

'LE07'); 
var lc8 = getSRcollection(year, startDay, endYear, 

endDay, 
'LC08'); 

var mergedCollection = 
ee.ImageCollection(le7.merge(lc8) 

.merge(lt5)); 
return mergedCollection; 

}; 

Vegetation Indices: addIndices calculates several vegetation/spectral indices 
based on the harmonized Landsat bands. In this example, we are including the 
Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index 
(EVI), the Soil Adjusted Vegetation Index (SAVI), the Normalized Difference 
Mangrove Index (NDMI), the Normalized Difference Water index (NDWI), and 
the Modified Normalized Difference Water Index (MNDWI). Here is where you 
can include your own vegetation indices: 

var addIndices = function(image) { 
var ndvi = image.normalizedDifference(['B4', 

'B3']).rename( 
'NDVI'); 

var evi = image.expression( 
'2.5*((NIR-RED)/(NIR+6*RED-7.5*BLUE+1))', { 

'NIR': image.select('B4'), 
'RED': image.select('B3'), 
'BLUE': image.select('B1') 

}).rename('EVI'); 
var savi = image.expression( 

'((NIR - RED) / (NIR + RED + 0.5) * (0.5 + 1))', { 
'NIR': image.select('B4'), 
'RED': image.select('B3'), 
'BLUE': image.select('B1') 

}).rename('SAVI'); 
var ndmi = image.normalizedDifference(['B7','B2']).rename( 

'NDMI'); 
var ndwi = image.normalizedDifference(['B5','B4']).rename( 

'NDWI');
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var mndwi = image.normalizedDifference(['B2', 
'B5']).rename( 

'MNDWI'); 
return image.addBands(ndvi) 

.addBands(evi) 

.addBands(savi) 

.addBands(ndmi) 

.addBands(ndwi) 

.addBands(mndwi); 
}; 

Finally, collectionSR_wIndex will include the final harmonized collec-
tion with all the sensors based on the temporal parameters defined previously, with 
all spectral bands and vegetation/spectral indices: 

var collectionSR_wIndex = 
getCombinedSRcollection(startYear, startDay, 

endyear, endDay).map(addIndices); 

Filter this collection by the bounds of the area of study: 

var collectionL5L7L8 = 
collectionSR_wIndex.filterBounds(areaOfstudy); 

Question 2. Based on your knowledge and the functions described above, what 
are the main fundamental differences between Landsat TM, ETM+, and OLI? 

Question 3. What are the issues that may arise when using the same function for 
calculating vegetation indices using surface reflectance data acquired by ETM + 
and OLI sensors? 

Vegetation Index Anomaly 
By definition, anomaly is anything that deviates from what is standard, normal, or 
expected. Usually, anomalies are calculated by subtracting a long-term average of 
a variable from the actual value of that variable at a given time. For example, if 
X = actual value of average NDVI for mangroves in 2020, and Y = long-term 
average NDVI of mangroves (an average over many years), then the anomaly = 
X − Y. If the anomaly values are zero (or very close to zero), it means that NDVI 
remained relatively stable in that period, which indicates that there has not been 
any significant disturbance in that area. On the other hand, a positive anomaly 
means that the NDVI signal is greater than its long-term average, which indicates
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that vegetation has shown growth in that area; similarly, a negative anomaly means 
that the NDVI signal is weaker than its long-term average, indicating a potential 
loss in the area. 

To calculate the anomaly, start by defining the index you want to compute the 
anomaly for and the reference period to get the average value. In this example, we 
are going use the 16 years before the mangrove extent baseline in 2000: 

var index = 'NDVI'; 
var ref_start = '1984-01-01'; // Start of the period 
var ref_end = '1999-12-31'; // End of the period 

Next, create the reference collection using collectionL5L7L8 and the 
parameters above. You can print the size of this reference collection to the Console 
using print and size: 

var reference = collectionL5L7L8 
.filterDate(ref_start, ref_end) 
.select(index) 
.sort('system:time_start', true); 

print('Number of images in Reference Collection', 
reference.size()); 

You can now calculate the mean value (and other statistics) for the reference 
collection reference. Mask the results by the baseline mangrove extent using 
extentBuffer: 

var mean = reference.mean().mask(extentBuffer); 
var median = reference.median().mask(extentBuffer); 
var max = reference.max().mask(extentBuffer); 
var min = reference.min().mask(extentBuffer); 

Now that we have our long-term reference metrics, you can define the period 
for which you want to compute the gains and losses. In this example, we will 
use the full period of 2000–2020. However, any combination of years is possible 
depending on what period you are interested in. Then, an anomaly function can 
be created to subtract the metric from the average of your period of interest:
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var period_start = '2000-01-01'; // Full period 
var period_end = '2020-12-31'; 

var anomalyfunction = function(image) { 
return image.subtract(mean) 

.set('system:time_start', 
image.get('system:time_start')); 
}; 

Finally, map the anomalyfunction to the Landsat collection 
filtered by your period_start and period_end: 

var series = collectionL5L7L8.filterDate(period_start, 
period_end) 

.map(anomalyfunction); 

Finally, map the anomalyfunction to the Landsat collection filtered by 
your period_start and period_end: 

var seriesSum = 
series.select(index).sum().mask(extentBuffer); 
var numImages = 
series.select(index).count().mask(extentBuffer); 
var anomaly = seriesSum.divide(numImages); 

The object series will have all the spectral bands and vegetation/spectral 
indices for the time period defined above. Their values, however, will be different 
from the original collection since we subtracted the average value of the reference 
period. The next step is to sum all the values for the index from series and 
divide by the number of images available: 

Add the anomaly layer to the map using a color ramp of your choice (Fig. 48.2):



48 Mangroves II—Change Mapping 1057

Fig. 48.2 NDVI anomaly for the period of 2000–2000 

var visAnon = { 
min: -0.20, 
max: 0.20, 
palette: ['#481567FF', '#482677FF', '#453781FF', 

'#404788FF', 
'#39568CFF', '#33638DFF', '#2D708EFF', '#287D8EFF', 
'#238A8DFF', 
'#1F968BFF', '#20A387FF', '#29AF7FFF', '#3CBB75FF', 
'#55C667FF', 
'#73D055FF', '#95D840FF', '#B8DE29FF', '#DCE319FF', 
'#FDE725FF' 

] 
}; 
Map.addLayer(anomaly, visAnon, index + ' anomaly'); 

You can then extract loss areas by selecting a value threshold on the anomaly 
(Fig. 48.3):
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Fig. 48.3 NDVI anomaly losses (orange) and gains (blue) based on change threshold values 

var thresholdLoss = -0.05; 
var lossfromndvi = anomaly.lte(thresholdLoss) 

.selfMask() 

.updateMask( 
mangrove2000 

); // Only show the losses within the mangrove extent 
of year 2000 

Map.addLayer(lossfromndvi, { 
palette: ['orange'] 

}, 'Loss from Anomaly 00-20'); 

var thresholdGain = 0.20; 
var gainfromndvi = anomaly.gte(thresholdGain) 

.selfMask() 

.updateMask( 
extentBuffer 

); // Only show the gains within the mangrove extent 
buffer of year 2000 

Map.addLayer(gainfromndvi, { 
palette: ['blue'] 

}, 'Gain from Anomaly 00-20');
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Code Checkpoint A33b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 4. What are the main challenges of a map-to-image change detection 
approach? Think from a perspective of baseline extent, spectral index, and metric 
used (e.g., mean versus median). 

48.3 Synthesis 

With the content covered in this chapter, you will be able to reproduce a 
map-to-map and a map-to-image change detection to your own area of inter-
est. Additionally, the anomaly analysis can be used to detect changes in other 
land cover types, including (but not limited to) forests (forest cover loss) and 
agricultural land (crop harvest). 

Assignment 1. Practice your land cover classification skills by using the code 
in script A33s1—Supplemental in the book’s repository. In this code, we show 
how to create a mangrove extent map for Guinea using manually and automatically 
selected samples. The code covers masking techniques and using data from Google 
Earth Engine Catalog to assist in the classification workflow. Using the techniques 
you have learned, create two 30 m Landsat-based mangrove extent maps for the 
year of 2000 and 2020 for Guinea, West Africa. 

Assignment 2. Using what you learned in this chapter, compile the areas (in km2) 
of mangrove change in Guinea derived from the anomaly analysis using: (a) vege-
tation spectral index versus a water-based spectral index; (b) mean versus median; 
and (c) five-year intervals (2000–2005, 2005–2010, 2010–2015, and 2015–2020. 

Assignment 3. Practice the classification and compare the map-to-map and map-
to-image change approaches for another land cover type/area of your choice, such 
as the following:

• Agricultural land expansion in the Nile Delta, Egypt.
• Forest burn/loss near Mount Hood, Oregon, United States. 

48.4 Conclusion 

Google Earth Engine’s computing infrastructure has been revolutionizing time-
consuming remote sensing processes, creating a new way for rapid land cover 
classification and change detection at large scales. In the case of mangrove 
forests—a highly dynamic ecosystem that has been under increasing anthropogenic 
pressure—these approaches allow for a rapid and consistent monitoring of change 
in extent over time. These approaches using Earth Engine may be particularly 
useful for developing countries where, until very recently, the high computational
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power and the difficulties of distributing nontrivial classification algorithms across 
multiple computational workstations has challenged classification and change 
detection at large scales. 
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49Forest Degradation 
and Deforestation 

Carlos Souza Jr. , Karis Tenneson , John Dilger , 
Crystal Wespestad , and Eric Bullock 

Overview 
Tropical forests are being disturbed by deforestation and forest degradation at an 
unprecedented pace (Hansen et al. 2013; Bullock et al. 2020). Deforestation com-
pletely removes the original forest cover and replaces it with another land cover type, 
such as pasture or agriculture fields. Generally speaking, forest degradation is a tem-
porary or permanent disturbance, often caused by predatory logging, fires, or forest 
fragmentation, where the tree loss does not entirely change the land cover type. For-
est degradation leads to a more complex environment with a mixture of vegetation, 
soil, tree trunks and branches, and fire ash. Defining a boundary between defor-
estation and forest degradation is not straightforward; at the time this chapter was
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written, there was no universally accepted definition for forest degradation (Aryal 
et al. 2021). Furthermore, the signal of forest degradation often disappears within 
one to two years, making degraded forests spectrally similar to undisturbed forests. 
Due to these factors, detecting and mapping forest degradation with remotely sensed 
optical data is more challenging than mapping deforestation. 

The purpose of this chapter is to present a spectral unmixing algorithm and the 
normalized difference fraction index (NDFI) to detect and map both forest degrada-
tion and deforestation in tropical forests. This spectral unmixing model uses a set of 
generic endmembers (Souza et al. 2005) to process any Landsat Surface Reflectance 
(Tier 1) scene available in Google Earth Engine. We present two examples of change 
detection applications: one comparing a pair of images acquired at different times a 
year apart by making a temporal color composite and an empirically defined change 
threshold, and another using a more extensive and dense time series approach. 

Learning Outcomes

• Calculating NDFI, the Normalized Difference Fraction Index.
• Interpreting fraction images and NDFI using a temporal color composite.
• Analyzing deforestation and forest degradation with NDFI.
• Running a time-series change detection to detect forest change. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, and create masks 

(Part II).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Run and interpret spectral unmixing models (Chap. 9).
• Use expressions to perform calculations on image bands (Chap. 9).
• Aggregate data to build a time series (Chap. 14).
• Perform a two-period change detection (Chap. 16). 

49.1 Introduction to Theory 

Landsat imagery has been extensively used to monitor deforestation (Woodcock 
et al. 2020). However, detecting and mapping forest degradation associated with 
selective logging is more intricate and challenging. First efforts involved the appli-
cation of spectral and textural indices to enhance the detection of canopy damage 
created by logging (Asner et al. 2002; Souza et al. 2005), but these turned out 
to be more helpful in enhancing logging infrastructure using Landsat shortwave 
infrared bands (i.e., roads and log landings; Matricardi et al. 2007). 

Alternatively, spectral mixture analysis (SMA) has been proposed to over-
come the challenge of using whole-pixel information to detect and classify forest
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degradation. Landsat pixels typically contain a mixture of land cover components 
(Adams et al. 1995). The SMA method is based on the linear spectral unmixing 
model, as described in Chap. 9. The identification of the nature and number of pure 
spectra (often referred to in this context as “endmembers”) in the image scene is 
an important step in obtaining correct SMA models. In logged forests (and also 
in burned forest and forest edges), mixed pixels predominate and are expected 
to have a combination of green vegetation (GV), soil, non-photosynthetic vegeta-
tion (NPV), and shade-covered materials. Therefore, fraction images derived from 
SMA analyses are more suitable to enhance the detectability of logging infras-
tructure and canopy damage within degraded forests. For example, soil fractions 
reveal log landings and logging roads (Souza and Barreto 2000), while the NPV 
highlights forest canopy damage (Souza et al. 2003), and the areas decreasing in 
GV indicate forest canopy gaps (Asner et al. 2004). 

A study has shown that it is possible to generalize the SMA model to Land-
sat sensors (including TM, ETM+, and OLI) (Small 2004). Souza et al. (2005) 
expanded the generalized SMA to handle five endmembers—GV, NPV, soil, shade, 
and cloud—expected within forest degradation areas and proposed a novel com-
positional index based on SMA fractions, the normalized difference fraction index 
(NDFI). 

The NDFI is computed as: 

NDFI = GVshade − (NPV + Soil) 
GVshade + NPV + Soil (49.1) 

where GVshade is the shade-normalized GV fraction given by, 

GVshade = GV 

100 − Shade (49.2) 

NDFI values range from − 1 to 1. For intact forests, NDFI shows high values 
(i.e., about 1) due to the combination of high GVshade (i.e., high GV and canopy 
shade) and low NPV and soil values. The NPV and soil fractions increase as forests 
are more degraded, lowering NDFI values relative to the intact forests. Deforested 
areas exhibit very low GV and shade and high NPV and soil, making it possible 
to distinguish them from degraded forests based on NDFI magnitude. 

Recent studies compared NDFI with other spectral indices. NDFI generated 
more accurate results in deforestation detection (Schultz et al. 2016) and forest 
degradation (Bullock et al. 2018) in time-series analysis. One of the key compo-
nents for its success is lowering unwanted noise and accounting for illumination 
variability through the shade normalization applied to the GV fraction.
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49.2 Practicum 

49.2.1 Section 1: Spectral Mixture Analysis Model 

Let us first define the Landsat endmembers based on Souza et al. (2005). These 
endmembers were developed and tested in the Amazon. These endmembers work 
well in many other environments (see example applications for calculating NDFI 
in non-Amazonian tropical forest in Schultz et al. 2016 [Ethiopia and Viet Nam]; 
Kusbach et al. 2017 [central Europe]; Hirschmugl et al. 2013 [Cameroon and Cen-
tral African Republic]). If you are working in a different region, assess how well 
they perform for your forest types. The ratio of these endmembers that makes up 
the spectral signature of each pixel gives a good indication of the plant health and 
composition for that area. When the ratio shifts over time towards one or more of 
the endmembers, we can quantify how the landscape is changing. 

Below, we will create a new variable endmembers by copying the values 
from the code block below. The six numbers in square brackets define the pure 
reflectance values for the blue, green, red, SWIR1, and SWIR2 bands for each 
endmember material. 

// SMA Model - Section 1 

// Define the Landsat endmembers (source: Souza et al. 
2005) 
// They can be applied to Landsat 5, 7, 8, and potentially 
9. 
var endmembers = [ 
[0.0119,0.0475,0.0169,0.625,0.2399,0.0675], // GV 
[0.1514,0.1597,0.1421,0.3053,0.7707,0.1975], // NPV 
[0.1799,0.2479,0.3158,0.5437,0.7707,0.6646], // Soil 
[0.4031,0.8714,0.79,0.8989,0.7002,0.6607] // Cloud 

]; 

We will choose a single Landsat 5 image to work with for now, and select the 
bands we will need for the SMA and NDFI calculation. 

Create a new variable image and assign it to the Landsat 5 image from the 
code block below. Select the visible, near infrared, and shortwave infrared bands. 
Then, center the map around the Landsat 5 image with a zoom scale of 10.
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// Select a Landsat 5 scene on which to apply the SMA 
model. 
var image = 
ee.Image('LANDSAT/LT05/C02/T1_L2/LT05_226068_19840411') 

.multiply(0.0000275).add(-0.2); 

// Center the map on the image object. 
Map.centerObject(image, 10); 

// Define and select the Landsat bands to apply the SMA 
model. 
// use ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 
'SR_B7'] for Landsat 5 and 7. 
// use ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 
'SR_B7'] for Landsat 8. 
var bands = ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 
'SR_B7']; 
image = image.select(bands); 

Next, we will need to create a couple of functions to use the endmembers and 
create the NDFI image. We will need to unmix the input Landsat image. 

First, we will create a new function, getSMAFractions that takes two 
parameters: image and endmembers. To unmix the image, we first select the 
visible, near-infrared, and short wave infrared bands, and call the unmix function 
with the endmembers used as the argument. Note: The order in which the bands 
are selected matters. For each endmember (GV, NPV, soil, and cloud), each value 
in the array represents the pure value for each band being passed in. For exam-
ple, if the selected bands were [‘SR_B2’, ‘SR_B3’, ‘SR_B4’, ‘SR_B5’, ‘SR_B6’, 
‘SR_B7’] then the selected endmembers at position 0 would be:

• ‘SR_B2’ GV: 119
• ‘SR_B2’ NPV: 1514
• ‘SR_B2’ Soil: 1799
• ‘SR_B2’ Cloud: 4031.
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// Unmixing image using Singular Value Decomposition. 
var getSMAFractions = function(image, endmembers) { 

var unmixed = ee.Image(image) 
.select([0, 1, 2, 3, 4, 

5 
]) // Use the visible, NIR, and SWIR bands only! 
.unmix(endmembers) 
.max(0) // Remove negative fractions, mostly Soil. 
.rename('GV', 'NPV', 'Soil', 'Cloud'); 

return ee.Image(unmixed.copyProperties(image)); 
}; 

We will now write the function to calculate NDFI. We could write it out line 
by line for each time we want to perform SMA or calculate NDFI. But having the 
equation implemented as a function gives us many benefits, including reducing 
redundancy, allowing us to map the function over a collection of images, and 
reducing errors from typos or other little bugs that can find their way into our 
code. 

We will use the fraction images obtained with the getSMAFractions func-
tion above to calculate shade, GVs, and NDFI using image expressions. This 
procedure will return a multiband image with the shade, GVs, and NDFI bands 
added to the input image. 

First, we will create a new variable sma and pass in the image and endmembers 
as arguments. Then calculate the shade and GV shade-normalized (GVs) fractions 
from the SMA bands, and add the shade and GVs bands to the SMA image. We 
calculate NDFI using an expression implementing Eq. 49.1, and add the new band 
to the SMA image. 

// Calculate GVS and NDFI and add them to image fractions. 
// Run the SMA model passing the Landsat image and the 
endmembers. 
var sma = getSMAFractions(image, endmembers); 

Map.addLayer(sma, { 
bands: ['NPV', 'GV', 'Soil'], 
min: 0, 
max: 0.45 

}, 'sma');
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// Calculate the Shade and GV shade-normalized (GVs) 
fractions from the SMA bands. 
var Shade = sma.reduce(ee.Reducer.sum()) 

.subtract(1.0) 

.abs() 

.rename('Shade'); 

var GVs = sma.select('GV') 
.divide(Shade.subtract(1.0).abs()) 
.rename('GVs'); 

// Add the new bands to the SMA image variable. 
sma = sma.addBands([Shade, GVs]); 

// Calculate the NDFI using image expression. 
var NDFI = sma.expression( 

'(GVs - (NPV + Soil))  / (GVs + NPV + Soil)', { 
'GVs': sma.select('GVs'), 
'NPV': sma.select('NPV'), 
'Soil': sma.select('Soil') 

}).rename('NDFI'); 

// Add the NDFI band to the SMA image. 
sma = sma.addBands(NDFI); 

We will use a color palette that spans from white, to pink (i.e., bare land), 
to yellow, to green to visualize the NDFI image. Higher values of NDFI will be 
green, while lower values will span the colors of white, pink, and yellow. Copy 
the code block below into your Code Editor. 

// Define NDFI color table. 
var palettes = require( 

'projects/gee-edu/book:Part A - Applications/A3 -
Terrestrial Applications/A3.4 Forest Degradation and 
Deforestation/modules/palettes' 
); 

var ndfiColors = palettes.ndfiColors; 

Next, we can visualize all the hard work we have done unmixing each 
endmember and the NDFI bands (Fig. 49.1).

Create an image visualization object with bands 5, 4, and 3, chosen for visual-
ization along with a min and max. Add the Landsat 5 image to the map using the 
image visualization object.
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c)                                                                   d) 

a) b) 

e)                                                                  

Fig. 49.1 Example maps of a green vegetation shade normalized fraction (more vegetation is 
whiter); b shade fraction (more shade is whiter); c non-photosynthetic vegetation fraction (more 
NPV is whiter); d green vegetation fraction (more vegetation is whiter); e soil fraction (more soil 
is whiter)
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Now add each of the SMA bands and the NDFI band to the map. Note: Rather 
than defining the min, max, and bands for each of these in separate variables, we 
can pass in the object directly to the Map.addLayer function. 

var imageVis = { 
'bands': ['SR_B5', 'SR_B4', 'SR_B3'], 
'min': 0, 
'max': 0.4 

}; 

// Add the Landsat color composite to the map. 
Map.addLayer(image, imageVis, 'Landsat 5 RGB-543', true); 
// Add the fraction images to the map. 
Map.addLayer(sma.select('Soil'), { 

min: 0, 
max: 0.2 

}, 'Soil'); 
Map.addLayer(sma.select('GV'), { 

min: 0, 
max: 0.6 

}, 'GV'); 
Map.addLayer(sma.select('NPV'), { 

min: 0, 
max: 0.2 

}, 'NPV'); 
Map.addLayer(sma.select('Shade'), { 

min: 0, 
max: 0.8 

}, 'Shade'); 
Map.addLayer(sma.select('GVs'), { 

min: 0, 
max: 0.9 

}, 'GVs'); 
Map.addLayer(sma.select('NDFI'), { 

palette: ndfiColors 
}, 'NDFI'); 

The last thing we will do in this section is to create a water and cloud mask. 
Water and clouds will have lower NDFI values. While water may not be too 
much of an issue, clouds will impact how we monitor forest degradation and loss, 
and thus we can simply mask them out. We can mask them using a thresholding 
method based on the values of our fraction images. 

First, create a new function variable getWaterMask that takes an SMA image 
as the only argument.
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Next, create a water mask using threshold values for the shade, GV, and soil 
bands, where shade is greater than or equal to 0.65; GV is less than or equal to 
0.15; and soil is less than or equal to 0.05. 

Now create a cloud mask by applying a threshold of 0.1 or greater to the Cloud 
band. 

var getWaterMask = function(sma) { 
var waterMask = (sma.select('Shade').gte(0.65)) 

.and(sma.select('GV').lte(0.15)) 

.and(sma.select('Soil').lte(0.05)); 
return waterMask.rename('Water'); 

}; 

// You can use the variable below to get the cloud mask. 
var cloud = sma.select('Cloud').gte(0.1); 
var water = getWaterMask(sma); 

Next, we will combine the cloud and water masks using the max reducer. Since 
we want to mask both water and clouds, using the max works quite nicely here— 
as opposed to adding the images together—so we do not need to worry about 
overlaps. 

Now add the cloud and water mask as a layer to the map. 
Apply the cloud and water mask to the NDFI band using the updateMask 

function and invert the mask using the not function. Note: updateMask con-
siders zeroes as invalid (i.e., to be masked) and ones as valid (i.e., to be kept). 
Since our original mask had values of 1 for cloud and water, we use the not 
function to invert the values. 

var cloudWaterMask = cloud.max(water); 
Map.addLayer(cloudWaterMask.selfMask(), 

{ 
min: 1, 
max: 1, 
palette: 'blue' 

}, 
'Cloud and water mask'); 

// Mask NDFI. 
var maskedNDFI = 
sma.select('NDFI').updateMask(cloudWaterMask.not()); 
Map.addLayer(maskedNDFI, { 

palette: ndfiColors 
}, 'NDFI');
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Code Checkpoint A34a. The book’s repository contains a script that shows what 
your code should look like at this point. 

49.2.2 Section 2: Deforestation and Forest Degradation Change 
Detection 

To observe changes in the landscape over time, you need to create an NDFI image 
for two points in time and then calculate the difference between them. Previous 
studies have shown that images should not be more than one year apart because the 
forest degradation disturbance quickly disappears with tree foliage and understory 
vegetation growth. Changes in NDFI are a good indicator of forest change. 

Now we will start using the functions we have built. First, we perform the SMA 
on a Landsat 5 image. Recall that the SMA function wants only the visible, near-
infrared, and shortwave infrared bands. When using Landsat 5, those correspond 
to bands 1–5 and band 7. 

First, create a variable for the Landsat 5 scene specified in the code block 
below and select the visible, near-infrared, and shortwave infrared bands. Use 
the getSMAFractions function with the Landsat image and the endmembers. 
Rename the output SMA bands as GV, NPV, Soil, and Cloud. 

// Select two Landsat 5 scenes on which to apply the SMA 
model. 

