
Jeffrey A. Cardille
Morgan A. Crowley
David Saah
Nicholas E. Clinton Editors

Cloud-Based Remote
Sensing with Google
Earth Engine
Fundamentals and Applications

Cloud-Based Remote Sensing with Google
Earth Engine

Jeffrey A. Cardille · Morgan A. Crowley ·
David Saah · Nicholas E. Clinton
Editors

Cloud-Based Remote
Sensing with Google
Earth Engine
Fundamentals and Applications

Editors
Jeffrey A. Cardille
Department of Natural Resource Sciences
McGill University
Sainte-Anne-De-Bellevue, QC, Canada

David Saah
University of San Francisco
San Francisco, CA, USA

Morgan A. Crowley
Department of Natural Resource Sciences
McGill University
Sainte-Anne-De-Bellevue, QC, Canada

Nicholas E. Clinton
Google LLC
Mountain View, CA, USA

ISBN 978-3-031-26587-7 ISBN 978-3-031-26588-4 (eBook)
https://doi.org/10.1007/978-3-031-26588-4

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4667-9085
https://orcid.org/0000-0001-9999-1219
https://orcid.org/0000-0001-5946-529X
https://orcid.org/0000-0002-1112-1006
https://doi.org/10.1007/978-3-031-26588-4
http://creativecommons.org/licenses/by/4.0/

Foreword

In 2010, we introduced Google Earth Engine at the COP16 International Climate
Conference. It was the world’s first cloud-native, planetary-scale geospatial data
analytics platform, designed from the ground-up to democratize access to earth
observation data and help accelerate the transformation of “pixels to knowledge”
for societal benefit. Looking back, while nothing like it had existed before (e.g.,
analysis-ready EO data, petapixel-scale processing, easily-accessible from any web
browser), it seems almost inevitable that such a platform would be invented. A
set of factors had converged in that moment to shift the dominant paradigm of
remote sensing from the desktop to the cloud—the release by USGS/NASA of
Landsat data for free (millions of scenes and petabytes of data, sitting on tapes
going back to 1972), the advent of large-scale publicly available cloud computing
such as the Google cloud, and the urgent need for accessible, timely, accurate
information about the state of the planet and how it was changing, to support better
decision-making and action on critical environmental and humanitarian issues.

In particular, the initial impetus for the Google Earth Engine project came from
Brazilian geoscientists in 2008/9, who asked us if Google could help them stop
the loss of more than a million acres of Amazon rainforest annually. They had
already developed the remote sensing techniques to derive valuable information
from daily updating satellite data, but were struggling to manage and process the
“brutal” amount of EO data in a timely manner on their desktop computers. Further
consultation with leading remote sensing scientists convinced us that this was a
ubiquitous challenge as well as a “Google-scale” one, and so we set off to build
Earth Engine in close collaboration with the remote sensing community.

Our first step was to partner with the USGS EROS Data Center team in bringing
the entire multi-petabyte, multi-decadal Landsat data archive off tapes, and online,
for the first time. It took three years to create this online “mirror” for Landsat, but
it was worth it. This novel co-location of big Earth observation data in analysis-
ready form with hundreds of thousands of CPUs for processing created new
possibilities for characterizing our changing planet. Scientists began developing
Earth Engine-powered methodologies which mapped, measured, and monitored
global landscape change and environmental phenomena at unprecedented resolu-
tion, speed, and scale. Early applications included tracking and reducing global
deforestation, mapping global surface water resources over time, estimating global

v

vi Foreword

crop yields to enhance food security, mapping and mitigating the risks of extreme
weather events such as floods and drought, forecasting future risks of vector-borne
diseases such as malaria, and even predicting where chimpanzees were likely to
build their nests.

Since those early days, it has been exciting to witness and support the Earth
Engine user community as it has grown and thrived, now including more than
half a million individuals and organizations worldwide. This diverse commu-
nity of scientists, academics, non-profits, governments, and industries has become
increasingly impactful across a range of disciplines, advancing both the “state
of the science” as well as the practical, real-world application of global envi-
ronmental remote sensing. To date, the GEE community has collectively (and
creatively) applied Earth Engine to author more than 20,000 scientific publica-
tions in journals such as Nature, Science and Remote Sensing of Environment.
They have also developed numerous high-impact environmental monitoring appli-
cations, including Global Forest Watch, Global Fishing Watch, OpenET, Climate
Engine, MapBiomas, SDG661.app, Restor.eco, Earth Map, Tracemark, and more.
Every year, we have grown the scale of cloud computation that we serve to support
the amazing work of this community, and today Earth Engine provides more than
500 M CPU hours per year (i.e., more than half a billion CPU hours!).

With our announcement last year that Earth Engine is available through Google
Cloud Platform as an enterprise-grade service, governments and businesses are
now relying upon GEE for mission-critical purposes, such as sustainable natural
resource management, climate and disaster risk resilience, and sustainable sourcing
of commodities to meet zero-deforestation commitments. In addition, new star-
tups are now applying GEE technology to transform science and EO data into
innovative sustainability-focused ideas and enterprises.

So, I am tremendously excited about this book, which has come at the perfect
time. With Earth Engine’s maturation into such a powerful and flexible environ-
mental monitoring platform, the demand for geospatial data scientists with fluency
and expertise in Earth Engine is skyrocketing. We are seeing universities all over
the world creating curricula and teaching courses based on Earth Engine. While
prior texts for teaching remote sensing reflect the old (desktop) paradigm, modern
teachers, learners, and practitioners need a new textbook that is written in the lan-
guage of cloud computing. A textbook that embeds familiar technical concepts of
data structures, image processing and remote sensing in the context and machin-
ery of cloud infrastructure, with its unique ability to process massive, multi-sensor,
near real-time datasets at unprecedented speed and scale.

Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and
Applications is exactly the textbook that we need: comprehensive, authoritative
and also enjoyable! It deftly and thoroughly covers the fundamental content and
material required to go from zero to sixty on Earth Engine. The variety of applica-
tions represented can help jump-start and inspire the reader in so many wonderful

Foreword vii

directions. The associated code samples ensure that you can get hands-on and
productive, immediately and throughout.

I am especially delighted that this book was authored by such a diverse,
accomplished group of Earth Engine experts, spanning backgrounds, disciplines,
geographies, and career-stage (including undergrads to full professors), who vol-
untarily joined together in a common mission to create this much-needed Earth
Engine reference text. They have made a tremendous contribution to our entire
global community, aligned with our founding Earth Engine mission to support the
greater good, and I am forever grateful.

Looking ahead, this is a time of innovation and evolution in the field of cloud-
powered environmental remote sensing, with new satellites and sensors continually
launching, producing new types of data (e.g., global atmospheric methane concen-
trations), while also improving spatial, spectral, and temporal resolution of existing
data sources. Meanwhile, the classical remote sensing machine learning toolkit is
now expanding to include modern deep learning/AI-based techniques. At Google,
and together with the GEE community, we are continuing to push this envelope
by advancing Earth Engine’s fundamental capabilities and applications. For exam-
ple, the recent launch of Dynamic World together with WRI introduced the first
near real-time, probabilistic, 10 m global landcover mapping dataset based on deep
learning/AI techniques, with which the GEE community is already driving further
downstream innovations.

It has never been a more exciting, important, and relevant time to join this
field and contribute to generating new knowledge about our changing planet.
Policymakers and project implementers worldwide are seeking timely, accurate,
science-based, and data-driven information to guide wiser decision-making and
action on critical environmental and humanitarian issues. I hope that this book
will turbo-charge your interest and ability to become proficient in Earth Engine and
that you will join our growing community of people around the world dedicated
to making it a better place, now and for generations to come. Enjoy!

Rebecca Moore
Director

Google Earth and Earth Engine
Google

Mountain View, USA

Introduction

Welcome to Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals
and Applications! This book is the product of more than a year of effort from
more than a hundred individuals, working in concert to provide this free resource
for learning how to use this exciting technology for the public good. The book
includes work from professors, undergraduates, master’s students, PhD students,
postdocs, and independent consultants.

The book is broadly organized into two halves. The first half, Fundamentals,
is a set of 31 labs designed to take you from being a complete Earth Engine novice
to being a quite advanced user. The second half, Applications, presents you with
a tour of the world of Earth Engine across 24 chapters, showing how it is used in
a very wide variety of settings that rely on remote sensing data.

Using several strategies, we have worked hard to ensure a high-quality body of
work across 55 chapters, more than 10,000 lines of code, and 250,000 words:

• The text of each chapter has been reviewed for the clarity of the scientific
content and instructions, on a minimum of three occasions by people working
independently of each other, for more than 350 detailed chapter reviews.

• The code in each chapter has been reviewed at Google for adherence to best
practices and subsequently reviewed for consistency with the instructions in the
book’s text by two Earth Engine experts.

• A professional copy-editing team has worked through the entire book text,
ensuring that all chapters have a consistent sound and approach, while pre-
serving the voice of the authors.

Fundamentals

The goal of the Fundamentals half of the book is to introduce users to Earth Engine
with a set of sequenced labs that are intended to be done in order. We first illustrate
the operation of Earth Engine on individual multi-band images, with techniques
that form the core vocabulary for Earth Engine image processing. We then intro-
duce more complex options for data representation, data enhancements, and data
interpretation. The tools introduced in those sections build on the core analysis

ix

x Introduction

strategies, with important techniques that can be highly valuable for addressing
specialized analysis problems.

The Fundamentals half of the book is intended to have two main entry points:
at Chaps. 1 and 12. It is comprised of six thematic parts, described below:

Part I: Programming and Remote Sensing Basics

Those who are almost entirely unfamiliar with remote sensing data, or are almost
entirely unfamiliar with programming, or both, are encouraged to start at the begin-
ning: Part I, Chap. 1 That chapter assumes that the reader has no programming
experience, and begins with the most fundamental first steps: defining variables,
printing values, etc.

The rest of Part I teaches the basics of displaying remote sensing data (Chap. 2),
gives a brief survey of Earth Engine’s very large data catalog (Chap. 3), and
presents the vocabulary of remote sensing (Chap. 4), intended for both novices
and those familiar with remote sensing but just starting with Earth Engine.

Part II: Interpreting Images

Part II assumes that you are aware of the topics, terms, and methods encountered
in Part I. This part illustrates the basic operations that can be done on individ-
ual satellite images. Like in Part I, the chapters are arranged in sequence, here
with a goal of leading you through how bands of remote sensing images can be
manipulated to form indices (Chap. 5), which can be classified using a variety
of supervised and unsupervised techniques (Chap. 6), giving results that can be
assessed and further adjusted (Chap. 7).

Part III: Advanced Image Processing

Part III presents more advanced image processing techniques that can be accessed
in Earth Engine using operations on a single image. These include finding
a relationship between two or more bands using regression (Chap. 8), linear
combinations of bands to produce the tasseled cap and principal components trans-
formations (Chap. 9), morphological operations on classified images to highlight
or de-emphasize spatial characteristics (Chap. 10), and object-based image analysis
that groups pixels into spectrally similar spatially contiguous clusters (Chap. 11).

Introduction xi

Part IV: Interpreting Image Series

Part IV introduces the analysis of time series in Earth Engine. Using long-term
series of imagery can inform change and stability in land-use and land-cover pat-
terns around the world. This series of chapters begins by presenting the filter, map,
reduce paradigm (Chap. 12), which is used throughout Earth Engine for manipulat-
ing collections of both vector and raster data. The next chapter shows strategies for
learning about and visualizing image collections (Chap. 13). Subsequent chapters
show pixel-by-pixel calculations, including the aggregation of image character-
istics in time (Chap. 14); detection and removal of cloud artifacts (Chap. 15),
and the detection of change by comparing images at two dates (Chap. 16). Later
chapters involve assessments that summarize a pixel’s history, at annual scales
(Chap. 17), in harmonically repeating patterns (Chap. 18), and at sub-annual scales
(Chap. 19). Long-time series of image classifications can be interpreted for stabil-
ity and change via Bayesian methods (Chap. 20), and lag effects in time series can
be detected (Chap. 21).

Part V: Vectors and Tables

Part V shows how vector data can be used in Earth Engine. This includes upload-
ing vector data and summarizing images within irregular polygons (Chap. 22),
converting between raster and vector formats (Chap. 23), and computing zonal
statistics efficiently with sophisticated functions (Chap. 24). The chapters con-
clude with a useful set of advanced vector operations (Chap. 25) and a digitizing
tool for drawing features that change across the time span of an image collection
(Chap. 26).

Part VI: Advanced Topics

With the foundation provided by the first five parts of the Fundamentals, you will
be ready to do more complex work with Earth Engine. Part VI reveals some of
these advanced topics, including advanced techniques for better raster visualization
(Chap. 27), collaborating with others by sharing scripts and assets (Chap. 28),
scaling up in time and space in efficient and effective ways (Chap. 29), creating
apps to share to the wider public (Chap. 30), and linking to outside packages
(Chap. 31).

Applications

Part of the appeal of such an extensive platform in widespread adoption, and one
of the most satisfying aspects of editing this book project, has been exposure to the
wide range of applications built on this platform. With thousands of papers now

xii Introduction

published using Earth Engine, the 24 chapters presented here are not intended to
be a complete survey of who uses Earth Engine nor how it is best used. We have
worked to find applications and authors who fit the following characteristics: (1)
they created vibrant work that can be appreciated by both novices and experts; (2)
the work has one or more unique characteristics that can have appeal beyond the
scope of the book chapter’s application; and (3) the presentation does not seek to
be the final word on a subject, but rather as an opening of the subject to others.

Part VII: Human Applications

Earth Engine is used for both large-scale and relatively small-scale interpretations
of images and time series of human activity and influence. These include agricul-
tural environments (Chap. 32), the urban built environment (Chaps. 33 and 34),
effects on air quality and surface temperature in cities (Chaps. 35 and 36), health
and humanitarian activities (Chaps. 37 and 38), and the detection of illegal human
activity under cloud cover (Chap. 39).

Part VIII: Aquatic and Hydrological Applications

Earth Engine is also used in the aquatic realm to understand hydrologic patterns
across large areas. These include detection of subsurface features like ground-
water (Chap. 40) and cover of the sea floor (Chap. 41). Surface water can be
detected in satellite series, opening the opportunity to detect rapid changes like
floods (Chap. 42) and to map rivers across the globe (Chap. 43). Human influence
on hydrological systems can be detected and quantified in patterns of water balance
and drought (Chap. 44) and changing patterns of the timing of snow (Chap. 45).

Part IX: Terrestrial Applications

Some of the many terrestrial applications of Earth Engine close out the book.
These include the monitoring of active fires using multiple sensors and pre-
sented with user-interface apps (Chap. 46). Mangroves are complex systems that
have elements of both the terrestrial and aquatic realms; they need to be both
mapped (Chap. 47) and monitored for change (Chap. 48). Changes in forests can
include both human degradation and deforestation (Chap. 49); the detection of
these changes can be aided with the help of multiple sensors (Chap. 50). Analysts
often need to use location-specific weather data (Chap. 51) and to create randomly
located points for proper statistical analyses (Chap. 52). Rangelands, a major land
use worldwide, present subtle changes over long-time periods that require dis-
tinctive techniques (Chap. 53). Finally, conservation of natural resources requires

Introduction xiii

understanding both the effect of precipitation changes on area affected by distur-
bance (Chap. 54) and the effectiveness of protected areas in conserving places as
intended (Chap. 55).

Uses of This Book

We have strived to produce a book that can be used by people working in a very
wide range of settings: from pre-college students in a classroom, to university
courses, to professional development workshops, to individuals working alone. The
first seven Fundamentals chapters are tightly sequenced and assume no program-
ming or remote sensing experience; their intention is to build a base of knowledge
for novices to succeed. The remaining Fundamentals chapters are sequenced within
their larger sections. In their introductions, each Fundamentals chapter lists ear-
lier topics and chapter numbers that form the foundation for understanding that
chapter’s concepts, under the heading “Assumes you know how to…” However,
although the concepts in the chapters do build on each other, each chapter’s steps
and data stand alone and do not require that you follow every preceding chapter
in order to succeed. This should permit you to use individual sections of the book
to solve specific problems you encounter. The Learning Outcomes index contains
listings such as “Attaching user-defined metadata to an image when exporting,”
“Computing zonal summaries of calculated variables for elements in a Feature
Collection,” and “Using reducers to implement regression between image bands,”
among more than 150 other examples. The Applications chapters each stand alone
and provide a guide both to the use of Earth Engine for that issue and to the
technological details of how that application has been addressed by those authors.

We Want Your Feedback

We would like to get your feedback on chapters of the book. This feedback is
useful in two ways: to make your experience better and to help others who will
come after.

(1) Helping others: How hard is a chapter? How long did it take? Would you rec-
ommend it to someone else? What did you learn? Is something confusing?
Has code stopped working? To review a lab, visit https://bit.ly/EEFA-review
when you’ve finished. By doing this, you will keep the book current and pro-
vide future book users with your assessment of the strengths and weaknesses
of each chapter. Please give feedback!

(2) Helping yourself: What have others already said about a chapter you are plan-
ning to do? How long will it take? How interesting is it? You can see what
others have said at https://bit.ly/EEFA-reviews-stats.

https://bit.ly/EEFA-review
https://bit.ly/EEFA-reviews-stats

xiv Introduction

Acknowledgements

Over 100 chapter authors volunteered their time to make this book a reality.
Without compensation, they shared their knowledge, endured rounds of editorial
suggestions, and processed multiple chapter reviews by individuals across a range
of experience levels. The careful review of chapters was an enormous task under-
taken by many people over countless hours: These included Ellen Brock, Florina
Richard, Khashayar Azad, Phillip Pichette, Philippe Lizotte, Jake Hart, Natalie
Sprenger, Jonah Zoldan, Sheryl Rose Reyes, and anonymous students at McGill
University and the University of Toronto.

Copy-editing was provided by the team of Christine Kent and Jose Isaza. Early
views of the chapters were edited and prepared with the help of Mark Essig.

This book was made possible in part by funding from SERVIR, a joint ini-
tiative of NASA, USAID, and leading geospatial organizations in Asia, Africa,
and Latin America. We are grateful for their support and continued dedication to
capacity building in the use of Earth observation information, Earth science, and
technology.

The book was also made possible through funding from SilvaCarbon, an inter-
agency effort of the US government to build capacity for the measurement,
monitoring, and reporting of carbon in forests and other lands. With that sup-
port, each chapter’s code was standardized and checked for bugs and inefficiencies
repeatedly over several months.

The book was also made possible through the funding of a Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada. This
grant from the people of Canada permitted us to dedicate substantial time to
editorial work and overall quality control.

The contents are the responsibility of the authors and editors and do not nec-
essarily reflect the views of Google, NSERC, SERVIR, SilvaCarbon, NASA,
USAID, the Government of the United States, or the Government of Canada.

Other Sources

After you finish the tutorials of this book, you might consider some additional
resources that could be of interest.

• Ujaval Gandhi’s “End to End Earth Engine” materials introduce users to some
of the fundamentals discussed here, while going deeper on several topics.

• Samapriya Roy’s assembled “Awesome Earth Engine Datasets” addresses the
need to curate the many exciting and useful resources that have been made
with or for Earth Engine.

• Organizations such as SERVIR, SilvaCarbon, and the World Bank have created
online tutorials covering some key Earth Engine topics.

Introduction xv

• Earth Engine’s impressive documentation includes a suite of tutorials, written
by both Googlers and members of the Earth Engine user community, that can
explain some key concepts.

Jeffrey A. Cardille
Nicholas E. Clinton
Morgan A. Crowley

David Saah

Contents

Part I Programming and Remote Sensing Basics

1 JavaScript and the Earth Engine API . 3
Ujaval Gandhi

2 Exploring Images . 19
Jeff Howarth

3 Survey of Raster Datasets . 41
Andréa Puzzi Nicolau, Karen Dyson, David Saah,
and Nicholas Clinton

4 The Remote Sensing Vocabulary . 67
Karen Dyson, Andréa Puzzi Nicolau, David Saah,
and Nicholas Clinton

Part II Interpreting Images

5 Image Manipulation: Bands, Arithmetic, Thresholds,
and Masks . 97
Karen Dyson, Andréa Puzzi Nicolau, David Saah,
and Nicholas Clinton

6 Interpreting an Image: Classification . 115
Andréa Puzzi Nicolau, Karen Dyson, David Saah,
and Nicholas Clinton

7 Accuracy Assessment: Quantifying Classification Quality 135
Andréa Puzzi Nicolau, Karen Dyson, David Saah,
and Nicholas Clinton

Part III Advanced Image Processing

8 Interpreting an Image: Regression . 149
Karen Dyson, Andréa Puzzi Nicolau, David Saah,
and Nicholas Clinton

xvii

xviii Contents

9 Advanced Pixel-Based Image Transformations . 169
Karen Dyson, Andréa Puzzi Nicolau, Nicholas Clinton,
and David Saah

10 Neighborhood-Based Image Transformation . 195
Karen Dyson, Andréa Puzzi Nicolau, David Saah,
and Nicholas Clinton

11 Object-Based Image Analysis . 219
Morgan A. Crowley, Jeffrey A. Cardille, and Noel Gorelick

Part IV Interpreting Image Series

12 Filter, Map, Reduce . 241
Jeffrey A. Cardille

13 Exploring Image Collections . 255
Gennadii Donchyts

14 Aggregating Images for Time Series . 267
Ujaval Gandhi

15 Clouds and Image Compositing . 279
Txomin Hermosilla, Saverio Francini, Andréa P. Nicolau,
Michael A. Wulder, Joanne C. White, Nicholas C. Coops,
and Gherardo Chirici

16 Change Detection . 303
Karis Tenneson, John Dilger, Crystal Wespestad, Brian Zutta,
Andréa Puzzi Nicolau, Karen Dyson, and Paula Paz

17 Interpreting Annual Time Series with LandTrendr 317
Robert Kennedy, Justin Braaten, and Peter Clary

18 Fitting Functions to Time Series . 331
Andréa Puzzi Nicolau, Karen Dyson, Biplov Bhandari,
David Saah, and Nicholas Clinton

19 Interpreting Time Series with CCDC . 353
Paulo Arévalo and Pontus Olofsson

20 Data Fusion: Merging Classification Streams . 377
Jeffrey A. Cardille, Rylan Boothman, Mary Villamor,
Elijah Perez, Eidan Willis, and Flavie Pelletier

21 Exploring Lagged Effects in Time Series . 403
Andréa Puzzi Nicolau, Karen Dyson, David Saah,
and Nicholas Clinton

Contents xix

Part V Vectors and Tables

22 Exploring Vectors . 423
A. J. Purdy, Ellen Brock, and David Saah

23 Raster/Vector Conversions . 437
Keiko Nomura and Samuel Bowers

24 Zonal Statistics . 463
Sara Winsemius and Justin Braaten

25 Advanced Vector Operations . 487
Ujaval Gandhi

26 GEEDiT—Digitizing from Satellite Imagery . 507
James Lea

Part VI Advanced Topics

27 Advanced Raster Visualization . 527
Gennadii Donchyts and Fedor Baart

28 Collaborating in Earth Engine with Scripts and Assets 557
Sabrina H. Szeto

29 Scaling up in Earth Engine . 575
Jillian M. Deines, Stefania Di Tommaso, Nicholas Clinton,
and Noel Gorelick

30 Sharing Work in Earth Engine: Basic UI and Apps 603
Qiusheng Wu

31 Combining R and Earth Engine . 629
Cesar Aybar, David Montero, Antony Barja, Fernando Herrera,
Andrea Gonzales, and Wendy Espinoza

Part VII Human Applications

32 Agricultural Environments . 655
Sherrie Wang and George Azzari

33 Urban Environments . 679
Michelle Stuhlmacher and Ran Goldblatt

34 Built Environments . 703
Erin Trochim

35 Air Pollution and Population Exposure . 725
Zander S Venter and Sourangsu Chowdhury

36 Heat Islands . 745
TC Chakraborty

xx Contents

37 Health Applications . 773
Dawn Nekorchuk

38 Humanitarian Applications . 805
Jamon Van Den Hoek and Hannah K. Friedrich

39 Monitoring Gold Mining Activity Using SAR . 833
Lucio Villa, Sidney Novoa, Milagros Becerra,
Andréa Puzzi Nicolau, Karen Dyson, Karis Tenneson,
and John Dilger

Part VIII Aquatic and Hydrological Applications

40 Groundwater Monitoring with GRACE . 859
A. J. Purdy and J. S. Famiglietti

41 Benthic Habitats . 879
Dimitris Poursanidis, Aurélie C. Shapiro,
and Spyridon Christofilakos

42 Surface Water Mapping . 899
K. Markert, G. Donchyts, and A. Haag

43 River Morphology . 925
Xiao Yang, Theodore Langhorst, and Tamlin M. Pavelsky

44 Water Balance and Drought . 953
Ate Poortinga, Quyen Nguyen, Nyein Soe Thwal,
and Andréa Puzzi Nicolau

45 Defining Seasonality: First Date of No Snow . 985
Amanda Armstrong, Morgan Tassone, and Justin Braaten

Part IX Terrestrial Applications

46 Active Fire Monitoring . 1005
Morgan A. Crowley and Tianjia Liu

47 Mangroves . 1023
Aurélie Shapiro

48 Mangroves II—Change Mapping . 1045
Celio de Sousa, David Lagomasino, and Lola Fatoyinbo

49 Forest Degradation and Deforestation . 1061
Carlos Souza Jr., Karis Tenneson, John Dilger,
Crystal Wespestad, and Eric Bullock

50 Deforestation Viewed from Multiple Sensors . 1093
Xiaojing Tang

Contents xxi

51 Working with GPS and Weather Data . 1121
Peder Engelstad, Daniel Carver, and Nicholas E. Young

52 Creating Presence and Absence Points . 1133
Peder Engelstad, Daniel Carver, and Nicholas E. Young

53 Detecting Land Cover Change in Rangelands . 1157
Ginger Allington and Natalie Kreitzer

54 Conservation I—Assessing the Spatial Relationship Between
Burned Area and Precipitation . 1193
Harriet Branson and Chelsea Smith

55 Conservation II—Assessing Agricultural Intensification
Near Protected Areas . 1213
Pradeep Koulgi and M. D. Madhusudan

Part I

Programming and Remote Sensing Basics

In order to use Earth Engine well, you will need to develop basic skills in remote
sensing and programming. The language of this book is JavaScript, and you will
begin by learning how to manipulate variables using it. With that base, you will
learn about viewing individual satellite images, viewing collections of images in
Earth Engine, and how common remote sensing terms are referenced and used in
Earth Engine.

1JavaScript and the Earth Engine API

Ujaval Gandhi

Overview
This chapter introduces the Google Earth Engine application programming interface
(API) and the JavaScript syntax needed to use it. You will learn about the Code
Editor environment and get comfortable typing, running, and saving scripts. You
will also learn the basics of JavaScript language, such as variables, data structures,
and functions.

Learning Outcomes

• Familiarity with the Earth Engine Code Editor.
• Familiarity with the JavaScript syntax.
• Ability to use the Earth Engine API functions from the Code Editor.

Assumes you know how to

• Sign up for an Earth Engine account (See the Google documentation for
details).

• Access the Earth Engine Code Editor (See the Google documentation for
details).

U. Gandhi (B)
Spatial Thoughts LLP, FF105 Aaradhya, Gala Gymkhana Road, Bopal, Ahmedabad 380058, India
e-mail: ujaval@spatialthoughts.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_1&domain=pdf
http://orcid.org/0000-0003-3255-1934
mailto:ujaval@spatialthoughts.com
https://doi.org/10.1007/978-3-031-26588-4_1

4 U. Gandhi

1.1 Introduction to Theory

The Earth Engine API
Google Earth Engine is a cloud-based platform for scientific data analysis. It pro-
vides ready-to-use, cloud-hosted datasets and a large pool of servers. One feature
that makes Earth Engine particularly attractive is the ability to run large compu-
tations very fast by distributing them across a large pool of servers. The ability
to efficiently use cloud-hosted datasets and computation is enabled by the Earth
Engine API.

An API is a way to communicate with Earth Engine servers. It allows you to
specify what computation you would like to do and then to receive the results. The
API is designed so that users do not need to worry about how the computation is
distributed across a cluster of machines, and the results are assembled. Users of
the API simply specify what needs to be done. This greatly simplifies the code by
hiding the implementation detail from the users. It also makes Earth Engine very
approachable for users who are not familiar with writing code.

Earth Engine API is designed to be language agnostic. Google provides official
client libraries to use the API from both JavaScript and Python. The API remains
largely the same regardless of the programming language you use. The main dif-
ference is the syntax used to call the API functions. Once you learn the syntax for
programming languages, your code can be adapted easily because they all use the
same API functions.

Why JavaScript?
JavaScript may not be the first choice of programming language for many
researchers and data scientists, and some may be wondering why this book is
based on the JavaScript API instead of Python or R.

The Earth Engine JavaScript API is the most mature and easiest to use when
getting started. The Earth Engine platform comes with a web-based Code Editor
that allows you to start using the Earth Engine JavaScript API without any instal-
lation. It also provides additional functionality to display your results on a map,
save your scripts, access documentation, manage tasks, and more. It has a one-click
mechanism to share your code with other users—allowing for easy reproducibil-
ity and collaboration. In addition, the JavaScript API comes with a user interface
library, which allows you to create charts and web-based applications with little
effort.

In practice, you do not need to become a JavaScript expert to use Earth Engine.
The basic syntax described here should be sufficient. A good tip is that if you find
yourself doing something complicated in JavaScript, it might be done much better
in Earth Engine. All the important computations in Earth Engine need to use the
API functions, and even a basic operation—such as adding two numbers in Earth
Engine—should be done using the Earth Engine API.

1 JavaScript and the Earth Engine API 5

1.2 Practicum

1.2.1 Section 1: Getting Started in the Code Editor

The Code Editor is an integrated development environment for the Earth Engine
JavaScript API. It offers an easy way to type, debug, run, and manage code. Once
you have followed Google’s documentation on registering for an Earth Engine
account, you should follow the documentation to open the Code Editor. When you
first visit the Code Editor, you will see a screen such as the one shown in Fig. 1.1.

The Code Editor (Fig. 1.1) allows you to type JavaScript code and execute it.
When you are first learning a new language and getting used to a new program-
ming environment, it is customary to make a program to display the words “Hello
World.” This is a fun way to start coding that shows you how to give input to
the program and how to execute it. It also shows where the program displays the
output. Doing this in JavaScript is quite simple. Copy the following code into the
center panel.

print('Hello World');

The line of code above uses the JavaScript print function to print the text
“Hello World” to the screen. Once you enter the code, click the Run button. The

Fig. 1.1 Earth Engine code editor

6 U. Gandhi

Fig. 1.2 Typing and running code

output will be displayed on the upper right-hand panel under the Console tab
(Fig. 1.2.).

You now know where to type your code, how to run it, and where to look for
the output. You just wrote your first Earth Engine script and may want to save it.
Click the Save button (Fig. 1.3).

If this is your first time using the Code Editor, you will be prompted to create
a home folder. This is a folder in the cloud where all your code will be saved. You
can pick a name of your choice, but remember that it cannot be changed and will
forever be associated with your account. A good choice for the name would be
your Google Account username (Fig. 1.4).

Once your home folder is created, you will be prompted to enter a new repos-
itory. A repository can help you organize and share code. Your account can have
multiple repositories, and each repository can have multiple scripts inside it. To
get started, you can create a repository named “default” (Fig. 1.5).

Finally, you will be able to save your script inside the newly created repository.
Enter the name “hello_world” and click OK (Fig. 1.6).

Once the script is saved, it will appear in the script manager panel (Fig. 1.7).
The scripts are saved in the cloud and will always be available to you when you
open the Code Editor.

Now you should be familiar with how to create, run, and save your scripts in
the Code Editor. You are ready to start learning the basics of JavaScript.

1 JavaScript and the Earth Engine API 7

Fig. 1.3 Saving a script

Fig. 1.4 Creating a home folder

8 U. Gandhi

Fig. 1.5 Creating a new repository

Fig. 1.6 Saving a file

Fig. 1.7 Script manager

1 JavaScript and the Earth Engine API 9

1.2.2 Section 2: JavaScript Basics

To be able to construct a script for your analysis, you will need to use JavaScript.
This section covers the JavaScript syntax and basic data structures. In the sections
that follow, you will see more JavaScript code, noted in a distinct font and with
shaded background. As you encounter code, paste it into the Code Editor and run
the script.

Variables
In a programming language, variables are used to store data values. In JavaScript,
a variable is defined using the var keyword followed by the name of the variable.
The code below assigns the text “San Francisco” to the variable named city.
Note that the text string in the code should be surrounded by quotes. You are
free to use either ‘ (single quotes) or “ (double quotes), and they must match
at the beginning and end of each string. In your programs, it is advisable to be
consistent—use either single quotes or double quotes throughout a given script
(the code in this book generally uses single quotes for code). Each statement of
your script should typically end with a semicolon, although Earth Engine’s code
editor does not require it.

var city = 'San Francisco';

If you print the variable city, you will get the value stored in the variable
(San Francisco) printed in the Console.

print(city);

When you assign a text value, the variable is automatically assigned the type
string. You can also assign numbers to variables and create variables of type num-
ber. The following code creates a new variable called population and assigns a
number as its value.

var population = 873965;
print(population);

10 U. Gandhi

Fig. 1.8 JavaScript list

Lists
It is helpful to be able to store multiple values in a single variable. JavaScript
provides a data structure called a list that can hold multiple values. We can create
a new list using the square brackets [] and adding multiple values separated by a
comma.

var cities = ['San Francisco', 'Los Angeles', 'New York',
'Atlanta'];
print(cities);

If you look at the output in the Console, you will see “List” with an expander
arrow (▷) next to it. Clicking on the arrow will expand the list and show you its
content. You will notice that along with the four items in the list, there is a number
next to each value. This is the index of each item. It allows you to refer to each
item in the list using a numeric value that indicates its position in the list (Fig. 1.8).

Objects
Lists allow you to store multiple values in a single container variable. While useful,
it is not appropriate to store structured data. It is helpful to be able to refer to each
item with its name rather than its position. Objects in JavaScript allow you to store
key-value pairs, where each value can be referred to by its key. You can create a
dictionary using the curly braces {}. The code below creates an object called
cityData with some information about San Francisco.

Note a few important things about the JavaScript syntax here. First, we can use
multiple lines to define the object. Only when we put in the semicolon (;) is the
command considered complete. This helps format the code to make it more read-
able. Also note the choice of the variable name cityData. The variable contains
two words. The first word is in lowercase, and the first letter of the second word
is capitalized. This type of naming scheme of joining multiple words into a sin-
gle variable name is called “camel case.” While it is not mandatory to name your
variables using this scheme, it is considered a good practice to follow. Functions
and parameters in the Earth Engine API follow this convention, so your code will
be much more readable if you follow it too.

1 JavaScript and the Earth Engine API 11

Fig. 1.9 JavaScript object

var cityData = {
'city': 'San Francisco',
'coordinates': [-122.4194, 37.7749],
'population': 873965

};
print(cityData);

The object will be printed in the Console. You can see that instead of a numeric
index, each item has a label. This is known as the key and can be used to retrieve
the value of an item (Fig. 1.9).

Functions
While using Earth Engine, you will need to define your own functions. Functions
take user inputs, use them to carry out some computation, and send an output back.
Functions allow you to group a set of operations together and repeat the same
operations with different parameters without having to rewrite them every time.
Functions are defined using the function keyword. The code below defines a
function called greet that takes an input called name and returns a greeting with
Hello prefixed to it. Note that we can call the function with different input, and it
generates different outputs with the same code (Fig. 1.10).

var greet = function(name) {
 return 'Hello ' + name;
};
print(greet('World'));
print(greet('Readers'));

Fig. 1.10 JavaScript
function output

12 U. Gandhi

Comments
While writing code, it is useful to add a bit of text to explain the code or leave
a note for yourself. It is a good programming practice to always add comments
in the code explaining each step. In JavaScript, you can prefix any line with two
forward slashes // to make it a comment. The text in the comment will be ignored
by the interpreter and will not be executed.

// This is a comment!

The Code Editor also provides a shortcut—Ctrl + / on Windows, Cmd + / on
Mac—to comment or uncomment multiple lines at a time. You can select multiple
lines and press the key combination to make them all comments. Press again to
reverse the operation. This is helpful when debugging code to stop certain parts of
the script from being executed (Fig. 1.11).

Congratulations! You have learned enough JavaScript to be able to use the Earth
Engine API. In the next section, you will see how to access and execute Earth
Engine API functions using JavaScript.

Code Checkpoint F10a. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 1.11 Commenting multiple lines

1 JavaScript and the Earth Engine API 13

1.2.3 Section 3: Earth Engine API Basics

The Earth Engine API is vast and provides objects and methods to do everything
from simple math to advanced algorithms for image processing. In the Code Editor,
you can switch to the Docs tab to see the API functions grouped by object types.
The API functions have the prefix ee (for Earth Engine) (Fig. 1.12).

Let us learn to use the API. Suppose you want to add two numbers, represented
by the variables a and b, as below. Make a new script and enter the following:

var a = 1;
var b = 2;

In Sect. 1.2.1, you learned how to store numbers in variables, but not how to
do any computation. This is because when you use Earth Engine, you do not do
addition using JavaScript operators. For example, you would not write “var c = a
+ b” to add the two numbers. Instead, the Earth Engine API provides you with
functions to do this, and it is important that you use the API functions whenever

Fig. 1.12 Earth Engine API
docs

14 U. Gandhi

Fig. 1.13 ee.Number
module

you can. It may seem awkward at first, but using the functions, as we will describe
below, will help you avoid timeouts and create efficient code.

Looking at the Docs tab, you will find a group of methods that can be called
on an ee.Number. Expand it to see the various functions available to work with
numbers. You will see the ee.Number function that creates an Earth Engine
number object from a value. In the list of functions, there is an add function for
adding two numbers. That is what you use to add a and b (Fig. 1.13).

To add a and b, we first create an ee.Number object from variable a with
ee.Number(a). And then we can use the add(b) call to add the value of b to
it. The following code shows the syntax and prints the result which, of course,
is the value 3:

var result = ee.Number(a).add(b);
print(result);

By now, you may have realized that when learning to program in Earth Engine,
you do not need to deeply learn JavaScript or Python—instead, they are ways
to access the Earth Engine API. This API is the same whether it is called from
JavaScript or Python.

1 JavaScript and the Earth Engine API 15

Fig. 1.14 ee.List.sequence function

Here is another example to drive this point home. Let us say you are working
on a task that requires you to create a list of years from 1980 to 2020 with a five-
year interval. If you are faced with this task, the first step is to switch to the Docs
tab and open the ee.List module. Browse through the functions and see if there
are any functions that can help. You will notice a function ee.List.sequence.
Clicking on it will bring up the documentation of the function (Fig. 1.14).

The function ee.List.sequence is able to generate a sequence of numbers
from a given start value to the end value. It also has an optional parameter
step to indicate the increment between each number. We can create a ee.List
of numbers representing years from 1980 to 2020, counting by 5, by calling this
predefined function with the following values: start = 1980, end = 2020, and step
= 5.

var yearList = ee.List.sequence(1980, 2020, 5);
print(yearList);

16 U. Gandhi

Fig. 1.15 Output of ee.List.sequence function

The output printed in the Console will show that the variable yearList
indeed contains the list of years with the correct interval (Fig. 1.15).

You just accomplished a moderately complex programming task with the help
of Earth Engine API.

Code Checkpoint F10b. The book’s repository contains a script that shows what
your code should look like at this point.

1.3 Synthesis

Assignment 1. Suppose you have the following two string variables defined in
the code below. Use the Earth Engine API to create a new string variable called
result by combining these two strings. Print it in the Console. The printed value
should read “Sentinel2A.”

var mission = ee.String('Sentinel');
var satellite = ee.String('2A');

Hint: Use the cat function from the ee.String module to “concatenate”
(join together) the two strings. You will find more information about all available
functions in the Docs tab of the Code Editor (Fig. 1.16).

1 JavaScript and the Earth Engine API 17

Fig. 1.16 Docs tab showing functions in the ee.String module

1.4 Conclusion

This chapter introduced the Earth Engine API. You also learned the basics of
JavaScript syntax to be able to use the API in the Code Editor environment. We
hope you now feel a bit more comfortable starting your journey to become an Earth
Engine developer. Regardless of your programming background or familiarity with
JavaScript, you have the tools at your disposal to start using the Earth Engine API
to build scripts for remote sensing analysis.

18 U. Gandhi

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

2Exploring Images

Jeff Howarth

Overview
Satellite images are at the heart of Google Earth Engine’s power. This chapter teaches
you how to inspect and visualize data stored in image bands. We first visualize
individual bands as separate map layers and then explore a method to visualize three
different bands in a single composite layer. We compare different kinds of composites
for satellite bands that measure electromagnetic radiation in the visible and non-
visible spectrum. We then explore images that represent more abstract attributes of
locations and create a composite layer to visualize change over time.

Learning Outcomes

• Using the Code Editor to load an image.
• Using code to select image bands and visualize them as map layers.
• Understanding true- and false-color composites of images.
• Constructing new multiband images.
• Understanding how additive color works and how to interpret RGB composites.

Assumes you know how to

• Sign up for an Earth Engine account, open the Code Editor, and save your script
(Chap. 1).

J. Howarth (B)
Middlebury College, Middlebury, VT, USA
e-mail: jhowarth@middlebury.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_2&domain=pdf
mailto:jhowarth@middlebury.edu
https://doi.org/10.1007/978-3-031-26588-4_2

20 J. Howarth

2.1 Practicum

2.1.1 Section 1: Accessing an Image

To begin, you will construct an image with the Code Editor. In the sections that
follow, you will see code in a distinct font and with shaded background. As you
encounter code, paste it into the center panel of the Code Editor and click Run.

First, copy and paste the following:

var first_image = ee.Image(
'LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606');

When you click Run, Earth Engine will load an image captured by the Landsat
5 satellite on June 6, 2000. You will not yet see any output.

You can explore the image in several ways. To start, you can retrieve metadata
(descriptive data about the image) by printing the image to the Code Editor’s
Console panel:

print(first_image);

In the Console panel, you may need to click the expander arrows to show the
information. You should be able to read that this image consists of 19 different
bands. For each band, the metadata lists four properties, but for now let us simply
note that the first property is a name or label for the band enclosed in quotation
marks. For example, the name of the first band is “SR_B1” (Fig. 2.1).

A satellite sensor like Landsat 5 measures the magnitude of radiation in dif-
ferent portions of the electromagnetic spectrum. The first six bands in our image
(“SR_B1” through “SR_B7”) contain measurements for six different portions of
the spectrum. The first three bands measure visible portions of the spectrum or
quantities of blue, green, and red lights. The other three bands measure infrared
portions of the spectrum that are not visible to the human eye.

An image band is an example of a raster data model, a method of storing
geographic data in a two-dimensional grid of pixels, or picture elements. In remote
sensing, the value stored by each pixel is often called a Digital Number or DN.
Depending on the sensor, the pixel value or DN can represent a range of possible
data values.

2 Exploring Images 21

Fig. 2.1 Image metadata printed to Console panel

Some of this information, like the names of the bands and their dimensions
(number of pixels wide by number of pixels tall), we can see in the metadata.
Other pieces of information, like the portions of the spectrum measured in each
band and the range of possible data values, can be found through the Earth Engine
Data Catalog (which is described in the next two chapters) or with other Earth
Engine methods. These will be described in more detail later in the book.

2.1.2 Section 2: Visualizing an Image

Now, let us add one of the bands to the map as a layer so that we can see it.

22 J. Howarth

Map.addLayer(
first_image, // dataset to display
{

bands: ['SR_B1'], // band to display
min: 8000, // display range
max: 17000

},
'Layer 1' // name to show in Layer Manager

);

The code here uses the addLayer method of the map in the Code Editor.
There are four important components of the command above:

1. first_image: This is the dataset to display on the map.
2. bands: These are the particular bands from the dataset to display on the map.

In our example, we displayed a single band named “SR_B1”.
3. min, max: These represent the lower and upper bounds of values from

“SR_B1” to display on the screen. By default, the minimum value provided
(8000) is mapped to black, and the maximum value provided (17,000) is
mapped to white. The values between the minimum and maximum are mapped
linearly to grayscale between black and white. Values below 8000 are drawn as
black. Values above 17,000 are drawn as white. Together, the bands, min, and
max parameters define visualization parameters, or instructions for data display.

4. ‘Layer 1’: This is a label for the map layer to display in the Layer Manager.
This label appears in the dropdown menu of layers in the upper right of the map.

When you run the code, you might not notice the image displayed unless you pan
around and look for it. To do this, click and drag the map toward Shanghai, China.
(You can also jump there by typing “Shanghai” into the Search panel at the top
of the Code Editor, where the prompt says Search places and datasets…) Over
Shanghai, you should see a small, dark, slightly angled square. Use the zoom tool
(the + sign, upper left of map) to increase the zoom level and make the square
appear larger.

Can you recognize any features in the image? By comparing it to the standard
Google Map that appears under the image (as the base layer), you should be able
to distinguish the coastline. The water near the shore generally appears a little
lighter than the land, except perhaps for a large, light-colored blob on the land in
the bottom of the image.

Let us explore this image with the Inspector tool. When you click on the
Inspector tab on the right side of the Code Editor (Fig. 2.2, area A), your cursor
should now look like crosshairs. When you click on a location in the image, the
Inspector panel will report data for that location under three categories as follows:

2 Exploring Images 23

Fig. 2.2 Image data reported through the Inspector panel

• Point: data about the location on the map. This includes the geographic location
(longitude and latitude) and some data about the map display (zoom level and
scale).

• Pixels: data about the pixel in the layer. If you expand this, you will see the
name of the map layer, a description of the data source, and a bar chart. In our
example, we see that “Layer 1” is drawn from an image dataset that contains 19
bands. Under the layer name, the chart displays the pixel value at the location
that you clicked for each band in the dataset. When you hover your cursor over
a bar, a panel will pop up to display the band name and “band value” (pixel
value). To find the pixel value for “SR_B1”, hover the cursor over the first
bar on the left. Alternatively, by clicking on the little blue icon to the right of
“Layer 1” (Fig. 2.2, area B), you will change the display from a bar chart to a
dictionary that reports the pixel value for each band.

• Objects: data about the source dataset. Here, you will find metadata about the
image that looks very similar to what you retrieved earlier when you directed
Earth Engine to print the image to the Console.

24 J. Howarth

Let us add two more bands to the map.

Map.addLayer(
first_image,
{

bands: ['SR_B2'],
min: 8000,
max: 17000

},
'Layer 2',
0, // shown
1 // opacity

);

Map.addLayer(
first_image,
{

bands: ['SR_B3'],
min: 8000,
max: 17000

},
'Layer 3',
1, // shown
0 // opacity

);

In the code above, notice that we included two additional parameters to the
Map.addLayer call. One parameter controls whether or not the layer is shown
on the screen when the layer is drawn. It may be either 1 (shown) or 0 (not
shown). The other parameter defines the opacity of the layer or your ability to
“see through” the map layer. The opacity value can range between 0 (transparent)
and 1 (opaque).

Do you see how these new parameters influence the map layer displays
(Fig. 2.3)? For Layer 2, we set the shown parameter as 0. For Layer 3, we set
the opacity parameter as 0. As a result, neither layer is visible to us when we first
run the code. We can make each layer visible with controls in the Layers manager
checklist on the map (at top right). Expand this list and you should see the names
that we gave each layer when we added them to the map. Each name sits between
a checkbox and an opacity slider. To make Layer 2 visible, click the checkbox
(Fig. 2.3, area A). To make Layer 3 visible, move the opacity slider to the right
(Fig. 2.3, area B).

2 Exploring Images 25

Fig. 2.3 Three bands from the Landsat image, drawn as three different grayscale layers

By manipulating these controls, you should notice that these layers are dis-
played as a stack, meaning one on top of the other. For example, set the opacity
for each layer to be 1 by pushing the opacity sliders all the way to the right. Then,
make sure that each box is checked next to each layer so that all the layers are
shown. Now you can identify which layer is on top of the stack by checking and
unchecking each layer. If a layer is on top of another, unchecking the top layer
will reveal the layer underneath. If a layer is under another layer in the stack, then
unchecking the bottom layer will not alter the display (because the top layer will
remain visible). If you try this on our stack, you should see that the list order
reflects the stack order, meaning that the layer at the top of the layer list appears
on the top of the stack. Now, compare the order of the layers in the list to the
sequence of operations in your script. What layer did your script add first and
where does this appear in the layering order on the map?

Code Checkpoint F11a. The book’s repository contains a script that shows what
your code should look like at this point.

26 J. Howarth

2.1.3 Section 3: True-Color Composites

Using the controls in the Layers manager, explore these layers and examine how
the pixel values in each band differ. Does Layer 2 (displaying pixel values from
the “SR_B2” band) appear generally brighter than Layer 1 (the “SR_B1” band)?
Compared with Layer 2, do the ocean waters in Layer 3 (the “SR_B3” band)
appear a little darker in the north, but a little lighter in the south?

We can use color to compare these visual differences in the pixel values of each
band layer all at once as an RGB composite. This method uses the three primary
colors (red, green, and blue) to display each pixel’s values across three bands.

To try this, add this code and run it.

Map.addLayer(
first_image,
{

bands: ['SR_B3', 'SR_B2', 'SR_B1'],
min: 8000,
max: 17000

},
'Natural Color');

The result (Fig. 2.4) looks like the world we see and is referred to as a natural-
color composite, because it naturally pairs the spectral ranges of the image bands
to display colors. Also called a true-color composite, this image shows the red
spectral band with shades of red, the green band with shades of green, and the
blue band with shades of blue. We specified the pairing simply through the order
of the bands in the list: B3, B2, B1. Because bands 3, 2, and 1 of Landsat 5
correspond to the real-world colors of red, green, and blue, the image resembles
the world that we would see outside the window of a plane or with a low-flying
drone.

2.1.4 Section 4: False-Color Composites

As you saw when you printed the band list (Fig. 2.1), a Landsat image contains
many more bands than just the three true-color bands. We can make RGB com-
posites to show combinations of any of the bands—even those outside what the
human eye can see. For example, band 4 represents the near-infrared band, just
outside the range of human vision. Because of its value in distinguishing envi-
ronmental conditions, this band was included on even the earliest 1970s Landsats.
It has different values in coniferous and deciduous forests, for example, and can
indicate crop health. To see an example of this, add this code to your script and
run it.

2 Exploring Images 27

Fig. 2.4 True-color composite

Map.addLayer(
first_image,
{

bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 8000,
max: 17000

},
'False Color');

In this false-color composite (Fig. 2.5), the display colors no longer pair natu-
rally with the bands. This particular example, which is more precisely referred to
as a color-infrared composite, is a scene that we could not observe with our eyes,
but that you can learn to read and interpret. Its meaning can be deciphered logically
by thinking through what is passed to the red, green, and blue color channels.

28 J. Howarth

Fig. 2.5 Color-infrared image (a false-color composite)

Notice how the land on the northern peninsula appears bright red (Fig. 2.5, area
A). This is because for that area, the pixel value of the first band (which is drawing
the near-infrared brightness) is much higher relative to the pixel value of the other
two bands. You can check this by using the Inspector tool. Try zooming into a
part of the image with a red patch (Fig. 2.5, area B) and clicking on a pixel that
appears red. Then, expand the “False Color” layer in the Inspector panel (Fig. 2.6,
area A), click the blue icon next to the layer name (Fig. 2.6, area B), and read the
pixel value for the three bands of the composite (Fig. 2.6, area C). The pixel value
for B4 should be much greater than for B3 or B2.

In the bottom left corner of the image (Fig. 2.5, area C), rivers and lakes appear
very dark, which means that the pixel value in all three bands is low. However,
sediment plumes fanning from the river into the sea appear with blue and cyan
tints (Fig. 2.5, area D). If they look like primary blue, then the pixel value for
the second band (B3) is likely higher than the first (B4) and third (B2) bands. If
they appear more like cyan, an additive color, it means that the pixel values of the
second and third bands are both greater than the first.

2 Exploring Images 29

Fig. 2.6 Values of B4, B3, B2 bands for a pixel that appears bright red

In total, the false-color composite provides more contrast than the true-color
image for understanding differences across the scene. This suggests that other
bands might contain more useful information as well. We saw earlier that our
satellite image consisted of 19 bands. Six of these represent different portions
of the electromagnetic spectrum, including three beyond the visible spectrum,
that can be used to make different false-color composites. Use the code below
to explore a composite that shows shortwave infrared, near infrared, and visible
green (Fig. 2.7).

Map.addLayer(
first_image,
{

bands: ['SR_B5', 'SR_B4', 'SR_B2'],
min: 8000,
max: 17000

},
'Short wave false color');

30 J. Howarth

Fig. 2.7 Shortwave infrared false-color composite

To compare the two false-color composites, zoom into the area shown in the
two pictures of Fig. 2.8. You should notice that bright red locations in the left
composite appear bright green in the right composite. Why do you think that is?
Does the image on the right show new distinctions not seen in the image on the
left? If so, what do you think they are?

Code Checkpoint F11b. The book’s repository contains a script that shows what
your code should look like at this point.

2.1.5 Section 5: Additive Color System

Thus far, we have used RGB composites to make a true-color image, in which
the colors on the screen match the colors in our everyday world. We also used the
same principles to draw two false-color combinations of optical bands collected by

2 Exploring Images 31

Fig. 2.8 Near-infrared versus shortwave infrared false-color composites

the satellite. To be able to read and interpret information from composite images
generally, it is useful to understand the additive color system. Views of data in Earth
Engine, and indeed everything drawn on a computer screen, use three channels
for display (red, green, and blue). The order of the bands in a composite layer
determines the color channel used to display the DN of pixels. When the DN is
higher in one band relative to the other two bands, the pixel will appear tinted
with the color channel used to display that band. For example, when the first
band is higher relative to the other two bands, the pixel will appear reddish. The
intensity of the pixel color will express the magnitude of difference between the
DN quantities.

The way that primary colors combine to make new colors in an additive color
system can be confusing at first, especially if you learned how to mix colors by
painting or printing. When using an additive color system, red combined with
green makes yellow, green combined with blue makes cyan, and red combined
with blue makes magenta (Fig. 2.9). Combining all three primary colors makes
white. The absence of all primary colors makes black. For RGB composites, this
means that if the pixel value of two bands is greater than that of the third band, the
pixel color will appear tinted as a combined color. For example, when the pixel
value of the first and second bands of a composite is higher than that of the third
band, the pixel will appear yellowish.

2.1.6 Section 6: Attributes of Locations

So far, we have explored bands as a method for storing data about slices of the
electromagnetic spectrum that can be measured by satellites. Now, we will work
toward applying the additive color system to bands that store non-optical and more
abstract attributes of geographic locations.

32 J. Howarth

Fig. 2.9 Additive color system

To begin, add this code to your script and run it.

var lights93 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F101993');

print('Nighttime lights', lights93);

Map.addLayer(
lights93,
{

bands: ['stable_lights'],
min: 0,
max: 63

},
'Lights');

This code loads an image of global nighttime lights and adds a new layer to the
map. Please look at the metadata that we printed to the Console panel. You should
see that the image consists of four bands. The code selects the “stable_lights” band
to display as a layer to the map. The range of values for display (0–63) represents
the minimum and maximum pixel values in this image. As mentioned earlier, you
can find this range in the Earth Engine Data Catalog or with other Earth Engine
methods. These will be described in more detail in the next few chapters.

The global nighttime lights’ image represents the average brightness of night-
time lights at each pixel for a calendar year. For those of us who have sat by a
window in an airplane as it descends to a destination at night, the scene may look
vaguely familiar. But, the image is very much an abstraction. It provides us a view
of the planet that we would never be able to see from an airplane or even from
space. Night blankets the entire planet in darkness. There are no clouds. In the

2 Exploring Images 33

Fig. 2.10 Stable nighttime lights in 1993

“stable lights” band, there are no ephemeral sources of light. Lightning strikes,
wildfires, and other transient lights have been removed. It is a layer that aims to
answer one question about our planet at one point in time: In 1993, how bright
were Earth’s stable, artificial sources of light?

With the zoom controls on the map, you can zoom out to see the bright spot
of Shanghai, the large blob of Seoul to the north and east, the darkness of North
Korea except for the small dot of Pyongyang, and the dense strips of lights of
Japan and the west coast of Taiwan (Fig. 2.10).

2.1.7 Section 7: Abstract RGB Composites

Now, we can use the additive color system to make an RGB composite that com-
pares stable nighttime lights at three different slices of time. Add the code below
to your script and run it.

34 J. Howarth

var lights03 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152003')
.select('stable_lights').rename('2003');

var lights13 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182013')
.select('stable_lights').rename('2013');

var changeImage = lights13.addBands(lights03)
.addBands(lights93.select('stable_lights').rename('1993'));

print('change image', changeImage);

Map.addLayer(
changeImage,
{

min: 0,
max: 63

},
'Change composite');

This code does a few things. First, it creates two new images, each representing
a different slice of time. For both, we use the select method to select a band
(“stable_lights”) and the rename method to change the band name to indicate the
year it represents.

Next, the code uses the addBands method to create a new, three-band image
that we name “changeImage”. It does this by taking one image (lights13) as the
first band, using another image (lights03) as the second band, and the lights93
image seen earlier as the third band. The third band is given the name “1993” as
it is placed into the image.

Finally, the code prints metadata to the Console and adds the layer to the map
as an RGB composite using Map.addLayer. If you look at the printed metadata,
you should see under the label “change image” that our image is composed of three
bands, with each band named after a year. You should also notice the order of the
bands in the image: 2013, 2003, 1993. This order determines the color channels
used to represent each slice of time in the composite: 2013 as red, 2003 as green,
and 1993 as blue (Fig. 2.11).

We can now read the colors displayed on the layer to interpret different kinds of
changes in nighttime lights across the planet over two decades. Pixels that appear
white have high brightness in all three years. You can use the Inspector panel
to confirm this. Click on the Inspector panel to change the cursor to a crosshair
and then click on a pixel that appears white. Look under the Pixel category of the
Inspector panel for the “Change composite” layer. The pixel value for each band
should be high (at or near 63).

2 Exploring Images 35

Fig. 2.11 RGB composite of stable nighttime lights (2013, 2003, 1993)

Many clumps of white pixels represent urban cores. If you zoom into Shanghai,
you will notice that the periphery of the white-colored core appears yellowish and
the terminal edges appear reddish. Yellow represents locations that were bright in
2013 and 2003 but dark in 1993. Red represents locations that appear bright in
2013 but dark in 2003 and 1993. If you zoom out, you will see that this gradient
of white core to yellow periphery to red edge occurs around many cities across
the planet and shows the global pattern of urban sprawl over the 20-year period.

When you zoom out from Shanghai, you will likely notice that each map layer
redraws every time you change the zoom level. In order to explore the change com-
posite layer more efficiently, use the Layer manager panel to not show (uncheck)
all of the layers except for “Change composite.” Now, the map will respond faster
when you zoom and pan because it will only refresh the single-displayed shown
layer.

In addition to urban change, the layer also shows changes in resource extraction
activities that produce bright lights. Often, these activities produce lights that are
stable over the span of a year (and therefore included in the “stable lights” band),
but are not sustained over the span of a decade or more. For example, in the Korea
Strait (between South Korea and Japan), you can see geographic shifts of fishing
fleets that use bright halogen lights to attract squid and other sea creatures toward

36 J. Howarth

the water surface and into their nets. Bluish pixels were likely fished more heavily
in 1993 and became used less frequently by 2003, while greenish pixels were
likely fished more heavily in 2003 and less frequently by 2013 (Fig. 2.11).