// Select Landsat bands used for forest change detection. 
var imageTime0 = ee.Image( 

'LANDSAT/LT05/C02/T1_L2/LT05_226068_20000509') 
.multiply(0.0000275).add(-0.2); 

var bands = ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 
'SR_B7']; 
imageTime0 = imageTime0.select(bands); 

// Run the SMA model. 
var smaTime0 = getSMAFractions(imageTime0, endmembers); 

Before we move on to calculate the NDFI, we will add the previous Landsat 
scene and the fractional images to the map to inspect them (example results in 
Fig. 49.2).
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Fig. 49.2 Example maps of a RGB composite of bands 5–4–3 (green is vegetation and brown is 
barren ground); b soil fraction (more soil is whiter); c green vegetation fraction (more vegetation 
is whiter); d non-photosynthetic vegetation fraction (more NPV is whiter)
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// Center the image object. 
Map.centerObject(imageTime0, 10); 

// Define the visualization parameters. 
var imageVis = { 

'opacity': 1, 
'bands': ['SR_B5', 'SR_B4', 'SR_B3'], 
'min': 0, 
'max': 0.4, 
'gamma': 1 

}; 

// Scale to the expected maximum fraction values. 
var fractionVis = { 

'opacity': 1, 
'min': 0.0, 
'max': 0.5 

}; 

// Add the Landsat color composite to the map. 
Map.addLayer(imageTime0, imageVis, 'Landsat 5 RGB 543', 
true); 
// Add the fraction images to the map. 
Map.addLayer(smaTime0.select('Soil'), fractionVis, 'Soil 
Fraction'); 
Map.addLayer(smaTime0.select('GV'), fractionVis, 'GV 
Fraction'); 
Map.addLayer(smaTime0.select('NPV'), fractionVis, 'NPV 
Fraction'); 

Next, let’s set up a function to systematically reproduce the work we did com-
puting NDFI, since we will need it a couple more times. Hereafter, we will be 
able to call that function instead of needing to explicitly write out each step, thus 
simplifying our code and making it easier to change if we need to later.
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function getNDFI(smaImage) { 
// Calculate the Shade and GV shade-normalized (GVs) 

fractions 
// from the SMA bands. 
var Shade = smaImage.reduce(ee.Reducer.sum()) 

.subtract(1.0) 

.abs() 

.rename('Shade'); 

var GVs = smaImage.select('GV') 
.divide(Shade.subtract(1.0).abs()) 
.rename('GVs'); 

// Add the new bands to the SMA image variable. 
smaImage = smaImage.addBands([Shade, GVs]); 

var ndfi = smaImage.expression( 
'(GVs - (NPV + Soil))  / (GVs + NPV + Soil)', { 

'GVs': smaImage.select('GVs'), 
'NPV': smaImage.select('NPV'), 
'Soil': smaImage.select('Soil') 

} 
).rename('NDFI'); 

return ndfi; 
} 

Then, calculate NDFI for the earlier Landsat image’s SMA bands (use 
smaTime0 as an input) using the getNDFI function you wrote. Add this NDFI 
image to the map displayed in the ndfiColors palette (Fig. 49.3). This will 
serve as your calculated NDFI for your earlier point in time, the pre-change time 
(this time was defined as imageTime0).

// Create the initial NDFI image and add it to the map. 
var ndfiTime0 = getNDFI(smaTime0); 
Map.addLayer(ndfiTime0, 

{ 
bands: ['NDFI'], 
min: -1, 
max: 1, 
palette: ndfiColors 

}, 
'NDFI t0', 
false);
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Fig. 49.3 NDFI image for the previous year obtained from the Landsat 5 (path/row 226/068) 
scene acquired on May 9, 2000. Orange colors indicate signs of forest disturbance associated with 
fires and selective logging. Pink and white colors are dry vegetation and bare soil in old deforested 
areas. Orange colors in pasturelands mean dry vegetation

Next, you will repeat this procedure to calculate the SMA fractions and NDFI 
of the second Landsat 5 image (smaTime1). You will utilize the same SMA 
method. 

First, create a new variable (imageTime1), using the Landsat 5 scene from 
the code block below. Note that the band numbers for Landsat 8 are different 
from those for Landsat 5. In general, you should always make sure to check band 
names when working with multiple Landsat collections. Then, you will calculate 
the SMA fractions. The getSMAFractions function will rename the outputs to 
“GV”, “NPV”, “Soil”, and “Cloud”. Then, you will calculate NDFI for the new 
scene. Add an RGB composite and the NDFI to the map.



1076 C. Souza Jr. et al.

// Select a second Landsat 5 scene on which to apply the 
SMA model. 
var imageTime1 = ee.Image( 

'LANDSAT/LT05/C02/T1_L2/LT05_226068_20010629') 
.multiply(0.0000275).add(-0.2) 
.select(['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 

'SR_B7']); 
var smaTime1 = getSMAFractions(imageTime1, endmembers); 
// Create the second NDFI image and add it to the map. 
var ndfiTime1 = getNDFI(smaTime1); 

Map.addLayer(imageTime1, imageVis, 'Landsat 5 t1 RGB-5', 
true); 
Map.addLayer(ndfiTime1, 

{ 
bands: ['NDFI'], 
min: -1, 
max: 1, 
palette: ndfiColors 

}, 
'NDFI_t1', 
false); 

Before looking at changes between the two NDFI images, use the opacity slider 
in the Layers panel of the map to manually view the differences between the 
NDFI outputs, and then the RGB outputs. Where do you expect to see the greatest 
changes between the two? 

An easier way to enhance changes using a pair of images is to build a temporal 
color composite. To construct a temporal color composite, we add the first image 
date to the R color channel and the second to the G and B channels. An example 
of RGB color composite (as first described in Chap. 2) is shown in Fig. 49.4, using 
the NDFI_t0 (R) and NDFI_t1 (G and B). Deforestation appears in bright red 
colors since we assigned the first NDFI image to the R color channel, indicating 
forest in the previous year, and removal in the following (i.e., G and B colors 
have low NDFI values due to forest removal). In contrast, the cyan colors in the 
NDFI temporal color composite indicate vegetation regrowth in the second year. 
The gradient of dark to gray colors suggests no change in NDFI between the two 
dates.
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Fig. 49.4 Example of NDFI obtained for the first (a) and second (b) Landsat images, and a visual-
ization of them using a temporal RGB color composite (c). Intense red colors are newly deforested 
areas, and light red are selectively logged forests. Cyan colors indicate vegetation regrowth in areas 
that were logged or burned a year ago or more. Example of NDFI difference histogram (d), with 
positive values indicating an increase in NDFI over time and negative values a decrease. Values at 
zero suggest no change
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Fig. 49.4 (continued)
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To find the change between our images, a simple difference method can be 
applied by subtracting the previous image from the current image. Then, we 
can apply an empirically defined threshold to classify the changes based on the 
inspection of the histogram and the NDFI temporal color composite. For more 
information on two-date differencing, see Chap. 16. 

Next, we will combine the two NDFI images for time t0 and t1. Create a new 
variable ndfiChange and subtract the current NDFI image (made using Landsat 
5 imagery from 2001) from the previous NDFI image (made using Landsat 5 
imagery from 2000). Note: The NDFI is calculated using the image expression 
method applied to the SMA fraction presented in the code above. We then combine 
the two NDFI bands from 2000 and 2001 in one variable to display the change 
over time. 

// Combine the two NDFI images in a single variable. 
var ndfi = ndfiTime0.select('NDFI') 

.addBands(ndfiTime1.select('NDFI')) 

.rename('NDFI_t0', 'NDFI_t1'); 

// Calculate the NDFI change. 
var ndfiChange = ndfi.select('NDFI_t1') 

.subtract(ndfi.select('NDFI_t0')) 

.rename('NDFI Change'); 

Using the polygon drawing tool (as described in Chap. 6), draw a region that 
covers most of the ndfiChange image and rename it region in the variable 
import panel. 

Next, make a histogram named histNDFIChange that bins the 
ndfiChange image using the region you just drew, and prints it to the Console. 
Optionally, click Run to view the histogram and identify some potential change 
thresholds. In your case the histogram may look slightly different.
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var options = { 
title: 'NDFI Difference Histogram', 
fontSize: 20, 
hAxis: { 

title: 'Change' 
}, 
vAxis: { 

title: 'Frequency' 
}, 
series: { 

0: { 
color: 'green' 

} 
} 

}; 

// Inspect the histogram of the NDFI change image to define 
threshold 
// values for classification. Make the histogram, set the 
options. 
var histNDFIChange = ui.Chart.image.histogram( 

ndfiChange.select('NDFI Change'), region, 30) 
.setSeriesNames(['NDFI Change']) 
.setOptions(options); 

print(histNDFIChange); 

Classify the difference image into new deforestation (red), forest degradation 
(orange), regrowth (cyan), and forest (green). The classification is based on slicing 
the NDFI difference image. Old deforested areas are detected using the NDFI first 
image date (t0).
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Add the change classification and difference images to the map and click Run. 

// Classify the NDFI difference image based on thresholds 
// obtained from its histogram. 
var changeClassification = ndfiChange.expression( 

'(b(0) >= -0.095 && b(0) <= 0.095) ? 1 :' + 
//  No forest change 
'(b(0) >= -0.250 && b(0) <= -0.095) ? 2 :' + // 

Logging 
'(b(0) <= -0.250) ? 3 :' + // Deforestation 
'(b(0) >= 0.095) ? 4  : 0') // Vegetation regrowth 

.updateMask(ndfi.select('NDFI_t0').gt( 
0.60)); // mask out no forest 

// Use a simple threshold to get forest in the first image 
date. 
var forest = ndfi.select('NDFI_t0').gt(0.60); 

Finally, add code to add all the new layers to the map and click Run. 

// Add layers to map 
Map.addLayer(ndfi, { 

'bands': ['NDFI_t0', 'NDFI_t1', 'NDFI_t1'] 
}, 'NDFI Change'); 
Map.addLayer(ndfiChange, {}, 'NDFI Difference'); 
Map.addLayer(forest, {}, 'Forest t0 '); 
Map.addLayer(changeClassification, { 

palette: ['000000', '1eaf0c', 'ffc239', 'ff422f', 
'74fff9'] 

}, 
'Change Classification'); 

Figure 49.5 shows an example of forest changes between two dates displayed 
using the cutoffs defined by the histogram. Categorizing the whole map into a 
simple system of no change, old deforestation, new deforestation, partial forest 
disturbance, and regrowth makes the forest use patterns in the region clearer. How-
ever, you must be careful with the thresholds you chose from the histogram when 
creating and interpreting the NDFI changes in this way, as those values can dras-
tically alter your map. Consider when it might be more appropriate to use an 
RGB temporal color composite, and in what situations the classified map using 
the empirically defined thresholds would be better.
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Fig. 49.5 Example of the change detection using two NDFI images. Green is remaining forest; 
black is old deforestation as detected in the first NDFI image; red highlights new deforestation; 
orange shows forest disturbance by logging or fires; and cyan is vegetation regrowth of forest since 
the previous date 

Code Checkpoint A34b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Save your script for your own future use, as outlined in Chap. 1. Then, refresh 
the page to begin with a new script for the next section. 

49.2.3 Section 3: Deforestation and Forest Degradation Time 
Series Analysis 

To assess deforestation and forest degradation with a time series, we can use a 
Google Earth Engine tool called CODED (Bullock et al. 2018, 2020; Bullock 
(2018). The algorithm is based on previous work in continuous land cover mon-
itoring (Zhu and Woodcock 2014) and NDFI-based degradation mapping using 
spectral unmixing models (Souza et al. 2003, 2005). CODED has both a user 
interface application and an API, which can be accessed in the Earth Engine Code 
Editor. For this lesson, we will use the API. 

Code Checkpoint A34c. The book’s repository contains a script to use to begin 
this section. You will need to start with that script and script and paste code below 
into it. The checkpoint accesses the modules of the CODED API and support 
functions. Note: importing large modules can cause your browser to hang for a 
moment while they load. 

Detecting degraded forest regions requires knowledge of the characteristics of 
the forest of interest when it is in its normal healthy state. Higher NDFI values,
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near 1, typically indicate a healthy forest, but the magnitude range of NDFI for 
a healthy forest is dependent on forest density, type of forest ecosystem, and the 
seasonality of the area. In order to determine the typical values of NDFI observed 
in each forest over time, CODED employs a training period. Within this period, 
a regression model, similar to the one initially introduced in Chap. 18, is fitted 
for NDFI values for each pixel. The regression model is composed of a constant 
for overall NDFI magnitude, a sine and cosine term encapsulating seasonal and 
intra-annual variability, and an RMSE to account for noise. In this way, CODED 
can find typical temporal patterns in the landscape, account for clouds and sensor 
noise, and better distinguish forests from non-forested areas. 

The code below sets up the study area, accesses the Landsat collection to be 
used, and defines the study period. For this example, we will use the geome-
try of the previous Landsat scene as our study area. Then, we define a new 
variable studyArea and assign it to the image we used when first exploring 
NDFI, retrieving its geometry using the geometry method. Then, we use the 
utils module to call the Inputs.getLandsat function, which accesses the 
ImageCollection. We then filter the images to a start date and end date of 
interest. Note: CODED calibrates to find the typical variations in NDFI for the 
region by observing the NDFI patterns over time, so it is a good idea to filter the 
Landsat data so you have an extra six months to a year of data before the time 
period in which you are truly interested. For example, if you wanted to study for-
est change from 2000 to 2010, it would be good practice to use 1999 as the start 
date and 2010 as the end date. Paste the code below into your starter script you 
opened to begin this section. 

// We will use the geometry of the image from the previous 
section as 
// the study area. 
var studyArea = ee.Image( 

'LANDSAT/LT05/C02/T1_L2/LT05_226068_19840411') 
.geometry(); 

// Get cloud masked (Fmask) Landsat imagery. 
var landsat = utils.Inputs.getLandsat() 

.filterBounds(studyArea) 

.filterDate('1984-01-01', '2021-01-01'); 

Getting our ImageCollection this way saves us quite a bit of coding. By 
default the returned collection will use every available Landsat mission, perform 
some simple cloud masking, and generate our image fractions of green vegeta-
tion (GV), soil, non-photosynthetic vegetation (NPV), shade-covered material, and 
NDFI, as well as additional indices. 

First, make a new variable gfwImage and add the path to the Global Forest 
Change product from Hansen et al. (2013), which is used to create a forest mask.
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Define a threshold of 40 for the percent canopy cover for the mask. Apply the 
threshold to the treecover2000 band from the gfwImage. You could also 
choose to use a pre-prepared forest mask of your own instead of selecting one from 
the Global Forest Change product. This might be useful if you have a local high-
quality forest mask, as it may slightly improve your results or provide consistency 
with other work you have done in the area. 

// Make a forest mask 
var gfwImage = 
ee.Image('UMD/hansen/global_forest_change_2019_v1_7'); 

// Get areas of forest cover above the threshold 
var treeCover = 40; 
var forestMask = gfwImage.select('treecover2000') 

.gte(treeCover) 

.rename('landcover'); 

To identify degradation and deforestation, distinguished by whether the land 
cover remains forest or not after the event, we will use a prepared dataset of 
forest and non-forested areas. This data already has the predictor data for each 
feature, which will speed up the computation. Alternatively, refer back to Chap. 6 
on classification for details on how to create your own unique forest and non-
forested area dataset and ensure each feature has a year property with the year 
collected as an integer. 

var samples = ee.FeatureCollection( 
'projects/gee-book/assets/A3-

4/sample_with_pred_hansen_2010'); 

There are many parameters that can be adjusted when running CODED, as 
summarized below.

• minObservations: The minimum number of consecutive observations 
required to label a disturbance event.

• chiSquareProbability: The chi-squared probability is a threshold that 
controls the sensitivity to change.

• training: A training dataset used to specify forest and non-forest. In this 
example, we will set it to the combination of the forest and non-forest training 
points using the merge function.

• forestValue: The integer value of forest in your training data.
• startYear, endYear: The start and end years to perform change detection.
• classBands: The bands used to train the coefficients.
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• Note: prepTraining tells the algorithm to add the coefficients to your sam-
ples for training the classifier. This will initiate a task to export the prepared 
samples for later use if you wish. In this example, we will set it to false. 

var minObservations = 4; 
var chiSquareProbability = 0.97; 
var training = samples; 
var forestValue = 1; 
var startYear = 1990; 
var endYear = 2020; 
var classBands = ['NDFI', 'GV', 'Shade', 'NPV', 'Soil']; 
var prepTraining = false; 

With the parameters defined, we now have everything needed to run CODED. 
CODED takes a single argument, which is stored as a JavaScript dictionary. Since 
we defined all the parameters as variables, it may seem redundant to put them into 
a dictionary, but having them as variables can be helpful when you are exploring 
functionality and adjusting parameter values frequently. Of course, entering the 
values directly into the dictionary would work as well. 

Create a new dictionary and assign each parameter variable to a key of the same 
name. 

//---------------- CODED parameters 
var codedParams = { 

minObservations: minObservations, 
chiSquareProbability: chiSquareProbability, 
training: training, 
studyArea: studyArea, 
forestValue: forestValue, 
forestMask: forestMask, 
classBands: classBands, 
collection: landsat, 
startYear: startYear, 
endYear: endYear, 
prepTraining: prepTraining 

}; 

// -------------- Run CODED 
var results = api.ChangeDetection.coded(codedParams); 
print(results); 

Run CODED by clicking Run. This will set up the run, and issue the call to 
the ChangeDetection.coded function (Fig. 49.6).
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Fig. 49.6 The result of running the CODED change detection algorithm is an object with the 
general and change parameters used for the run and a layers object that has all the image outputs 

Code Checkpoint A34d. The book’s repository contains a script that shows what 
your code should look like at this point. 

Next, you will relabel some of the results so that they are easier to understand 
and work with. You will rename the degradation layers to something more human 
readable, like ‘degradation_1’, ‘degradation_2’, etc. Rename the deforestation lay-
ers to something more human readable, like ‘deforestation_1’, ‘deforestation_2’, 
etc. 

Set a variable for the mask layer. This is the same mask that was passed into 
CODED, so retrieving it in this method is not strictly necessary. 

Set a variable for the change output that is the concatenation of the degrada-
tion and deforestation outputs. This is mostly for organizational purposes. Since 
change is more rare, self-masking removes all the non-change pixels, and casting 
to Int32 helps keep all the bands in the same type, which you would need for 
exporting to a geoTIFF. 

Set a variable mag to the minimum magnitude. There are multiple magnitude 
bands that correspond to the number of temporal segments that are retrieved when 
running CODED. These bands are reduced by the minimum since we want to find 
areas where the greatest negative change has occurred. 

// Format the results for exporting. 
var degradation = results.Layers.DatesOfDegradation 

.rename(['degradation_1', 'degradation_2', 
'degradation_3', 'degradation_4' 

]); 
var deforestation = results.Layers.DatesOfDeforestation 

.rename(['deforestation_1', 'deforestation_2', 
'deforestation_3', 'deforestation_4' 

]); 
var mask = results.Layers.mask.rename('mask'); 
var change = ee.Image.cat([degradation, 
deforestation]).selfMask() 

.toInt32(); 
var mag = results.Layers.magnitude.reduce(ee.Reducer.min()) 

.rename('magnitude');
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Finally, we can combine all of this information into a stratified—or classified— 
output layer of forest, non-forest, degradation, and deforestation. We can define 
a function to take in each of the outputs and apply some logic to decide these 
categories. A new threshold we need to apply is the magnitude, magThreshold. 
This threshold will define the minimum amount of change we want to qualify as a 
degradation or deforestation event. This is a post-processing step in which we will 
stratify the results into categories of stable forest, stable non-forest, degradation, 
and deforestation. 

Next, you will create a new function named makeStrata that takes an image 
and a threshold as the arguments. The base of the stratified image will be the mask 
which is remapped from [0, 1] to [2, 1]. This keeps the forest class at a value of 1 
and updates the non-forest class to a value of 2. 

Then, you will create a binary mask of the minimum threshold using the mag-
nitude threshold parameter. Then, create a binary degradation image using all the 
degradation bands, and then multiply it by the magnitude mask. Similarly, you’ll 
create a binary deforestation image using all the deforestation bands and then 
multiply it by the magnitude mask. Update the strata image using the where 
functions to first assign degradation to 3 and next to assign deforestation to 4. The 
where functions are applied sequentially. Deforestation needs to be updated last, 
because in this case, areas of degradation could overlap with areas that are also 
deforestation. 

var makeStrata = function(img, magThreshold) { 
var strata = img.select('mask').remap([0, 1], [2, 1]); 
var mag = img.select('magnitude').lte(magThreshold); 

var deg = 
img.select(['deg.*']).gt(0).reduce(ee.Reducer.max()) 

.multiply(mag); 
var def = 

img.select(['def.*']).gt(0).reduce(ee.Reducer.max()) 
.multiply(mag); 

strata = strata.where(deg, 3).where(def, 4); 

return strata.clip(studyArea); 
}; 

Concatenate the mask, change, and mag bands into a single image. Define a 
magnitude threshold of − 0.6. Apply the makeStrata function using the full 
output image and the magnitude threshold. Then, add code to export the strata to 
your assets.
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var fullOutput = ee.Image.cat([mask, change, mag]); 
var magnitudeThresh = -0.6; 
var strata = makeStrata(ee.Image(fullOutput), 
magnitudeThresh) 

.rename('strata'); 

Export.image.toAsset({ 
image: strata, 
description: 'strata', 
region: studyArea, 
scale: 30, 
maxPixels: 1e13, 

}); 

Click Run. The CODED algorithm is computationally heavy, so the results 
need to be exported before they can be viewed on the map in the Code Editor. 
Once the export has finished, you can add the layer to the map. We have created 
the asset for you and stored it in the book repository; you can access it with the 
code below: 

var exportedStrata = ee.Image('projects/gee-book/assets/A3-
4/strata'); 
Map.addLayer(exportedStrata, 

{ 
min: 1, 
max: 4, 
palette: 'green,black,yellow,red' 

}, 
'strata'); 

Map.setCenter(-55.0828, -11.24, 11); 

The resulting map should look something like the example in Fig. 49.7. With 
these stratified results, you can see the relative amounts and geographic distribution 
of forest that have been degraded or deforested in your time period of interest. 
What patterns do you observe? Does forest degradation or deforestation seem more 
prevalent?

Code Checkpoint A34e. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 49.7 Example of classified CODED results for 1990–2020. Non-forested areas are black, 
stable forest areas are green, deforestation is red, and degradation is yellow

49.3 Synthesis 

Assignment 1. Study how adjusting each parameter affects your results. 

a. When you decrease the chi-squared probability, do you see more or less 
deforestation, and more or less degradation? 

b. When you decrease the magnitude threshold, do you see more or less defor-
estation, and more or less degradation? 

c. When you decrease the number of observations, do you see more or less 
deforestation, and more or less degradation? 

Assignment 2. Try adjusting the CODED parameters to see how they affect the 
detection of degradation and deforestation in a study area where you highly suspect 
from the imagery that these events have occurred. Observe in the map whether you 
are overestimating or underestimating the disturbed forest area with each parameter 
combination. 

49.4 Conclusion 

In this chapter, you learned about the spectral unmixing algorithm (SMA) and the 
Normalized Difference Fraction Index (NDFI) in order to map forest degradation 
and deforestation. We presented two examples of change detection applications: 
two-image differencing and an NDFI time-series approach using the CODED algo-
rithm. NDFI is sensitive to subtle changes in forest composition, making it ideal 
for detection of forest degradation. CODED’s use of a regression model fitting of
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NDFI over a training period informs us more about what the NDFI magnitudes 
and variability of a forest should be in a healthy state, so changes from the norm 
can be more confidently labeled as forest disturbance events. However, your cho-
sen CODED parameters have an important impact on your resulting map of forest 
loss and forest degradation. 
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50Deforestation Viewed from Multiple 
Sensors 

Xiaojing Tang 

Overview 
Combining data from multiple sensors is the best way to increase data density and 
hence detect change faster. The purpose of this chapter is to demonstrate a simple 
method of combining Landsat, Sentinel-2, and Sentinel-1 data for monitoring tropical 
forest disturbance. You will learn how to import, preprocess, and fuse optical and 
synthetic aperture radar (SAR) remote sensing data. You will also learn how to 
monitor change using time-series models. 

Learning Outcomes 

• Combining optical and SAR images for change detection. 
• Fitting a time-series model to an ImageCollection. 
• Using established time-series models to detect anomalies in new images. 
• Performing change detection with a rolling monitoring window. 
• Monitoring forest disturbance in near real time. 

Helps if you know how to 

• Understand the characteristics and preprocessing of Landsat and Sentinel 
images (Part I). 

• Understand regressions in Earth Engine (Chap. 8). 
• Work with array images (Chaps. 9 and 18). 
• Understand the concept of spectral unmixing (Chap. 10). 
• Write a function and map it over an ImageCollection (Chap. 12).
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• Fit linear and nonlinear functions with regression in an ImageCollection 
time series (Chap. 18). 

• Export and import results as Earth Engine assets (Chap. 22). 

50.1 Introduction to Theory 

Deforestation and forest degradation are large sources of carbon emissions and 
negatively impact biodiversity, food security, and human well-being. The ability to 
quickly and accurately detect forest disturbance events is essential for preventing 
future forest loss and mitigating the negative effects. Combining optical and radar 
data has the potential to achieve faster detection of forest disturbance than using an 
individual system. The main challenge is the methodological approach for fusing 
the different datasets. The Fusion Near Real-Time (FNRT) algorithm (Tang et al. 
2023) is a monitoring algorithm for tropical forest disturbance that combines data 
from Landsat, Sentinel-2, and Sentinel-1. For each sensor system, the FNRT algo-
rithm fits time-series models over data from a three-year training period prior to 
the one-year monitoring period. FNRT then produces a change score for each new 
observation collected during the monitoring period based on the residuals and the 
root-mean-square error (RMSE) of the time-series model. The change scores from 
all three different sensors are then combined to form one dense time series for 
change detection. In this chapter, we will learn how to run a simplified version of 
FNRT to monitor forest disturbance in 2020 for a test area located in the Brazilian 
Amazon. 

50.2 Practicum 

This lab is designed for advanced users of Earth Engine. We assume that you 
already know how to import and preprocess large quantities of Landsat, Sentinel-2, 
and Sentinel-1 data as image collections. The code for importing and preprocessing 
input data will be provided in the example script, but it will not be discussed in 
detail in this chapter. To learn more about FNRT, refer to Tang et al. (2023). 

50.2.1 Section 1: Understand How FNRT Works 

For this lab, we will use a graphical user interface to help us understand con-
ceptually how FNRT combines data from different sensors and detects forest 
disturbance. Figure 50.1 shows the user interface of the app.