Similarly, fossil fuel extraction produces nighttime lights through gas flaring. If
you pan to North America (Fig. 2.12), red blobs in Alberta and North Dakota and
a red swath in southeastern Texas all represent places where oil and gas extraction
was absent in 1993 and 2003 but booming by 2013. Pan over to the Persian Gulf
and you will see changes that look like holiday lights with dots of white, red,
green, and blue appearing near each other; these distinguish stable and shifting
locations of oil production. Blue lights in Syria near the border with Iraq signify
the abandonment of oil fields after 1993 (Fig. 2.13). Pan further north and you will
see another “holiday lights” display from oil and gas extraction around Surgut,
Russia. In many of these places, you can check for oil and gas infrastructure by
zooming into a colored spot, making the lights layer not visible, and selecting the
Satellite base layer (upper right).

As you explore this image, remember to check your interpretations with the
Inspector panel by clicking on a pixel and reading the pixel value for each band.
Refer back to the additive color figure to remember how the color system works.
If you practice this, you should be able to read any RGB composite by knowing
how colors relate to the relative pixel value of each band. This will empower you

Fig. 2.12 Large red blobs in North Dakota and Texas from fossil fuel extraction in specific years

2 Exploring Images 37

Fig. 2.13 Nighttime light changes in the Middle East

to employ false-color composites as a flexible and powerful method to explore and
interpret geographic patterns and changes on Earth’s surface.

Code Checkpoint F11c. The book’s repository contains a script that shows what
your code should look like at this point.

2.2 Synthesis

Assignment 1. Compare and contrast the changes in nighttime lights around Dam-
ascus, Syria versus Amman, Jordan. How are the colors for the two cities similar
and different? How do you interpret the differences?

Assignment 2. Look at the changes in nighttime lights in the region of Port Har-
court, Nigeria. What kinds of changes do you think these colors signify? What
clues in the satellite basemap can you see to confirm your interpretation?

Assignment 3. In the nighttime lights’ change composite, we did not specify the
three bands to use for our RGB composite. How do you think Earth Engine chose
the three bands to display? How do you think Earth Engine determined which
band should be shown with the red, green, and blue channels?

38 J. Howarth

Assignment 4. Create a new script to make three composites (natural-color, near-
infrared false-color, and shortwave infrared false-color composites) for this image:

'LANDSAT/LT05/C02/T1_L2/LT05_022039_20050907'

What environmental event do you think the images show? Compare and contrast
the natural and false-color composites. What do the false-color composites help
you see that is more difficult to decipher in the natural-color composite?

Assignment 5. Create a new script and run this code to view this image over
Shanghai:

var image =
ee.Image('LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606');

Map.addLayer(
image,
{

bands: ['SR_B1'],
min: 8000,
max: 17000

},
'Layer 1'

);

Map.addLayer(
image.select('SR_B1'),
{

min: 8000,
max: 17000

},
'Layer 2'

);

Inspect Layer 1 and Layer 2 with the Inspector panel. Describe how the two
layers differ and explain why they differ.

2 Exploring Images 39

2.3 Conclusion

In this chapter, we looked at how an image is composed of one or more bands,
where each band stores data about geographic locations as pixel values. We
explored different ways of visualizing these pixel values as map layers, includ-
ing a grayscale display of single bands and RGB composites of three bands. We
created natural and false-color composites that use additive color to display infor-
mation in visible and non-visible portions of the spectrum. We examined additive
color as a general system for visualizing pixel values across multiple bands. We
then explored how bands and RGB composites can be used to represent more
abstract phenomena, including different kinds of change over time.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

3Survey of Raster Datasets

Andréa Puzzi Nicolau , Karen Dyson , David Saah ,
and Nicholas Clinton

Overview
The purpose of this chapter is to introduce you to the many types of collections of
images available in Google Earth Engine. These include sets of individual satellite
images, pre-made composites (which merge multiple individual satellite images into
one composite image), classified land use and land cover (LULC) maps, weather
data, and other types of datasets. If you are new to JavaScript or programming, work
through Chaps. 1 and 2 first.

A. P. Nicolau (B) · K. Dyson · D. Saah
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: apnicolau@sig-gis.com

K. Dyson
e-mail: kdyson@sig-gis.com

D. Saah
e-mail: dssaah@usfca.edu

A. P. Nicolau · K. Dyson
SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, WA, USA

D. Saah
University of San Francisco, San Francisco, CA, USA

N. Clinton
Google LLC, Mountain View, CA, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_3&domain=pdf
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:apnicolau@sig-gis.com
mailto:kdyson@sig-gis.com
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_3

42 A. P. Nicolau et al.

Learning Outcomes

• Accessing and viewing sets of images in Earth Engine.
• Extracting single scenes from collections of images.
• Applying visualization parameters in Earth Engine to visualize an image.

Assumes you know how to

• Sign up for an Earth Engine account, open the Code Editor, and save your
script. (Chap. 1)

• Locate the Earth Engine Inspector and Console tabs and understand their
purposes (Chap. 1).

• Use the Inspector tab to assess pixel values (Chap. 2).

3.1 Introduction to Theory

The previous chapter introduced you to images, one of the core building blocks of
remotely sensed imagery in Earth Engine. In this chapter, we will expand on this
concept of images by introducing image collections. Image collections in Earth
Engine organize many different images into one larger data storage structure.
Image collections include information about the location, date collected, and other
properties of each image, allowing you to sift through the ImageCollection
for the exact image characteristics needed for your analysis.

3.2 Practicum

There are many different types of image collections available in Earth Engine.
These include collections of individual satellite images, pre-made composites that
combine multiple images into one blended image, classified LULC maps, weather
data, and other non-optical datasets. Each one of these is useful for different types
of analyses. For example, one recent study examined the drivers of wildfires in
Australia (Sulova and Jokar 2021). The research team used the European Center
for Medium-Range Weather Forecast Reanalysis (ERA5) dataset produced by the
European Center for Medium-Range Weather Forecasts (ECMWF) and is freely
available in Earth Engine. We will look at this dataset later in the chapter.

3 Survey of Raster Datasets 43

3.2.1 Section 1: Image Collections: An Organized Set of Images

If you have no already done so, you add the book’s code repository to the
Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro
jects/gee-edu/book into your browser. The book’s scripts will then be available
in the script manager panel to view, run, or modify. If you have trouble finding the
repo, you can visit http://bit.ly/EEFA-repo-help for help.

You saw some of the basic ways to interact with an individual ee.Image in
Chap. 2. However, depending on how long a remote sensing platform has been
in operation, there may be thousands or millions of images collected of Earth. In
Earth Engine, these are organized into an ImageCollection, a specialized data
type that has specific operations available in the Earth Engine API. Like individual
images, they can be viewed with Map.addLayer.

You will learn to work with image collections in complex ways later in the
book, particularly in Part IV. For now, we will show you how to view and work
with their most basic attributes and use these skills to view some of the major
types of image collections in Earth Engine. This chapter will give a brief tour of
the Earth Engine Data Catalog, which contains decades of satellite imagery and
much more. We will view some of the different types of datasets in the following
sections, including climate and weather data, digital elevation models and other
terrain data, land cover, cropland, satellite imagery, and others.

View an Image Collection
The Landsat program from NASA and the United States Geological Survey
(USGS) has launched a sequence of Earth observation satellites, named Landsat
1, 2, etc. Landsats have been returning images since 1972, making that collec-
tion of images the longest continuous satellite-based observation of the Earth’s
surface. We will now view images and basic information about one of the image
collections that is still growing: collections of scenes taken by the Operational
Land Imager aboard Landsat 8, which was launched in 2013. Copy and paste the
following code into the center panel and click Run. While the enormous image
catalog is accessed, it could take a couple of minutes to see the result in the Map
area. You may note individual “scenes” being drawn, which equate to the way that
the Landsat program partitions Earth into “paths” and “rows”. If it takes more than
a couple of minutes to see the images, try zooming in to a specific area to speed
up the process.

44 A. P. Nicolau et al.

/////
// View an Image Collection
/////

// Import the Landsat 8 Raw Collection.
var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1');

// Print the size of the Landsat 8 dataset.
print('The size of the Landsat 8 image collection is:',
landsat8
.size());

// Try to print the image collection.
// WARNING! Running the print code immediately below
produces an error because
// the Console can not print more than 5000 elements.
print(landsat8);

// Add the Landsat 8 dataset to the map as a mosaic. The
collection is
// already chronologically sorted, so the most recent pixel
is displayed.
Map.addLayer(landsat8,

{
bands: ['B4', 'B3', 'B2'],
min: 5000,
max: 15000

},
'Landsat 8 Image Collection');

First, let us examine the map output (Fig. 3.1).
Notice the high amount of cloud cover and the “layered” look. Zoom out if

needed. This is because Earth Engine is drawing each of the images that make
up the ImageCollection one on top of the other. The striped look is the

Fig. 3.1 USGS Landsat 8 collection 2 Tier 1 Raw Scenes collection

3 Survey of Raster Datasets 45

Fig. 3.2 Size of the entire Landsat 8 collection. Note that this number is constantly growing

Fig. 3.3 Error encountered when trying to print the names and information to the screen for too
many elements

result of how the satellite collects imagery. The overlaps between images and the
individual nature of the images mean that these are not quite ready for analysis;
we will address this issue in future chapters.

Now examine the printed size on the Console. It will indicate that there are
more than a million images in the dataset (Fig. 3.2). If you return to this lab in the
future, the number will be even larger, since this active collection is continually
growing as the satellite gathers more imagery. For the same reason, Fig. 3.1 might
look slightly different on your map because of this.

Note that printing the ImageCollection returned an error message
(Fig. 3.3), because calling print on an ImageCollection will write the name
of every image in the collection to the Console. This is the result of an intentional
safeguard within Earth Engine. We do not want to see a million image names
printed to the Console!

Code Checkpoint F12a. The book’s repository contains a script that shows what
your code should look like at this point.

46 A. P. Nicolau et al.

Edit your code to comment out the last two code commands you have written.
This will remove the call to Map.addLayer that drew every image, and will
remove the print statement that demanded more than 5000 elements. This will
speed up your code in subsequent sections. As described in Chap. 1, placing two
forward slashes (//) at the beginning of a line will make it into a comment, and
any commands on that line will not be executed.

Filtering Image Collections
The ImageCollection data type in Earth Engine has multiple approaches to
filtering, which helps to pinpoint the exact images you want to view or analyze
from the larger collection.

Filter by Date
One of the filters is filterDate, which allows us to narrow down the date range
of the ImageCollection. Copy the following code to the center panel (paste
it after the previous code you had):

// Filter an Image Collection
/////

// Filter the collection by date.
var landsatWinter = landsat8.filterDate('2020-12-01',
'2021-03-01');

Map.addLayer(landsatWinter,
{

bands: ['B4', 'B3', 'B2'],
min: 5000,
max: 15000

},
'Winter Landsat 8');

print('The size of the Winter Landsat 8 image collection
is:',

landsatWinter.size());

Examine the mapped landsatWinter (Fig. 3.4). As described in Chap. 2,
the 5000 and the 15000 values in the visualization parameters of the
Map.addLayer function of the code above refer to the minimum and maximum
of the range of display values.

Now, look at the size of the winter Landsat 8 collection. The number is signif-
icantly lower than the number of images in the entire collection. This is the result
of filtering the dates to three months in the winter of 2020–2021.

3 Survey of Raster Datasets 47

Fig. 3.4 Landsat 8 winter collection

Filter by Location
A second frequently used filtering tool is filterBounds. This filter is based
on a location—for example, a point, polygon, or other geometry. Copy and paste
the code below to filter and add to the map the winter images from the Land-
sat 8 Image Collection to a point in Minneapolis, Minnesota, USA. Note below
the Map.addLayer function to add the pointMN to the map with an empty
dictionary {} for the visParams argument. This only means that we are not
specifying visualization parameters for this element, and it is being added to the
map with the default parameters.

// Create an Earth Engine Point object.
var pointMN = ee.Geometry.Point([-93.79, 45.05]);
// Filter the collection by location using the point.
var landsatMN = landsatWinter.filterBounds(pointMN);
Map.addLayer(landsatMN,

{
bands: ['B4', 'B3', 'B2'],
min: 5000,
max: 15000

},
'MN Landsat 8');

// Add the point to the map to see where it is.
Map.addLayer(pointMN, {}, 'Point MN');

print('The size of the Minneapolis Winter Landsat 8 image
collection is: ',

landsatMN.size());

48 A. P. Nicolau et al.

If we uncheck the Winter Landsat 8 layer under Layers, we can see that only
images that intersect our point have been selected (Fig. 3.5). Zoom in or out as
needed. Note the printed size of the Minneapolis winter collection—we only have
seven images.

Selecting the First Image
The final operation we will explore is the first function. This selects the first
image in an ImageCollection. This allows us to place a single image on the
screen for inspection. Copy and paste the code below to select and view the first
image of the Minneapolis Winter Landsat 8 Image Collection. In this case, because
the images are stored in time order in the ImageCollection, it will select the
earliest image in the set.

Fig. 3.5 Minneapolis winter collection filtered by bounds. The first still represents the map with-
out zoom applied. The collection is shown inside the red circle. The second still represents the map
after zoom was applied to the region. The red arrow indicates the point (in black) used to filter by
bounds

3 Survey of Raster Datasets 49

// Select the first image in the filtered collection.
var landsatFirst = landsatMN.first();
// Display the first image in the filtered collection.
Map.centerObject(landsatFirst, 7);
Map.addLayer(landsatFirst,

{
bands: ['B4', 'B3', 'B2'],
min: 5000,
max: 15000

},
'First Landsat 8');

The first command takes our stack of location-filtered images and selects the
first image. When the layer is added to the Map area, you can see that only one
image is returned—remember to uncheck the other layers to be able to visualize
the full image (Fig. 3.6). We used the Map.centerObject to center the map
on the landsatFirst image with a zoom level of 7 (zoom levels go from 0 to
24).

Fig. 3.6 First Landsat image from the filtered set

50 A. P. Nicolau et al.

Code Checkpoint F12b. The book’s repository contains a script that shows what
your code should look like at this point.

Now that we have the tools to examine different image collections, we will
explore other datasets. Save your script for your own future use, as outlined in
Chap. 1. Then, refresh the Code Editor to begin with a new script for the next
section.

3.2.2 Section 2: Collections of Single Images

When learning about image collections in the previous section, you worked with
the Landsat 8 raw image dataset. These raw images have some important correc-
tions already done for you. However, the raw images are only one of several image
collections produced for Landsat 8. The remote sensing community has developed
additional imagery corrections that help increase the accuracy and consistency of
analyses. The results of each of these different imagery processing paths are stored
in a distinct ImageCollection in Earth Engine.

Among the most prominent of these is the ImageCollection meant to min-
imize the effect of the atmosphere between Earth’s surface and the satellite. The
view from satellites is made imprecise by the need for light rays to pass through
the atmosphere, even on the clearest day. There are two important ways the atmo-
sphere obscures a satellite’s view: by affecting the amount of sunlight that strikes
the Earth and by altering electromagnetic energy on its trip from its reflection at
Earth’s surface to the satellite’s receptors.

Unraveling those effects is called atmospheric correction, a highly complex pro-
cess whose details are beyond the scope of this book. Thankfully, in addition to the
raw images from the satellite, each image for Landsat and certain other sensors is
automatically treated with the most up-to-date atmospheric correction algorithms,
producing a product referred to as a “surface reflectance” ImageCollection.
The surface reflectance estimates the ratio of upward radiance at the Earth’s sur-
face to downward radiance at the Earth’s surface, imitating what the sensor would
have seen if it were hovering a few feet above the ground.

Let us examine one of these datasets meant to minimize the effects of the
atmosphere between Earth’s surface and the satellite. Copy and paste the code
below to import and filter the Landsat 8 surface reflectance data (landsat8SR)
by date and to a point over San Francisco, California, USA (pointSF). We use
the first function to select the first image—a single image from March 18,
2014. By printing the landsat8SRimage image on the Console, and accessing
its metadata (see Chap. 2), we see that the band names differ from those in the raw
image (Fig. 3.7). Here, they have the form “SR_B*” as in “Surface Reflectance
Band *”, where * is the band number. We can also check the date of the image
by looking at the image “id” (Fig. 3.7). This has the value “20140318”, a string
indicating that the image was from March 18, 2014.

3 Survey of Raster Datasets 51

Fig. 3.7 Landsat 8 surface reflectance image bands and date

/////
// Collections of single images - Landsat 8 Surface Reflectance
/////

// Create and Earth Engine Point object over San Francisco.
var pointSF = ee.Geometry.Point([-122.44, 37.76]);

// Import the Landsat 8 Surface Reflectance collection.
var landsat8SR = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2');

// Filter the collection and select the first image.
var landsat8SRimage = landsat8SR.filterDate('2014-03-18',

'2014-03-19')
.filterBounds(pointSF)
.first();

print('Landsat 8 Surface Reflectance image', landsat8SRimage);

52 A. P. Nicolau et al.

Copy and paste the code below to add this image to the map with adjusted R,
G, and B bands in the “bands” parameter for true-color display (see Chap. 2).

// Center map to the first image.
Map.centerObject(landsat8SRimage, 8);

// Add first image to the map.
Map.addLayer(landsat8SRimage,
 {
 bands: ['SR_B4', 'SR_B3', 'SR_B2'],
 min: 7000,
 max: 13000
 },
 'Landsat 8 SR');

Compare this image (Fig. 3.8) with the raw Landsat 8 images from the previous
section (Fig. 3.6). Zoom in and out and pan the screen as needed. What do you
notice? Save your script but don’t start a new one—we will keep adding code to
this script.

Fig. 3.8 Landsat 8 surface reflectance scene from March 18, 2014

3 Survey of Raster Datasets 53

Code Checkpoint F12c. The book’s repository contains a script that shows what
your code should look like at this point.

3.2.3 Section 3: Pre-made Composites

Pre-made composites take individual images from image collections across a set
area or time period and assemble them into a single layer. This can be done
for many different datasets, including satellite images (e.g., MODIS, Landsat,
Sentinel), climatological information, forest or vegetation information, and more.

For example, image collections may have multiple images in one location, as we
saw in our “filter by location” example above. Some of the images might have a lot
of cloud cover or other atmospheric artifacts that make the imagery quality poor.
Other images might be very high quality, because they were taken on sunny days
when the satellite was flying directly overhead. The compositing process takes all
of these different images, picks the best ones, and then stitches them together into
a single layer. The compositing period can differ for different datasets and goals;
for example, you may encounter daily, monthly, and/or yearly composites. To do
this manually is more advanced (see, for example, Chap. 15); however, with the
pre-made composites available in Earth Engine, some of that complex work has
been done for you.

MODIS Daily True-Color Imagery
We will explore two examples of composites made with data from the MODIS
sensors, a pair of sensors aboard the Terra and Aqua satellites. On these complex
sensors, different MODIS bands produce data at different spatial resolutions. For
the visible bands, the lowest common resolution is 500 m (red and NIR are 250 m).

Let us use the code below to import the MCD43A4.006 MODIS Nadir BRDF-
Adjusted Reflectance Daily 500 m dataset and view a recent image. This dataset is
produced daily based on a 16-day retrieval period, choosing the best representative
pixel from the 16-day period. The 16-day period covers about eight days on either
side of the nominal compositing date, with pixels closer to the target date given a
higher priority.

54 A. P. Nicolau et al.

/////
// Pre-made composites
/////

// Import a MODIS dataset of daily BRDF-corrected
reflectance.
var modisDaily = ee.ImageCollection('MODIS/006/MCD43A4');

// Filter the dataset to a recent date.
var modisDailyRecent = modisDaily.filterDate('2021-11-01');

// Add the dataset to the map.
var modisVis = {

bands: [
'Nadir_Reflectance_Band1',
'Nadir_Reflectance_Band4',
'Nadir_Reflectance_Band3'

],
min: 0,
max: 4000

};
Map.addLayer(modisDailyRecent, modisVis, 'MODIS Daily
Composite');

Uncheck the other layer (“Landsat 8 SR”), zoom out (e.g., country-scale), and
pan around the image (Fig. 3.9). Notice how there are no clouds in the image, but
there are some pixels with no data (Fig. 3.10). These are persistently cloudy areas
that have no clear pixels in the particular period chosen.

Fig. 3.9 MODIS Daily true-color image

3 Survey of Raster Datasets 55

Fig. 3.10 Examples of gaps on the MODIS Daily true-color image near Denver, Colorado, USA

MODIS Monthly Burned Areas
Some of the MODIS bands have proven useful in determining where fires are
burning and what areas they have burned. A monthly composite product for burned
areas is available in Earth Engine. Copy and paste the code below.

// Import the MODIS monthly burned areas dataset.
var modisMonthly = ee.ImageCollection('MODIS/006/MCD64A1');

// Filter the dataset to a recent month during fire season.
var modisMonthlyRecent = modisMonthly.filterDate('2021-08-01');

// Add the dataset to the map.
Map.addLayer(modisMonthlyRecent, {}, 'MODIS Monthly Burn');

Uncheck the other layers, and then pan and zoom around the map. Areas that
have burned in the past month will show up as red (Fig. 3.11). Can you see where
fires burned areas of California, USA? In Southern and Central Africa? Northern
Australia?

56 A. P. Nicolau et al.

Fig. 3.11 MODIS Monthly Burn image over California

Code Checkpoint F12d. The book’s repository contains a script that shows what
your code should look like at this point.

Save your script and start a new one by refreshing the page.

3.2.4 Section 4: Other Satellite Products

Satellites can also collect information about the climate, weather, and various
compounds present in the atmosphere. These satellites leverage portions of the
electromagnetic spectrum and how different objects and compounds reflect when
hit with sunlight in various wavelengths. For example, methane (CH4) reflects the
760 nm portion of the spectrum. Let us take a closer look at a few of these datasets.

Methane
The European Space Agency makes available a methane dataset from Sentinel-5 in
Earth Engine. Copy and paste the code below to add to the map methane data from
the first time of collection on November 28, 2018. We use the select function
(See Chap. 2) to select the methane-specific band of the dataset. We also introduce
values for a new argument for the visualization parameters of Map.addLayer:
We use a color palette to display a single band of an image in color. Here, we
chose varying colors from black for the minimum value to red for the maximum
value. Values in between will have the color in the order outlined by the palette
parameter (a list of string colors: black, blue, purple, cyan, green, yellow, red).

3 Survey of Raster Datasets 57

/////
// Other satellite products
/////

// Import a Sentinel-5 methane dataset.
var methane =
ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4');

// Filter the methane dataset.
var methane2018 = methane.select(

'CH4_column_volume_mixing_ratio_dry_air')
.filterDate('2018-11-28', '2018-11-29')
.first();

// Make a visualization for the methane data.
var methaneVis = {

palette: ['black', 'blue', 'purple', 'cyan', 'green',
'yellow', 'red'

],
min: 1770,
max: 1920

};

// Center the Map.
Map.centerObject(methane2018, 3);

// Add the methane dataset to the map.
Map.addLayer(methane2018, methaneVis, 'Methane');

Notice the different levels of methane over the African continent (Fig. 3.12).

Fig. 3.12 Methane levels over the African continent on November 28, 2018

58 A. P. Nicolau et al.

Weather and Climate Data
Many weather and climate datasets are available in Earth Engine. One of these
is the European Center for Medium-Range Weather Forecast Reanalysis (ERA5)
dataset used by Sulova and Jokar (2021). Copy and paste the code below to add
the January 2018 monthly data to the map.

// Import the ERA5 Monthly dataset
var era5Monthly = ee.ImageCollection('ECMWF/ERA5/MONTHLY');

// Filter the dataset
var era5MonthlyTemp =
era5Monthly.select('mean_2m_air_temperature')

.filterDate('2018-01-01', '2019-01-31')

.first();

// Add the ERA dataset to the map.
Map.addLayer(era5MonthlyTemp,

{
palette: ['yellow', 'red'],
min: 260,
max: 320

},
'ERA5 Max Monthly Temp');

Examine some of the temperatures in this image (Fig. 3.13) by using the
Inspector tool (see Chap. 2). Pan and zoom out if needed. The units are in Kelvin,
which is Celsius plus 273.15°.

Fig. 3.13 ERA5 maximum monthly temperature, January 2018

3 Survey of Raster Datasets 59

Code Checkpoint F12e. The book’s repository contains a script that shows what
your code should look like at this point.

Save your script and start a new one by refreshing the page.

3.2.5 Section 5: Pre-classified Land Use and Land Cover

Another type of dataset available in Earth Engine is LULC maps that have already
been classified. Instead of showing how the Earth’s surface looks—that is, the
visible and other electromagnetic spectrum reflectance detected by satellites—
these datasets take satellite imagery and use it to assign a label to each pixel
on Earth’s surface. For example, categories might include vegetation, bare soil,
built environment (pavement, buildings), and water.

Let us take a closer look at two of these datasets.

ESA WorldCover
The European Space Agency (ESA) provides a global land cover map for the year
2020 based on Sentinel-1 and Sentinel-2 data. WorldCover uses 11 different land
cover classes including built-up, cropland, open water, and mangroves. Copy and
paste the code below to add this image to the map. In this dataset, the band ’Map’
already contains a palette color associated with the 11 land cover class values.

/////
// Pre-classified Land Use Land Cover
/////

// Import the ESA WorldCover dataset.
var worldCover =
ee.ImageCollection('ESA/WorldCover/v100').first();

// Center the Map.
Map.centerObject(worldCover, 3);

// Add the worldCover layer to the map.
Map.addLayer(worldCover, {

bands: ['Map']
}, 'WorldCover');

Examine the WorldCover land cover classification (Fig. 3.14). Compare it with
some of the satellite imagery we have explored in previous sections. Chapter 4
shows how to determine the meaning of the colors and values in a dataset like
this.

60 A. P. Nicolau et al.

Fig. 3.14 ESA’s 2020 WorldCover map

Global Forest Change
Another land cover product that has been pre-classified for you and is available
in Earth Engine is the Global Forest Change dataset. This analysis was conducted
between 2000 and 2020. Unlike the WorldCover dataset, this dataset focuses on
the percent of tree cover across the Earth’s surface in a base year of 2000, and how
that has changed over time. Copy and paste the code below to visualize the tree
cover in 2000. Note that in the code below we define the visualization parameters
as a variable treeCoverViz instead of having its calculation done within the
Map.addLayer function.

// Import the Hansen Global Forest Change dataset.
var globalForest = ee.Image(

'UMD/hansen/global_forest_change_2020_v1_8');

// Create a visualization for tree cover in 2000.
var treeCoverViz = {

bands: ['treecover2000'],
min: 0,
max: 100,
palette: ['black', 'green']

};

// Add the 2000 tree cover image to the map.
Map.addLayer(globalForest, treeCoverViz, 'Hansen 2000 Tree
Cover');

Notice how areas with high tree cover (e.g., the Amazon) are greener and areas
with low tree cover are darker (Fig. 3.15). In case you see an error on the Console

3 Survey of Raster Datasets 61

Fig. 3.15 Global Forest Change 2000 tree cover layer

such as “Cannot read properties of null”, do not worry. Sometimes Earth Engine
will show these transient errors, but they will not affect the script in any way.

Copy and paste the code below to visualize the tree cover loss over the past
20 years.

// Create a visualization for the year of tree loss over
the past 20 years.
var treeLossYearViz = {

bands: ['lossyear'],
min: 0,
max: 20,
palette: ['yellow', 'red']

};

// Add the 2000-2020 tree cover loss image to the map.
Map.addLayer(globalForest, treeLossYearViz, '2000-2020 Year
of Loss');

Leave the previous 2000 tree cover layer checked and analyze the loss layer
on top of it—yellow, orange, and red areas (Fig. 3.16). Pan and zoom around the
map. Where has there been recent forest loss (which is shown in red)?

Code Checkpoint F12f. The book’s repository contains a script that shows what
your code should look like at this point.

Save your script and start a new one.

62 A. P. Nicolau et al.

Fig. 3.16 Global Forest Change 2000–2020 tree cover loss (yellow–red) and 2000 tree cover
(black-green)

3.2.6 Section 6: Other Datasets

There are many other types of datasets in the Earth Engine Data Catalog that you
can explore and use for your own analyses. These include global gridded popu-
lation counts, terrain, and geophysical data. Let us explore two of these datasets
now.

Gridded Population Count
The Gridded Population of the World dataset estimates human population for
each grid cell across the entire Earth’s surface. Copy and paste the code
below to add the 2000 population count layer. We use a predefined palette
populationPalette, which is a list of six-digit strings of hexadecimal values
representing additive RGB colors (as first seen in Chap. 2). Lighter colors corre-
spond to lower population count, and darker colors correspond to higher population
count.

3 Survey of Raster Datasets 63

/////
// Other datasets
/////

// Import and filter a gridded population dataset.
var griddedPopulation = ee.ImageCollection(

'CIESIN/GPWv411/GPW_Population_Count')
.first();

// Predefined palette.
var populationPalette = [

'ffffe7',
'86a192',
'509791',
'307296',
'2c4484',
'000066'

];

// Center the Map.
Map.centerObject(griddedPopulation, 3);

// Add the population data to the map.
Map.addLayer(griddedPopulation,

{
min: 0,
max: 1200,
'palette': populationPalette

},
'Gridded Population');

Pan around the image (Fig. 3.17). What happens when you change the min-
imum and maximum values in the visualization? As described in Chap. 2, the
minimum and maximum values represent the range of values of the dataset. Iden-
tify a location of interest to you—may be an area near your current location, or
your hometown. If you click on the Inspector tab, you should be able to find the
population count (Fig. 3.18).

Digital Elevation Models
Digital elevation models (DEMs) use airborne and satellite instruments to esti-
mate the elevation of each location. Earth Engine has both local and global DEMs
available. One of the global DEMs available is the NASADEM dataset, a DEM
produced from a NASA mission. Copy and paste the code below to import the
dataset and visualize the elevation band.

64 A. P. Nicolau et al.

Fig. 3.17 Gridded population count of 2000

Fig. 3.18 2000 population count for a point near Rio de Janeiro, Brazil

3 Survey of Raster Datasets 65

Fig. 3.19 NASADEM elevation

// Import the NASA DEM Dataset.
var nasaDEM = ee.Image('NASA/NASADEM_HGT/001');

// Add the elevation layer to the map.
Map.addLayer(nasaDEM, {

bands: ['elevation'],
min: 0,
max: 3000

}, 'NASA DEM');

Uncheck the population layer and zoom in to examine the patterns of topogra-
phy (Fig. 3.19). Can you see where a mountain range is located? Where is a river
located? Try changing the minimum and maximum in order to make these features
more visible. Save your script.

Code Checkpoint F12g. The book’s repository contains a script that shows what
your code should look like at this point.

Take a moment to look through all of the different layers that we have explored
so far. You can open your scripts one at a time or in different tabs, or even by
copying the code into one single script. Turn the layers on and off, pan around,
and zoom in and out accordingly to visualize the different datasets on the map.

3.3 Synthesis

Assignment 1. Explore the Earth Engine Data Catalog and find a dataset that is
near your location. To do this, you can type keywords into the search bar, located
above the Earth Engine code. Import a dataset into your workspace and filter the
dataset to a single image. Then, print the information of the image into the Console

66 A. P. Nicolau et al.

and add the image to the map, either using three selected bands or a custom palette
for one band.

3.4 Conclusion

In this chapter, we introduced image collections in Earth Engine and learned how
to apply multiple types of filters to image collections to identify multiple or a sin-
gle image for use. We also explored a few of the many different image collections
available in the Earth Engine Data Catalog. Understanding how to find, access,
and filter image collections is an important step in learning how to perform spatial
analyses in Earth Engine.

References

Chander G, Huang C, Yang L et al (2009a) Developing consistent Landsat data sets for large area
applications: the MRLC 2001 protocol. IEEE Geosci Remote Sens Lett 6:777–781. https://doi.
org/10.1109/LGRS.2009.2025244

Chander G, Markham BL, Helder DL (2009b) Summary of current radiometric calibration coeffi-
cients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–
903. https://doi.org/10.1016/j.rse.2009.01.007

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest
cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693

Sulova A, Arsanjani JJ (2021) Exploratory analysis of driving force of wildfires in Australia: an
application of machine learning within Google Earth Engine. Remote Sens 13:1–23. https://
doi.org/10.3390/rs13010010

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/LGRS.2009.2025244
https://doi.org/10.1109/LGRS.2009.2025244
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1126/science.1244693
https://doi.org/10.3390/rs13010010
https://doi.org/10.3390/rs13010010
http://creativecommons.org/licenses/by/4.0/

4The Remote Sensing Vocabulary

Karen Dyson , Andréa Puzzi Nicolau , David Saah ,
and Nicholas Clinton

Overview
The purpose of this chapter is to introduce some of the principal characteristics of
remotely sensed images and how they can be examined in Earth Engine. We discuss
spatial resolution, temporal resolution, and spectral resolution, along with how to
access important image metadata. You will be introduced to image data from several
sensors aboard various satellite platforms. At the completion of the chapter, you will
be able to understand the difference between remotely sensed datasets based on these
characteristics and how to choose an appropriate dataset for your analysis based on
these concepts.

K. Dyson · A. P. Nicolau · D. Saah
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: kdyson@sig-gis.com

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson · A. P. Nicolau
SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, WA, USA

D. Saah (B)
University of San Francisco, San Francisco, CA, USA
e-mail: dssaah@usfca.edu

N. Clinton
Google LLC, Mountain View, CA, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_4&domain=pdf
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:kdyson@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_4

68 K. Dyson et al.

Learning Outcomes

• Understanding spatial, temporal, and spectral resolution.
• Navigating the Earth Engine Console to gather information about a digital image,

including resolution and other data documentation.

Assumes you know how to

• Navigate among Earth Engine result tabs (Chap. 1).
• Visualize images with a variety of false-color band combinations (Chap. 2).

4.1 Introduction to Theory

Images and image collections form the basis of many remote sensing analyses
in Earth Engine. There are many different types of satellite imagery available to
use in these analyses, but not every dataset is appropriate for every analysis. To
choose the most appropriate dataset for your analysis, you should consider multi-
ple factors. Among these are the resolution of the dataset—including the spatial,
temporal, and spectral resolutions—as well as how the dataset was created and its
quality.

The resolution of a dataset can influence the granularity of the results, the
accuracy of the results, and how long it will take the analysis to run, among
other things. For example, spatial resolution, which you will learn more about
in Sect. 4.2.1, indicates the amount of Earth’s surface area covered by a single
pixel. One recent study compared the results of a land use classification (the pro-
cess by which different areas of the Earth’s surface are classified as forest, urban
areas, etc.) and peak total suspended solids (TSS) loads using two datasets with
different spatial resolutions. One dataset had pixels representing 900 m2 of the
Earth’s surface, and the other represented 1 m2. The higher resolution dataset (1
m2) had higher accuracy for the land use classification and better predicted TSS
loads for the full study area. On the other hand, the lower resolution dataset was
less costly and required less analysis time (Fisher et al. 2018).

Temporal and spectral resolutions can also strongly affect analysis outcomes.
In the Practicum that follows, we will showcase each of these types of resolu-
tion, along with key metadata types. We will also show you how to find more
information about the characteristics of a given dataset in Earth Engine.

4 The Remote Sensing Vocabulary 69

4.2 Practicum

4.2.1 Section 1: Searching for and Viewing Image Collection
Information

Earth Engine’s search bar can be used to find imagery and to locate important
information about datasets in Earth Engine. Let us use the search bar, located above
the Earth Engine code, to find out information about the Landsat 7 Collection 2
Raw Scenes. First, type “Landsat 7 collection 2” into the search bar (Fig. 4.1).
Without hitting Enter, matches to that search term will appear.

Now, click on USGS Landsat 7 Collection 2 Tier 1 Raw Scenes. A new inset
window will appear (Fig. 4.2).

The inset window has information about the dataset, including a description,
bands that are available, image properties, and terms of use for the data across
the top. Click on each of these tabs and read the information provided. While you
may not understand all of the information right now, it will set you up for success
in future chapters.

On the left-hand side of this window, you will see a range of dates when the data
are available, a link to the dataset provider’s webpage, and a collection snippet.
This collection snippet can be used to import the dataset by pasting it into your
script, as you did in previous chapters. You can also use the large Import button
to import the dataset into your current workspace. In addition, if you click on the
See example link, Earth Engine will open a new code window with a snippet of

Fig. 4.1 Searching for Landsat 7 in the search bar

70 K. Dyson et al.

Fig. 4.2 Inset window with information about the Landsat 7 dataset

code that shows code using the dataset. Code snippets like this can be very helpful
when learning how to use a dataset that is new to you.

For now, click on the small “pop out” button in the upper-right corner of the
window. This will open a new window with the same information (Fig. 4.3); you
can keep this new window open and use it as a reference as you proceed.

Switch back to your code window. Your “Landsat 7 collection 2” search term
should still be in the search bar. This time, click the “Enter” key or click on
the search magnifying glass icon. This will open a Search results inset window
(Fig. 4.4).

This more complete search results’ inset window contains short descriptions
about each of the datasets matching your search, to help you choose which dataset
you want to use. Click on the Open in Catalog button to view these search results
in the Earth Engine Data Catalog (Fig. 4.5). Note that you may need to click Enter
in the data catalog search bar with your phrase to bring up the results in this new
window.

Now that we know how to view this information, let us dive into some important
remote sensing terminology.

4 The Remote Sensing Vocabulary 71

Fig. 4.3 Data Catalog page for Landsat 7 with information about the dataset

4.2.2 Section 2: Spatial Resolution

Spatial resolution relates to the amount of Earth’s surface area covered by a single
pixel. It is typically referred to in linear units, for a single side of a square pixel:
for example, we typically say that Landsat 7 has “30 m” color imagery. This means
that each pixel is 30 m to a side, covering a total area of 900 m2 of the Earth’s
surface. Spatial resolution is often interchangeably also referred to as the scale,
as will be seen in this chapter when we print that value. The spatial resolution
of a given dataset greatly affects the appearance of images and the information in
them, when you are viewing them on Earth’s surface.

Next, we will visualize data from multiple sensors that capture data at dif-
ferent spatial resolutions, to compare the effect of different pixel sizes on the
information and detail in an image. We will be selecting a single image from each
ImageCollection to visualize. To view the image, we will draw them each as
a color-IR image, a type of false-color image (described in detail in Chap. 2) that
uses the infrared, red, and green bands. As you move through this portion of the
Practicum, zoom in and out to see differences in the pixel size and the image size.

72 K. Dyson et al.

Fig. 4.4 Search results matching “Landsat 7 collection 2”

MODIS (on the Aqua and Terra satellites)
As discussed in Chap. 3, the common resolution collected by MODIS for the
infrared, red, and green bands is 500 m. This means that each pixel is 500 m on a
side, with a pixel thus representing 0.25 km2 of area on the Earth’s surface.

Use the following code to center the map on the San Francisco airport at a
zoom level of 16.

4 The Remote Sensing Vocabulary 73

Fig. 4.5 Earth Engine Data Catalog results for the “Landsat 7 collection 2” search term

//////
// Explore spatial resolution
//////

// Define a region of interest as a point at San Francisco
airport.
var sfoPoint = ee.Geometry.Point(-122.3774, 37.6194);

// Center the map at that point.
Map.centerObject(sfoPoint, 16);

74 K. Dyson et al.

Fig. 4.6 Using the search bar for the MODIS dataset

Fig. 4.7 Rename the imported MODIS dataset

Let us use what we learned in the previous section to search for, get information
about, and import the MODIS data into our Earth Engine workspace. Start by
searching for “MODIS 500” in the Earth Engine search bar (Fig. 4.6).

Use this to import the “MOD09A1.061 Terra Surface Reflectance 8-day Global
500 m” ImageCollection. A default name for the import appears at the top
of your script; change the name of the import to mod09 (Fig. 4.7).

When exploring a new dataset, you can find the names of bands in images
from that set by reading the summary documentation, known as the metadata, of
the dataset. In this dataset, the three bands for a color-IR image are “sur_refl_b02”
(infrared), “sur_refl_b01” (red), and “sur_refl_b04” (green).

4 The Remote Sensing Vocabulary 75

// MODIS
// Get an image from your imported MODIS MYD09GA
collection.
var modisImage = mod09.filterDate('2020-02-01', '2020-03-
01').first();

// Use these MODIS bands for near infrared, red, and green,
respectively.
var modisBands = ['sur_refl_b02', 'sur_refl_b01',
'sur_refl_b04'];

// Define visualization parameters for MODIS.
var modisVis = {

bands: modisBands,
min: 0,
max: 3000

};

// Add the MODIS image to the map.
Map.addLayer(modisImage, modisVis, 'MODIS');

In your map window, you should now see something like this (Fig. 4.8).
You might be surprised to see that the pixels, which are typically referred to

as “square”, are shown as parallelograms. The shape and orientation of pixels are
controlled by the “projection” of the dataset, as well as the projection we are

Fig. 4.8 Viewing the MODIS image of the San Francisco airport

76 K. Dyson et al.

Fig. 4.9 Using transparency to view the MODIS pixel size in relation to high-resolution imagery
of the San Francisco airport

viewing them in. Most users do not have to be very concerned about different
projections in Earth Engine, which automatically transfers data between different
coordinate systems as it did here. For more details about projections in general
and their use in Earth Engine, you can consult the official documentation.

Let us view the size of pixels with respect to objects on the ground. Turn
on the satellite basemap to see high-resolution data for comparison by clicking
on Satellite in the upper-right corner of the map window. Then, decrease the
layer’s opacity: set the opacity in the Layers manager using the layer’s slider
(see Chap. 2). The result will look like Fig. 4.9.

Print the size of the pixels (in meters) by running this code:

// Get the scale of the data from the NIR band's
projection:
var modisScale = modisImage.select('sur_refl_b02')

.projection().nominalScale();

print('MODIS NIR scale:', modisScale);

In that call, we used the nominalScale function here after accessing the
projection information from the MODIS NIR band. That function extracts the spa-
tial resolution from the projection information, in a format suitable to be printed to
the screen. The nominalScale function returns a value just under the stated 500 m
resolution due to the sinusoidal projection of MODIS data and the distance of

4 The Remote Sensing Vocabulary 77

the pixel from nadir—that is, where the satellite is pointing directly down at the
Earth’s surface.

TM (on early Landsat satellites)
Thematic Mapper (TM) sensors were flown aboard Landsat 4 and 5. TM data
have been processed to a spatial resolution of 30 m, and were active from 1982 to
2012. Search for “Landsat 5 TM” and import the result called “USGS Landsat 5
TM Collection 2 Tier 1 Raw Scenes”. In the same way you renamed the MODIS
collection, rename the import tm. In this dataset, the three bands for a color-
IR image are called “B4” (infrared), “B3” (red), and “B2” (green). Let us now
visualize TM data over the airport and compare it with the MODIS data. Note that
we can either define the visualization parameters as a variable (as in the previous
code snippet) or place them in curly braces in the Map.addLayer function (as
in this code snippet).

When you run this code, the TM image will display. Notice how many
more pixels are displayed on your screen when compared to the MODIS image
(Fig. 4.10).

Fig. 4.10 Visualizing the TM imagery from the Landsat 5 satellite

78 K. Dyson et al.

// TM
// Filter TM imagery by location and date.
var tmImage = tm

.filterBounds(Map.getCenter())

.filterDate('1987-03-01', '1987-08-01')

.first();

// Display the TM image as a false color composite.
Map.addLayer(tmImage, {

bands: ['B4', 'B3', 'B2'],
min: 0,
max: 100

}, 'TM');

As we did for the MODIS data, let us check the scale. The scale is expressed
in meters:

// Get the scale of the TM data from its projection:
var tmScale = tmImage.select('B4')

.projection().nominalScale();

print('TM NIR scale:', tmScale);

MSI (on the Sentinel-2 satellites)
The MultiSpectral Instrument (MSI) flies aboard the Sentinel-2 satellites, which
are operated by the European Space Agency. The red, green, blue, and near-
infrared bands are captured at 10 m resolution, while other bands are captured at
20 and 30 m. The Sentinel-2A satellite was launched in 2015 and the 2B satellite
was launched in 2017.

Search for “Sentinel 2 MSI” in the search bar, and add the “Sentinel-2 MSI:
MultiSpectral Instrument, Level-1C” dataset to your workspace. Name it msi. In
this dataset, the three bands for a color-IR image are called “B8” (infrared), “B4”
(red), and “B3” (green).

4 The Remote Sensing Vocabulary 79

// MSI
// Filter MSI imagery by location and date.
var msiImage = msi

.filterBounds(Map.getCenter())

.filterDate('2020-02-01', '2020-04-01')

.first();

// Display the MSI image as a false color composite.
Map.addLayer(msiImage, {

bands: ['B8', 'B4', 'B3'],
min: 0,
max: 2000

}, 'MSI');

Compare the MSI imagery with the TM and MODIS imagery, using the opac-
ity slider. Notice how much more detail you can see on the airport terminal and
surrounding landscape. The 10 m spatial resolution means that each pixel covers
approximately 100 m2 of the Earth’s surface, a much smaller area than the TM
imagery (900 m2) or the MODIS imagery (0.25 km2) (Fig. 4.11).

The extent of the MSI image displayed is also smaller than that for the other
instruments we have looked at. Zoom out until you can see the entire San Francisco
Bay. The MODIS image covers the entire globe, the TM image covers the entire
San Francisco Bay and the surrounding area south toward Monterey, while the
MSI image captures a much smaller area (Fig. 4.12).

Check the scale of the MSI instrument (in meters):

Fig. 4.11 Visualizing the MSI imagery

80 K. Dyson et al.

Fig. 4.12 Visualizing the image size for the MODIS, Landsat 5 (TM instrument), and Sentinel-2
(MSI instrument) datasets

// Get the scale of the MSI data from its projection:
var msiScale = msiImage.select('B8')

.projection().nominalScale();
print('MSI scale:', msiScale);

NAIP
The National Agriculture Imagery Program (NAIP) is a US government program
to acquire imagery over the continental USA using airborne sensors. Data are
collected for each state approximately every three years. The imagery has a spatial
resolution of 0.5–2 m, depending on the state and the date collected.

Search for “naip” and import the dataset for “NAIP: National Agriculture
Imagery Program”. Name the import naip. In this dataset, the three bands for
a color-IR image are called “N” (infrared), “R” (red), and “G” (green).

4 The Remote Sensing Vocabulary 81

// NAIP
// Get NAIP images for the study period and region of
interest.
var naipImage = naip

.filterBounds(Map.getCenter())

.filterDate('2018-01-01', '2018-12-31')

.first();

// Display the NAIP mosaic as a color-IR composite.
Map.addLayer(naipImage, {

bands: ['N', 'R', 'G']
}, 'NAIP');

The NAIP imagery is even more spatially detailed than the Sentinel-2 MSI
imagery. However, we can see that our one NAIP image does not totally cover the
San Francisco airport. If you like, zoom out to see the boundaries of the NAIP
image as we did for the Sentinel-2 MSI imagery (Fig. 4.13).

And get the scale, as we did before.

Fig. 4.13 NAIP color-IR composite over the San Francisco airport

82 K. Dyson et al.

// Get the NAIP resolution from the first image in the
mosaic.
var naipScale = naipImage.select('N')

.projection().nominalScale();

print('NAIP NIR scale:', naipScale);

Each of the datasets we have examined has a different spatial resolution. By
comparing the different images over the same location in space, you have seen the
differences between the large pixels of MODIS, the medium-sized pixels of TM
(Landsat 5) and MSI (Sentinel-2), and the small pixels of the NAIP. Datasets with
large-sized pixels are also called “coarse resolution”, those with medium-sized
pixels are also called “moderate resolution”, and those with small-sized pixels are
also called “fine resolution”.

Code Checkpoint F13a. The book’s repository contains a script that shows what
your code should look like at this point.

4.2.3 Section 3: Temporal Resolution

Temporal resolution refers to the revisit time or temporal cadence of a particular
sensor’s image stream. Revisit time is the number of days between sequential
visits of the satellite to the same location on the Earth’s surface. Think of this as
the frequency of pixels in a time series at a given location.

Landsat
The Landsat satellites 5 and later are able to image a given location every 16 days.
Let us use our existing tm dataset from Landsat 5. To see the time series of images
at a location, you can filter an ImageCollection to an area and date range of
interest and then print it. For example, to see the Landsat 5 images for three
months in 1987, run the following code:

/////
// Explore Temporal Resolution
/////
// Use Print to see Landsat revisit time
print('Landsat-5 series:', tm

.filterBounds(Map.getCenter())

.filterDate('1987-06-01', '1987-09-01'));

4 The Remote Sensing Vocabulary 83

Fig. 4.14 Landsat image name and feature properties

// Create a chart to see Landsat 5's 16 day revisit time.
var tmChart = ui.Chart.image.series({

imageCollection: tm.select('B4').filterDate('1987-06-01',
'1987-09-01'),

region: sfoPoint
}).setSeriesNames(['NIR']);

Expand the features’ property of the printed ImageCollection in
the Console output to see a List of all the images in the collection.
Observe that the date of each image is part of the filename (e.g., LAND-
SAT/LT05/C02/T1/LT05_044034_19870628) (Fig. 4.14).

However, viewing this list does not make it easy to see the temporal resolution
of the dataset. We can use Earth Engine’s plotting functionality to visualize the
temporal resolution of different datasets. For each of the different temporal resolu-
tions, we will create a per-pixel chart of the NIR band that we mapped previously.
To do this, we will use the ui.Chart.image.series function.

The ui.Chart.image.series function requires you to specify a few
things in order to calculate the point to chart for each time step. First, we fil-
ter the ImageCollection (you can also do this outside the function and then
specify the ImageCollection directly). We select the B4 (near-infrared) band and
then select three months by using filterDate on the ImageCollection.
Next, we need to specify the location to chart; this is the region argument. We will
use the sfoPoint variable we defined earlier.

// Create a chart to see Landsat 5's 16 day revisit time.
var tmChart = ui.Chart.image.series({

imageCollection: tm.select('B4').filterDate('1987-06-
01',

'1987-09-01'),
region: sfoPoint

}).setSeriesNames(['NIR']);

By default, this function creates a trend line. It is difficult to see precisely when
each image was collected, so let us create a specialized chart style that adds points
for each observation.

84 K. Dyson et al.

// Define a chart style that will let us see the individual
dates.
var chartStyle = {

hAxis: {
title: 'Date'

},
vAxis: {

title: 'NIR Mean'
},
series: {

0: {
lineWidth: 3,
pointSize: 6

}
},

};

// Apply custom style properties to the chart.
tmChart.setOptions(chartStyle);

// Print the chart.
print('TM Chart', tmChart);

When you print the chart, it will have a point each time an image was collected
by the TM instrument (Fig. 4.15). In the Console, you can move the mouse over
the different points and see more information. Also note that you can expand the
chart using the button in the upper-right-hand corner. We will see many more
examples of charts, particularly in the chapters in Part IV.

Fig. 4.15 A chart showing the temporal cadence or temporal resolution of the Landsat 5 TM
instrument at the San Francisco airport

4 The Remote Sensing Vocabulary 85

Sentinel-2
The Sentinel-2 program’s two satellites are in coordinated orbits, so that each spot
on Earth gets visited about every 5 days. Within Earth Engine, images from these
two sensors are pooled in the same dataset. Let us create a chart using the MSI
instrument dataset we have already imported.

// Sentinel-2 has a 5 day revisit time.
var msiChart = ui.Chart.image.series({

imageCollection: msi.select('B8').filterDate('2020-06-
01',

'2020-09-01'),
region: sfoPoint

}).setSeriesNames(['NIR']);

// Apply the previously defined custom style properties to
the chart.
msiChart.setOptions(chartStyle);

// Print the chart.
print('MSI Chart', msiChart);

Compare this Sentinel-2 graph (Fig. 4.16) with the Landsat graph you just pro-
duced (Fig. 4.15). Both cover a period of six months, yet there are many more
points through time for the Sentinel-2 satellite, reflecting the greater temporal
resolution.

Code Checkpoint F13b. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 4.16 A chart showing the temporal cadence or temporal resolution of the Sentinel-2 MSI
instrument at the San Francisco airport

86 K. Dyson et al.

4.2.4 Section 4: Spectral Resolution

Spectral resolution refers to the number and width of spectral bands in which the
sensor takes measurements. You can think of the width of spectral bands as the
wavelength intervals for each band. A sensor that measures radiance in multiple
bands is called a multispectral sensor (generally 3–10 bands), while a sensor with
many bands (possibly hundreds) is called a hyperspectral sensor; however, these
are relative terms without universally accepted definitions.

Let us compare the multispectral MODIS instrument with the hyperspectral
Hyperion sensor aboard the EO-1 satellite, which is also available in Earth Engine.

MODIS
There is an easy way to check the number of bands in an image:

/////
// Explore spectral resolution
/////

// Get the MODIS band names as an ee.List
var modisBands = modisImage.bandNames();

// Print the list.
print('MODIS bands:', modisBands);

// Print the length of the list.
print('Length of the bands list:', modisBands.length());

Note that not all of the bands are spectral bands. As we did with the temporal
resolution, let us graph the spectral bands to examine the spectral resolution. If you
ever have questions about what the different bands in the band list are, remember
that you can find this information by visiting the dataset information page in Earth
Engine or the data or satellite’s webpage.

4 The Remote Sensing Vocabulary 87

// Graph the MODIS spectral bands (bands 11-17).

// Select only the reflectance bands of interest.
var reflectanceImage = modisImage.select(

'sur_refl_b01',
'sur_refl_b02',
'sur_refl_b03',
'sur_refl_b04',
'sur_refl_b05',
'sur_refl_b06',
'sur_refl_b07'

);

As before, we will customize the chart to make it easier to read.

// Define an object of customization parameters for the
chart.
var options = {

title: 'MODIS spectrum at SFO',
hAxis: {

title: 'Band'
},
vAxis: {

title: 'Reflectance'
},
legend: {

position: 'none'
},
pointSize: 3

};

And create a chart using the ui.Chart.image.regions function.

// Make the chart.
var modisReflectanceChart = ui.Chart.image.regions({

image: reflectanceImage,
regions: sfoPoint

}).setOptions(options);

// Display the chart.
print(modisReflectanceChart);

88 K. Dyson et al.

Fig. 4.17 Plot of TOA reflectance for MODIS

The resulting chart is shown in Fig. 4.17. Use the expand button in the upper
right to see a larger version of the chart than the one printed to the Console.

EO-1
Now, let us compare MODIS with the EO-1 satellite’s hyperspectral sensor. Search
for “eo-1” and import the “EO-1 Hyperion Hyperspectral Imager” dataset. Name
it eo1. We can look at the number of bands from the EO-1 sensor.

// Get the EO-1 band names as a ee.List
var eo1Image = eo1

.filterDate('2015-01-01', '2016-01-01')

.first();

// Extract the EO-1 band names.
var eo1Bands = eo1Image.bandNames();

// Print the list of band names.
print('EO-1 bands:', eo1Bands);

4 The Remote Sensing Vocabulary 89

Examine the list of bands that are printed in the Console. Notice how many
more bands the hyperspectral instrument provides.

Now let us create a reflectance chart as we did with the MODIS data.

// Create an options object for our chart.
var optionsEO1 = {

title: 'EO1 spectrum',
hAxis: {

title: 'Band'
},
vAxis: {

title: 'Reflectance'
},
legend: {

position: 'none'
},
pointSize: 3

};

// Make the chart and set the options.
var eo1Chart = ui.Chart.image.regions({

image: eo1Image,
regions: ee.Geometry.Point([6.10, 81.12])

}).setOptions(optionsEO1);

// Display the chart.
print(eo1Chart);

The resulting chart is shown in Fig. 4.18. There are so many bands that their
names only appear as “…”!

Fig. 4.18 Plot of TOA reflectance for EO-1 as displayed in the Console. Note the button to expand
the plot in the upper-right-hand corner

90 K. Dyson et al.

Fig. 4.19 Expanded plot of TOA reflectance for EO-1

If we click on the expand icon in the top right corner of the chart, it is a little
easier to see the band identifiers, as shown in Fig. 4.19.

Compare this hyperspectral instrument chart with the multispectral chart we
plotted above for MODIS.

Code Checkpoint F13c. The book’s repository contains a script that shows what
your code should look like at this point.

4.2.5 Section 5: Per-Pixel Quality

As you saw above, an image consists of many bands. Some of these bands contain
spectral responses of Earth’s surface, including the NIR, red, and green bands we
examined in the spectral resolution section. What about the other bands? Some of
these other bands contain valuable information, like pixel-by-pixel quality-control
data.

For example, Sentinel-2 has a QA60 band, which contains the surface
reflectance quality assurance information. Let us map it to inspect the values.

/////
// Examine pixel quality
/////

// Sentinel Quality Visualization.
var msiCloud = msi

.filterBounds(Map.getCenter())

.filterDate('2019-12-31', '2020-02-01')

.first();

Use the Inspector tool to examine some of the values. You may see values of
0 (black), 1024 (gray), and 2048 (white). The QA60 band has values of 1024 for

4 The Remote Sensing Vocabulary 91

opaque clouds and 2048 for cirrus clouds. Compare the false-color image with the
QA60 band to see these values. More information about how to interpret these
complex values is given in Chap. 15, which explains the treatment of clouds.

Code Checkpoint F13d. The book’s repository contains a script that shows what
your code should look like at this point.

4.2.6 Section 6: Metadata

In addition to band imagery and per-pixel quality flags, Earth Engine allows you
to access substantial amounts of metadata associated with an image. This can all
be easily printed to the Console for a single image.

Let us examine the metadata for the Sentinel-2 MSI.

/////
// Metadata
/////
print('MSI Image Metadata', msiImage);

Examine the object you have created in the Console (Fig. 4.20). Expand the
image name, then the properties object.

Fig. 4.20 Checking the “CLOUDY_PIXEL_PERCENTAGE” property in the metadata for
Sentinel-2

92 K. Dyson et al.

The first entry is the CLOUDY_PIXEL_PERCENTAGE information. Distinct
from the cloudiness flag attached to every pixel, this is an image-level summary
assessment of the overall cloudiness in the image. In addition to viewing the value,
you might find it useful to print it to the screen, for example, or to record a list of
cloudiness values in a set of images. Metadata properties can be extracted from an
image’s properties using the get function and printed to the Console.

// Image-level Cloud info
var msiCloudiness = msiImage.get('CLOUDY_PIXEL_PERCENTAGE');

print('MSI CLOUDY_PIXEL_PERCENTAGE:', msiCloudiness);

Code Checkpoint F13e. The book’s repository contains a script that shows what
your code should look like at this point.

4.3 Synthesis

Assignment 1. Recall the plots of spectral resolution we created for MODIS and
EO-1. Create a plot of spectral resolution for one of the other sensors described in
this chapter. What are the bands called? What wavelengths of the electromagnetic
spectrum do they correspond to?

Assignment 2. Recall how we extracted the spatial resolution and saved it to a
variable. In your code, set the following variables to the scales of the bands shown
in Table 4.1.

Assignment 3. Make this point in your code:
ee.Geometry.Point([-122.30144, 37.80215]). How many
MYD09A1 images are there in 2017 at this point? Set a variable called
mod09ImageCount with that value, and print it. How many Sentinel-2
MSI surface reflectance images are there in 2017 at this point? Set a variable
called msiImageCount with that value, and print it.

Table 4.1 Three datasets
and bands to use

Dataset Band Variable name

MODIS MYD09A1 sur_refl_b01 modisB01Scale

Sentinel-2 MSI B5 msiB5Scale

NAIP R naipScale

4 The Remote Sensing Vocabulary 93

4.4 Conclusion

A good understanding of the characteristics of your images is critical to your work
in Earth Engine and the chapters going forward. You now know how to observe
and query a variety of remote sensing datasets and can choose among them for
your work. For example, if you are interested in change detection, you might
require a dataset with spectral resolution including near-infrared imagery and a
fine temporal resolution. For analyses at a continental scale, you may prefer data
with a coarse spatial scale, while analyses for specific forest stands may benefit
from a very fine spatial scale.

Reference

Fisher JRB, Acosta EA, Dennedy-Frank PJ et al (2018) Impact of satellite imagery spatial resolu-
tion on land use classification accuracy and modeled water quality. Remote Sens Ecol Conserv
4:137–149. https://doi.org/10.1002/rse2.61

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1002/rse2.61
http://creativecommons.org/licenses/by/4.0/

Part II

Interpreting Images

Now that you know how images are viewed and what kinds of images exist in Earth
Engine, how do we manipulate them? To gain the skills of interpreting images, you’ll
work with bands, combining values to form indices and masking unwanted pixels.
Then, you’ll learn some of the techniques available in Earth Engine for classifying
images and interpreting the results.

5Image Manipulation: Bands,
Arithmetic, Thresholds, and Masks

Karen Dyson , Andréa Puzzi Nicolau , David Saah ,
and Nicholas Clinton

Overview
Once images have been identified in Earth Engine, they can be viewed in a wide
array of band combinations for targeted purposes. For users who are already versed
in remote sensing concepts, this chapter shows how to do familiar tasks on this
platform; for those who are entirely new to such concepts, it introduces the idea of
band combinations.

K. Dyson · A. P. Nicolau · D. Saah
Spatial Informatics Group, Pleasanton, California, USA
e-mail: kdyson@sig-gis.com

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson
Dendrolytics, Seattle, Washington, USA

K. Dyson · A. P. Nicolau
SERVIR-Amazonia, Cali, Colombia

D. Saah (B)
University of San Francisco, San Fransisco, California, USA
e-mail: dssaah@usfca.edu

N. Clinton
Google LLC, Inc, Mountain View, California, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_5

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_5&domain=pdf
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:kdyson@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_5

98 K. Dyson et al.

Learning Outcomes

• Understanding what spectral indices are and why they are useful.
• Being introduced to a range of example spectral indices used for a variety of

purposes.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).

5.1 Introduction to Theory

Spectral indices are based on the fact that different objects and land covers on
the Earth’s surface reflect different amounts of light from the Sun at different
wavelengths. In the visible part of the spectrum, for example, a healthy green
plant reflects a large amount of green light while absorbing blue and red light—
which is why it appears green to our eyes. Light also arrives from the Sun at
wavelengths outside what the human eye can see, and there are large differences
in reflectances between living and nonliving land covers and between different
types of vegetation, both in the visible and outside the visible wavelengths. We
visualized this earlier, in Chaps. 2 and 4 when we mapped color-infrared images
(Fig. 5.1).

Fig. 5.1 Mapped color-IR images from multiple satellite sensors that we mapped in Chap. 4.
The near-infrared spectrum is mapped as red, showing where there are high amounts of healthy
vegetation

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 99

Fig. 5.2 Graph of the amount of reflectance for different objects on the Earth’s surface at different
wavelengths in the visible and infrared portions of the electromagnetic spectrum. 1 µm (µm) =
1000 nm (nm)

If we graph the amount of light (reflectance) at different wavelengths that an
object or land cover reflects, we can visualize this more easily (Fig. 5.2). For exam-
ple, look at the reflectance curves for soil and water in the graph below. Soil and
water both have relatively low reflectance at wavelengths around 300 nm (ultravi-
olet and violet light). Conversely, at wavelengths above 700 nm (red and infrared
light), soil has relatively high reflectance, while water has very low reflectance.
Vegetation, meanwhile, generally reflects large amounts of near-infrared light,
relative to other land covers.

Spectral indices use math to express how objects reflect light across multiple
portions of the spectrum as a single number. Indices combine multiple bands, often
with simple operations of subtraction and division, to create a single value across
an image that is intended to help to distinguish particular land uses or land covers
of interest. Using Fig. 5.2, you can imagine which wavelengths might be the most
informative for distinguishing among a variety of land covers. We will explore a
variety of calculations made from combinations of bands in the following sections.

Indices derived from satellite imagery are used as the basis of many remote
sensing analyses. Indices have been used in thousands of applications, from detect-
ing anthropogenic deforestation to examining crop health. For example, the growth
of economically important crops such as wheat and cotton can be monitored
throughout the growing season: Bare soil reflects more red wavelengths, whereas
growing crops reflect more of the near-infrared (NIR) wavelengths. Thus, calcu-
lating a ratio of these two bands can help monitor how well crops are growing
(Jackson and Huete 1991).

100 K. Dyson et al.

5.2 Practicum

5.2.1 Section 1: Band Arithmetic in Earth Engine

Many indices can be calculated using band arithmetic in Earth Engine. Band arith-
metic is the process of adding, subtracting, multiplying, or dividing two or more
bands from an image. Here, we will first do this manually and then show you some
more efficient ways to perform band arithmetic in Earth Engine.

Arithmetic Calculation of NDVI
The red and near-infrared bands provide a lot of information about vegetation
due to vegetation’s high reflectance in these wavelengths. Take a look at Fig. 5.2
and note, in particular, that vegetation curves (graphed in green) have relatively
high reflectance in the NIR range (approximately 750–900 nm). Also note that
vegetation has low reflectance in the red range (approximately 630–690 nm),
where sunlight is absorbed by chlorophyll. This suggests that if the red and near-
infrared bands could be combined, they would provide substantial information
about vegetation.

Soon after the launch of Landsat 1 in 1972, analysts worked to devise a robust
single value that would convey the health of vegetation along a scale of −1 to 1.
This yielded the NDVI, using the formula:

NDVI = NIR − red
NIR + red , (5.1)

where NIR and red refer to the brightness of each of those two bands. As seen in
Chaps. 2 and 3, this brightness might be conveyed in units of reflectance, radiance,
or digital number (DN); the NDVI is intended to give nearly equivalent values
across platforms that use these wavelengths. The general form of this equation
is called a “normalized difference”—the numerator is the “difference” and the
denominator “normalizes” the value. Outputs for NDVI vary between −1 and 1.
High amounts of green vegetation have values around 0.8–0.9. Absence of green
leaves gives values near 0, and water gives values near −1.

To compute the NDVI, we will introduce Earth Engine’s implementation of
band arithmetic. Cloud-based band arithmetic is one of the most powerful aspects
of Earth Engine, because the platform’s computers are optimized for this type of
heavy processing. Arithmetic on bands can be done even at planetary scale very
quickly—an idea that was out of reach before the advent of cloud-based remote
sensing. Earth Engine automatically partitions calculations across a large number
of computers as needed and assembles the answer for display.

As an example, let us examine an image of San Francisco (Fig. 5.3).

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 101

Fig. 5.3 False-color Sentinel-2 imagery of San Francisco and surroundings

/////
// Band Arithmetic
/////

// Calculate NDVI using Sentinel 2

// Import and filter imagery by location and date.
var sfoPoint = ee.Geometry.Point(-122.3774, 37.6194);
var sfoImage = ee.ImageCollection('COPERNICUS/S2')

.filterBounds(sfoPoint)

.filterDate('2020-02-01', '2020-04-01')

.first();

// Display the image as a false color composite.
Map.centerObject(sfoImage, 11);
Map.addLayer(sfoImage, {

bands: ['B8', 'B4', 'B3'],
min: 0,
max: 2000

}, 'False color');

The simplest mathematical operations in Earth Engine are the add, subtract,
multiply, and divide methods. Let us select the near-infrared and red bands
and use these operations to calculate NDVI for our image.

102 K. Dyson et al.

// Extract the near infrared and red bands.
var nir = sfoImage.select('B8');
var red = sfoImage.select('B4');

// Calculate the numerator and the denominator using
subtraction and addition respectively.
var numerator = nir.subtract(red);
var denominator = nir.add(red);

// Now calculate NDVI.
var ndvi = numerator.divide(denominator);

// Add the layer to our map with a palette.
var vegPalette = ['red', 'white', 'green'];
Map.addLayer(ndvi, {

min: -1,
max: 1,
palette: vegPalette

}, 'NDVI Manual');

Examine the resulting index, using the Inspector to pick out pixel values in
areas of vegetation and non-vegetation if desired (Fig. 5.4).

Using these simple arithmetic tools, you can build almost any index or develop
and visualize your own. Earth Engine allows you to quickly and easily calculate
and display the index across a large area.

Fig. 5.4 NDVI calculated using Sentinel-2. Remember that outputs for NDVI vary between− 1
and 1. High amounts of green vegetation have values around 0.8–0.9. Absence of green leaves gives
values near 0, and water gives values near− 1

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 103

Single-Operation Computation of Normalized Difference for NDVI
Normalized differences like NDVI are so common in remote sensing that Earth
Engine provides the ability to do that particular sequence of subtraction, addition,
and division in a single step, using the normalizedDifference method. This
method takes an input image, along with bands you specify, and creates a normal-
ized difference of those two bands. The NDVI computation previously created
with band arithmetic can be replaced with one line of code:

// Now use the built-in normalizedDifference function to
achieve the same outcome.
var ndviND = sfoImage.normalizedDifference(['B8', 'B4']);
Map.addLayer(ndviND, {

min: -1,
max: 1,
palette: vegPalette

}, 'NDVI normalizedDiff');

Note that the order in which you provide the two bands to
normalizedDifference is important. We use B8, the near-infrared band, as
the first parameter, and the red band B4 as the second. If your two computations
of NDVI do not look identical when drawn to the screen, check to make sure that
the order you have for the NIR and red bands is correct.

Using Normalized Difference for NDWI
As mentioned, the normalized difference approach is used for many different
indices. Let us apply the same normalizedDifference method to another
index.

The Normalized Difference Water Index (NDWI) was developed by Gao (1996)
as an index of vegetation water content. The index is sensitive to changes in the
liquid content of vegetation canopies. This means that the index can be used, for
example, to detect vegetation experiencing drought conditions or differentiate crop
irrigation levels. In dry areas, crops that are irrigated can be differentiated from
natural vegetation. It is also sometimes called the Normalized Difference Moisture
Index (NDMI). NDWI is formulated as follows:

NDWI = NIR − SWIR

NIR + SWIR
, (5.2)

where NIR is near-infrared, centered near 860 nm (0.86 µm), and SWIR is
shortwave infrared, centered near 1240 nm (1.24 µm).

104 K. Dyson et al.

Compute and display NDWI in Earth Engine using the
normalizedDifference method. Remember that for Sentinel-2, B8 is
the NIR band and B11 is the SWIR band (refer to Chaps. 2 and 4 to find
information about imagery bands).

// Use normalizedDifference to calculate NDWI
var ndwi = sfoImage.normalizedDifference(['B8', 'B11']);
var waterPalette = ['white', 'blue'];
Map.addLayer(ndwi, {

min: -0.5,
max: 1,
palette: waterPalette

}, 'NDWI');

Examine the areas of the map that NDVI identified as having a lot of vegeta-
tion. Notice which are more blue. This is vegetation that has higher water content
(Fig. 5.5).

Fig. 5.5 NDWI displayed for Sentinel-2 over San Francisco

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 105

Code Checkpoint F20a. The book’s repository contains a script that shows what
your code should look like at this point.

5.2.2 Section 2: Thresholding, Masking, and Remapping Images

The previous section in this chapter discussed how to use band arithmetic to
manipulate images. Those methods created new continuous values by combining
bands within an image. This section uses logical operators to categorize band or
index values to create a categorized image.

Implementing a Threshold
Implementing a threshold uses a number (the threshold value) and logical operators
to help us partition the variability of images into categories. For example, recall
our map of NDVI. High amounts of vegetation have NDVI values near 1 and
non-vegetated areas are near 0. If we want to see what areas of the map have
vegetation, we can use a threshold to generalize the NDVI value in each pixel as
being either “no vegetation” or “vegetation”. That is a substantial simplification,
to be sure, but can help us to better comprehend the rich variation on the Earth’s
surface. This type of categorization may be useful if, for example, we want to
look at the proportion of a city that is vegetated. Let us create a Sentinel-2 map
of NDVI near Seattle, Washington, USA. Enter the code below in a new script
(Fig. 5.6).

Fig. 5.6 NDVI image of Sentinel-2 imagery over Seattle, Washington, USA

106 K. Dyson et al.

// Create an NDVI image using Sentinel 2.
var seaPoint = ee.Geometry.Point(-122.2040, 47.6221);
var seaImage = ee.ImageCollection('COPERNICUS/S2')

.filterBounds(seaPoint)

.filterDate('2020-08-15', '2020-10-01')

.first();

var seaNDVI = seaImage.normalizedDifference(['B8', 'B4']);

// And map it.
Map.centerObject(seaPoint, 10);
var vegPalette = ['red', 'white', 'green'];
Map.addLayer(seaNDVI,

{
min: -1,
max: 1,
palette: vegPalette

},
'NDVI Seattle');

Inspect the image. We can see that vegetated areas are darker green, while non-
vegetated locations are white and water is pink. If we use the Inspector to query
our image, we can see that parks and other forested areas have an NDVI over
about 0.5. Thus, it would make sense to define areas with NDVI values greater
than 0.5 as forested and those below that threshold as not forested.

Now, let us define that value as a threshold and use it to threshold our vegetated
areas.

// Implement a threshold.
var seaVeg = seaNDVI.gt(0.5);

// Map the threshold.
Map.addLayer(seaVeg,

{
min: 0,
max: 1,
palette: ['white', 'green']

},
'Non-forest vs. Forest');

The gt method is from the family of Boolean operators—that is, gt is a func-
tion that performs a test in each pixel and returns the value 1 if the test evaluates
to true, and 0 otherwise. Here, for every pixel in the image, it tests whether the

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 107

Fig. 5.7 Thresholded forest and non-forest image based on NDVI for Seattle, Washington, USA

NDVI value is greater than 0.5. When this condition is met, the layer seaVeg
gets the value 1. When the condition is false, it receives the value 0 (Fig. 5.7).

Use the Inspector tool to explore this new layer. If you click on a green loca-
tion, that NDVI should be greater than 0.5. If you click on a white pixel, the NDVI
value should be equal to or less than 0.5.

Other operators in this Boolean family include less than (lt), less than or equal
to (lte), equal to (eq), not equal to (neq), and greater than or equal to (gte)
and more.

Building Complex Categorizations with .where
A binary map classifying NDVI is very useful. However, there are situations where
you may want to split your image into more than two bins. Earth Engine provides
a tool, the where method, that conditionally evaluates to true or false within each
pixel depending on the outcome of a test. This is analogous to an if statement
seen commonly in other languages. However, to perform this logic when program-
ming for Earth Engine, we avoid using the JavaScript if statement. Importantly,
JavaScript if commands are not calculated on Google’s servers and can create
serious problems when running your code—in effect, the servers try to ship all
of the information to be executed to your own computer’s browser, which is very
underequipped for for such enormous tasks. Instead, we use the where clause for
conditional logic.

Suppose instead of just splitting the forested areas from the non-forested areas
in our NDVI, we want to split the image into likely water, non-forested, and
forested areas. We can use where and thresholds of −0.1 and 0.5. We will start
by creating an image using ee.Image. We then clip the new image so that it
covers the same area as our seaNDVI layer (Fig. 5.8).

108 K. Dyson et al.

// Implement .where.
// Create a starting image with all values = 1.
var seaWhere = ee.Image(1)

// Use clip to constrain the size of the new image.
.clip(seaNDVI.geometry());

// Make all NDVI values less than -0.1 equal 0.
seaWhere = seaWhere.where(seaNDVI.lte(-0.1), 0);

// Make all NDVI values greater than 0.5 equal 2.
seaWhere = seaWhere.where(seaNDVI.gte(0.5), 2);

// Map our layer that has been divided into three classes.
Map.addLayer(seaWhere,

{
min: 0,
max: 2,
palette: ['blue', 'white', 'green']

},
'Water, Non-forest, Forest');

There are a few interesting things to note about this code that you may not
have seen before. First, we are not defining a new variable for each where
call. As a result, we can perform many where calls without creating a new
variable each time and needing to keep track of them. Second, when we cre-
ated the starting image, we set the value to 1. This means that we could easily
set the bottom and top values with one where clause each. Finally, while we
did not do it here, we can combine multiple where clauses using and and or.
For example, we could identify pixels with an intermediate level of NDVI using
seaNDVI.gte(−0.1).and(seaNDVI.lt(0.5)).

Masking Specific Values in an Image
Masking an image is a technique that removes specific areas of an image—those
covered by the mask—from being displayed or analyzed. Earth Engine allows you
to both view the current mask and update the mask (Fig. 5.9).

// Implement masking.
// View the seaVeg layer's current mask.
Map.centerObject(seaPoint, 9);
Map.addLayer(seaVeg.mask(), {}, 'seaVeg Mask');

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 109

Fig. 5.8 Thresholded water, forest, and non-forest image based on NDVI for Seattle, Washington,
USA

Fig. 5.9 Existing mask for the seaVeg layer we created previously

You can use the Inspector to see that the black area is masked and the white
area has a constant value of 1. This means that data values are mapped and
available for analysis within the white area only.

Now suppose we only want to display and conduct analyses in the forested
areas. Let us mask out the non-forested areas from our image. First, we create a
binary mask using the equals (eq) method.

110 K. Dyson et al.

// Create a binary mask of non-forest.
var vegMask = seaVeg.eq(1);

In making a mask, you set the values you want to see and analyze to be a
number greater than 0. The idea is to set unwanted values to get the value of 0.
Pixels that had 0 values become masked out (in practice, they do not appear on
the screen at all) once we use the updateMask method to add these values to
the existing mask.

// Update the seaVeg mask with the non-forest mask.
var maskedVeg = seaVeg.updateMask(vegMask);

// Map the updated Veg layer
Map.addLayer(maskedVeg,

{
min: 0,
max: 1,
palette: ['green']

},
'Masked Forest Layer');

Turn off all of the other layers. You can see how the maskedVeg layer now
has masked out all non-forested areas (Fig. 5.10).

Map the updated mask for the layer and you can see why this is (Fig. 5.11).

Fig. 5.10 Updated mask now displays only the forested areas. Non-forested areas are masked out
and transparent

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 111

Fig. 5.11 Updated mask. Areas of non-forest are now masked out as well (black areas of the
image)

// Map the updated mask
Map.addLayer(maskedVeg.mask(), {}, 'maskedVeg Mask');

Remapping Values in an Image
Remapping takes specific values in an image and assigns them a different value.
This is particularly useful for categorical datasets, including those you read about
in Chap. 3 and those we have created earlier in this chapter.

Let us use the remap method to change the values for our seaWhere layer.
Note that since we are changing the middle value to be the largest, we will need
to adjust our palette as well.

// Implement remapping.
// Remap the values from the seaWhere layer.
var seaRemap = seaWhere.remap([0, 1, 2], // Existing values.
 [9, 11, 10]); // Remapped values.

Map.addLayer(seaRemap,
 {
 min: 9,
 max: 11,
 palette: ['blue', 'green', 'white']
 },
 'Remapped Values');

112 K. Dyson et al.

Fig. 5.12 For forested areas, the remapped layer has a value of 10, compared with the original
layer, which has a value of 2. You may have more layers in your Inspector

Use the inspector to compare values between our original seaWhere (dis-
played as Water, Non-Forest, Forest) and the seaRemap, marked as “Remapped
Values”. Click on a forested area and you should see that the Remapped Values
should be 10, instead of 2 (Fig. 5.12).

Code Checkpoint F20b. The book’s repository contains a script that shows what
your code should look like at this point.

5.3 Synthesis

Assignment 1. In addition to vegetation indices and other land cover indices, you
can use properties of different soil types to create geological indices (Drury 1987).
The Clay Minerals Ratio (CMR) is one of these (Nath et al. 2019). This index
highlights soils containing clay and alunite, which absorb radiation in the SWIR
portion (2.0–2.3 µm) of the spectrum.

CMR = SWIR 1

SWIR 2
.

SWIR 1 should be in the 1.55–1.75 µm range, and SWIR 2 should be
in the 2.08–2.35 µm range. Calculate and display CMR at the following
point: ee.Geometry.Point(−100.543, 33.456). Do not forget to use
Map.centerObject.

5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks 113

We have selected an area of Texas known for its clay soils. Compare this with
an area without clay soils (for example, try an area around Seattle or Tacoma,
Washington, USA). Note that this index will also pick up roads and other paved
areas.

Assignment 2. Calculate the Iron Oxide Ratio, which can be used to detect
hydrothermally altered rocks (e.g., from volcanoes) that contain iron-bearing
sulfides which have been oxidized (Segal 1982).

Here is the formula:

IOR = Red
Blue

.

Red should be the 0.63–0.69 µm spectral range and blue the 0.45–0.52 µm.
Using Landsat 8, you can also find an interesting area to map by considering
where these types of rocks might occur.

Assignment 3. Calculate the Normalized Difference Built-Up Index (NDBI) for
the sfoImage used in this chapter.

The NDBI was developed by Zha et al. (2003) to aid in differentiating urban
areas (e.g., densely clustered buildings and roads) from other land cover types.
The index exploits the fact that urban areas, which generally have a great deal of
impervious surface cover, reflect SWIR very strongly. If you like, refer back to
Fig. 5.2.

The formula is:

NDBI = SWIR − NIR
SWIR + NIR .

Using what we know about Sentinel-2 bands, compute NDBI and display it.
Bonus: Note that, NDBI is the negative of NDWI computed earlier. We can

prove this by using the JavaScript reverse method to reverse the palette used for
NDWI in Earth Engine. This method reverses the order of items in the JavaScript
list. Create a new palette for NDBI using the reverse method and display the map.
As a hint, here is code to use the reverse method.

var barePalette = waterPalette.reverse();

5.4 Conclusion

In this chapter, you learned how to select multiple bands from an image and calcu-
late indices. You also learned about thresholding values in an image, slicing them
into multiple categories using thresholds. It is also possible to work with one set
of class numbers and remap them quickly to another set. Using these techniques,

114 K. Dyson et al.

you have some of the basic tools of image manipulation. In subsequent chapters,
you will encounter more complex and specialized image manipulation techniques,
including pixel-based image transformations (Chap. 9), neighborhood-based image
transformations (Chap. 10), and object-based image analysis (Chap. 11).

References

Drury SA (1987) Image interpretation in geology
Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liq-

uid water from space. Remote Sens Environ 58:257–266. https://doi.org/10.1016/S0034-425
7(96)00067-3

Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11:185–200. https://
doi.org/10.1016/S0167-5877(05)80004-2

Nath B, Niu Z, Mitra AK (2019) Observation of short-term variations in the clay minerals ratio
after the 2015 Chile great earthquake (8.3 Mw) using Landsat 8 OLI data. J Earth Syst Sci
128:1–21. https://doi.org/10.1007/s12040-019-1129-2

Segal D (1982) Theoretical basis for differentiation of ferric-iron bearing minerals, using Land-
sat MSS data. In: Proceedings of symposium for remote sensing of environment, 2nd thematic
conference on remote sensing for exploratory geology, Fort Worth, TX, pp 949–951

Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping
urban areas from TM imagery. Int J Remote Sens 24(3):583–594

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0167-5877(05)80004-2
https://doi.org/10.1016/S0167-5877(05)80004-2
https://doi.org/10.1007/s12040-019-1129-2
http://creativecommons.org/licenses/by/4.0/

6Interpreting an Image: Classification

Andréa Puzzi Nicolau , Karen Dyson , David Saah ,
and Nicholas Clinton

Overview
Image classification is a fundamental goal of remote sensing. It takes the user from
viewing an image to labeling its contents. This chapter introduces readers to the
concept of classification and walks users through the many options for image classi-
fication in Earth Engine. You will explore the processes of training data collection,
classifier selection, classifier training, and image classification.

Learning Outcomes

• Running a classification in Earth Engine.
• Understanding the difference between supervised and unsupervised classification.

A. P. Nicolau · K. Dyson · D. Saah (B)
Spatial Informatics Group, Pleasanton, California, USA
e-mail: dssaah@usfca.edu

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson
e-mail: kdyson@sig-gis.com

A. P. Nicolau · K. Dyson
SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, Washington, USA

D. Saah
University of San Francisco, San Francisco, California, USA

N. Clinton
Google LLC, Mountain View, California, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_6&domain=pdf
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:dssaah@usfca.edu
mailto:apnicolau@sig-gis.com
mailto:kdyson@sig-gis.com
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_6

116 A. P. Nicolau et al.

• Learning how to use Earth Engine geometry drawing tools.
• Learning how to collect sample data in Earth Engine.
• Learning the basics of the hexadecimal numbering system.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Understand bands and how to select them (Chaps. 3 and 5).

6.1 Introduction to Theory

Classification is addressed in a broad range of fields, including mathematics,
statistics, data mining, machine learning, and more. For a deeper treatment of
classification, interested readers may see some of the following suggestions: Wit-
ten et al. (2011), Hastie et al. (2009), Goodfellow et al. (2016), Gareth et al. (2013),
Géron (2019), Müller and Guido (2016), or Witten et al. (2005). In classification,
the target variable is categorical or discrete, meaning it has a finite number of cat-
egories. Examples include predicting whether an email is spam or not, classifying
images into different objects, or determining whether a customer will churn or not.
On the other hand, regression predicts continuous variables, where the target vari-
able can take on any value within a range. Examples include predicting a person’s
income, the price of a house, or the temperature. Chapter 8 covers the concept and
application of image regression.

In remote sensing, image classification is an attempt to categorize all pixels
in an image into a finite number of labeled land cover and/or land use classes.
The resulting classified image is a simplified thematic map derived from the orig-
inal image (Fig. 6.1). Land cover and land use information is essential for many
environmental and socioeconomic applications, including natural resource man-
agement, urban planning, biodiversity conservation, agricultural monitoring, and
carbon accounting.

Image classification techniques for generating land cover and land use infor-
mation have been in use since the 1980s (Li et al. 2014). Here, we will cover the
concepts of pixel-based supervised and unsupervised classifications, testing out
different classifiers. Chapter 11 covers the concept and application of object-based
classification.

6.2 Practicum

It is important to define land use and land cover. Land cover relates to the physical
characteristics of the surface: Simply put, it documents whether an area of the
Earth’s surface is covered by forests, water, impervious surfaces, etc. Land use

6 Interpreting an Image: Classification 117

Fig. 6.1 Image classification concept

refers to how this land is being used by people. For example, herbaceous vegetation
is considered a land cover but can indicate different land uses: The grass in a
pasture is an agricultural land use, whereas the grass in an urban area can be
classified as a park.

6.2.1 Section 1: Supervised Classification

If you have not already done so, you can add the book’s code repository to
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The
book’s scripts will then be available in the script manager panel to view, run, or
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help
for help.

Supervised classification uses a training dataset with known labels and rep-
resenting the spectral characteristics of each land cover class of interest to
“supervise” the classification. The overall approach of a supervised classification
in Earth Engine is summarized as follows:

1. Get a scene.
2. Collect training data.
3. Select and train a classifier using the training data.
4. Classify the image using the selected classifier.

We will begin by creating training data manually, based on a clear Landsat image
(Fig. 6.2). Copy the code block below to define your Landsat 8 scene variable and
add it to the map. We will use a point in Milan, Italy, as the center of the area for
our image classification.

https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book

118 A. P. Nicolau et al.

Fig. 6.2 Landsat image

// Create an Earth Engine Point object over Milan.
var pt = ee.Geometry.Point([9.453, 45.424]);

// Filter the Landsat 8 collection and select the least
cloudy image.
var landsat = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterBounds(pt)

.filterDate('2019-01-01', '2020-01-01')

.sort('CLOUD_COVER')

.first();

// Center the map on that image.
Map.centerObject(landsat, 8);

// Add Landsat image to the map.
var visParams = {

bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 7000,
max: 12000

};
Map.addLayer(landsat, visParams, 'Landsat 8 image');

6 Interpreting an Image: Classification 119

Using the Geometry Tools, we will create points on the Landsat image that
represent land cover classes of interest to use as our training data. We’ll need to
do two things: (1) identify where each land cover occurs on the ground, and (2)
label the points with the proper class number. For this exercise, we will use the
classes and codes given in Table 6.1.

In the Geometry Tools, click on the marker option (Fig. 6.3). This will create
a point geometry which will show up as an import named “geometry.” Click on
the gear icon to configure this import.

We will start by collecting forest points, so name the import forest. Import it
as a FeatureCollection, and then click + Property. Name the new property
“class” and give it a value of 0 (Fig. 6.4). We can also choose a color to repre-
sent this class. For a forest class, it is natural to choose a green color. You can
choose the color you prefer by clicking on it, or, for more control, you can use a
hexadecimal value.

Hexadecimal values are used throughout the digital world to represent specific
colors across computers and operating systems. They are specified by six values
arranged in three pairs, with one pair each for the red, green, and blue brightness
values. If you’re unfamiliar with hexadecimal values, imagine for a moment that
colors were specified in pairs of base 10 numbers instead of pairs of base 16. In
that case, a bright pure red value would be “990000”; a bright pure green value
would be “009900”; and a bright pure blue value would be “000099”. A value like
“501263” would be a mixture of the three colors, not especially bright, having
roughly equal amounts of blue and red, and much less green: A color that would
be a shade of purple. To create numbers in the hexadecimal system, which might

Table 6.1 Land cover
classes

Class Class code

Forest 0

Developed 1

Water 2

Herbaceous 3

Fig. 6.3 Creating a new layer in the Geometry Imports

120 A. P. Nicolau et al.

Fig. 6.4 Edit geometry layer properties

feel entirely natural if humans had evolved to have 16 fingers, sixteen “digits” are
needed: A base 16 counter goes 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, then
10, 11, and so on. Given that counting framework, the number “FF” is like “99”
in base 10: the largest two-digit number. The hexadecimal color used for coloring
the letters of the word FeatureCollection in this book, a color with roughly
equal amounts of blue and red, and much less green, is “7F1FA2”.

Returning to the coloring of the forest points, the hexadecimal value
“589400” is a little bit of red, about twice as much green, and no blue: The deep
green is shown in Fig. 6.4. Enter that value, with or without the “#” in front and
click OK after finishing the configuration.

Now, in the Geometry Imports, we will see that the import has been renamed
forest. Click on it to activate the drawing mode (Fig. 6.5) in order to start
collecting forest points.

Now, start collecting points over forested areas (Fig. 6.6). Zoom in and out
as needed. You can use the satellite basemap to assist you, but the basis of your
collection should be the Landsat image. Remember that the more points you col-
lect, the more the classifier will learn from the information you provide. For now,
let us set a goal to collect 25 points per class. Click Exit next to Point drawing
(Fig. 6.5) when finished.

Repeat the same process for the other classes by creating new layers (Fig. 6.7).
Don’t forget to import using the FeatureCollection option as mentioned

6 Interpreting an Image: Classification 121

Fig. 6.5 Activate forest layer to start collection

Fig. 6.6 Forest points

above. For the developed class, collect points over urban areas. For the water
class, collect points over the Ligurian Sea and also look for other bodies of water,
like rivers. For the herbaceous class, collect points over agricultural fields.
Remember to set the “class” property for each class to its corresponding code
(see Table 6.1) and click Exit once you finalize collecting points for each class
as mentioned above. We will be using the following hexadecimal colors for the
other classes: #FF0000 for developed, #1A11FF for water, and #D0741E for
herbaceous.

Fig. 6.7 New layer option in Geometry Imports

122 A. P. Nicolau et al.

You should now have four FeatureCollection imports named forest,
developed, water, and herbaceous (Fig. 6.8).

Code Checkpoint F21a. The book’s repository contains a script that shows what
your code should look like at this point.

If you wish to have the exact same results demonstrated in this chapter from
now on, continue beginning with this Code Checkpoint. If you use the points
collected yourself, the results may vary from this point forward.

The next step is to combine all the training feature collections into one. Copy
and paste the code below to combine them into one FeatureCollection
called trainingFeatures. Here, we use the flatten method to avoid hav-
ing a collection of feature collections—we want individual features within our
FeatureCollection.

// Combine training feature collections.
var trainingFeatures = ee.FeatureCollection([

forest, developed, water, herbaceous
]).flatten();

Note: Alternatively, you could use an existing set of reference data. For exam-
ple, the European Space Agency (ESA) WorldCover dataset is a global map of
land use and land cover derived from ESA’s Sentinel-2 imagery at 10 m reso-
lution. With existing datasets, we can randomly place points on pixels classified

Fig. 6.8 Example of training points

6 Interpreting an Image: Classification 123

as the classes of interest (if you are curious, you can explore the Earth Engine
documentation to learn about the ee.Image.stratifiedSample and the
ee.FeatureCollection.randomPoints methods). The drawback is that
these global datasets will not always contain the specific classes of interest for
your region, or may not be entirely accurate at the local scale. Another option is
to use samples that were collected in the field (e.g., GPS points). In Chap. 22, you
will see how to upload your own data as Earth Engine assets.

In the combined FeatureCollection, each Feature point should have a
property called “class.” The class values are consecutive integers from 0 to 3 (you
could verify that this is true by printing trainingFeatures and checking the
properties of the features).

Now that we have our training points, copy and paste the code below to extract
the band information for each class at each point location. First, we define the
prediction bands to extract different spectral and thermal information from differ-
ent bands for each class. Then, we use the sampleRegions method to sample
the information from the Landsat image at each point location. This method
requires information about the FeatureCollection (our reference points),
the property to extract (“class”), and the pixel scale (in meters).

// Define prediction bands.
var predictionBands = [

'SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6',
'SR_B7','ST_B10'

];

// Sample training points.
var classifierTraining = landsat.select(predictionBands)

.sampleRegions({
collection: trainingFeatures,
properties: ['class'],
scale: 30

});

You can check whether the classifierTraining object extracted the
properties of interest by printing it and expanding the first feature. You should
see the band and class information (Fig. 6.9).

Now we can choose a classifier. The choice of classifier is not always obvious,
and there are many options from which to pick—you can quickly expand the
ee.Classifier object under Docs to get an idea of how many options we
have for image classification. Therefore, we will be testing different classifiers
and comparing their results. We will start with a Classification and Regression
Tree (CART) classifier, a well-known classification algorithm (Fig. 6.10) that has
been around for decades.

124 A. P. Nicolau et al.

Fig. 6.9 Example of extracted band information for one point of class 0 (forest)

Fig. 6.10 Example of a decision tree for satellite image classification. Values and classes are
hypothetical

6 Interpreting an Image: Classification 125

Copy and paste the code below to instantiate a CART classifier
(ee.Classifier.smileCart) and train it.

//////////////// CART Classifier ///////////////////

// Train a CART Classifier.
var classifier = ee.Classifier.smileCart().train({

features: classifierTraining,
classProperty: 'class',
inputProperties: predictionBands

});

Essentially, the classifier contains the mathematical rules that link labels to
spectral information. If you print the variable classifier and expand its prop-
erties, you can confirm the basic characteristics of the object (bands, properties,
and classifier being used). If you print classifier.explain, you can find a
property called “tree” that contains the decision rules.

After training the classifier, copy and paste the code below to classify the
Landsat image and add it to the Map.

// Classify the Landsat image.
var classified =
landsat.select(predictionBands).classify(classifier);

// Define classification image visualization parameters.
var classificationVis = {

min: 0,
max: 3,
palette: ['589400', 'ff0000', '1a11ff', 'd0741e']

};

// Add the classified image to the map.
Map.addLayer(classified, classificationVis, 'CART
classified');

Note that, in the visualization parameters, we define a palette parameter
which in this case represents colors for each pixel value (0–3, our class codes).
We use the same hexadecimal colors used when creating our training points for
each class. This way, we can associate a color with a class when visualizing the
classified image in the Map.

Inspect the result: Activate the Landsat composite layer and the satellite
basemap to overlay with the classified images (Fig. 6.11). Change the layers’
transparency to inspect some areas. What do you notice? The result might not
look very satisfactory in some areas (e.g., confusion between developed and

126 A. P. Nicolau et al.

Fig. 6.11 CART classification

herbaceous classes). Why do you think this is happening? There are a few
options to handle misclassification errors:

• Collect more training data: We can try incorporating more points to have a
more representative sample of the classes.

• Tune the model: Classifiers typically have “hyperparameters,” which are set
to default values. In the case of classification trees, there are ways to tune
the number of leaves in the tree, for example. Tuning models is addressed in
Chap. 7.

• Try other classifiers: If a classifier’s results are unsatisfying, we can try some
of the other classifiers in Earth Engine to see if the result is better or different.

• Expand the collection location: It is good practice to collect points across
the entire image and not just focus on one location. Also, look for pixels of
the same class that show variability (e.g., for the developed class, building
rooftops look different than house rooftops; for the herbaceous class, crop
fields show distinctive seasonality/phenology).

• Add more predictors: We can try adding spectral indices to the input vari-
ables; this way, we are feeding the classifier new, unique information about each
class. For example, there is a good chance that a vegetation index specialized
for detecting vegetation health (e.g., NDVI) would improve the developed
versus herbaceous classification.

6 Interpreting an Image: Classification 127

Fig. 6.12 General concept of Random Forest

For now, we will try another supervised learning classifier that is widely used:
Random Forest (RF). The RF algorithm (Breiman 2001; Pal 2005) builds on the
concept of decision trees, but adds strategies to make them more powerful. It
is called a “forest” because it operates by constructing a multitude of decision
trees (Fig. 6.12). As mentioned previously, a decision tree creates the rules which
are used to make decisions. A Random Forest will randomly choose features and
make observations, build a forest of decision trees and then use the full set of trees
to estimate the class. It is a great choice when you do not have a lot of insight
about the training data.

Copy and paste the code below to train the RF classifier
(ee.Classifier.smileRandomForest) and apply the classifier to the
image. The RF algorithm requires, as its argument, the number of trees to build.
We will use 50 trees.

128 A. P. Nicolau et al.

/////////////// Random Forest Classifier
/////////////////////

// Train RF classifier.
var RFclassifier =
ee.Classifier.smileRandomForest(50).train({

features: classifierTraining,
classProperty: 'class',
inputProperties: predictionBands

});

// Classify Landsat image.
var RFclassified =
landsat.select(predictionBands).classify(

RFclassifier);

// Add classified image to the map.
Map.addLayer(RFclassified, classificationVis, 'RF
classified');

Note that in the ee.Classifier.smileRandomForest documentation
(Docs tab), there is a seed (random number) parameter. Setting a seed allows
you to exactly replicate your model each time you run it. Any number is acceptable
as a seed.

Inspect the result (Fig. 6.13). How does this classified image differ from the
CART one? Is the classifications better or worse? Zoom in and out and change the
transparency of layers as needed. In Chap. 7, you will see more systematic ways
to assess what is better or worse, based on accuracy metrics.

Code Checkpoint F21b. The book’s repository contains a script that shows what
your code should look like at this point.

6.2.2 Section 2: Unsupervised Classification

In an unsupervised classification, we have the opposite process of supervised clas-
sification. Spectral classes are grouped first and then categorized into clusters.
Therefore, in Earth Engine, these classifiers are ee.Clusterer objects. They
are “self-taught” algorithms that do not use a set of labeled training data (i.e.,
they are “unsupervised”). You can think of it as performing a task that you have
not experienced before, starting by gathering as much information as possible. For
example, imagine learning a new language without knowing the basic grammar,
learning only by watching a TV series in that language, listening to examples, and
finding patterns.

Similar to the supervised classification, unsupervised classification in Earth
Engine has this workflow:

6 Interpreting an Image: Classification 129

Fig. 6.13 Random forest classified image

1. Assemble features with numeric properties in which to find clusters (training
data).

2. Select and instantiate a clusterer.
3. Train the clusterer with the training data.
4. Apply the clusterer to the scene (classification).
5. Label the clusters.

In order to generate training data, we will use the sample method, which
randomly takes samples from a region (unlike sampleRegions, which takes
samples from predefined locations). We will use the image’s footprint as the
region by calling the geometry method. Additionally, we will define the num-
ber of pixels (numPixels) to sample—in this case, 1000 pixels—and define a
tileScale of 8 to avoid computation errors due to the size of the region. Copy
and paste the code below to sample 1000 pixels from the Landsat image. You
should add to the same script as before to compare supervised versus unsupervised
classification results at the end.

130 A. P. Nicolau et al.

//////////////// Unsupervised classification
////////////////

// Make the training dataset.
var training = landsat.sample({

region: landsat.geometry(),
scale: 30,
numPixels: 1000,
tileScale: 8

});

Now we can instantiate a clusterer and train it. As with the supervised algo-
rithms, there are many unsupervised algorithms to choose from. We will use the
k-means clustering algorithm, which is a commonly used approach in remote sens-
ing. This algorithm identifies groups of pixels near each other in the spectral space
(image x bands) by using an iterative regrouping strategy. We define a number of
clusters, k, and then the method randomly distributes that number of seed points
into the spectral space. A large sample of pixels is then grouped into its closest
seed, and the mean spectral value of this group is calculated. That mean value is
akin to a center of mass of the points and is known as the centroid. Each iteration
recalculates the class means and reclassifies pixels with respect to the new means.
This process is repeated until the centroids remain relatively stable, and only a few
pixels change from class to class on subsequent iterations (Fig. 6.14).

Copy and paste the code below to request four clusters, the same number as for
the supervised classification, in order to directly compare them.

Fig. 6.14 K-means visual concept

6 Interpreting an Image: Classification 131

// Instantiate the clusterer and train it.
var clusterer =
ee.Clusterer.wekaKMeans(4).train(training);

Now copy and paste the code below to apply the clusterer to the image and add
the resulting classification to the Map (Fig. 6.15). Note that we are using a method
called randomVisualizer to assign colors for the visualization. We are not
associating the unsupervised classes with the color palette we defined earlier in the
supervised classification. Instead, we are assigning random colors to the classes,
since we do not yet know which of the unsupervised classes best corresponds to
each of the named classes (e.g., forest, herbaceous). Note that the colors in
Fig. 6.15 might not be the same as you see on your Map, since they are assigned
randomly.

Fig. 6.15 K-means classification

132 A. P. Nicolau et al.

// Cluster the input using the trained clusterer.
var Kclassified = landsat.cluster(clusterer);

// Display the clusters with random colors.
Map.addLayer(Kclassified.randomVisualizer(), {},

'K-means classified - random colors');

Inspect the results. How does this classification compare to the previous ones?
If preferred, use the Inspector to check which classes were assigned to each pixel
value (“cluster” band) and change the last line of your code to apply the same
palette used for the supervised classification results (see Code Checkpoint below
for an example).

Another key point of classification is the accuracy assessment of the results.
This will be covered in Chap. 7.

Code Checkpoint F21c. The book’s repository contains a script that shows what
your code should look like at this point.

6.3 Synthesis

Test if you can improve the classifications by completing the following assign-
ments.

Assignment 1. For the supervised classification, try collecting more points for each
class. The more points you have, the more spectrally represented the classes are.
It is good practice to collect points across the entire composite and not just focus
on one location. Also look for pixels of the same class that show variability. For
example, for the water class, collect pixels in parts of rivers that vary in color. For
the developed class, collect pixels from different rooftops.

Assignment 2. Add more predictors. Usually, the more spectral information you
feed the classifier, the easier it is to separate classes. Try calculating and incor-
porating a band of NDVI or the Normalized Difference Water Index (Chap. 5) as
a predictor band. Does this help the classification? Check for developed areas
that were being classified as herbaceous or vice versa.

Assignment 3. Use more trees in the Random Forest classifier. Do you see any
improvements compared to 50 trees? Note that the more trees you have, the longer
it will take to compute the results, and that more trees might not always mean
better results.

Assignment 4. Increase the number of samples that are extracted from the
composite in the unsupervised classification. Does that improve the result?

6 Interpreting an Image: Classification 133

Assignment 5. Increase the number k of clusters for the k-means algorithm. What
would happen if you tried 10 classes? Does the classified map result in meaningful
classes?

Assignment 6. Test other clustering algorithms. We only used k-means; try other
options under the ee.Clusterer object.

6.4 Conclusion

Classification algorithms are key for many different applications because they
allow you to predict categorical variables. You should now understand the dif-
ference between supervised and unsupervised classification and have the basic
knowledge on how to handle misclassifications. By being able to map the land-
scape for land use and land cover, we will also be able to monitor how it changes
(Part IV).

References

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:101093340
4324

Gareth J, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer
Géron A (2019) Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts,

tools, and techniques to build intelligent systems. O’Reilly Media, Inc.
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press
Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining,

inference, and prediction. Springer
Li M, Zang S, Zhang B et al (2014) A review of remote sensing image classification techniques:

the role of spatio-contextual information. Eur J Remote Sens 47:389–411. https://doi.org/10.
5721/EuJRS20144723

Müller AC, Guido S (2016) Introduction to machine learning with python: a guide for data scien-
tists. O’Reilly Media, Inc.

Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26:217–
222. https://doi.org/10.1080/01431160412331269698

Witten IH, Frank E, Hall MA, et al (2005) Practical machine learning tools and techniques. In:
Data mining, p 4

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.5721/EuJRS20144723
https://doi.org/10.5721/EuJRS20144723
https://doi.org/10.1080/01431160412331269698

134 A. P. Nicolau et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

7Accuracy Assessment: Quantifying
Classification Quality

Andréa Puzzi Nicolau , Karen Dyson , David Saah ,
and Nicholas Clinton

Overview
This chapter will enable you to assess the accuracy of an image classification. You
will learn about different metrics and ways to quantify classification quality in Earth
Engine. Upon completion, you should be able to evaluate whether your classification
needs improvement and know how to proceed when it does.

Learning Outcomes

• Learning how to perform accuracy assessment in Earth Engine.
• Understanding how to generate and read a confusion matrix.
• Understanding overall accuracy and the kappa coefficient.

A. P. Nicolau · K. Dyson · D. Saah (B)
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: dssaah@usfca.edu

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson
e-mail: kdyson@sig-gis.com

A. P. Nicolau · K. Dyson
SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, WA, USA

D. Saah
University of San Francisco, San Francisco, CA, USA

N. Clinton
Google LLC, Mountain View, CA, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_7

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_7&domain=pdf
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:dssaah@usfca.edu
mailto:apnicolau@sig-gis.com
mailto:kdyson@sig-gis.com
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_7

136 A. P. Nicolau et al.

• Understanding the difference between user’s and producer’s accuracy and the
difference between omission and commission errors.

Assumes you know how to

• Create a graph using ui.Chart (Chap. 4).
• Perform a supervised Random Forest image classification (Chap. 6).

7.1 Introduction to Theory

Any map or remotely sensed product is a generalization or model that will have
inherent errors. Products derived from remotely sensed data used for scientific pur-
poses and policymaking require a quantitative measure of accuracy to strengthen
the confidence in the information generated (Foody 2002; Strahler et al. 2006;
Olofsson et al. 2014). Accuracy assessment is a crucial part of any classification
project, as it measures the degree to which the classification agrees with another
data source that is considered to be accurate, ground-truth data (i.e., “reality”).

The history of accuracy assessment reveals increasing detail and rigor in the
analysis, moving from a basic visual appraisal of the derived map (Congalton
1994; Foody 2002) to the definition of best practices for sampling and response
designs and the calculation of accuracy metrics (Foody 2002; Stehman 2013; Olof-
sson et al. 2014; Stehman and Foody 2019). The confusion matrix (also called the
“error matrix”) (Stehman 1997) summarizes key accuracy metrics used to assess
products derived from remotely sensed data.

7.2 Practicum

In Chap. 6, we asked whether the classification results were satisfactory. In remote
sensing, the quantification of the answer to that question is called accuracy assess-
ment. In the classification context, accuracy measurements are often derived from
a confusion matrix.

In a thorough accuracy assessment, we think carefully about the sampling
design, the response design, and the analysis (Olofsson et al. 2014). Fundamental
protocols are taken into account to produce scientifically rigorous and transpar-
ent estimates of accuracy and area, which requires robust planning and time. In a
standard setting, we would calculate the number of samples needed for measuring
accuracy (sampling design). Here, we will focus mainly on the last step, analy-
sis, by examining the confusion matrix and learning how to calculate the accuracy
metrics. This will be done by partitioning the existing data into training and testing
sets.

7 Accuracy Assessment: Quantifying Classification Quality 137

7.2.1 Quantifying Classification Accuracy Through a Confusion
Matrix

To illustrate some of the basic ideas about classification accuracy, we will revisit
the data and location of part of Chap. 6, where we tested different classifiers
and classified a Landsat image of the area around Milan, Italy. We will name
this dataset ‘data’. This variable is a FeatureCollection with features
containing the “class” values (Table 7.1) and spectral information of four land
cover/land use classes: forest, developed, water, and herbaceous (see Figs. 6.8 and
6.9 for a refresher). We will also define a variable, predictionBands, which
is a list of bands that will be used for prediction (classification)—the spectral
information in the data variable.

The first step is to partition the set of known values into training and testing
sets in order to have something for the classifier to predict over that it has not been
shown before (the testing set), mimicking unseen data that the model might see in
the future. We add a column of random numbers to our FeatureCollection
using the randomColumn method. Then, we filter the features into about 80%
for training and 20% for testing using ee.Filter. Copy and paste the code
below to partition the data and filter features based on the random number.

// Import the reference dataset.
var data = ee.FeatureCollection(

'projects/gee-book/assets/F2-2/milan_data');

// Define the prediction bands.
var predictionBands = [

'SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6',
'SR_B7','ST_B10','ndvi', 'ndwi'
];

// Split the dataset into training and testing sets.
var trainingTesting = data.randomColumn();
var trainingSet = trainingTesting

.filter(ee.Filter.lessThan('random', 0.8));
var testingSet = trainingTesting

.filter(ee.Filter.greaterThanOrEquals('random', 0.8));

Table 7.1 Land cover
classes

Class Class value

Forest 0

Developed 1

Water 2

Herbaceous 3

https://doi.org/10.1007/978-3-031-26588-4_6
https://doi.org/10.1007/978-3-031-26588-4_6

138 A. P. Nicolau et al.

Table 7.2 Confusion matrix
for a binary classification
where the classes are
“positive” and “negative”

Actual values

Positive Negative

Predicted values Positive TP (true
positive)

FP (false
positive)

Negative FN (false
negative)

TN (true
negative)

Note that randomColumn creates pseudorandom numbers in a deterministic
way. This makes it possible to generate a reproducible pseudorandom sequence by
defining the seed parameter (Earth Engine uses a seed of 0 by default). In other
words, given a starting value (i.e., the seed), randomColumn will always provide
the same sequence of pseudorandom numbers.

Copy and paste the code below to train a Random Forest classifier with 50
decision trees using the trainingSet.

// Train the Random Forest Classifier with the
trainingSet.
var RFclassifier =
ee.Classifier.smileRandomForest(50).train({

features: trainingSet,
classProperty: 'class',
inputProperties: predictionBands

});

Now, let us discuss what a confusion matrix is. A confusion matrix describes the
quality of a classification by comparing the predicted values to the actual values.
A simple example is a confusion matrix for a binary classification into the classes
“positive” and “negative,” as given in Table 7.2.

In Table 7.2, the columns represent the actual values (the truth), while the rows
represent the predictions (the classification). “True positive” (TP) and “true nega-
tive” (TN) mean that the classification of a pixel matches the truth (e.g., a water
pixel correctly classified as water). “False positive” (FP) and “false negative” (FN)
mean that the classification of a pixel does not match the truth (e.g., a non-water
pixel incorrectly classified as water).

• TP: classified as positive, and the actual class is positive
• FP: classified as positive, and the actual class is negative
• FN: classified as negative, and the actual class is positive
• TN: classified as negative, and the actual class is negative.

We can extract some statistical information from a confusion matrix. Let us look
at an example to make this clearer. Table 7.3 is a confusion matrix for a sample

7 Accuracy Assessment: Quantifying Classification Quality 139

Table 7.3 Confusion matrix
for a binary classification
where the classes are
“positive” (forest) and
“negative” (non-forest)

Actual values

Positive Negative

Predicted values Positive 307 18

Negative 14 661

of 1000 pixels for a classifier that identifies whether a pixel is forest (positive) or
non-forest (negative), a binary classification.

In this case, the classifier correctly identified 307 forest pixels, wrongly classi-
fied 18 non-forest pixels as forest, correctly identified 661 non-forest pixels, and
wrongly classified 14 forest pixels as non-forest. Therefore, the classifier was cor-
rect 968 times and wrong 32 times. Let’s calculate the main accuracy metrics for
this example.

The overall accuracy tells us what proportion of the reference data was classi-
fied correctly and is calculated as the total number of correctly identified pixels
divided by the total number of pixels in the sample.

Overall Accuracy = (TP + TN)/Sample size

In this case, the overall accuracy is 96.8%, calculated using (307 + 661)/1000.
Two other important accuracy metrics are the producer’s accuracy and the

user’s accuracy, also referred to as the “recall” and the “precision,” respectively.
Importantly, these metrics quantify aspects of per-class accuracy.

The producer’s accuracy is the accuracy of the map from the point of view
of the map maker (the “producer”) and is calculated as the number of correctly
identified pixels of a given class divided by the total number of pixels actually in
that class. The producer’s accuracy for a given class tells us the proportion of the
pixels in that class that were classified correctly.

Producer’s accuracy of the Forest(Positive)class = TP/(TP + FN)

Producer’s accuracy of the Non - Forest(Negative)class = TN/(TN + FP)

In this case, the producer’s accuracy for the forest class is 95.6%, which is
calculated using 307/(307 + 14). The producer’s accuracy for the non-forest class
is 97.3%, which is calculated from 661/(661 + 18).

The user’s accuracy (also called the “consumer’s accuracy”) is the accuracy of
the map from the point of view of a map user and is calculated as the number of
correctly identified pixels of a given class divided by the total number of pixels
claimed to be in that class. The user’s accuracy for a given class tells us the
proportion of the pixels identified on the map as being in that class that are actually
in that class on the ground.

User’s accuracy of the Forest (Positive)class = TP/(TP + FP)

140 A. P. Nicolau et al.

User’s accuracy of the Non - Forest(Negative)class = TN/(TN + FN)

In this case, the user’s accuracy for the forest class is 94.5%, which is calculated
using 307/(307+18). The user’s accuracy for the non-forest class is 97.9%, which
is calculated from 661/(661 + 14).

Figure 7.1 helps visualize the rows and columns that are used to calculate each
accuracy.

It is very common to talk about two types of error when addressing remote
sensing classification accuracy: omission errors and commission errors. Omission
errors refer to the reference pixels that were left out of (omitted from) the correct
class in the classified map. In a two-class system, an error of omission in one class
will be counted as an error of commission in another class. Omission errors are
complementary to the producer’s accuracy.

Omission error = 100% − Producer’s accuracy

Fig. 7.1 Confusion matrix for a binary classification where the classes are “positive” (forest) and
“negative” (non-forest), with accuracy metrics

7 Accuracy Assessment: Quantifying Classification Quality 141

Commission errors refer to the class pixels that were erroneously classified in
the map and are complementary to the user’s accuracy.

Commission error = 100% − User’s accuracy

Finally, another commonly used accuracy metric is the kappa coefficient, which
evaluates how well the classification performed as compared to random. The value
of the kappa coefficient can range from − 1 to 1: A negative value indicates that the
classification is worse than a random assignment of categories would have been; a
value of 0 indicates that the classification is no better or worse than random; and
a positive value indicates that the classification is better than random.

Kappa Coefficient = observed accuracy − chance agreement

1 − chance agreement

The chance agreement is calculated as the sum of the product of row and
column totals for each class, and the observed accuracy is the overall accuracy.
Therefore, for our example, the kappa coefficient is 0.927.

Kappa Coefficient = 0.968 − [(0.321x0.325) + (0.679x0.675)]
1 − [(0.321x0.325) + (0.679x0.675)] = 0.927

Now, let’s go back to the script. In Earth Engine, there are API calls for these
operations. Note that our confusion matrix will be a 4×4 table, since we have
four different classes.

Copy and paste the code below to classify the testingSet and get a
confusion matrix using the method errorMatrix. Note that the classifier auto-
matically adds a property called “classification,” which is compared to the “class”
property of the reference dataset.

// Now, to test the classification (verify model's accuracy),
// we classify the testingSet and get a confusion matrix.
var confusionMatrix = testingSet.classify(RFclassifier)

.errorMatrix({
actual: 'class',
predicted: 'classification'

});

142 A. P. Nicolau et al.

Copy and paste the code below to print the confusion matrix and accuracy
metrics. Expand the confusion matrix object to inspect it. The entries represent
the number of pixels. Items on the diagonal represent correct classification. Items
off the diagonal are misclassifications, where the class in row i is classified as
column j (values from 0 to 3 correspond to our class codes: forest, developed,
water, and herbaceous, respectively). Also expand the producer’s accuracy, user’s
accuracy (consumer’s accuracy), and kappa coefficient objects to inspect them.

// Print the results.
print('Confusion matrix:', confusionMatrix);
print('Overall Accuracy:', confusionMatrix.accuracy());
print('Producers Accuracy:',
confusionMatrix.producersAccuracy());
print('Consumers Accuracy:',
confusionMatrix.consumersAccuracy());
print('Kappa:', confusionMatrix.kappa());

How is the classification accuracy? Which classes have higher accuracy com-
pared to the others? Can you think of any reasons why? (Hint: Check where the
errors in these classes are in the confusion matrix—i.e., being committed and
omitted.)

Code Checkpoint F22a. The book’s repository contains a script that shows what
your code should look like at this point.

7.2.2 Hyperparameter Tuning

We can also assess how the number of trees in the Random Forest classifier affects
the classification accuracy. Copy and paste the code below to create a function that
charts the overall accuracy versus the number of trees used. The code tests from 5
to 100 trees at increments of 5, producing Fig. 7.2. (Do not worry too much about
fully understanding each item at this stage of your learning. If you want to find
out how these operations work, you can see more in Chaps. 12 and 13).

7 Accuracy Assessment: Quantifying Classification Quality 143

// Hyperparameter tuning.
var numTrees = ee.List.sequence(5, 100, 5);

var accuracies = numTrees.map(function(t) {
var classifier = ee.Classifier.smileRandomForest(t)

.train({
features: trainingSet,
classProperty: 'class',
inputProperties: predictionBands

});
return testingSet

.classify(classifier)

.errorMatrix('class', 'classification')

.accuracy();
});

print(ui.Chart.array.values({
array: ee.Array(accuracies),
axis: 0,
xLabels: numTrees

}).setOptions({
hAxis: {

title: 'Number of trees'
},
vAxis: {

title: 'Accuracy'
},
title: 'Accuracy per number of trees'

}));

Fig. 7.2 Chart showing accuracy per number of random forest trees

144 A. P. Nicolau et al.

Code Checkpoint F22b. The book’s repository contains a script that shows what
your code should look like at this point.

7.2.3 Spatial Autocorrelation

We might also want to ensure that the samples from the training set are uncor-
related with the samples from the testing set. This might result from the spatial
autocorrelation of the phenomenon being predicted. One way to exclude samples
that might be correlated in this manner is to remove samples that are within some
distance to any other sample. In Earth Engine, this can be accomplished with a
spatial join. The following Code Checkpoint replicates Sect. 7.2.1 but with a spa-
tial join that excludes training points that are less than 1000 m distant from testing
points.

Code Checkpoint F22c. The book’s repository contains a script that shows what
your code should look like at this point.

7.3 Synthesis

Assignment 1. Based on Sect. 7.2.1, test other classifiers (e.g., a Classification and
Regression Tree or Support Vector Machine classifier) and compare the accuracy
results with the Random Forest results. Which model performs better?