Code Checkpoint A35a. The book’s repository contains information about access-
ing the app.
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Fig. 50.1 User interface of FNRT app. The red box highlights a test site selected for demonstra-
tion of the algorithm. At the bottom left is a panel for showing plots of time-series data and model 
fit. The control menu is at the bottom right

There are three main tools that can be used to explore the FNRT algorithm. 
Note that only one plotting tool can be activated at a time, and each tool can be 
deactivated by clicking the button again: 

1. The Fit button activates the “fit time-series model” tool, which allows users to 
click anywhere in the map area, load the time-series data, and fit a harmonic 
model for the pixel covering the clicked location, using data from the sensor 
selected in the widget just to the right of the Fit button. 

2. The Monitor button activates the “near real-time monitoring” tool, which 
allows users to click anywhere in the map area and plot the results of FNRT 
for the pixel covering the clicked location, using data from all the sensors that 
were checked via the checkbox widgets to the right of the Monitor button. 

3. The Run button runs FNRT for the entire test area using data from the sensors 
that are checked and loads the resulting forest disturbance map to the map area. 

Let’s start by looking at some examples of time series so we have a better under-
standing of the model. We first need to know where to look for changes. Let’s try 
to have only “Landsat” checked, and click Run. This will run FNRT with only 
Landsat data and quickly produce a forest disturbance map for 2020 (Fig. 50.2a). 
Now, click Fit to activate the “Fit time-series model” tool, and then click on a 
pixel that shows forest disturbance activity according to the map. Wait a few sec-
onds to let the app generate the time-series plot in the time-series panel. Once it 
is completed, you should see a plot similar to Fig. 50.2c.
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Fig. 50.2 a Forest disturbance map of 2020 for the test area created using Landsat data only; b 
Landsat images before and after the forest disturbance; c time series of Landsat NDFI and model 
fit; and d time series of change scores and change detection result 

The model-fit plot (Fig. 50.2c) shows data from Landsat for the training period 
(blue) and monitoring period (red). It also shows a harmonic time-series model fit 
to the training data (orange line). The model fit extends into the monitoring period, 
which represents the model prediction. Notice that the satellite observations (red 
points) are very close to the model fit before the forest disturbance occurs. After 
the disturbance, the observations deviate away from the model fit. The algorithm 
monitors change by keeping track of differences between the observations and the 
model predictions.
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Now click Monitor to activate the “near real-time monitoring” tool, and click 
the same pixel in the map. The app will then make a plot similar to (d) in Fig. 50.2. 
The near real-time monitoring plot (Fig. 50.2d) shows the change scores (Z-score) 
for the training and the monitoring period. A large change score indicates that 
something looks different in the satellite image. But sometimes that can be caused 
by a cloud or a cloud shadow that slipped through the masking process (e.g., the 
large change scores in the training period). Therefore, the monitoring algorithm 
looks for multiple large scores within a short monitoring window as an indicator 
of real forest disturbance. 

The monitoring algorithm works through all the observations available during 
the monitoring period chronologically. Using baseball as an analogy, we flag each 
change score above a threshold as a “strike” and each change score below the 
threshold as a “ball.” If the algorithm finds multiple strikes in a short monitoring 
window, a “strikeout” would then be called on the pixel and the date of the first 
strike would be recorded as the date of change (Fig. 50.2d). 

Question 1. How many strikes were detected before a forest disturbance was 
confirmed (strikeout)? 

When performing multi-sensor data fusion, FNRT would fit a separate time-
series model and calculate change scores using data from each sensor (Fig. 50.3a– 
c). The change scores calculated using data from the three sensors are then 
combined, and change monitoring is applied to the combined scores (Fig. 50.4d).

The FNRT app also allows us to run change monitoring for the entire test area 
by clicking the Run button. A forest disturbance map showing the date of the 
disturbances is then added to the map. The users can use the checkbox widgets 
to choose which data stream is included in the process of making the map (e.g., 
Fig. 50.4). In general, optical data is more sensitive to forest disturbance than 
SAR data. Combining multiple data streams can help detect the disturbance earlier, 
compared to using data from each individual sensor. 

Question 2. Can you find forest disturbances that were detected earlier through 
the use of data from all three sensors rather than using just Landsat data? 

Now that we understand conceptually how FNRT works, let’s create a simple 
script to implement it.
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Fig. 50.3 Time-series data and model fit using a Landsat, b Sentinel-2, and c Sentinel-1 data; d 
shows the combined time series of change scores from all three sensors, and the change detection 
result

50.2.2 Section 2: Define Study Area and Model Parameters 

50.2.2.1 Section 2.1: Study Area 
There are several ways to define a study area: (1) import an existing 
FeatureCollection from an Earth Engine asset; (2) use the drawing tool 
of the Code Editor; and (3) create a polygon by entering the coordinates. Here, we 
select a box, approximately 20 km by 20 km, located in the Brazilian Amazon as 
our study area.
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Fig. 50.4 Forest disturbance map made using data from a Landsat, b Sentinel-2, c Sentinel-1, and 
d all three sensors

var testArea = ee.Geometry.Polygon( 
[ 

[ 
[-66.73156878460787, -8.662236005089952], 
[-66.73156878460787, -8.916025640576244], 
[-66.44867083538912, -8.916025640576244], 
[-66.44867083538912, -8.662236005089952] 

] 
]); 

Map.centerObject(testArea);
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Note that because of the complexity of the FNRT algorithm, it requires quite a 
lot of computational resources and can result in a “User Memory Limit” error if 
applied to too large of an area. Divide the study area into multiple tiles if you are 
trying to monitor a large area. 

50.2.2.2 Section 2.2: Model Parameters 
A few model parameters need to be defined and can be tuned to optimize the 
algorithm for specific regions or monitoring conditions. 

// Start and end of the training and monitoring period. 
var trainPeriod = ee.Dictionary({ 

'start': '2017-01-01', 
'end': '2020-01-01' 

}); 
var monitorPeriod = ee.Dictionary({ 

'start': '2020-01-01', 
'end': '2021-01-01' 

}); 

// Near-real-time monitoring parameters. 
var nrtParam = { 

z: 2, 
m: 5, 
n: 4 

}; 

// Sensor specific parameters. 
var lstParam = { 

band: 'NDFI', 
minRMSE: 0.05, 
strikeOnly: false 

}; 
var s2Param = { 

band: 'NDFI', 
minRMSE: 0.05, 
strikeOnly: false 

}; 
var s1Param = { 

band: 'VV', 
minRMSE: 0.01, 
strikeOnly: true 

};
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For demonstration of the algorithm, we define the year 2020 as our monitoring 
period (monitorPeriod). We then recommend using the three years prior to the 
monitoring period as the training period (trainPeriod) to establish baseline 
time-series models. 

A few parameters can be used to control the sensitivity of the algorithm: a z-
threshold (z) defines the minimum change score required to flag a possible change 
observation; an m-size (m) defines the size of the monitoring window, or how many 
consecutive observations we check for change; and an n-change (n) defines the 
number of possible change observations within the monitoring window required 
to confirm a forest disturbance. 

For each sensor, we also need to select the band (band) to use for monitoring; 
a minimum RMSE (minRMSE) to prevent overly sensitive detection caused by 
unusually good model fit; and a strike-only flag (strikeOnly) to allow a data 
stream to contribute only to confirmation of a change. 

Code Checkpoint A35b. The book’s repository contains a script that shows what 
your code should look like at this point. 

50.2.3 Section 3: Import and Preprocess Data 

We need to import data from each sensor for the training period and the monitoring 
period as two separate image collections. Each image in the ImageCollection 
needs to be preprocessed. For optical data, we need to apply spectral unmixing and 
calculate the Normalized Difference Fraction Index (NDFI) (Souza et al. 2005). 
Since spectral unmixing would be applied to both Landsat and Sentinel-2 data, 
let’s first implement a common “unmixing” function. 

Several studies (e.g., Bullock et al. 2020; Chen et al. 2021) have shown that 
spectral unmixing and NDFI work very well in detecting tropical forest distur-
bance. Here, we use the same endmembers used in Souza et al. (2005) for the 
spectral unmixing and calculate NDFI based on Eqs. 4 and 5 in Souza et al. (2005).
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var unmixing = function(col) { 

// Define endmembers and cloud fraction threshold. 
var gv = [500, 900, 400, 6100, 3000, 1000]; 
var npv = [1400, 1700, 2200, 3000, 5500, 3000]; 
var soil = [2000, 3000, 3400, 5800, 6000, 5800]; 
var shade = [0, 0, 0, 0, 0, 0]; 
var cloud = [9000, 9600, 8000, 7800, 7200, 6500]; 
var cfThreshold = 0.05; 

return col.map(function(img) { 
// Select the spectral bands and perform unmixing 
var unmixed = img.select(['Blue', 'Green', 'Red', 

'NIR', 
'SWIR1', 'SWIR2' 

]) 
.unmix([gv, shade, npv, soil, cloud], true, 

true) 
.rename(['GV', 'Shade', 'NPV', 'Soil', 

'Cloud' 
]); 

// Calculate Normalized Difference Fraction Index.+ 
var NDFI = unmixed.expression( 

'10000 * ((GV / (1 - SHADE)) - (NPV + SOIL)) / 
' + 

'((GV / (1 - SHADE)) + (NPV + SOIL))', { 
'GV': unmixed.select('GV'), 
'SHADE': unmixed.select('Shade'), 
'NPV': unmixed.select('NPV'), 
'SOIL': unmixed.select('Soil') 

}).rename('NDFI'); 

// Mask cloudy pixel. 
var maskCloud = unmixed.select('Cloud').lt( 

cfThreshold); 
// Mask all shade pixel. 
var maskShade = unmixed.select('Shade').lt(1); 
// Mask pixel where NDFI cannot be calculated. 
var maskNDFI = unmixed.expression( 

'(GV / (1 - SHADE)) + (NPV + SOIL)', { 
'GV': unmixed.select('GV'), 
'SHADE': unmixed.select('Shade'), 
'NPV': unmixed.select('NPV'), 
'SOIL': unmixed.select('Soil') 

}).gt(0);



50 Deforestation Viewed from Multiple Sensors 1103

// Scale fractions to 0-10000 and apply masks. 
return img 

.addBands(unmixed.select(['GV', 'Shade', 
'NPV', 'Soil' 

]) 
.multiply(10000)) 

.addBands(NDFI) 

.updateMask(maskCloud) 

.updateMask(maskNDFI) 

.updateMask(maskShade); 
}); 

}; 

For Landsat data, we need to load the Landsat 7 and Landsat 8 Surface 
Reflectance product as an ImageCollection. We can filter the collection based 
on our study area and time period. Each image in the ImageCollection is 
masked based on the QA band; then spectral unmixing is applied and NDFI 
calculated. The loadLandsatData function is provided for importing and 
preprocessing Landsat data. 

Preprocessing of Sentinel-2 data is similar to that of Landsat data because they 
are both optical remote sensing data and are almost identical in many ways. We 
need to load the Sentinel-2 top-of-atmosphere product (surface reflectance data 
do not have long enough time series for our purpose) and the Sentinel-2 cloud 
probability product as image collections, and filter based on our study area and 
time period. We then join the two collections. Each image in the collection is then 
masked based on both the QA band and the cloud probability. 

For Sentinel-1 data, we use the Sentinel-1 SAR GRD product. Preprocessing of 
Sentinel-1 data includes: (1) calculation of backscattering; (2) calculation of the 
ratio of VH and VV; (3) calculation of three-pixel spatial mean; (4) choice of the 
orbital pass with the most data for the region of interest; and (5) radiometric slope 
correction using volume model. Please refer to Mullissa et al. (2021) for more 
detail on the preprocessing of SAR data. 

Here, we assume you have already learned how to load and preprocess large 
quantities of Landsat, Sentinel-2, and Sentinel-1 data. We will not discuss these 
steps in detail here in this lab. Instead, three functions (loadLandsatData, 
loadS2Data, and loadS1Data) are provided in a separate script with which 
we can import using the require function. Now, we can load all the required 
input data. We also need to apply the spectral unmixing and calculate NDFI for 
the Landsat and Sentinel-2 data.
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var input = require( 
'projects/gee-edu/book:Part A - Applications/A3 -

Terrestrial Applications/A3.5 Deforestation Viewed from 
Multiple Sensors/modules/Inputs' 
); 
var lstTraining = unmixing(input.loadLandsatData(testArea, 

trainPeriod)); 
var lstMonitoring = 
unmixing(input.loadLandsatData(testArea, 

monitorPeriod)); 
var s2Training = unmixing(input.loadS2Data(testArea, 
trainPeriod)); 
var s2Monitoring = unmixing(input.loadS2Data(testArea, 

monitorPeriod)); 
var s1Training = input.loadS1Data(testArea, trainPeriod); 
var s1Monitoring = input.loadS1Data(testArea, 
monitorPeriod); 

In addition to the remote sensing data, we also need to create a forest mask to 
limit our monitoring to forested areas. Here, we will use the Hansen Global Forest 
Change dataset. We first use the “tree canopy cover” layer to find areas that had 
larger than 50% canopy cover in 2000. We then remove all the forest loss area 
during 2001–2019 and add in all the forest gain from 2000 to 2012 to create a 
mask of forested area by the beginning of our monitoring period. 

var hansen = 
ee.Image('UMD/hansen/global_forest_change_2020_v1_8') 

.unmask(); 
var forestMask = hansen.select('treecover2000') 

.gt(50) 

.add(hansen.select('gain')) 

.subtract(hansen.select('loss')) 

.add(hansen.select('lossyear') 
.eq(20)) 

.gt(0) 

.clip(testArea); 

Before we move on to the next section, let’s do some simple checking. Print 
out the image collections and check whether the correct data is loaded. You can 
also load the forest mask and visually examine the quality of the mask.
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var maskVis = { 
min: 0, 
max: 1, 
palette: ['blue', 'green'] 

}; 
Map.addLayer(forestMask, maskVis, 'Forest Mask'); 
print('lstTraining', lstTraining); 
print('lstMonitoring', lstMonitoring); 
print('s2Training', s2Training); 
print('s2Monitoring', s2Monitoring); 
print('s1Training', s1Training); 
print('s1Monitoring', s1Monitoring); 

Question 3. How many images are available from each sensor for our monitoring 
period? Are you surprised by the numbers? (Note that one sensor may have more 
data because the study area happened to be in the side-lap zone where two orbit 
passes overlap.) What bands are included in the data of each sensor? 

Code Checkpoint A35c. The book’s repository contains a script that shows what 
your code should look like at this point. 

50.2.4 Section 4: Establish Baseline Time-Series Model 

Before we can monitor change in near real time, we need to establish baseline 
time-series models using the data of the training period, so that we know what 
to expect from new observations in the monitoring period. Due to the different 
physical nature of optical and radar data, it is easier to fit a separate time-series 
model to data from each sensor. Here, we use a harmonic time-series model similar 
to the one used in the Continuous Change Detection and Classification (CCDC) 
algorithm (Zhu and Woodcock 2014). Because the timestamps of all the input 
images are stored in the unit of milliseconds while the harmonic model prefers a 
unit of years, we first need to define a function to convert any date object into the 
unit of fractional year (e.g., 2015-03-01 to 2015.1612). 

var toFracYear = function(date) { 
var year = date.get('year'); 
var fYear = date.difference( 

ee.Date.fromYMD(year, 1, 1), 'year'); 
return year.add(fYear); 

};
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Here, we define a function (fitHarmonicMode) to fit a harmonic model 
to an ImageCollection of time-series data. We first construct the dependent 
variables according to Eq. 1 in Zhu and Woodcock (2014) and add them to each of 
the input images as new bands (using addDependents function). Then, we use 
a reducer (ee.Reducer.robustLinearRegression) to fit the model to the 
data using robust linear regression. The function returns the model coefficients and 
the model RMSE. 

var fitHarmonicModel = function(col, band) { 
// Function to add dependent variables to an image. 
var addDependents = function(img) { 

// Transform time variable to fractional year. 
var t = ee.Number(toFracYear( 

ee.Date(img.get('system:time_start')), 1)); 
var omega = 2.0 * Math.PI; 
// Construct dependent variables image. 
var dependents = ee.Image.constant([ 

1, t, 
t.multiply(omega).cos(), 
t.multiply(omega).sin(), 
t.multiply(omega * 2).cos(), 
t.multiply(omega * 2).sin(), 
t.multiply(omega * 3).cos(), 
t.multiply(omega * 3).sin() 

]) 
.float() 
.rename(['INTP', 'SLP', 'COS', 'SIN', 

'COS2', 'SIN2', 'COS3', 'SIN3' 
]); 

return img.addBands(dependents); 
};
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// Function to add dependent variable images to a ll 
images. 

var prepareData = function(col, band) { 
return ee.ImageCollection(col.map(function(img) { 

return addDependents(img.select(band)) 
.select(['INTP', 'SLP', 'COS', 

'SIN', 
'COS2', 'SIN2', 'COS3', 
'SIN3', 
band 

]) 
.updateMask(img.select(band) 

.mask()); 
})); 

}; 

var col2 = prepareData(col, band); 
// Fit model to data using robust linear regression.// Fit model to data using robust linear regression. 
var ccd = col2 

.reduce(ee.Reducer.robustLinearRegression(8, 1), 4) 

.rename([band + '_coefs', band + '_rmse']); 

// Return model coefficients and model rmse. 
return ccd.select(band + '_coefs').arrayTranspose() 

.addBands(ccd.select(band + '_rmse')); 
}; 

With this function (fitHarmonicModel), we can fit the harmonic time-
series model to the training data of all three sensors. It is always a good practice 
to also add some metadata to the results for future reference. The model fitting 
process will take a few minutes and quite a lot of computer memory. Therefore, 
it is recommended that we run them as tasks and save the results as assets before 
we proceed to the next step.
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// Fit harmonic models to training data of all sensors. 
var lstModel = fitHarmonicModel(lstTraining, lstParam.band) 

.set({ 
region: 'test', 
sensor: 'Landsat' 

}); 
var s2Model = fitHarmonicModel(s2Training, s2Param.band) 

.set({ 
region: 'test', 
sensor: 'Sentinel-2' 

}); 
var s1Model = fitHarmonicModel(s1Training, s2Param.band) 

.set({ 
region: 'test', 
sensor: 'Sentinel-1' 

}); 

// Define function to save the results. 
var saveModel = function(model, prefix) { 

Export.image.toAsset({ 
image: model, 
scale: 30, 
assetId: prefix + '_CCD', 
description: 'Save_' + prefix + '_CCD', 
region: testArea, 
maxPixels: 1e13, 
pyramidingPolicy: { 

'.default': 'sample' 
} 

}); 
}; 

// Run the saving function. 
saveModel(lstModel, 'LST'); 
saveModel(s2Model, 'S2'); 
saveModel(s1Model, 'S1'); 

Run the script. The model fitting results in export tasks to create assets. Instead 
of exporting the results for this exercise, however, you should proceed to the next 
section. In that section, we will continue with a precomputed asset that is the same 
as what the above tasks would create. 

Code Checkpoint A35d. The book’s repository contains a script that shows what 
your code should look like at this point.
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50.2.5 Section 5: Create Predicted Values for the Monitoring 
Period 

We will now start exploring the pre-exported results mentioned in the previous 
section. Place this code below the checkpoint of the previous section: 

var models = ee.ImageCollection('projects/gee-
book/assets/A3-5/ccd'); 
var lstModel = models 

.filterMetadata('sensor', 'equals', 'Landsat').first(); 
var s2Model = models 

.filterMetadata('sensor', 'equals', 'Sentinel-
2').first(); 
var s1Model = models 

.filterMetadata('sensor', 'equals', 'Sentinel-
1').first(); 

In this section, we will use the time-series models that we produced in 
Sect. 50.2.4 to create a predicted image (also commonly referred to as a synthetic 
image; see Zhu et al. 2015) for any given date. The predicted image can give us a 
good estimate of the reflectance (or index such as NDFI) value of a place assuming 
no change has occurred. We can then compare the predicted image to the image 
collected by the satellite on the same date. Areas that look very different would 
likely be areas that have changed. Note that all the coefficients of the harmonic 
model were saved as a single-band array. So the very first step here is to define a 
function dearrayModel to convert the array image into a multiband image with 
each coefficient in one band.



1110 X. Tang

var dearrayModel = function(model, band) { 
band = band + '_'; 

// Function to extract a non-harmonic coefficients. 
var genCoefImg = function(model, band, coef) { 

var zeros = ee.Array(0).repeat(0, 1); 
var coefImg = model.select(band + coef) 

.arrayCat(zeros, 0).float() 

.arraySlice(0, 0, 1); 
return ee.Image(coefImg 

.arrayFlatten([ 
[ee.String('S1_') 

.cat(band).cat(coef) 
] 

])); 
}; 

// Function to extract harmonic coefficients. 
var genHarmImg = function(model, band) { 

var harms = ['INTP', 'SLP', 'COS', 'SIN', 
'COS2', 'SIN2', 'COS3', 'SIN3' 

]; 
var zeros = ee.Image(ee.Array([ 

ee.List.repeat(0, harms.length) 
])) 
.arrayRepeat(0, 1); 

var coefImg = model.select(band + 'coefs') 
.arrayCat(zeros, 0).float() 
.arraySlice(0, 0, 1); 

return ee.Image(coefImg 
.arrayFlatten([ 

[ee.String(band).cat('coef')], harms 
])); 

}; 

// Extract harmonic coefficients and rmse. 
var rmse = genCoefImg(model, band, 'rmse'); 
var coef = genHarmImg(model, band); 
return ee.Image.cat(rmse, coef); 

}; 

Second, we need to define a function that creates a predicted image for all the 
dates for which a real image is available during the monitoring period.
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var createPredImg = function(modelImg, img, band, sensor) { 
// Reformat date. 
var date = 

toFracYear(ee.Date(img.get('system:time_start'))); 
var dateString = ee.Date(img.get('system:time_start')) 

.format('yyyyMMdd'); 
// List of coefficients . 
var coefs = ['INTP', 'SLP', 'COS', 'SIN', 

'COS2', 'SIN2', 'COS3', 'SIN3' 
]; 
// Get coefficients images from model image. 
var coef = ee.Image(coefs.map(function(coef) { 

return modelImg.select(".*".concat(coef)); 
})).rename(coefs); 
var t = ee.Number(date); 
var omega = 2.0 * Math.PI; 
// Construct dependent variables. 
var pred = ee.Image.constant([ 

1, t, 
t.multiply(omega).cos(), 
t.multiply(omega).sin(), 
t.multiply(omega * 2).cos(), 
t.multiply(omega * 2).sin(), 
t.multiply(omega * 3).cos(), 
t.multiply(omega * 3).sin() 

]) 
.float(); 

// Matrix multiply dependent variables with 
coefficients. 

return pred.multiply(coef).reduce('sum') 
// Add original image and rename bands. 
.addBands(img, [band]).rename(['predicted', band]) 
// Preserve some metadata. 
.set({ 

'sensor': sensor, 
'system:time_start': 

img.get('system:time_start'), 
'dateString': dateString 

}); 
}; 

The createPredImg function calculates a predicted image based on the date 
of the real image and the model coefficients. It returns a new image with both the 
predicted image and the real image.
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We can then apply the createPredImg function to each image in the image 
collections of the monitoring data. We can define another function to map over an 
ImageCollection to apply createPredImg to all images in the collection. 

var addPredicted = function(data, modelImg, band, sensor) { 
return ee.ImageCollection(data.map(function(img) { 

return createPredImg(modelImg, img, band, 
sensor); 

})); 
}; 

Let’s apply addPredicted to monitoring data of all three sensors. Note this 
process is still sensor-specific. Let’s print out the result for Landsat to examine the 
structure of the output. 

// Convert models to non-array images. 
var lstModelImg = dearrayModel(lstModel, lstParam.band); 
var s2ModelImg = dearrayModel(s2Model, s2Param.band); 
var s1ModelImg = dearrayModel(s1Model, s1Param.band); 

// Add predicted image to each real image. 
var lstPredicted = addPredicted(lstMonitoring, lstModelImg, 

lstParam.band, 'Landsat'); 
var s2Predicted = addPredicted(s2Monitoring, s2ModelImg, 

s2Param.band, 'Sentinel-2'); 
var s1Predicted = addPredicted(s1Monitoring, s1ModelImg, 

s1Param.band, 'Sentinel-1'); 

print('lstPredicted', lstPredicted); 

Question 4. How many images are in the ImageCollection of the pre-
dicted images? Is it the same number as the original ImageCollection of 
the monitoring data? 

Code Checkpoint A35e. The book’s repository contains a script that shows what 
your code should look like at this point. 

50.2.6 Section 6: Calculate Change Scores 

Assuming a good model fit, the predicted image would be very close to the real 
image of the same date for areas with no change. So what we need to do now 
is examine each pair of real and predicted images and look for areas where they



50 Deforestation Viewed from Multiple Sensors 1113

differ from each other. And if we merge the three data streams, we would be 
able to significantly increase the data density and potentially detect changes faster. 
But before we can fuse the three data streams together, we need to produce a 
normalized measurement of the likelihood of change. 

The FNRT algorithm calculates a change score (Tang et al. 2019) very similar 
to a z-score. First, it calculates the residuals defined as the difference between the 
predicted value and the observed value. The residuals are then scaled with the 
RMSE of the time-series model to get the change score. If a change score is above 
the preset threshold (z in the parameters), then it is flagged as “possible change” 
(or a “strike” in baseball terminology). The implementation of this part is quite 
simple: 

// Function to calculate residuals. 
var addResiduals = function(data, band) { 

return ee.ImageCollection(data.map(function(img) { 
return img.select('predicted') 

// Restrict predicted value to be under 10000 
.where(img.select('predicted').gt(10000), 

10000) 
// Calculate the residual 
.subtract(img.select(band)) 
.rename('residual') 
// Save some metadata 
.set({ 

'sensor': img.get('sensor'), 
'system:time_start': img.get( 

'system:time_start'), 
'dateString': img.get( 

'dateString') 
}); 

})); 
}; 

// Function to calculate change score and flag change. 
var addChangeScores = function(data, rmse, minRMSE, 

threshold, strikeOnly) { 
// If strikeOnly then we need a mask for balls. 
var mask = ee.Image(0); 
if (strikeOnly) { 

mask = ee.Image(1); 
}
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return ee.ImageCollection(data.map(function(img) { 
// Calculate change score 
var z = img.divide(rmse.max(minRMSE)); 
// Check if score is above threshold 
var strike = z.multiply(z.gt(threshold)); 
// Create the output image. 
var zStack = ee.Image.cat(z, strike).rename([ 

'z', 'strike' 
]) 
.set({ 

'sensor': img.get('sensor'), 
'system:time_start': img.get('system:time_start': img.get( 

'system:time_start') 
}); 

// Mask balls if strikeOnly. 
return zStack.updateMask(strike.gt(0).or( 

mask)); 
})); 

}; 

Note that here, we restrict the predicted value to be under 10,000 because that 
is the theoretical maximum for NDFI. 