Assignment 2. Try setting a different seed in the randomColumn method and
see how that affects the accuracy results. You can also change the split between
the training and testing sets (e.g., 70/30 or 60/40).

7.4 Conclusion

You should now understand how to calculate how well your classifier is performing
on the data used to build the model. This is a useful way to understand how a
classifier is performing, because it can help indicate which classes are performing
better than others. A poorly modeled class can sometimes be improved by, for
example, collecting more training points for that class.

Nevertheless, a model may work well on training data but work poorly in loca-
tions randomly chosen in the study area. To understand a model’s behavior on
testing data, analysts employ protocols required to produce scientifically rigorous
and transparent estimates of the accuracy and area of each class in the study region.
We will not explore those practices in this chapter, but if you are interested, there
are tutorials and papers available online that can guide you through the process.
Links to some of those tutorials can be found in the “For Further Reading” section
of this book.

7 Accuracy Assessment: Quantifying Classification Quality 145

References

Congalton R (1994) Accuracy assessment of remotely sensed data: future needs and directions. In:
Proceedings of Pecora 12 land information from space-based systems, pp 385–388

Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ
80:185–201. https://doi.org/10.1016/S0034-4257(01)00295-4

Olofsson P, Foody GM, Herold M et al (2014) Good practices for estimating area and assessing
accuracy of land change. Remote Sens Environ 148:42–57. https://doi.org/10.1016/j.rse.2014.
02.015

Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy.
Remote Sens Environ 62:77–89. https://doi.org/10.1016/S0034-4257(97)00083-7

Stehman SV (2013) Estimating area from an accuracy assessment error matrix. Remote Sens
Environ 132:202–211. https://doi.org/10.1016/j.rse.2013.01.016

Stehman SV, Foody GM (2019) Key issues in rigorous accuracy assessment of land cover products.
Remote Sens Environ 231:111199. https://doi.org/10.1016/j.rse.2019.05.018

Strahler AH, Boschetti L, Foody GM et al (2006) Global land cover validation: recommendations
for evaluation and accuracy assessment of global land cover maps. Eur Communities, Luxemb
51:1–60

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/S0034-4257(01)00295-4
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.1016/j.rse.2013.01.016
https://doi.org/10.1016/j.rse.2019.05.018
http://creativecommons.org/licenses/by/4.0/

Part III

Advanced Image Processing

Once you understand the basics of processing images in Earth Engine, this part will
present some of the more advanced processing tools available for treating individual
images. These include creating regressions among image bands, transforming images
with pixel-based and neighborhood-based techniques, and grouping individual pixels
into objects that can then be classified.

8Interpreting an Image: Regression

Karen Dyson , Andréa Puzzi Nicolau , David Saah ,
and Nicholas Clinton

Overview
This chapter introduces the use of regression to interpret imagery. Regression is one
of the fundamental tools you can use to move from viewing imagery to analyzing
it. In the present context, regression means predicting a numeric variable for a pixel
instead of a categorical variable, such as a class label.

Learning Outcomes

• Learning about Earth Engine reducers.
• Understanding the difference between regression and classification.
• Using reducers to implement regression between image bands.
• Evaluating regression model performance visually and numerically.

K. Dyson (B) · D. Saah
Spatial Informatics Group, Pleasanton, California, USA
e-mail: kdyson@sig-gis.com

D. Saah
e-mail: dsaah@usfca.edu

K. Dyson · A. P. Nicolau
SERVIR-Amazonia, Cali, Colombia
e-mail: apnicolau@sig-gis.com

K. Dyson
Dendrolytics, Seattle, Washington, USA

D. Saah
University of San Francisco, San Francisco, California, USA

N. Clinton
Google LLC, Mountain View, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_8

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_8&domain=pdf
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:kdyson@sig-gis.com
mailto:dsaah@usfca.edu
mailto:apnicolau@sig-gis.com
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_8

150 K. Dyson et al.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, and create masks

(Part II).
• Understand the characteristics of Landsat data and MODIS data (Chaps. 3, and

4).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Interpret variability of the NDVI, the Normalized Difference Vegetation Index

(Chap. 5).
• Have an understanding of regression.

8.1 Introduction to Theory

If you have already used regression in other contexts, this approach will be familiar
to you. Regression in remote sensing uses the same basic concepts as regression
in other contexts. We determine the strength and characteristics of the relation-
ship between the dependent variable and one or more independent variables to
better understand or forecast the dependent variable. In a remote-sensing context,
these dependent variables might be the likelihood of a natural disaster or a species
occurrence, while independent variables might be bands, indices, or other raster
datasets like tree height or soil type.

Importantly, we use regression for numeric dependent variables. Classification,
which is covered in Chap. 6, is used for categorical dependent variables, such as
land cover or land use.

Regression in remote sensing is a very powerful tool that can be used to answer
many important questions across large areas. For example, in China, researchers
used a random forest regression algorithm to estimate above-ground wheat biomass
based on vegetation indices (Zhou et al. 2016). In the United States, researchers
used regression to estimate bird species richness based on lidar measurements of
forest canopy (Goetz et al. 2007). In Kenya, researchers estimated tree species
diversity using vegetation indices including the tasseled cap transformation and
simple and multivariate regression analysis (Maeda et al. 2014).

8.2 Practicum

In general, regression in remote sensing follows a standard set of steps.

1. Data about known instances of the dependent variable are collected. This might
be known landslide areas, known areas of species occurrence, etc.

8 Interpreting an Image: Regression 151

2. The independent variables are defined and selected.
3. A regression is run to generate an equation that describes the relationship

between dependent and independent variables.
4. Optional: Using this equation and the independent variable layers, you create a

map of the dependent variable over the entire area.

While this set of steps remains consistent across regressions, there are multiple
types of regression functions to choose from, based on the properties of your
dependent and independent variables, and how many independent variables you
have. The choice of regression type in remote sensing follows the same logic as in
other contexts. There are many other excellent online resources and textbooks to
help you better understand regression and make your choice of regression method.
Here, we will focus on running regression in Google Earth Engine and some of
the different options available to you.

8.2.1 Reducers

A key goal of working with remote-sensing data is summarizing over space, time,
and band information to find relationships. Earth Engine provides a large set of
summary techniques for remote-sensing data, which fall under the collective term
reducers.

An example of a reducer of a set of numbers is the median, which finds the
middle number in a set, reducing the complexity of the large set to a represen-
tative estimate. That reducing operation is implemented in Earth Engine with
ee.Reducer.median., or for this particularly common operation, with the
shorthand operation median.

Reducers can operate on a pixel-by-pixel basis or with awareness of a pixel’s
surroundings. An example of a reducer of a spatial object is computing the median
elevation in a neighborhood, which can be implemented in Earth Engine by embed-
ding the call to ee.Reducer.median inside a reduceRegion function. The
reduceRegion call directs Earth Engine to analyze pixels that are grouped
across an area, allowing an area like a city block or park boundary to be con-
sidered as a unified unit of interest. Reducers can be used to summarize many
forms of data in Earth Engine, including image collections, images, lists, and fea-
ture collections. They are encountered throughout the rest of this book in a wide
variety of settings.

Reducers can be relatively simple, like the median, or more complex. Imagine a
1000-person sample of height and weight of individuals: a linear regression would
reduce the 2000 assembled values to just two: the slope and the intercept. Of
course the relationship might be weak or strong in a given set; the bigger idea is
that many operations of simplifying and summarizing large amounts of data can
be conceptualized using this idea and terminology of reducers.

152 K. Dyson et al.

In this chapter, we will illustrate reducers through their use in regressions of
bands in a single image and revisit regressions using analogous operations on time
series in other parts of the book.

8.3 Section 1: Linear Fit

The simplest regression available in Earth Engine is implemented through the
reducer linearFit. This function is a least squares estimate of a linear function
with one independent variable and one dependent variable. This regression equa-
tion is written Y = α + β X+ ε, where α is the intercept of the line and β is
the slope, Y is the dependent variable, X is the independent variable, and ε is the
error.

Suppose the goal is to estimate percent tree cover in each Landsat pixel, based
on known information about Turin, Italy. Below, we will define a geometry that is
a rectangle around Turin and name it Turin.

// Define a Turin polygon.
var Turin = ee.Geometry.Polygon(

[
[

[7.455553918110218, 45.258245019259036],
[7.455553918110218, 44.71237367431335],
[8.573412804828967, 44.71237367431335],
[8.573412804828967, 45.258245019259036]

]
], null, false);

// Center on Turin
Map.centerObject(Turin, 9);

We need to access data to use as our dependent variable. For this example,
we will use the “MOD44B.006 Terra Vegetation Continuous Fields Yearly Global
250 m” dataset. Add the code below to your script.

var mod44b = ee.ImageCollection('MODIS/006/MOD44B');

8 Interpreting an Image: Regression 153

Note: If the path to that ImageCollection were to change, you would get
an error when trying to access it. If this happens, you can search for “vegetation
continuous MODIS” to find it. Then, you could import it and change its name to
mod44b. This has the same effect as the one line above.

Next, we will access that part of the ImageCollection that represents
the global percent tree cover at 250 m resolution from 2020. We’ll access the
image from that time period using the filterDate command, convert that sin-
gle image to an Image type using the first command, clip it to Turin, and
select the appropriate band. We then print information about the new image
percentTree2020 to the Console.

/////
// Start Linear Fit
/////

// Put together the dependent variable by filtering the
// ImageCollection to just the 2020 image near Turin and
// selecting the percent tree cover band.
var percentTree2020 = mod44b

.filterDate('2020-01-01', '2021-01-01')

.first()

.clip(Turin)

.select('Percent_Tree_Cover');

// You can print information to the console for inspection.
print('2020 Image', percentTree2020);

Map.addLayer(percentTree2020, {
max: 100

}, 'Percent Tree Cover');

Now we need to access data to use as our independent variables. For this exam-
ple, we will use the “USGS Landsat 8 Collection 2 Tier 1 and Real-Time Data Raw
Scenes.” Add the code below to your script.

var landsat8_raw =
ee.ImageCollection('LANDSAT/LC08/C02/T1_RT');

154 K. Dyson et al.

Note: If the path to that ImageCollection changes, you will get an error
when trying to access it. If this happens, you can search for “Landsat 8 raw” to
find it. Then, import it and change its name to landsat8_raw.

We also need to filter this collection by date and location. We will filter the
collection to a clear (cloud-free) date in 2020 and then filter by location.

// Put together the independent variable.
var landsat8filtered = landsat8_raw

.filterBounds(Turin.centroid({
'maxError': 1

}))
.filterDate('2020-04-01', '2020-4-30')
.first();

print('Landsat8 filtered', landsat8filtered);

// Display the L8 image.
var visParams = {

bands: ['B4', 'B3', 'B2'],
max: 16000

};
Map.addLayer(landsat8filtered, visParams, 'Landsat 8
Image');

Using the centroid function will select images that intersect with the center of
our Turin geometry, instead of anywhere in the geometry.

Note that we are using a single image for the purposes of this exercise, but in
practice you will almost always need to filter an image collection to the boundaries
of your area of interest and then create a composite. In that case, you would use
a compositing Earth Engine algorithm to get a cloud-free composite of Landsat
imagery. If you’re interested in learning more about working with clouds, please
see Chap. 15.

Use the bands of the Landsat image to calculate NDVI, which we will use as
the independent variable:

// Calculate NDVI which will be the independent variable.
var ndvi = landsat8filtered.normalizedDifference(['B5',
'B4']);

Now we begin to assemble our data in Earth Engine into the correct format.
First, use the addBands function to create an image with two bands: first, the

8 Interpreting an Image: Regression 155

image ndvi, which will act as the independent variable; and second, the image
percentTree2020 created earlier.

// Create the training image.
var trainingImage = ndvi.addBands(percentTree2020);
print('training image for linear fit', trainingImage);

Now we can set up and run the regression, using the linear fit reducer over our
geometry and print the results. Since building the regression model requires assem-
bling points from around the image for consideration, it is implemented using
reduceRegion rather than reduce (see also Part V). We need to include the
scale variable (here 30 m, which is the resolution of Landsat).

// Independent variable first, dependent variable second.
// You need to include the scale variable.
var linearFit = trainingImage.reduceRegion({

reducer: ee.Reducer.linearFit(),
geometry: Turin,
scale: 30,
bestEffort: true

});

// Inspect the results.
print('OLS estimates:', linearFit);
print('y-intercept:', linearFit.get('offset'));
print('Slope:', linearFit.get('scale'));

Note the parameter bestEffort in the request to
ee.Reducer.linearFit. What does it mean? If you had tried to run
this without the bestEffort: true argument, you would most likely get an
error: “Image.reduceRegion: Too many pixels in the region.” This means that the
number of pixels involved has surpassed Earth Engine’s default maxPixels limit
of 10 million. The reason is the complexity of the regression we are requesting. If
you’ve ever done a regression using, say, 100 points, you may have seen or made
a scatter plot with the 100 points on it; now imagine a scatter plot with more
than 10 million points to envision the scale of what is being requested. Here, the
limitation is not Earth Engine’s computing capacity, but rather it is more like a
notification that the code is calling for an especially large computation, and that
a novice user may not be entirely intending to do something of that complexity.
The error text points to several ways to resolve this issue. First, we could increase
maxPixels. Second, we could aggregate at a lower resolution (e.g., increase
scale from 30 to 50 m). Third, we could set the bestEffort parameter to
true as we do here, which directs the reducer to use the highest resolution for

156 K. Dyson et al.

scale without going above maxPixels. Fourth, we could reduce the area for
the region (that is, make the study area around Turin smaller). Finally, we could
randomly sample the image stack and use that sample for the regression.

Finally, let’s apply the regression to the whole NDVI area, which is larger than
our Turin boundary polygon. The calculation is done with an expression, which
will be explained further in Chap. 9.

// Create a prediction based on the linearFit model.
var predictedTree = ndvi.expression(

'intercept + slope * ndvi', {
'ndvi': ndvi.select('nd'),
'intercept': ee.Number(linearFit.get('offset')),
'slope': ee.Number(linearFit.get('scale'))

});

print('predictedTree', predictedTree);

// Display the results.
Map.addLayer(predictedTree, {

max: 100
}, 'Predicted Percent Tree Cover');

Your estimates based on NDVI are a higher resolution than the MODIS data
because Landsat is 30 m resolution (Fig. 8.1). Notice where your estimates agree
with the MODIS data and where they disagree, if anywhere. In particular, look
at areas of agriculture. Since NDVI doesn’t distinguish between trees and other
vegetation, our model will estimate that agricultural areas have higher tree cover
percentages than the MODIS data (you can use the Inspector tool to verify this).

Code Checkpoint F30a. The book’s repository contains a script that shows what
your code should look like at this point.

8.3.1 Section 2: Linear Regression

The linear regression reducer allows us to increase the number of dependent
and independent variables. Let’s revisit our model of percent cover and try to
improve on our linear fit attempt by using the linear regression reducer with more
independent variables.

We will use our percentTree dependent variable.

8 Interpreting an Image: Regression 157

Fig. 8.1 Estimates of the same area based on MODIS (a) and NDVI (b)

158 K. Dyson et al.

For our independent variable, let’s revisit our Landsat 8 image collection.
Instead of using only NDVI, let’s use multiple bands. Define these bands to select:

//////
// Start Linear Regression
//////

// Assemble the independent variables.
var predictionBands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6',
'B7','B10', 'B11'
];

Now let’s assemble the data for the regression. For the constant term needed by
the linear regression, we use the ee.Image function to create an image with the
value (1) at every pixel. We then stack this constant with the Landsat prediction
bands and the dependent variable (percent tree cover).

// Create the training image stack for linear regression.
var trainingImageLR = ee.Image(1)

.addBands(landsat8filtered.select(predictionBands))

.addBands(percentTree2020);

print('Linear Regression training image:',
trainingImageLR);

Inspect your training image to make sure it has multiple layers: a constant term,
your independent variables (the Landsat bands), and your dependent variable.

Now we’ll implement the ee.Reducer.linearRegression reducer
function to run our linear regression. The reducer needs to know how many X,
or independent variables, and the number of Y, or dependent variables, you have.
It expects your independent variables to be listed first. Notice that we have used
reduceRegion rather than just reduce. This is because we are reducing over
the Turin geometry, meaning that the reducer’s activity is across multiple pix-
els comprising an area, rather than “downward” through a set of bands or an
ImageCollection. As mentioned earlier, you will likely get an error that
there are too many pixels included in your regression if you do not use the
bestEffort variable.

8 Interpreting an Image: Regression 159

// Compute ordinary least squares regression coefficients
using
// the linearRegression reducer.
var linearRegression = trainingImageLR.reduceRegion({

reducer: ee.Reducer.linearRegression({
numX: 10,
numY: 1

}),
geometry: Turin,
scale: 30,
bestEffort: true

});

There is also a robust linear regression reducer
(ee.Reducer.robustLinearRegression). This linear regression
approach uses regression residuals to de-weight outliers in the data following
(O’Leary 1990).

Let’s inspect the results. We’ll focus on the results of
linearRegression, but the same applies to inspecting the results of the
robustLinearRegression reducer.

// Inspect the results.
print('Linear regression results:', linearRegression);

The output is an object with two properties. First is a list of coefficients (in the
order specified by the inputs list) and second is the root-mean-square residual.

To apply the regression coefficients to make a prediction over the entire area,
we will first turn the output coefficients into an image, then perform the requisite
math.

// Extract the coefficients as a list.
var coefficients =
ee.Array(linearRegression.get('coefficients'))

.project([0])

.toList();

print('Coefficients', coefficients);

This code extracts the coefficients from our linear regression and converts them
to a list. When we first extract the coefficients, they are in a matrix (essentially 10
lists of 1 coefficient). We use project to remove one of the dimensions from
the matrix so that they are in the correct data format for subsequent steps.

160 K. Dyson et al.

Now we will create the predicted tree cover based on the linear regression.
First, we create an image stack starting with the constant (1) and use addBands
to add the prediction bands. Next, we multiply each of the coefficients by their
respective X (independent variable band) using multiply and then sum all of
these using ee.Reducer.sum in order to create the estimate of our dependent
variable. Note that we are using the rename function to rename the band (if
you don’t rename the band, it will have the default name “sum” from the reducer
function).

// Create the predicted tree cover based on linear
regression.
var predictedTreeLR = ee.Image(1)

.addBands(landsat8filtered.select(predictionBands))

.multiply(ee.Image.constant(coefficients))

.reduce(ee.Reducer.sum())

.rename('predictedTreeLR')

.clip(landsat8filtered.geometry());

Map.addLayer(predictedTreeLR, {
min: 0,
max: 100

}, 'LR prediction');

Carefully inspect this result using the satellite imagery provided by Google and
the input Landsat data (Fig. 8.2). Does the model predict high forest cover in
forested areas? Does it predict low forest cover in unforested areas, such as urban
areas and agricultural areas? Note where the model is making mistakes. Are there
any patterns? For example, look at the mountainous slopes. One side has a high
value and the other side has a low value for predicted forest cover. However, it
appears that neither side of the mountain has vegetation above the treeline. This
suggests a fault with the model having to do with the aspect of the terrain (the
compass direction in which the terrain surface faces) and some of the bands used.

When you encounter model performance issues that you find unsatisfactory, you
may consider adding or subtracting independent variables, testing other regression
functions, collecting more training data, or all of the above.

Code Checkpoint F30b. The book’s repository contains a script that shows what
your code should look like at this point.

8 Interpreting an Image: Regression 161

Fig. 8.2 Examining the results of the linear regression model. Note that the two sides of this
mountain have different forest prediction values, despite being uniformly forested. This suggests
there might be a fault with the model having to do with the aspect

8.3.2 Section 3: Nonlinear Regression

Earth Engine also allows the user to perform nonlinear regression. Nonlinear
regression allows for nonlinear relationships between the independent and depen-
dent variables. Unlike linear regression, which is implemented via reducers, this
nonlinear regression function is implemented by the classifier library. The clas-
sifier library also includes supervised and unsupervised classification approaches
that were discussed in Chap. 6 as well as some of the tools used for accuracy
assessment in Chap. 7.

For example, a classification and regression tree (CART; see Breiman et al.
2017) is a machine learning algorithm that can learn nonlinear patterns in your
data. Let’s reuse our dependent variables and independent variables (Landsat
prediction bands) from above to train the CART in regression mode.

For CART we need to have our input data as a feature collection. For more
on feature collections, see the chapters in Part V. Here, we first need to create a
training data set based on the independent and dependent variables we used for
the linear regression section. We will not need the constant term.

/////
// Start Non-linear Regression
/////
// Create the training data stack.
var trainingImageCART =
ee.Image(landsat8filtered.select(predictionBands))

.addBands(percentTree2020);

162 K. Dyson et al.

Now sample the image stack to create the feature collection training data
needed. Note that we could also have used this approach in previous regressions
instead of the bestEffort approach we did use.

// Sample the training data stack.
var trainingData = trainingImageCART.sample({

region: Turin,
scale: 30,
numPixels: 1500,
seed: 5

});

// Examine the CART training data.
print('CART training data', trainingData);

Now run the regression. The CART regression function must first be trained
using the trainingData. For the train function, we need to provide
the features to use to train (trainingData), the name of the depen-
dent variable (classProperty), and the name of the independent variables
(inputProperties). Remember that you can find these band names if needed
by inspecting the trainingData item.

// Run the CART regression.
var cartRegression = ee.Classifier.smileCart()

.setOutputMode('REGRESSION')

.train({
features: trainingData,
classProperty: 'Percent_Tree_Cover',
inputProperties: predictionBands

});

Now we can use this object to make predictions over the input imagery and
display the result:

8 Interpreting an Image: Regression 163

// Create a prediction of tree cover based on the CART
regression.
var cartRegressionImage =
landsat8filtered.select(predictionBands)

.classify(cartRegression, 'cartRegression');

Map.addLayer(cartRegressionImage, {
min: 0,
max: 100

}, 'CART regression');

Turn on the satellite imagery from Google and examine the output of the CART
regression using this imagery and the Landsat 8 imagery.

8.3.3 Section 4: Assessing Regression Performance Through
RMSE

A standard measure of performance for regression models is the root-mean-square
error (RMSE), or the correlation between known and predicted values. The RMSE
is calculated as follows:

RMSE =
/∑ (Predictedi − Actuali)2

n
(8.1)

To assess the performance, we will create a sample from the percent tree cover
layer and from each regression layer (the predictions from the linear fit, the linear
regression, and CART regression). First, using the ee.Image.cat function, we
will concatenate all of the layers into one single image where each band of this
image contains the percent tree cover and the predicted values from the different
regressions. We use the rename function (Chap. 2) to rename the bands to mean-
ingful names (tree cover percentage and each model). Then we will extract 500
sample points (the “n” from the equation above) from the single image using the
sample function to calculate the RMSE for each regression model. We print the
first feature from the sample collection to visualize its properties—values from the
percent tree cover and regression models at that point (Fig. 8.3), as an example.

164 K. Dyson et al.

Fig. 8.3 First point from the sample FeatureCollection showing the actual tree cover percentage
and the regression predictions. These values may differ from what you see

/////
// Calculating RMSE to assess model performance
/////

// Concatenate percent tree cover image and all
predictions.
var concat = ee.Image.cat(percentTree2020,

predictedTree,
predictedTreeLR,
cartRegressionImage)

.rename([
'TCpercent',
'LFprediction',
'LRprediction',
'CARTprediction'

]);

// Sample pixels
var sample = concat.sample({

region: Turin,
scale: 30,
numPixels: 500,
seed: 5

});

print('First feature in sample', sample.first());

8 Interpreting an Image: Regression 165

In Earth Engine, the RMSE can be calculated by steps. We first define a function
to calculate the squared difference between the predicted value and the actual
value. We do this for each regression result.

// First step: This function computes the squared
difference between
// the predicted percent tree cover and the known percent
tree cover
var calculateDiff = function(feature) {

var TCpercent = ee.Number(feature.get('TCpercent'));
var diffLFsq = ee.Number(feature.get('LFprediction'))

.subtract(TCpercent).pow(2);
var diffLRsq = ee.Number(feature.get('LRprediction'))

.subtract(TCpercent).pow(2);
var diffCARTsq =

ee.Number(feature.get('CARTprediction'))
.subtract(TCpercent).pow(2);

// Return the feature with the squared difference set
to a 'diff' property.

return feature.set({
'diffLFsq': diffLFsq,
'diffLRsq': diffLRsq,
'diffCARTsq': diffCARTsq

});
};

Now, we can apply this function to our sample and use the reduceColumns
function to take the mean value of the squared differences and then calculate the
square root of the mean value.

166 K. Dyson et al.

// Second step: Calculate RMSE for population of
 pairs.
var rmse = ee.List([ee.Number(

// Map the difference function over the collection.
sample.map(calculateDiff)
// Reduce to get the mean squared difference.
.reduceColumns({

reducer: ee.Reducer.mean().repeat(3),
selectors: ['diffLFsq', 'diffLRsq',

'diffCARTsq'
]

}).get('mean')
// Flatten the list of lists.

)]).flatten().map(function(i) {
// Take the square root of the mean square differences.
return ee.Number(i).sqrt();

});

// Print the result.
print('RMSE', rmse);

difference

Note the following (do not worry too much about fully understanding each item
at this stage of your learning; just keep in mind that this code block calculates the
RMSE value):

• We start by casting an ee.List since we are calculating three different val-
ues—which is also the reason to cast ee.Number at the beginning. Also, it is
not possible to map a function to a ee.Number object—another reason why
we need the ee.List.

• Since we have three predicted values we used repeat(3) for the reducer
parameter of the reduceColumns function—i.e., we want the mean value for
each of the selectors (the squared differences).

• The direct output of reduceColumns is a dictionary, so we need to use
get(’mean’) to get these specific key values.

• At this point, we have a “list of lists,” so we use flatten to dissolve it into
one list

• Finally, we map the function to calculate the square root of each mean value
for the three results.

• The RMSE values are in the order of the selectors; thus, the first value is
the linear fit RMSE, followed by the linear regression RMSE, and finally the
CART RMSE.

Inspect the RMSE values on the Console. Which regression performed best? The
lower the RMSE, the better the result.

8 Interpreting an Image: Regression 167

Code Checkpoint F30c. The book’s repository contains a script that shows what
your code should look like at this point.

8.4 Synthesis

Assignment 1. Examine the CART output you just created. How does the non-
linear CART output compare with the linear regression we ran previously? Use
the inspect tool to check areas of known forest and non-forest (e.g., agricultural
and urban areas). Do the forested areas have a high predicted percent tree cover
(will display as white)? Do the non-forested areas have a low predicted percent
tree cover (will display as black)? Do the alpine areas have low predicted percent
tree cover, or do they have the high/low pattern based on aspect seen in the linear
regression?

Assignment 2. Revisit our percent tree cover regression examples. In these, we
used a number of bands from Landsat 8, but there are other indices, transforms,
and datasets that we could use for our independent variables.

For this assignment, work to improve the performance of this regression.
Consider adding or subtracting independent variables, testing other regression
functions, using more training data (a larger geometry for Turin), or all of the
above. Don’t forget to document each of the steps you take. What model settings
and inputs are you using for each model run?

To improve the model, think about what you know about tree canopies and tree
canopy cover. What spectral signature do the deciduous trees of this region have?
What indices are useful for detecting trees? How do you distinguish trees from
other vegetation? If the trees in this region are deciduous, what time frame would
be best to use for the Landsat 8 imagery? Consider seasonality—how do these
forests look in summer versus winter?

Practice your visual assessment skills. Ask critical questions about the results
of your model iterations. Why do you think one model is better than another?

8.5 Conclusion

Regression is a fundamental tool that you can use to analyze remote-sensing
imagery. Regression specifically allows you to analyze and predict numeric depen-
dent variables, while classification allows for the analysis and prediction of
categorical variables (see Chap. 6). Regression analysis in Earth Engine is flexible
and implemented via reducers (linear regression approaches) and via classifiers
(nonlinear regression approaches). Other forms of regression will be discussed in
Chap. 18 and the chapters that follow.

168 K. Dyson et al.

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (2017) Classification and regression trees. Rout-
ledge

Goetz S, Steinberg D, Dubayah R, Blair B (2007) Laser remote sensing of canopy habitat hetero-
geneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens
Environ 108:254–263. https://doi.org/10.1016/j.rse.2006.11.016

Maeda EE, Heiskanen J, Thijs KW, Pellikka PKE (2014) Season-dependence of remote sensing
indicators of tree species diversity. Remote Sens Lett 5:404–412. https://doi.org/10.1080/215
0704X.2014.912767

O’Leary DP (1990) Robust regression computation using iteratively reweighted least squares.
SIAM J Matrix Anal Appl 11:466–480. https://doi.org/10.1137/0611032

Zhou X, Zhu X, Dong Z et al (2016) Estimation of biomass in wheat using random forest regression
algorithm and remote sensing data. Crop J 4:212–219. https://doi.org/10.1016/j.cj.2016.01.008

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.rse.2006.11.016
https://doi.org/10.1080/2150704X.2014.912767
https://doi.org/10.1080/2150704X.2014.912767
https://doi.org/10.1137/0611032
https://doi.org/10.1016/j.cj.2016.01.008
http://creativecommons.org/licenses/by/4.0/

9Advanced Pixel-Based Image
Transformations

Karen Dyson , Andréa Puzzi Nicolau , Nicholas Clinton ,
and David Saah

Overview

Using bands and indices is often not sufficient for obtaining high-quality image
classifications. This chapter introduces the idea of more complex pixel-based band
manipulations that can extract more information for analysis, building on what was
presented in Part I and Part II. We will first learn how to manipulate images with
expressions and then move on to more complex linear transformations that leverage
matrix algebra.

Learning Outcomes

• Understanding what linear transformations are and why pixel-based image
transformations are useful.

K. Dyson · A. P. Nicolau · D. Saah
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: kdyson@sig-gis.com

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson · A. P. Nicolau
SERVIR-Amazonia, Cali, Colombia

N. Clinton
Google LLC, Inc, Mountain View, CA, USA
e-mail: nclinton@google.com

D. Saah (B)
University of San Francisco, San Francisco, CA, USA
e-mail: dssaah@usfca.edu

K. Dyson
Dendrolytics, Seattle, WA, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_9

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_9&domain=pdf
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-1112-1006
http://orcid.org/0000-0001-9999-1219
mailto:kdyson@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:nclinton@google.com
mailto:dssaah@usfca.edu
https://doi.org/10.1007/978-3-031-26588-4_9

170 K. Dyson et al.

• Learning how to use expressions for band manipulation.
• Being introduced to some of the most common types of linear transformations.
• Using arrays and functions in Earth Engine to apply linear transformations to

images.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Understand basic operations of matrices.

9.1 Introduction to Theory

Image transformations are essentially complex calculations among image bands
that can leverage matrix algebra and more advanced mathematics. In return for
their greater complexity, they can provide larger amounts of information in a
few variables, allowing for better classification (Chap. 6), time-series analysis
(Chaps. 17 through 21), and change detection (Chap. 16) results. They are particu-
larly useful for difficult use cases, such as classifying images with heavy shadow or
high values of greenness and distinguishing faint signals from forest degradation.

In this chapter, we explore linear transformations, which are linear combina-
tions of input pixel values. This approach is pixel-based—that is, each pixel in the
remote sensing image is treated separately.

We introduce here some of the best-established linear transformations used in
remote sensing (e.g., tasseled cap transformations) along with some of the newest
(e.g., spectral unmixing). Researchers are continuing to develop new applications
of these methods. For example, when used together, spectral unmixing and time-
series analysis (Chaps. 17 through 21.) are effective at detecting and monitoring
tropical forest degradation (Bullock et al. 2020, Souza et al, 2013). As forest degra-
dation is notoriously hard to monitor and also responsible for significant carbon
emissions, this represents an important step forward. Similarly, using tasseled cap
transformations alongside classification approaches allowed researchers to accu-
rately map cropping patterns with high spatial and thematic resolution (Rufin et al.
2019).

9 Advanced Pixel-Based Image Transformations 171

9.2 Practicum

In this practicum, we will first learn how to manipulate images with expressions
and then move on to more complex linear transformations that leverage matrix
algebra. In Earth Engine, these types of linear transformations are applied by treat-
ing pixels as arrays of band values. An array in Earth Engine is a list of lists, and
by using arrays, you can define matrices (i.e., two-dimensional arrays), which are
the basis of linear transformations. Earth Engine uses the word “axis” to refer to
what are commonly called the rows (axis 0) and columns (axis 1) of a matrix.

9.2.1 Section 1: Manipulating Images with Expressions

Arithmetic Calculation of EVI
The Enhanced Vegetation Index (EVI) is designed to minimize saturation and other
issues with NDVI, an index discussed in detail in Chap. 5 (Huete et al. 2002). In
areas of high chlorophyll (e.g., rainforests), EVI does not saturate (i.e., reach max-
imum value) the same way that NDVI does, making it easier to examine variation
in the vegetation in these regions. The generalized equation for calculating EVI is

EVI = G × (NIR − Red)
(NIR + C1 × RED − C2 × Blue + L)

(9.1)

where G, C1, C2, and L are constants. You do not need to memorize these values,
as they have been determined by other researchers and are available online for you
to look up. For Sentinel-2, the equation is

EVI = 2.5 × (B8 − B4)
(B8 + 6 × B4 − 7.5 × B2 + 1)

(9.2)

Using the basic arithmetic, we learned previously in 5, let us calculate and then
display the EVI for the Sentinel-2 image. We will need to extract the bands and
then divide by 10,000 to account for the scaling in the dataset. You can find out
more by navigating to the dataset information.

172 K. Dyson et al.

// Import and filter imagery by location and date.
var sfoPoint = ee.Geometry.Point(-122.3774, 37.6194);

var sfoImage = ee.ImageCollection('COPERNICUS/S2')
.filterBounds(sfoPoint)
.filterDate('2020-02-01', '2020-04-01')
.first();

Map.centerObject(sfoImage, 11);

// Calculate EVI using Sentinel 2

// Extract the bands and divide by 10,000 to account for
scaling done.
var nirScaled = sfoImage.select('B8').divide(10000);
var redScaled = sfoImage.select('B4').divide(10000);
var blueScaled = sfoImage.select('B2').divide(10000);

// Calculate the numerator, note that order goes from left
to right.
var numeratorEVI =
(nirScaled.subtract(redScaled)).multiply(2.5);

// Calculate the denominator.
var denomClause1 = redScaled.multiply(6);
var denomClause2 = blueScaled.multiply(7.5);
var denominatorEVI = nirScaled.add(denomClause1)

.subtract(denomClause2).add(1);

// Calculate EVI and name it.
var EVI =
numeratorEVI.divide(denominatorEVI).rename('EVI');

// And now map EVI using our vegetation palette.
var vegPalette = ['red', 'white', 'green'];
var visParams = {min: -1, max: 1, palette: vegPalette};

Map.addLayer(EVI, visParams, 'EVI');

Using an Expression to Calculate EVI
The EVI code works (Fig. 9.1), but creating a large number of variables and explic-
itly calling addition, subtraction, multiplication, and division can be confusing and
introduces the chance for errors. In these circumstances, you can create a function
to make the steps more robust and easily repeatable. In another simple strategy
outlined below, Earth Engine has a way to define an expression to achieve the
same result.

9 Advanced Pixel-Based Image Transformations 173

Fig. 9.1 EVI displayed for sentinel-2 over San Francisco

Fig. 9.2 Comparison of true color and BAI for the rim fire

// Calculate EVI.
var eviExpression = sfoImage.expression({

expression: '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5
* BLUE + 1))',

map: { // Map between variables in the expression and
images.

'NIR': sfoImage.select('B8').divide(10000),
'RED': sfoImage.select('B4').divide(10000),
'BLUE': sfoImage.select('B2').divide(10000)

}
});

// And now map EVI using our vegetation palette.
Map.addLayer(eviExpression, visParams, 'EVI Expression');

174 K. Dyson et al.

The expression is defined first as a string using human readable names. We then
define these names by selecting the proper bands.

Code Checkpoint F31a. The book’s repository contains a script that shows what
your code should look like at this point.

Using an Expression to Calculate BAI
Now that we have seen how expressions work, let us use an expression to calculate
another index. Martin (1998) developed the Burned Area Index (BAI) to assist in
the delineation of burn scars and assessment of burn severity. It relies on fires
leaving ash and charcoal; fires that do not create ash or charcoal and old fires
where the ash and charcoal have been washed away or covered will not be detected
well. BAI computes the spectral distance of each pixel to a spectral reference point
that burned areas tend to be similar to. Pixels that are far away from this reference
(e.g., healthy vegetation) will have a very small value while pixels that are close
to this reference (e.g., charcoal from fire) will have very large values.

BAI = 1
(
(ρcr − Red)2 + (ρcnir − NIR)2

) (9.3)

There are two constants in this equation: ρcr is a constant for the red band,
equal to 0.1; and ρcnir is for the NIR band, equal to 0.06.

To examine burn indices, load an image from 2013 showing the Rim Fire in the
Sierra Nevada, California mountains. We will use Landsat 8 to explore this fire.
Enter the code below in a new script.

// Examine the true-color Landsat 8 images for the 2013 Rim
Fire.
var burnImage =
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')

.filterBounds(ee.Geometry.Point(-120.083, 37.850))

.filterDate('2013-09-15', '2013-09-27')

.sort('CLOUD_COVER')

.first();

Map.centerObject(ee.Geometry.Point(-120.083, 37.850), 11);

var rgbParams = {
bands: ['B4', 'B3', 'B2'],
min: 0,
max: 0.3

};
Map.addLayer(burnImage, rgbParams, 'True-Color Burn
Image');

9 Advanced Pixel-Based Image Transformations 175

Examine the true-color display of this image. Can you spot the fire? If not, the
BAI may help. As with EVI, use an expression to compute BAI in Earth Engine,
using the equation above and what you know about Landsat 8 bands:

// Calculate BAI.
var bai = burnImage.expression(

'1.0 / ((0.1 - RED)**2 + (0.06 - NIR)**2)', {
'NIR': burnImage.select('B5'),
'RED': burnImage.select('B4'),

});

Display the result.

// Display the BAI image.
var burnPalette = ['green', 'blue', 'yellow', 'red'];
Map.addLayer(bai, {

min: 0,
max: 400,
palette: burnPalette

}, 'BAI');

The burn area should be more obvious in the BAI visualization (Fig. 9.1, right
panel). Note that the minimum and maximum values here are larger than what we
have used for Landsat. At any point, you can inspect a layer’s bands using what
you have already learned to see the minimum and maximum values, which will
give you an idea of what to use here.

Code Checkpoint F31b. The book’s repository contains a script that shows what
your code should look like at this point.

9.2.2 Section 2: Manipulating Images with Matrix Algebra

Now that we have covered expressions, let us turn our attention to linear
transformations that leverage matrix algebra.

Tasseled Cap Transformation
The first of these is the tasseled cap (TC) transformation. TC transformations are a
class of transformations which, when graphed, look like a wooly hat with a tassel.
The most common implementation is used to maximize the separation between
different growth stages of wheat, an economically important crop. As wheat grows,
the field progresses from bare soil, to green plant development, to yellow plant

176 K. Dyson et al.

Fig. 9.3 Visualization of the matrix multiplication used to transform the original vector of band
values (p0) for a pixel to the rotated values (p1) for that same pixel

ripening, to field harvest. Separating these stages for many fields over a large area
was the original purpose of the tasseled cap transformation.

Based on observations of agricultural land covers in the combined near-infrared
and red spectral space, Kauth and Thomas (1976) devised a rotational transform
of the form:

p1 = RT p0 (9.4)

where p0 is the original p× 1 pixel vector (a stack of the p band values for that
specific pixel as an array), and the matrix R is an orthonormal basis of the new
space in which each column is orthogonal to one another (therefore, RT is its
transpose), and the output p1 is the rotated stack of values for that pixel (Fig. 9.3).

Kauth and Thomas found R by defining the first axis of their transformed space
to be parallel to the soil line in Fig. 9.4. The first column was chosen to point along
the major axis of soils and the values derived from Landsat imagery at a given
point in Illinois, USA. The second column was chosen to be orthogonal to the first
column and point toward what they termed “green stuff,” i.e., green vegetation.
The third column is orthogonal to the first two and points toward the “yellow
stuff,” e.g., ripening wheat and other grass crops. The final column is orthogonal
to the first three and is called “nonesuch” in the original derivation—that is, akin
to noise.

The R matrix has been derived for each of the Landsat satellites, including
Landsat 5 (Crist 1985), Landsat 7, (Huang et al. 2002) Landsat 8 (Baig et al. 2014),
and others. We can implement this transform in Earth Engine with arrays. Specif-
ically, let us create a new script and make an array of TC coefficients for Landsat
5’s Thematic Mapper (TM) instrument:

9 Advanced Pixel-Based Image Transformations 177

Fig. 9.4 Visualization of the tasseled cap transformation. This is a graph of two dimensions of a
higher dimensional space (one for each band). The NIR and red bands represent two dimensions
of p0, while the vegetation and soil brightness represent two dimensions of p1. You can see that
there is a rotation caused by RT

/////
// Manipulating images with matrices
/////

// Begin Tasseled Cap example.
var landsat5RT = ee.Array([

[0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863],
[-0.2848, -0.2435, -0.5436, 0.7243, 0.0840, -0.1800],
[0.1509, 0.1973, 0.3279, 0.3406, -0.7112, -0.4572],
[-0.8242, 0.0849, 0.4392, -0.0580, 0.2012, -0.2768],
[-0.3280, 0.0549, 0.1075, 0.1855, -0.4357, 0.8085],
[0.1084, -0.9022, 0.4120, 0.0573, -0.0251, 0.0238]

]);

print('RT for Landsat 5', landsat5RT);

Note that the structure we just made is a list of six lists, which is then converted
to an Earth Engine ee.Array object. The six-by-six array of values corresponds
to the linear combinations of the values of the six non-thermal bands of the TM
instrument: bands 1–5 and 7. To examine how Earth Engine ingests the array,
view the output of the print function to display the array in the Console. You
can explore how the different elements of the array match with how the array were
defined using ee.Array.

178 K. Dyson et al.

The next steps of this lab center on the small town of Odessa in eastern Wash-
ington, USA. You can search for “Odessa, WA, USA” in the search bar. We use
the state abbreviation here because this is how Earth Engine displays it. The search
will take you to the town and its surroundings, which you can explore with the
Map or Satellite options in the upper right part of the display. In the code below,
we will define a point in Odessa and center the display on it to view the results at
a good zoom level.

Since these coefficients are for the TM sensor at satellite reflectance (top of
atmosphere), we will access a less-cloudy Landsat 5 scene. We will access the
collection of Landsat 5 images, filter them, then sort by increasing cloud cover,
and take the first one.

// Define a point of interest in Odessa, Washington, USA.
var point = ee.Geometry.Point([-118.7436019417829,
47.18135755009023]);
Map.centerObject(point, 10);

// Filter to get a cloud free image to use for the TC.
var imageL5 = ee.ImageCollection('LANDSAT/LT05/C02/T1_TOA')

.filterBounds(point)

.filterDate('2008-06-01', '2008-09-01')

.sort('CLOUD_COVER')

.first();

//Display the true-color image.
var trueColor = {

bands: ['B3', 'B2', 'B1'],
min: 0,
max: 0.3

};
Map.addLayer(imageL5, trueColor, 'L5 true color');

To do the matrix multiplication, first convert the input image from a multi-band
image (where for each band, each pixel stores a single value) to an array image.
An array image is a higher-dimension image in which each pixel stores an array
of values for a band. (Array images are encountered and discussed in more detail
in part IV.) You will use bands 1–5 and 7 and the toArray function:

9 Advanced Pixel-Based Image Transformations 179

var bands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B7'];

// Make an Array Image, with a one dimensional array per
pixel.
// This is essentially a list of values of length 6,
// one from each band in variable 'bands.'
var arrayImage1D = imageL5.select(bands).toArray();

// Make an Array Image with a two dimensional array per
pixel,
// of dimensions 6x1. This is essentially a one column
matrix with
// six rows, with one value from each band in 'bands.'
// This step is needed for matrix multiplication (p0).
var arrayImage2D = arrayImage1D.toArray(1);

The 1 refers to the columns (the “first” axis in Earth Engine) to create a 6 row
by 1 column array for p0 (Fig. 9.3).

Next, we complete the matrix multiplication of the tasseled cap linear trans-
formation using the matrixMultiply function, then convert the result back to a
multi-band image using the arrayProject and arrayFlatten functions:

//Multiply RT by p0.
var tasselCapImage = ee.Image(landsat5RT)

// Multiply the tasseled cap coefficients by the array
// made from the 6 bands for each pixel.
.matrixMultiply(arrayImage2D)
// Get rid of the extra dimensions.
.arrayProject([0])
// Get a multi-band image with TC-named bands.
.arrayFlatten(

[
['brightness', 'greenness', 'wetness',

'fourth', 'fifth',
'sixth'

]
]);

180 K. Dyson et al.

Finally, display the result:

var vizParams = {
bands: ['brightness', 'greenness', 'wetness'],
min: -0.1,
max: [0.5, 0.1, 0.1]

};
Map.addLayer(tasselCapImage, vizParams, 'TC components');

This maps brightness to red, greenness to green, and wetness to
blue. Your resulting layer will contain a high amount of contrast (Fig. 9.5). Water
appears blue, healthy irrigated crops are the bright circles, and drier crops are red.
We have chosen this area near Odessa because it is naturally dry, and the irrigated
crops make the patterns identified by the tasseled cap transformation particularly
striking.

If you would like to see how the array image operations work, you can consider
building tasselCapImage, one step at a time. You can assign the result of
matrixMultiply operation to its own variable then map the result. Then, do
the arrayProject command on that new variable into a second new image
and map that result. Then, do the arrayFlatten call on that result to produce

Fig. 9.5 Output of the tasseled cap transformation. Water appears blue, green irrigated crops are
the bright circles, and dry crops are red

9 Advanced Pixel-Based Image Transformations 181

tasselCapImage as before. You can then use the Inspector tool to view these
details of how the data is processed as tasselCapImage is built.

Principal Component Analysis
Like the TC transform, the principal component analysis (PCA) transform is a
rotational transform. PCA is an orthogonal linear transformation—essentially, it
mathematically transforms the data into a new coordinate system where all axes
are orthogonal. The first axis, also called a coordinate, is calculated to capture the
largest amount of variance of the dataset, the second captures the second-greatest
variance, and so on.

Because these are calculated to be orthogonal, the principal components are
uncorrelated. PCA can be used as a dimension reduction tool, as most of the
variation in a dataset with n axes can be captured in n − x axes. This is a very
brief explanation; if you want to learn more about PCA and how it works, there
are many excellent statistical texts and online resources on the subject.

To demonstrate the practical application of PCA applied to an image, import
the Landsat 8 TOA image, and name it imageL8. First, we will convert it to an
array image:

// Begin PCA example.

// Select and map a true-color L8 image.
var imageL8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')

.filterBounds(point)

.filterDate('2018-06-01', '2018-09-01')

.sort('CLOUD_COVER')

.first();

var trueColorL8 = {
bands: ['B4', 'B3', 'B2'],
min: 0,
max: 0.3

};
Map.addLayer(imageL8, trueColorL8, 'L8 true color');

// Select which bands to use for the PCA.
var PCAbands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10',
'B11'];

// Convert the Landsat 8 image to a 2D array for the later
matrix
// computations.
var arrayImage = imageL8.select(PCAbands).toArray();

182 K. Dyson et al.

In the next step, use the reduceRegion method and the
ee.Reducer.covariance function to compute statistics (in this case
the covariance of bands) for the image.

// Calculate the covariance using the reduceRegion method.
var covar = arrayImage.reduceRegion({

reducer: ee.Reducer.covariance(),
maxPixels: 1e9

});

// Extract the covariance matrix and store it as an array.
var covarArray = ee.Array(covar.get('array'));

Note that the result of the reduction is an object with one property, array, that
stores the covariance matrix. We use the ee.Array.get function to extract the
covariance matrix and store it as an array.

Now that we have a covariance matrix based on the image, we can perform an
eigen analysis to compute the eigenvectors that we will need to perform the PCA.
To do this, we will use the eigen function. Again, if these terms are unfamiliar to
you, we suggest one of the many excellent statistics textbooks or online resources.
Compute the eigenvectors and eigenvalues of the covariance matrix:

//Compute and extract the eigenvectors
var eigens = covarArray.eigen();

The eigen function outputs both eigenvectors and the eigenvalues.
Since we need the eigenvectors for the PCA, we can use the slice function
for arrays to extract them. The eigenvectors are stored in the 0th position of
the 1-axis.

var eigenVectors = eigens.slice(1, 1);

Now, we perform matrix multiplication using these eigenVectors and the
arrayImage we created earlier. This is the same process that we used with the
tasseled cap components. Each multiplication results in a principal component.

9 Advanced Pixel-Based Image Transformations 183

// Perform matrix multiplication
var principalComponents = ee.Image(eigenVectors)

.matrixMultiply(arrayImage.toArray(1));

Finally, convert back to a multi-band image and display the first principal
component (pc1):

var pcImage = principalComponents
// Throw out an unneeded dimension, [[]] -> [].
.arrayProject([0])
// Make the one band array image a multi-band image, []

-> image.
.arrayFlatten([

['pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc6', 'pc7',
'pc8']

]);

// Stretch this to the appropriate scale.
Map.addLayer(pcImage.select('pc1'), {}, 'pc1');

When first displayed, the PC layer will be all black. Use the layer manager to
stretch the result in greyscale by hovering over Layers, then PC, and then clicking
the gear icon next to PC. Note how the range (minimum and maximum values)
changes based on the stretch you choose.

What do you observe? Try displaying some of the other principal components.
How do they differ from each other? What do you think each band is capturing?
Hint: You will need to recreate the stretch for each principal component you try
to map.

Look at what happens when you try to display ‘pc1’, ‘pc3’, and ‘pc4’, for
example, in a three-band display. Because the values of each principal component
band differ substantially, you might see a gradation of only one color in your
output. To control the display of multiple principal component bands together,
you will need to use lists in order to specify the min and max values individually
for each principal component band.

Once you have determined which bands you would like to plot, input the min
and max values for each band, making sure they are in the correct order.

184 K. Dyson et al.

//The min and max values will need to change if you map
different bands or locations.
var visParamsPCA = {

bands: ['pc1', 'pc3', 'pc4'],
min: [-455.09, -2.206, -4.53],
max: [-417.59, -1.3, -4.18]

};

Map.addLayer(pcImage, visParamsPCA, 'PC_multi');

Examine the PCA map (Fig. 9.6). Unlike with the tasseled cap transformation,
PCA does not have defined output axes. Instead, each axis dynamically captures
some aspect of the variation within the dataset (if this does not make sense to
you, please review an online resource on the statistical theory behind PCA). Thus,
the mapped PCA may differ substantially based on where you have performed the
PCA and which bands you are mapping.

Code Checkpoint F31c. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 9.6 Output of the PCA transformation near Odessa, Washington, USA

9 Advanced Pixel-Based Image Transformations 185

9.2.3 Section 3: Spectral Unmixing

If we think about a single pixel in our dataset—a 30 × 30 m space correspond-
ing to a Landsat pixel, for instance—it is likely to represent multiple physical
objects on the ground. As a result, the spectral signature for the pixel is a mixture
of the “pure” spectra of each object existing in that space. For example, con-
sider a Landsat pixel of forest. The spectral signature of the pixel is a mixture of
trees, understory, shadows cast by the trees, and patches of soil visible through the
canopy.

The linear spectral unmixing model is based on this assumption (Schultz et al.
2016, Souza 2005). The pure spectra, called endmembers, are from land cover
classes such as water, bare land, and vegetation. These endmembers represent the
spectral signature of pure spectra from ground features, such as only bare ground.
The goal is to solve the following equation for ƒ, the P×1 vector of endmember
fractions in the pixel:

p = S f (9.5)

S is a B × P matrix in which B is the number of bands and the columns are
P pure endmember spectra and p is the B× 1 pixel vector when there are B bands
(Fig. 9.7). We know p, and we can define the endmember spectra to get S such
that we can solve for ƒ.

We will use the Landsat 8 image for this exercise. In this example, the number
of bands (B) is six.

// Specify which bands to use for the unmixing.
var unmixImage = imageL8.select(['B2', 'B3', 'B4', 'B5',
'B6', 'B7']);

Fig. 9.7 Visualization of the matrix multiplication used to transform the original vector of band
values (p) for a pixel to the endmember values (ƒ) for that same pixel

186 K. Dyson et al.

The first step is to define the endmembers such that we can define S. We will
do this by computing the mean spectra in polygons delineated around regions of
pure land cover.

Zoom the map to a location with homogeneous areas of bare land, vegetation,
and water (an airport can be used as a suitable location). Visualize the Landsat 8
image as a false color composite:

// Use a false color composite to help define polygons of
'pure' land cover.
Map.addLayer(imageL8, {

bands: ['B5', 'B4', 'B3'],
min: 0.0,
max: 0.4

}, 'false color');

For faster rendering, you may want to comment out the previous layers you
added to the map.

In general, the way to do this is to draw polygons around areas of pure land
cover in order to define the spectral signature of these land covers. If you would
like to do this on your own, here is how. Using the geometry drawing tools, make
three new layers (thus, P = 3) by selecting the polygon tool and then clicking
+ new layer. In the first layer, digitize a polygon around pure bare land; in the
second layer, make a polygon of pure vegetation; in the third layer, make a water
polygon. Name the imports bare, water, and veg, respectively. You will need
to use the settings (gear icon) to rename the geometries.

You can also use this code to specify predefined areas of bare, water, and
vegetation. This will only work for this example.

9 Advanced Pixel-Based Image Transformations 187

// Define polygons of bare, water, and vegetation.
var bare = /* color: #d63000 */ ee.Geometry.Polygon(

[
[

[-119.29158963591193, 47.204453926034134],
[-119.29192222982978, 47.20372502078616],
[-119.29054893881415, 47.20345532330602],
[-119.29017342955207, 47.20414049800489]

]
]),

water = /* color: #98ff00 */ ee.Geometry.Polygon(
[

[
[-119.42904610218152, 47.22253398528318],
[-119.42973274768933, 47.22020224831784],
[-119.43299431385144, 47.21390604625894],
[-119.42904610218152, 47.21326472446865],
[-119.4271149116908, 47.21868656429651],
[-119.42608494342907, 47.2217470355224]

]
]),

veg = /* color: #0b4a8b */ ee.Geometry.Polygon(
[

[
[-119.13546041722502, 47.04929418944858],
[-119.13752035374846, 47.04929418944858],
[-119.13966612096037, 47.04765665820436],
[-119.13777784581389, 47.04408900535686]

]
]);

Check the polygons you made or imported by charting mean spectra in them
using ui.Chart.image.regions.

188 K. Dyson et al.

//Print a chart.
var lcfeatures = ee.FeatureCollection([

ee.Feature(bare, {label: 'bare'}),
ee.Feature(water, {label: 'water'}),
ee.Feature(veg, {label: 'vegetation'})

]);

print(
ui.Chart.image.regions({
image: unmixImage,
regions: lcfeatures,
reducer: ee.Reducer.mean(),
scale: 30,
seriesProperty: 'label',
xLabels: [0.48, 0.56, 0.65, 0.86, 1.61, 2.2]

})
.setChartType('LineChart')
.setOptions({
title: 'Image band values in 3 regions',
hAxis: {
title: 'Wavelength'

},
vAxis: {
title: 'Mean Reflectance'

}
}));

The xLabels line of code takes the mean of each polygon (feature) at the spec-
tral midpoint of each of the six bands. The numbers ([0.48, 0.56, 0.65,
0.86, 1.61, 2.2]) represent these spectral midpoints. Your chart should
look something like Fig. 9.8.

Fig. 9.8 Mean of the pure land cover reflectance for each band

9 Advanced Pixel-Based Image Transformations 189

Use the reduceRegion method to compute the mean values within the
polygons you made, for each of the bands. Note that the return value of
reduceRegion is a Dictionary of numbers summarizing values within the
polygons, with the output indexed by band name.

Get the means as a List by calling the values function after computing the
mean. Note that values return the results in alphanumeric order sorted by the
keys. This works because B2 − B7 are already alphanumerically sorted, but it will
not work in cases when they are not already sorted. In those cases, please specify
the list of band names so that you get them in a known order first.

// Get the means for each region.
var bareMean = unmixImage

.reduceRegion(ee.Reducer.mean(), bare, 30).values();
var waterMean = unmixImage

.reduceRegion(ee.Reducer.mean(), water, 30).values();
var vegMean = unmixImage

.reduceRegion(ee.Reducer.mean(), veg, 30).values();

Each of these three lists represents a mean spectrum vector, which is one of the
columns for our S matrix defined above. Stack the vectors into a 6× 3 Array of
endmembers by concatenating them along the 1-axis (columns):

// Stack these mean vectors to create an Array.
var endmembers = ee.Array.cat([bareMean, vegMean,
waterMean], 1);
print(endmembers);

Use print if you would like to view your new matrix.
As we have done in the previous sections, we will now convert the 6-band input

image into an image in which each pixel is a 1D vector (toArray), then into an
image in which each pixel is a 6× 1 matrix (toArray(1)). This creates p so
that we can solve the equation above for each pixel.

// Convert the 6-band input image to an image array.
var arrayImage = unmixImage.toArray().toArray(1);

Now that we have everything in place, for each pixel, we solve the equation
for ƒ:

190 K. Dyson et al.

// Solve for f.
var unmixed = ee.Image(endmembers).matrixSolve(arrayImage);

For this task, we use the matrixSolve function. This function solves for x
in the equation A ∗ x = B. Here, A is our matrix S and B is the matrix p.

Finally, convert the result from a two-dimensional array image into a one-
dimensional array image (arrayProject), and then into a zero-dimensional,
more familiar multi-band image (arrayFlatten). This is the same approach
we used in the previous sections. The three bands correspond to the estimates of
bare, vegetation, and water fractions in ƒ:

// Convert the result back to a multi-band image.
var unmixedImage = unmixed

.arrayProject([0])

.arrayFlatten([
['bare', 'veg', 'water']

]);

Display the result where bare is red, vegetation is green, and water is blue
(the addLayer call expects bands in order, RGB). Use either code or the layer
visualization parameter tool to achieve this. Your resulting image should look like
Fig. 9.9.

Fig. 9.9 Result of the spectral unmixing example

9 Advanced Pixel-Based Image Transformations 191

Map.addLayer(unmixedImage, {}, 'Unmixed');

9.2.4 Section 4: The Hue, Saturation, Value Transform

Whereas the other three transforms we have discussed will transform the image
based on spectral signatures from the original image, the hue, saturation, and value
(HSV) transform is a color transform of the RGB color space.

Among many other things, it is useful for pan-sharpening, a process by which a
higher-resolution panchromatic image is combined with a lower-resolution multi-
band raster. This involves converting the multi-band raster RGB to HSV color
space, swapping the panchromatic band for the value band, then converting back
to RGB. Because the value band describes the brightness of colors in the original
image, this approach leverages the higher resolution of the panchromatic image.

For example, let us pan-sharpen the Landsat 8 scene we have been working
with in this chapter. In Landsat 8, the panchromatic band is 15 m resolution, while
the RGB bands are 30 m resolution. We use the rgbToHsv function here—it is
such a common transform that there is a built-in function for it.

// Begin HSV transformation example

// Convert Landsat 8 RGB bands to HSV color space
var hsv = imageL8.select(['B4', 'B3', 'B2']).rgbToHsv();

Map.addLayer(hsv, {
max: 0.4

}, 'HSV Transform');

Next, we convert the image back to RGB space after substituting the panchro-
matic band for the value band, which appears third in the HSV image. We do
this by first concatenating the different image bands using the ee.Image.cat
function and then by converting to RGB.

192 K. Dyson et al.

Fig. 9.10 Results of the pan-sharpening process (right) compared with the original true-color
image (left)

// Convert back to RGB, swapping the image panchromatic
band for the value.
var rgb = ee.Image.cat([

hsv.select('hue'),
hsv.select('saturation'),
imageL8.select(['B8'])

]).hsvToRgb();

Map.addLayer(rgb, {
max: 0.4

}, 'Pan-sharpened');

In Fig. 9.10, compare the pan-sharpened image to the original true-color image.
What do you notice? Is it easier to interpret the image following pan-sharpening?

Code Checkpoint F31d. The book’s repository contains a script that shows what
your code should look like at this point.

9.3 Synthesis

Assignment 1. Write an expression to calculate the normalized burn ratio thermal
(NBRT) index for the Rim Fire Landsat 8 image (burnImage).

NBRT was developed based on the idea that burned land has low NIR
reflectance (less vegetation), high SWIR reflectance (from ash, etc.), and high
brightness temperature (Holden et al. 2005).

9 Advanced Pixel-Based Image Transformations 193

The formula is

NBRT =
(
NIR − SWIR × (Thermal

1000

))

(
NIR + SWIR × (Thermal

1000

)) (9.6)

where NIR should be between 0.76 and 0.9 µm, SWIR 2.08 and 2.35 µm, and
thermal 10.4 and 12.5 µm.

To display this result, remember that a lower NBRT is the result of more
burning.

Bonus: Here is another way to reverse a color palette (note the min and max
values):

Map.addLayer(nbrt, {
min: 1,
max: 0.9,
palette: burnPalette

}, 'NBRT');

The difference in this index, before compared with after the fire, can be used
as a diagnostic of burn severity (see van Wagtendonk et al. 2004).

9.4 Conclusion

Linear image transformations are a powerful tool in remote sensing analysis. By
choosing your linear transformation carefully, you can highlight specific aspects
of your data that make image classification easier and more accurate. For example,
spectral unmixing is frequently used in change detection applications like detecting
forest degradation. By using the endmembers (pure spectra) as inputs to the change
detection algorithms, the model is better able to detect subtle changes due to the
removal of some but not all the trees in the pixel.

References

Baig MHA, Zhang L, Shuai T, Tong Q (2014) Derivation of a tasselled cap transformation based
on Landsat 8 at-satellite reflectance. Remote Sens Lett 5:423–431. https://doi.org/10.1080/215
0704X.2014.915434

Bullock EL, Woodcock CE, Olofsson P (2020) Monitoring tropical forest degradation using spec-
tral unmixing and Landsat time series analysis. Remote Sens Environ 238:110968. https://doi.
org/10.1016/j.rse.2018.11.011

Crist EP (1985) A TM tasseled cap equivalent transformation for reflectance factor data. Remote
Sens Environ 17:301–306. https://doi.org/10.1016/0034-4257(85)90102-6

https://doi.org/10.1080/2150704X.2014.915434
https://doi.org/10.1080/2150704X.2014.915434
https://doi.org/10.1016/j.rse.2018.11.011
https://doi.org/10.1016/j.rse.2018.11.011
https://doi.org/10.1016/0034-4257(85)90102-6

194 K. Dyson et al.

Holden ZA, Smith AMS, Morgan P et al (2005) Evaluation of novel thermally enhanced spectral
indices for mapping fire perimeters and comparisons with fire atlas data. Int J Remote Sens
26:4801–4808. https://doi.org/10.1080/01431160500239008

Huang C, Wylie B, Yang L et al (2002) Derivation of a tasselled cap transformation based on Land-
sat 7 at-satellite reflectance. Int J Remote Sens 23:1741–1748. https://doi.org/10.1080/014311
60110106113

Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens Environ 83:195–213. https://doi.org/10.1016/
S0034-4257(02)00096-2

Kauth RJ, Thomas GS (1976) The tasselled cap--a graphic description of the spectral-temporal
development of agricultural crops as seen by Landsat. In LARS symposia (p. 159)

Martín MP (1998) Cartografía e inventario de incendios forestales en la Península Ibérica a partir
de imágenes NOAA-AVHRR. Universidad de Alcalá

Rufin P, Frantz D, Ernst S et al (2019) Mapping cropping practices on a national scale using intra-
annual Landsat time series binning. Remote Sens 11:232. https://doi.org/10.3390/rs11030232

Schultz M, Clevers JGPW, Carter S et al (2016) Performance of vegetation indices from Landsat
time series in deforestation monitoring. Int J Appl Earth Obs Geoinf 52:318–327. https://doi.
org/10.1016/j.jag.2016.06.020

Souza CM Jr, Roberts DA, Cochrane MA (2005) Combining spectral and spatial information to
map canopy damage from selective logging and forest fires. Remote Sens Environ 98:329–343.
https://doi.org/10.1016/j.rse.2005.07.013

Souza CM Jr, Siqueira JV, Sales MH et al (2013) Ten-year landsat classification of deforestation
and forest degradation in the Brazilian Amazon. Remote Sens 5:5493–5513. https://doi.org/10.
3390/rs5115493

Van Wagtendonk JW, Root RR, Key CH (2004) Comparison of AVIRIS and Landsat ETM + detec-
tion capabilities for burn severity. Remote Sens Environ 92:397–408. https://doi.org/10.1016/
j.rse.2003.12.015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1080/01431160500239008
https://doi.org/10.1080/01431160110106113
https://doi.org/10.1080/01431160110106113
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.3390/rs11030232
https://doi.org/10.1016/j.jag.2016.06.020
https://doi.org/10.1016/j.jag.2016.06.020
https://doi.org/10.1016/j.rse.2005.07.013
https://doi.org/10.3390/rs5115493
https://doi.org/10.3390/rs5115493
https://doi.org/10.1016/j.rse.2003.12.015
https://doi.org/10.1016/j.rse.2003.12.015
http://creativecommons.org/licenses/by/4.0/

10Neighborhood-Based Image
Transformation

Karen Dyson , Andréa Puzzi Nicolau , David Saah ,
and Nicholas Clinton

Overview
This chapter builds on image transformations to include a spatial component. All of
these transformations leverage a neighborhood of multiple pixels around the focal
pixel to inform the transformation of the focal pixel.

Learning Outcomes

• Performing image morphological operations.
• Defining kernels in Earth Engine.
• Applying kernels for image convolution to smooth and enhance images.
• Viewing a variety of neighborhood-based image transformations in Earth Engine.

K. Dyson · A. P. Nicolau · D. Saah
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: kdyson@sig-gis.com

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson · A. P. Nicolau
SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, WA, USA

D. Saah (B)
University of San Francisco, San Francisco, CA, USA
e-mail: dssaah@usfca.edu

N. Clinton
Google LLC, Inc, Mountain View, CA, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_10

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_10&domain=pdf
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:kdyson@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_10

196 K. Dyson et al.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks,

classify images (Part II).

10.1 Introduction to Theory

Neighborhood-based image transformations enable information from the pixels
surrounding a focal pixel to inform the function transforming the value in the
focal pixel (Fig. 10.1). For example, if your image has some pixels with outlier
values, you can use a neighborhood-based transformation to diminish the effect
of the outlier values (here, we would recommend the median; see the Practicum
section below). This is similar to how a moving average is performed (e.g., loess
smoothing), but instead of averaging across one dimension (e.g., time), it averages
across two dimensions (latitude and longitude).

Neighborhood-based image transformations are a foundational part of many
remote sensing analysis workflows. For example, edge detection has been a critical
part of land cover classification research efforts, including using Landsat 5 data in
Minneapolis-St. Paul, Minnesota, USA (Stuckens et al. 2000), and using Landsat 7
and higher- resolution data including IKONOS in Accra, Ghana (Toure et al. 2018).
Another type of neighborhood-based image transformation, the median operation,
is an important part of remote sensing workflows due to its ability to dampen

Fig. 10.1 Neighborhood surrounds the focal pixel. Different neighborhoods can vary in size and
shape. The focal pixel is the pixel for which new values are calculated, based on values in the
neighborhood

10 Neighborhood-Based Image Transformation 197

noise in images or classifications while maintaining edges (see ZhiYong et al.
2018; Lüttig et al. 2017). We will discuss these methods and others in this chapter.

10.2 Practicum

10.2.1 Section 1: Linear Convolution

Linear convolution refers to calculating a linear combination of pixel values in a
neighborhood for the focal pixel (Fig. 10.1).

In Earth Engine, the neighborhood of a given pixel is specified by a kernel.
The kernel defines the size and shape of the neighborhood and a weight for each
position in the kernel. To implement linear convolution in Earth Engine, we will
use the convolve with an ee.Kernel for the argument.

Convolving an image can be useful for extracting image information at different
spatial frequencies. For this reason, smoothing kernels are called low-pass filters
(they let low-frequency data pass through), and edge detection kernels are called
high-pass filters. In the Earth Engine context, this use of the word “filter” is distinct
from the filtering of image collections and feature collections seen throughout this
book. In general in this book, filtering refers to retaining items in a set that have
specified characteristics. In contrast, in this specific context of image convolution,
“filter” is often used interchangeably with “kernel” when it is applied to the pixels
of a single image. This chapter refers to these as “kernels” or “neighborhoods”
wherever possible, but be aware of the distinction when you encounter the term
“filter” in technical documentation elsewhere.

Smoothing
A square kernel with uniform weights that sum to one is an example of a smooth-
ing kernel. Using this kernel replaces the value of each pixel with the value of a
summarizing function (usually, the mean) of its neighborhood. Because averages
are less extreme than the values used to compute them, this tends to diminish image
noise by replacing extreme values in individual pixels with a blend of surround-
ing values. When using a kernel to smooth an image in practice, the statistical
properties of the data should be carefully considered (Vaiphasa 2006).

Let us create and print a square kernel with uniform weights for our smoothing
kernel.

// Create and print a uniform kernel to see its weights.
print('A uniform kernel:', ee.Kernel.square(2));

Expand the kernel object in the Console to see the weights. This kernel is
defined by how many pixels it covers (i.e., radius is in units of pixels). Remem-
ber that your pixels may represent different real-world distances (spatial resolution
is discussed in more detail in Chap. 4).

198 K. Dyson et al.

A kernel with radius defined in meters adjusts its size to an image’s pixel size,
so you cannot visualize its weights, but it is more flexible in terms of adapting
to inputs of different spatial resolutions. In the next example, we will use kernels
with radius defined in meters.

As first explored in Chap. 4, the National Agriculture Imagery Program (NAIP)
is a U.S. government program to acquire imagery over the continental United
States using airborne sensors. The imagery has a spatial resolution of 0.5–2 m,
depending on the state and the date collected.

Define a new point named point. We will locate it near the small town of
Odessa in eastern Washington, USA. You can also search for “Odessa, WA, USA”
in the search bar and define your own point.

Now filter and display the NAIP ImageCollection. For Washington State,
there was NAIP imagery collected in 2018. We will use the reduce function in
order to convert the image collection to an image for the convolution.

// Define a point of interest in Odessa, Washington, USA.
var point = ee.Geometry.Point([-118.71845096212049,

47.15743083101999]);
Map.centerObject(point);

// Load NAIP data.
var imageNAIP = ee.ImageCollection('USDA/NAIP/DOQQ')

.filterBounds(point)

.filter(ee.Filter.date('2017-01-01', '2018-12-31'))

.first();

Map.centerObject(point, 17);

var trueColor = {
bands: ['R', 'G', 'B'],
min: 0,
max: 255

};
Map.addLayer(imageNAIP, trueColor, 'true color');

You will notice that the NAIP imagery selected with these operations covers
only a very small area. This is because the NAIP image tiles are quite small,
covering only a 3.75 × 3.75 min quarter quadrangle plus a 300 m buffer on all
four sides. For your own work using NAIP, you may want to use a rectangle or
polygon to filter over a larger area and the reduce function instead of first.

Now define a kernel with a 2 m radius with uniform weights to use for
smoothing.

10 Neighborhood-Based Image Transformation 199

// Begin smoothing example.
// Define a square, uniform kernel.
var uniformKernel = ee.Kernel.square({

radius: 2,
units: 'meters',

});

Apply the smoothing operation by convolving the image with the kernel we
have just defined.

// Convolve the image by convolving with the smoothing
kernel.
var smoothed = imageNAIP.convolve(uniformKernel);
Map.addLayer(smoothed, {

min: 0,
max: 255

}, 'smoothed image');

Now, compare the input image with the smoothed image. In Fig. 10.2, notice
how sharp outlines around, for example, the patch of vegetation or the road stripes
are less distinct.

To make the image even more smooth, you can increase the size of the
neighborhood by increasing the pixel radius.

Gaussian Smoothing
A Gaussian kernel can also be used for smoothing. A Gaussian curve is also known
as a bell curve. Think of convolving with a Gaussian kernel as computing the
weighted average in each pixel’s neighborhood, where closer pixels are weighted
more heavily than pixels that are further away. Gaussian kernels preserve lines
better than the smoothing kernel we just used, allowing them to be used when

Fig. 10.2 Example of the effects of a smoothing convolution on NAIP imagery using a 2 m kernel

200 K. Dyson et al.

feature conservation is important, such as in detecting oil slicks (Wang and Hu
2015).

// Begin Gaussian smoothing example.
// Print a Gaussian kernel to see its weights.
print('A Gaussian kernel:', ee.Kernel.gaussian(2));

Now, we will apply a Gaussian kernel to the same NAIP image.

// Define a square Gaussian kernel:
var gaussianKernel = ee.Kernel.gaussian({

radius: 2,
units: 'meters',

});

// Convolve the image with the Gaussian kernel.
var gaussian = imageNAIP.convolve(gaussianKernel);
Map.addLayer(gaussian, {

min: 0,
max: 255

}, 'Gaussian smoothed image');

Pan and zoom around the NAIP image, switching between the two smoothing
functions. Notice how the Gaussian smoothing preserves more of the detail of the
image, such as the road lines and vegetation in Fig. 10.3.

Fig. 10.3 Example of the effects of a Gaussian smoothing kernel on NAIP imagery using a 2 m
kernel

10 Neighborhood-Based Image Transformation 201

Edge Detection
Edge detection kernels are used to find rapid changes in remote sensing image
values. These rapid changes usually signify edges of objects represented in the
image data. Finding edges is useful for many applications, including identifying
transitions between land cover and land use during classification.

A common edge detection kernel is the Laplacian kernel. Other edge detection
kernels include the Sobel, Prewitt, and Roberts kernels. First, look at the Laplacian
kernel weights:

// Begin edge detection example.
// For edge detection, define a Laplacian kernel.
var laplacianKernel = ee.Kernel.laplacian8();

// Print the kernel to see its weights.
print('Edge detection Laplacian kernel:',
laplacianKernel);

Notice that if you sum all of the neighborhood values, the focal cell value is
the negative of that sum. Now apply the kernel to our NAIP image and display the
result:

// Convolve the image with the Laplacian kernel.
var edges = imageNAIP.convolve(laplacianKernel);
Map.addLayer(edges, {

min: 0,
max: 255

}, 'Laplacian convolution image');

Edge detection algorithms remove contrast within the image (e.g., between
fields) and focus on the edge information (Fig. 10.4).

There are also algorithms in Earth Engine that perform edge detection. One of
these is the Canny edge detection algorithm (Canny 1986), which identifies the
diagonal, vertical, and horizontal edges by using four separate kernels.

Sharpening
Image sharpening, also known as edge enhancement, leverages the edge detection
techniques we just explored to make the edges in an image sharper. This mimics
the human eye’s ability to enhance separation between objects via Mach bands.
To achieve this from a technical perspective, you add the image to the second
derivative of the image.

To implement this in Earth Engine, we use a combination of Gaussian ker-
nels through the Difference-of-Gaussians convolution (see Schowengerdt 2006 for

202 K. Dyson et al.

Fig. 10.4 Example of the effects of Laplacian edge detection on NAIP imagery

details) and then add this to the input image. Start by creating two Gaussian
kernels:

// Begin image sharpening example.
// Define a "fat" Gaussian kernel.
var fat = ee.Kernel.gaussian({

radius: 3,
sigma: 3,
magnitude: -1,
units: 'meters'

});

// Define a "skinny" Gaussian kernel.
var skinny = ee.Kernel.gaussian({

radius: 3,
sigma: 0.5,
units: 'meters'

});

Next, combine the two Gaussian kernels into a Difference-of-Gaussians kernel
and print the result:

// Compute a difference-of-Gaussians (DOG) kernel.
var dog = fat.add(skinny);

// Print the kernel to see its weights.
print('DoG kernel for image sharpening', dog);

10 Neighborhood-Based Image Transformation 203

Fig. 10.5 Example of the effects of difference-of-Gaussians edge sharpening on NAIP imagery

Finally, apply the new kernel to the NAIP imagery with the convolve com-
mand and then add the DoG convolved image to the original image with the add
command (Fig. 10.5).

// Add the DoG convolved image to the original image.
var sharpened = imageNAIP.add(imageNAIP.convolve(dog));
Map.addLayer(sharpened, {

min: 0,
max: 255

}, 'DoG edge enhancement');

Code Checkpoint F32a. The book’s repository contains a script that shows what
your code should look like at this point.

10.2.2 Section 2: Nonlinear Convolution

Where linear convolution functions involve calculating a linear combination of
neighborhood pixel values for the focal pixel, nonlinear convolution functions use
nonlinear combinations. Both linear and nonlinear convolution use the same con-
cepts of the neighborhood, focal pixel, and kernel. The main difference from a
practical standpoint is that nonlinear convolution approaches are implemented in
Earth Engine using the reduceNeighborhood method on images.

Median
Median neighborhood filters are used for denoising images. For example, some
individual pixels in your image may have abnormally high or low values resulting
from measurement error, sensor noise, or another cause. Using the mean operation
described earlier to average values within a kernel would result in these extreme

204 K. Dyson et al.

values polluting other pixels. That is, when a noisy pixel is present in the neigh-
borhood of a focal pixel, the calculated mean will be pulled up or down due to that
abnormally high- or low-value pixel. The median neighborhood filter can be used
to minimize this issue. This approach is also useful because it preserves edges
better than other smoothing approaches, an important feature for many types of
classification.

Let us reuse the uniform 5×5 kernel from above (uniformKernel) to imple-
ment a median neighborhood filter. As seen below, nonlinear convolution functions
are implemented using reduceNeighborhood.

// Begin median example.
// Pass a median neighborhood filter using our
uniformKernel.
var median = imageNAIP.reduceNeighborhood({

reducer: ee.Reducer.median(),
kernel: uniformKernel

});

Map.addLayer(median, {
min: 0,
max: 255

}, 'Median Neighborhood Filter');

Inspect the median neighborhood filter map layer you have just added
(Fig. 10.6). Notice how the edges are preserved instead of a uniform smooth-
ing seen with the mean neighborhood filter. Look closely at features such as road
intersections, field corners, and buildings.

Fig. 10.6 Example of the effects of a median neighborhood filter on NAIP imagery

10 Neighborhood-Based Image Transformation 205

Mode
The mode operation, which identifies the most commonly used number in a set,
is particularly useful for categorical maps. Methods such as median and mean,
which blend values found in a set, do not make sense for aggregating nominal data.
Instead, we use the mode operation to get the value that occurs most frequently
within each focal pixel’s neighborhood. The mode operation can be useful when
you want to eliminate individual, rare pixel occurrences, or small groups of pixels
that are classified differently than their surroundings.

For this example, we will make a categorical map by thresholding the NIR
band. First we will select the NIR band and then threshold it at 200 using the gt
function (see also Chap. 5). Values higher than 200 will map to 1, while values
equal to or below 200 will map to 0. We will then display the two classes as black
and green. Thresholding the NIR band in this way is a very rough approximation
of where vegetation occurs on the landscape, so we will call our layer veg.

// Mode example
// Create and display a simple two-class image.
var veg = imageNAIP.select('N').gt(200);

// Display the two-class (binary) result.
var binaryVis = {

min: 0,
max: 1,
palette: ['black', 'green']

};
Map.addLayer(veg, binaryVis, 'Vegetation categorical
image');

Now use our uniform kernel to compute the mode in each 5× 5 neighborhood.

// Compute the mode in each 5x5 neighborhood and display
the result.
var mode = veg.reduceNeighborhood({

reducer: ee.Reducer.mode(),
kernel: uniformKernel

});

Map.addLayer(mode, binaryVis, 'Mode Neighborhood Filter on
Vegetation categorical image');

The resulting image following the mode neighborhood filter has less individual
pixel noise and more cohesive areas of vegetation (Fig. 10.7).

206 K. Dyson et al.

Fig. 10.7 Example of the effects of the mode neighborhood filter on thresholded NAIP imagery
using a uniform kernel

Code Checkpoint F32b. The book’s repository contains a script that shows what
your code should look like at this point.

10.2.3 Section 3: Morphological Processing

The idea of morphology is tied to the concept of objects in images. For example,
suppose the patches of 1 s in the veg image from the previous section repre-
sent patches of vegetation. Morphological processing helps define these objects
so that the processed images can better inform classification processes, such as
object-based classification (Chap. 11), and as a post-processing approach to reduce
noise caused by the classification process. Below are four of the most important
morphological processing approaches.

Dilation
If the classification underestimates the actual distribution of vegetation and con-
tains “holes,” a max operation can be applied across the neighborhood to expand
the areas of vegetation. This process is known as a dilation (Fig. 10.8).

// Begin Dilation example.
// Dilate by taking the max in each 5x5 neighborhood.
var max = veg.reduceNeighborhood({

reducer: ee.Reducer.max(),
kernel: uniformKernel

});

Map.addLayer(max, binaryVis, 'Dilation using max');

10 Neighborhood-Based Image Transformation 207

Fig. 10.8 Example of the effects of the dilation on thresholded NAIP imagery using a uniform
kernel

To explore the effects of dilation, you might try to increase the size of the
kernel (i.e., increase the radius), or to apply reduceNeighborhood repeat-
edly. There are shortcuts in the API for some common reduceNeighborhood
actions, including focalMax and focalMin, for example.

Erosion
The opposite of dilation is erosion, for decreasing the size of the patches. To effect
an erosion, a min operation can be applied to the values inside the kernel as each
pixel is evaluated.

// Begin Erosion example.
// Erode by taking the min in each 5x5 neighborhood.
var min = veg.reduceNeighborhood({

reducer: ee.Reducer.min(),
kernel: uniformKernel

});

Map.addLayer(min, binaryVis, 'Erosion using min');

Carefully inspect the result compared to the input (Fig. 10.9). Note that the
shape of the kernel affects the shape of the eroded patches (the same effect occurs
in the dilation). Because we used a square kernel, the eroded patches and dilated
areas are square. You can explore this effect by testing kernels of different shapes.

As with the dilation, note that you can get more erosion by increasing the size
of the kernel or applying the operation more than once.

Opening
To remove small patches of green that may be unwanted, we will perform an
erosion followed by a dilation. This process is called opening, works to delete

208 K. Dyson et al.

Fig. 10.9 Example of the effects of the erosion on thresholded NAIP imagery using a uniform
kernel

Fig. 10.10 Example of the effects of the opening operation on thresholded NAIP imagery using
a uniform kernel

small details, and is useful for removing noise. We can use our eroded image and
perform a dilation on it (Fig. 10.10).

// Begin Opening example.
// Perform an opening by dilating the eroded image.
var openedVeg = min.reduceNeighborhood({

reducer: ee.Reducer.max(),
kernel: uniformKernel

});

Map.addLayer(openedVeg, binaryVis, 'Opened image');

10 Neighborhood-Based Image Transformation 209

Fig. 10.11 Example of the effects of the closing operation on thresholded NAIP imagery using a
uniform kernel

Closing
Finally, the opposite of opening is closing, which is a dilation operation followed
by an erosion. This series of transformations is used to remove small holes in the
input patches (Fig. 10.11).

// Begin Closing example.
// Perform a closing by eroding the dilated image.
var closedVeg = max.reduceNeighborhood({

reducer: ee.Reducer.min(),
kernel: uniformKernel

});

Map.addLayer(closedVeg, binaryVis, 'Closed image');

Closely examine the difference between each morphological operation and the
veg input. You can adjust the effect of these morphological operators by adjusting
the size and shape of the kernel (also called a “structuring element” in this context,
because of its effect on the spatial structure of the result), or applying the oper-
ations repeatedly. When used for post-processing of, for example, a classification
output, this process will usually require multiple iterations to balance accuracy
with class cohesion.

Code Checkpoint F32c. The book’s repository contains a script that shows what
your code should look like at this point.

10.2.4 Section 4: Texture

The final group of neighborhood-based operations we will discuss is meant to
detect or enhance the “texture” of the image. Texture measures use a potentially

210 K. Dyson et al.

complex, usually nonlinear calculation using the pixel values within a neigh-
borhood. From a practical perspective, texture is one of the cues we use (often
unconsciously) when looking at a remote sensing image in order to identify fea-
tures. Some examples include distinguishing tree cover, examining the type of
canopy cover, and distinguishing crops. Measures of texture may be used on their
own or may be useful as inputs to regression, classification, and other analyzes
when they help distinguish between different types of land cover/land use or other
features on the landscape.

There are many ways to assess texture in an image, and a variety of functions
have been implemented to compute texture in Earth Engine.

Standard Deviation
The standard deviation (SD) measures the spread of the distribution of image val-
ues in the neighborhood. A textureless neighborhood, in which there is only one
value within the neighborhood, has a standard deviation of 0. A neighborhood with
significant texture will have a high standard deviation, the value of which will be
influenced by the magnitude of the values within the neighborhood.

Compute neighborhood SD for the NAIP image by first defining a 7 m radius
kernel and then using the stdDev reducer with the kernel.

// Begin Standard Deviation example.
// Define a big neighborhood with a 7-meter radius kernel.
var bigKernel = ee.Kernel.square({

radius: 7,
units: 'meters'

});

// Compute SD in a neighborhood.
var sd = imageNAIP.reduceNeighborhood({

reducer: ee.Reducer.stdDev(),
kernel: bigKernel

});

Map.addLayer(sd, {
min: 0,
max: 70

}, 'SD');

The resulting image for our fields somewhat resembles the image for edge
detection (Fig. 10.12).

You can pan around the example area to find buildings or pasture land and
examine these features. Notice how local variation and features appear, such as
the washes (texture variation caused by water) in Fig. 10.13.

10 Neighborhood-Based Image Transformation 211

Fig. 10.12 Example of the effects of a standard deviation convolution on an irrigated field in
NAIP imagery using a 7 m kernel

Fig. 10.13 Example of the effects of a standard deviation convolution on a natural landscape in
NAIP imagery using a 7 m kernel

Entropy
For discrete valued inputs, you can compute entropy in a neighborhood. Broadly,
entropy is a concept of disorder or randomness. In this case, entropy is an index
of the numerical diversity in the neighborhood.

We will compute entropy using the entropy function in Earth Engine and our
bigKernel structuring element. Notice that if you try to run the entropy on the
entire NAIP image (imageNAIP), you will get an error that only 32-bit or smaller
integer types are currently supported. So, let us cast the image to contain an integer
in every pixel using the int function. We will operate on the near-infrared band
since it is important for vegetation.

212 K. Dyson et al.

Fig. 10.14 Example of an entropy convolution of the near-infrared integer band in NAIP imagery
using a 7 m kernel

// Begin entropy example.
// Create an integer version of the NAIP image.
var intNAIP = imageNAIP.int();

// Compute entropy in a neighborhood.
var entropy = intNAIP.select('N').entropy(bigKernel);

Map.addLayer(entropy, {
min: 1,
max: 3

}, 'entropy');

The resulting entropy image has low values where the 7 m neighborhood around
a pixel is homogeneous and high values where the neighborhood is heterogeneous
(Fig. 10.14).

Gray-Level Co-occurrence Matrices
The gray-level co-occurrence matrix (GLCM) is based on gray-scale images. It
evaluates the co-occurrence of similar values occurring horizontally, vertically, or
diagonally. More formally, the GLCM is computed by forming an M × M matrix
for an image with M possible DN values, then computing entry i,j as the frequency
at which DN = i is adjacent to DN = j. In other words, the matrix represents the
relationship between two adjacent pixels.

Once the GLCM has been calculated, a variety of texture metrics can be com-
puted based on that matrix. One of these is contrast. To do this, we first use
the glcmTexture function. This function computes 14 original GLCM met-
rics (Haralick et al. 1973) and four later GLCM metrics (Conners et al.1984). The
glcmTexture function creates an image where each band is a different metric. Note
that the input needs to be an integer, so we will use the same integer NAIP layer
as above, and we need to provide a size for the neighborhood (here, it is 7).

10 Neighborhood-Based Image Transformation 213

// Begin GLCM example.
// Use the GLCM to compute a large number of texture
measures.
var glcmTexture = intNAIP.glcmTexture(7);
print('view the glcmTexture output', glcmTexture);

Now let us display the contrast results for the red, green, and blue bands.
Contrast is the second band and measures the local contrast of an image.

// Display the 'contrast' results for the red, green and
blue bands.
var contrastVis = {

bands: ['R_contrast', 'G_contrast', 'B_contrast'],
min: 40,
max: 1000

};

Map.addLayer(glcmTexture, contrastVis, 'contrast');

The resulting image highlights where there are differences in the contrast. For
example, in Fig. 10.15, we can see that the red band has high contrast within this
patchy field.

Spatial Statistics
Spatial statistics describe the distribution of different events across space and are
extremely useful for remote sensing (Stein et al. 1998). Uses include anomaly
detection, topographical analysis including terrain segmentation, and texture anal-
ysis using spatial association, which is how we will use it here. Two interesting

Fig. 10.15 Example of the contrast metric of GLCM for the NIR integer band in NAIP imagery
using a 7 m kernel

214 K. Dyson et al.

texture measures from the field of spatial statistics include local Moran’s I and
local Geary’s C (Anselin 1995).

To compute a local Geary’s C with the NAIP image as input, first create a 9 ×
9 kernel and then calculate local Geary’s C.

// Begin spatial statistics example using Geary's C.

// Create a list of weights for a 9x9 kernel.
var list = [1, 1, 1, 1, 1, 1, 1, 1, 1];
// The center of the kernel is zero.
var centerList = [1, 1, 1, 1, 0, 1, 1, 1, 1];
// Assemble a list of lists: the 9x9 kernel weights as a
2-D matrix.
var lists = [list, list, list, list, centerList, list,
list, list, list
];
// Create the kernel from the weights.
// Non-zero weights represent the spatial neighborhood.
var kernel = ee.Kernel.fixed(9, 9, lists, -4, -4, false);

Now that we have a kernel, we can calculate the maximum of the four NAIP
bands and use this with the kernel to calculate local Geary’s C. There is no
built-in function for Geary’s C in Earth Engine, so we create our own using the
subtract, pow (power), sum, and divide functions (Chap. 9).

// Use the max among bands as the input.
var maxBands = imageNAIP.reduce(ee.Reducer.max());

// Convert the neighborhood into multiple bands.
var neighBands = maxBands.neighborhoodToBands(kernel);

// Compute local Geary's C, a measure of spatial
association.
var gearys =
maxBands.subtract(neighBands).pow(2).reduce(ee.Reducer

.sum())
.divide(Math.pow(9, 2));

Map.addLayer(gearys, {
min: 20,
max: 2500

}, "Geary's C");

10 Neighborhood-Based Image Transformation 215

Fig. 10.16 Example of Geary’s C for the NAIP imagery using a 9 m kernel

Inspecting the resulting layer shows that boundaries between fields, building
outlines, and roads have high values of Geary’s C. This makes sense because
across bands, there will be high spatial autocorrelation within fields that are
homogenous, whereas between fields (at the field boundary) the area will be highly
heterogeneous (Fig. 10.16).

Code Checkpoint F32d. The book’s repository contains a script that shows what
your code should look like at this point.

10.3 Synthesis

In this chapter, we have explored many different neighborhood-based image trans-
formations. These transformations have practical applications for remote sensing
image analysis. Using transformation, you can use what you have learned in this
chapter and in 6 to:

• Use raw imagery (red, green, blue, and near-infrared bands) to create an image
classification.

• Use neighborhood transformations to create input imagery for an image
classification and run the image classification.

• Use one or more of the morphological transformations to clean up your image
classification.

Assignment 1. Compare and contrast your image classifications when using
raw imagery compared with using neighborhood transformations.

Assignment 2. Compare and contrast your unaltered image classification and
your image classification following morphological transformations.

216 K. Dyson et al.

10.4 Conclusion

Neighborhood-based image transformations enable you to extract information
about each pixel’s neighborhood to perform multiple important operations. Among
the most important are smoothing, edge detection and definition, morphologi-
cal processing, texture analysis, and spatial analysis. These transformations are
a foundational part of many larger remote sensing analysis workflows. They may
be used as imagery pre-processing steps and as individual layers in regression and
classifications, to inform change detection, and for other purposes.

References

Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115. https://
doi.org/10.1111/j.1538-4632.1995.tb00338.x

Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell
PAMI-8:679–698. https://doi.org/10.1109/TPAMI.1986.4767851

Castleman KR (1996) Digital image processing. Prentice Hall Press
Conners RW, Trivedi MM, Harlow CA (1984) Segmentation of a high-resolution urban scene using

texture operators. Comput Vision, Graph Image Process 25:273–310. https://doi.org/10.1016/
0734-189X(84)90197-X

Haralick RM, Dinstein I, Shanmugam K (1973) Textural features for image classification. IEEE
Trans Syst Man Cybern SMC-3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

Lüttig C, Neckel N, Humbert A (2017) A combined approach for filtering ice surface velocity fields
derived from remote sensing methods. Remote Sens 9:1062. https://doi.org/10.3390/rs9101062

Schowengerdt RA (2006) Remote sensing: models and methods for image processing. Elsevier
Stein A, Bastiaanssen WGM, De Bruin S et al (1998) Integrating spatial statistics and remote

sensing. Int J Remote Sens 19:1793–1814. https://doi.org/10.1080/014311698215252
Stuckens J, Coppin PR, Bauer ME (2000) Integrating contextual information with per-pixel classi-

fication for improved land cover classification. Remote Sens Environ 71:282–296. https://doi.
org/10.1016/S0034-4257(99)00083-8

Toure SI, Stow DA, Shih H-C et al (2018) Land cover and land use change analysis using multi-
spatial resolution data and object-based image analysis. Remote Sens Environ 210:259–268.
https://doi.org/10.1016/j.rse.2018.03.023

Vaiphasa C (2006) Consideration of smoothing techniques for hyperspectral remote sensing.
ISPRS J Photogramm Remote Sens 60:91–99. https://doi.org/10.1016/j.isprsjprs.2005.11.002

Wang M, Hu C (2015) Extracting oil slick features from VIIRS nighttime imagery using a Gaussian
filter and morphological constraints. IEEE Geosci Remote Sens Lett 12:2051–2055. https://doi.
org/10.1109/LGRS.2015.2444871

ZhiYong L, Shi W, Benediktsson JA, Gao L (2018) A modified mean filter for improving the
classification performance of very high-resolution remote-sensing imagery. Int J Remote Sens
39:770–785. https://doi.org/10.1080/01431161.2017.1390275

https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1016/0734-189X(84)90197-X
https://doi.org/10.1016/0734-189X(84)90197-X
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.3390/rs9101062
https://doi.org/10.1080/014311698215252
https://doi.org/10.1016/S0034-4257(99)00083-8
https://doi.org/10.1016/S0034-4257(99)00083-8
https://doi.org/10.1016/j.rse.2018.03.023
https://doi.org/10.1016/j.isprsjprs.2005.11.002
https://doi.org/10.1109/LGRS.2015.2444871
https://doi.org/10.1109/LGRS.2015.2444871
https://doi.org/10.1080/01431161.2017.1390275

10 Neighborhood-Based Image Transformation 217

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

11Object-Based Image Analysis

Morgan A. Crowley , Jeffrey A. Cardille , and Noel Gorelick

Overview
Pixel-based classification can include unwanted noise. Techniques for object-based
image analysis are designed to detect objects within images, making classifications
that can address this issue of classification noise. In this chapter, you will learn how
region growing can be used to identify objects in satellite imagery within Earth
Engine. By understanding how objects can be delineated and treated in an image,
students can apply this technique to their own images to produce landscape assess-
ments with less extraneous noise. Here, we treat images with an object delineator
and view the results of simple classifications to view similarities and differences.

Learning Outcomes

• Learning about object-based image classification in Earth Engine.
• Controlling noise in images by adjusting different aspects of object segmentation.

M. A. Crowley (B)
Natural Resources Canada, Canadian Forest Service—Great Lakes Forestry Centre, 1219 Queen
Street E, Sault Ste Marie, ON, Canada
e-mail: morgan.crowley@nrcan-rncan.gc.ca

M. A. Crowley · J. A. Cardille
Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111
Lakeshore, Sainte-Anne-de-Bellevue, QC, Canada
e-mail: jeffrey.cardille@mcgill.ca

J. A. Cardille
Bieler School of Environment, McGill University, 3534 Rue University, Montreal, QC, Canada

N. Gorelick
Google Switzerland, Brandschenkestrasse 110, 8002 Zurich, Switzerland
e-mail: gorelick@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_11

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_11&domain=pdf
http://orcid.org/0000-0001-5946-529X
http://orcid.org/0000-0002-4667-9085
http://orcid.org/0000-0002-5548-2436
mailto:morgan.crowley@nrcan-rncan.gc.ca
mailto:jeffrey.cardille@mcgill.ca
mailto:gorelick@google.com
https://doi.org/10.1007/978-3-031-26588-4_11

220 M. A. Crowley et al.

• Understanding differences through time of noise in images.
• Creating and viewing objects from different sensors.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks,

classify images (Part II).
• Create a function for code reuse (Chap. 1).
• Perform pixel-based supervised and unsupervised classifications (Chap. 6).

11.1 Introduction to Theory

Building upon traditional pixel-based classification techniques, object-based image
analysis classifies imagery into objects using perception-based, meaningful knowl-
edge (Blaschke et al. 2000; Blaschke 2010; Weih and Riggan 2010). Detecting and
classifying objects in a satellite image are a two-step approach. First, the image
is segmented using a segmentation algorithm. Second, the landscape objects are
classified using either supervised or unsupervised approaches. Segmentation algo-
rithms create pixel clusters using imagery information such as texture, color or
pixel values, shape, and size. Object-based image analysis is especially useful for
mapping forest disturbances (Blaschke 2010; Wulder et al. 2004) because addi-
tional information and context are integrated into the classification through the
segmentation process. One object-based image analysis approach available in Earth
Engine is the Simple Non-Iterative Clustering (SNIC) segmentation algorithm
(Achanta and Süsstrunk 2017). SNIC is a bottom-up, seed-based segmentation
algorithm that assembles clusters from neighboring pixels based on parameters of
compactness, connectivity, and neighborhood size. SNIC has been used in previous
Earth Engine-based research for mapping land use and land cover (Shafizadeh-
Moghadam et al. 2021; Tassi and Vizzari 2020), wetlands (Mahdianpari et al.
2018 and 2020, Amani et al. 2019), burned areas (Crowley et al. 2019), sustain-
able development goal indicators (Mariathasan et al. 2019), and ecosystem services
(Verde et al. 2020).

11.2 Practicum

11.2.1 Section 1: Unsupervised Classification

In earlier chapters (see Chap. 6), you saw how to perform a supervised and unsu-
pervised classification. In this lab, we will focus on object-based segmentation and
unsupervised classifications—a clean and simple way to look at the spectral and
spatial variability that is seen by a classification algorithm.

11 Object-Based Image Analysis 221

We will now build a script in several numbered sections, giving you a chance
to see how it is constructed as well as to observe intermediate and contrasting
results as you proceed. We will start by defining a function for taking an image
and breaking it into a set of unsupervised classes. When called, this function will
divide the image into a specified number of classes, without directly using any
spatial characteristics of the image.

Paste the following block into a new script.

// 1.1 Unsupervised k-Means classification

// This function does unsupervised clustering classification
// input = any image. All bands will be used for clustering.
// numberOfUnsupervisedClusters = tunable parameter for how

// many clusters to create.
var afn_Kmeans = function(input,
numberOfUnsupervisedClusters,

defaultStudyArea, nativeScaleOfImage) {

// Make a new sample set on the input. Here the sample

// randomly selected spatially.
var training = input.sample({

region: defaultStudyArea,
scale: nativeScaleOfImage,
numPixels: 1000

});

var cluster = ee.Clusterer.wekaKMeans(
numberOfUnsupervisedClusters)

.train(training);

// Now apply that clusterer to the raw image that was
also passed in.

set is

var toexport = input.cluster(cluster);
// The first item is the unsupervised classification.

Name the band.
var clusterUnsup = toexport.select(0).rename(

'unsupervisedClass');
return (clusterUnsup);

};

We will also need a function to normalize the band values to a common scale
from 0 to 1. This will be most useful when we are creating objects. Additionally,
we will need a function to add the mean to the band name. Paste the following

222 M. A. Crowley et al.

functions into your code. Note that, the code numbering skips intentionally from
1.2 to 1.4; we will add Sect. 1.3 later.

// 1.2 Simple normalization by maxes function.
var afn_normalize_by_maxes = function(img, bandMaxes) {

return img.divide(bandMaxes);
};

// 1.4 Simple add mean to Band Name function
var afn_addMeanToBandName = (function(i) {

return i + '_mean';
});

We will create a section that defines variables that you will be able to adjust.
One important adjustable parameter is the number of clusters for the clusterer to
use. Add the following code beneath the function definitions.

//
// 2. Parameters to function calls
//

// 2.1. Unsupervised KMeans Classification Parameters
var numberOfUnsupervisedClusters = 4;

The script will allow you to zoom to a specified area for better viewing and
exists already in the code repository check points. Add this code below.

//
// 2.2. Visualization and Saving parameters
// For different images, you might want to change the min
and max
// values to stretch. Useful for images 2 and 3, the
normalized images.
var centerObjectYN = true;

Now, with these functions, parameters, and flags in place, let us define a new
image and set image-specific values that will help analyze it. We will put this in
a new section of the code that contains “if” statements for images from multiple
sensors. We set up the code like this because we will use several images from
different sensors in the following sections; therefore, they are preloaded, so all
that you have to do are to change the parameter “whichImage”. In this particu-
lar Sentinel-2 image, focus on differentiating forest and non-forest regions in the

11 Object-Based Image Analysis 223

Puget Sound, Washington, USA. The script will automatically zoom to the region
of interest.

//
// 3. Statements
//

// 3.1 Selecting Image to Classify
var whichImage = 1; // will be used to select among images
if (whichImage == 1) {

// Image 1.
// Puget Sound, WA: Forest Harvest
// (April 21, 2016)
// Harvested Parcels
// Clear Parcel Boundaries
// Sentinel 2, 10m
var whichCollection = 'COPERNICUS/S2';
var ImageToUseID =

'20160421T191704_20160421T212107_T10TDT';
var originalImage = ee.Image(whichCollection + '/' +
ImageToUseID);
print(ImageToUseID, originalImage);
var nativeScaleOfImage = 10;
var threeBandsToDraw = ['B4', 'B3', 'B2'];
var bandsToUse = ['B4', 'B3', 'B2'];
var bandMaxes = [1e4, 1e4, 1e4];
var drawMin = 0;
var drawMax = 0.3;
var defaultStudyArea = ee.Geometry.Polygon(

[
[

[-123.13105468749993, 47.612974066532004],
[-123.13105468749993, 47.56214700543596],
[-123.00179367065422, 47.56214700543596],
[-123.00179367065422, 47.612974066532004]

]
]);

var zoomArea = ee.Geometry.Polygon(
[

[
[-123.13105468749993, 47.612974066532004],
[-123.13105468749993, 47.56214700543596],
[-123.00179367065422, 47.56214700543596],
[-123.00179367065422, 47.612974066532004]

224 M. A. Crowley et al.

], null, false);
}
Map.addLayer(originalImage.select(threeBandsToDraw), {

min: 0,
max: 2000

}, '3.1 '+ ImageToUseID, true, 1);

]

Now, let us clip the image to the study area we are interested in, then extract
the bands to use for the classification process.

//
// 4. Image Preprocessing
//
var clippedImageSelectedBands =
originalImage.clip(defaultStudyArea)

.select(bandsToUse);
var ImageToUse =
afn_normalize_by_maxes(clippedImageSelectedBands,

bandMaxes);

Map.addLayer(ImageToUse.select(threeBandsToDraw), {
min: 0.028,
max: 0.12

},
'4.3 Pre-normalized image', true, 0);

Now, let us view the per-pixel unsupervised classification, produced using the
k-means classifier. Note that, as we did earlier, we skip a section of the code
numbering (moving from Sects. 4 to 6), which we will fill in later as the script is
developed further.

11 Object-Based Image Analysis 225

//
// 6. Execute Classifications
//

// 6.1 Per Pixel Unsupervised Classification for Comparison
var PerPixelUnsupervised = afn_Kmeans(ImageToUse,

numberOfUnsupervisedClusters, defaultStudyArea,
nativeScaleOfImage);

Map.addLayer(PerPixelUnsupervised.select('unsupervisedClass'
)

.randomVisualizer(), {}, '6.1 Per-Pixel Unsupervised',
true, 0
);
print('6.1b Per-Pixel Unsupervised Results:',
PerPixelUnsupervised);

Then, insert this code, so that you can zoom if requested.

//
// 7. Zoom if requested
//
if (centerObjectYN === true) {

Map.centerObject(zoomArea, 14);
}

Code Checkpoint F33a. The book’s repository contains a script that shows what
your code should look like at this point.

Run the script. It will draw the study area in a true-color view (Fig. 11.1), where
you can inspect the complexity of the landscape as it would have appeared to your
eye in 2016, when the image was captured.

Note harvested forests of different ages, the spots in the northwest part of the
study area that might be naturally treeless, and the straight easements for trans-
mission lines in the eastern part of the study area. You can switch Earth Engine to
satellite view and change the transparency of the drawn layer to inspect what has
changed in the years since the image was captured.

As it drew your true-color image, Earth Engine also executed the k-means clas-
sification and added it to your set of layers. Turn up the visibility of layer 6.1
Per-Pixel Unsupervised, which shows the four-class per-pixel classification result
using randomly selected colors. The result should look something like Fig. 11.2.

Take a look at the image that was produced, using the transparency slider
to inspect how well you think the classification captured the variability in
the landscape and classified similar classes together, then answer the following
questions.

226 M. A. Crowley et al.

Fig. 11.1 True-color Sentinel-2 image from 2016 for the study area

Question 1. In your opinion, what are some of the strengths and weaknesses of
the map that resulted from your settings?

Question 2. Part of the image that appears to our eye to represent a single land use
might be classified by the k-means classification as containing different clusters.
Is that a problem? Why or why not?

Question 3. A given unsupervised class might represent more than one land
use/land cover type in the image. Use the Inspector to find classes for which
there were these types of overlaps. Is that a problem? Why or why not?

Question 4. You can change the numberOfUnsupervisedClusters variable
to be more or less than the default value of 4. Which, if any, of the resulting maps

11 Object-Based Image Analysis 227

Fig. 11.2 Pixel-based unsupervised classification using four-class k-means unsupervised classifi-
cation using bands from the visible spectrum

produce a more satisfying image? Is there an upper limit at which it is hard for
you to tell whether the classification was successful or not?

As discussed in earlier chapters, the visible part of the electromagnetic spec-
trum contains only part of the information that might be used for a classification.
The short-wave infrared bands have been seen in many applications to be more
informative than the true-color bands.

Return to your script and find the place where threeBandsToDraw is set.
That variable is currently set to B4, B3, and B2. Comment out that line and use
the one below, which will set the variable to B8, B11, and B12. Make the same
change for the variable bandsToUse. Now, run this modified script, which will

228 M. A. Crowley et al.

use three new bands for the classification and also draw them to the screen for
you to see. You will notice that this band combination provides different contrasts
among cover types. For example, you might now notice that there are small bodies
of water and a river in the scene, details that are easy to overlook in a true-color
image. With numberOfUnsupervisedClusters still set at 4, your resulting
classification should look like Fig. 11.3.

Question 5. Did using the bands from outside the visible part of the spectrum
change any classes so that they are more cleanly separated by land use or land
cover? Keep in mind that the colors which are randomly chosen in each of the

Fig. 11.3 Pixel-based unsupervised classification using four-class k-means unsupervised classifi-
cation using bands from outside of the visible spectrum

11 Object-Based Image Analysis 229

images are unrelated—a class colored brown in Fig. 11.2 might well be pink in
Fig. 11.3.
Question 6. Experiment with adjusting the numberOfUnsupervised
Clusters with this new dataset. Is one combination preferable to another, in
your opinion? Keep in mind that there is no single answer about the usefulness
of an unsupervised classification beyond asking whether it separates classes of
importance to the user.

Code Checkpoint F33b. The book’s repository contains a script that
shows what your code should look like at this point. In that code, the
numberOfUnsupervisedClusters is set to 4, and the infrared bands are
used as part of the classification process.

11.2.2 Section 2: Detecting Objects in Imagery with the SNIC
Algorithm

The noise you noticed in the pixel-based classification will now be improved using
a two-step approach for object-based image analysis. First, you will segment the
image using the SNIC algorithm, and then, you will classify it using a k-means
unsupervised classifier. Return to your script, where we will add a new function.
Noting that the code’s sections are numbered, find code Sect. 1.2 and add the
function below beneath it.

// 1.3 Seed Creation and SNIC segmentation Function
var afn_SNIC = function(imageOriginal, SuperPixelSize,
Compactness,

Connectivity, NeighborhoodSize, SeedShape) {
var theSeeds =

ee.Algorithms.Image.Segmentation.seedGrid(
SuperPixelSize, SeedShape);

var snic2 = ee.Algorithms.Image.Segmentation.SNIC({
image: imageOriginal,
size: SuperPixelSize,
compactness: Compactness,
connectivity: Connectivity,
neighborhoodSize: NeighborhoodSize,
seeds: theSeeds

});
var theStack = snic2.addBands(theSeeds);
return (theStack);

};

230 M. A. Crowley et al.

As you see, the function assembles parameters needed for running SNIC
(Achanta and Süsstrunk 2017; Crowley et al. 2019), the function that delineates
objects in an image. A call to SNIC takes several parameters that we will explore.
Add the following code below code Sect. 2.2.

// 2.3 Object-growing parameters to change
// Adjustable Superpixel Seed and SNIC segmentation Parameters:
// The superpixel seed location spacing, in pixels.
var SNIC_SuperPixelSize = 16;
// Larger values cause clusters to be more compact
(square/hexagonal).
// Setting this to 0 disables spatial distance weighting.
var SNIC_Compactness = 0;
// Connectivity. Either 4 or 8.
var SNIC_Connectivity = 4;
// Either 'square' or 'hex'.
var SNIC_SeedShape = 'square';

// 2.4 Parameters that can stay unchanged
// Tile neighborhood size (to avoid tile boundary artifacts).
Defaults to 2 * size.
var SNIC_NeighborhoodSize = 2 * SNIC_SuperPixelSize;

Now, add a call to the SNIC function. You will notice that it takes the param-
eters specified in code Sect. 11.2.2 and sends them to the SNIC algorithm. Place
the code below into the script as the code’s Sect. 11.2.5, between Sects. 4 and 6.

11 Object-Based Image Analysis 231

//
// 5. SNIC Clustering
//

// This function returns a multi-banded image that has had
SNIC
// applied to it. It automatically determine the new names
// of the bands that will be returned from the segmentation.
print('5.1 Execute SNIC');
var SNIC_MultiBandedResults = afn_SNIC(

ImageToUse,
SNIC_SuperPixelSize,
SNIC_Compactness,
SNIC_Connectivity,
SNIC_NeighborhoodSize,
SNIC_SeedShape

);

var SNIC_MultiBandedResults = SNIC_MultiBandedResults
.reproject('EPSG:3857', null, nativeScaleOfImage);

print('5.2 SNIC Multi-Banded Results',
SNIC_MultiBandedResults);

Map.addLayer(SNIC_MultiBandedResults.select('clusters')
.randomVisualizer(), {}, '5.3 SNIC Segment Clusters',

true, 1);

var theSeeds = SNIC_MultiBandedResults.select('seeds');
Map.addLayer(theSeeds, {

palette: 'red'
}, '5.4 Seed points of clusters', true, 1);

var bandMeansToDraw =
threeBandsToDraw.map(afn_addMeanToBandName);
print('5.5 band means to draw', bandMeansToDraw);
var clusterMeans =
SNIC_MultiBandedResults.select(bandMeansToDraw);
print('5.6 Cluster Means by Band', clusterMeans);
Map.addLayer(clusterMeans, {

min: drawMin,
max: drawMax

}, '5.7 Image repainted by segments', true, 0);

Now, run the script. It will draw several layers, with the one shown in Fig. 11.4
on top.

232 M. A. Crowley et al.

Fig. 11.4 SNIC clusters, with randomly chosen colors for each cluster

This shows the work of SNIC on the image sent to it—in this case, on the
composite of bands 8, 11, and 12. If you look closely at the multicolored layer,
you can see small red “seed” pixels. To initiate the process, these seeds are created
and used to form square or hexagonal “superpixels” at the spacing given by the
parameters passed to the function. The edges of these blocks are then pushed and
pulled and directed to stop at edges in the input image. As part of the algorithm,
some superpixels are then merged to form larger blocks, which is why you will
find that some of the shapes contain two or more seed pixels.

Explore the structure by changing the transparency of layer 5 to judge how the
image segmentation performs for the given set of parameter values. You can also
compare layer 5.7–layer 3.1. Layer 5.7 is a reinterpretation of layer 3.1 in which

11 Object-Based Image Analysis 233

every pixel in a given shape of layer 5.3 is assigned the mean value of the pixels
inside the shape. When parameterized in a way that is useful for a given project
goal, parts of the image that are homogeneous will get the same color, while areas
of high heterogeneity will get multiple colors.

Now, spend some time exploring the effect of the parameters that control the
code’s behavior. Use your tests to answer the questions below.

Question 7. What is the effect on the SNIC clusters of changing the parameter
SNIC_SuperPixelSize?

Question 8. What is the effect of changing the parameter SNIC_Compactness?

Question 9. What are the effects of changing the parameters
SNIC_Connectivity and SNIC_SeedShape?

Code Checkpoint F33c. The book’s repository contains a script that shows what
your code should look like at this point.

11.2.3 Section 3: Object-Based Unsupervised Classification

The k-means classifier used in this tutorial is not aware that we would often pre-
fer to have adjacent pixels to be grouped into the same class—it has no sense of
physical space. This is why you see the noise in the unsupervised classification.
However, because we have re-colored the pixels in a SNIC cluster to all share
the exact same band values, k-means will group all pixels of each cluster to have
the same class. In the best-case scenario, this allows us to enhance our classi-
fication from being pixel-based to reveal clean and unambiguous objects in the
landscape. In this section, we will classify these objects, exploring the strengths
and limitations of finding objects in this image.

Return the SNIC settings to their first values, namely:

// The superpixel seed location spacing, in pixels.
var SNIC_SuperPixelSize = 16;
// Larger values cause clusters to be more compact
(square/hexagonal).
// Setting this to 0 disables spatial distance weighting.
var SNIC_Compactness = 0;
// Connectivity. Either 4 or 8.
var SNIC_Connectivity = 4;
// Either 'square' or 'hex'.
var SNIC_SeedShape = 'square';

As code Sect. 6.2, add this code, which will call the SNIC function and draw
the results.

234 M. A. Crowley et al.

// 6.2 SNIC Unsupervised Classification for Comparison
var bandMeansNames = bandsToUse.map(afn_addMeanToBandName);
print('6.2 band mean names returned by segmentation',
bandMeansNames);
var meanSegments =
SNIC_MultiBandedResults.select(bandMeansNames);
var SegmentUnsupervised = afn_Kmeans(meanSegments,

numberOfUnsupervisedClusters, defaultStudyArea,
nativeScaleOfImage);

Map.addLayer(SegmentUnsupervised.randomVisualizer(), {},
'6.3 SNIC Clusters Unsupervised', true, 0);

print('6.3b Per-Segment Unsupervised Results:',
SegmentUnsupervised);
//

When you run the script, that new function will classify the image in layer 5.7,
which is the recoloring of the original image according to the segments shown in
layer 5. Compare the classification of the superpixels (6.3) with the unsupervised
classification of the pixel-by-pixel values (6.1). You should be able to change the
transparency of those two layers to compare them directly.

Question 10. What are the differences between the unsupervised classifications
of the per-pixel and SNIC-interpreted images? Describe the tradeoff between
removing noise and erasing important details.

Code Checkpoint F33d. The book’s repository contains a script that shows what
your code should look like at this point.

11.2.4 Section 4: Classifications with More or Less Categorical
Detail

Recall the variable numberOfUnsupervisedClusters, which directs the k-
means algorithm to partition the dataset into that number of classes. Because the
colors are chosen randomly for layer 6.3, any change to this number typically
results in an entirely different color scheme. Changes in the color scheme can
also occur if you were to use a slightly different study area size between two
runs. Although this can make it hard to compare the results of two unsupervised
algorithms, it is a useful reminder that the unsupervised classification labels do not
necessarily correspond to a single land use/land cover type.

Question 11. Find the numberOfUnsupervisedClusters variable in the
code and set it to different values. You might test it across powers of two: 2, 4,
8, 16, 32, and 64 clusters will all look visually distinct. In your opinion, does one
of them best discriminate between the classes in the image? Is there a particular
number of colors that is too complicated for you to understand?

11 Object-Based Image Analysis 235

Question 12. What concrete criteria could you use to determine whether a
particular unsupervised classification is good or bad for a given goal?

11.2.5 Section 5: Effects of SNIC Parameters

The number of classes controls the partition of the landscape for a given
set of SNIC clusters. The four parameters of SNIC, in turn, influence the
spatial characteristics of the clusters produced for the image. Adjust the
four parameters of SNIC: SNIC_SuperPixelSize, SNIC_Compactness,
SNIC_Connectivity, and SNIC_SeedShape. Although their workings can
be complex, you should be able to learn what characteristics of the SNIC clustering
they control by changing each one individually. At that point, you can explore the
effects of changing multiple values for a single run. Recall that the ultimate goal
of this workflow is to produce an unsupervised classification of landscape objects,
which may relate to the SNIC parameters in very complex ways. You may want
to start by focusing on the effect of the SNIC parameters on the cluster character-
istics (layer 5.3) and then look at the associated unsupervised classification layer
6.

Question 13. What is the effect on the unsupervised classification of SNIC clusters
of changing the parameter SNIC_SuperPixelSize?

Question 14. What is the effect of changing the parameter
SNIC_Compactness?

Question 15. What are the effects of changing the parameters
SNIC_Connectivity and SNIC_SeedShape?

Question 16. For this image, what is the combination of parameters that, in your
subjective judgment, best captures the variability in the scene while minimizing
unwanted noise?

11.3 Synthesis

Assignment 1. Additional images from other remote sensing platforms can be
found in script F33s1 in the book’s repository. Run the classification procedure on
these images and compare the results from multiple parameter combinations.

Assignment 2. Although this exercise was designed to remove or minimize spatial
noise, it does not treat temporal noise. With a careful choice of imagery, you can
explore the stability of these methods and settings for images from different dates.
Because the MODIS sensor, for example, can produce images on consecutive days,
you would expect that the objects identified in a landscape would be nearly iden-
tical from one day to the next. Is this the case? To go deeper, you might contrast
temporal stability as measured by different sensors. Are some sensors more stable

236 M. A. Crowley et al.

in their object creation than others? To go even deeper, you might consider how
you would quantify this stability using concrete measures that could be compared
across different sensors, places, and times. What would these measures be?