We also need to have a minimum RMSE (minRMSE) when scaling the resid-
uals. This is because when using indices such as NDFI, it is sometimes possible 
to have perfect model fits resulting in very low or even zero RMSE, which would 
then cause the model to be overly sensitive to subtle variations in the monitoring 
data. The minRMSE is calculated for each pixel as a percentage of the average 
values of all observations in the training period. 

For this particular implementation of FNRT, the determination of a strike is 
directional, meaning that we are looking for changes only in one direction. This is 
because we already expect that a forest disturbance will cause a decrease in NDFI 
or VV backscattering. Modification would be required if monitoring in another 
direction (e.g., if using SWIR reflectance) or bidirectional monitoring is desired. 
Let’s apply the two new functions to our three data streams:
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// Add residuals to collection of predicted images. 
var lstResiduals = addResiduals(lstPredicted, 
lstParam.band); 
var s2Residuals = addResiduals(s2Predicted, s2Param.band); 
var s1Residuals = addResiduals(s1Predicted, s1Param.band); 

// Add change score to residuals. 
var lstScores = addChangeScores( 

lstResiduals, lstModelImg.select('.*rmse'), 
lstPredicted.select(lstParam.band).mean() 
.abs().multiply(lstParam.minRMSE), 
nrtParam.z, lstParam.strikeOnly); 

var s2Scores = addChangeScores( 
s2Residuals, s2ModelImg.select('.*rmse'), 
s2Predicted.select(s2Param.band).mean() 
.abs().multiply(s2Param.minRMSE), 
nrtParam.z, s2Param.strikeOnly); 

var s1Scores = addChangeScores( 
s1Residuals, s1ModelImg.select('.*rmse'), 
s1Predicted.select(s1Param.band).mean() 
.abs().multiply(s1Param.minRMSE), 
nrtParam.z, s1Param.strikeOnly); 

print('lstScores', lstScores); 

Code Checkpoint A35f. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 5. What bands are included in the change scores images? 

50.2.7 Section 7: Multisensor Data Fusion and Change Detection 

Now, we are finally ready to fuse the three data streams together. This step is quite 
straightforward: we just need to merge the three image collections of the change 
scores, and then sort them by their timestamps. 

var fused = lstScores.merge(s2Scores).merge(s1Scores) 
.sort('system:time_start');
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The change monitoring function uses a binary array to keep track of the number 
of strikes within a monitoring window. The size of the monitoring window is 
defined by the model parameters (nrtParam.m). The default monitoring window 
size is five. 

We first initiate the monitoring window with a binary array of 0 with a size 
of five bits (00000) for each pixel. When we iterate through all the change score 
images chronologically, we shift the binary array left for those pixels that were 
not masked in the current change score image (00000→ 0000). We then append 
the current change flag (strike or not) to the shifted binary array (0000 → 00001). 
The process continues, as we iterate through all the change scores images (e.g., 
00001→ 00011 → 00110→01101→11011). Every time a new value is appended 
to the binary array, we also check how many strikes (1s) are there. If the number 
of strikes exceeds the required number (nrtParam.n) to flag a change, then a 
change is flagged and the date of the change recorded. 

var monitorChange = function(changeScores, nrtParam) { 
// Initialize an empty image. 
var zeros = ee.Image(0).addBands(ee.Image(0)) 

.rename(['change', 'date']); 
// Determine shift size based on size of monitoring 

window. 
var shift = Math.pow(2, nrtParam.m - 1) - 1; 
// Function to monitor. 
var monitor = function(img, result) { 

// Retrieve change image at last step. 
var change = ee.Image(result).select('change'); 
// Retrieve change date image at last step. 
var date = ee.Image(result).select('date'); 
// Create a shift image to shift the change binary 

array 
// left for one space so that new one can be 

appended. 
var shiftImg = img.select('z').mask().eq(0) 

.multiply(shift + 1).add(shift); 
change = change.bitwiseAnd(shiftImg) 

.multiply(shiftImg.eq(shift).add(1)) 

.add(img.select('strike').unmask().gt(0));
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// Check if there are enough strike in the current 
// monitoring window to flag a change. 
date = date.add(change.bitCount().gte(nrtParam.n) 

// Ignore pixels where change already detected. 
.multiply(date.eq(0)) 
// Record change date where change is flagged. 
.multiply(ee.Number(toFracYear( 

ee.Date(img.get( 
'system:time_start')), 1)))); 

// Combine change and date layer for next 
iteration. 

return (change.addBands(date)); 
}; 

// Iterate through the time series and look for change. 
return ee.Image(changeScores.iterate(monitor, zeros)) 

// Select change date layer and selfmask. 
.select('date').rename('Alerts').selfMask(); 

}; 

Now, we apply the monitoring function (monitorChange) to the fused data 
(fused) using the default model parameters (nrtParam). We can then add the 
result, the forest disturbance map, to the map panel to visually examine it. 

var alerts = monitorChange(fused, 
nrtParam).updateMask(forestMask); 
print('alerts', alerts); 

// Define a visualization parameter. 
var altVisParam = { 

min: 2020.4, 
max: 2021, 
palette: ['FF0080', 'EC1280', 'DA2480', 'C83680', 

'B64880', 
'A35B80', '916D80', '7F7F80', '6D9180', '5BA380', 
'48B680', '36C880', '24DA80', '12EC80', '00FF80', 
'00EB89', '00D793', '00C49D', '00B0A7', '009CB0', 
'0089BA', '0075C4', '0062CE', '004ED7', '003AE1', 
'0027EB', '0013F5', '0000FF' 

] 
}; 
Map.centerObject(testArea, 10); 
Map.addLayer(alerts, altVisParam, 'Forest Disturbance Map 
(2020)'); 
Map.setOptions('SATELLITE');
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Code Checkpoint A35g. The book’s repository contains a script that shows what 
your code should look like at this point. 

If we run the whole script now, we can create a map of forest disturbance that 
occurred in 2020 for our test area. The visualization of the map shows us the timing 
of all the forest disturbance detected by the FNRT algorithm (Fig. 50.5). You 
will notice a few large disturbance events. There may also be some tiny speckles, 
which are likely errors of commission. Try adjusting the monitoring parameters 
(nrtParam) to see if you can improve the map. Another common practice is to 
apply a spatial filter to filter out scattered single pixels of change (Bullock et al. 
2020). 

Question 6. Can you run the change detection without Sentinel-1 input or with just 
Landsat input? Was forest disturbance detected faster when we used data from all 
three sensors?

Fig. 50.5 Map of forest disturbance occurring in 2020 for a selected test area located on the 
frontline of deforestation in the Brazilian Amazon 
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50.3 Synthesis 

Now that you have learned how to implement the simplified version of FNRT for 
the test area that we selected, let’s try to use it to do some real monitoring of 
tropical forest disturbance. 

Assignment 1. Modify the code and apply it in a different area of your choice. 
Note that you will need to keep the area small in order to be able to run everything 
easily in the Code Editor. 

Assignment 2. Try to monitor more recent changes by changing the monitoring 
period to 2021. Note you would need to change the training period to 2018–2020, 
and also update the forest mask. 

Assignment 3. If you want to try a more challenging task, you can integrate your 
results into the FNRT app that we used in Sect. 50.2.1. 

50.4 Conclusion 

In this chapter, we experimented with a simple way to combine data from three 
different sensors (Landsat, Sentinel-2, and Sentinel-1) for the purpose of detect-
ing tropical forest disturbance as early as possible. We started with loading and 
preprocessing the input data. We learned how to fit a harmonic model to time-
series data, and how to make predicted observations based on a model fit. We also 
learned how to look for changes with a moving monitoring window over a time 
series of change scores. The full FNRT algorithm is more complex than the “lite” 
version that we implemented in this lab. If interested, please refer to Tang et al. 
(2023) for more details. 
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51Working with GPS and Weather Data 

Peder Engelstad , Daniel Carver , and Nicholas E. Young 

Overview 
The purpose of this chapter is to demonstrate how to use Google Earth Engine as a 
means of associating remotely sensed data (weather observations) with open-source 
GPS point locations. These methods will provide a quick and easy way to access and 
analyze large amounts of information relative to your own research and efficiently 
move your data outside Earth Engine. 

Learning Outcomes

• Pairing values from remotely sensed data with uploaded data.
• Exporting features from Earth Engine. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Exporting calculated data to tables with tasks (Chap. 22).
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51.1 Introduction to Theory 

Knowing how animals interact with their environment is critical to understanding 
how to manage them. The choices animals make are influenced by basic survival 
needs (e.g., food, shelter, water) and dynamic factors such as local weather condi-
tions. Without direct observation, it can be difficult to understand the relationship 
between animal movement and weather conditions. 

In this chapter, we will explore information retrieved from a GPS collar worn 
by a cougar and explore its relationship to daily temperature estimates from the 
Daymet climatological dataset available in Google Earth Engine. This will require 
us to bring an asset into Earth Engine, connect the weather values to the point 
locations, and bring those value-added data back out of Earth Engine for further 
analysis. 

51.2 Practicum 

51.2.1 Section 1: GPS Location Data 

Using GPS collars, Mahoney and Young (2017) tracked the movement of 2 cougars 
and 16 coyotes in Central Utah. These data were used to understand some of the 
behavioral patterns of the individuals. These data have been freely shared with the 
broader research community and the public through Movebank, an online reposi-
tory for animal movement datasets from across the globe. While some Movebank 
datasets list only the contact information of the authors, others (like those from 
the Mahoney study) allow you to display and download the information via an 
interactive web map. 

We will pair the data on cougar movement with Daymet weather data. Accord-
ing to the Daymet website, the dataset “provides gridded estimates of daily weather 
parameters. Seven surface weather parameters are available at a daily time step, 
1 km  ×1 km spatial resolution, with a North American spatial extent allowing a 
rich resource of daily surface meteorology.” 

With data for every day at a 1 km2 spatial resolution, the Daymet data are a 
great resource for the temporal and spatial scales at which a cougar would inter-
act with the landscape. There are seven measured values in total, allowing us to 
check multiple aspects of the weather to assess how it may be affecting behavior 
(Fig. 51.1).

51.2.2 Section 2: Bringing Data into Earth Engine 

In this chapter, we will discuss how to import assets into Earth Engine, extract 
values from a dataset, and export those values out of Earth Engine. The processes 
by which you can bring data into Earth Engine change frequently, so it is best to 
go directly to the documentation to view the latest updates.
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Fig. 51.1 Metadata for Daymet imagery within Earth Engine

51.2.2.1 Section 2.1: Bringing in an Asset 
Using the following code, start a fresh script and import Mahoney’s cougar move-
ment data from Movebank (which has already been uploaded for you in the assets 
of this book). Here, we will focus on a single animal (cougar ID F53). Because the 
original dataset was in CSV format, it has been converted into a shapefile outside 
of GEE. During this process, it is important to note that data have been projected 
to the WGS 1984 (EPSG: 4326) coordinate reference system. Projecting to EPSG: 
4326 is recommended in Earth Engine to minimize the reprojection errors during 
the uploading process. 

// Import the data and add it to the map and print. 
var cougarF53 = ee.FeatureCollection( 

'projects/gee-book/assets/A3-6/cougarF53'); 

Map.centerObject(cougarF53, 10); 

Map.addLayer(cougarF53, {}, 'cougar presence data'); 

print(cougarF53, 'cougar data'); 

You can use the Inspector tool to look at the attribute data associated with the 
new asset. With the points visualized, make a geometry feature that encompasses 
our area of interest by selecting the square geometry tool and drawing a box that 
encompasses the points (Fig. 51.2). We will use the geometry feature to filter our 
climate data.
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Fig. 51.2 Draw a geometry feature around the points to spatially filter the climate data 

51.2.2.2 Section 2.2: Defining Weather Variables 
In this chapter, we are using Earth Engine as a means of associating remotely 
sensed data (i.e., our rasters) with our point locations. While the process is con-
ceptually straightforward, it does take some work to accomplish. With our points 
loaded, the next step is to import the Daymet weather variables. 

We are using the NASA-derived dataset Daymet V4 due to its 1 km2 spatial 
resolution and the fact that it measures the environmental variables we think might 
be related to cougar movement or behavior. We will import these variables by 
calling the unique ID of the dataset, filtering it to our bounding box geometry and 
the dates during which the data were collected. 

// Call in image collection and filter. 
var Daymet = ee.ImageCollection('NASA/ORNL/DAYMET_V4') 

.filterDate('2014-02-11', '2014-11-02') 

.filterBounds(geometry) 

.map(function(image) { 
return image.clip(geometry); 

}); 

print(Daymet, 'Daymet');
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Fig. 51.3 View of the structure of the Daymet V4 data from the print statement 

From the print statement (Fig. 51.3), we can see that this is an 
ImageCollection with 264 images (though your total number of images may 
be different, as the dataset changes over time). Each image has seven bands relat-
ing to specific weather measurements (see Fig. 51.1). Now that both datasets are 
loaded, we will associate the cougar occurrences data with the weather data. 

51.2.2.3 Section 2.3: Extracting Values 
With our points and imagery loaded, we can call a function to extract val-
ues from the underlying raster based on the known locations of the cougar. 
We will do this using the ee.Image.sampleRegions function. Search for 
the ee.Image.sampleRegions function under the Docs tab to familiarize 
yourself with the parameters it requires. 

If we tried to call this function on the Daymet ImageCollection, we would 
get an error, because ee.Image.sampleRegions is a function of an image. 
To get around this, we will convert the Daymet ImageCollection into a multi-
band image (Fig. 51.4). Each of the seven measurements for each day will become 
a specific band in our multiband image. This process will help us in the end, 
because each band is defined by the date it was collected and the variable it shows. 
We can use this information to determine which data connects to the positions of 
the cougar on a specific day.
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Fig. 51.4 Print statement showing the result of converting the Daymet ImageCollection into 
a multiband image 

It is important to note that, with many images in the ImageCollection, we  
are going to create a single image with a large number of bands. Because Earth 
Engine is good at data manipulations, it can handle this type of request. 

// Convert to a multiband image. 
var DaymetImage = Daymet.toBands(); 

print(DaymetImage, 'DaymetImage'); 

Now that we have a single multiband image, we can use the sampleRegions 
function to extract information across multiple dates at each of our GPS point 
locations (Fig. 51.5). There are three parameters of this function that should be 
considered:

• Collection: This is the vector dataset that the sampled data will be associated 
with.

• Properties: This defines which columns of the vector dataset will remain. In 
this case, we want to keep the ID column, because that is what we will use to 
join this dataset back to the original outside of Earth Engine.

• Scale: This refers to the spatial resolution of the dataset. The scale parameter 
should always match the spatial resolution of your raster data. If you are not 
sure what the resolution of a raster is, you can search for the dataset using the 
search bar and locate that information in the documentation. (If you want to 
get the number for use in code, the nominalScale function, as described in 
Chap. 4, can extract it from an image.)
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Fig. 51.5 Print statement from the sampleRegions function showing that our GPS point loca-
tions now have weather measurements associated with them

// Call the sample regions function. 
var samples = DaymetImage.sampleRegions({ 

collection: cougarF53, 
properties: ['id'], 
scale: 1000 

}); 

print(samples, 'samples'); 

Code Checkpoint A36a. The book’s repository contains a script that shows what 
your code should look like at this point. 

51.2.2.4 Section 2.4: Exporting 
Exporting Points 

We now have a series of daily weather data associated with the known locations 
of the cougar known as F53. While we could work more with these data in Earth
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Engine, it will be easy to bring them into R, Python, or Excel for further analysis. 
There are a few options to define where the exported data will be created. Gener-
ally speaking, saving the data to a Google Drive account provides an easy way to 
access the data with another program. Here, we will use a dictionary, denoted by 
the curly brackets {}, to define the parameters of the Export.table.toDrive 
function. 

We would have preferred to export to create a shapefile, but a shapefile can 
contain only 255 columns. The samples variable has 1361 columns, so we will 
export the data as a CSV file. 

// Export value added data to your Google Drive. 
Export.table.toDrive({ 

collection: samples, 
description: 'cougarDaymetToDriveExample', 
fileFormat: 'csv' 

}); 

When you export something, the Tasks panel will light up. To run the task, 
click the Run button (Fig. 51.6). 

When you click the Run button, the pop-up shown in Fig. 51.7 will appear. 
This allows you to edit the details of the export.

Exporting a Raster 
While working with these spatial data, you may have realized that a raster showing 
the median values over the time period when data were collected on the cougar 
could be useful information to have. To do this, we will apply a median reducer 
function to the Daymet ImageCollection to generate a median value for each 
parameter in each cell. As with the tabular data, we will export this multiband 
image to Google Drive. Once we convert the ImageCollection to an image 
using the median function, we can clip it to the geometry feature object. This 
feature will be exported as a multiband raster.

Fig. 51.6 Example of the Tasks bar once a script with an export function has been run 
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Fig. 51.7 Example of the user-defined parameters present when exporting a feature from Earth 
Engine

// Apply a median reducer to the dataset. 
var daymet1 = Daymet 

.median() 

.clip(geometry); 

print(daymet1); 

// Export the image to drive. 
Export.image.toDrive({ 

image: daymet1, 
description: 'MedianValueForStudyArea', 
scale: 1000, 
region: geometry, 
maxPixels: 1e9 

}); 

In Earth Engine, there are many options for exporting images. One of the most 
important options when exporting data is the maxPixels parameter. Generally 
speaking, Earth Engine will not allow you to export a raster with more than 
109 pixels. With the maxPixels parameter, you can bump this up to around 
1012 pixels per image. If you are exporting data for an area larger than 1012 pixels, 
you will need to be creative about how to get the information out of Earth Engine.
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Sometimes, this involves splitting the image into smaller pieces (as described in 
Chap. 29) or even reevaluating the usefulness of such a large image outside of 
Earth Engine. 

Code Checkpoint A36b. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. With the maxPixels count set to 1e9, what square area would you 
expect to be able to export for imagery with 1000, 250, 30, 10 m cell size? Deter-
mine how this area measure changes when using 1012 pixels for one of the cell 
sizes to determine the percent increase. 

Question 2. We selected all available variables from the Daymet collection. What 
specific bands from Daymet might be most relevant to cougars? How would you 
edit the code to select just one or a few bands? 

Question 3. When we extracted the raster data, we set the scale parameter to 
1000 to match the known spatial resolution of the Daymet dataset. Would it be 
reasonable to change that scale parameter to 500 to get final resolution data? What 
does Earth Engine tell you when you attempt to change the scale of an export? 

51.3 Synthesis 

Assignment 1. Utilize the chapter’s script with a different dataset to process track-
ing information from a different animal from Movebank or another occurrence 
database of your choice (e.g., GBIF.org). Evaluate whether the temperature ranges 
between the two animals are different and make a hypothesis about why this might 
be. 

51.4 Conclusion 

While Google Earth Engine can be used for planetary-scale analyses, it is also an 
effective resource for quickly accessing and analyzing large amounts of informa-
tion across time at a scale relative to your own data. The method presented in this 
chapter is a great way to add value to your own research. Here, we worked with 
weather data, but that is by no means the only option. You can connect your data 
to many other datasets within Earth Engine. It is up to you to explore and find 
what is relevant to your work. 
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Points 

Peder Engelstad , Daniel Carver , and Nicholas E. Young 

Overview 
The purpose of this chapter is to demonstrate a method to generate your own presence 
and absence data and distribute those samples using specific ecological character-
istics found in remotely sensed imagery. You will see that even when field data is 
unavailable, you can still digitally sample a landscape and gather information on 
current or past ecological conditions. 

Learning Outcomes

• Generating presence and absence data manually using high-resolution imagery.
• Generating randomly distributed points automatically within a feature class layer 

to use as field sampling locations.
• Filtering your points to refine your sampling locations.
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Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Visualize images with a variety of false color band combinations (Chap. 2).
• Perform basic image analysis: select bands, compute indices, create masks 

(Part II).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Filter a FeatureCollection to obtain a subset (Chaps. 22, and 23). 

52.1 Introduction to Theory 

Herbivore grazing can have a negative effect on aspen regeneration in some areas, 
as aspens tend to grow in large monotypic stands (Halofsky and Ripple 2008). 
Excluding elk, deer, and cow grazing from an area has observable effects on aspen 
regrowth. In a hypothetical study, we may be interested in understanding the effect 
of herbivory from these species on various ecological aspects of aspen stands. But 
how can we monitor aspen stands without setting foot in the field? In this chapter, 
we will use multiple datasets and high-resolution resolution imagery (1 m2) to  
generate sampling locations for this theoretical field survey. We will also build 
a presence/absence dataset that could be used to train a spatial model of aspen 
coverage. 

52.2 Practicum 

The National Land Cover Database (NLCD) is a Landsat-derived land cover 
database with 30 m spatial resolution, available at multiple time periods. Data 
from 1992 are primarily based on an unsupervised classification of Landsat data. 
The other years rely on a decision tree classification to identify the land cover 
classes. 

The National Agriculture Imagery Program (NAIP) acquires aerial imagery dur-
ing the agricultural growing seasons across the continental United States. NAIP 
projects are contracted each year based upon available funding and the Farm Ser-
vice Agency imagery acquisition cycle. NAIP imagery is acquired at a one-meter 
ground sample distance with a horizontal accuracy that matches within six meters 
of photo-identifiable ground control points. NAIP imagery is often collected in 
four bands: blue, green, red, and near infrared. The near infrared band is helpful 
in distinguishing between different types of vegetation. 

The USGS National Elevation Dataset (NED) 1/3 arc-second is an elevation 
dataset produced by the USGS. This coast-to-coast dataset is available at 0.33 
arc-second spatial resolution (30 m) across the lower 48 states, parts of Alaska, 
Hawaii, and US Territories.
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Fig. 52.1 Example of the general region of interest to use for this module 

52.2.1 Section 1: Developing Your Own Sampling Locations 

We will start by developing potential field sampling locations based on the relative 
physical and ecological conditions. 

52.2.1.1 Section 1.1: Region of Interest 
The geographic region for this chapter is the Grand Mesa in western Colorado. 
Considered to be the largest mesa in the world by area, the Grand Mesa rises from 
4000 feet near Grand Junction, Colorado, to over 10,000 feet at its highest point. 
Historically, the Grand Mesa was glaciated, leaving its top flattened and spotted 
with lakes. While heavily forested at higher elevation, there are distinct transitions 
between shrubland, aspen, and conifer forest along the steep slopes. As one of the 
westernmost extensions of the montane environment in Colorado, the Grand Mesa 
represents important habitat for many ungulate species. 

Our first step is to open a new script in Earth Engine. First, create a region of 
interest that encompasses the Grand Mesa (you can search for it by name in the 
search bar at the top). Do so using the geometry tool. Once you create the feature, 
rename it roi (Fig. 52.1). 

52.2.1.2 Section 1.2: Working with NAIP 
We will rely on NAIP imagery for multiple steps in this process. NAIP imagery is 
not collected every year, so it makes sense to load in multiple years to determine 
what time frame is available. We will use a print statement to see what years are 
available for our area from 2015 and 2017. Copy the following code to start your 
script.
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// Call in NAIP imagery as an image collection. 
var naip = ee.ImageCollection('USDA/NAIP/DOQQ') 

.filterBounds(roi) 

.filterDate('2015-01-01', '2017-12-31'); 

Map.centerObject(naip); 

print(naip); 

When you run the script you will see a print statement similar to the one 
shown in Fig. 52.2. 

The print statement shows us that imagery is available for both 2015 and 
2017, yet it is difficult to determine the extent of coverage present without visual-
izing the data. For now, we will add both collections to the map to see what the 
image availability looks like. Add the following code to your existing script.

Fig. 52.2 Print statement identifying the years of available imagery for this region of interest 
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// Filter the data based on date. 
var naip2017 = naip 

.filterDate('2017-01-01', '2017-12-31'); 

var naip2015 = naip 
.filterDate('2015-01-01', '2015-12-31'); 

// Define viewing parameters for multi band images. 
var visParamsFalse = { 

bands: ['N', 'R', 'G'] 
}; 
var visParamsTrue = { 

bands: ['R', 'G', 'B'] 
}; 

// Add both sets of NAIP imagery to the map to compare 
coverage. 
Map.addLayer(naip2015, visParamsTrue, '2015_true', false); 
Map.addLayer(naip2017, visParamsTrue, '2017_true', false); 

Compared to the 2015 imagery (Fig. 52.3), the 2017 imagery (Fig. 52.4) has 
been captured later in the season and we can start to see some yellow in the aspen. 
A challenge with this image is that there were some distinct time lags between 
neighboring flight paths during the initial image collection. Notice the vertical 
band of green in the 2017 image. While it is usually best practice to use images 
that closely match the time that you will be in the field, in this case, the consistency 
of the 2015 imagery outweighs those temporal concerns.

We will also add a false color image to the 2015 data because this band com-
bination visualization is very helpful for distinguishing between deciduous and 
coniferous forests. We do this by adding the naip2015 object with a different 
set of visualization parameters to the map. Add the following code to your existing 
script. 

// Add 2015 false color imagery. 
Map.addLayer(naip2015, visParamsFalse, '2015_false', 
false); 

52.2.1.3 Section 1.3: Aspen Exclosures 
In our hypothetical study, let us imagine land managers have established some 
aspen exclosures on the southern extent of the Grand Mesa. Let us also say that 
the land managers did not have specific shapefiles of the exclosures but did have 
GPS locations of the four corners. We will use these data to add the exclosures
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Fig. 52.3 NAIP imagery from 2015 has captured the aspen forest across the extent of our study 
area 

Fig. 52.4 NAIP imagery from 2017 has captured the yellowing of the aspen forest but shows a 
distinct difference in vegetation cover due to variability in the time at which the given images were 
captured



52 Creating Presence and Absence Points 1139

to the map by creating a geometry feature within our script. In this case we are 
creating an ee.Geometry.MultiPolygon feature. Add the following code to 
your existing script. If your roi object does not encompass the exclosures, edit 
its bounds or redraw it. 