11.4 Conclusion

Object-based image analysis is a method for classifying satellite imagery by
segmenting neighboring pixels into objects using pre-segmented objects. The iden-
tification of candidate image objects is readily available in Earth Engine using the
SNIC segmentation algorithm. In this chapter, you applied the SNIC segmentation
and the unsupervised k-means algorithm to satellite imagery. You illustrated how
the segmentation and classification parameters can be customized to meet your
classification objective and to reduce classification noise. Now that you under-
stand the basics of detecting and classifying image objects in Earth Engine, you
can explore further by applying these methods on additional data sources.

References

Achanta R, Süsstrunk S (2017) Superpixels and polygons using simple non-iterative clustering. In:
Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017,
pp 4895–4904

Amani M, Mahdavi S, Afshar M et al (2019) Canadian wetland inventory using Google Earth
Engine: the first map and preliminary results. Remote Sens 11:842. https://doi.org/10.3390/RS1
1070842

Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogram Remote
Sens 65:2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004

Blaschke T, Lang S, Lorup E et al (2000) Object-oriented image processing in an integrated
GIS/remote sensing environment and perspectives for environmental applications. Environ Inf
Plann Polit Public 2:555–570

Crowley MA, Cardille JA, White JC, Wulder MA (2019) Generating intra-year metrics of wild-
fire progression using multiple open-access satellite data streams. Remote Sens Environ
232:111295. https://doi.org/10.1016/j.rse.2019.111295

Mahdianpari M, Salehi B, Mohammadimanesh F et al (2018) The first wetland inventory map
of Newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the
Google Earth Engine cloud computing platform. Remote Sens 11:43. https://doi.org/10.3390/
rs11010043

Mahdianpari M, Salehi B, Mohammadimanesh F et al (2020) Big data for a big country: the first
generation of Canadian wetland inventory map at a spatial resolution of 10-m using Sentinel-1
and Sentinel-2 data on the Google Earth Engine cloud computing platform. Can J Remote Sens
46:15–33. https://doi.org/10.1080/07038992.2019.1711366

Mariathasan V, Bezuidenhoudt E, Olympio KR (2019) Evaluation of Earth observation solutions
for Namibia’s SDG monitoring system. Remote Sens 11:1612. https://doi.org/10.3390/rs1113
1612

Shafizadeh-Moghadam H, Khazaei M, Alavipanah SK, Weng Q (2021) Google Earth Engine for
large-scale land use and land cover mapping: an object-based classification approach using
spectral, textural and topographical factors. Giscience Remote Sens 58:914–928. https://doi.
org/10.1080/15481603.2021.1947623

https://doi.org/10.3390/RS11070842
https://doi.org/10.3390/RS11070842
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1016/j.rse.2019.111295
https://doi.org/10.3390/rs11010043
https://doi.org/10.3390/rs11010043
https://doi.org/10.1080/07038992.2019.1711366
https://doi.org/10.3390/rs11131612
https://doi.org/10.3390/rs11131612
https://doi.org/10.1080/15481603.2021.1947623
https://doi.org/10.1080/15481603.2021.1947623

11 Object-Based Image Analysis 237

Tassi A, Vizzari M (2020) Object-oriented LULC classification in Google Earth Engine combin-
ing SNIC, GLCM, and machine learning algorithms. Remote Sens 12:1–17. https://doi.org/10.
3390/rs12223776

Verde N, Kokkoris IP, Georgiadis C et al (2020) National scale land cover classification for ecosys-
tem services mapping and assessment, using multitemporal Copernicus EO data and Google
Earth Engine. Remote Sens 12:1–24. https://doi.org/10.3390/rs12203303

Weih RC, Riggan ND (2010) Object-based classification vs. pixel-based classification: compar-
ative importance of multi-resolution imagery. Int Arch Photogram Remote Sens Spat Inf Sci
38:C7

Wulder MA, Skakun RS, Kurz WA, White JC (2004) Estimating time since forest harvest using
segmented Landsat ETM+ imagery. Remote Sens Environ 93:179–187. https://doi.org/10.
1016/j.rse.2004.07.009

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/rs12223776
https://doi.org/10.3390/rs12223776
https://doi.org/10.3390/rs12203303
https://doi.org/10.1016/j.rse.2004.07.009
https://doi.org/10.1016/j.rse.2004.07.009
http://creativecommons.org/licenses/by/4.0/

Part IV

Interpreting Image Series

One of the paradigm-changing features of Earth Engine is the ability to access
decades of imagery without the previous limitation of needing to download all the
data to a local disk for processing. Because remote-sensing data files can be enor-
mous, this used to limit many projects to viewing two or three images from different
periods. With Earth Engine, users can access tens or hundreds of thousands of images
to understand the status of places across decades.

12Filter, Map, Reduce

Jeffrey A. Cardille

Overview
The purpose of this chapter is to teach you important programming concepts as they
are applied in Earth Engine. We first illustrate how the order and type of these opera-
tions can matter with a real-world, non-programming example. We then demonstrate
these concepts with anImageCollection, a key data type that distinguishes Earth
Engine from desktop image processing implementations.

Learning Outcomes

• Visualizing the concepts of filtering, mapping, and reducing with a hypothetical,
non-programming example.

• Gaining context and experience with filtering an ImageCollection.
• Learning how to efficiently map a user-written function over the images of a

filtered ImageCollection.
• Learning how to summarize a set of assembled values using Earth Engine reducers.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks

(Part II).

J. A. Cardille (B)
McGill University, Quebec, Canada
e-mail: jeffrey.cardille@mcgill.ca

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_12

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_12&domain=pdf
mailto:jeffrey.cardille@mcgill.ca
https://doi.org/10.1007/978-3-031-26588-4_12

242 J. A. Cardille

12.1 Introduction to Theory

Prior chapters focused on exploring individual images—for example, viewing the
characteristics of single satellite images by displaying different combinations of
bands (Chap. 2), viewing single images from different datasets (Chap 3, and 4),
and exploring image processing principles (Parts II, III) as they are implemented
for cloud-based remote sensing in Earth Engine. Each image encountered in those
chapters was pulled from a larger assemblage of images taken from the same
sensor. The chapters used a few ways to narrow down the number of images in
order to view just one for inspection (Part I) or manipulation (Part II, Part III).

In this chapter and most of the chapters that follow, we will move from the
domain of single images to the more complex and distinctive world of working
with image collections, one of the fundamental data types within Earth Engine.
The ability to conceptualize and manipulate entire image collections distinguishes
Earth Engine and gives it considerable power for interpreting change and stability
across space and time.

When looking for change or seeking to understand differences in an area
through time, we often proceed through three ordered stages, which we will color
code in this first explanatory part of the lab:

1. Filter:: selecting subsets of images based on criteria of interest.
2. Map: : manipulating each image in a set in some way to suit our goals.
3. Reduce:: estimating characteristics of the time series.

For users of other programming languages—R, MATLAB, C, Karel, and many
others—this approach might seem awkward at first. We explain it below with a
non-programming example: going to the store to buy milk.

Suppose you need to go shopping for milk, and you have two criteria for deter-
mining where you will buy your milk: location and price. The store needs to be
close to your home, and as a first step in deciding whether to buy milk today, you
want to identify the lowest price among those stores. You do not know the cost of
milk at any store ahead of time, so you need to efficiently contact each one and
determine the minimum price to know whether it fits in your budget. If we were
discussing this with a friend, we might say, “I need to find out how much milk
costs at all the stores around here”. To solve that problem in a programming lan-
guage, these words imply precise operations on sets of information. We can write
the following “pseudocode”, which uses words that indicate logical thinking but
that cannot be pasted directly into a program:

AllStoresOnEarth.filterNearbyStores.filterStoresWithMilk.getMilkPricesFromEach
Store.determineTheMinimumValue

Imagine doing these actions not on a computer but in a more old-fashioned
way: calling on the telephone for milk prices, writing the milk prices on paper,

12 Filter, Map, Reduce 243

and inspecting the list to find the lowest value. In this approach, we begin with
AllStoresOnEarth, since there is at least some possibility that we could decide to
visit any store on Earth, a set that could include millions of stores, with prices
for millions or billions of items. A wise first action would be to limit ourselves to
nearby stores. Asking to filterNearbyStores would reduce the number of potential
stores to hundreds, depending on how far we are willing to travel for milk. Then,
working with that smaller set, we further filterStoresWithMilk, limiting ourselves
to stores that sell our target item. At that point in the filtering, imagine that just ten
possibilities remain. Then, by telephone, we getMilkPricesFromEachStore, making
a short paper list of prices. We then scan the list to determineTheMinimumValue
to decide which store to visit.

In that example, each color plays a different role in the workflow. The
AllStoresOnEarth set, any one of which might contain inexpensive milk, is an enor-
mous collection. The filtering actions filterNearbyStores and filterStoresWithMilk
are operations that can happen on any set of stores. These actions take a set of
stores, do some operation to limit that set, and return that smaller set of stores as
an answer. The action to getMilkPricesFromEachStore takes a simple idea—calling
a store for a milk price—and “maps” it over a given set of stores. Finally, with the
list of nearby milk prices assembled, the action to determineTheMinimumValue , a
general idea that could be applied to any list of numbers, identifies the cheapest
one.

The list of steps above might seem almost too obvious, but the choice and order
of operations can have a big impact on the feasibility of the problem. Imagine if
we had decided to do the same operations in a slightly different order:

AllStoresOnEarth.filterStoresWithMilk.getMilkPricesFromEachStore.filterNearbyStor
es.determineMinimumValue

In this approach, we first identify all the stores on Earth that have milk, then
contact them one by one to get their current milk price. If the contact is done by
phone, this could be a painfully slow process involving millions of phone calls. It
would take considerable “processing” time to make each call and careful work to
record each price onto a giant list. Processing the operations in this order would
demand that only after entirely finishing the process of contacting every milk pro-
prietor on Earth, we then identify the ones on our list that are not nearby enough
to visit, then scan the prices on the list of nearby stores to find the cheapest one.
This should ultimately give the same answer as the more efficient first example,
but only after requiring so much effort that we might want to give up.

In addition to the greater order of magnitude of the list size, you can see that
there are also possible slow points in the process. Could you make a million phone
calls yourself? Maybe, but it might be pretty appealing to hire, say, 1000 people to
help. While being able to make a large number of calls in parallel would speed up
the calling stage, it is important to note that you would need to wait for all 1000
callers to return their sublists of prices. Why wait? Nearby stores could be on any

244 J. A. Cardille

caller’s sublist, so any caller might be the one to find the lowest nearby price. The
identification of the lowest nearby price would need to wait for the slowest caller,
even if it turned out that all of that last caller’s prices came from stores on the
other side of the world.

This counterexample would also have other complications—such as the need to
track store locations on the list of milk prices—that could present serious problems
if you did those operations in that unwise order. For now, the point is to filter, then
map, then reduce. Below, we will apply these concepts to image collections.

12.2 Practicum

12.2.1 Section 1: Filtering Image Collections in Earth Engine

The first part of the filter, map, reduce paradigm is “filtering” to get a smaller
ImageCollection from a larger one. As in the milk example, filters take a
large set of items, limit it by some criterion, and return a smaller set for consid-
eration. Here, filters take an ImageCollection, limit it by some criterion of
date, location, or image characteristics, and return a smaller ImageCollection
(Fig. 12.1).

As described first in Chap. 3, the Earth Engine API provides a set of filters
for the ImageCollection type. The filters can limit an ImageCollection
based on spatial, temporal, or attribute characteristics. Filters were used in Parts
I, II, and III without much context or explanation, to isolate an image from
an ImageCollection for inspection or manipulation. The information below

Fig. 12.1 Filter, map, reduce as applied to image collections in Earth Engine

12 Filter, Map, Reduce 245

should give perspective on that work while introducing some new tools for filtering
image collections.

Below are three examples of limiting a Landsat 5 ImageCollection by
characteristics and assessing the size of the resulting set.

FilterDate This takes an ImageCollection as input and returns an
ImageCollection whose members satisfy the specified date criteria. We will
adapt the earlier filtering logic seen in Chap. 3:

var imgCol = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2');
// How many Tier 1 Landsat 5 images have ever been collected?
print("All images ever: ", imgCol.size()); // A very large
number

// How many images were collected in the 2000s?
var startDate = '2000-01-01';
var endDate = '2010-01-01';

var imgColfilteredByDate = imgCol.filterDate(startDate,
endDate);
print("All images 2000-2010: ", imgColfilteredByDate.size());
// A smaller (but still large) number

After running the code, you should get a very large number for the full set of
images. You also will likely get a very large number for the subset of images over
the decade-scale interval.

FilterBounds It may be that—similar to the milk example—only images near to a
place of interest are useful for you. As first presented in Part I, filterBounds
takes an ImageCollection as input and returns an ImageCollection
whose images surround a specified location. If we take the ImageCollection
that was filtered by date and then filter it by bounds, we will have filtered the
collection to those images near a specified point within the specified date interval.
With the code below, we will count the number of images in the Shanghai vicinity,
first visited in Chap. 2, from the early 2000s:

var ShanghaiImage = ee.Image(
'LANDSAT/LT05/C02/T1_L2/LT05_118038_20000606');

Map.centerObject(ShanghaiImage, 9);

var imgColfilteredByDateHere =
imgColfilteredByDate.filterBounds(Map

.getCenter());
print("All images here, 2000-2010: ", imgColfilteredByDateHere
.size()); // A smaller number

246 J. A. Cardille

If you could like, you could take a few minutes to explore the behavior of the
script in different parts of the world. To do that, you would need to comment
out the Map.centerObject command to keep the map from moving to that
location each time you run the script.

Filter by Other Image Metadata As first explained in Chap. 4, the date and
location of an image are characteristics stored with each image. Another important
factor in image processing is the cloud cover, an image-level value computed for
each image in many collections, including the Landsat and Sentinel-2 collections.
The overall cloudiness score might be stored under different metadata tag names
in different datasets. For example, for Sentinel-2, this overall cloudiness score is
stored in the CLOUDY_PIXEL_PERCENTAGE metadata field. For Landsat 5, the
ImageCollection we are using in this example, the image-level cloudiness
score is stored using the tag CLOUD_COVER. If you are unfamiliar with how to
find this information, these skills are first presented in Part I.

Here, we will access the ImageCollection that we just built using
filterBounds and filterDate and then further filter the images by the
image-level cloud cover score, using the filterMetadata function.

Next, let us remove any images with 50% or more cloudiness. As will be
described in subsequent chapters working with per-pixel cloudiness information,
you might want to retain those images in a real-life study, if you feel some values
within cloudy images might be useful. For now, to illustrate the filtering con-
cept, let us keep only images whose image-level cloudiness values indicate that
the cloud coverage is lower than 50%. Here, we will take the set already filtered
by bounds and date and further filter it using the cloud percentage into a new
ImageCollection. Add this line to the script to filter by cloudiness and print
the size to the Console.

var L5FilteredLowCloudImages = imgColfilteredByDateHere
.filterMetadata('CLOUD_COVER', 'less_than', 50);

print("Less than 50% clouds in this area, 2000-2010",
L5FilteredLowCloudImages.size()); // A smaller number

Filtering in an Efficient Order As you saw earlier in the hypothetical milk exam-
ple, we typically filter, then map, and then reduce, in that order. In the same way
that we would not want to call every store on Earth, preferring instead to narrow
down the list of potential stores first, we filter images first in our workflow in Earth
Engine. In addition, you may have noticed that the ordering of the filters within the
filtering stage also mattered in the milk example. This is also true in Earth Engine.
For problems with a non-global spatial component in which filterBounds is
to be used, it is most efficient to do that spatial filtering first.

In the code below, you will see that you can “chain” the filter commands, which
are then executed from left to right. Below, we chain the filters in the same order

12 Filter, Map, Reduce 247

as you specified above. Note that, it gives an ImageCollection of the same
size as when you applied the filters one at a time.

var chainedFilteredSet = imgCol.filterDate(startDate, endDate)
.filterBounds(Map.getCenter())
.filterMetadata('CLOUD_COVER', 'less_than', 50);

print('Chained: Less than 50% clouds in this area, 2000-2010',
chainedFilteredSet.size());

In the code below, we chain the filters in a more efficient order, implementing
filterBounds first. This, too, gives an ImageCollection of the same size
as when you applied the filters in the less efficient order, whether the filters were
chained or not.

var efficientFilteredSet = imgCol.filterBounds(Map.getCenter())
.filterDate(startDate, endDate)
.filterMetadata('CLOUD_COVER', 'less_than', 50);

print('Efficient filtering: Less than 50% clouds in this area,
2000-2010',

efficientFilteredSet.size());

Each of the two chained sets of operations will give the same result as before for
the number of images. While the second order is more efficient, both approaches
are likely to return the answer to the Code Editor at roughly the same time for this
very small example. The order of operations is most important in larger problems
in which you might be challenged to manage memory carefully. As in the milk
example in which you narrowed geographically first, it is good practice in Earth
Engine to order the filters with the filterBounds first, followed by metadata
filters in order of decreasing specificity.

Code Checkpoint F40a. The book’s repository contains a script that shows what
your code should look like at this point.

Now, with an efficiently filtered collection that satisfies our chosen criteria, we
will next explore the second stage: executing a function for all of the images in
the set.

12.2.2 Section 2: Mapping over Image Collections in Earth Engine

In Chap. 9, we calculated the Enhanced Vegetation Index (EVI) in very small steps
to illustrate band arithmetic on satellite images. In that chapter, code was called
once, on a single image. What if we wanted to compute the EVI in the same way
for every image of an entire ImageCollection? Here, we use the key tool for

248 J. A. Cardille

the second part of the workflow in Earth Engine, a .map command (Fig. 12.1).
This is roughly analogous to the step of making phone calls in the milk example
that began this chapter, in which you took a list of store names and transformed it
through effort into a list of milk prices.

Before beginning to code the EVI functionality, it is worth noting that the word
“map” is encountered in multiple settings during cloud-based remote sensing, and
it is important to be able to distinguish the uses. A good way to think of it is
that “map” can act as a verb or as a noun in Earth Engine. There are two uses
of “map” as a noun. We might refer casually to “the map” or more precisely to
“the Map panel”; these terms refer to the place where the images are shown in
the code interface. A second way “map” is used as a noun which is to refer to
an Earth Engine object, which has functions that can be called on it. Examples of
this are the familiar Map.addLayer and Map.setCenter. Where that use of
the word is intended, it will be shown in purple text and capitalized in the Code
Editor. What we are discussing here is the use of .map as a verb, representing the
idea of performing a set of actions repeatedly on a set. This is typically referred
to as “mapping over the set”.

To map a given set of operations efficiently over an entire
ImageCollection, the processing needs to be set up in a particular way.
Users familiar with other programming languages might expect to see “loop”
code to do this, but the processing is not done exactly that way in Earth Engine.
Instead, we will create a function and then map it over the ImageCollection.
To begin, envision creating a function that takes exactly one parameter, an
ee.Image. The function is then designed to perform a specified set of operations
on the input ee.Image and then, importantly, returns an ee.Image as the last
step of the function. When we map that function over an ImageCollection, as
we will illustrate below, the effect is that we begin with an ImageCollection,
do operations to each image, and receive a processed ImageCollection as
the output.

What kinds of functions could we create? For example, you could imagine a
function taking an image and returning an image whose pixels have the value 1
where the value of a given band was lower than a certain threshold and 0 otherwise.
The effect of mapping this function would be an entire ImageCollection of
images with zeroes and ones representing the results of that test on each image.
Or, you could imagine a function computing a complex self-defined index and
sending back an image of that index calculated in each pixel. Here, we will create
a function to compute the EVI for any input Landsat 5 image and return the one-
band image for which the index is computed for each pixel. Copy and paste the
function definition below into the Code Editor, adding it to the end of the script
from the previous section.

12 Filter, Map, Reduce 249

var makeLandsat5EVI = function(oneL5Image) {
// compute the EVI for any Landsat 5 image. Note it's

specific to
// Landsat 5 images due to the band numbers. Don't run this

exact
// function for images from sensors other than Landsat 5.

// Extract the bands and divide by 1e4 to account for
scaling done.

var nirScaled = oneL5Image.select('SR_B4').divide(10000);
var redScaled = oneL5Image.select('SR_B3').divide(10000);
var blueScaled = oneL5Image.select('SR_B1').divide(10000);

// Calculate the numerator, note that order goes from left
to right.

var numeratorEVI = (nirScaled.subtract(redScaled)).multiply(
2.5);

// Calculate the denominator
var denomClause1 = redScaled.multiply(6);
var denomClause2 = blueScaled.multiply(7.5);
var denominatorEVI = nirScaled.add(denomClause1).subtract(

denomClause2).add(1);

// Calculate EVI and name it.
var landsat5EVI =

numeratorEVI.divide(denominatorEVI).rename(
'EVI');

return (landsat5EVI);
};

It is worth emphasizing that, in general, band names are specific to each
ImageCollection. As a result, if that function was run on an image without
the band ‘SR_B4’, for example, the function call would fail. Here, we have empha-
sized in the function’s name that it is specifically for creating EVI for Landsat
5.

The function makeLandsat5EVI is built to receive a single image, select the
proper bands for calculating EVI, make the calculation, and return a one-banded
image. If we had the name of each image comprising our ImageCollection,
we could enter the names into the Code Editor and call the function one at a
time for each, assembling the images into variables and then combining them
into an ImageCollection. This would be very tedious and highly prone to
mistakes: lists of items might get mistyped, an image might be missed, etc. Instead,
as mentioned above, we will use .map. With the code below, let us print the
information about the cloud-filtered collection and display it, execute the .map
command, and explore the resulting ImageCollection.

250 J. A. Cardille

var L5EVIimages = efficientFilteredSet.map(makeLandsat5EVI);
print('Verifying that the .map gives back the same number of
images: ',

L5EVIimages.size());
print(L5EVIimages);

Map.addLayer(L5EVIimages, {}, 'L5EVIimages', 1, 1);

After entering and executing this code, you will see a grayscale image. If you
look closely at the edges of the image, you might spot other images drawn behind it
in a way that looks somewhat like a stack of papers on a table. This is the drawing
of the ImageCollection made from the makeLandsat5EVI function. You
can select the Inspector panel and click on one of the grayscale pixels to view
the values of the entire ImageCollection. After clicking on a pixel, look for
the Series tag by opening and closing the list of items. When you open that
tag, you will see a chart of the EVI values at that pixel, created by mapping the
makeLandsat5EVI function over the filtered ImageCollection.

Code Checkpoint F40b. The book’s repository contains a script that shows what
your code should look like at this point.

12.2.3 Section 3: Reducing an Image Collection

The third part of the filter, map, reduce paradigm is “reducing” values in an
ImageCollection to extract meaningful values (Fig. 12.1). In the milk exam-
ple, we reduced a large list of milk prices to find the minimum value. The Earth
Engine API provides a large set of reducers for reducing a set of values to a
summary statistic.

Here, you can think of each location, after the calculation of EVI has been
executed through the .map command, as having a list of EVI values on it. Each
pixel contains a potentially very large set of EVI values; the stack might be 15
items high in one location and perhaps 200, 2000, or 200,000 items high in another
location, especially if a looser set of filters had been used.

The code below computes the mean value, at every pixel, of the
ImageCollection L5EVIimages created above. Add it at the bottom of your
code.

var L5EVImean = L5EVIimages.reduce(ee.Reducer.mean());
print(L5EVImean);
Map.addLayer(L5EVImean, {

min: -1,
max: 2,
palette: ['red', 'white', 'green']

}, 'Mean EVI');

12 Filter, Map, Reduce 251

Using the same principle, the code below computes and draws the median value
of the ImageCollection in every pixel.

var L5EVImedian = L5EVIimages.reduce(ee.Reducer.median());
print(L5EVImedian);
Map.addLayer(L5EVImedian, {

min: -1,
max: 2,
palette: ['red', 'white', 'green']

}, 'Median EVI');

There are many more reducers that work with an ImageCollection to pro-
duce a wide range of summary statistics. Reducers are not limited to returning
only one item from the reduction. The minMax reducer, for example, returns a
two-band image for each band it is given, one for the minimum and one for the
maximum.

The reducers described here treat each pixel independently. In subsequent chap-
ters in Part IV, you will see other kinds of reducers—for example, ones that
summarize the characteristics in the neighborhood surrounding each pixel.

Code Checkpoint F40c. The book’s repository contains a script that shows what
your code should look like at this point.

12.3 Synthesis

Assignment 1. Compare the mean and median images produced in Sect. 3
(Fig. 12.2). In what ways do they look different, and in what ways do they look
alike? To understand how they work, pick a pixel and inspect the EVI values
computed. In your opinion, which is a better representative of the dataset?

Assignment 2. Adjust the filters to filter a different proportion of clouds or a
different date range. What effects do these changes have on the number of images
and the look of the reductions made from them?

Assignment 3. Explore the ee.Filter options in the API documentation, and
select a different filter that might be of interest. Filter images using it, and comment
on the number of images and the reductions made from them.

Assignment 4. Change the EVI function so that it returns the original image
with the EVI band appended by replacing the return statement with this: return
(oneL5Image.addBands(landsat5EVI)).

What does the median reducer return in that case? Some EVI values are 0.
What are the conditions in which this occurs?

252 J. A. Cardille

Fig. 12.2 Effects of two reducers on mapped EVI values in a filtered ImageCollection: mean
image (above) and median image (below)

12 Filter, Map, Reduce 253

Assignment 5. Choose a date and location that is important to you (e.g., your
birthday and your place of birth). Filter Landsat imagery to get all the low-
cloud imageries at your location within 6 months of the date. Then, reduce
the ImageCollection to find the median EVI. Describe the image and how
representative of the full range of values it is, in your opinion.

12.4 Conclusion

In this chapter, you learned about the paradigm of filter, map, reduce. You learned
how to use these tools to sift through, operate on, and summarize a large set of
images to suit your purposes. Using the Filter functionality, you learned how to
take a large ImageCollection and filter away images that do not meet your
criteria, retaining only those images that match a given set of characteristics. Using
the Map functionality, you learned how to apply a function to each image in an
ImageCollection, treating each image one at a time and executing a requested
set of operations on each. Using the Reduce functionality, you learned how to
summarize the elements of an ImageCollection, extracting summary values
of interest. In the subsequent chapters of Part IV, you will encounter these concepts
repeatedly, manipulating image collections according to your project needs using
the building blocks seen here. By building on what you have done in this chapter,
you will grow in your ability to do sophisticated projects in Earth Engine.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

13Exploring Image Collections

Gennadii Donchyts

Overview
This chapter teaches how to explore image collections, including their spatiotemporal
extent, resolution, and values stored in images and image properties. You will learn
how to map and inspect image collections using maps, charts, and interactive tools
and how to compute different statistics of values stored in image collections using
reducers.

Learning Outcomes

• Inspecting the spatiotemporal extent and resolution of image collections by
mapping image geometry and plotting image time properties.

• Exploring properties of images stored in an ImageCollection by plotting
charts and deriving statistics.

• Filtering image collections by using stored or computed image properties.
• Exploring the distribution of values stored in image pixels of an
ImageCollection through percentile reducers.

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks

(Part 2).
• Summarize an ImageCollection with reducers (Chap. 12).

G. Donchyts (B)
Google, Mountain View, CA, USA
e-mail: dgena@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_13

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_13&domain=pdf
https://orcid.org/0000-0002-3280-3858
mailto:dgena@google.com
https://doi.org/10.1007/978-3-031-26588-4_13

256 G. Donchyts

13.1 Practicum

In the previous chapter (Chap. 12), the filter, map, reduce paradigm was introduced.
The main goal of this chapter is to demonstrate some of the ways that those con-
cepts can be used within Earth Engine to better understand the variability of values
stored in image collections. Section 13.1.1 demonstrates how time-dependent val-
ues stored in the images of an ImageCollection can be inspected using the
Code Editor user interface after filtering them to a limited spatiotemporal range
(i.e., geometry and time ranges). Section 13.1.2 shows how the extent of images,
as well as basic statistics, such as the number of observations, can be visualized
to better understand the spatiotemporal extent of image collections. Then, Sects.
13.1.3 and 13.1.4 demonstrate how simple reducers such as mean and median and
more advanced reducers such as percentiles can be used to better understand how
the values of a filtered ImageCollection are distributed.

13.1.1 Section 1: Filtering and Inspecting an Image Collection

We will focus on the area in and surrounding Lisbon, Portugal. Below, we will
define a point, lisbonPoint, located in the city; access the very large Landsat
ImageCollection and limit it to the year 2020 and to the images that contain
Lisbon; and select bands 6, 5, and 4 from each of the images in the resulting
filtered ImageCollection.

// Define a region of interest as a point in Lisbon, Portugal.
var lisbonPoint = ee.Geometry.Point(-9.179473, 38.763948);

// Center the map at that point.
Map.centerObject(lisbonPoint, 16);

// filter the large ImageCollection to be just images from 2020
// around Lisbon. From each image, select true-color bands to
draw
var filteredIC = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')

.filterDate('2020-01-01', '2021-01-01')

.filterBounds(lisbonPoint)

.select(['B6', 'B5', 'B4']);

// Add the filtered ImageCollection so that we can inspect
values
// via the Inspector tool
Map.addLayer(filteredIC, {}, 'TOA image collection');

13 Exploring Image Collections 257

The three selected bands (which correspond to SWIR1, NIR, and Red) display a
false-color image that accentuates differences between different land covers (e.g.,
concrete, vegetation) in Lisbon. With the Inspector tab highlighted (Fig. 13.1),
clicking on a point will bring up the values of bands 6, 5, and 4 from each of the
images. If you open the Series option, you will see the values through time. For
the specified point and for all other points in Lisbon (since they are all enclosed in
the same Landsat scene), there are 16 images gathered in 2020. By following one
of the graphed lines (in blue, yellow, or red) with your finger, you should be able
to count that many distinct values. Moving the mouse along the lines will show
the specific values and the image dates.

We can also show this kind of chart automatically by making use of the
ui.Chart function of the Earth Engine API. The following code snippet should
result in the same chart as we could observe in the Inspector tab, assuming that
the same pixel is clicked.

Fig. 13.1 Inspect values in an ImageCollection at a selected point by making use of the
Inspector tool in the Code Editor

258 G. Donchyts

// Construct a chart using values queried from image
collection.
var chart = ui.Chart.image.series({

imageCollection: filteredIC,
region: lisbonPoint,
reducer: ee.Reducer.first(),
scale: 10

});

// Show the chart in the Console.
print(chart);

Code Checkpoint F41a. The book’s repository contains a script that shows what
your code should look like at this point.

13.1.2 Section 2: How Many Images Are There, Everywhere
on Earth?

Suppose we are interested to find out how many valid observations we have at
every map pixel on Earth for a given ImageCollection. This enormously com-
putationally demanding task is surprisingly easy to do in Earth Engine. The API
provides a set of reducer functions to summarize values to a single number in
each pixel, as described in Chap. 12. We can apply this reducer, count, to our
filtered ImageCollection with the code below. We will return to the same
dataset and filter for 2020, but without the geographic limitation. This will assem-
ble images from all over the world and then count the number of images in each
pixel. The following code does that count and adds the resulting image to the map
with a predefined red/yellow/green color palette stretched between values 0 and
50. Continue pasting the code below into the same script.

13 Exploring Image Collections 259

// compute and show the number of observations in an image
collection
var count = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')

.filterDate('2020-01-01', '2021-01-01')

.select(['B6'])

.count();

// add white background and switch to HYBRID basemap
Map.addLayer(ee.Image(1), {

palette: ['white']
}, 'white', true, 0.5);
Map.setOptions('HYBRID');

// show image count
Map.addLayer(count, {

min: 0,
max: 50,
palette: ['d7191c', 'fdae61', 'ffffbf', 'a6d96a',

'1a9641']
}, 'landsat 8 image count (2020)');

// Center the map at that point.
Map.centerObject(lisbonPoint, 5);

Run the command and zoom out. If the count of images over the entire Earth
is viewed, the resulting map should look like Fig. 13.2. The created map data may
take a few minutes to fully load in.

Note the checkered pattern, somewhat reminiscent of a Mondrian painting. To
understand why the image looks this way, it is useful to consider the overlapping
image footprints. As Landsat passes over, each image is wide enough to produce
substantial “sidelap” with the images from the adjacent paths, which are collected
at different dates according to the satellite’s orbit schedule. In the north–south
direction, there is also some overlap to ensure that there are no gaps in the data.
Because these are served as distinct images and stored distinctly in Earth Engine,
you will find that there can be two images from the same day with the same value
for points in these overlap areas. Depending on the purposes of a study, you might
find a way to ignore the duplicate pixel values during the analysis process.

You might have noticed that we summarized a single band from the original
ImageCollection to ensure that the resulting image would give a single count
in each pixel. The count reducer operates on every band passed to it. Since every
image has the same number of bands, passing an ImageCollection of all
seven Landsat bands to the count reducer would have returned seven identical
values of 16 for every point. To limit any confusion from seeing the same number
seven times, we selected one of the bands from each image in the collection. In
your own work, you might want to use a different reducer, such as a median

260 G. Donchyts

Fig. 13.2 Number of Landsat 8 images acquired during 2020

operation, that would give different, useful answers for each band. A few of these
reducers are described below.

Code Checkpoint F41b. The book’s repository contains a script that shows what
your code should look like at this point.

13.1.3 Section 3: Reducing Image Collections to Understand
Band Values

As we have seen, you could click at any point on Earth’s surface and see both the
number of Landsat images recorded there in 2020 and the values of any image in
any band through time. This is impressive and perhaps mind-bending, given the
enormous amount of data in play. In this section and the next, we will explore
two ways to summarize the numerical values of the bands—one straightforward

13 Exploring Image Collections 261

way and one more complex but highly powerful way to see what information is
contained in image collections.

First, we will make a new layer that represents the mean value of each band
in every pixel across every image from 2020 for the filtered set, add this layer to
the layer set, and explore again with the Inspector. The previous section’s count
reducer was called directly using a sort of simple shorthand, that could be done
similarly here by calling mean on the assembled bands. In this example, we will
use the reducer to get the mean using the more general reduce call. Continue
pasting the code below into the same script.

// Zoom to an informative scale for the code that follows.
Map.centerObject(lisbonPoint, 10);

// Add a mean composite image.
var meanFilteredIC = filteredIC.reduce(ee.Reducer.mean());
Map.addLayer(meanFilteredIC, {},

'Mean values within image collection');

Now, let us look at the median value for each band among all the values gath-
ered in 2020. Using the code below, calculate the median and explore the image
with the Inspector. Compare this image briefly to the mean image by eye and by
clicking in a few pixels in the Inspector. They should have different values, but
in most places they will look very similar.

// Add a median composite image.
var medianFilteredIC = filteredIC.reduce(ee.Reducer.median());
Map.addLayer(medianFilteredIC, {},

'Median values within image collection');

There is a wide range of reducers available in Earth Engine. If you are curious
about which reducers can be used to summarize band values across a collection of
images, use the Docs tab in the Code Editor to list all reducers and look for those
beginning with ee.Reducer.

Code Checkpoint F41c. The book’s repository contains a script that shows what
your code should look like at this point.

262 G. Donchyts

13.1.4 Section 4: Compute Multiple Percentile Images
for an Image Collection

One particularly useful reducer that can help you better understand the vari-
ability of values in image collections is ee.Reducer.percentile. The
nth percentile gives the value that is the nth largest in a set. In this con-
text, you can imagine accessing all of the values for a given band in a given
ImageCollection for a given pixel and sorting them. The 30th percentile, for
example, is the value 30% of the way along the list from smallest to largest. This
provides an easy way to explore the variability of the values in image collections
by computing a cumulative density function of values on a per-pixel basis. The
following code shows how we can calculate a single 30th percentile on a per-pixel
and per-band basis for our Landsat 8 ImageCollection. Continue pasting the
code below into the same script.

// compute a single 30% percentile
var p30 = filteredIC.reduce(ee.Reducer.percentile([30]));

Map.addLayer(p30, {
min: 0.05,
max: 0.35

}, '30%');

We can see that the resulting composite image (Fig. 4.1.3) has almost no cloudy
pixels present for this area. This happens because cloudy pixels usually have higher
reflectance values. At the lowest end of the values, other unwanted effects like
cloud or hill shadows typically have very low-reflectance values. This is why this
30th percentile composite image looks so much cleaner than the mean composite
image (meanFilteredIC) calculated earlier. Note that, the reducers operate
per-pixel: adjacent pixels are drawn from different images. This means that one
pixel’s value could be taken from an image from one date, and the adjacent pixel’s
value drawn from an entirely different period. Although, like the mean and median
images, percentile images such as that seen in Fig. 13.3 never existed on a single
day, composite images allow us to view Earth’s surface without the noise that can
make analysis difficult.

We can explore the range of values in an entire ImageCollection by view-
ing a series of increasingly bright percentile images, as shown in Fig. 13.4. Paste
and run the following code.

13 Exploring Image Collections 263

Fig. 13.3 Landsat 8 TOA reflectance 30th percentile image computed for ImageCollection
with images acquired during 2020

var percentiles = [0, 10, 20, 30, 40, 50, 60, 70, 80];

// let's compute percentile images and add them as separate
layers
percentiles.map(function(p) {

var image =
filteredIC.reduce(ee.Reducer.percentile([p]));

Map.addLayer(image, {
min: 0.05,
max: 0.35

}, p + '%');
});

Note that, the code adds every percentile image as a separate map layer, so you
need to go to the Layers control and show/hide different layers to explore dif-
ferences. Here, we can see that low-percentile composite images depict darker,
low-reflectance land features, such as water and cloud or hill shadows, while
higher-percentile composite images (> 70% in our example) depict clouds and
any other atmospheric or land effects corresponding to bright reflectance values.

264 G. Donchyts

Fig. 13.4 Landsat 8 TOA reflectance percentile composite images

Earth Engine provides a very rich API, allowing users to explore image col-
lections to better understand the extent and variability of data in space, time, and
across bands, as well as tools to analyze values stored in image collections in a
frequency domain. Exploring these values in different forms should be the first
step of any study before developing data analysis algorithms.

Code Checkpoint F41d. The book’s repository contains a script that shows what
your code should look like at this point.

13.2 Synthesis

In the example above, the 30th percentile composite image would be useful for
typical studies that need cloud-free data for analysis. The “best” composite to use,
however, will depend on the goal of a study, the characteristics of the given dataset,
and the location being viewed. You can imagine choosing different percentile com-
posite values if exploring image collections over the Sahara Desert or over Congo,
where cloud frequency would vary substantially (Wilson and Jetz 2016).

13 Exploring Image Collections 265

Assignment 1. Noting that your own interpretation of what constitutes a good
composite is subjective, create a series of composites of a different location, or
perhaps a pair of locations, for a given set of dates.

Assignment 2. Filter to create a relevant dataset—for example, for Landsat 8 or
Sentinel-2 over an agricultural growing season. Create percentile composites for a
given location. Which image composite is the most satisfying, and what type of
project do you have in mind when giving that response?

Assignment 3. Do you think it is possible to generalize about the relationship
between the time window of an ImageCollection and the percentile value
that will be the most useful for a given project, or will every region need to be
inspected separately?

13.3 Conclusion

In this chapter, you have learned different ways to explore image collections using
Earth Engine in addition to looking at individual images. You have learned that
image collections in Earth Engine may have global footprints as well as images
with a smaller, local footprint, and how to visualize the number of images in a
given filtered ImageCollection. You have learned how to explore the tempo-
ral and spatial extent of images stored in image collections and how to quickly
examine the variability of values in these image collections by computing simple
statistics like mean or median, as well as how to use a percentile reducer to better
understand this variability.

Reference

Wilson AM, Jetz W (2016) Remotely sensed high-resolution global cloud dynamics for predicting
ecosystem and biodiversity distributions. PLoS Biol 14:e1002415. https://doi.org/10.1371/jou
rnal.pbio.1002415

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1371/journal.pbio.1002415
https://doi.org/10.1371/journal.pbio.1002415
http://creativecommons.org/licenses/by/4.0/

14Aggregating Images for Time Series

Ujaval Gandhi

Overview
Many remote sensing datasets consist of repeated observations over time. The inter-
val between observations can vary widely. The Global Precipitation Measurement
dataset, for example, produces observations of rain and snow worldwide every three
hours. The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
project produces a gridded global dataset at the daily level and also for each five-day
period (Funk et al. 2015). The Landsat 8 mission produces a new scene of each loca-
tion on Earth every 16 days. With its constellation of two satellites, the Sentinel-2
mission images every location every five days.

Many applications, however, require computing aggregations of data at time inter-
vals different from those at which the datasets were produced. For example, for
determining rainfall anomalies, it is useful to compare monthly rainfall against a
long-period monthly average.

While individual scenes are informative, many days are cloudy, and it is use-
ful to build a robust cloud-free time series for many applications. Producing less
cloudy or even cloud-free composites can be done by aggregating data to form
monthly, seasonal, or yearly composites built from individual scenes. For example,
if you are interested in detecting long-term changes in an urban landscape, creating
yearly median composites can enable you to detect change patterns across long time
intervals with less worry about day-to-day noise.

This chapter will cover the techniques for aggregating individual images from a
time series at a chosen interval. We will take the CHIRPS time series of rainfall for
one year and aggregate it to create a monthly rainfall time series.

U. Gandhi (B)
Spatial Thoughts LLP, FF105 Aaradhya, Gala Gymkhana Road, Bopal, Ahmedabad, 380058,
India
e-mail: ujaval@spatialthoughts.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_14

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_14&domain=pdf
https://orcid.org/0000-0003-3255-1934
mailto:ujaval@spatialthoughts.com
https://doi.org/10.1007/978-3-031-26588-4_14

268 U. Gandhi

Learning Outcomes

• Using the Earth Engine API to work with dates.
• Aggregating values from an ImageCollection to calculate monthly, seasonal,

or yearly images.
• Plotting the aggregated time series at a given location.

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Create a graph using ui.Chart (Chap. 4).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13).
• Inspect an Image and an ImageCollection, as well as their properties

(Chap. 13).

14.1 Introduction to Theory

CHIRPS is a high-resolution global gridded rainfall dataset that combines satellite-
measured precipitation with ground station data in a consistent, long time-series
dataset. The data are provided by the University of California, Santa Barbara, and
are available from 1981 to the present. This dataset is extremely useful in drought
monitoring and assessing global environmental change over land. The satellite data
are calibrated with ground station observations to create the final product.

In this exercise, we will work with the CHIRPS dataset using the pentad. A
pentad represents the grouping of five days. There are six pentads in a calendar
month, with five pentads of exactly five days each and one pentad with the remain-
ing three to six days of the month. Pentads reset at the beginning of each month,
and the first day of every month is the start of a new pentad. Values at a given
pixel in the CHIRPS dataset represent the total precipitation in millimeters over
the pentad.

14.2 Practicum

14.2.1 Section 1: Filtering an Image Collection

We will start by accessing the CHIRPS pentad collection and filtering it to create
a time series for a single year.

14 Aggregating Images for Time Series 269

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');
var startDate = '2019-01-01';
var endDate = '2020-01-01';
var yearFiltered = chirps.filter(ee.Filter.date(startDate,
endDate));

print(yearFiltered, 'Date-filtered CHIRPS images');

The CHIRPS collection contains one image for every pentad. The filtered col-
lection above is filtered to contain one year, which equates to 72 global images.
If you expand the printed collection in the Console, you will be able to see the
metadata for individual images; note that, their date stamps indicate that they are
spaced evenly every five days (Fig. 14.1).

Each image’s pixel values store the total precipitation during the pentad. With-
out aggregation to a period that matches other datasets, these layers are not very
useful. For hydrological analysis, we typically need the total precipitation for each
month or for a season. Let us aggregate this collection so that we have 12 images—
one image per month, with pixel values that represent the total precipitation for
that month.

Fig. 14.1 CHIRPS time series for one year

270 U. Gandhi

Code Checkpoint F42a. The book’s repository contains a script that shows what
your code should look like at this point.

14.2.2 Section 2: Working with Dates

To aggregate the time series, we need to learn how to create and manipulate dates
programmatically. This section covers some functions from the ee.Date module
that will be useful.

The Earth Engine API has a function called ee.Date.fromYMD that is
designed to create a date object from year, month, and day values. The fol-
lowing code snippet shows how to define a variable containing the year value and
create a date object from it. Paste the following code in a new script:

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');
var year = 2019;
var startDate = ee.Date.fromYMD(year, 1, 1);

Now, let us determine how to create an end date in order to be able to specify
a desired time interval. The preferred way to create a date relative to another date
is using the advance function. It takes two parameters—a delta value and the
unit of time—and returns a new date. The code below shows how to create a
date one year in the future from a given date. Paste it into your script.

var endDate = startDate.advance(1, 'year');

Next, paste the code below to perform filtering of the CHIRPS data using these
calculated dates. After running it, check that you had accurately set the dates by
looking for the dates of the images inside the printed result.

var yearFiltered = chirps
.filter(ee.Filter.date(startDate, endDate));

print(yearFiltered, 'Date-filtered CHIRPS images');

Another date function that is very commonly used across Earth Engine is
millis. This function takes a date object and returns the number of milliseconds
since the arbitrary reference date of the start of the year 1970: 1970-01-
01T00:00:00Z. This is known as the “Unix Timestamp”; it is a standard way
to convert dates to numbers and allows for easy comparison between dates with
high precision. Earth Engine objects store the timestamps for images and features

14 Aggregating Images for Time Series 271

in special properties called system:time_start and system:time_end.
Both of these properties need to be supplied with a number instead of dates, and
the millis function can help you to do that. You can print the result of calling
this function and check for yourself.

print(startDate, 'Start date');
print(endDate, 'End date');

print('Start date as timestamp', startDate.millis());
print('End date as timestamp', endDate.millis());

We will use the millis function in the next section when we need to set the
system:time_start and system:time_end properties of the aggregated
images.

Code Checkpoint F42b. The book’s repository contains a script that shows what
your code should look like at this point.

14.2.3 Section 3: Aggregating Images

Now, we can start aggregating the pentads into monthly sums. The process of
aggregation has two fundamental steps. The first is to determine the beginning and
ending dates of one time interval (in this case, one month), and the second is to
sum up all of the values (in this case, the pentads) that fall within each interval. To
begin, we can envision that the resulting series will contain 12 images. To prepare
to create an image for each month, we create an ee.List of values from 1 to
12. We can use the ee.List.sequence function, as first presented in Chap. 1,
to create the list of items of type ee.Number. Continuing with the script of the
previous section, paste the following code:

// Aggregate this time series to compute monthly images.
// Create a list of months
var months = ee.List.sequence(1, 12);

Next, we write a function that takes a single month as the input and returns an
aggregated image for that month. Given beginningMonth as an input parame-
ter, we first create a start and end date for that month based on the year and month
variables. Then, we filter the collection to find all images for that month. To create
a monthly precipitation image, we apply ee.Reducer.sum to reduce the six
pentad images for a month to a single image holding the summed value across the
pentads. We also expressly set the timestamp properties system:time_start

272 U. Gandhi

and system:time_end of the resulting summed image. We can also set year
and month, which will help us to filter the resulting collection later.

// Write a function that takes a month number
// and returns a monthly image.
var createMonthlyImage = function(beginningMonth) {

var startDate = ee.Date.fromYMD(year, beginningMonth, 1);
var endDate = startDate.advance(1, 'month');
var monthFiltered = yearFiltered

.filter(ee.Filter.date(startDate, endDate));

// Calculate total precipitation.
var total = monthFiltered.reduce(ee.Reducer.sum());
return total.set({

'system:time_start': startDate.millis(),
'system:time_end': endDate.millis(),
'year': year,
'month': beginningMonth

});
};

We now have an ee.List containing items of type ee.Number from 1 to
12, with a function that can compute a monthly aggregated image for each month
number. All that is left to do are to map the function over the list. As described
in Chaps. 12 and 13, the map function passes over each image in the list and
runs createMonthlyImage. The function first receives the number “1” and
executes, returning an image to Earth Engine. Then, it runs on the number “2” and
so on for all 12 numbers. The result is a list of monthly images for each month of
the year.

// map() the function on the list of months
// This creates a list with images for each month in the list
var monthlyImages = months.map(createMonthlyImage);

We can create an ImageCollection from this ee.List of images using
the ee.ImageCollection.fromImages function.

// Create an ee.ImageCollection.
var monthlyCollection =
ee.ImageCollection.fromImages(monthlyImages);
print(monthlyCollection);

14 Aggregating Images for Time Series 273

We have now successfully computed an aggregated collection from the
source ImageCollection by filtering, mapping, and reducing, as described
in Chaps. 12 and 13. Expand the printed collection in the Console, and you can
verify that we now have 12 images in the newly created ImageCollection
(Fig. 14.2).

Code Checkpoint F42c. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 14.2 Aggregated time series

274 U. Gandhi

14.2.4 Section 4: Plotting Time Series

One useful application of gridded precipitation datasets is to analyze rainfall pat-
terns. We can plot a time-series chart for a location using the newly computed
time series. We can plot the pixel value at any given point or polygon. Here, we
create a point geometry for a given coordinate. Continuing with the script of the
previous section, paste the following code:

// Create a point with coordinates for the city of
Bengaluru, India.
var point = ee.Geometry.Point(77.5946, 12.9716);

Earth Engine comes with a built-in ui.Chart.image.series function that
can plot time series. In addition to the imageCollection and region param-
eters, we need to supply a scale value. The CHIRPS data catalog page indicates
that the resolution of the data is 5566 m, so we can use that as the scale. The
resulting chart is printed in the Console.

var chart = ui.Chart.image.series({
imageCollection: monthlyCollection,
region: point,
reducer: ee.Reducer.mean(),
scale: 5566,

});
print(chart);

We can make the chart more informative by adding axis labels and a title. The
setOptions function allows us to customize the chart using parameters from
Google Charts. To customize the chart, paste the code below at the bottom of your
script. The effect will be to see two charts in the editor: one with the old view of
the data and one with the customized chart.

14 Aggregating Images for Time Series 275

var chart = ui.Chart.image.series({
imageCollection: monthlyCollection,
region: point,
reducer: ee.Reducer.mean(),
scale: 5566

}).setOptions({
lineWidth: 1,
pointSize: 3,
title: 'Monthly Rainfall at Bengaluru',
vAxis: {

title: 'Rainfall (mm)'
},
hAxis: {

title: 'Month',
gridlines: {

count: 12
}

}
});
print(chart);

The customized chart (Fig. 14.3) shows the typical rainfall pattern in the city
of Bengaluru, India. Bengaluru has a temperate climate, with pre-monsoon rains
in April and May cooling down the city and a moderate monsoon season lasting
from June to September.

Code Checkpoint F42d. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 14.3 Monthly rainfall chart

276 U. Gandhi

14.3 Synthesis

Assignment 1. The CHIRPS collection contains data for 40 years. Aggregate the
same collection to yearly images and create a chart for annual precipitation from
1981 to 2021 at your chosen location.

Instead of creating a list of months and writing a function to create monthly
images, we will create a list of years and write a function to create yearly images.
The code snippet below will help you get started.

var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Create a list of years
var years = ee.List.sequence(1981, 2021);

// Write a function that takes a year number
// and returns a yearly image
var createYearlyImage = function(beginningYear) {

// Add your code
};

var yearlyImages = years.map(createYearlyImage);
var yearlyCollection =
ee.ImageCollection.fromImages(yearlyImages);
print(yearlyCollection);

14.4 Conclusion

In this chapter, you learned how to aggregate a collection to months and plot the
resulting time series for a location. This chapter also introduced useful functions
for working with the dates that will be used across many different applications.
You also learned how to iterate over a list using the map function. The technique
of mapping a function over a list or collection is essential for processing data.
Mastering this technique will allow you to scale your analysis using the parallel
computing capabilities of Earth Engine.

References

Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with sta-
tions—a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/
10.1038/sdata.2015.66

https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66

14 Aggregating Images for Time Series 277

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

15Clouds and Image Compositing

Txomin Hermosilla , Saverio Francini , Andréa P. Nicolau ,
Michael A. Wulder , Joanne C. White , Nicholas C. Coops ,
and Gherardo Chirici

Overview
The purpose of this chapter is to provide necessary context and demonstrate different
approaches for image composite generation when using data quality flags, using an
initial example of removing cloud cover. We will examine different filtering options,
demonstrate an approach for cloud masking, and provide additional opportunities
for image composite development. Pixel selection for composite development can
exclude unwanted pixels—such as those impacted by cloud, shadow, and smoke or
haze—and can also preferentially select pixels based upon proximity to a target date
or a preferred sensor type.

T. Hermosilla (B) · M. A. Wulder · J. C. White
Canadian Forest Service, Victoria, Canada
e-mail: txomin.hermosillagomez@nrcan-rncan.gc.ca

M. A. Wulder
e-mail: mike.wulder@nrcan-rncan.gc.ca

J. C. White
e-mail: joanne.White@nrcan-rncan.gc.ca

S. Francini · G. Chirici
University of Florence, Florence, Italy
e-mail: saverio.francini@unifi.it

G. Chirici
e-mail: gherardo.chirici@unifi.it

A. P. Nicolau
Spatial Informatics Group, SERVIR-Amazonia, Pleasanton, USA
e-mail: apnicolau@sig-gis.com

N. C. Coops
University of British Columbia, Vancouver, Canada
e-mail: nicholas.coops@ubc.ca

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_15

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_15&domain=pdf
https://orcid.org/0000-0002-5445-0360
https://orcid.org/0000-0001-6991-0289
https://orcid.org/0000-0002-7529-2074
https://orcid.org/0000-0002-6942-1896
https://orcid.org/0000-0003-4674-0373
https://orcid.org/0000-0002-0151-9037
https://orcid.org/0000-0002-0669-5726
mailto:txomin.hermosillagomez@nrcan-rncan.gc.ca
mailto:mike.wulder@nrcan-rncan.gc.ca
mailto:joanne.White@nrcan-rncan.gc.ca
mailto:saverio.francini@unifi.it
mailto:gherardo.chirici@unifi.it
mailto:apnicolau@sig-gis.com
mailto:nicholas.coops@ubc.ca
https://doi.org/10.1007/978-3-031-26588-4_15

280 T. Hermosilla et al.

Learning Outcomes

• Understanding and applying satellite-specific cloud mask functions.
• Incorporating images from different sensors.
• Using focal functions to fill in data gaps.

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks (Part

2).
• Use band scaling factors (Chap. 9).
• Perform pixel-based transformations (Chap. 9).
• Use neighborhood-based image transformations (Chap. 10).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13).

15.1 Introduction to Theory

Satellite remote sensing is an ideal source of data for monitoring large or remote
regions. However, cloud cover is one of the most common limitations of opti-
cal sensors in providing continuous time series of data for surface mapping and
monitoring. This is particularly relevant in tropical, polar, mountainous, and high-
latitude areas, where clouds are often present. Many studies have addressed the
extent to which cloudiness can restrict the monitoring of various regions (Zhu and
Woodcock 2012, 2014; Eberhardt et al. 2016; Martins et al. 2018).

Clouds and cloud shadows reduce the view of optical sensors and completely
block or obscure the spectral response from Earth’s surface (Cao et al. 2020).
Working with pixels that are cloud-contaminated can significantly influence the
accuracy and information content of products derived from a variety of remote
sensing activities, including land cover classification, vegetation modeling, and
especially change detection, where unscreened clouds might be mapped as false
changes (Braaten et al. 2015; Zhu et al. 2015). Thus, the information provided by
cloud detection algorithms is critical to exclude clouds and cloud shadows from
subsequent processing steps.

Historically, cloud detection algorithms derived the cloud information by con-
sidering a single date image and sun illumination geometry (Irish et al. 2006;
Huang et al. 2010). In contrast, current, more accurate cloud detection algorithms
are based on the analysis of Landsat time series (Zhu and Woodcock 2014; Zhu
and Helmer 2018). Cloud detection algorithms inform on the presence of clouds,
cloud shadows, and other atmospheric conditions (e.g., presence of snow). The
presence and extent of cloud contamination within a pixel are currently provided
with Landsat and Sentinel-2 images as ancillary data via quality flags at the pixel

15 Clouds and Image Compositing 281

level. Additionally, quality flags inform on acquisition-related conditions, includ-
ing radiometric saturation and terrain occlusion, which enables us to assess the
usefulness and convenience of inclusion of each pixel in subsequent analyses. The
quality flags are ideally suited to reduce users’ manual supervision and maximize
the automatic processing approaches.

Most automated algorithms (for classification or change detection, for example)
work best on images free of clouds and cloud shadows, that cover the full area
without spatial or spectral inconsistencies. Thus, the image representation over the
study area should be seamless, containing as few data gaps as possible. Image
compositing techniques are primarily used to reduce the impact of clouds and
cloud shadows, as well as aerosol contamination, view angle effects, and data
volumes (White et al. 2014). Compositing approaches typically rely on the outputs
of cloud detection algorithms and quality flags to include or exclude pixels from
the resulting composite products (Roy et al. 2010). Epochal image composites
help overcome the limited availability of cloud-free imagery in some areas and are
constructed by considering the pixels from all images acquired in a given period
(e.g., season, year).

The information provided by the cloud masks and pixel flags guides the estab-
lishment of rules to rank the quality of the pixels based on the presence of and
distance of clouds, cloud shadows, or atmospheric haze (Griffiths et al. 2013).
Higher scores are assigned to pixels with more desirable conditions, based on the
presence of clouds and other acquisition circumstances, such as acquisition date or
sensor. Pixels with the highest scores are included in subsequent composite devel-
opment. Image compositing approaches enable users to define the rules that are
most appropriate for their particular information needs and study area to gener-
ate imagery covering large areas instead of being limited to the analysis of single
scenes (Hermosilla et al. 2015; Loveland and Dwyer 2012). Moreover, generat-
ing image composites at regular intervals (e.g., annually) allows for the analysis
of long temporal series over large areas, fulfilling a critical information need for
monitoring programs.

15.2 Practicum

The general workflow to generate a cloud-free composite involves:

1. Defining your area of interest (AOI).
2. Filtering (ee.Filter) the satellite ImageCollection to desired parame-

ters.
3. Applying a cloud mask.
4. Reducing (ee.Reducer) the collection to generate a composite.
5. Using the GEE-BAP application to generate annual best-available-pixel image

composites by globally combining multiple Landsat sensors and images.

282 T. Hermosilla et al.

Additional steps may be necessary to improve the composite generated. These
steps will be explained in the following sections.

15.2.1 Section 1: Cloud Filter and Cloud Mask

The first step is to define your AOI and center the map. The goal is to create a
nationwide composite for the country of Colombia. We will use the Large-Scale
International Boundary (2017) simplified dataset from the US Department of State
(USDOS), which contains polygons for all countries of the world.

// ---------- Section 1 -----------------

// Define the AOI.
var country = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')

.filter(ee.Filter.equals('country_na', 'Colombia'));

// Center the Map. The second parameter is zoom level.
Map.centerObject(country, 5);

We will start creating a composite from the Landsat 8 collection. First, we
define two time variables: startDate and endDate. Here, we will create a
composite for the year 2019. Then, we will define a collection for the Landsat 8
Level 2, Collection 2, Tier 1 variable and filter it to our AOI and time period. We
define and use a function to apply scaling factors to the Landsat 8 Collection 2
data.