// Creating a geometry feature. 
var exclosure = ee.Geometry.MultiPolygon([ 

[ 
[-107.91079184, 39.012553345], 
[-107.90828129, 39.012553345], 
[-107.90828129, 39.014070552], 
[-107.91079184, 39.014070552], 
[-107.91079184, 39.012553345] 

], 
[ 

[-107.9512176, 39.00870162], 
[-107.9496834, 39.00870162], 
[-107.9496834, 39.00950196], 
[-107.95121765, 39.00950196], 
[-107.95121765, 39.00870162] 

] 
]); 

print(exclosure); 

Map.addLayer(exclosure, {}, 'exclosures'); 

The structure of the ee.Geometry.MultiPolygon feature is a bit com-
plex, but it is effectively a set of nested lists. There are three tiers of lists 
present: 

// Nested list example. 
['tier 1' ['tier 2' ['tier 3']]]

• Tier 1: A single list that holds all the data. The 
ee.Geometry.MultiPolygon function requires the input to be a list.

• Tier 2: A list for each polygon, containing a unique set of coordinates.
• Tier 3: A list for each x,y coordinate pair. Each polygon is composed of a series 

of x,y points with a point that overlaps exactly with the first coordinate pair. 
This last coordinate pair is the same as the first and is essential to completing 
the feature.
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Fig. 52.5 View of the exclosure object coordinate details from the print statement 

If you are trying to make a geometry feature and are having trouble, you can 
always create one with the draw shape tool and look at the values in a print 
statement as a template (Fig. 52.5). 

52.2.1.4 Section 1.4: Determining Similar Areas for Sampling 
Now that we have our aspen exclosures loaded, we are going to bring in some 
additional layers to help quantify the landscape characteristics of the exclosures. 
We will use those values to find similar areas nearby to use as sampling sites 
outside of the exclosures. By keeping the environmental conditions similar, we 
can make stronger statements about the comparative effects of herbivory on aspen 
stands. 

We will use three datasets to describe the conditions within the sampled areas: 

1. NED: Select areas in a similar elevation range. Elevation is correlated with 
many environmental conditions, so we are using it as a proxy for features such 
as temperature, precipitation, and solar radiation. 

2. NAIP: Calculate an NDVI index to get a measure of vegetation productivity. 
3. NLCD: Select the deciduous forest class as a way to limit the location of 

sampling sites.
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52.2.1.5 Section 1.5: Loading in the Data 
First, we will call the NED by its unique ID. We can gather these details by 
searching for the feature and reading through the metadata. Add the following 
code to your existing script. 

// Load in elevation dataset; clip it to general area. 
var elev = ee.Image('USGS/NED') 

.clip(roi); 

Map.addLayer(elev, { 
min: 1500, 
max: 3300 

}, 'elevation', false); 

We already have NAIP imagery loaded but we need to convert it to an image 
and calculate NDVI. We have already filtered our NAIP imagery to a single year, 
so there is only one image per area. We could apply a reducer to convert the 
ImageCollection to an image, but a reducer is not necessary for a single 
layer. A more logical option for this is to apply the mosaic function to convert 
the ImageCollection to an image. Add the following code to your existing 
script. 

// Apply mosaic, clip, then calculate NDVI. 
var ndvi = naip2015 

.mosaic() 

.clip(roi) 

.normalizedDifference(['N', 'R']) 

.rename('ndvi'); 

Map.addLayer(ndvi, { 
min: -0.8, 
max: 0.8 

}, 'NDVI', false); 

print(ndvi, 'ndvi'); 

The last dataset we are bringing in is the NLCD. Add the following code to 
your existing script.
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// Add National Land Cover Database (NLCD). 
var dataset = ee.ImageCollection('USGS/NLCD'); 

print(dataset, 'NLCD'); 

From the print statement (Fig. 52.6), we can see that some of the images have 
a band called ’landcover’. Rather than trying to pull it out from the feature 
collection, we will call the 2016 NLCD image directly by its unique ID and select 
the ’landcover’ band. 

Fig. 52.6 Print statement showing the structure of the NLCD ImageCollection
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// Load the selected NLCD image. 
var landcover = ee.Image('USGS/NLCD/NLCD2016') 

.select('landcover') 

.clip(roi); 

Map.addLayer(landcover, {}, 'Landcover', false); 

Question 1. Investigate the other available years in the NLCD collection. What 
parts of the study area have land cover classes that change? What might be driving 
that change? 

52.2.1.6 Section 1.6: Generating Random Points 
With our three datasets loaded, we can now generate a series of potential survey 
sites. We will do this by generating random points within a given area (Fig. 52.7). 
We want these sites to be accessible, near the two exclosures, and within the public 
land boundary. We will create another geometry feature that we will use to contain 
the randomly generated points. Hover over the Geometry imports box and click 
+ new layer. Be sure to name this second geometry feature sampleArea. 

With the geometry feature in place, we can create points using the 
randomPoints function. Add the following code to your existing script.

Fig. 52.7 An example of what your second sample area geometry feature might look like 
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// Generate random points within the sample area. 
var points = ee.FeatureCollection.randomPoints({ 

region: sampleArea, 
points: 1000, 
seed: 1234 

}); 

print(points, 'points'); 

Map.addLayer(points, {}, 'Points', false); 

Here, we are using a dictionary to define the parameters of the function. The 
region parameter is the area in which the points are created. In our case, we are 
going to set this to sampleArea polygon. The points parameter specifies the 
total number of points to generate. The seed parameter is used to indicate specific 
random values. Think of this as a unique ID for a set of random values. The seed 
number (1234 in this example) refers to an existing random list of values. Setting 
the seed is very helpful because you are still using random values, but the code 
will place the points in the same locations every time until the seed is changed. 

52.2.1.7 Section 1.7: Extracting Values to Points 
To associate the landscape characteristics with the point locations, we are going 
to call the ee.Image.sampleRegions function. This function requires a sin-
gle image. Rather than calling three times on our three unique images (elevation, 
NDVI, and NLCD), we are going to add all those images together to create a 
multiband image so we can call this function a single time. Add the following 
code to your existing script. 

// Add bands of elevation and NAIP. 
var ndviElev = ndvi 

.addBands(elev) 

.addBands(landcover); 

print(ndviElev, 'Multi band image'); 

With the multiband image set, we will call the sampleRegions function. 
Add the following code to your existing script.
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// Extract values to points. 
var samples = ndviElev.sampleRegions({ 

collection: points, 
scale: 30, 
geometries: true 

}); 

print(samples, 'samples'); 

Map.addLayer(samples, {}, 'samples', false); 

Within this function, the collection parameter is set to the feature collec-
tion where the extracted values will be added. In this example, it is a point dataset. 
The scale parameter refers to the spatial resolution (pixel size) of the data. The 
geometries parameter indicates whether or not you want to maintain the x,y 
coordinate pairs for each element in the collection. The default is false, but we set 
it to true here because we eventually want to show these points on the map, as 
they will represent suitable sampling site locations. 

Segue on Scale 
The idea of scale is very important in remote sensing, but you will often encounter 
multiple definitions of it. Map scale, the relationship between a measured distance 
on a map and the actual distance on the landscape, is the most common in remote 
sensing. The image extent can also be referred to as the scale of the image or the 
spatial scale. Confusing, right? 

In the case of the scale argument in the function above, it is referring to yet 
another definition of that word—the pixel size of the image. In our example, the 
multiband image has two bands with a pixel size of 30 m, and one with a pixel 
size of 1 m. It is best practice to use the largest pixel size when working with data 
having different spatial resolutions. Here, this means you are upscaling the 1 m 
image to 30 m. This means a potential loss of precision in your data. However, 
you can be confident that the number in that upscaled cell is representative of the 
mean value across all the cells. If you go in the opposite direction and downscale 
an image, you effectively make up the data to fill the gap. Because NAIP imagery 
has a 1 m pixel size, it contains 30× 30 more pixels than a single 30 m pixel. Take 
a look at the examples below to help visualize these processes. 

Upscaling takes the available data and finds the mean value. 
| 3 | 7 | 8 |  
| 4 | 2 | 2 |  
| 1 | 3 | 2 |  

Question 2. Calculate the mean for the matrix above. How would this value change 
your understanding of the pixel? Is it still representative of the overall “story” the 
data is telling, or would a different reducer (i.e., median) be more appropriate?
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Fig. 52.8 Result of our sampling function has given us 1000 potential sites to choose from. We 
will limit this pool by comparing the measurable data we have at these sites to the mean values of 
those data from our exclosures 

Downscaling takes a single value and places the value for all locations in the grid. 
| 7 | 7 | 7 |  
| 7 | 7 | 7 |  
| 7 | 7 | 7 |  
From our print statement (Fig. 52.8), we can see that each of our 1000 point 

locations has three properties: elevation, land cover, and NDVI. We want to use 
these values to filter out sites that do not match the conditions of the exclosures. 
The land cover data are categorical, so it is easy to filter. We know from the 
metadata on NLCD that the land cover class for deciduous forest is a single value 
(41). 

We will use the filter function to select all sites that are within aspen forests. 
Add the following code to your existing script. 

// Filter metadata for sites in the NLCD deciduous forest 
layer. 
var aspenSites = 
samples.filter(ee.Filter.equals('landcover', 41)); 

print(aspenSites, 'Sites'); 

From the print statement, we can see this reduces the total number of potential 
sites (1000) by about 25%, depending on your study area shape. However, to get 
down to roughly 10 potential new monitoring sites, there is still a lot of trimming 
to do. 

Filtering based on elevation and NDVI is a bit trickier because both of these 
variables are continuous data. You want to find sites that have similar values to 
those in the exclosures, but they do not need to be exactly the same. For this
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example, we will say that if a value is within±10% of the mean value found 
within the exclosure, we will group it as similar. There are a couple of things that 
need to be calculated before we can filter our potential sampling sites: 

1. Mean values within exclosures. 
2. 10% above and below the mean. 

Question 3. The above use of±10% is somewhat arbitrary. How might the range 
change given the inclusion of additional exclosures in our study area? What other 
methods could be used to generate this range? 

We will work with the NDVI image first and then apply this process to the 
elevation dataset.

• Step 1: To find the mean value, we are going to apply a mean reducer over the 
area that is inside of the exclosure. Add the following code to your existing 
script. 

// Set the NDVI range. 
var ndvi1 = ndvi 

.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: exclosure, 
scale: 1, 
crs: 'EPSG:4326' 

}); 

print(ndvi1, 'Mean NDVI'); 

The reduceRegion function takes in an image and returns a dictionary where 
the key is the name of the band, and the value is the output of the reducer.

• Step 2: Determine the acceptable variability around the mean. 

We are relying on simple mathematical functions to find the ± 10% values. Add 
the following code to your existing script.
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// Generate a range of acceptable NDVI values. 
var ndviNumber = ee.Number(ndvi1.get('ndvi')); 
var ndviBuffer = ndviNumber.multiply(0.1); 
var ndviRange = [ 

ndviNumber.subtract(ndviBuffer), 
ndviNumber.add(ndviBuffer) 

]; 

print(ndviRange, 'NDVI Range'); 

The first step in this process is all about understanding data types. The ndvi1 
object is a dictionary so we call the get function to pull a value based on a known 
key. We then convert that value to an ee.Number type object so we can apply 
the math functions. Our output is a list with the minimum and maximum values 
(±10% of the mean NDVI values). 

52.2.1.8 Section 1.8: Create Your Own Function 
We now have our range for NDVI, but we also need to apply the same process 
to elevation. In this case, we are only applying this process twice, but it seems 
like a useful chunk of code that might be handy down the road. Rather than just 
copying and pasting the code again and again, we are going to create a function 
with flexible parameters so we can apply this useful bit of code efficiently. 

A function has the following requirements: parameters, statements, and a return 
value. Here is an example of the structure of a function from the official Earth 
Engine documentation. The following pseudocode demonstrates the syntax and 
structure of a function in JavaScript. Do not add this code to your script. 

var myFunction = function(parameter1, parameter2, 
parameter3) { 

statement; 
statement; 
var value = statement; 
return value; 

}; 

If we apply this structure to our goal of reducing the elevation by area (like we 
did for NDVI with the code we created above), we would need to consider the 
following:

• Parameters: an image, a geometry object, and pixelSize.
• Statements: reduceRegion function.
• A return value: output of the reduceRegion function.
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When using functions, it is important to use informative names within your param-
eters that give some indication of the data type that is required. If we want our 
function to be reproducible, we can provide some more information as a longer 
comment when we define the function. Add the following code to your existing 
script. 

/* 
This function is used to determine the mean value of an 
image within a given area. 
image: an image with a single band of ordinal or interval 
level data 
geom: geometry feature that overlaps with the image 
pixelSize: a number that defines the cell size of the image 
Returns a dictionary with the median values of the band, 
the key is the band name. 
*/ 
var reduceRegionFunction = function(image, geom, pixelSize) 
{ 

var dict = image.reduceRegion({ 
reducer: ee.Reducer.mean(), 
geometry: geom, 
scale: pixelSize, 
crs: 'EPSG:4326' 

}); 
return (dict); 

}; 

Let us check our function definition by verifying that it gives the same answer 
for the NDVI range as when we did it step by step: 

// Call function on the NDVI dataset to compare. 
var ndvi_test = reduceRegionFunction(ndvi, exclosure, 1); 

print(ndvi_test, 'ndvi_test'); 

This is a very clean method for coding when you need to apply a process 
multiple times. The function has been defined and now we can call it on the 
elevation dataset. Add the following code to your existing script.
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// Call function on elevation dataset. 
var elev1 = reduceRegionFunction(elev, exclosure, 30); 

print(elev1, 'elev1'); 

We will define a second function to determine±10% around a mean value.

• Parameters: an image, band name, proportion.
• Statements: multiple steps.
• A return value: list. 

Add the following code to your existing script. 

/* 
Generate a range of acceptable values. 
dictionary: a dictionary object 
key: key to the value of interest, must be a string 
proportion: a percentile to define the range of the values 
around the mean 
Returns a list with a min and max value for the given 
range. 
*/ 
var effectiveRange = function(dictionary, key, proportion) 
{ 

var number = ee.Number(dictionary.get(key)); 
var buffer = number.multiply(proportion); 
var range = [ 

number.subtract(buffer), 
number.add(buffer) 

]; 
return (range); 

}; 

We will call the effectiveRange function on the output of the 
reduceRegionFunction function. Add the following code to your existing 
script. 

// Call function on elevation data. 
var elevRange = effectiveRange(elev1, 'elevation', 0.1); 

print(elevRange);
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Now that we have an effective range for both our NDVI and elevation values, 
we can apply an additional set of filters to thin the list of potential sample sites. We 
can do this by chaining multiple ee.Filter calls together. Add the following 
code to your existing script. 

// Apply multiple filters to get at potential locations. 
var combinedFilter = ee.Filter.and( 

ee.Filter.greaterThan('ndvi', ndviRange[0]), 
ee.Filter.lessThan('ndvi', ndviRange[1]), 
ee.Filter.greaterThan('elevation', elevRange[0]), 
ee.Filter.lessThan('elevation', elevRange[1]) 

); 

var aspenSites2 = aspenSites.filter(combinedFilter); 

print(aspenSites2, 'aspenSites2'); 

Map.addLayer(aspenSites2, {}, 'aspenSites2', false); 

Depending on how you have drawn your study area, this filtering process should 
reduce the 1000 original sites by about 90%. From the ~ 100 remaining sites, we 
can manually select 10 either by something we already know about the landscape 
features of our study area, or by using a more restrictive range in our function 
(e.g.,±5%). This approach to site selection can be a good first step in ensuring 
you are sampling similar conditions in the field. 

Code Checkpoint A37a. The book’s repository contains a script that shows what 
your code should look like at this point. 

52.2.2 Section 2: Generating Your Own Training Dataset 

As you have been examining this landscape, you may have noticed some misclas-
sifications within the NLCD land cover layer (e.g., forests in non-forested areas). 
Some misclassifications are expected in any land cover dataset. While the NLCD 
is trained to produce classifications of specific land cover assemblages across the 
United States, the aspen forest class that we are examining is included within a 
much larger grouping (“Deciduous forest”). Also, the particular NLCD image we 
selected shows land cover as it was detected in 2011. While forests are fairly sta-
ble over time, we can expect that some level of change has occurred. This might 
get you thinking about the possibility of generating your own aspen land cover 
product based on a remote sensing model for this specific region. There is a lot 
that goes into this process that we are not going to cover here. However, we are
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going to take the first step, which is generating our own presence/absence training 
dataset. 

52.2.2.1 Section 2.1: Ocular Sampling 
Generating your own training data relies on the assumption that you can con-
fidently identify your species of interest using high-resolution imagery. We are 
using NAIP for this process because it is freely available and has a known col-
lection date, allowing us to mark areas of aspen forest as “presence” and areas 
without aspens as “absence.” These data could then be used later to train a model 
of aspen occurrence on the landscape. 

52.2.2.2 Section 2.2: Adding Presence and Absence Points 
First, we will need to create specific layers that will hold our new sampling points. 
Adding in presence and absence layers is a straightforward process accomplished 
by manually creating and placing geometry features on representative locations on 
the map. Hover over the Geometry imports box and click + new layer (Fig. 52.9). 
A geometry feature named “geometry” will be added. Select the gear icon next to 
geometry and a pop-up will open. Change the Import as type to FeatureCollec-
tion, then press the + Add property button. Fill in the Properties values with 
“presence” and “1” and press OK to save your feature. 

Change the feature collection name to presence and select a color you enjoy. 
Repeat this process to create an absence feature collection where the added 
property values are presence and “0”. We will use the binary value in the presence

Fig. 52.9 Example of changing the parameters for the creation of the presence geometry feature 
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Fig. 52.10 Examples of presence and absence locations on the NAIP imagery created using the 
marker tool. Do your best to select locations that look correct to you 

column of both datasets to define what that location is referring to: 1 = Yes, this 
is aspen; 0 = No, this is not aspen. 

Once the feature collections are created, we select the specific feature collec-
tion (presence or absence) and use the marker tool to drop points on the 
imagery. The sampling methodology you use will depend on your study. In this 
example, green presence points represent aspen forest, and blue points are not 
aspen (absence). 

Use the 2015 false color imagery in combination with the NDVI or NLCD 
to distinguish aspen from other land cover types. Aspen stands are brighter red 
than most other vegetation types and tend to have a more complex texture than 
herbaceous vegetation in the imagery. Drop some points in what you perceive to 
be aspen forest (Fig. 52.10). 

Feel free to sample as many locations as you would like. Again, the quality of 
this data will depend on your ability to differentiate the multiple land cover classes 
present. 

52.2.2.3 Section 2.3: Exporting Points 
Currently our point locations are stored in two different features classes. We will 
merge these features into one feature class before exporting the data. We can merge 
the layers straightforwardly because they share the same data type (point geometry 
feature) and the same attribute data (“presence” with a numeric data value). Add 
the following code to your existing script. 

// Merge presence and absence datasets. 
var samples = presence.merge(absence); 

print(samples, 'Samples');
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Now that the sampling features classes are merged, we will export the features 
to our Google Drive. When you run the code below, the Tasks tab in the upper 
right-hand panel will light up. Earth Engine does not run tasks without you direct-
ing it to execute the task from the Tasks tab. Add the following code to your 
existing script and run it to export your completed dataset. 

.Export ({table.toDrive 
collection: samples, 
description: ,'presenceAbsencePointsForForest' 
fileFormat: 'csv' 

}); 

Code Checkpoint A37b. The book’s repository contains a script that shows what 
your code should look like at this point. 

52.3 Synthesis 

Assignment 1. Compare samples of NDVI ranges for aspen presence versus 
absence. Are the ranges significantly different? Create samples using the code 
presented here but for a coniferous tree of your choice. How different are these 
values from the values of deciduous forest? 

52.4 Conclusion 

In this module, we identified aspen locations with similar environmental character-
istics and generated our own sampling data from those locations. Both processes 
are simple in concept but can be somewhat complex to implement without access 
to all your data in a single place. In both cases, we are generating value-added 
products that are informed by remote sensing but are not inherently remote sens-
ing processes. This ability to be creative regarding how you use remotely sensed 
data is part of the beauty of the Earth Engine platform. 
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53Detecting Land Cover Change 
in Rangelands 

Ginger Allington and Natalie Kreitzer 

Overview 
The purpose of this chapter is to familiarize you with the unique challenges of 
detecting land cover change in arid rangeland systems, and to introduce you to an 
approach for classifying such change that provides us with a better understanding 
of these systems. You will learn how to extract meaningful data about changes in 
vegetation cover from satellite imagery, and how to create a classification based on 
trajectories over time. 

Learning Outcomes

• Visualizing and explaining the challenges of utilizing established land cover data 
products in arid rangelands.

• Applying a temporal segmentation algorithm to a time series of information about 
vegetation productivity.

• Classifying pixels based on similarities in their temporal trajectories.
• Extracting and visualizing data on the new trajectory classes.
• Comparing trajectory classes to information from traditional land cover data. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform pixel-based supervised or unsupervised classification (Chap. 6).
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• Use expressions to perform calculations on image bands (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Interpret the outputs from the LandTrendr algorithm implementation in Earth 

Engine (Chap. 17).
• Write a function and map it over a FeatureCollection (Chaps. 23 and 

24).
• Use the require function to load code from existing modules (Chap. 28). 

53.1 Introduction to Theory 

Arid and semi-arid rangelands cover approximately 41% of the global land sur-
face (Asner et al. 2004) and provide livelihoods for 38% of the human population 
(Millennium Ecosystem Assessment 2005), and forage for three-quarters of the 
world’s livestock (Derner et al. 2017). Rangelands are located in regions of the 
world that are experiencing some of the most rapid changes in climate (Huang 
et al. 2016, Melillo et al. 2014), which can affect ecosystem productivity and 
resilience (Briske 2017). Land conversion to agriculture (Lambin and Meyfroidt 
2011), urbanization and development (Fan et al. 2016; Sleeter et al. 2013), and 
afforestation (Cao et al. 2011) are increasing in many rangeland regions globally. 
Uncertainties about socioeconomic and sociopolitical forces such as land tenure 
security (Campbell et al. 2005; Li et al.  2007; Liu et al. 2015; Reid et al. 2000), 
rural out-migrations and urbanization (Lang et al. 2016), and changes in human 
demography and dietary preferences (Alexandratos and Bruinsma 2012) limit our 
ability to predict the future sustainability of rangeland systems. In order to under-
stand the causes and consequences of land cover change in rangelands, we must 
first classify and quantify the change. 

There are several readily available datasets commonly used to assess changes 
in land cover over large regions. The three most prominent global inventories 
are the annual MODIS 12Q land cover product (500 m) (Friedl et al. 2010), the 
300 m GlobCover data from the European Space Agency (ESA) (Arino et al. 2008; 
Bontemps et al. 2011), and the new 10 m WorldCover data, also from the ESA 
(Zanaga et al. 2021), the latter two of which are available for single nominal dates. 
National-level data products typically are available at finer spatial resolutions and 
tend to use more categories to classify the surface (e.g., NLCD in the US, Homer 
et al. 2015)—though they are not available for all countries. While these global 
and national land cover data products have been useful for documenting a num-
ber of important surface phenomena such as forest loss, urbanization, and habitat 
conversion in a variety of ecosystems (Schneider et al. 2015, Prestele et al. 2016), 
they generally have poor accuracy in arid portions of the globe (Friedl et al. 2002; 
Ganguly et al. 2010; García-Mora et al. 2012). 

Additionally, traditional methods for change detection are derived from cate-
gorical land cover classifications, which can identify change only when a pixel
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Fig. 53.1 Time series of NDVI in Naiman Banner, Inner Mongolia. Line represents the median 
value calculated over the region. Overlaid colored bars represent the corresponding land cover 
classes for the years 2001–2016, according to the MODIS-derived MCD12Q1 data 

crosses a threshold to a new state (e.g., from Grassland to Barren), and therefore 
can identify change only after it has occurred, not when it begins. In systems with 
long time lags in vegetation response (such as has been shown for recovery in arid 
grasslands), this can create uncertainty about the efficacy of environmental policies 
and the response of landscapes to large-scale management changes (Fig. 53.1). 

As an alternative to classification-based change detection, new methods have 
emerged that identify unique features in time series of remotely sensed data 
to pinpoint disturbance events such as logging, wildfires, and flooding. These 
time series-based methods, such as CCDC (see Chap. 19) and LandTrendr (see 
Chap. 17), are typically calibrated and executed to detect abrupt changes in spectral 
reflectance or derived index values associated with those disturbances (Kennedy 
et al. 2010, 2014; Zhu and Woodcock 2014). This is extremely useful for detect-
ing change events like deforestation or the defoliation resulting from an insect 
outbreak where the disturbance is punctuated in time and where the difference in 
spectral index is significant, and regreening occurs on the order of years (Fig. 53.2, 
forested pixel).

For these reasons, contemporary classification approaches are extremely lim-
ited in their ability to provide reliable information about landscape change and 
dynamics in rangeland systems. Current pressures from climate change, land use 
intensification, and urban expansion create an urgent need for methods to more 
accurately map and track land cover status in a way that is useful for arid-
systems research, land use change detection, and the monitoring and management 
of rangelands. 

Forest land cover changes are stark in terms of the change in indices such as 
NDVI and NBR (Kennedy et al. 2016). When a forest is disturbed, the NDVI 
of a image pixel declines by a large magnitude nearly immediately (Fig. 53.2, 
forest pixel). It is relatively straightforward to code a change-detection algorithm to
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Fig. 53.2 Comparison of predicted NDVI for representative pixels from three regions: a forested 
area in southern British Columbia and two regions in Naiman Banner, Inner Mongolia, one dom-
inated by woody shrubs and perennial forbs, the other by annual grasses and forbs

detect these large, abrupt transitions. Additionally, the visual change is stark, so a 
visual interpreter can easily create a training dataset without ancillary information 
to identify conversion from forest to burned, cleared, or developed. 