15 Clouds and Image Compositing 283

// Define time variables.
var startDate = '2019-01-01';
var endDate = '2019-12-31';

// Load and filter the Landsat 8 collection.
var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterBounds(country)

.filterDate(startDate, endDate);

// Apply scaling factors.
function applyScaleFactors(image) {

var opticalBands =
image.select('SR_B.').multiply(0.0000275).add(-0.2);

var thermalBands =
image.select('ST_B.*').multiply(0.00341802)

.add(149.0);
return image.addBands(opticalBands, null, true)

.addBands(thermalBands, null, true);
}

landsat8 = landsat8.map(applyScaleFactors);

To create a composite we will use the median function, which has the same
effect as writing reduce(ee.Reducer.median()) as seen in Chap. 12,
to reduce our ImageCollection to a median composite. Add the resulting
composite to the map using visualization parameters.

// Create composite.
var composite = landsat8.median().clip(country);

var visParams = {
bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 0,
max: 0.2

};
Map.addLayer(composite, visParams, 'L8 Composite');

284 T. Hermosilla et al.

The resulting composite (Fig. 15.1) has lots of clouds, especially in the western,
mountainous regions of Colombia. In tropical regions, it is very challenging to gen-
erate a high-quality, cloud-free composite without first filtering images for cloud
cover, even if our collection is constrained to only include images acquired dur-
ing the dry season. Therefore, we will filter our collection by the CLOUD_COVER
parameter to avoid cloudy images, starting with images that have less than 50%
cloud cover.

Fig. 15.1 Landsat 8 surface reflectance 2019 median composite of Colombia

15 Clouds and Image Compositing 285

// Filter by the CLOUD_COVER property.
var landsat8FiltClouds = landsat8

.filterBounds(country)

.filterDate(startDate, endDate)

.filter(ee.Filter.lessThan('CLOUD_COVER', 50));

// Create a composite from the filtered imagery.
var compositeFiltClouds =
landsat8FiltClouds.median().clip(country);

Map.addLayer(compositeFiltClouds, visParams,
'L8 Composite cloud filter');

// Print size of collections, for comparison.
print('Size landsat8 collection', landsat8.size());
print('Size landsat8FiltClouds collection',
landsat8FiltClouds.size());

This new composite (Fig. 15.2) looks slightly better than the previous one, but it
is still very cloudy. Remember to turn off the first layer or adjust the transparency
to only visualize this new composite. The code prints the size of these collec-
tions, using the size function, to see how many images were left out after we
applied the cloud cover threshold. (There are 1201 images in the landsat8 col-
lection, compared to 493 in the landsat8FiltClouds collection—indicating
that many images have cloud cover greater than or equal to 50%.)

Try adjusting the CLOUD_COVER threshold in the landsat8FiltClouds
variable to different percentages and checking the results. For example, with the
threshold set to 20% (Fig. 15.3), you can see that many parts of the country have
image gaps. (Remember to turn off the first layer or adjust its transparency; you
can also set the shown parameter in the Map.addLayer function to false, so the
layer does not automatically load.) So, there is a trade-off between a stricter cloud
cover threshold and data availability. Additionally, even with a cloud filter, some
areas still present cloud cover.

This is due to persistent cloud cover in some regions of Colombia. However,
a cloud mask can be applied to improve the results. The Landsat 8 Collection 2
contains a quality assessment (QA) band called QA_PIXEL that provides useful
information on certain conditions within the data and allows users to apply per-
pixel filters. Each pixel in the QA band contains unsigned integers that represent
bit-packed combinations of surface, atmospheric, and sensor conditions.

286 T. Hermosilla et al.

Fig. 15.2 Landsat 8 surface reflectance 2019 median composite of Colombia filtered by cloud
cover less than 50%

We will also use the QA_RADSAT band, which indicates which bands are radio-
metrically saturated. A pixel value of 1 means saturated, so we will be masking
these pixels.

15 Clouds and Image Compositing 287

Fig. 15.3 Landsat 8 surface reflectance 2019 median composite of Colombia filtered by cloud
cover less than 20%

As described in Chap. 12, we will create a function to apply a cloud mask to
an image and then map this function over our collection. The mask is applied by
using the updateMask function. This function excludes undesired pixels from
the analysis, i.e., makes them transparent, by taking the mask as the input. You
will see that this cloud mask function (or similar versions) is used in other chapters
of the book. Note: Remember to set the cloud cover threshold back to 50 in the
landsat8FiltClouds variable.

288 T. Hermosilla et al.

// Define the cloud mask function.
function maskSrClouds(image) {

// Bit 0 - Fill
// Bit 1 - Dilated Cloud
// Bit 2 - Cirrus
// Bit 3 - Cloud
// Bit 4 - Cloud Shadow
var qaMask =

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',
2)).eq(0);

var saturationMask = image.select('QA_RADSAT').eq(0);

return image.updateMask(qaMask)
.updateMask(saturationMask);

}

// Apply the cloud mask to the collection.
var landsat8FiltMasked = landsat8FiltClouds.map(maskSrClouds);

// Create a composite.
var landsat8compositeMasked =
landsat8FiltMasked.median().clip(country);

Map.addLayer(landsat8compositeMasked, visParams, 'L8 composite
masked');

Since we are dealing with bits, in the maskSrClouds function, we utilized the
bitwiseAnd and parseInt functions. These functions unpack the bit infor-
mation. A bitwise AND is a binary operation that takes two equal length binary
representations and performs the logical AND operation on each pair of corre-
sponding bits. Thus, if both bits in the compared positions have the value 1, the
bit in the resulting binary representation is 1 (1× 1 = 1); otherwise, the result is 0
(1×0 = 0 and 0 × 0 = 0). The parseInt function parses a string argument (in
our case, five-character string ‘11111’) and returns an integer of the specified
numbering system, base 2.

The resulting composite (Fig. 15.4) shows masked clouds and is more spatially
exhaustive in coverage compared to previous composites (recall to uncheck the
previous layers). This is because, when compositing all the images into one, we
are not considering cloudy pixels anymore, and so the resulting pixels are an actual
representation of the landscape. However, data gaps due to cloud cover still persist.
If an annual composite is not specifically required, a first approach is to create a
two-year composite in order to mitigate the presence of data gaps or to have a
series of rules that allows for selecting pixels for that particular year. Change the
startDate variable to 2018-01-01 to include all images from 2018 and 2019
in the collection. How does the cloud-masked composite (Fig. 15.5) compare to
the 2019 one?

15 Clouds and Image Compositing 289

Fig. 15.4 Landsat 8 surface reflectance 2019 median composite of Colombia filtered by cloud
cover less than 50% and with cloud mask applied

The resulting image has substantially fewer data gaps (you can zoom in to
better see them). Again, if the time period is not a constraint for the creation of
your composite, you can incorporate more images from a third year, and so on.

Code Checkpoint F43a. The book’s repository contains a script that shows what
your code should look like at this point.

290 T. Hermosilla et al.

Fig. 15.5 One-year, startDate variable set to 2019-01-01, (left) and two-year,
startDate variable set to 2018-01-01, (right) median composites with 50% cloud cover
threshold and cloud mask applied

15.2.2 Section 2: Incorporating Data from Other Satellites

Another option to reduce the presence of data gaps in cloudy situations is to
bring in imagery from other sensors acquired during the time period of inter-
est. The Landsat collection spans multiple missions, which have continuously
acquired uninterrupted data since 1972. Next, we will incorporate Landsat 7 Level
2, Collection 2, Tier 1 images from 2019 to fill the gaps in the 2019 Landsat 8
composite.

To generate a Landsat 7 composite, we apply similar steps to the ones we did
for Landsat 8, so keep adding code to the same script from Sect. 15.2.1. First,
define your Landsat 7 collection variable and the scaling function. Then, filter
the collection, apply the cloud mask (since we know that Colombia has persistent
cloud cover), and apply the scaling function. Note that we will use the same cloud
mask function defined above, since the bits’ information for Landsat 7 is the same
as for Landsat 8. Finally, create the median composite. Paste in the code below
and change the startDate variable back to 2019-01-01 before executing it to
create a one-year composite of 2019.

15 Clouds and Image Compositing 291

// ---------- Section 2 -----------------

// Define Landsat 7 Level 2, Collection 2, Tier 1
collection.
var landsat7 =
ee.ImageCollection('LANDSAT/LE07/C02/T1_L2');

// Scaling factors for L7.
function applyScaleFactorsL7(image) {

var opticalBands =
image.select('SR_B.').multiply(0.0000275).add(-0.2);

var thermalBand =
image.select('ST_B6').multiply(0.00341802).add(149.0);

return image.addBands(opticalBands, null, true)
.addBands(thermalBand, null, true);

}

// Filter collection, apply cloud mask, and scaling
factors.
var landsat7FiltMasked = landsat7

.filterBounds(country)

.filterDate(startDate, endDate)

.filter(ee.Filter.lessThan('CLOUD_COVER', 50))

.map(maskSrClouds)

.map(applyScaleFactorsL7);

// Create composite.
var landsat7compositeMasked = landsat7FiltMasked

.median()

.clip(country);

Map.addLayer(landsat7compositeMasked,
{

bands: ['SR_B3', 'SR_B2', 'SR_B1'],
min: 0,
max: 0.2

},
'L7 composite masked');

Note that we used bands: [‘SR_B3’, ‘SR_B2’, ‘SR_B1’] to visual-
ize the composite because Landsat 7 has different band designations. The sensors
aboard each of the Landsat satellites were designed to acquire data in different
ranges along the electromagnetic spectrum. For Landsat 8, the red, green, and
blue bands are B4, B3, and B2, whereas, for Landsat 7, these same bands are B3,
B2, and B1, respectively.

292 T. Hermosilla et al.

The result is an image with systematic gaps like the one shown in Fig. 15.6
(remember to turn off the other layers, and zoom in to better see the data gaps).
Landsat 7 was launched in 1999, but since 2003, the sensor has acquired and
delivered data with data gaps caused by a scan line corrector (SLC) failure: SLC-
off. Without an operating SLC, the sensor’s line of sight traces a zig-zag pattern
along the satellite ground track, and as a result, the imaged area is duplicated and
some areas are missed. When the Level 1 data are processed, the duplicated areas
are removed, which results in data gaps (Fig. 15.7). For more information about
Landsat 7 and SLC-off malfunction, please refer to the USGS Landsat 7 website
(https://www.usgs.gov/landsat-missions/landsat-7). However, even with the SLC-
off malfunction, we can use the Landsat 7 data in our composite. Next, we will
combine the Landsat 7 and 8 collections.

Fig. 15.6 One-year Landsat 7 median composite with 50% cloud cover threshold and cloud mask
applied

https://www.usgs.gov/landsat-missions/landsat-7

15 Clouds and Image Compositing 293

Fig. 15.7 Landsat 7’s SLC-off condition. Source USGS

Since Landsat’s 7 and 8 have different band designations, first we create a
function to rename the bands from Landsat 7 to match the names used for Landsat
8 and map that function over our Landsat 7 collection.

// Since Landsat 7 and 8 have different band designations,
// let's create a function to rename L7 bands to match to L8.
function rename(image) {

return image.select(
['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',

'SR_B7'],
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6',

'SR_B7']);
}

// Apply the rename function.
var landsat7FiltMaskedRenamed =
landsat7FiltMasked.map(rename);

If you print the first images of both the landsat7FiltMasked and
landsat7FiltMaskedRenamed collections (Fig. 15.8), you will see that the

294 T. Hermosilla et al.

bands were renamed, but not all bands were copied over (SR_ATMOS_OPACITY,
SR_CLOUD_QA, SR_B6, etc.). To copy these additional bands, simply add them
to the rename function. You will need to rename SR_B6, so it does not have the
same name as the new band 5.

Fig. 15.8 First images of landsat7FiltMasked and landsat7FiltMaskedRenamed,
respectively

15 Clouds and Image Compositing 295

We merge the two collections using the merge function for
ImageCollection and mapping over a function to cast the Landsat 7
input values to 32-bit float using the toFloat function for consistency. To
merge collections, the number and names of the bands must be the same in each
collection. We use the select function (Chap. 2) to select the Landsat 8 bands
that match Landsat 7’s. When creating the new Landsat 7 and 8 composite, if we
did not select these six bands, we would get an error message for attempting to
composite a collection that has six bands (Landsat 7) with a collection that has
19 bands (Landsat 8).

// Merge Landsat collections.
var landsat78 = landsat7FiltMaskedRenamed

.merge(landsat8FiltMasked.select(
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6',

'SR_B7']))
.map(function(img) {

return img.toFloat();
});

print('Merged collections', landsat78);

The result is a collection with about 1000 images. Next, we will take the median
of the values across the ImageCollection.

// Create Landsat 7 and 8 image composite and add to the Map.
var landsat78composite = landsat78.median().clip(country);
Map.addLayer(landsat78composite, visParams, 'L7 and L8
composite');

Comparing the composite generated considering both Landsat 7 and 8 to the
Landsat 8-only composite, a reduction in the amount of data gaps in the final
result is evident (Fig. 15.9). The resulting Landsat 7 and 8 image composite still
has data gaps due to the presence of clouds and Landsat 7’s SLC-off data. Set the
center of the map to the point with latitude 3.6023 and longitude− 75.0741 to see
the inset example of Fig. 15.9.

Code Checkpoint F43b. The book’s repository contains a script that shows what
your code should look like at this point.

296 T. Hermosilla et al.

Fig. 15.9 Landsat 8-only composite (left) and Landsat 7 and 8 composite (right) for 2019. Inset
centered at latitude 3.6023, longitude− 75.0741

15.2.3 Section 3: Best-Available-Pixel Compositing Earth Engine
Application

This section presents an Earth Engine application that enables the generation of
annual best-available-pixel (BAP) image composites by globally combining mul-
tiple Landsat sensors and images: GEE-BAP. Annual BAP image composites are
generated by choosing optimal observations for each pixel from all available Land-
sat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images within a given year and
within a given day range from a specified acquisition day of year, in addition to
other constraints defined by the user. The data accessible via Earth Engine are
from the USGS free and open archive of Landsat data. The Landsat images used
are atmospherically corrected to surface reflectance values. Following White et al.
(2014), a series of scoring functions ranks each pixel observation for (1) acqui-
sition day of year, (2) cloud cover in the scene, (3) distance to clouds and cloud
shadows, (4) presence of haze, and (5) acquisition sensor. Further information on
the BAP image compositing approach can be found in Griffiths et al. (2013), and
detailed information on tuning parameters can be found in White et al. (2014).

Code Checkpoint F43c. The book’s repository contains information about access-
ing the GEE-BAP interface and its related functions.

Once you have loaded the GEE-BAP interface (Fig. 15.10) using the instruc-
tions in the Code Checkpoint, you will notice that it is divided into three sections:
(1) Input/Output options, (2) Pixel scoring options, and (3) Advanced param-
eters. Users indicate the study area, the time period for generating annual BAP
composites (i.e., start and end years), and the path to store the results in the
Input/Output options. Users have three options to define the study area. The
Draw study area option uses the Draw a shape and Draw a rectangle tools to

15 Clouds and Image Compositing 297

define the area of interest. The Upload image template option utilizes an image
template uploaded by the user in TIFF format. This option is well suited to gener-
ating BAP composites that match the projection, pixel size, and extent to existing
raster datasets. The Work globally option generates BAP composites for the entire
globe; note that when this option is selected, complete data download is not avail-
able due to the Earth’s size. With Start year and End year, users can indicate
the beginning and end of the annual time series of BAP image composites to be
generated. Multiple image composites are then generated—one composite for each
year—resulting in a time series of annual composites. For each year, composites
are uniquely generated utilizing images acquired on the days within the speci-
fied Date range. Produced BAP composites can be saved in the indicated (Path)
Google Drive folder using the Tasks tab. Results are generated in a tiled, TIFF
format, accompanied by a CSV file that indicates the parameters used to construct
the composite.

As noted, GEE-BAP implements five pixel scoring functions: (1) target acqui-
sition day of year and day range, (2) maximum cloud coverage per scene, (3)
distance to clouds and cloud shadows, (4) atmospheric opacity, and (5) a penalty
for images acquired under the Landsat 7 ETM+ SLC-off malfunction. By defining
the Acquisition day of year and Day range, those candidate pixels acquired closer
to a defined acquisition day of year are ranked higher. Note that pixels acquired
outside the day range window are excluded from subsequent composite develop-
ment. For example, if the target day of year is defined as “08-01” and the day range
as “31,” only those pixels acquired between July 1 and August 31 are considered,
and the ones acquired closer to August 1 will receive a higher score.

Fig. 15.10 GEE-BAP user interface controls

298 T. Hermosilla et al.

The scoring function Max cloud cover in scene indicates the maximum per-
centage of cloud cover in an image that will be accepted by the user in the BAP
image compositing process. Defining a value of 70% implies that only those scenes
with less than or equal to 70% cloud cover will be considered as a candidate for
compositing.

The Distance to clouds and cloud shadows scoring function enables the user
to exclude those pixels identified to contain clouds and shadows by the QA mask
from the generated BAP, as well as decreasing a pixel’s score if the pixel is within
a specified proximity of a cloud or cloud shadow.

The Atmospheric opacity scoring function ranks pixels based on their atmo-
spheric opacity values, which are indicative of hazy imagery. Pixels with opacity
values that exceed a defined haze expectation (Max opacity) are excluded. Pixels
with opacity values lower than a defined value (Min opacity) get the maximum
score. Pixels with values in between these limits are scored following the func-
tions defined by Griffiths et al. (2013). This scoring function is available only for
Landsat 5 TM and Landsat 7 ETM+ images, which provides the opacity attribute
in the image metadata file.

Finally, there is a Landsat 7 ETM+ SLC-off penalty scoring function that de-
emphasizes images acquired following the ETM+ SLC-off malfunction in 2003.
The aim of this scoring element is to ensure that TM or OLI data, which do not
have stripes, take precedence over ETM+ when using dates after the SLC failure.
This allows users to avoid the inclusion of multiple discontinuous small portions
of images being used to produce the BAP image composites, thus reducing the
spatial variability of the spectral data. The penalty applied to SLC-off imagery is
defined directly proportional to the overall score. A large score reduces the chance
that SLC-off imagery will be used in the composite. A value of 1 prevents SLC-off
imagery from being used.

By default, the GEE-BAP application produces image composites using all the
visible bands. The Spectral index option enables the user to produce selected spec-
tral indices from the resulting BAP image composites. Available spectral indices
include: Normalized Difference Vegetation Index (NDVI, Fig. 15.11), Enhanced
Vegetation Index (EVI), and Normalized Burn Ratio (NBR), as well as several
indices derived from the Tasseled Cap transformation: Wetness (TCW), Greenness
(TCG), Brightness (TCB), and Angle (TCA). Composited indices are able to be
downloaded as well as viewed on the map.

GEE-BAP functions can be accessed programmatically, including pixel
scoring parameters, as well as BAP image compositing (BAP), de-spiking
(despikeCollection), data-gap infilling (infill), and displaying
(ShowCollection) functions. The following code sets the scoring param-
eter values, then generates and displays the compositing results (Fig. 15.12)
for a BAP composite that is de-spiked, with data gaps infilled using temporal
interpolation. Copy and paste the code below into a new script.

15 Clouds and Image Compositing 299

Fig. 15.11 Example of a global BAP image composite showing NDVI values generated using the
GEE-BAP user interface

Fig. 15.12 Outcome of the compositing code

300 T. Hermosilla et al.

// Define required parameters.
var targetDay = '06-01';
var daysRange = 75;
var cloudsTh = 70;
var SLCoffPenalty = 0.7;
var opacityScoreMin = 0.2;
var opacityScoreMax = 0.3;
var cloudDistMax = 1500;
var despikeTh = 0.65;
var despikeNbands = 3;
var startYear = 2015;
var endYear = 2017;

// Define study area.
var worldCountries =
ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017');
var colombia = worldCountries.filter(ee.Filter.eq('country_na',

'Colombia'));

// Load the bap library.
var library = require('users/sfrancini/bap:library');

// Calculate BAP.
var BAPCS = library.BAP(null, targetDay, daysRange, cloudsTh,

SLCoffPenalty, opacityScoreMin, opacityScoreMax,
cloudDistMax);

// Despike the collection.
BAPCS = library.despikeCollection(despikeTh, despikeNbands,
BAPCS,

1984, 2021, true);

// Infill datagaps.
BAPCS = library.infill(BAPCS, 1984, 2021, false, true);

// Visualize the image.
Map.centerObject(colombia, 5);
library.ShowCollection(BAPCS, startYear, endYear, colombia,
false,null);
library.AddSLider(startYear, endYear);

Code Checkpoint F43d. The book’s repository contains a script that shows what
your code should look like at this point.

15 Clouds and Image Compositing 301

15.3 Synthesis

Assignment 1. Create composites for other cloudy regions or less cloudy
regions. For example, change the country variable to ‘Cambodia’ or
‘Mozambique’. Are more gaps present in the resulting composite? Can you
change the compositing rules to improve this (using Acquisition day of year and
Day range)? Different regions of the Earth have different cloud seasonal patterns,
so the most appropriate date windows to acquire cloud-free composites will change
depending on location. Also be aware that the larger the country, the longer it will
take to generate the composite.

Assignment 2. Similarly, try creating composites for the wet and dry seasons of
a region separately. Compare the two composites. Are some features brighter or
darker? Is there evidence of drying of vegetation, such as leaf loss or reduction in
herbaceous ground vegetation?

Assignment 3. Test different cloud threshold values and see if you can find an
optimal threshold that balances data gaps against area coverage for your particular
target date.

15.4 Conclusion

We cannot monitor what we cannot see. Image compositing algorithms provide
robust and transparent tools to address issues with clouds, cloud shadows, haze,
and smoke in remotely sensed images derived from optical satellite data and
expand data availability for remote sensing applications. The tools and approaches
described here should provide you with some useful strategies to aid in mitigating
the presence of cloud cover in your data. Note that the quality of image outcomes
is a function of the quality of cloud masking routines applied to the source data to
generate the various flags that are used in the scoring functions described herein.
Different compositing parameters can be used to represent a given location as a
function of conditions that are present at a given point in time and the informa-
tion needs of the end user. Tuning or optimization of compositing parameters is
possible (and recommended) to ensure best capture of the physical conditions of
interest.

References

Braaten JD, Cohen WB, Yang Z (2015) Automated cloud and cloud shadow identification in Land-
sat MSS imagery for temperate ecosystems. Remote Sens Environ 169:128–138. https://doi.
org/10.1016/j.rse.2015.08.006

Cao R, Chen Y, Chen J et al (2020) Thick cloud removal in Landsat images based on autoregres-
sion of Landsat time-series data. Remote Sens Environ 249:112001. https://doi.org/10.1016/j.
rse.2020.112001

https://doi.org/10.1016/j.rse.2015.08.006
https://doi.org/10.1016/j.rse.2015.08.006
https://doi.org/10.1016/j.rse.2020.112001
https://doi.org/10.1016/j.rse.2020.112001

302 T. Hermosilla et al.

Eberhardt IDR, Schultz B, Rizzi R et al (2016) Cloud cover assessment for operational crop
monitoring systems in tropical areas. Remote Sens 8:219. https://doi.org/10.3390/rs8030219

Griffiths P, van der Linden S, Kuemmerle T, Hostert P (2013) A pixel-based Landsat compositing
algorithm for large area land cover mapping. IEEE J Sel Top Appl Earth Obs Remote Sens
6:2088–2101. https://doi.org/10.1109/JSTARS.2012.2228167

Hermosilla T, Wulder MA, White JC et al (2015) An integrated Landsat time series protocol for
change detection and generation of annual gap-free surface reflectance composites. Remote
Sens Environ 158:220–234. https://doi.org/10.1016/j.rse.2014.11.005

Huang C, Thomas N, Goward SN et al (2010) Automated masking of cloud and cloud shadow for
forest change analysis using Landsat images. Int J Remote Sens 31:5449–5464. https://doi.org/
10.1080/01431160903369642

Irish RR, Barker JL, Goward SN, Arvidson T (2006) Characterization of the Landsat-7 ETM+
automated cloud-cover assessment (ACCA) algorithm. Photogramm Eng Remote Sens
72:1179–1188. https://doi.org/10.14358/PERS.72.10.1179

Loveland TR, Dwyer JL (2012) Landsat: building a strong future. Remote Sens Environ 122:22–
29. https://doi.org/10.1016/j.rse.2011.09.022

Martins VS, Novo EMLM, Lyapustin A et al (2018) Seasonal and interannual assessment of cloud
cover and atmospheric constituents across the Amazon (2000–2015): insights for remote sens-
ing and climate analysis. ISPRS J Photogramm Remote Sens 145:309–327. https://doi.org/10.
1016/j.isprsjprs.2018.05.013

Roy DP, Ju J, Kline K et al (2010) Web-enabled Landsat data (WELD): Landsat ETM+ composited
mosaics of the conterminous United States. Remote Sens Environ 114:35–49. https://doi.org/
10.1016/j.rse.2009.08.011

White JC, Wulder MA, Hobart GW et al (2014) Pixel-based image compositing for large-area
dense time series applications and science. Can J Remote Sens 40:192–212. https://doi.org/10.
1080/07038992.2014.945827

Zhu X, Helmer EH (2018) An automatic method for screening clouds and cloud shadows in optical
satellite image time series in cloudy regions. Remote Sens Environ 214:135–153. https://doi.
org/10.1016/j.rse.2018.05.024

Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in Landsat imagery.
Remote Sens Environ 118:83–94. https://doi.org/10.1016/j.rse.2011.10.028

Zhu Z, Woodcock CE (2014) Automated cloud, cloud shadow, and snow detection in multitempo-
ral Landsat data: an algorithm designed specifically for monitoring land cover change. Remote
Sens Environ 152:217–234. https://doi.org/10.1016/j.rse.2014.06.012

Zhu Z, Wang S, Woodcock CE (2015) Improvement and expansion of the Fmask algorithm: cloud,
cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens
Environ 159:269–277. https://doi.org/10.1016/j.rse.2014.12.014

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/rs8030219
https://doi.org/10.1109/JSTARS.2012.2228167
https://doi.org/10.1016/j.rse.2014.11.005
https://doi.org/10.1080/01431160903369642
https://doi.org/10.1080/01431160903369642
https://doi.org/10.14358/PERS.72.10.1179
https://doi.org/10.1016/j.rse.2011.09.022
https://doi.org/10.1016/j.isprsjprs.2018.05.013
https://doi.org/10.1016/j.isprsjprs.2018.05.013
https://doi.org/10.1016/j.rse.2009.08.011
https://doi.org/10.1016/j.rse.2009.08.011
https://doi.org/10.1080/07038992.2014.945827
https://doi.org/10.1080/07038992.2014.945827
https://doi.org/10.1016/j.rse.2018.05.024
https://doi.org/10.1016/j.rse.2018.05.024
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2014.06.012
https://doi.org/10.1016/j.rse.2014.12.014
http://creativecommons.org/licenses/by/4.0/

16Change Detection

Karis Tenneson , John Dilger , Crystal Wespestad ,
Brian Zutta , Andréa Puzzi Nicolau , Karen Dyson ,
and Paula Paz

Overview
This chapter introduces change detection mapping. It will teach you how to make
a two-date land cover change map using image differencing and threshold-based
classification. You will use what you have learned so far in this book to produce
a map highlighting changes in the land cover between two time steps. You will

K. Tenneson · J. Dilger (B) · C. Wespestad · B. Zutta · A. P. Nicolau · K. Dyson
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: jdilger@sig-gis.com

K. Tenneson
e-mail: ktenneson@sig-gis.com

C. Wespestad
e-mail: cwespestad@sig-gis.com

B. Zutta
e-mail: bzutta@sig-gis.com

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

K. Dyson
e-mail: kdyson@sig-gis.com

SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, WA, USA

P. Paz
Alliance Bioversity-CIAT, Cali, Colombia
e-mail: p.a.paz@cgiar.org

J. Dilger
Astraea, Charlottesville, Virginia, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_16

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_16&domain=pdf
https://orcid.org/0000-0001-5842-0663
https://orcid.org/0000-0001-8837-5445
https://orcid.org/0000-0002-3093-1178
https://orcid.org/0000-0002-0935-8282
https://orcid.org/0000-0002-7529-2074
https://orcid.org/0000-0002-8860-3396
mailto:jdilger@sig-gis.com
mailto:ktenneson@sig-gis.com
mailto:cwespestad@sig-gis.com
mailto:bzutta@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:kdyson@sig-gis.com
mailto:p.a.paz@cgiar.org
https://doi.org/10.1007/978-3-031-26588-4_16

304 K. Tenneson et al.

first explore differences between the two images extracted from these time steps by
creating a difference layer. You will then learn how to directly classify change based
on the information in both of your images.

Learning Outcomes

• Creating and exploring how to read a false-color cloud-free Landsat composite
image

• Calculating the normalized burn ratio (NBR) index.
• Creating a two-image difference to help locate areas of change.
• Producing a change map and classifying changes using thresholding.

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks

(Part 2).

16.1 Introduction to Theory

Change detection is the process of assessing how landscape conditions are chang-
ing by looking at differences in images acquired at different times. This can be
used to quantify changes in forest cover—such as those following a volcanic erup-
tion, logging activity, or wildfire—or when crops are harvested (Fig. 16.1). For
example, using time-series change detection methods, Hansen et al. (2013) quan-
tified annual changes in forest loss and regrowth. Change detection mapping is
important for observing, monitoring, and quantifying changes in landscapes over
time. Key questions that can be answered using these techniques include identi-
fying whether a change has occurred, measuring the area or the spatial extent of
the region undergoing change, characterizing the nature of the change, and mea-
suring the pattern (configuration or composition) of the change (MacLeod and
Congalton 1998).

Many change detection techniques use the same basic premise: that most
changes on the landscape result in spectral values that differ between pre-event
and post-event images. The challenge can be to separate the real changes of inter-
est—those due to activities on the landscape—from noise in the spectral signal,
which can be caused by seasonal variation and phenology, image misregistration,
clouds and shadows, radiometric inconsistencies, variability in illumination (e.g.,
sun angle, sensor position), and atmospheric effects.

Activities that result in pronounced changes in radiance values for a sufficiently
long time period are easier to detect using remote sensing change detection tech-
niques than are subtle or short-lived changes in landscape conditions. Mapping
challenges can arise if the change event is short-lived, as these are difficult to

16 Change Detection 305

capture using satellite instruments that only observe a location every several days.
Other types of changes occur so slowly or are so vast that they are not easily
detected until they are observed using satellite images gathered over a sufficiently
long interval of time. Subtle changes that occur slowly on the landscape may be
better suited to more computationally demanding methods, such as time-series
analysis. Kennedy et al. (2009) provide a nice overview of the concepts and
tradeoffs involved when designing landscape monitoring approaches. Additional
summaries of change detection methods and recent advances include Singh (1989),
Coppin et al. (2004), Lu et al. (2004) and Woodcock et al. (2020).

For land cover changes that occur abruptly over large areas on the landscape
and are long-lived, a simple two-date image differencing approach is suitable.

Fig. 16.1 Before and after images of a the eruption of Mount St. Helens in Washington State,
USA, in 1980 (before, July 10, 1979; after, September 5, 1980); b the Camp Fire in California,
USA, in 2018 (before, October 7, 2018; after, March 16, 2019); c illegal gold mining in the Madre
de Dios region of Peru (before, March 31, 2001; after, August 22, 2020); and d shoreline changes
in Incheon, South Korea (before, May 29, 1981; after, March 11, 2020)

306 K. Tenneson et al.

Fig. 16.1 (continued)

Two-date image differencing techniques are long-established methods for iden-
tifying changes that produce easily interpretable results (Singh 1989). The process
typically involves four steps: (1) image selection and preprocessing; (2) data trans-
formation, such as calculating the difference between indices of interest [e.g., the
normalized difference vegetation index (NDVI)] in the pre-event and post-event
images; (3) classifying the differenced image(s) using thresholding or supervised
classification techniques; and (4) evaluation.

16.2 Practicum

For the practicum, you will select pre-event and post-event image scenes and inves-
tigate the conditions in these images in a false-color composite display. Next, you
will calculate the NBR index for each scene and create a difference image using
the two NBR maps. Finally, you will apply a threshold to the difference image to
establish categories of changed versus stable areas (Fig. 16.2).

16 Change Detection 307

Fig. 16.2 Change detection workflow for this practicum

16.2.1 Section 1: Preparing Imagery

Before beginning a change detection workflow, image preprocessing is essential.
The goal is to ensure that each pixel records the same type of measurement at the
same location over time. These steps include multitemporal image registration and
radiometric and atmospheric corrections, which are especially important. A lot of
this work has been automated and already applied to the images that are avail-
able in Earth Engine. Image selection is also important. Selection considerations
include finding images with low cloud cover and representing the same phenology
(e.g., leaf-on or leaf-off).

The code in the block below accesses the USGS Landsat 8 Level 2, Collection
2, Tier 1 dataset and assigns it to the variable landsat8. To improve readability
when working with the Landsat 8 ImageCollection, the code selects bands
2–7 and renames them to band names instead of band numbers.

var landsat8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.select(

['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'],
['blue', 'green', 'red', 'nir', 'swir1', 'swir2']

);

Next, you will split the Landsat 8 ImageCollection into two collections,
one for each time period, and apply some filtering and sorting to get an image for
each of two time periods. In this example, we know that there are few clouds for
the months of the analysis; if you are working in a different area, you may need
to apply some cloud masking or mosaicing techniques (see Chap. 15).

The code below does several things. First, it creates a new geometry variable
to filter the geographic bounds of the image collections. Next, it creates a new

308 K. Tenneson et al.

variable for the pre-event image by (1) filtering the collection by the date range of
interest (e.g., June 2013), (2) filtering the collection by the geometry, (3) sorting
by cloud cover so the first image will have the least cloud cover, and (4) getting
the first image from the collection.

Now repeat the previous step, but assign it to a post-event image variable and
change the filter date to a period after the pre-event image’s date range (e.g., June
2020).

var point = ee.Geometry.Point([-123.64, 42.96]);
Map.centerObject(point, 11);

var preImage = landsat8
.filterBounds(point)
.filterDate('2013-06-01', '2013-06-30')
.sort('CLOUD_COVER', true)
.first();

var postImage = landsat8
.filterBounds(point)
.filterDate('2020-06-01', '2020-06-30')
.sort('CLOUD_COVER', true)
.first();

16.2.2 Section 2: Creating False-Color Composites

Before running any sort of change detection analysis, it is useful to first visualize
your input images to get a sense of the landscape, visually inspect where changes
might occur, and identify any problems in the inputs before moving further. As
described in Chap. 2, false-color composites draw bands from multispectral sensors
in the red, green, and blue channels in ways that are designed to illustrate contrast
in imagery. Below, you will produce a false-color composite using SWIR2 in the
red channel, NIR in the green channel, and red in the blue channel (Fig. 16.3).

Following the format in the code block below, first create a variable visParam
to hold the display parameters, selecting the SWIR2, NIR, and red bands, with
values drawn that are between 7750 and 22,200. Next, add the pre-event and post-
event images to the map and click Run. Click and drag the opacity slider on
the post-event image layer back and forth to view the changes between your two
images.

16 Change Detection 309

Fig. 16.3 False-color composite using SWIR2, NIR, and red. Vegetation shows up vividly in the
green channel due to vegetation being highly reflective in the NIR band. Shades of green can be
indicative of vegetation density; water typically shows up as black to dark blue; and burned or
barren areas show up as brown

var visParam = {
'bands': ['swir2', 'nir', 'red'],
'min': 7750,
'max': 22200

};
Map.addLayer(preImage, visParam, 'pre');
Map.addLayer(postImage, visParam, 'post');

16.2.3 Section 3: Calculating NBR

The next step is data transformation, such as calculating NBR. The advantage
of using these techniques is that the data, along with the noise inherent in the
data, have been reduced in order to simplify a comparison between two images.

310 K. Tenneson et al.

Image differencing is done by subtracting the spectral value of the first-date image
from that of the second-date image, pixel by pixel (Fig. 16.2). Two-date image
differencing can be used with a single band or with spectral indices, depending on
the application. Identifying the correct band or index to identify change and finding
the correct thresholds to classify it are critical to producing meaningful results.
Working with indices known to highlight the land cover conditions before and after
a change event of interest is a good starting point. For example, the normalized
difference water index would be good for mapping water level changes during
flooding events; the NBR is good at detecting soil brightness; and the NDVI can be
used for tracking changes in vegetation (although this index does saturate quickly).
In some cases, using derived band combinations that have been customized to
represent the phenomenon of interest is suggested, such as using the normalized
difference fraction index to monitor forest degradation (see Chap. 49).

Examine changes to the landscape caused by fires using NBR, which measures
the severity of fires using the equation (NIR − SWIR)/(NIR + SWIR). These bands
were chosen because they respond most strongly to the specific changes in forests
caused by fire. This type of equation, a difference of variables divided by their
sum, is referred to as a normalized difference equation (see Chap. 5). The resulting
value will always fall between − 1 and 1. NBR is useful for determining whether
a fire recently occurred and caused damage to the vegetation, but it is not designed
to detect other types of land cover changes especially well.

First, calculate the NBR for each time period using the built-in normalized
difference function. For Landsat 8, be sure to utilize the NIR and SWIR2 bands to
calculate NBR. Then, rename each image band with the built-in rename function.

// Calculate NBR.
var nbrPre = preImage.normalizedDifference(['nir', 'swir2'])

.rename('nbr_pre');
var nbrPost = postImage.normalizedDifference(['nir', 'swir2'])

.rename('nbr_post');

Code Checkpoint F44a. The book’s repository contains a script that shows what
your code should look like at this point.

16.2.4 Section 4: Single Date Transformation

Next, we will examine the changes that have occurred, as seen when comparing
two specific dates in time.

Subtract the pre-event image from the post-event image using the subtract
function. Add the two-date change image to the map with the specialized Fabio
Crameri batlow color ramp (Crameri et al. 2020). This color ramp is an example of

16 Change Detection 311

a color combination specifically designed to be readable by colorblind and color-
deficient viewers. Being cognizant of your cartographic choices is an important
part of making a good change map.

// 2-date change.
var diff = nbrPost.subtract(nbrPre).rename('change');

var palette = [
'011959', '0E365E', '1D5561', '3E6C55', '687B3E',
'9B882E', 'D59448', 'F9A380', 'FDB7BD', 'FACCFA'

];
var visParams = {

palette: palette,
min: -0.2,
max: 0.2

};
Map.addLayer(diff, visParams, 'change');

Question 1. Try to interpret the resulting image before reading on. What pat-
terns of change can you identify? Can you find areas that look like vegetation loss
or gain?

The color ramp has dark blues for the lowest values, greens, and oranges
in the midrange and pink for the highest values. We used nbrPre subtracted
from nbrPost to identify changes in each pixel. Since NBR values are higher
when vegetation is present, areas that are negative in the change image will repre-
sent pixels that were higher in the nbrPre image than in the nbrPost image.
Conversely, positive differences mean that an area gained vegetation (Fig. 16.4).

16.2.5 Section 5: Classifying Change

Once the images have been transformed and differenced to highlight areas under-
going change, the next step is image classification into a thematic map consisting
of stable and change classes. This can be done rather simply by thresholding the
change layer, or by using classification techniques such as machine learning algo-
rithms. One challenge of working with simple thresholding of the difference layer
is knowing how to select a suitable threshold to partition changed areas from stable
classes. On the other hand, classification techniques using machine learning algo-
rithms partition the landscape using examples of reference data that you provide to
train the classifier. This may or may not yield better results but does require addi-
tional work to collect reference data and train the classifier. In the end, resources,
timing, and the patterns of the phenomenon you are trying to map will determine
which approach is suitable—or perhaps the activity you are trying to track requires

312 K. Tenneson et al.

Fig. 16.4 a Two-date NBR difference; b pre-event image (June 2013) false-color composite; c
post-event image (June 2020) false-color composite. In the change map (a), areas on the lower
range of values (blue) depict areas where vegetation has been negatively affected, and areas on the
higher range of values (pink) depict areas where there has been vegetation gain; the green/orange
areas have experienced little change. In the pre-event and post-event images (b and c), the green
areas indicate vegetation, while the brown regions are barren ground

something more advanced, such as a time-series approach that uses more than two
dates of imagery.

For this chapter, we will classify our image into categories using a simple,
manual thresholding method, meaning we will decide the optimal values for when
a pixel will be considered change or no-change in the image. Finding the ideal
value is a considerable task and will be unique to each use case and set of inputs
(e.g., the threshold values for a SWIR2 single-band change would be different from
the thresholds for NDVI). For a look at a more-advanced method of thresholding,
check out the thresholding methods in Chap. 42.

First, you will define two variables for the threshold values for gain and loss.
Next, create a new image with a constant value of 0. This will be the basis of our
classification. Reclassify the new image using the where function. Classify loss
areas as 2 where the difference image is less than or equal to the loss threshold
value. Reclassify gain areas to 1 where the difference image is greater than or
equal to the gain threshold value. Finally, mask the image by itself and add the
classified image to the map (Fig. 16.5). Note: It is not necessary to self-mask the
image, and in many cases, you might be just as interested in areas that did not
change as you are in areas that did.

16 Change Detection 313

Fig. 16.5 a Change detection in timber forests of southern Oregon, including maps of the (left
to right) pre-event false-color composite, post-event false-color composite, difference image, and
classified change using NBR; b the same map types for an example of change caused by fire in
southern Oregon. The false-color maps highlight vegetation in green and barren ground in brown.
The difference images show NBR gain in pink to NBR loss in blue. The classified change images
show NBR gain in blue and NBR loss in red

// Classify change
var thresholdGain = 0.10;
var thresholdLoss = -0.10;

var diffClassified = ee.Image(0);

diffClassified =
diffClassified.where(diff.lte(thresholdLoss), 2);
diffClassified =
diffClassified.where(diff.gte(thresholdGain), 1);

var changeVis = {
palette: 'fcffc8,2659eb,fa1373',
min: 0,
max: 2

};

Map.addLayer(diffClassified.selfMask(),
changeVis,
'change classified by threshold');

314 K. Tenneson et al.

Chapters 17 through 21 present more-advanced change detection algorithms
that go beyond differencing and thresholding between two images, instead
allowing you to analyze changes indicated across several images as a time series.

Code Checkpoint F44b. The book’s repository contains a script that shows what
your code should look like at this point.

16.3 Synthesis

Evaluating any maps you create, including change detection maps, is essential
to determining whether the method you have selected is appropriate for inform-
ing land management and decision-making (Stehman and Czaplewski 1998), or
whether you need to iterate on the mapping process to improve the final results.
Maps generally, and change maps specifically, will always have errors. This is due
to a suite of factors, such as the geometric registration between images, the cali-
bration between images, the data resolution (e.g., temporal, spectral, radiometric)
compared to the characteristics of the activity of interest, the complexity of the
landscape of the study region (topography, atmospheric conditions, etc.), and the
classification techniques employed (Lu et al. 2004). This means that similar stud-
ies can present different, sometimes controversial, conclusions about landscape
dynamics (e.g., Cohen et al. 2017). In order to be useful for decision-making, a
change detection mapping effort should provide the user with an understanding of
the strengths and weaknesses of the product, such as by presenting omission and
commission error rates. The quantification of classification quality is presented in
Chap. 7.

Assignment 1. Try using a different index, such as NDVI or a Tasseled Cap Trans-
formation, to run the change detection steps, and compare the results with those
obtained from using NBR.

Assignment 2. Experiment with adjusting the thresholdLoss and
thresholdGain values.

Assignment 3. Use what you have learned in the classification chapter (Chap. 6)
to run a supervised classification on the difference layer (or layers, if you have
created additional ones). Hint: To complete a supervised classification, you would
need reference examples of both the stable and change classes of interest to train
the classifier.

Assignment 4. Think about how things like clouds and cloud shadows could
affect the results of change detection. What do you think the two-date differencing
method would pick up for images in the same year in different seasons?

16 Change Detection 315

16.4 Conclusion

In this chapter, you learned how to make a change detection map using two-image
differencing. The importance of visualizing changes in this way instead of using
a post-classification comparison, where two classified maps are compared instead
of two satellite images, is that it avoids multiplicative errors from the classifica-
tions and is better at observing more subtle changes in the landscape. You also
learned that how you visualize your images and change maps—such as what band
combinations and color ramps you select, and what threshold values you use for
a classification map—has an impact on how easily and what types of changes can
be seen.

References

Cohen WB, Healey SP, Yang Z et al (2017) How similar are forest disturbance maps derived from
different Landsat time series algorithms? Forests 8:98. https://doi.org/10.3390/f8040098

Coppin P, Jonckheere I, Nackaerts K et al (2004) Digital change detection methods in ecosystem
monitoring: a review. Int J Remote Sens 25:1565–1596. https://doi.org/10.1080/014311603100
0101675

Crameri F, Shephard GE, Heron PJ (2020) The misuse of colour in science communication. Nat
Commun 11:1–10. https://doi.org/10.1038/s41467-020-19160-7

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest
cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693

Kennedy RE, Townsend PA, Gross JE et al (2009) Remote sensing change detection tools for
natural resource managers: understanding concepts and tradeoffs in the design of landscape
monitoring projects. Remote Sens Environ 113:1382–1396. https://doi.org/10.1016/j.rse.2008.
07.018

Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens
25:2365–2401. https://doi.org/10.1080/0143116031000139863

Macleod RD, Congalton RG (1998) A quantitative comparison of change-detection algorithms for
monitoring eelgrass from remotely sensed data. Photogramm Eng Remote Sens 64:207–216

Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens
10:989–1003. https://doi.org/10.1080/01431168908903939

Stehman SV, Czaplewski RL (1998) Design and analysis for thematic map accuracy assessment:
fundamental principles. Remote Sens Environ 64:331–344. https://doi.org/10.1016/S0034-425
7(98)00010-8

Woodcock CE, Loveland TR, Herold M, Bauer ME (2020) Transitioning from change detection to
monitoring with remote sensing: a paradigm shift. Remote Sens Environ 238:111558. https://
doi.org/10.1016/j.rse.2019.111558

https://doi.org/10.3390/f8040098
https://doi.org/10.1080/0143116031000101675
https://doi.org/10.1080/0143116031000101675
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1126/science.1244693
https://doi.org/10.1016/j.rse.2008.07.018
https://doi.org/10.1016/j.rse.2008.07.018
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.1080/01431168908903939
https://doi.org/10.1016/S0034-4257(98)00010-8
https://doi.org/10.1016/S0034-4257(98)00010-8
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2019.111558

316 K. Tenneson et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

17Interpreting Annual Time Series
with LandTrendr

Robert Kennedy, Justin Braaten, and Peter Clary

Overview
Time-series analysis of change can be achieved by fitting the entire spectral trajectory
using simple statistical models. These allow us to both simplify the time series and
to extract useful information about the changes occurring. In this chapter, you will
get an introduction to the use of LandTrendr, one of these time-series approaches
used to characterize time series of spectral values.

Learning Outcomes

• Evaluating yearly time-series spectral values to distinguish between true change
and artifacts.

• Recognizing disturbance and growth signals in the time series of annual spectral
values for individual pixels.

• Interpreting change segments and translating them to maps.
• Applying parameters in a graphical user interface to create disturbance maps in

forests.

R. Kennedy (B) · P. Clary
Geography Program, College of Earth Ocean and Atmospheric Sciences, Oregon State University,
Corvallis, OR 97331, USA
e-mail: robert.kennedy@oregonstate.edu

P. Clary
e-mail: clarype@oregonstate.edu

J. Braaten
Google, Mountain View, CA 97331, USA
e-mail: braaten@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_17

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_17&domain=pdf
mailto:robert.kennedy@oregonstate.edu
mailto:clarype@oregonstate.edu
mailto:braaten@google.com
https://doi.org/10.1007/978-3-031-26588-4_17

318 R. Kennedy et al.

Assumes you know how to

• Calculate and interpret vegetation indices (Chap. 5)
• Interpret bands and indices in terms of land surface characteristics (Chap. 5).

17.1 Introduction to Theory

Land surface change happens all the time, and satellite sensors witness it. If a
spectral index is chosen to match the type of change being sought, surface change
can be inferred from changes in spectral index values. Over time, the progression
of spectral values witnessed in each pixel tells a story of the processes of change,
such as growth and disturbance. Time-series algorithms are designed to leverage
many observations of spectral values over time to isolate and describe changes of
interest, while ignoring uninteresting change or noise.

In this lab, we use the LandTrendr time-series algorithms to map change. The
LandTrendr algorithms apply “temporal segmentation” strategies to distill a mul-
tiyear time series into sequential straight-line segments that describe the change
processes occurring in each pixel. We then isolate the segment of interest in each
pixel and make maps of when, how long, and how intensely each process occurred.
Similar strategies can be applied to more complicated descriptions of the time
series, as is seen in some of the chapters that follow this one.

17.2 Practicum

For this lab, we will use a graphical user interface (GUI) to teach the concepts of
LandTrendr.

Code Checkpoint F45a. The book’s repository contains information about access-
ing the LandTrendr interface.

17.2.1 Section 1: Pixel Time Series

When working with LandTrendr for the first time in your area, there are two
questions you must address.

First, is the change of interest detectable in the spectral reflectance record? If
the change you are interested in does not leave a pattern in the spectral reflectance
record, then an algorithm will not be able to find it.

Second, can you identify fitting parameters that allow the algorithm to capture
that record? Time-series algorithms apply rules to a temporal sequence of spectral
values in a pixel and simplify the many observations into more digestible forms,
such as the linear segments we will work with using LandTrendr. The algorithms

17 Interpreting Annual Time Series with LandTrendr 319

Fig. 17.1 LandTrendr GUI interface, with the control panel on the left, the Map panel in the
center, and the reporting panel on the right

that do the simplification are often guided by parameters that control the way the
algorithm does its job.

The best way to begin assessing these questions is to look at the time series
of individual pixels. In Earth Engine, open and run the script that generates the
GUI we have developed to easily deploy the LandTrendr algorithms (Kennedy
et al. 2018). Run the script, and you should see an interface that looks like the one
shown in Fig. 17.1.

The LandTrendr GUI consists of three panels: a control panel on the left, a
reporting panel on the right, and a Map panel in the center. The control panel is
where all of the functionality of the interface resides. There are several modules,
and each is accessed by clicking on the double arrow to the right of the title. The
Map panel defaults to a location in Oregon but can be manually moved anywhere
in the world. The reporting panel shows messages about how to use functions, as
well as providing graphical outputs.

Next, expand the “Pixel Time-Series Options” function. For now, simply use
your mouse to click somewhere on the map. Wait a few seconds even though it
looks like nothing is happening—be patient!! The GUI has sent information to
Earth Engine to run the LandTrendr algorithms at the location you have clicked
and is waiting for the results. Eventually, you should see a chart appear in the
reporting panel on the right. Figure 17.2 shows what one pixel looks like in an
area where the forest burned and began regrowth. Your chart will probably look
different.

The key to success with the LandTrendr algorithm is interpreting these time
series. First, let us examine the components of the chart. The x-axis shows the
year of observation. With LandTrendr, only one observation per year is used to
describe the history of a pixel; later, we will cover how you control that value.
The y-axis shows the spectral value of the index that is chosen. In the default

320 R. Kennedy et al.

Fig. 17.2 Typical trajectory for a single pixel. The x-axis shows the year, the y-axis the spectral
index value, and the title the index chosen. The gray line represents the original spectral val-
ues observed by Landsat, and the red line the result of the LandTrendr temporal segmentation
algorithms

mode, the normalized burn ratio (as described in Chap. 16). Note that you also
have the ability to pick more indices using the checkboxes on the control panel
on the left. Note that we scale floating point (decimal) indices by 1000. Thus, an
NBR value of 1.0 would be displayed as 1000.

In the chart area, the thick gray line represents the spectral values observed by
the satellite for the period of the year selected for a single 30 m Landsat pixel
at the location you have chosen. The red line is the output from the temporal
segmentation that is the heart of the LandTrendr algorithms. The title of the chart
shows the spectral index, as well as the root-mean-square error of the fit.

To interpret the time series, first know which way is “up” and “down” for the
spectral index you are interested in. For the NBR, the index goes up in value when
there is more vegetation and less soil in a pixel. It goes down when there is less
vegetation. For vegetation disturbance monitoring, this is useful.

Next, translate that change into the changes of interest for the change processes
you are interested in. For conifer forest systems, the NBR is useful because it
drops precipitously when a disturbance occurs, and it rises as vegetation grows.

In the case of Fig. 17.2, we interpret the abrupt drop as a disturbance, and the
subsequent rise of the index as regrowth or recovery (though not necessarily to the
same type of vegetation) (Fig. 17.3).

Tip: LandTrendr is able to accept any index, and advanced users are welcome
to use indices of their own design. An important consideration is knowing which
direction indicates “recovery” and “disturbance” for the topic you are interested in.
The algorithms favor detection of disturbance and can be controlled to constrain
how quickly recovery is assumed to occur (see parameters below).

For LandTrendr to have any hope of finding the change of interest, that change
must be manifested in the gray line showing the original spectral values. If you
know that some process is occurring and it is not evident in the gray line, what
can you do?

17 Interpreting Annual Time Series with LandTrendr 321

Fig. 17.3 For the trajectory in Fig. 17.2, we can identify a segment capturing disturbance based
on its abrupt drop in the NBR index, and the subsequent vegetative recovery

One option is to change the index. Any single index is simply one view of the
larger spectral space of the Landsat Thematic Mapper sensors. The change you are
interested in may cause spectral change in a different direction than that captured
with some indices. Try choosing different indices from the list. If you click on
different checkboxes and re-submit the pixel, the fits for all of the different indices
will appear.

Another option is to change the date range. LandTrendr uses one value per
year, but the value that is chosen can be controlled by the user. It is possible that
the change of interest is better identified in some seasons than others. We use a
medoid image compositing approach, which picks the best single observation each
year from a date range of images in an ImageCollection. In the GUI, you can
change the date range of imagery used for compositing in the Image Collection
portion of the LandTrendr Options menu (Fig. 17.4).

Change the Start Date and End Date to find a time of year when the distinc-
tion between cover conditions before and during the change process of interest is
greatest.

There are other considerations to keep in mind. First, seasonality of vegetation,
water, or snow often can affect the signal of the change of interest. And because
we use an ImageCollection that spans a range of dates, it is best to choose a
date range where there is not likely to be a substantial change in vegetative state
from the beginning to the end of the date range. Clouds can be a factor too. Some
seasons will have more cloudiness, which can make it difficult to find good images.
Often with optical sensors, we are constrained to working with periods where
clouds are less prevalent, or using wide date ranges to provide many opportunities
for a pixel to be cloud-free.

It is possible that no combination of index or data range is sensitive to the
change of interest. If that is the case, there are two options: try using a different
sensor and change detection technique, or accept that the change is not discernible.
This can often occur if the change of interest occupies a small portion of a given
30 m by 30 m Landsat pixel, or if the spectral manifestation of the change is so
subtle that it is not spectrally separable from non-changed pixels.

322 R. Kennedy et al.

Fig. 17.4 LandTrendr options menu. Users control the year and date range in the Image Collec-
tion section, the index used for temporal segmentation in the middle section, and the parameters
controlling the temporal segmentation in the bottom section

Even if you as a human can identify the change of interest in the spectral
trajectory of the gray line, an algorithm may not be able to similarly track it. To
give the algorithm a fighting chance, you need to explore whether different fitting
parameters could be used to match the red fitted line with the gray source image
line.

The overall fitting process includes steps to reduce noise and best identify the
underlying signal. The temporal segmentation algorithms are controlled by fitting
parameters that are described in detail in Kennedy et al. (2010). You adjust these
parameters using the Fitting Parameters block of the LandTrendr Options menu.
Below is a brief overview of what values are often useful, but these will likely
change as you use different spectral indices.

First, the minimum observations needed criterion is used to evaluate whether
a given trajectory has enough unfiltered (i.e., clear observation) years to run the
fitting. We suggest leaving this at the default of 6.

17 Interpreting Annual Time Series with LandTrendr 323

The segmentation begins with a noise-dampening step to remove spikes that
could be caused by unfiltered clouds or shadows. The spike threshold parameter
controls the degree of filtering. A value of 1.0 corresponds to no filtering, and
lower values corresponding to more severe filtering. We suggest leaving this at
0.9; if changed, a range from 0.7 to 1.0 is appropriate.

The next step is finding vertices. This begins with the start and end year as
vertex years, progressively adding candidate vertex years based on deviation from
linear fits. To avoid getting an overabundance of vertex years initially found using
this method, we suggest leaving the vertex count overshoot at a value of 3. A
second set of algorithms uses deflection angle to cull back this overabundance to
a set number of maximum candidate vertex years.

That number of vertex years is controlled by the max segments parameter. As
a general rule, your number of segments should be no more than one-third of
the total number of likely yearly observations. The years of these vertices (X-
values) are then passed to the model-building step. Assuming you are using at
least 30 years of the archive, and your area has reasonable availability of images,
a value of 8 is a good starting point.

In the model-building step, straight-line segments are built by fitting Y-values
(spectral values) for the periods defined by the vertex years (X-values). The process
moves from left to right—early years to late years. Regressions of each subse-
quent segment are connected to the end of the prior segment. Regressions are also
constrained to prevent unrealistic recovery after disturbance, as controlled by the
recovery threshold parameter. A lower value indicates greater constraint: a value
of 1.0 means the constraint is turned off; a value of 0.25 means that segments
that fully recover in faster than four years (4 = 1/0.25) are not permitted. Note:
This parameter has strong control on the fitting and is one of the first to explore
when testing parameters. Additionally, the preventOneYearRecovery will disallow
fits that have one-year-duration recovery segments. This may be useful to prevent
overfitting of noisy data in environments where such quick vegetative recovery is
not ecologically realistic.

Once a model of the maximum number of segments is found, successively sim-
pler models are made by iteratively removing the least informative vertex. Each
model is scored using a pseudo-f statistic, which penalizes models with more seg-
ments, to create a pseudo p-value for each model. The p-value threshold parameter
is used to identify all fits that are deemed good enough. Start with a value of 0.05,
but check to see if the fitted line appears to capture the salient shape and features
of the gray source trajectory. If you see temporal patterns in the gray line that are
likely not noise (based on your understanding of the system under study), consider
switching the p-value threshold to 0.10 or even 0.15.

Note: Because of temporal autocorrelation, these cannot be interpreted as true f -
and p-values, but rather as relative scalars to distinguish goodness of fit among
models. If no good models can be found using these criteria based on the p-value
parameter set by the user, a second approach is used to solve for the Y-value of all

324 R. Kennedy et al.

vertex years simultaneously. If no good model is found, then a straight-line mean
value model is used.

From the models that pass the p-value threshold, one is chosen as the final fit. It
may be the one with the lowest p-value. However, an adjustment is made to allow
more complicated models (those with more segments) to be picked even if their
p-value is within a defined proportion of the best-scoring model. That proportion is
set by the best model proportion parameter. As an example, a best model proportion
value of 0.75 would allow a more complicated model to be chosen if its score were
greater than 75% that of the best model.

17.2.2 Section 2: Translating Pixels to Maps

Although the full time series is the best description of each pixel’s “life history,”
we typically are interested in the behavior of all of the pixels in our study area. It
would be both inefficient to manually visualize all of them and ineffective to try
to summarize areas and locations. Thus, we seek to make maps.

There are three post-processing steps to convert a segmented trajectory to a
map. First, we identify segments of interest; if we are interested in disturbance,
we find segments whose spectral change indicates loss. Second, we filter out seg-
ments of that type that do not meet criteria of interest. For example, very low
magnitude disturbances can occur when the algorithm mistakenly finds a pattern
in the random noise of the signal, and thus, we do not want to include it. Third,
we extract from the segment of interest something about its character to map on
a pixel-by-pixel basis: its start year, duration, spectral value, or the value of the
spectral change.