In contrast, vegetation degradation and recovery in rangelands are typically 
characterized by more gradual changes over longer periods of time. Unlike with 
forest change, a trained interpreter using only satellite imagery cannot visually 
identify a rangeland land cover class transition until years after it has begun, if at 
all. 

However, there is potential to utilize the information generated from tempo-
ral segmentation to characterize other aspects of change. Here, we will employ 
the LandTrendr time series segmentation algorithm (as described in Chap. 17) 
to derive information about how pixels are changing over time, and use that to 
generate a new land cover classification for a region of northern China. 

To truly understand how rangelands are changing in space and time, and to pro-
vide adequate monitoring to support sustainable rangeland management, we need 
tools to help us capture and quantify those changes at landscape scales. Further, 
we need new ways of measuring changes within land cover types and interpreting 
those changes in ways that reflect rangeland dynamics and ecological processes. 
This necessitates rethinking the framework we use to categorize these lands in 
the first place. Approaches making use of greater temporal information on forest 
(Healey et al. 2018) and wetland systems (Dronova et al. 2015) show promise for 
deployment on rangeland systems. 

We present a hybrid approach to rangeland classification that categorizes 
observable dynamic patterns in vegetation cover to classify pixels based on sim-
ilarities in trajectory history. These new classes reveal much more meaningful



53 Detecting Land Cover Change in Rangelands 1161

information about the current status of a given pixel than a class based on cover 
type, and also yield information about the potential of a given pixel to respond to 
stressors in the future. 

53.2 Practicum 

53.2.1 Section 1: Inspecting Information About the Study Area 

In this section, we will load and explore data sets that illustrate the focal study area, 
and form the basis for the analysis. 

53.2.1.1 Section 1.1: Inspect the Study Area 
Naiman Banner (Fig. 53.3) is located in the southeastern portion of the Inner 
Mongolia Autonomous Region of northern China. Historically, this region was 
occupied by ethnic Mongolian pastoralists, and the primary vegetation was 
perennial grasses with some shrub cover. The region has undergone significant 
intensification of land uses over the past 60 years (John et al. 2009). Heavy 
grazing and conversion to crops have removed vegetation, exposing soils to ero-
sion and resulting in extensive desertification. Since the early 1990s, a series of 
environmental policies and restoration programs, including grazing restriction and 
afforestation, have been implemented to halt the spread of desertification and pro-
mote revegetation of the rangelands. At the same time, cropland has continued to 
expand, and the use of irrigation has eliminated almost all of the surface water 
sources and severely lowered the groundwater table.

In this exercise, we will focus on a portion of central Naiman Banner that spans 
from the extensive Horqin Sandy Lands in the west to the dense agricultural area 
in the east. 

Our first step is to load a shapefile for our area of interest (AOI) and explore 
the landscape using the default satellite basemap. 

// Load the shapefile asset for the AOI as a Feature 
Collection 
var aoi = ee.FeatureCollection( 

'projects/gee-book/assets/A3-8/GEE_Ch_AOI'); 
Map.centerObject(aoi, 11); 
Map.addLayer(aoi, {}, 'Subset of Naiman Banner'); 

Switch the basemap to Satellite (Fig. 53.4). Turn the layer with the AOI bound-
ary on and off and pan around the study area. Inspect the difference in land uses 
and cover types between the far western and eastern edges of the AOI. Mark them 
with pointer markers so you can revisit them later.
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Fig. 53.3 Location of the Horqin Sandy Lands within Naiman Banner, Inner Mongolia, People’s 
Republic of China

Fig. 53.4 Location of the study region, within the Horqin Sandy Lands



53 Detecting Land Cover Change in Rangelands 1163

Question 1. List four potential land use or land cover classes that you observe in 
the image. 

53.2.1.2 Section 1.2: Inspect Existing Land Use Data 
Next, we will explore two different sources of land cover data to get a sense of 
how this landscape is typically categorized by these kinds of classified products. 

First, we will explore the MODIS MCD12Q1 Land Cover Type dataset. These 
global layers are available annually from 2001 to the present at a resolution of 
500 m. We will filter and visualize data for 2001, 2009, and 2016 in order to 
compare how MODIS captures change over this period. 

Next, we will define and execute several different functions that we will need 
to use in this lesson. These functions will help us to execute the same logic across 
multiple images within different image collections. 

// Filter the MODIS Collection 
var MODIS_LC = 
ee.ImageCollection('MODIS/006/MCD12Q1').select( 

'LC_Type1'); 

// Function to clip an image from the collection and set 
the year 
var clipCol = function(img) { 

var date = ee.String(img.get('system:index')); 
date = date.slice(0, 4); 
return img.select('LC_Type1').clip(aoi) // .clip(aoi) 

.set('year', date); 
}; 

// Generate images for diff years you want to compare 
var modis01 = MODIS_LC.filterDate('2001-01-01', '2002-01-
01').map( 

clipCol); 
var modis09 = MODIS_LC.filterDate('2009-01-01', '2010-01-
01').map( 

clipCol); 
var modis16 = MODIS_LC.filterDate('2016-01-01', '2017-01-
01').map( 

clipCol); 
// Create an Image for each of the years 
var modis01 = modis01.first(); 
var modis09 = modis09.first(); 
var modis16 = modis16.first();
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Now that we have loaded all three datasets, let’s take a look at them and see 
how they compare. The randomVisualizer code below assigns random colors 
to each class in each layer. 

Map.addLayer(modis01.randomVisualizer(), {}, 'modis 2001', 
false); 
Map.addLayer(modis09.randomVisualizer(), {}, 'modis 2009', 
false); 
Map.addLayer(modis16.randomVisualizer(), {}, 'modis 2016', 
false); 

You should end up with something that looks like Fig. 53.5. (The colors 
assigned to classes in your map may differ.) 

Use the slider bar in the Layer menu to turn the data on and off to compare 
classifications across the three years. Use the Inspector tool to select a few pixels 
around the AOI to pull information on the specific classes. We have provided an 
information from an example pixel in Fig. 53.6. Compare the pixel values for 
the band ‘LC_Type1’ reported in your Inspector to the land cover codes and 
descriptions listed in Table 53.1.

Question 2. What are the land cover types identified in this region, as classified 
by the MODIS data? Be sure to check all three time periods.

Fig. 53.5 Land cover classes identified in 2001 from MODIS MCD12Q1 
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Table 53.1 Classes in the MODIS MCD12Q1 land cover dataset 

Value Description 

1 Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy >2 m). 
Tree cover >60% 

2 Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees 
(canopy >2 m). Tree cover >60% 

3 Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees 
(canopy >2 m). Tree cover >60% 

4 Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy >2 m) 
Tree cover >60% 

5 Mixed Forests: dominated by neither deciduous nor evergreen (40–60% of each) tree 
type (canony >2 m) Tree 

6 Closed Shrublands: dominated by woody perennials (1–2 m height) >60% cover 

7 Open Shrublands: dominated by woody perennials (1–2 m height) 10–60% cover 

8 Woody Savannas: tree cover 30–60% (canopy >2 m) 

9 Savannas: tree cover 10–30% (canopy >2m) 

10 Grasslands: dominated by herbaceous annuals (<2 m) 

11 Permanent Wetlands: permanently inundated lands with 30–60% water cover and 
>10% vegetated cover 

12 Croplands: at least 60% of area is cultivated cropland 

13 Urban and Built-up Lands: at least 30% impervious surface area including building 
materials, asphalt and vehicles 

14 Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40–60% with 
natural tree, shrub, or herbaceous vegetation 

15 Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 
10 months of the year 

16 Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less 
than 10% vegetation 

17 Water Bodies: at least 60% of area is covered by permanent water bodies

Next, we will add the WorldCover dataset from the ESA. This dataset was 
generated for 2020 only, and has a resolution of 10 m. 

// Add and clip the WorldCover data 
var wCov = 
ee.ImageCollection('ESA/WorldCover/v100').first(); 
var landcover20 = wCov.clip(aoi); 
Map.addLayer(landcover20, {}, 'Landcover 2020'); 

The WorldCover dataset includes palette information in the ‘Map’ band, so 
you should end up with something that looks like Fig. 53.7 (Table 53.2). (The 
colors assigned to classes in your map may differ.)
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Fig. 53.6 Land cover classes 
assigned to a single pixel in 
the study area in 2001, 2009, 
and 2016 from MODIS 
MCD12Q1

Fig. 53.7 Land cover classes identified in 2020 in the ESA WorldCover dataset
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Table 53.2 Subset of the 11 
land cover classes that appear 
within the study area in the 
ESA WorldCover dataset 

Value Description 

10 Trees 

30 Grassland 

40 Cropland 

50 Built-up 

60 Barren/sparse vegetation 

Code Checkpoint A38a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 3. Spend a few minutes turning the different land cover layers on and 
off and using the Inspector to identify the classes for different pixels. How do the 
MODIS and WorldCover datasets differ? In what ways are they similar? 

Question 4. Return to the points that you flagged in Sect. 53.2.1. Do your esti-
mations of land cover correspond to the classifications from the two different data 
sources? 

Question 5. Qualitatively compare change over time according to the MODIS data. 
What do you observe from these data? Approximately how much of the AOI has 
changed between 2001 and 2020, according to these data? Where are the regions 
of changing classification located? What regions seem to be fairly stable? 

53.2.2 Section 2: Compile the Time Series of Vegetation Cover 

The normalized difference vegetation index (NDVI) is an index of vegetative pro-
ductivity derived from the relationship between the red (approx. 650 nm) spectra 
and the near-infrared (750–2500 nm) spectra. NDVI is a consistently good proxy 
for productivity in this region (de Beurs et al. 2015). It is also highly correlated 
with precipitation (John et al. 2009). This relationship has the potential to intro-
duce short-term responses of increased vegetation productivity that could be falsely 
identified as land cover change (Fig. 53. 8a, b). In order to account for this effect, 
we need to remove the main effect of precipitation on NDVI for a given year so 
that we can assess changes in greenness outside of that variability. To do this, we 
will derive individual regression models for each pixel (as detailed in Chap. 18) 
for the relationship between total annual water-year precipitation and maximum 
greenness in each year. We will then predict greenness for each pixel in each year 
based on observed precipitation, and use the residual values of greenness from 
the predicted model as an input to LandTrendr. We can think of the residuals as 
the remaining annual primary productivity, after we have removed the effect of 
precipitation (Fig. 53. 8c).
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Fig. 53.8 Comparison of the variation over time in, a mean annual precipitation; b maximum 
NDVI for the AOI; c residual greenness from a regression of precipitation and NDVI
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Fig. 53.9 Properties of the pre-generated Image Collection of maximum annual greenness values, 
generated from NDVI

Before we go any further, let’s add two pre-generated image collection assets for 
greenness and precipitation (greennessColl and precipColl) and explore 
them. Print each of them to the Console to inspect the contents (Fig. 53.9). 

var greennessColl = ee.ImageCollection( 
'projects/gee-book/assets/A3-

8/GreennessCollection_aoi'); 
var precipColl = ee.ImageCollection( 

'projects/gee-book/assets/A3-8/PrecipCollection'); 
print(greennessColl, 'Greenness Image Collection'); 
print(precipColl, 'Precip Image Collection'); 
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We saw in the plots above (Figs. 53.1 and 53.2) how NDVI can vary signifi-
cantly over time in this region. We can also select out a few years to visualize how 
NDVI (“greenness”) varies spatially as well. 

var greennessParams = { 
bands: ['greenness'], 
max: 0.5, 
min: 0.06, 
opacity: 1, 
palette: ['e70808', 'ffffff', '1de22c'] 

}; 

var greenness1985 = greennessColl.filterDate('1985-01-01', 
'1986-01-01').select('greenness'); 

var greenness1999 = greennessColl.filterDate('1999-01-01', 
'2000-01-01').select('greenness'); 

print(greenness1999); 
var greenness2019 = greennessColl.filterDate('2019-01-01', 

'2020-01-01').select('greenness'); 

Map.addLayer(greenness1985, greennessParams, 'Greenness 
1985', false); 
Map.addLayer(greenness1999, greennessParams, 'Greenness 
1999', false); 
Map.addLayer(greenness2019, greennessParams, 'Greenness 
2019', false); 

Turn the layers for the different years on and off to compare the range and 
spatial distribution of NDVI (Fig. 53.10).

Question 6. What do you observe about the similarities and differences in the 
distribution of NDVI across the selected years? 

Combining the greenness and precipitation collections and calculating the 
model to generate residuals is a relatively long process. To speed things along, 
we will employ a function that has been defined in a script module called 
residFunctions.
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Fig. 53.10 Observed greenness (NDVI) in the study region in 2019. The values range from a 
minimum of 0.07 to a maximum of 0.5

// Load a function that will combine the Precipitation and 
Greenness collections, run a regression, then predict NDVI 
and calculate the residuals. 

// Load the module 
var residFunctions = require( 

'projects/gee-edu/book:Part A - Applications/A3 -
Terrestrial Applications/A3.8 Detecting Land Cover Change 
in Rangelands/modules/calcResid' 
); 

// Call the function we want that is in that module 
// It requires three input parameters: 
// the greenness collection, the precipitation collection 
and the aoi 
var residualColl = 
(residFunctions.createResidColl(greennessColl, 

precipColl, aoi)); 

// Now inspect what you have generated: 
print('Module output of residuals', residualColl); 

Print the resulting ImageCollection and inspect the bands and properties 
in the Console (Fig. 53.11).
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Fig. 53.11 Each image in the residualColl image collection contains two bands, residual and 
greenness. The residual band is what we will pass to LandTrendr 

Next, you will filter the residualColl collection to map the same years we 
explored for the observed NDVI (greenness). The code chunk below will pull the 
image for 1985 (the first year). Use filterDate to select the other years you 
want to view. Add each to the map as new layers. 

var resids = residualColl.first(); 
var res1 = resids.select(['residual']); 
print(res1.getInfo(), 'residual image'); 
Map.addLayer(res1, { 

min: -0.2, 
max: 0.2, 
palette: ['red', 'white', 'green'] 

}, 'residuals 1985', false); 

Map and compare the residual greenness for a few different years (Fig. 53.12).

Code Checkpoint A38b. The book’s repository contains a script that shows what 
your code should look like at this point.
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Fig. 53.12 Residual greenness in 1985, after removing the effect of precipitation. Models were 
fit on a per-pixel basis

Question 7. Compare the layers for residual greenness to the observed greenness 
values from Question 6. Why are we passing residuals to LandTrendr rather than 
the observed greenness (NDVI) values? 

53.2.3 Section 3: Time Series Segmentation 

Now you are ready to apply the LandTrendr time series segmentation algorithm 
to your Image Collection of residual greeness for the years 1985–2019. This will 
generate information for each pixel in the study area about how it has changed over 
time. In order to execute the code, you need to first define pertinent parameters in 
a dictionary, which you will provide to the LandTrendr algorithm along with your 
data. Chap. 17 gives an explanation of the LandTrendr algorithm and its param-
eters. That chapter showed a graphical interface for interacting with LandTrendr; 
below, we utilize JavaScript functions to execute LandTrendr directly in the code 
editor.
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//---- DEFINE RUN PARAMETERS---// 
// LandTrendr run parameters 
var runParams = { 

maxSegments: 6, 
spikeThreshold: 0.9, // 
vertexCountOvershoot: 3, 
preventOneYearRecovery: true, 
recoveryThreshold: 0.25, // 
pvalThreshold: 0.05, // 
bestModelProportion: 0.75, 
minObservationsNeeded: 10 //    

}; 

Follow the next steps to combine the dictionary of parameter settings 
with the image collection and apply LandTrendr with the API functional-
ity ee.Algorithms.TemporalSegmentation.LandTrendr. Then print 
and explore the output. 

// Append the image collection to the LandTrendr run 
parameter dictionary 
var srCollection = residualColl; 
runParams.timeSeries = srCollection; 

// Run LandTrendr 
var lt = 
ee.Algorithms.TemporalSegmentation.LandTrendr(runParams); 
// Explore the output from running LT 
var ltlt = lt.select('LandTrendr'); 
print(ltlt); 

The implementation of the LandTrendr Algorithm in GEE generates a multidi-
mensional array containing subarrays for the observation year, observed residuals, 
fitted residuals, and a Boolean vertex layer that tells the user if a change in pixel 
trajectory occurred in a given observation year. In order to analyze the outputs 
year over year, we first must slice out the subarrays of the output multidimen-
sional array, and transform them into image collections. We will not go into detail 
about slicing arrays in this lesson. For your purposes here, you can just follow 
along with the provided code. If you wish to learn more about array indexing and 
slicing, you can refer back to Chap. 18).
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//---- SLICING OUT DATA -----------------// 

// Select the LandTrendr band. 
var ltlt = lt.select('LandTrendr'); 
// Observation Year. 
var years = ltlt.arraySlice(0, 0, 1); 
// Slice out observed Residual value. 
var observed = ltlt.arraySlice(0, 1, 2); 
// Slice out fitted Residual values (predicted residual 
from final LT model). 
var fitted = ltlt.arraySlice(0, 2, 3); 
// Slice out the 'Is Vertex' row - yes(1)/no(0). 
var vertexMask = ltlt.arraySlice(0, 3, 4); 
// Use the 'Is Vertex' row as a mask for all rows. 
var vertices = ltlt.arrayMask(vertexMask); 

Next, we will extract fitted residual values for each pixel in each year from the 
array slice and convert them to an image with one band per year. First, we need 
to define a few parameters that we will need to call in future steps. 

// Define a few params we'll need next: 
var startYear_Num = 1985; 
var endYear_Num = 2019; 
var numYears = endYear_Num - startYear_Num; 
var startMonth = '-01-01'; 
var endMonth = '-12-31'; 

And now we can use the following code block to create a multi-band Image of 
the residual greeness predicted by LandTrendr for each pixel, with one band per 
year. 

// Extract fitted residual value per year, per pixel and 
aggregate into an Image with one band per year 
var years = []; 
for (var i = startYear_Num; i <= endYear_Num; ++i) 
years.push(i 

.toString()); 
var fittedStack = fitted.arrayFlatten([ 

['fittedResidual'], years 
]).toFloat(); 
print(fittedStack, 'fitted stack');
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Fig. 53.13 Fitted values for residual greenness in 1985, as predicted by the model fit via 
LandTrendr 

Add the fitted residuals for 1985 as a layer and compare them to the observed 
values you mapped previously. Notice how the range of values is more constrained 
than the residuals of observed values shown in Fig. 53.12. This is because the 
values are predicted from the best-fit model for the series, and thus do not contain 
the outliers and extreme values we might capture in the observed data. 

Map.addLayer(fittedStack, { 
bands: ['fittedResidual_1985'], 
min: -0.2, 
max: 0.2, 
palette: ['red', 'white', 'green'] 

}, 'Fitted Residuals 1985'); 

One of the very useful outputs from LandTrendr is information on whether the 
algorithm assigned a vertex to a given pixel in a given year. We can generate a 
raster with a band for each year, which indicates whether or not a pixel had a vertex 
identified in that year with a Boolean no/yes (0/1). We can use that information to 
assess how much of the AOI changed in a given year by assessing the prevalence 
of pixels with a value of 1 (indicating that a vertex was identified). To do this, 
we need to slice the Boolean information out of the LandTrendr output array, and 
then assign a year to each band.
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// Extract Boolean 'Is Vertex?' value per year, per pixel 
and aggregate into image w/ Boolean band per year 
var years = []; 
for (var i = startYear_Num; i <= endYear_Num; ++i) 
years.push(i 

.toString()); 

var vertexStack = vertexMask.arrayFlatten([ 
['bools'], years 

]).toFloat(); 

print(vertexStack.getInfo(), 'vertex Stack'); 

If you print the resulting image, you should see something like Fig. 53.14 in 
your Console. You’ll notice that again we have a band for each year, but this time 
each band is a binary raster, where a value of one (1) indicates that the pixel had 
a vertex in that year. 

Fig. 53.14 This is how the Boolean value binary rasters should appear in your Console once they 
are sliced out of the LandTrendr. Notice that the observation year has been appended to the name 
of each raster
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In this next step, we will inspect a plot of the mean value of the Boolean 
(vertex) layers for each year in order to identify which years had the most change. 
We will estimate the proportion of the AOI that has a vertex identified in each 
year by mapping a Reducer over a collection to calculate the mean pixel values 
for each year. A mean of zero would indicate that no vertices were identified in 
that year, and a mean of one would indicate that all the pixels changed. Of course, 
neither of these values are likely; most years will have a relatively small number 
of pixels that change, and thus the value will be low, but not zero. 

Charting functions in Earth Engine requires an ImageCollection. In the 
interest of time, we will load this for you as a new asset. If you would like to see an 
example script for transforming a multi-band image to an ImageCollection. 

// Load an Asset that has the Booleans converted to 
Collection 
var booleanColl = ee.ImageCollection( 

'projects/gee-book/assets/A3-8/BooleanCollection'); 

Now that we have our Boolean bands in an ImageCollection with one 
image per year, we can run a Reducer over it and create a chart of our results. 

var chartBooleanMean = ui.Chart.image 
.series({ 

imageCollection: booleanColl.select('bools'), 
region: aoi, 
reducer: ee.Reducer.mean(), 
scale: 60, 
xProperty: 'system:time_start' 

}) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Naiman Boolean Mean Per Year', 
vAxis: { 

title: 'Boolean Mean Per Year' 
}, 
lineWidth: 1 

}); 

print(chartBooleanMean); 

You should end up with a plot in the Console that looks something like 
Fig. 53.15. The largest amount of change in this landscape occurred in 1997, when 
approximately 20% of the pixels changed trajectory in some way.
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Fig. 53.15 Average pixel value across the study area in each year. A value of one would indicate 
that all pixels in the image had a vertex identified in that year 

Question 9. Which years had the greatest number of pixels with a vertex (indi-
cating a change in the trajectory of the timeseries)? List the four years with the 
highest proportion of change. 

Now that you have identified those years, let’s inspect the spatial patterns and 
locations of those pixels for the major change years. For this, we can use our 
vertexStack image. Set the visualization parameters using the code provided 
below, then edit the specific year in the bands setting to match the year you want 
to visualize. Figure 53.16 displays the pixels that changed in 1997. 

Fig. 53.16 Location of pixels with a vertex identified in 1997
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// Plot individual years to see the spatial patterns in the 
vertices. 
var boolParams = { 

// change this for the year you want to view 
bands: 'bools_1997', 
min: 0, 
// no vertex 
max: 1, 
// vertex identified by LT for that year 
palette: ['white', 'red'] 

}; 

Map.addLayer(vertexStack, boolParams, 'vertex 1997', 
false); 
// this visualizes all pixels with a vertex in that year. 

Run the script several times, changing the year in the bands parameter to match 
the top change years you identified in the previous step. Take a screenshot of each 
one and store it so that you can compare them. 

Question 10. Do you notice any differences in the spatial patterns of pixels across 
the top four change years, either in where they are located or their relative patch 
sizes or aggregation? 

Code Checkpoint A38c. The book’s repository contains a script that shows what 
your code should look like at this point. 

53.2.4 Section 4: Classify Pixels Based on Similarities in Time 
Series Trajectories 

In the vertexStack object that we created, we have information about every 
time there was a change in trajectory of the time series of residuals for every pixel 
in the AOI. In this next step, we are going to look for patterns or similarities 
in those trajectories to characterize different trajectory archetypes, representing 
unique pixel histories, as the basis for a classification. 

In the visualizations above, we focused on the timing and spatial patterns for 
the top four years of change. If we extract the time series of residual greenness for 
every pixel in Fig. 53.16, we get something like the plots shown in Fig. 53.17. If  
we extract the time series of all pixels that changed in 1990, we get something like 
Fig. 53.17a. If we compare these plots back to our screenshots of the locations of 
the vertex pixels in those years, we can see that there are distinct patterns both in 
the spatial location and the shape of the time series between pixels that had a vertex 
in 1990 and those that changed in 1997 (Fig. 53.17b), or even 2012 (Fig. 53.17c).
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Notice the differences in the trajectory of greenness prior to the vertex across the 
three plots, and that the scale of the y-axis varies across the plots as well. 

The plots shown in Fig. 53.17 show the median value for each year across all 
pixels that had a vertex in that year. But it is also possible that a single pixel has 
more than one vertex in its history (i.e., that it changed trajectory more than once, 
such as in Fig. 53.2), so there may be some overlap between pixels with a vertex 
in 1990 and those with a vertex in 1997, or in other years. And it is possible that 
groups of pixels are changing in similar ways, due to similarities in management,

Fig. 53.17 Median residual greenness values for all pixels in the AOI with a vertex identified by 
LandTrendr in, a 1990; b 1997; and c 2012 
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soils or other factors. We are going to use all of the information on the changes 
across all years to characterise the different types of change that have occurred in 
our study area. 

We are going to employ an unsupervised classification approach to clustering 
these data, as we do not have ground truth or pre-classified training data that we are 
trying to replicate. Rather, we are interested in finding out what kinds of inherent 
patterns might exist across the pixels in our AOI, based on similarities in the shape 
of their trajectories. Different trajectories in the time series of greenness might be 
due to things like starting conditions, as well as different kinds of management or 
environmental stress. If you need to review the basics of classification, you can 
review Chap. 6. 

We will start by creating some naive training data from our multiband image 
of Boolean layers. 

// Create training data. 
var training = vertexStack.sample({ 

region: aoi, 
scale: 60, 
numPixels: 5000 

}); 

Now, set the maximum number of allowable clusters to 10, train the clusterer, 
and apply it to the vertex data. 

var maxclus = 10; 

// Instantiate the clusterer and train it. 
var trained_clusterer = 
ee.Clusterer.wekaKMeans(maxclus).train( 

training); 

// Cluster the input using the trained clusterer 
var cluster_result = 
vertexStack.cluster(trained_clusterer); 

The default indexing in Java starts at zero, so the first class assigned by the 
clusterer is labeled with the value 0. This can pose problems if you want to mask 
out the results to view only one cluster at a time, so we will quickly remap the 0 
value to be a 10. Then, we will add the results as a new layer to quickly visualize 
the classified raster (Fig. 53.18).
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Fig. 53.18 Random-color visualization of unsupervised clusters 

// Remap result_totalChange so that class 0 is class 10 
cluster_result = cluster_result.remap( 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 
[10, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

.toFloat() 

.rename('cluster'); 
Map.addLayer(cluster_result.randomVisualizer(), {}, maxclus 
.toString() + '_clusters'); 

Turn on the satellite basemap and move the opacity slider for the classified 
raster layer 10_clusters. (The colors assigned to classes in your map may 
differ.) Some classes seem to align somewhat with observable features in the land-
scape, but many of them do not. This indicates that there is some similarity in the 
history of these pixels that is not immediately obvious from their current cover. 

Code Checkpoint A38d. The book’s repository contains a script that shows what 
your code should look like at this point.
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53.2.5 Section 5: Explore the Characteristics of the New Classes 

We have now generated a classified raster based on similarities in the trajectory 
of the greenness in each pixel. In order to understand what these classes actu-
ally mean and what particular trajectories these classes represent, we will create 
summaries of the median greenness of the pixels in each class and compare them. 

We will use the ImageCollection of observed greenness that we used in 
Sect. 53.2.2, and also a collection of the fitted residuals generated by LandTrendr 
in Sect. 53.2.3. Our first step will be to add a band with the cluster number to 
those collections. 

// GOAL: Find Median Greenness for each cluster per year in 
the image 
// define a function to add the cluster number band to each 
Image in the collection 
var addClusters = function(img) { 

return img.addBands(cluster_result); 
}; 

// Add the cluster band 
var ObvGreen_wClusters = greennessColl.map(addClusters); 

Next, we need to select and mask out the class we are interested in exploring. 
We’ll just start with the first class. 

//---Select and mask pixels by cluster number 
var cluster_num = 1; // change this to the class of 
interest 

// Mask all pixels but the selected cluster number 
// Define a function so we can map it over the entire 
collection 
var maskSelCluster = function(img) { 

var selCluster = img.select('cluster').eq(cluster_num); 
return img.mask(selCluster); 

};
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// map the function over the entire collection 
var selClusterColl = 
ObvGreen_wClusters.map(maskSelCluster); 

// Use the following to visualize the location of the focal 
class: 
Map.addLayer(selClusterColl.select('cluster').first(), { 

palette: 'green' 
}, 'Cluster ' + cluster_num.toString()); 

Next, you will utilize the ui.Chart.image functionality, combined with a 
Reducer, to plot the median value of observed greenness for each year for the focal 
class (Fig. 53.19). 

Fig. 53.19 Median value of the observed greenness value for all pixels in the AOI that are iden-
tified in Cluster 1
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var chartClusterMedian = ui.Chart.image.seriesByRegion({ 
imageCollection: selClusterColl, 
regions: aoi, 
reducer: ee.Reducer.median(), 
band: 'greenness', 
scale: 90, 
xProperty: 'system:time_start', 
seriesProperty: 'label' 

}) 
.setChartType('ScatterChart') 
.setOptions({ 

title: 'Median Observed Greenness of Cluster ' + 
cluster_num.toString(), 

vAxis: { 
title: 'Median Observed Greenness' 

}, 
lineWidth: 1, 
pointSize: 4, 
series: { 

0: { 
color: 'green' 

}, 
} 

}); 

print(chartClusterMedian); 

Now we will do the same, but for the fitted residual greenness values predicted 
from LandTrendr.
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var fittedresidColl = ee.ImageCollection( 
'projects/gee-book/assets/A3-8/FR_Collection'); 

// add the cluster number band to each (function defined 
above, just use again here) 
var fittedresid_wClusters = 
fittedresidColl.map(addClusters); 

//Mask all pixels but the selected cluster number 
// again, function defined above, just call it here 
var selFRClusterColl = 
fittedresid_wClusters.map(maskSelCluster); 

Map.addLayer(selFRClusterColl.select('cluster').first(), { 
palette: ['white', 'blue'] 

}, 'Cluster ' + cluster_num.toString()); 

//Chart Median Fitted Residual Values by cluster 

var chartClusterMedian = ui.Chart.image.seriesByRegion({ 
imageCollection: selFRClusterColl, 
regions: aoi, 
reducer: ee.Reducer.median(), 
band: 'FR', 
scale: 90, 
xProperty: 'system:time_start', 
seriesProperty: 'label' 

}).setChartType('ScatterChart') 
.setOptions({ 

title: 'Median Fitted Residual Greenness of Cluster 
' + 

cluster_num.toString(), 
vAxis: { 

title: 'Median Residual Greenness' 
}, 
lineWidth: 1, 
pointSize: 4, 
series: { 

0: { 
color: 'red' 

}, 
} 

}); 

print(chartClusterMedian);
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From the Console, expand each of the two plots to a new tab, then download 
the data as a.csv file and rename it something like “observed_green_Class1.csv.” 
Repeat the steps above for each of the classes. 

Figure 53.20 provides an example of the outputs for a few of the classes that 
you have generated. When viewed side by side, it is easier to see how pixels in 
some parts of the AOI have experienced different trajectories of vegetation cover 
over time and that the exact time and nature of the shifts in their trajectories are 
also different. This may be due to differences in underlying vegetation, land use, 
and management activity. 

In a final step, we will compare the classes you generated by clustering the time 
series data to how the same locations are classified over time by the MODIS land 
cover data. We will do this by picking a few points within the AOI and plotting 
the land cover type number for each year of the MODIS data (see Table 53.1 to 
link the pixel value to the descriptions of the class types). 

Use the Inspector tool to select a pixel in a region that interests you. Copy the 
code chunk below to your script. In the Inspector window, expand the information 
by clicking on the triangle next to Point and copy the longitude and latitude values, 
and replace the values in the code chunk below with your values.

Fig. 53.20 Example outputs for three of the clusters identified in the data. The top row is the 
median greenness value for all pixels in the cluster. The middle row is the residual greenness 
value predicted by the fitted LandTrendr model. The bottom row is the location of all pixels in 
the AOI within that class; cluster 1 is more common in the southeast, cluster 3 is aggregated in the 
northwestern region, and cluster 4 has patches throughout the AOI 



53 Detecting Land Cover Change in Rangelands 1189

// Generate a point geometry. 
var expt = ee.Geometry.Point( 

[120.52062120781073, 43.10938146169287]); 
// Convert to a Feature. 
var point = ee.Feature(expt, {}); 

The last line in the code chunk above converts the point to a feature. Now 
you can run a Reducer over that point to extract values and plot them to a chart 
(Fig. 53.21). 

// Create a time series chart of MODIS Classification: 
var chart_LC = ui.Chart.image.seriesByRegion( 

MODIS_LC, point, ee.Reducer.mean(), 'LC_Type1', 30, 
'system:time_start', 'label') 

.setChartType('ScatterChart') 

.setOptions({ 
title: 'LC of Selected Pixels', 
vAxis: { 

title: 'MODIS landcover' 
}, 
lineWidth: 1, 
pointSize: 4 

}); 

print(chart_LC); 

Repeat the steps above for a few points of interest to you and save screenshots 
of the plots.

Fig. 53.21 Example output 
of the MODIS MCD12Q1 
landcover class values for a 
single point in the AOI. Class 
10 is “Grasslands: dominated 
by herbaceous annuals (< 
2 m)”  
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Code Checkpoint A38e. The book’s repository contains a script that shows what 
your code should look like at this point. 

53.3 Synthesis 

Assignment 1. Combine all of your downloaded data files to create a single plot 
(in Excel or Google Sheets, for example) of the trajectory of median observed 
greenness for each of the classes. Compare each of these to the spatial patterns of 
the different classes (as in Fig. 53.17 and in your Map view), and to the underlying 
satellite image view. Pick three of the classes and describe the general trend in the 
time series (how has greenness changed over time?) and the spatial distribution of 
the pixels in that class. 

We implemented this by specifying that the clusterer should look for 10 classes 
in the data. In a true implementation, we would want to explore the outputs across 
a range of cluster numbers. We may have forced the algorithm to split the data 
into too many (or too few) groups. Based on your inspection of the timing of the 
vertices and the spatial distribution of the final classes, are there any that you think 
could be grouped together in a final classification? What would you estimate to be 
the final number of classes in these data? 

How much variation over time has there been for the different points accord-
ing to the MODIS data? How does this compare to the variation in greenness 
represented in the final class that you generated? 

53.4 Conclusion 

In this module, you explored a new approach to classifying land cover that is based 
on the temporal trajectory of individual pixels. Earth Engine is a valuable tool 
for this analysis because you are able to access the historical archive of imagery 
and climate data, as well as the computational tools needed to process, analyze, 
and classify these data. You learned how to create new derived datasets to use 
both as inputs to the analysis and as a final classified product. By comparing the 
temporal trajectories of the new classes against traditional land cover data, you 
learned how to distinguish the pros and cons of existing datasets for meeting land 
cover mapping objectives. Now that you understand the basics of the challenges 
of detecting land cover change in rangelands and have explored a new approach 
to classifying different trajectories, you can apply this approach to your own areas 
of interest to better understand the history of response.
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54Conservation I—Assessing 
the Spatial Relationship Between 
Burned Area and Precipitation 

Harriet Branson and Chelsea Smith 

Overview 
The purpose of this chapter is to introduce the need for fire activity and rainfall trend 
monitoring to inform conservation management practices. 

Practical conservation requires an understanding of key environmental factors 
such as fire and rainfall, which impact the amount of forage and habitat available 
for a variety of species. This chapter will guide you through how to create fire and 
rainfall time series and visualize this data. At the end of this chapter, you will be able to 
present this information in an accessible way on a graph to help inform conservation 
management practices such as early burning and supplementary feeding. 

Learning Outcomes

• Understanding why fire and rainfall trends are useful in conservation management.
• Creating a time series of burned areas.
• Writing a function to map areal mean rainfall calculations over an 
ImageCollection.

• Generating an interactive graph displaying fire and rainfall trends over a 10-year 
period. 

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
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• Create a graph using ui.Chart (Chap. 4).
• Summarize an image with reduceRegion (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Work with CHIRPS rainfall data (Chap. 14).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15). 

54.1 Introduction to Theory 

Globally, biodiversity is under threat from changing climates, habitat loss, and 
fragmentation. Conservation work to protect, manage, and restore ecosystems is 
vitally important to maintain global biodiversity, which supports climate regulation 
and a host of other ecosystem services we depend upon (Reddy 2021). 

Remote sensing offers a valuable tool to collect, analyze, and display data over 
an entire ecosystem. Environmental variables such as fire and rainfall have direct 
impacts on habitat and forage availability (Holden et al. 2018). Monitoring of these 
variables can help inform conservation, such as fire management to reduce the 
severity of fires and amount of habitat lost (Ribeiro et al. 2021). Monitoring rainfall 
patterns can help conservationists understand which climate conditions species 
prefer in their habitats and if the conditions are at risk of changing (Pinto-Ledezma 
and Cavender-Bares 2021). 

In this chapter, we will see how using the Earth Engine platform allows conser-
vationists to scope the fire and rainfall conditions for any site using global datasets. 
The data we visualize is being directly used in real-world conservation by inform-
ing fire management, as well as indirectly through the identification of climate 
conditions to which species are adapted. 

54.2 Practicum 

54.2.1 Section 1: Assess Area of Interest 

The first step is to upload and explore the area of interest. Northern Mozambique’s 
Niassa Reserve is home to 40% of the country’s entire elephant population, and 
is a haven for two of Africa’s threatened carnivores: lion, and wild dog. Fire is 
a key ecological process in forested savanna ecosystems that are prevalent in the 
Niassa Reserve, and the knowledge of the fire regime is an important factor in 
forest fire management (Nhongo et al. 2020). Our area of interest (AOI) has very 
stark wet and dry seasons; take a look at the satellite imagery basemap that shows 
the landscape in the wet season.
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// ** Upload the area of interest ** // 
var AOI = ee.Geometry.Polygon([ 

[ 
[37.72, -11.22], 
[38.49, -11.22], 
[38.49, -12.29], 
[37.72, -12.29] 

] 
]); 
Map.centerObject(AOI, 9); 
Map.addLayer(AOI, { 

color: 'white' 
}, 'Area of interest'); 

54.2.2 Section 2: Load the MODIS Burned Area Dataset 

Next, we will use the MCD64A1 dataset, which is a global layer representing 
burned area at 500 m resolution from 2001 to the present. The layer is also accom-
panied by a band named ’BurnDate’, which enables you to disaggregate into 
daily fire data. 

First, we will filter the MODIS ImageCollection based on the times-
pan requirements. We are looking at fire patterns over the past 10 years. 
The MCD64A1 dataset comes with three main bands, ’BurnDate’, 
’Uncertainty’, and ’QA’ (quality assurance). In this case, we select only the 
’BurnDate’ band, which associates each pixel of burned area with a day-of-year 
value. 

// ** MODIS Monthly Burn Area ** // 

// Load in the MODIS Monthly Burned Area dataset. 
var dataset = ee.ImageCollection('MODIS/006/MCD64A1') 

// Filter based on the timespan requirements. 
.filter(ee.Filter.date('2010-01-01', '2021-12-31')); 

// Select the BurnDate band from the images in the 
collection. 
var MODIS_BurnDate = dataset.select('BurnDate'); 

Next, we can create the function that will calculate the area of pixels associated 
with each day. The function is structured so that it will map over each image in 
the MODIS_BurnDate ImageCollection. It begins by using the command
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pixelArea, which calculates the area of each pixel in square meters. To limit 
the calculation to specifically burned areas, we need to use updateMask with 
our input img as the variable. Because we want our final area calculation to be 
in square kilometers instead of square meters, we divide the value by 1,000,000 
(1e6). 

The reduceRegion command gathers the sum of burned area within our 
input area of interest at the correct scale of the input image (500 m for our 
MODIS_BurnDate collection). After this, the getNumber command recalls the 
area calculation per image per day of year and appends it as a new band area on 
the ImageCollection. 

Since the MODIS ImageCollection has a ’system:time_start’ 
embedded within each image, we can select the area band and continue without 
the ’BurnDate’. 

// A function that will calculate the area of pixels in 
each image by date. 
var addArea = function(img) { 

var area = ee.Image.pixelArea() 
.updateMask( 

img 
) // Limit area calculation to areas that have 

burned data. 
.divide(1e6) // Divide by 1,000,000 for square 

kilometers. 
.clip(AOI) // Clip to the input geometry. 
.reduceRegion({ 

reducer: ee.Reducer.sum(), 
geometry: AOI, 
scale: 500, 
bestEffort: true 

}).getNumber( 
'area' 

); // Retrieve area from the reduce region 
calculation. 

// Add a new band to each image in the collection 
named area. 

return img.addBands(ee.Image(area).rename('area')); 
}; 

// Apply function on image collection. 
var burnDateArea = MODIS_BurnDate.map(addArea); 

// Select only the area band as we are using system time 
for date. 
var burnedArea = burnDateArea.select('area');
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To show the total amount of burned area over the past 10 years, we 
can plot this on a time-series graph. By defining the xProperty with 
’system:time_start’ for the date variable on this graph, we can plot the 
total area burned with time. 

// Create a chart that shows the total burned area over 
time. 
var burnedAreaChart = 

ui.Chart.image 
.series({ 

imageCollection: burnedArea, // Our image 
collection. 

region: AOI, 
reducer: ee.Reducer.mean(), 
scale: 500, 
xProperty: 'system:time_start' // time 

}) 
.setSeriesNames(['Area']) // Label for legend. 
.setOptions({ 

title: 'Total monthly area burned in AOI', 
hAxis: { 

title: 'Date', // The x axis label. 
format: 'YYYY', // Years only for date format. 
gridlines: { 

count: 12 
}, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
vAxis: { 

title: 'Total burned area (km²)', // The y-axis 
label 

maxValue: 2250, // The bounds for y-axis 
minValue: 0, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
lineWidth: 1.5, 
colors: ['d74b46'], // The line color 

}); 
print(burnedAreaChart);
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Code Checkpoint A39a. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. We have calculated the area burned in square kilometers; which line of 
code would you have to change, and how, to calculate the area burned in hectares? 

Question 2. By hovering your mouse over the graph, which month has the greatest 
area burnt, and does this vary year on year? 

Question 3. The most appropriate fire dataset and analysis to use for your study 
will vary depending on location and scale of analysis. If you wanted to understand 
the impact of fires on koala habitat in southern Australia, what would be the most 
appropriate analysis? Hint: Consider the analysis run in Chap. 46 and the work by 
Bonney et al. (2020). 

54.2.3 Section 3: Areal Mean Rainfall Time Series 

To inform habitat management and further understand fire patterns within northern 
Mozambique, we have to also consider patterns in rainfall. To do this, we will use 
the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Precipi-
tation dataset. This dataset measures precipitation levels every five days from 1981 
to present day at 500 m resolution to make a long-term quasi-global dataset. 

First, we will define our temporal range (matching our burned area data) from 
2010 to 2021, and set the advancing dates from these years. After this, we create a 
sequence of years and months that will be used to filter the dataset chronologically. 

After setting these parameters, filter the CHIRPS dataset using the start 
and end date, and sort chronologically in descending order using the same 
’system:time_start’ property used in Sect. 54.2.1. Filter the bounds to 
the AOI, and select the precipitation band from the ImageCollection. 

// Load in the CHIRPS rainfall pentad dataset. 
var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD'); 

// Define the temporal range 
var startyear = 2010; 
var endyear = 2021; 

// Set the advancing dates from the temporal range. 
var startdate = ee.Date.fromYMD(startyear, 1, 1); 
var enddate = ee.Date.fromYMD(endyear, 12, 31);
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// Create a list of years 
var years = ee.List.sequence(startyear, endyear); 
// Create a list of months 
var months = ee.List.sequence(1, 12); 

// Filter the dataset based on the temporal range. 
var Pchirps = chirps.filterDate(startdate, enddate) 

.sort('system:time_start', 
false) // Sort chronologically in descending 

order. 
.filterBounds(AOI) // Filter to AOI 
.select('precipitation'); // Select precipitation band 

Once the dataset has been filtered, we can calculate the monthly precipitation 
using a function. The function maps the input, y, over the list of years generated 
above. The function then returns the total precipitation for the month, along-
side a date variable and the ’system:time_start’ property. The command 
millis is used to keep the system number that refers to the date collected. 

Print the ImageCollection for checking. 

// Calculate the precipitation per month. 
var MonthlyRainfall = ee.ImageCollection.fromImages( 

years.map(function( 
y 

) { // Using the list of years based on temporal range. 
return months.map(function(m) { 

var w = Pchirps.filter(ee.Filter 
.calendarRange(y, y, 'year')) 

.filter(ee.Filter.calendarRange(m, m, 
'month')) 

.sum(); // Calculating the sum for the 
month 

return w.set('year', y) 
.set('month', m) 
.set('system:time_start', ee.Date 

.fromYMD(y, m, 1).millis() 
) // Use millis to keep the system time 

number. 
.set('date', ee.Date.fromYMD(y, m, 

1)); 
}); 

}).flatten()); 
// Print the image collection. 
print('Monthly Precipitation Image Collection', 
MonthlyRainfall);
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Once the monthly precipitation levels have been calculated, we can use a 
reducer to calculate the mean total rainfall across our AOI, also known as the 
areal mean rainfall (AMR), and plot these on a time-series graph. This process is 
very similar to the burned area chart in Sect. 54.2.2. 

// ** Chart: CHIRPS Precipitation ** // 

// Create a chart displaying monthly rainfall over a 
temporal range. 
var monthlyRainfallChart = 

ui.Chart.image 
.series({ 

imageCollection: MonthlyRainfall.select( 
'precipitation'), // Select precipitation band 

region: AOI, 
reducer: ee.Reducer 

.mean(), // Use mean reducer to calculate AMR 
scale: 500, 
xProperty: 'system:time_start' // Use system time 

start for x-axis 
}) 
.setSeriesNames(['Precipitation']) // /The label legend 
.setOptions({ 

title: 'Total monthly precipitation in AOI', // Add 
title 

hAxis: { 
title: 'Date', 
format: 'YYYY', // Year only date format 
gridlines: { 

count: 12 
}, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
},
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vAxis: { 
title: 'Precipitation (mm)', // The y-axis 

label 
maxValue: 450, // The bounds for y-axis 
minValue: 0, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
lineWidth: 1.5, 
colors: ['4f5ebd'], 

}); 
print(monthlyRainfallChart); 

Print the monthly rainfall chart. Using the chart, we can see which months 
receive rainfall, and can categorize these as the wet season. With data from the 
chart, we will categorize any month that receives over 5 mm of rainfall as a wet 
season month. We can then calculate total seasonal rainfall across our AOI by 
aggregating wet season months together. 

// 2010/2011 wet season total 
var year = 2010; // Adjust year 
var startDate = ee.Date.fromYMD(year, 11, 1); // Adjust 
months/days 
var endDate = ee.Date.fromYMD(year + 1, 5, 31); // Adjust 
months/days 
var filtered = chirps 

.filter(ee.Filter.date(startDate, endDate)); 
var Rains10_11Total = 
filtered.reduce(ee.Reducer.sum()).clip(AOI); 

// 2011/2012 wet season total 
var year = 2011; // Adjust year 
var startDate = ee.Date.fromYMD(year, 11, 1); // Adjust 
months/days 
var endDate = ee.Date.fromYMD(year + 1, 5, 31); // Adjust 
months/days 
var filtered = chirps 

.filter(ee.Filter.date(startDate, endDate)); 
var Rains11_12Total = 
filtered.reduce(ee.Reducer.sum()).clip(AOI);
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Question 4. Classify the remaining wet seasons using the areal mean rainfall chart, 
and calculate the total seasonal rainfall over the AOI using the code you have just 
learned, to calculate wet seasons in 2010–2011 and 2011–2012. 

Question 5. We have created a 10-year time series. Is this a long enough time 
period to start to consider changes in rainfall patterns? 

Code Checkpoint A39b. The book’s repository contains a script that shows what 
your code should look like at this point. 

54.2.4 Section 4: Visualizing Fire and Rainfall Time Series 

Now that we have visualized patterns in both burned area and precipitation sep-
arately, it is important to assess these patterns together. To do this, we need to 
combine the two image collections in order to plot them on the same graph. 

Once they are combined, we can begin creating a multi-variable time-series 
chart. By keeping the ’system:time_start’ property on both sets of image 
collections, we are able to easily plot each variable temporally. Following this, we 
set both series’ names and set interpolateNulls to true to provide contin-
uous precipitation data that can be plotted alongside the near daily burned area 
data. 

To enable two y-axes, we need to set some series parameters. By defining our 
targetAxisIndex as 0 and 1, we can then set our vAxes to match, using 
two sets of parameters with different labels and different bounds for ease of plot-
ting. This is useful since the burned area and precipitation datasets have different 
minimum and maximum values, so it would be difficult to analyze on the same 
axis. 

You can print the chart to the Console for export if necessary, but for 
interactivity, we will add it to the map later.
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// ** Combine: CHIRPS Average Rainfall & MODIS Monthly Burn 
** // 

// Combine the two image collections for joint analysis 
var bpMerged = burnedArea.merge(MonthlyRainfall); 
print('Merged image collection', bpMerged); 

// ** Chart: CHIRPS Average Rainfall & MODIS Monthly Burn 
** // 
// Plot the two time series on a graph 
var bpChart = 

ui.Chart.image.series({ 
imageCollection: bpMerged, // The merged image 

collection 
region: AOI, 
reducer: ee.Reducer.mean(), 
scale: 500, 
xProperty: 'system:time_start' // Use system time 

start for synchronous plotting 
}) 
.setSeriesNames(['Burned Area', 'Precipitation']) // 

Label series 
.setChartType('LineChart') // Define chart type 
.setOptions({ 

title: 'Relationship between burned area and 
rainfall in Chuilexi', 

interpolateNulls: true, // Interpolate nulls to 
provide continuous data 

series: { // Use two sets of series with a target 
axis to create the two y-axes needed for plotting 

0: { // 0 and 1 reference the vAxes settings 
below 

targetAxisIndex: 0, 
type: 'line', 
lineWidth: 1.5, 
color: 'd74b46' 

}, 
1: { 

targetAxisIndex: 1, 
type: 'line', 
lineWidth: 1.5, 
color: '4f5ebd' 

},
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}, 
hAxis: { 

title: 'Date', 
format: 'YYYY', 
gridlines: { 

count: 12 
}, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
vAxes: { 

0: { 
title: 'Burned area (km²)', // Label left-

hand y-axis 
baseline: 0, 
viewWindow: { 

min: 0 
}, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 
1: { 

title: 'Precipitation (mm)', // Label 
right-hand y-axis 

baseline: 0, 
viewWindow: { 

min: 0 
}, 
titleTextStyle: { 

italic: false, 
bold: true 

} 
}, 

}, 
curveType: 'function' // For smoothing 

}); 
bpChart.style().set({ 

position: 'bottom-right', 
width: '492px', 
height: '300px' 

}); 

Once we have created our final chart that displays burned area and precipitation, 
we can build some legends on the map for the spatial data. Using two different 
functions, we can create a horizontal legend with a set gradient palette and custom 
markers that correspond to the precipitation data.
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The burned area legend is simpler in that we are creating a square of red to 
indicate that any pixel marked red on the image was burned at that particular time 
point. 

// ** Legend: Rainfall ** // 
var rain_palette = ['#ffffcc', '#a1dab4', '#41b6c4', 
'#2c7fb8', 

'#253494' 
]; 

function ColorBar(rain_palette) { 
return ui.Thumbnail({ 

image: ee.Image.pixelLonLat().select(0), 
params: { 

bbox: [0, 0, 1, 0.1], 
dimensions: '300x15', 
format: 'png', 
min: 0, 
max: 1, 
palette: rain_palette, 

}, 
style: { 

stretch: 'horizontal', 
margin: '0px 22px' 

}, 
}); 

} 

function makeRainLegend(lowLine, midLine, highLine, 
lowText, midText, 

highText, palette) { 
var labelheader = ui.Label( 

'Total precipitation in wet season (mm)', { 
margin: '5px 17px', 
textAlign: 'center', 
stretch: 'horizontal', 
fontWeight: 'bold' 

}); 
var labelLines = ui.Panel( 

[ 
ui.Label(lowLine, { 

margin: '-4px 21px' 
}), 
ui.Label(midLine, { 

margin: '-4px 0px', 
textAlign: 'center',
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stretch: 'horizontal' 
}), 
ui.Label(highLine, { 

margin: '-4px 21px' 
}) 

], 
ui.Panel.Layout.flow('horizontal')); 

var labelPanel = ui.Panel( 
[ 

ui.Label(lowText, { 
margin: '0px 14.5px' 

}), 
ui.Label(midText, { 

margin: '0px 0px', 
textAlign: 'center', 
stretch: 'horizontal' 

}), 
ui.Label(highText, { 

margin: '0px 1px' 
}) 

], 
ui.Panel.Layout.flow('horizontal')); 

return ui.Panel({ 
widgets: [labelheader, ColorBar(rain_palette), 

labelLines, labelPanel 
], 
style: { 

position: 'bottom-left' 
} 

}); 
} 
Map.add(makeRainLegend('|', '|', '|', '0', '250', '500', 
['#ffffcc', 

'#a1dab4', '#41b6c4', '#2c7fb8', '#253494' 
])); 

// ** Legend: Burned area ** // 
var burnLegend = ui.Panel({ 

style: { 
position: 'top-left', 
padding: '8px 15px' 

}
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}); 

var makeRow = function(color, name) { 
var colorBox = ui.Label({ 

style: { 
backgroundColor: '#' + color, 
padding: '10px', 
margin: '0 10px 0 0' 

} 
}); 
var description = ui.Label({ 

value: name, 
style: { 

margin: 'o o 6px 6px' 
} 

}); 
return ui.Panel({ 

widgets: [colorBox, description], 
layout: ui.Panel.Layout.Flow('horizontal') 

}); 
}; 

var burnPalette = ['FF0000']; 
var names = ['Burned area']; 
for (var i = 0; i < 1; i++) { 

burnLegend.add(makeRow(burnPalette[i], names[i])); 
} 
Map.add(burnLegend); 

Now that we have our legends complete, we can add our double variable time-
series chart to the map, and center the map on our area of interest. 

Map.centerObject(AOI, 9); // Centre the map on the AOI 
Map.add( 

bpChart 
); // Add the merged burned area & precipitation chart to 
the map
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While visualizing the data on a static chart is useful for further analysis and 
identifying patterns, it is also useful to see the spatial data corresponding to a 
particular date or fire. To do this, we can add an interactive element to the chart. 
If you click a particular point on the chart, it will reveal the corresponding image 
for burned area and precipitation on the map. 

To do this, we need to create a function that uses the burned area and precipita-
tion chart (bpChart) and executes onClick, displaying the relevant data based 
on the input values. By utilizing the ’system:time_start’ property, we can 
query the date, which will then be used to identify the first image (first) that 
appears within the list of images, within the area of interest. We can then format 
the legend box within the map so that it shows the date and time of the layer 
selected. 

Following this, we can set the symbology of each layer (burned area in red, and 
the precipitation color gradient indicated in the legend settings), and display the 
relevant layer with the date text string on the map (Fig. 54.1). 

Fig. 54.1 Final result of the code once you have clicked on the chart to select a month to display, 
here showing the burned area and total precipitation at the beginning of the dry season in May 2021
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// ** Chart: Adding an interactive query ** // 

// Add a function where if you click on a point in the map 
it displays the burned area and rainfall for that date 
bpChart.onClick(function(xValue, yValue, seriesName) { 

if (!xValue) return; 
// Show layer for date selected on the chart 
var equalDate = ee.Filter.equals('system:time_start', 

xValue); 
// Search for the layer in the image collection that 

links to the selected date 
var classificationB = ee.Image(MODIS_BurnDate.filter( 

equalDate).first()).clip(AOI).select('BurnDate'); 
var classificationR = ee.Image(MonthlyRainfall.filter( 

equalDate).first()).clip(AOI).select( 
'precipitation'); 

var burnImage = 
ee.Image(MODIS_BurnDate.filter(equalDate) 

.first()); 
var date_string = new Date(xValue).toLocaleString( 

'en-EN', { 
dateStyle: 'full' 

}); 
var rainImage = 

ee.Image(MonthlyRainfall.filter(equalDate) 
.first()); 

var date_stringR = new Date(xValue).toLocaleString( 
'en-EN', { 

dateStyle: 'full' 
}); 

// Reset the map layers each time a new date is clicked 
Map.layers().reset([classificationB]); 
Map.layers().reset([classificationR]); 
var visParamsBurnLayer = { // Visualisation for burned 

area 
min: 0, 
max: 365, 
palette: ['red'] 

};
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var visParamsRainLayer = { // Visualisation for rain 
min: 0, 
max: 450, 
palette: ['#ffffcc', '#a1dab4', '#41b6c4', 

'#2c7fb8', '#253494' 
] 

}; 
// Add the layers to the map 
Map.addLayer(classificationR, visParamsRainLayer, 

'Total monthly rainfall on [' + date_string + ']'); 
Map.addLayer(classificationB, visParamsBurnLayer, 

'Burned area on [' + date_string + ']'); 
}); 

Code Checkpoint A39c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 6. Considering the importance of environmental variables in conservation 
work, what other datasets and common earth observation analysis could provide 
data to inform conservation management? 

54.3 Synthesis 

In this chapter, you have learned how to create a time series of burned area, using 
the global MODIS burned area product. You also calculated areal mean rainfall 
using the CHIRPS dataset, and graphed total seasonal rainfall using your time-
series chart. Additionally, you can now merge two image collections to show two 
variables on one interactive chart in the Earth Engine map. 

With the code you have learned in this chapter, you can now create area burned 
and areal mean rainfall time series for your own region of interest anywhere in the 
world. Recreate the analysis in a different environment, and consider extending 
the time series over a longer period; can you detect any trends? 

Monitoring vegetation is also important in conservation and can be significantly 
impacted by fire and rainfall trends. Try to modify the code you have learned to 
calculate areal mean NDVI from the NOAA CDR AVHRR daily NDVI dataset. 
Can you add this as another variable in the interactive chart? 

54.4 Conclusion 

In this chapter, we understand and map the dynamic relationship between fire 
and rainfall, and how this can influence conservation action and land management 
needs. We began by mapping burned areas using MODIS Burned Area Monthly 
Global 500 m to understand how much of, and where, the landscape is affected by
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burning. Following this, we understood how to access rainfall data and calculate 
areal mean rainfall, plotting this on a graph to understand changes and patterns 
over time. By combining the burned area and rainfall data, we can see how rain-
fall (or lack thereof) can exacerbate burning, and begin to spot patterns in the 
landscape. This analysis, which would often be undertaken in the field or by hand 
using satellite imagery, is made accessible via Earth Engine—not only because we 
can perform this on a workstation that only requires an internet connection rather 
than computing power, but also because Earth Engine generates quick, consistent 
results that can inform conservation management practices. 
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Overview 
Protected Areas (PAs) in many densely populated tropical regions are often small 
in area, and are enormously influenced by the broader production landscapes in 
which they are found. Changes in the agricultural matrix surrounding a PA can 
have a profound impact on the PA’s wildlife and on neighboring resident human 
communities. In this chapter, we will examine greening trend changes in the exteriors 
of 186 PAs in Western India from 2000 to 2021 using MODIS Terra vegetation 
indices, a Sen’s slope linear trend estimator, and other summary techniques available 
in Earth Engine. We will use these techniques to investigate how these greening trends 
are distributed in relation to the precipitation regimes of a given PA site. 

Learning Outcomes 

• Computing a metric of a monotonic trend (Sen’s slope) in dry-season pixel 
greenness for each pixel. 

• Inferring the nature and intensity of change in agricultural practice based on the 
trend metric. 

• Exploring the relationship between changes in vegetation greenness and ecosys-
tem type as determined by average annual precipitation.
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Helps if you know how to 

• Import images and image collections, filter, and visualize (Part I). 
• Perform basic image analysis: select bands, compute indices, create masks (Part 

II). 
• Calculate and interpret vegetation indices (Chap. 5) 
• Use reducers to implement linear regression between image bands (Chap. 8). 
• Write a function and map it over an ImageCollection (Chap. 12). 
• Map an annual reducer across multiple years (Chaps. 12, and 13). 
• Write a function and map it over a collection (Chap. 12). 
• Conduct basic vector analyses: vectorizing and buffering (Part V). 
• Write a function and map it over a FeatureCollection (Chaps. 23, and 

24). 

55.1 Introduction to Theory 

In many regions of the densely populated tropics, Protected Areas (PAs) are often 
small, and their interfaces with production landscapes are sharp. As a result, 
changes in the agriculture surrounding a PA can have a profound impact on the 
PA’s wildlife, as well as on their interactions with local human communities. For 
example, across India’s Gangetic Plains, increased crop irrigation via groundwater 
exploitation has enabled its traditional rainfed agriculture with long fallow periods 
and annual crops (cereals, legumes, and oilseeds) to be to be replaced by year-
round agriculture (Chen et al 2019; Maina et al 2022). This intensification can 
have subtle yet significant changes in the landscape in terms of spatial regimes of 
primary productivity, and to wildlife in terms of both dietary and habitat resources. 
These changes, in turn, can influence wildlife interactions with people (Kumar 
et al. 2018). 

In this chapter, we describe greening trends in vegetation in the exteriors of 
PAs in Western India, and ask how these greening trends are distributed in relation 
to the precipitation regimes of a given PA site. Based on our experience and our 
reading of literature pertaining to wildlife in India, we hypothesize that as crop 
irrigation via groundwater extraction increases, farming in the moisture-limited 
semi-arid tracts of India becomes more independent of seasonal differences, and 
their constituent habitats become structurally more complex. These changes could 
help create novel anthropogenic habitats that can be accessed by adaptable wildlife 
species living in PAs, such as leopards and elephants (Lenin 2010; Odden et al. 
2014). While such changes to habitat structure and resource availability could 
improve functional connectivity between PAs (e.g., Rodrigues et al. 2022), inten-
sification can also lead to a greater overlap between humans and wildlife, possibly 
leading to greater conflict over crops and livestock (Kumar et al. 2018). The poten-
tial trade-offs involved between conservation and conflict imply that it is crucial 
to assess and map land use changes around PAs over time, and eventually to
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relate this to changes in wildlife distribution and behavior, for which this chapter 
provides a framework. 

55.2 Practicum 

55.2.1 Section 1: Initializing Parameters 

The Normalized Difference Vegetation Index (NDVI) estimates vegetation green-
ness; the MODIS Terra vegetation indices products, MOD13Q1.006, provides 
historical 16-day composites of it at a global span and 250 m per pixel resolu-
tion. This dataset is used here to estimate a monotonic trend in annual changes of 
dry-season vegetation greenness around a set of PAs in India. Various parameters 
used in the script are initialized first. 

55.2.1.1 Section 1.1: Annual Dry-Season Maximum NDVI Calculation 
The MODIS vegetation indices dataset MOD13Q1.006 is initialized, along with 
the NDVI band name and relevant scale values. The dataset starts from the year 
2000 and extends to the present. For this analysis, we use data from 2000 to 2021 
as the sequence of full years the data are available for. The annual dry season in 
much of India occurs over three to five months, starting roughly in January. Here, 
a period of 90 days (spanning January through March) starting on the first day of 
each year is taken to be the dry season. Convenient names are chosen for bands 
holding NDVI and time values for regression analysis. 

var modis_veg = ee.ImageCollection('MODIS/006/MOD13Q1'); 
var ndviBandName = 'NDVI'; 
var ndviValuesScaling = 0.0001; 
var modisVegScale = 250; // meters 
var maxNDVIBandname = 'max_dryseason_ndvi'; 
var yearTimestampBandname = 'year'; 
var years = ee.List.sequence(2000, 2021, 1); 
var drySeasonStart_doy = 1; 
var drySeasonEnd_doy = 90; 

55.2.1.2 Section 1.2: Boundaries of PAs of Interest 
In the code below, a set of PAs in the western part of India is identified for study. 
This collection of PAs in the western belt of India spans a wide range of rain-
fall regimes, from very moist areas in the southern Western Ghats to very arid 
regions in the Thar Desert of Rajasthan in the north, with diverse rainfall regimes 
in between. This belt is home to a diverse array of forests and savanna ecosystems, 
ranging from moist ecosystems to semi-arid and arid ecosystems. The landscapes
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in this belt also have a complex, diverse intervening matrix of natural and inten-
sively human-utilized lands making up wildlife corridors. The size of the buffer 
area around each PA is also defined. 

var paBoundaries = ee.FeatureCollection( 
'projects/gee-book/assets/A3-10/IndiaMainlandPAs'); 

var boundaryBufferWidth = 5000; // meters 
var bufferingMaxError = 30; // meters 
// Choose PAs in only the western states 
var western_states = [ 

'Rajasthan', 'Gujarat', 'Madhya Pradesh', 
'Maharashtra', 'Goa', 'Karnataka', 'Kerala' 

]; 
var western_pas = paBoundaries 

.filter(ee.Filter.inList('STATE', western_states)); 

55.2.1.3 Section 1.3: Regression Analysis 
The Sen’s slope linear trend estimator (Sen 1968) is a non-parametric estimator 
useful for monotonic trend estimation applications using remotely sensed indices. 
Its suitability for applications with remotely sensed indices comes from a key dif-
ference when compared to linear regression using the least squares estimator: while 
linear regression assumes that the regression residuals are normally distributed, 
Sen’s slope estimator makes no such assumptions about the statistical structure 
of the data it is being applied on. The reducer for this Sen’s slope regression is 
built into the Earth Engine API, and in the code below, its x and y variables are 
initialized. 

var regressionReducer = ee.Reducer.sensSlope(); 
var regressionX = yearTimestampBandname; 
var regressionY = maxNDVIBandname; 

55.2.1.4 Section 1.4: Surface Water Layer to Mask Water Pixels 
from Assessment 

NDVI values of pixels spanning water bodies tend to be highly noisy and can 
mislead trend analyses. Masking out all pixels that were ever water during the 
period of interest can mitigate this problem. The European Union’s Joint Research 
Centre mapped monthly surface water from 1984 to 2021, including the maximum 
water extent detected during the period.
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// Selects pixels where water has ever been detected 
between 1984 and 2021 
var surfaceWaterExtent = 
ee.Image('JRC/GSW1_3/GlobalSurfaceWater') 

.select('max_extent'); 

55.2.1.5 Section 1.5: Average Annual Precipitation Layer 
To relate the estimated trends in vegetation greenness to rainfall regime, we use 
WorldClim’s estimated long-term average annual precipitation data. 

var rainfall = 
ee.Image('WORLDCLIM/V1/BIO').select('bio12'); 

55.2.1.6 Section 1.6: Visualization and Saving Parameters 
The estimated metric of change in vegetation greenness can be visualized as a 
raster on the map. Additionally, the relationship between changes in vegetation 
greenness and precipitation around each PA can be charted using a scatter plot. 
The visualization parameters for these are defined. 

var regressionResultVisParams = { 
min: -3, 
max: 3, 
palette: ['ff8202', 'ffffff', '356e02'] 

}; 
var regressionSummaryChartingOptions = { 

title: 'Yearly change in dry-season vegetation 
greenness ' + 

'in PA buffers in relation to average annual 
rainfall', 

hAxis: { 
title: 'Annual Precipitation' 

},
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vAxis: { 
title: 'Median % yearly change in vegetation 

greenness ' + 
'in 5 km buffer' 

}, 
series: { 

0: { 
visibleInLegend: false 

} 
}, 

}; 

Code Checkpoint A310a. The book’s repository contains a script that shows what 
your code should look like at this point. 

55.2.2 Section 2: Raster Processing for Change Analysis 

The 16-day composite NDVI rasters are filtered, processed, and reduced accord-
ing to parameters appropriately defined and initialized above to generate a raster 
of percentage annual change in greenness as a metric for vegetation change. A 
summary of this for each PA buffer is also calculated. Finally, these results are 
visualized. 

55.2.2.1 Section 2.1: Annual Dry-Season Maxima of NDVI 
The source MODIS vegetation indices dataset is first filtered to the dry-season 
days for all years and the NDVI band selected. From this ImageCollection 
containing only dry-season observations for each year, maximum dry-season 
NDVI is calculated. This represents the vegetation at its greenest condition 
within the dry season each year. The maximum NDVI is the least likely to 
be influenced by episodic changes, such as fires that occur during this dry 
period. An image band containing the year value is also created and com-
bined with the maximum NDVI, in preparation for time versus NDVI regression 
analysis in the next step. This is accomplished through defining a function 
annualDrySeasonMaximumNDVIAndTime to do this for each year, and then 
mapping that function over all the years in our period of interest.
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function annualDrySeasonMaximumNDVIAndTime(y) { 
// Convert year y to a date object 
var yDate = ee.Date.fromYMD(y, 1, 1); 
// Calculate max NDVI for year y 
var yMaxNdvi = drySeasonNdviColl 

// Filter to year y 
.filter(ee.Filter.date(yDate, yDate.advance(1, 

'year'))) 
// Compute max value 
.max() 
// Apply appropriate scale, as per the dataset's 
// technical description for NDVI band. 
.multiply(ndviValuesScaling) 
// rename the band to be more comprehensible 
.rename(maxNDVIBandname); 

// Create an image with constant value y, to be used in 
regression. Name it something comprehensible. 

// Name it something comprehensible. 
var yTime = ee.Image.constant(y).int().rename( 

yearTimestampBandname); 
// Combine the two images into a single 2-band image, 

and return 
return ee.Image.cat([yMaxNdvi, yTime]).set('year', y); 

} 

// Create a collection of annual dry season maxima 
// for the years of interest.  Select the NDVI band and 
// filter to the collection of dry season observations. 
var drySeasonNdviColl = modis_veg.select([ndviBandName]) 

.filter(ee.Filter.calendarRange(drySeasonStart_doy, 
drySeasonEnd_doy, 'day_of_year')); 

// For each year of interest, calculate the NDVI maxima and 
create a corresponding time band 
var dryseason_coll = ee.ImageCollection.fromImages( 

years.map(annualDrySeasonMaximumNDVIAndTime) 
);
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55.2.2.2 Section 2.2: Annual Regression to Estimate Average Yearly 
Change in Greenness 

The dry-season maximum NDVI collection with time band is reduced with a Sen’s 
slope regression reducer to estimate the linear rate of change of dry-season max-
imum greenness for the years from 2000 to 2021. Be sure to use the select 
operation to select the x and y variables for regression, in that order, as expected 
by the ee.Reducer.sensSlope. The resulting image will have a slope and 
an offset band, which are the slope and y-intercept of the trend estimation, 
respectively. 

The values in the slope band are the pixel-wise annual rate of change in 
maximum dry-season NDVI values. The magnitude of these values signifies 
the intensity of change over the years, and their sign indicates whether the 
change manifested as greening (positive sign) or browning (negative sign) of the 
vegetation. 

var ss = dryseason_coll.select([regressionX, 
regressionY]).reduce( 

regressionReducer); 

// Mask surface water from vegetation change image 
var ss = ss.updateMask(surfaceWaterExtent.eq(0)); 

55.2.2.3 Section 2.3: Summarize Estimates of Change in Buffer 
Regions of PAs of Interest 

In order to investigate the vegetation greening and browning changes within the 
buffer areas of our PAs of interest, buffer regions have to be defined. This can 
be done by computing the geometry “difference” between the buffered version of 
each PA and the PA itself. A function extractBufferRegion is defined to 
perform this for each PA feature, and that function is mapped over the feature 
collection with boundaries of all the PAs of interest.
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function extractBufferRegion(pa) { 
//reduce vertices in PA boundary 
pa = pa.simplify({ 

maxError: 100 
}); 
// Extend boundary into its buffer 
var withBuffer = pa.buffer(boundaryBufferWidth, 

bufferingMaxError); 
// Compute the buffer-only region by "subtracting" 

boundary with buffer from boundary 
// Subtracting the whole set of boundaries eliminates 

inclusion of forests from adjacent PAs into buffers. 
var bufferOnly = 

withBuffer.difference(paBoundaries.geometry()); 

return bufferOnly; 
} 

// Create buffer regions of PAs 
var pa_buff = western_pas.map(extractBufferRegion); 

The greenness condition of vegetation in the dry season is inherently variable 
in large diverse landscapes like around the PAs of choice here, and it depends 
strongly on the type of vegetation itself, such as deciduous or evergreen tree cover, 
grasslands, shrublands, and croplands. In order to take this inherent variability 
into account, the raw rate of change value can be converted into a percent rate 
of change by normalizing the change value against a baseline value. Here, the 
maximum year 2000 dry-season NDVI is used as the baseline in each pixel. The 
slope values are normalized using this baseline and converted to percent values. 
This can be visualized on the map. 

In order to understand the overall picture at a PA buffer-region level, the median 
of percent rate of vegetation change is calculated for every PA buffer. And to relate 
this to the amount of rainfall in a buffer region, the corresponding median of 
average annual rainfall over the region is also calculated. These can be visualized 
in a chart.
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// Normalize the metric of NDVI change to a baseline (dry-
season max NDVI in the very first year) 
var baselineNdvi = 
dryseason_coll.select([maxNDVIBandname]).filter(ee 

.Filter.eq('year', years.getNumber(0))).first(); 
var stats = 
ss.select('slope').divide(baselineNdvi).multiply(100) 

.rename('vegchange'); 

// Combine it with average annual rainfall data 
stats = stats.addBands(rainfall.rename('rainfall')); 

// Calculate mean of change metric over buffer regions of 
each PA of interest 
var paBufferwiseMedianChange = stats.reduceRegions({ 

collection: pa_buff, 
reducer: ee.Reducer.median(), 
scale: 1000, 
tileScale: 16 

}); 

Code Checkpoint A310b. The book’s repository contains a script that shows what 
your code should look like at this point. 

55.2.3 Section 3: Visualizing Results 

The degree of vegetation change, with a chosen palette, is visualized as a map 
(Fig. 55.1), and the PA buffer-wise median value is charted as a scatter plot 
(Fig. 55.2). In the map, green color suggests significant vegetation greening, 
brown color suggests significant vegetation browning, and white color suggests 
no detectable change, as chosen in the palette. The vegetation in large areas in the 
surroundings of Nauradehi Wildlife Sanctuary, as highlighted by Fig. 55.1, appears 
to have experienced greening or no detectable change. PA buffer-wise summaries 
showing moderate to high positive values indicate that, across the buffers of the 
PAs, there appears to have been a greater extent of greening, rather than browning, 
of vegetation cover.

The degree of vegetation change is also arranged by amount of rainfall in a 
chart, to visualize how buffer regions of PAs in moist regions fare relative to those 
in arid regions.
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Fig. 55.1 Map of percent vegetation greenness change for 2000–2021 in a 5 km buffer area 
around Nauradehi Wildlife Sanctuary (polygon in black shade), India. Note the relative absence 
of vegetation browning

var medianChangeChart = ui.Chart.feature.byFeature({ 
features: paBufferwiseMedianChange, 
xProperty: 'rainfall', 
yProperties: ['vegchange'] 

}).setOptions(regressionSummaryChartingOptions).setChartTyp 
e( 

'ScatterChart'); 
print(medianChangeChart); 

Map.centerObject(western_pas, 9); 
Map.setCenter(79.2205, 23.3991, 9); 
Map.setOptions('SATELLITE'); 
Map.addLayer(stats.select('vegchange').clipToCollection(pa_ 
buff), 

regressionResultVisParams, 'yearly % change'); 
Map.addLayer(western_pas, {}, 'Western PAs');
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Fig. 55.2 Median yearly percent change in vegetation greenness observed in 5 km exterior buffers 
of PAs in India (N = 186), arranged along a precipitation gradient. Greening is denoted by a 
positive percent change in Sen’s slope of dry-season maximum NDVI between 2000 and 2021. 
The greatest greening extent (> 2%) is observed in PAs that fall in the semi-arid zone (annual 
precipitation≤1000 mm)

Code Checkpoint A310c. The book’s repository contains a script that shows what 
your code should look like at this point. 

Question 1. Create a map of percent vegetation greenness change for a different 
PA than the one shown in Fig. 55.1. How does it compare with the map made for 
Nauradehi Wildlife Sanctuary? 

Question 2. We used MODIS Terra vegetation indices for our greening trend anal-
ysis in the previous example. Can you alter the analysis to calculate an NDVI time 
series from Landsat imagery for one PA? How do you think the results would 
change with Landsat’s 30 m spatial resolution instead of 250 m from MODIS? 

Question 3. Can you repeat this analysis, dividing the time period of 21 years 
into two approximate halves, and try to determine whether the slope of vegetation 
greening observed has been similar across the two periods, or whether greening 
has accelerated or decelerated between the two time periods?
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55.3 Synthesis 

Assignment 1. In this chapter, you learned how to estimate greening trends sur-
rounding PAs in Western India, a densely populated tropical region. In your 
opinion, how generalizable are these observed patterns across space and time? 

Assignment 2. Perform this same PA analysis in another region in India. Then, 
perform the same analysis in a tropical region in another part of the world. How 
do the results compare with ours from Western India? 

55.4 Conclusion 

In this chapter, we estimated greening trends in Western India PAs using MODIS 
Terra vegetation indices, Sen’s slope, and reducer functions. We demonstrated that 
the immediate exterior buffers of most PAs (184 out of 186) show a positive— 
i.e., greening—trend in their vegetation cover over the two-decade time frame 
between 2000 and 2021. Note, however, that in this example, we do not estimate 
the significance level of the greening trend values modeled in our analyses. While 
there is considerable variation in the greening extent seen across these PA buffers, 
we do see clearly that PAs that fall within the semi-arid zone (annual precipita-
tion≤ 1000 mm) seem to show the greatest extent of greening (Fig. 55.2). Such a 
change in the land cover characteristics of the matrix surrounding PAs in the semi-
arid zone suggests that they are more likely to be sites where the distribution of 
wildlife, especially of more adaptable species, could show expansion into the agri-
cultural landscape beyond PA boundaries, as well as greater rates of conflict with 
humans over crops and livestock. Corroborating this, of course, requires ground 
survey data on wildlife, which were unavailable in this example. 
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