Theory: We will start with a single pixel to learn how to interpret a disturbance
pixel time series in terms of the dominant disturbance segment. For the disturbance
time series, we have used in figures above, and we can identify the key parameters
of the segment associated with the disturbance. For the example above, we have
extracted the actual NBR values of the fitted time series and noted them in a table
(Fig. 17.5). This is not part of the GUI—it is simply used here to work through
the concepts.

From the table shown in Fig. 17.5, we can infer several key things about this
pixel:

• It was likely disturbed between 2006 and 2007. This is because the NBR value
drops precipitously in the segment bounded by vertices (breakpoints) in 2006
and 2007.

• The magnitude of spectral change was large: 1175 scaled NBR units out of a
possible range of 2000 scaled units.

• There were small drops in NBR earlier, which may indicate some subtle loss of
vegetation over a long period in the pixel. These drops, however, would need
to be explored in a separate analysis because of their subtle nature.

17 Interpreting Annual Time Series with LandTrendr 325

Fig. 17.5 Tracking actual values of fitted trajectories to learn how we focus on quantification of
disturbance. Because we know that the NBR index drops when vegetation is lost and soil exposure
is increased, we know that a precipitous drop suggests an abrupt loss of vegetation. Although some
early segments show very subtle change, only the segment between vertex 4 and 5 shows large-
magnitude vegetation loss

• The main disturbance had a disturbance duration of just one year. This abrupt-
ness combined with the high magnitude suggests a major vegetative disturbance
such as a harvest or a fire.

• The disturbance was then followed by recovery of vegetation, but not to the
level before the disturbance. Note: Ecologists will recognize the growth signal
as one of succession, or active revegetation by human intervention.

Following the three post-processing steps noted in the introduction to this section,
to map the year of disturbance for this pixel, we would first identify the potential
disturbance segments as those with negative NBR. Then, we would hone in on the
disturbance of interest by filtering out potential disturbance segments that are not
abrupt and/or of small magnitude. This would leave only the high-magnitude and
short-duration segment. For that segment, the first year that we have evidence of
disturbance is the first year after the start of the segment. The segment starts in
2006, which means that 2007 is the first year we have such evidence. Thus, we
would assign 2007 to this pixel.

If we wanted to map the magnitude of the disturbance, we would follow the
same first two steps but then report for the pixel value the magnitude difference
between the starting and ending segment.

The LandTrendr GUI provides a set of tools to easily apply the same logic
rules to all pixels of interest and create maps. Click on the Change Filter Options
menu. The interface shown in Fig. 17.6 appears.

The first two sections are used to identify the segments of interest.

Select Vegetation Change Type offers the options of gain or loss, which refer
to gain or loss of vegetation, with disturbance assumed to be related to loss of
vegetation. Note: Advanced users can look in the landtrendr.js library in the “cal-
cindex” function to add new indices with gain and loss defined as they choose.

326 R. Kennedy et al.

Fig. 17.6 Menu used to
post-process disturbance
trajectories into maps. Select
vegetation change type and
sort to hone in on the
segment type of interest, then
check boxes to apply
selective filters to eliminate
uninteresting changes

The underlying algorithm is built to find disturbance in indices that increase when
disturbance occurs, so indices such as NBR or NDVI need to be multiplied by (−
1) before being fed to the LandTrendr algorithm. This is handled in the calcIndex
function.

Select Vegetation Change Sort offers various options that allow you to choose the
segment of interest based on timing or duration. By default, the greatest magnitude
disturbance is chosen.

Each filter (magnitude, duration, etc.) is used to further winnow the possible
segments of interest. All other filters are applied at the pixel scale, but Filter by
MMU is applied to groups of pixels based on a given minimum mapping unit
(MMU). Once all other filters have been defined, some pixels are flagged as being
of interest, and others are not. The MMU filter looks to see how many connected
pixels have been flagged as occurring in the same year, and omits groups smaller
in pixel count than the number indicated here (which defaults to 11 pixels, or
approximately 1 ha).

If you are following along and making changes, or if you are just using the
default location and parameters, click the Add Filtered Disturbance Imagery to
add this to the map. You should see something like Fig. 17.7.

There are multiple layers of disturbance added to the map. Use the map layers
checkboxes to change which is shown. Magnitude of disturbance, for example,

17 Interpreting Annual Time Series with LandTrendr 327

Fig. 17.7 Basic output from a disturbance mapping exercise

is a map of the delta change between beginning and endpoints of the segments
(Fig. 17.8).

Fig. 17.8 Magnitude of change for the same area

328 R. Kennedy et al.

17.3 Synthesis

In this chapter, you have learned how to work with annual time series to interpret
regions of interest. Looking at annual snapshots of the landscape provides three
key benefits: (1) the ability to view your area of interest without the clouds and
noise that typically obscure single-day views; (2) gage the amount by which the
noise-dampened signal still varies from year to year in response to large-scale
forcing mechanisms; and (3) the ability to view the response of landscapes as they
recover, sometimes slowly, from disturbance.

To learn more about LandTrendr, see the assignments below.

Assignment 1. Find your own change processes of interest. First, navigate the
map (zooming and dragging) to an area of the world where you are interested in a
change process, and the spectral index that would capture it. Make sure that the UI
control panel is open to the Pixel Time-Series Options section. Next, click on the
map in areas where you know change has occurred, and observe the spectral tra-
jectories in the charts. Then, describe whether the change of interest is detectable
in the spectral reflectance record and what are its characteristics in different parts
of the study area.

Assignment 2. Find a pixel in your area of interest that shows a distinctive dis-
turbance process, as you define it for your topic of interest. Adjust date ranges,
parameters, etc., using the steps outlined in Sect. 17.2.1 above and then answer
these questions:

• Question 1. Which index and date range did you use?
• Question 2. Did you need to change fitting parameters to make the algorithm

find the disturbance? If so, which ones, and why?
• Question 3. How do you know this is a disturbance?

Assignment 3. Switch the control panel in the GUI to Change Filter Options, and
use the guidance in Sect. 17.2.2 to set parameters and make disturbance maps.

• Question 4. Do the disturbance year and magnitude as mapped in the image
match with what you would expect from the trajectory itself?

• Question 5. Can you change some of the filters to create a map where your
disturbance process is not mapped? If so, what did you change?

• Question 6. Can you change filters to create a map that includes a different
disturbance process, perhaps subtler, longer duration, etc.? Find a pixel and use
the “pixel time-series” plotter to look at the time series of those processes.

Assignment 4. Return to the Pixel Time-Series Options section of the control
panel, and navigate to a pixel in your area of interest that you believe would show
a distinctive recovery or growth process, as you define it for your topic of interest.
You may want to modify the index, parameters, etc., as covered in Sect. 17.2.1 to
adequately capture the growth process with the fitted trajectories.

17 Interpreting Annual Time Series with LandTrendr 329

• Question 7. Did you use the same spectral index? If not, why?
• Question 8. Were the fitting parameters the same as those for disturbance? If

not, what did you change, and why?
• Question 9. What evidence do you have that this is a vegetative growth signal?

Assignment 5. For vegetation gain mapping, switch the control panel back to
Change Filter Options and use the guidance in Sect. 17.2.2 to set parameters,
etc., to make maps of growth.

• Question 10. For the pixel or pixels you found for Assignment 3, does the year
and magnitude as mapped in the “gain” image match with what you would
expect from the trajectory itself?

• Question 11. Compare what the map looks like when you run it with and
without the MMU filter. What differences do you see?

• Question 12. Try changing the recovery duration filter to a very high number
(perhaps the full length of your archive) and to a very low number (say, one or
two years). What differences do you see?

17.4 Conclusion

This exercise provides a baseline sense of how the LandTrendr algorithm works.
The key points are learning how to interpret change in spectral values in terms of
the processes occurring on the ground and then translating those into maps.

You can export the images you have made here using Download Options.
Links to materials are available in the chapter checkpoints and LandTrendr doc-
umentation about both the GUI and the script-based versions of the algorithm.
In particular, there are scripts that handle different components of the fitting and
mapping process and that allow you to keep track of the fitting and image selection
criteria.

References

Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using
yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens
Environ 114:2897–2910. https://doi.org/10.1016/j.rse.2010.07.008

Kennedy RE, Yang Z, Gorelick N et al (2018) Implementation of the LandTrendr algorithm on
Google Earth Engine. Remote Sens 10:691. https://doi.org/10.3390/rs10050691

https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.3390/rs10050691

330 R. Kennedy et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

18Fitting Functions to Time Series

Andréa Puzzi Nicolau , Karen Dyson , Biplov Bhandari ,
David Saah , and Nicholas Clinton

Overview
The purpose of this chapter is to establish a foundation for time-series analysis of
remotely sensed data, which is typically arranged as an ordered stack of images. You
will be introduced to the concepts of graphing time series, using linear modeling to
detrend time series, and fitting harmonic models to time-series data. At the comple-
tion of this chapter, you will be able to perform analysis of multi-temporal data for
determining trend and seasonality on a per-pixel basis.

A. P. Nicolau · K. Dyson · D. Saah
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: apnicolau@sig-gis.com

K. Dyson
e-mail: kdyson@sig-gis.com

A. P. Nicolau · K. Dyson
SERVIR-Amazonia, Cali, Colombia

K. Dyson
Dendrolytics, Seattle, WA, USA

B. Bhandari
NASA SERVIR Science Coordination Office, Huntsville, AL, USA
e-mail: bb0134@uah.edu

University of Alabama in Huntsville, Huntsville, AL, USA

D. Saah (B)
University of San Francisco, San Francisco, CA, USA
e-mail: dssaah@usfca.edu

N. Clinton
Google LLC, Mountain View, CA, USA
e-mail: nclinton@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_18

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_18&domain=pdf
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0001-6169-8236
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:apnicolau@sig-gis.com
mailto:kdyson@sig-gis.com
mailto:bb0134@uah.edu
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_18

332 A. P. Nicolau et al.

Learning Outcomes

• Graphing satellite imagery values across a time series.
• Quantifying and potentially removing linear trends in time series.
• Fitting linear and harmonic models to individual pixels in time-series data.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).
• Create a graph using ui.Chart (Chap. 4).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

18.1 Introduction to Theory

Many natural and man-made phenomena exhibit important annual, interannual,
or longer-term trends that recur—that is, they occur at roughly regular intervals.
Examples include seasonality in leaf patterns in deciduous forests and seasonal
crop growth patterns. Over time, indices such as the Normalized Difference Veg-
etation Index (NDVI) will show regular increase (e.g., leaf on, crop growth) and
decrease (e.g., leaf-off, crop senescence), and typically have a long term, if noisy,
trend such as a gradual increase in NDVI value as an area recovers from a
disturbance.

Earth engine supports the ability to do complex linear and nonlinear regressions
of values in each pixel of a study area. Simple linear regressions of indices can
reveal linear trends that can span multiple years. Meanwhile, harmonic terms can
be used to fit a sine wave-like curve. Once you have the ability to fit these functions
to time series, you can answer many important questions. For example, you can
define vegetation dynamics over multiple time scales, identify phenology and track
changes year to year, and identify deviations from the expected patterns (Bradley
et al. 2007; Bullock et al. 2020). There are multiple applications for these analyses.
For example, algorithms to detect deviations from the expected pattern can be
used to identify disturbance events, including deforestation and forest degradation
(Bullock et al. 2020).

18 Fitting Functions to Time Series 333

18.2 Practicum

18.2.1 Section 1: Multi-temporal Data in Earth Engine

If you have not already done so, you can add the book’s code repository to
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The
book’s scripts will then be available in the script manager panel to view, run, or
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help
for help.

As explained in Chaps. 12 and 13, a time series in Earth Engine is typi-
cally represented as an ImageCollection. Because of image overlaps, cloud
treatments, and filtering choices, an ImageCollection can have any of the
following complex characteristics:

• At each pixel, there might be a distinct number of observations taken from a
unique set of dates.

• The size (length) of the time series can vary across pixels.
• Data may be missing in any pixel at any point in the sequence (e.g., due to

cloud masking).

The use of multi-temporal data in Earth Engine introduces two mind-bending
concepts, which we will describe below.

Per-pixel curve fitting. As you have likely encountered in many settings, a func-
tion can be fit through a series of values. In the most familiar example, a function
of the form y = mx + b can represent a linear trend in data of all kinds. Fitting a
straight “curve” with linear regression techniques involves estimating m and b for
a set of x and y values. In a time series, x typically represents time, while y values
represent observations at specific times. This chapter introduces how to estimate
m and b for computed indices through time to model a potential linear trend in a
time series. We then demonstrate how to fit a sinusoidal wave, which is useful for
modeling rising and falling values, such as NDVI over a growing season. What
can be particularly mind bending in this setting is the fact that when Earth Engine
is asked to estimate values across a large area, it will fit a function in every pixel
of the study area. Each pixel, then, has its own m and b values, determined by the
number of observations in that pixel, the observed values, and the dates for which
they were observed.

Higher-dimension band values: array images. That more complex conception
of the potential information contained in a single pixel can be represented in a
higher-order Earth Engine structure: the array image. As you will encounter in
this lab, it is possible for a single pixel in a single band of a single image to con-
tain more than one value. If you choose to implement an array image, a single pixel
might contain a one-dimensional vector of numbers, perhaps holding the slope and
intercept values resulting from a linear regression, for example. Other examples,

https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book

334 A. P. Nicolau et al.

Fig. 18.1 Time series representation of pixel p

outside the scope of this chapter but used in the next chapter, might employ a
two-dimensional matrix of values for each pixel within a single band of an image.
Higher-order dimensions are available, as well as array image manipulations bor-
rowed from the world of matrix algebra. Additionally, there are functions to move
between the multidimensional array image structure and the more familiar, more
easily displayed, simple Image type. Some of these array image functions were
encountered in Chap. 9, but with less explanatory context.

First, we will give some very basic notation (Fig. 18.1). A scalar pixel at time
t is given by pt , and a pixel vector by pt . A variable with a “hat” represents an
estimated value: in this context, p̂t is the estimated pixel value at time t. A time
series is a collection of pixel values, usually sorted chronologically: {pt ; t = t0 …
tN }, where t might be in any units, t0 is the smallest, and tN is the largest such t
in the series.

18.2.2 Section 2: Data Preparation and Preprocessing

The first step in analysis of time-series data is to import data of interest and plot
it at an interesting location. We will work with the USGS Landsat 8 Level 2, Col-
lection 2, Tier 1 ImageCollection and a cloud-masking function (Chap. 15),
scale the image values, and add variables of interest to the collection as bands.
Copy and paste the code below to filter the Landsat 8 collection to a point of
interest over California (variable roi) and specific dates, and to apply the defined
function. The variables of interest added by the function are: (1) NDVI (Chap. 5),
(2) a time variable that is the difference between the image’s current year and the
year 1970 (a start point), and (3) a constant variable with value 1.

18 Fitting Functions to Time Series 335

///////////////////// Sections 1 & 2 /////////////////////////////

// Define function to mask clouds, scale, and add variables
// (NDVI, time and a constant) to Landsat 8 imagery.
function maskScaleAndAddVariable(image) {

// Bit 0 - Fill
// Bit 1 - Dilated Cloud
// Bit 2 - Cirrus
// Bit 3 - Cloud
// Bit 4 - Cloud Shadow
var qaMask =

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',
2)).eq(0);

var saturationMask = image.select('QA_RADSAT').eq(0);

// Apply the scaling factors to the appropriate bands.
var opticalBands =

image.select('SR_B.').multiply(0.0000275).add(-
0.2);

var thermalBands = image.select('ST_B.*').multiply(0.00341802)
.add(149.0);

// Replace the original bands with the scaled ones and apply the
masks.

var img = image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);

var imgScaled = image.addBands(img, null, true);

// Now we start to add variables of interest.
// Compute time in fractional years since the epoch.
var date = ee.Date(image.get('system:time_start'));
var years = date.difference(ee.Date('1970-01-01'), 'year');
// Return the image with the added bands.
return imgScaled

// Add an NDVI band.
.addBands(imgScaled.normalizedDifference(['SR_B5', 'SR_B4'])

336 A. P. Nicolau et al.

.filterBounds(roi)

.filterDate('2013-01-01', '2018-01-01')

.map(maskScaleAndAddVariable);

// Set map center over the ROI.
Map.centerObject(roi, 6);

.rename('NDVI'))
// Add a time band.
.addBands(ee.Image(years).rename('t'))
.float()
// Add a constant band.
.addBands(ee.Image.constant(1));

}

// Import point of interest over California, USA.
var roi = ee.Geometry.Point([-121.059, 37.9242]);

// Import the USGS Landsat 8 Level 2, Collection 2, Tier 1 image
collection),
// filter, mask clouds, scale, and add variables.
var landsat8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

Next, to visualize the NDVI at the point of interest over time, copy and paste
the code below to print a chart of the time series (Chap. 4) at the location of
interest (Fig. 18.2).

// Plot a time series of NDVI at a single location.
var landsat8Chart =
ui.Chart.image.series(landsat8sr.select('NDVI'), roi)

.setChartType('ScatterChart')

.setOptions({
title: 'Landsat 8 NDVI time series at ROI',
lineWidth: 1,
pointSize: 3,

});
print(landsat8Chart);

We can add a linear trend line to our chart using the trendlines parameters
in the setOptions function for image series charts. Copy and paste the code
below to print the same chart but with a linear trend line plotted (Fig. 18.3). In the
next section, you will learn how to estimate linear trends over time.

18 Fitting Functions to Time Series 337

Fig. 18.2 Time-series representation of pixel p

// Plot a time series of NDVI with a linear trend line
// at a single location.
var landsat8ChartTL =
ui.Chart.image.series(landsat8sr.select('NDVI'), roi)

.setChartType('ScatterChart')

.setOptions({
title: 'Landsat 8 NDVI time series at ROI',
trendlines: {

0: {
color: 'CC0000'

}
},
lineWidth: 1,
pointSize: 3,

});
print(landsat8ChartTL);

Now that we have plotted and visualized the data, lots of interesting analyses
can be done to the time series by harnessing Earth Engine tools for fitting curves
through this data. We will see a couple of examples in the following sections.

Code Checkpoint F46a. The book’s repository contains a script that shows what
your code should look like at this point.

338 A. P. Nicolau et al.

Fig. 18.3 Time series representation of pixel p with the trend line in red

18.2.3 Section 3: Estimating Linear Trend Over Time

Time-series datasets may contain not only trends but also seasonality, both of
which may need to be removed prior to modeling. Trends and seasonality can
result in a varying mean and a varying variance over time, both of which define a
time series as non-stationary. Stationary datasets, on the other hand, have a stable
mean and variance, and are therefore much easier to model.

Consider the following linear model, where et is a random error:

pt = β0 + β1t + et (18.1)

This is the model behind the trend line added to the chart created in the previous
section (Fig. 18.3). Identifying trends at different scales is a big topic, with many
approaches being used (e.g., differencing, modeling).

Removing unwanted to uninteresting trends for a given problem is often a first
step to understand complex patterns in time series. There are several approaches
to remove trends. Here, we will remove the linear trend that is evident in the
data shown in Fig. 18.3 using Earth Engine’s built-in tools for regression model-
ing. This approach is a useful, straightforward way to detrend data in time series
(Shumway and Stoffer 2019). Here, the goal is to discover the values of the β’s in
Eq. 18.1 for each pixel.

18 Fitting Functions to Time Series 339

Copy and paste code below into the Code Editor, adding it to the end
of the script from the previous section. Running this code will fit this trend
model to the Landsat-based NDVI series using ordinary least squares, using the
linearRegression reducer (Chap. 8).

///////////////////// Section 3 /////////////////////////////

// List of the independent variable names
var independents = ee.List(['constant', 't']);

// Name of the dependent variable.
var dependent = ee.String('NDVI');

// Compute a linear trend. This will have two bands:
'residuals' and
// a 2x1 (Array Image) band called 'coefficients'.
// (Columns are for dependent variables)
var trend = landsat8sr.select(independents.add(dependent))

.reduce(ee.Reducer.linearRegression(independents.length(),
1));
Map.addLayer(trend, {}, 'trend array image');

// Flatten the coefficients into a 2-band image.
var coefficients = trend.select('coefficients')

// Get rid of extra dimensions and convert back to a
regular image

.arrayProject([0])

.arrayFlatten([independents]);
Map.addLayer(coefficients, {}, 'coefficients image');

If you click over a point using the Inspector tab, you will see the pixel values
for the array image (coefficients “t” and “constant”, and residuals) and two-band
image (coefficients “t” and “constant”) (Fig. 18.4).

Now, copy and paste the code below to use the model to detrend the original
NDVI time series and plot the time series chart with the trendlines parameter
(Fig. 18.5).

340 A. P. Nicolau et al.

Fig. 18.4 Pixel values of array image and coefficients image

// Compute a detrended series.
var detrended = landsat8sr.map(function(image) {

return image.select(dependent).subtract(

image.select(independents).multiply(coefficients)
.reduce('sum'))

.rename(dependent)

.copyProperties(image, ['system:time_start']);
});

// Plot the detrended results.
var detrendedChart = ui.Chart.image.series(detrended, roi,
null, 30)

.setOptions({
title: 'Detrended Landsat time series at ROI',
lineWidth: 1,
pointSize: 3,
trendlines: {

0: {
color: 'CC0000'

}
},

});
print(detrendedChart);

18 Fitting Functions to Time Series 341

Fig. 18.5 Detrended NDVI time series

Code Checkpoint F46b. The book’s repository contains a script that shows what
your code should look like at this point.

18.2.4 Section 4: Estimating Seasonality with a Harmonic Model

A linear trend is one of several possible types of trends in time series. Time series
can also present harmonic trends, in which a value goes up and down in a pre-
dictable wave pattern. These are of particular interest and usefulness in the natural
world, where harmonic changes in greenness of deciduous vegetation can occur
across the spring, summer, and autumn. Now, we will return to the initial time
series (landsat8sr) of Fig. 18.2 and fit a harmonic pattern through the data.
Consider the following harmonic model, where A is amplitude, ω is frequency, ϕ
is phase, and et is a random error.

pt = β0 + β1t + A cos(2πωt − ϕ) + et
= β0 + β1t + β2 cos(2πωt) + β3 sin(2πωt) + et (18.2)

Note that β2 = A cos(ϕ) and β3 = A sin(ϕ), implying A = (β2
2 + β3

2)½ and
ϕ = atan(β3/β2) (as described in Shumway and Stoffer 2019). To fit this model
to an annual time series, set ω = 1 (one cycle per year) and use ordinary least
squares regression.

342 A. P. Nicolau et al.

The setup for fitting the model is to first add the harmonic variables (the third
and fourth terms of Eq. 18.2) to the ImageCollection. Then, fit the model as
with the linear trend, using the linearRegression reducer, which will yield
a 4×1 array image.

///////////////////// Section 4 /////////////////////////////

// Use these independent variables in the harmonic
regression.
var harmonicIndependents = ee.List(['constant', 't', 'cos',
'sin']);

// Add harmonic terms as new image bands.
var harmonicLandsat = landsat8sr.map(function(image) {

var timeRadians = image.select('t').multiply(2 *
Math.PI);

return image
.addBands(timeRadians.cos().rename('cos'))
.addBands(timeRadians.sin().rename('sin'));

});

// Fit the model.
var harmonicTrend = harmonicLandsat

.select(harmonicIndependents.add(dependent))
// The output of this reducer is a 4x1 array image.

.reduce(ee.Reducer.linearRegression(harmonicIndependents.leng
th(),

1));

Now, copy and paste the code below to plug the coefficients into Eq. 18.2 in
order to get a time series of fitted values and plot the harmonic model time series
(Fig. 18.6).

18 Fitting Functions to Time Series 343

// Turn the array image into a multi-band image of coefficients.
var harmonicTrendCoefficients =
harmonicTrend.select('coefficients')

.arrayProject([0])

.arrayFlatten([harmonicIndependents]);

// Compute fitted values.
var fittedHarmonic = harmonicLandsat.map(function(image) {

return image.addBands(
image.select(harmonicIndependents)
.multiply(harmonicTrendCoefficients)
.reduce('sum')
.rename('fitted'));

});

// Plot the fitted model and the original data at the ROI.
print(ui.Chart.image.series(

fittedHarmonic.select(['fitted', 'NDVI']), roi,
ee.Reducer

.mean(), 30)
.setSeriesNames(['NDVI', 'fitted'])
.setOptions({

title: 'Harmonic model: original and fitted values',
lineWidth: 1,
pointSize: 3,

}));

Fig. 18.6 Harmonic model of NDVI time series

Returning to the mind-bending nature of curve fitting, it is worth remembering
that the harmonic waves seen in Fig. 18.6 are the fit of the data to a single point
across the image. Next, we will map the outcomes of millions of these fits, pixel-
by-pixel, across the entire study area.

We’ll compute and map the phase and amplitude of the estimated harmonic
model for each pixel. Phase and amplitude (Fig. 18.7) can give us additional infor-
mation to facilitate remote sensing applications such as agricultural mapping and

344 A. P. Nicolau et al.

Fig. 18.7 Example of phase and amplitude in harmonic model

land use and land cover monitoring. Agricultural crops with different phenological
cycles can be distinguished with phase and amplitude information, something that
perhaps would not be possible with spectral information alone.

Copy and paste the code below to compute phase and amplitude from the
coefficients and add this image to the map (Fig. 18.8).

// Compute phase and amplitude.
var phase = harmonicTrendCoefficients.select('sin')

.atan2(harmonicTrendCoefficients.select('cos'))
// Scale to [0, 1] from radians.
.unitScale(-Math.PI, Math.PI);

var amplitude = harmonicTrendCoefficients.select('sin')
.hypot(harmonicTrendCoefficients.select('cos'))
// Add a scale factor for visualization.
.multiply(5);

// Compute the mean NDVI.
var meanNdvi = landsat8sr.select('NDVI').mean();

// Use the HSV to RGB transformation to display phase and
amplitude.
var rgb = ee.Image.cat([

phase, // hue
amplitude, // saturation (difference from white)
meanNdvi // value (difference from black)

]).hsvToRgb();

Map.addLayer(rgb, {}, 'phase (hue), amplitude (sat), ndvi
(val)');

18 Fitting Functions to Time Series 345

Fig. 18.8 Phase, amplitude, and NDVI concatenated image

The code uses the HSV to RGB transformation hsvToRgb for visualization
purposes (Chap. 9). We use this transformation to separate color components from
intensity for a better visualization. Without this transformation, we would visual-
ize a very colorful image that would not look as intuitive as the image with the
transformation. With this transformation, phase, amplitude, and mean NDVI are
displayed in terms of hue (color), saturation (difference from white), and value
(difference from black), respectively. Therefore, darker pixels are areas with low
NDVI. For example, water bodies will appear as black, since NDVI values are
zero or negative. The different colors are distinct phase values, and the saturation
of the color refers to the amplitude: whiter colors mean amplitude closer to zero
(e.g., forested areas), and the more vivid the colors, the higher the amplitude (e.g.,
croplands). Note that if you use the Inspector tool to analyze the values of a pixel,
you will not get values of phase, amplitude, and NDVI, but the transformed values
into values of blue, green, and red colors.

346 A. P. Nicolau et al.

Code Checkpoint F46c. The book’s repository contains a script that shows what
your code should look like at this point.

18.2.5 Section 5: An Application of Curve Fitting

The rich data about the curve fits can be viewed in a multitude of different ways.
Add the code below to your script to produce the view in Fig. 18.9. The image
will be a close-up of the area around Modesto, California.

///////////////////// Section 5 /////////////////////////////

// Import point of interest over California, USA.
var roi = ee.Geometry.Point([-121.04, 37.641]);

// Set map center over the ROI.
Map.centerObject(roi, 14);

var trend0D = trend.select('coefficients').arrayProject([0])
.arrayFlatten([independents]).select('t');

var anotherView =
ee.Image(harmonicTrendCoefficients.select('sin'))

.addBands(trend0D)

.addBands(harmonicTrendCoefficients.select('cos'));

Map.addLayer(anotherView,
{

min: -0.03,
max: 0.03

},
'Another combination of fit characteristics');

The upper image in Fig. 18.9 is a closer view of Fig. 18.8, showing an image
that transforms the sine and cosine coefficient values and incorporates information
from the mean NDVI. The lower image draws the sine and cosine in the red and
blue bands, and extracts the slope of the linear trend that you calculated earlier in
the chapter, placing that in the green band. The two views of the fit are similarly
structured in their spatial pattern—both show fields to the west and the city to
the east. But the pixel-by-pixel variability emphasizes a key point of this chapter:
that a fit to the NDVI data is done independently in each pixel in the image.
Using different elements of the fit, these two views, like other combinations of the
data you might imagine, can reveal the rich variability of the landscape around
Modesto.

18 Fitting Functions to Time Series 347

Fig. 18.9 Two views of the harmonic fits for NDVI for the Modesto, California area

Code Checkpoint F46d. The book’s repository contains a script that shows what
your code should look like at this point.

18.2.6 Section 6: Higher-Order Harmonic Models

Harmonic models are not limited to fitting a single wave through a set of points.
In some situations, there may be more than one cycle within a given year—for
example, when an agricultural field is double-cropped. Modeling multiple waves
within a given year can be done by adding more harmonic terms to Eq. 18.2. The
code at the following checkpoint allows the fitting of any number of cycles through
a given point.

Code Checkpoint F46e. The book’s repository contains a script to use to begin
this section. You will need to start with that script and edit the code to produce
the charts in this section.

348 A. P. Nicolau et al.

Beginning with the repository script, changing the value of the harmonics
variable will change the complexity of the harmonic curve fit by superimposing
more or fewer harmonic waves on each other. While fitting higher-order functions
improves the goodness-of-fit of the model to a given set of data, many of the coef-
ficients may be close to zero at higher numbers or harmonic terms. Figure 18.10
shows the fit through the example point using one, two, and three harmonic curves.

Fig. 18.10 Fit with harmonic curves of increasing complexity, fitted for data at a given point

18 Fitting Functions to Time Series 349

18.3 Synthesis

Assignment 1. Fit two NDVI harmonic models for a point close to Manaus, Brazil:
one prior to a disturbance event and one after the disturbance event (Fig. 18.11).
You can start with the code checkpoint below, which gives you the point coordi-
nates and defines the initial functions needed. The disturbance event happened
in mid-December 2014, so set filter dates for the first ImageCollection
to ’2013-01-01’, ’2014-12-12’, and set the filter dates for the second
ImageCollection to ‘2014-12-13’, ‘2019-01-01’. Merge both fit-
ted collections and plot both NDVI and fitted values. The result should look like
Fig. 18.12.

Code Checkpoint F46s1. The book’s repository contains a script that shows what
your code should look like at this point.

What do you notice? Think about how the harmonic model would look if
you tried to fit the entire period. In this example, you were given the date of
the breakpoint between the two conditions of the land surface within the time
series. State-of-the-art land cover change algorithms work by assessing the differ-
ence between the modeled and observed pixel values. These algorithms look for
breakpoints in the model, typically flagging changes after a predefined number of
consecutive observations.

Code Checkpoint F46s2. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 18.11 Landsat 8 images showing the land cover change at a point in Manaus, Brazil; (left)
July 6, 2014, (right) August 8, 2015

350 A. P. Nicolau et al.

Fig. 18.12 Fitted harmonic models before and after disturbance events to a given point in the
Brazilian Amazon

18.4 Conclusion

In this chapter, we learned how to graph and fit both linear and harmonic functions
to time series of remotely sensed data. These skills underpin important tools such
as Continuous Change Detection and Classification (CCDC, Chap. 19) and Con-
tinuous Degradation Detection (CODED, Chap. 49). These approaches are used
by many organizations to detect forest degradation and deforestation (e.g., Tang
et al. 2019; Bullock et al. 2020). These approaches can also be used to identify
crops (Chap. 32) with high degrees of accuracy (Ghazaryan et al. 2018).

References

Bradley BA, Jacob RW, Hermance JF, Mustard JF (2007) A curve fitting procedure to derive
inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sens Environ
106:137–145. https://doi.org/10.1016/j.rse.2006.08.002

Bullock EL, Woodcock CE, Olofsson P (2020) Monitoring tropical forest degradation using spec-
tral unmixing and Landsat time series analysis. Remote Sens Environ 238:110968. https://doi.
org/10.1016/j.rse.2018.11.011

Ghazaryan G, Dubovyk O, Löw F et al (2018) A rule-based approach for crop identification using
multi-temporal and multi-sensor phenological metrics. Eur J Remote Sens 51:511–524. https://
doi.org/10.1080/22797254.2018.1455540

Shumway RH, Stoffer DS (2019) Time series: a data analysis approach using R. Chapman and
Hall/CRC

Tang X, Bullock EL, Olofsson P et al (2019) Near real-time monitoring of tropical forest distur-
bance: new algorithms and assessment framework. Remote Sens Environ 224:202–218. https://
doi.org/10.1016/j.rse.2019.02.003

https://doi.org/10.1016/j.rse.2006.08.002
https://doi.org/10.1016/j.rse.2018.11.011
https://doi.org/10.1016/j.rse.2018.11.011
https://doi.org/10.1080/22797254.2018.1455540
https://doi.org/10.1080/22797254.2018.1455540
https://doi.org/10.1016/j.rse.2019.02.003
https://doi.org/10.1016/j.rse.2019.02.003

18 Fitting Functions to Time Series 351

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

19Interpreting Time Series with CCDC

Paulo Arévalo and Pontus Olofsson

Overview
Continuous change detection and classification (CCDC) is a land change monitoring
algorithm designed to operate on time series of satellite data, particularly Landsat
data. This chapter focuses on the portion that is the change detection component
(CCD); you will learn how to run the algorithm, interpret its outputs, and visualize
coefficients and change information.

Learning Outcomes

• Exploring pixel-level time series of Landsat observations, as well as the temporal
segments that CCDC fits to the observations.

• Visualizing the coefficients of the temporal segments in space.
• Visualizing predicted images made from detected temporal segments.
• Visualizing change information.
• Using array image functions.
• Attaching user-defined metadata to an image when exporting.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).

P. Arévalo (B) · P. Olofsson
Department of Earth and Environment, Boston University, Boston, MA, USA
e-mail: parevalo@bu.edu

P. Olofsson
e-mail: olofsson@bu.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_19

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_19&domain=pdf
http://orcid.org/0000-0001-7566-7561
http://orcid.org/0000-0002-8406-4719
mailto:parevalo@bu.edu
mailto:olofsson@bu.edu
https://doi.org/10.1007/978-3-031-26588-4_19

354 P. Arévalo and P. Olofsson

• Visualize images with a variety of false-color band combinations (Chap. 2).
• Interpret bands and indices in terms of land surface characteristics (Chap. 5).
• Work with array images (Chaps. 9 and 18).
• Interpret fitted harmonic models (Chap. 18).

19.1 Introduction to Theory

“A time series is a sequence of observations taken sequentially in time. … An
intrinsic feature of a time series is that, typically, adjacent observations are depen-
dent. Time-series analysis is concerned with techniques for the analysis of this
dependency.” This is the formal definition of time-series analysis by Box et al.
(1994). In a remote sensing context, the observations of interest are measure-
ments of radiation reflected from the surface of the Earth from the Sun or an
instrument emitting energy toward Earth. Consecutive measurements made over a
given area result in a time series of surface reflectance. By analyzing such time
series, we can achieve a comprehensive characterization of ecosystem and land
surface processes (Kennedy et al. 2014). The result is a shift away from tradi-
tional, retrospective change detection approaches based on data acquired over the
same area at two or a few points in time to continuous monitoring of the landscape
(Woodcock et al. 2020). Previous obstacles related to data storage, preprocessing,
and computing power have been largely overcome with the emergence of pow-
erful cloud-computing platforms that provide direct access to the data (Gorelick
et al. 2017). In this chapter, we will illustrate how to study landscape dynamics in
the Amazon river basin by analyzing dense time series of Landsat data using the
CCDC algorithm. Unlike LandTrendr (Chap. 17), which uses anniversary images
to fit straight line segments that describe the spectral trajectory over time, CCDC
uses all available clear observations. This has multiple advantages, including the
ability to detect changes within a year and capture seasonal patterns, although
at the expense of much higher computational demands and more complexity to
manipulate the outputs, compared to LandTrendr.

19.2 Practicum

19.2.1 Section 1: Understanding Temporal Segmentation
with CCDC

Spectral change is detected at the pixel level by testing for structural breaks in a
time series of reflectance. In Earth Engine, this process is referred to as “temporal
segmentation,” as pixel-level time series are segmented according to periods of
unique reflectance. It does so by fitting harmonic regression models to all spec-
tral bands in the time series. The model-fitting starts at the beginning of the time
series and moves forward in time in an “online” approach to change detection. The

19 Interpreting Time Series with CCDC 355

coefficients are used to predict future observations, and if the residuals of future
observations exceed a statistical threshold for numerous consecutive observations,
then the algorithm flags that a change has occurred. After the change, a new
regression model is fit and the process continues until the end of the time series.
The details of the original algorithm are described in Zhu and Woodcock (2014).
We have created an interface-based tool (Arévalo et al. 2020) that facilitates the
exploration of time series of Landsat observations and the CCDC results.

Code Checkpoint F47a. The book’s repository contains information about access-
ing the CCDC interface.

Once you have loaded the CCDC interface (Fig. 19.1), you will be able to
navigate to any location, pick a Landsat spectral band or index to plot, and click
on the map to see the fit by CCDC at the location you clicked. For this exercise,
we will study landscape dynamics in the state of Rondônia, Brazil. We can use
the panel on the left-bottom corner to enter the following coordinates (latitude,
longitude): − 9.0002, − 62.7223. A point will be added in that location and the
map will zoom in to it. Once there, click on the point and wait for the chart at the
bottom to load. This example shows the Landsat time series for the first shortwave
infrared (SWIR1) band (as blue dots) and the time segments (as colored lines) run
using CCDC default parameters. The first segment represents stable forest, which
was abruptly cut in mid-2006. The algorithm detects this change event and fits a
new segment afterward, representing a new temporal pattern of agriculture. Other
subsequent patterns are detected as new segments are fitted that may correspond
to cycles of harvest and regrowth, or a different crop. To investigate the dynamics
over time, you can click on the points in the chart, and the Landsat images they
correspond to will be added to the map according to the visualization parameters
selected for the RGB combination in the left panel. Currently, changes made in
that panel are not immediate but must be set before clicking on the map.

Pay special attention to the characteristics of each segment. For example, look
at the average surface reflectance value for each segment. The presence of a
pronounced slope may be indicative of phenomena like vegetation regrowth or
degradation. The number of harmonics used in each segment may represent sea-
sonality in vegetation (either natural or due to agricultural practices) or landscape
dynamics (e.g., seasonal flooding).

Question 1. While still using the SWIR1 band, click on a pixel that is forested.
What do the time series and time segments look like?

19.2.2 Section 2: Running CCDC

The tool shown above is useful for understanding the temporal dynamics for a
specific point. However, we can do a similar analysis for larger areas by first
running the CCDC algorithm over a group of pixels. The CCDC function in Earth
Engine can take any ImageCollection, ideally one with little or no noise, such
as a Landsat ImageCollection where clouds and cloud shadows have been

356 P. Arévalo and P. Olofsson

Fig. 19.1 Landsat time series for the SWIR1 band (blue dots) and CCDC time segments (colored
lines) showing a forest loss event circa 2006 for a place in Rondônia, Brazil

masked. CCDC contains an internal cloud masking algorithm and is rather robust
against missed clouds, but the cleaner the data the better. To simplify the process,
we have developed a function library that contains functions for generating input
data and processing CCDC results. Paste this line of code in a new script:

var utils = require(
'users/parevalo_bu/gee-ccdc-tools:ccdcUtilities/api');

For the current exercise, we will obtain an ImageCollection of Landsat 4,
5, 7, and 8 data (Collection 2 Tier 1) that has been filtered for clouds, cloud shad-
ows, haze, and radiometrically saturated pixels. If we were to do this manually, we
would retrieve each ImageCollection for each satellite, apply the correspond-
ing filters and then merge them all into a single ImageCollection. Instead, to
simplify that process, we will use the function getLandsat, included in the “In-
puts” module of our utilities, and then filter the resulting ImageCollection to
a small study region for the period between 2000 and 2020. The getLandsat
function will retrieve all surface reflectance bands (renamed and scaled to actual
surface reflectance units) as well as other vegetation indices. To simplify the exer-
cise, we will select only the surface reflectance bands we are going to use, adding
the following code to your script:

19 Interpreting Time Series with CCDC 357

var studyRegion = ee.Geometry.Rectangle([
[-63.9533, -10.1315],
[-64.9118, -10.6813]

]);

// Define start, end dates and Landsat bands to use.
var startDate = '2000-01-01';
var endDate = '2020-01-01';
var bands = ['BLUE', 'GREEN', 'RED', 'NIR', 'SWIR1',
'SWIR2'];

// Retrieve all clear, Landsat 4, 5, 7 and 8 observations
(Collection 2, Tier 1).
var filteredLandsat = utils.Inputs.getLandsat({

collection: 2
})
.filterBounds(studyRegion)
.filterDate(startDate, endDate)
.select(bands);

print(filteredLandsat.first());

With the ImageCollection ready, we can specify the CCDC parameters
and run the algorithm. For this exercise, we will use the default parameters, which
tend to work reasonably well in most circumstances. The only parameters we will
modify are the breakpoint bands, date format, and lambda. We will set all the
parameter values in a dictionary that we will pass to the CCDC function. For the
break detection process, we use all bands except for the blue and surface tem-
perature bands (‘BLUE’ and ‘TEMP’, respectively). The minObservations
default value of 6 represents the number of consecutive observations required to
flag a change. The chiSquareProbability and minNumOfYearsScaler
default parameters of 0.99 and 1.33, respectively, control the sensitivity of the
algorithm to detect change and the iterative curve fitting process required to detect
change. We set the date format to 1, which corresponds to fractional years and
tends to be easier to interpret. For instance, a change detected in the middle day
of the year 2010 would be stored in a pixel as 2010.5. Finally, we use the default
value of lambda of 20, but we scale it to match the scale of the inputs (surface
reflectance units), and we specify a maxIterations value of 10,000, instead of
the default of 25,000, which might take longer to complete. Those two parameters
control the curve fitting process.

358 P. Arévalo and P. Olofsson

To complete the input parameters, we specify the ImageCollection to use,
which we derived in the previous code section. Add this code below:

// Set CCD params to use.
var ccdParams = {

breakpointBands: ['GREEN', 'RED', 'NIR', 'SWIR1', 'SWIR2'],
tmaskBands: ['GREEN', 'SWIR2'],
minObservations: 6,
chiSquareProbability: 0.99,
minNumOfYearsScaler: 1.33,
dateFormat: 1,
lambda: 0.002,
maxIterations: 10000,
collection: filteredLandsat

};

// Run CCD.
var ccdResults =
ee.Algorithms.TemporalSegmentation.Ccdc(ccdParams);
print(ccdResults);

Notice that the output ccdResults contains a large number of bands, with
some of them corresponding to two-dimensional arrays. We will explore these
bands more in the following section. The process of running the algorithm inter-
actively for more than a handful of pixels can become very taxing to the system
very quickly, resulting in memory errors. To avoid having such issues, we typically
export the results to an Earth Engine asset first, and then inspect the asset. This
approach ensures that CCDC completes its run successfully, and also allows us to
access the results easily later. In the following sections of this chapter, we will use
a precomputed asset, instead of asking you to export the asset yourself. For your
reference, the code required to export CCDC results is shown below, with the flag
set to false to help you remember to not export the results now, but instead to use
the precomputed asset in the following sections.

19 Interpreting Time Series with CCDC 359

var exportResults = false
if (exportResults) {

// Create a metadata dictionary with the parameters and
arguments used.

var metadata = ccdParams;
metadata['breakpointBands'] =

metadata['breakpointBands'].toString();
metadata['tmaskBands'] = metadata['tmaskBands'].toString();
metadata['startDate'] = startDate;
metadata['endDate'] = endDate;
metadata['bands'] = bands.toString();

// Export results, assigning the metadata as image
properties.

//
Export.image.toAsset({

image: ccdResults.set(metadata),
region: studyRegion,
pyramidingPolicy: {

".default": 'sample'
},
scale: 30

});
}

Note the metadata variable above. This is not strictly required for export-
ing the per-pixel CCDC results, but it allows us to keep a record of important
properties of the run by attaching this information as metadata to the image. Addi-
tionally, some of the tools we have created to interact with CCDC outputs use this
user-created metadata to facilitate using the asset. Note also that setting the value
of pyramidingPolicy to ‘sample’ ensures that all the bands in the output
have the proper policy.

As a general rule, try to use pre-existing CCDC results if possible, and if you
want to try running it yourself outside of this lab exercise, start with very small
areas. For instance, the study area in this exercise would take approximately 30 min
on average to export, but larger tiles may take several hours to complete, depending
on the number of images in the collection and the parameters used.

Code Checkpoint F47b. The book’s repository contains a script that shows what
your code should look like at this point.

360 P. Arévalo and P. Olofsson

19.2.3 Section 3: Extracting Break Information

We will now start exploring the pre-exported CCDC results mentioned in the pre-
vious section. We will make use of the third-party module palettes, described
in detail in Chap. 27, that simplifies the use of palettes for visualization. Paste the
following code in a new script:

var palettes = require('users/gena/packages:palettes');

var resultsPath =
'projects/gee-book/assets/F4-7/Rondonia_example_small';

var ccdResults = ee.Image(resultsPath);
Map.centerObject(ccdResults, 10);
print(ccdResults);

The first line calls a library that will facilitate visualizing the images. The sec-
ond line contains the path to the precomputed results of the CCDC run shown in
the previous section. The printed asset will contain the following bands:

• tStart: The start date of each time segment
• tEnd: The end date of each time segment
• tBreak: The time segment break date if a change is detected
• numObs: The number of observations used in each time segment
• changeProb: A numeric value representing the change probability for each

of the bands used for change detection
• *_coefs: The regression coefficients for each of the bands in the input image

collection
• *_rmse: The model root-mean-square error for each time segment and input

band
• *_magnitude: For time segments with detected changes, this represents the

normalized residuals during the change period.

Notice that next to the band name and band type, there is also the number of
dimensions (i.e., 1 dimension, 2 dimensions). This is an indication that we are
dealing with an array image, which typically requires a specific set of functions
for proper manipulation, some of which we will use in the next steps. We will start
by looking at the change bands, which are one of the key outputs of the CCDC
algorithm. We will select the band containing the information on the timing of
break, and find the number of breaks for a given time range. In the same script,
paste the code below:

19 Interpreting Time Series with CCDC 361

// Select time of break and change probability array images.
var change = ccdResults.select('tBreak');
var changeProb = ccdResults.select('changeProb');

// Set the time range we want to use and get as mask of
// places that meet the condition.
var start = 2000;
var end = 2021;
var mask =
change.gt(start).and(change.lte(end)).and(changeProb.eq(
1));
Map.addLayer(changeProb, {}, 'change prob');

// Obtain the number of breaks for the time range.
var numBreaks = mask.arrayReduce(ee.Reducer.sum(), [0]);
Map.addLayer(numBreaks, {

min: 0,
max: 5

}, 'Number of breaks');

With this code, we define the time range that we want to use, and then we
generate a mask that will indicate all the positions in the image array with breaks
detected in that range that also meet the condition of having a change probability
of 1, effectively removing some spurious breaks. For each pixel, we can count
the number of times that the mask retrieved a valid result, indicating the num-
ber of breaks detected by CCDC. In the loaded layer, places that appear brighter
will show a higher number of breaks, potentially indicating the conversion from
forest to agriculture, followed by multiple agricultural cycles. Keep in mind that
the detection of a break does not always imply a change of land cover. Natural
events, small-scale disturbances, and seasonal cycles, among others can result in
the detection of a break by CCDC. Similarly, changes in the condition of the land
cover in a pixel can also be detected as breaks by CCDC, and some erroneous
breaks can also happen due to noisy time series or other factors.

For places with many changes, visualizing the first or last time when a break
was recorded can be helpful to understand the change dynamics happening in the
landscape. Paste the code below in the same script:

362 P. Arévalo and P. Olofsson

// Obtain the first change in that time period.
var dates = change.arrayMask(mask).arrayPad([1]);
var firstChange = dates

.arraySlice(0, 0, 1)

.arrayFlatten([
['firstChange']

])
.selfMask();

var timeVisParams = {
palette: palettes.colorbrewer.YlOrRd[9],
min: start,
max: end

};
Map.addLayer(firstChange, timeVisParams, 'First change');

// Obtain the last change in that time period.
var lastChange = dates

.arraySlice(0, -1)

.arrayFlatten([
['lastChange']

])
.selfMask();

Map.addLayer(lastChange, timeVisParams, 'Last change');

Here, we use arrayMask to keep only the change dates that meet our con-
dition, by using the mask we created previously. We use the function arrayPad
to fill or “pad” those pixels that did not experience any change and therefore have
no value in the tBreak band. Then we select either the first or last values in the
array, and we convert the image from a one-dimensional array to a regular image,
in order to apply a visualization to it, using a custom palette. The results should
look like Fig. 19.2.

Finally, we can use the magnitude bands to visualize where and when the largest
changes as recorded by CCDC have occurred, during our selected time period. We
are going to use the magnitude of change in the SWIR1 band, masking it and
padding it in the same way we did before. Paste this code in your script:

19 Interpreting Time Series with CCDC 363

Fig. 19.2 First (top) and last (bottom) detected breaks for the study area. Darker colors represent
more recent dates, while brighter colors represent older dates. The first change layer shows the clear
patterns of original agricultural expansion closer to the year 2000. The last change layer shows the
more recently detected and noisy breaks in the same areas. The thin areas in the center of the image
have only one time of change, corresponding to a single deforestation event. Pixels with no detected
breaks are masked and therefore show the basemap underneath, set to show satellite imagery

364 P. Arévalo and P. Olofsson

// Get masked magnitudes.
var magnitudes = ccdResults

.select('SWIR1_magnitude')

.arrayMask(mask)

.arrayPad([1]);

// Get index of max abs magnitude of change.
var maxIndex = magnitudes

.abs()

.arrayArgmax()

.arrayFlatten([
['index']

]);

// Select max magnitude and its timing
var selectedMag = magnitudes.arrayGet(maxIndex);
var selectedTbreak = dates.arrayGet(maxIndex).selfMask();

var magVisParams = {
palette: palettes.matplotlib.viridis[7],
min: -0.15,
max: 0.15

};
Map.addLayer(selectedMag, magVisParams, 'Max mag');
Map.addLayer(selectedTbreak, timeVisParams, 'Time of max
mag');

We first take the absolute value because the magnitudes can be positive or
negative, depending on the direction of the change and the band used. For exam-
ple, a positive value in the SWIR1 may show a forest loss event, where surface
reflectance goes from low to higher values. Brighter values in Fig. 19.3 represent
events of that type. Conversely, a flooding event would have a negative value,
due to the corresponding drop in reflectance. Once we find the maximum abso-
lute value, we find its position on the array and then use that index to extract the
original magnitude value, as well as the time when that break occurred.

Code Checkpoint F47c. The book’s repository contains a script that shows what
your code should look like at this point.

Question 2. Compare the “first change” and “last change” layers with the layer
showing the timing of the maximum magnitude of change. Use the Inspector to
check the values for specific pixels if necessary. What does the timing of the layers
tell you about the change processes happening in the area?

19 Interpreting Time Series with CCDC 365

Fig. 19.3 Maximum magnitude of change for the SWIR1 band for the selected study period

Question 3. Looking at the “max magnitude of change” layer, find places show-
ing the largest and the smallest values. What type of changes do you think are
happening in each of those places?

19.2.4 Section 4: Extracting Coefficients Manually

In addition to the change information generated by the CCDC algorithm, we can
use the coefficients of the time segments for multiple purposes, like land cover
classification. Each time segment can be described as a harmonic function with
an intercept, slope, and three pairs of sine and cosine terms that allow the time
segments to represent seasonality occurring at different temporal scales. These
coefficients, as well as the root-mean-square error (RMSE) obtained by comparing
each predicted and actual Landsat value, are produced when the CCDC algorithm
is run. The following example will show you how to retrieve the intercept coef-
ficient for a segment intersecting a specific date. In a new script, paste the code
below:

366 P. Arévalo and P. Olofsson

var palettes = require('users/gena/packages:palettes');

var resultsPath =
'projects/gee-book/assets/F4-7/Rondonia_example_small';

var ccdResults = ee.Image(resultsPath);
Map.centerObject(ccdResults, 10);
print(ccdResults);

// Display segment start and end times.
var start = ccdResults.select('tStart');
var end = ccdResults.select('tEnd');
Map.addLayer(start, {

min: 1999,
max: 2001

}, 'Segment start');
Map.addLayer(end, {

min: 2010,
max: 2020

}, 'Segment end');

Check the Console and expand the bands section in the printed image informa-
tion. We will be using the tStart, tEnd, and SWIR1_coefs bands, which are
array images containing the date when the time segments start, date time segments
end, and the coefficients for each of those segments for the SWIR1 band. Run the
code above and switch the map to Satellite mode. Using the Inspector, click any-
where on the images, noticing the number of dates printed and their values for
multiple clicked pixels. You will notice that for places with stable forest cover,
there is usually one value for tStart and one for tEnd. This means that for
those more stable places, only one time segment was fit by CCDC. On the other
hand, for places with visible transformation in the basemap, the number of dates is
usually two or three, meaning that the algorithm fitted two or three time segments,
respectively. To simplify the processing of the data, we can select a single segment
to extract its coefficients. Paste the code below and re-run the script:

// Find the segment that intersects a given date.
var targetDate = 2005.5;
var selectSegment =
start.lte(targetDate).and(end.gt(targetDate));
Map.addLayer(selectSegment, {}, 'Identified segment');

19 Interpreting Time Series with CCDC 367

In the code above, we set a time of interest, in this case the middle of 2005, and
then we find the segments that meet the condition of starting before and ending
after that date. Using the Inspector again, click on different locations and verify
the outputs. The segment that meets the condition will have a value of 1, and the
other segments will have a value of 0. We can use this information to select the
coefficients for that segment, using the code below:

// Get all coefs in the SWIR1 band.
var SWIR1Coefs = ccdResults.select('SWIR1_coefs');
Map.addLayer(SWIR1Coefs, {}, 'SWIR1 coefs');

// Select only those for the segment that we identified
previously.
var sliceStart = selectSegment.arrayArgmax().arrayFlatten([

['index']
]);
var sliceEnd = sliceStart.add(1);
var selectedCoefs = SWIR1Coefs.arraySlice(0, sliceStart,
sliceEnd);
Map.addLayer(selectedCoefs, {}, 'Selected SWIR1 coefs');

In the piece of code above, we first select the array image with the coefficients
for the SWIR1 band. Then, using the layer that we created before, we find the
position where the condition is true, and use that to extract the coefficients only
for that segment. Once again, you can verify that using the Inspector tab.

Finally, what we have now is the full set of coefficients for the segment that
intersects the midpoint of 2005. The coefficients are in the following order: inter-
cept, slope, cosine 1, sine 1, cosine 2, sine 2, cosine 3, and sine 3. For this exercise,
we will extract the intercept coefficient (Fig. 19.4), which is the first element in
the array, using the code below:

// Retrieve only the intercept coefficient.
var intercept = selectedCoefs.arraySlice(1, 0,
1).arrayProject([1]);
var intVisParams = {

palette: palettes.matplotlib.viridis[7],
min: -6,
max: 6

};
Map.addLayer(intercept.arrayFlatten([

['INTP']
]), intVisParams, 'INTP_SWIR1');

368 P. Arévalo and P. Olofsson

Fig. 19.4 Values for the intercept coefficient of the segments that start before and end after the
midpoint of 2005

Since we run the CCDC algorithm on Landsat surface reflectance images, inter-
cept values should represent the average reflectance of a segment. However, if you
click on the image, you will see that the values are outside of the 0–1 range.
This is because the intercept is calculated by the CCDC algorithm for the origin
(e.g., time 0), and not for the year we requested. In order to retrieve the adjusted
intercept, as well as other coefficients, we will use a different approach.

Code Checkpoint F47d. The book’s repository contains a script that shows what
your code should look like at this point.

19.2.5 Section 5: Extracting Coefficients Using External Functions

The code we generated in the previous section allowed us to extract a single coef-
ficient for a single date. However, we typically want to extract a set of multiple
coefficients and bands that we can use as inputs to other workflows, such as clas-
sification. To simplify that process, we will use the same function library that we
saw in Sect. 19.2.2. In this section, we will extract and visualize different coeffi-
cients for a single date and produce an RGB image using the intercept coefficients
for multiple spectral bands for the same date. The first step involves determining
the date of interest and converting the CCDC results from array images to regular
multiband images for easier manipulation and faster display. In a new script, copy
the code below:

19 Interpreting Time Series with CCDC 369

// Load the required libraries.
var palettes = require('users/gena/packages:palettes');
var utils = require(

'users/parevalo_bu/gee-ccdc-tools:ccdcUtilities/api');

// Load the results.
var resultsPath =

'projects/gee-book/assets/F4-7/Rondonia_example_small';
var ccdResults = ee.Image(resultsPath);
Map.centerObject(ccdResults, 10);

// Convert a date into fractional years.
var inputDate = '2005-09-25';
var dateParams = {

inputFormat: 3,
inputDate: inputDate,
outputFormat: 1

};
var formattedDate = utils.Dates.convertDate(dateParams);

// Band names originally used as inputs to the CCD
algorithm.
var BANDS = ['BLUE', 'GREEN', 'RED', 'NIR', 'SWIR1',
'SWIR2'];

// Names for the time segments to retrieve.
var SEGS = ['S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'S7', 'S8',
'S9',

'S10'
];

// Transform CCD results into a multiband image.
var ccdImage = utils.CCDC.buildCcdImage(ccdResults,
SEGS.length,

BANDS);
print(ccdImage);

In the code above, we define the date of interest (2005-09-25) and convert it
to the date format in which we ran CCDC, which corresponds to fractional years.
After that, we specify the band that we used as inputs for the CCDC algorithm.
Finally, we specify the names we will assign to the time segments, with the list
length indicating the maximum number of time segments to retrieve per pixel.
This step is done because the results generated by CCDC are stored as variable-
length arrays. For example, a pixel where there are no breaks detected will have
one time segment, but another pixel where a single break was detected may have

370 P. Arévalo and P. Olofsson

one or two segments, depending on when the break occurred. Requesting a pre-
defined maximum number of segments ensures that the structure of the multiband
image is known, and greatly facilitates its manipulation and display. Once we have
set these variables, we call a function that converts the result into an image with
several bands representing the combination of segments requested, input bands,
and coefficients. You can see the image structure in the Console.

Finally, to extract a subset of coefficients for the desired bands, we can use a
function in the imported library, called getMultiCoefs. This function expects
the following ordered parameters:

• The CCDC results in the multiband format we just generated in the step above.
• The date for which we want to extract the coefficients, in the format in which

the CCDC results were run (fractional years in our case).
• List of the bands to retrieve (i.e., spectral bands).
• List of coefficients to retrieve, defined as follows: INTP (intercept), SLP

(slope), COS, SIN, COS32, SIN2, COS3, SIN3, and RMSE.
• A Boolean flag of true or false, indicating whether we want the intercepts

to be calculated for the input date, instead of being calculated at the origin. If
true, SLP must be included in the list of coefficients to retrieve.

• List of segment names, as used to create the multiband image in the prior step.
• Behavior to apply if there is no time segment for the requested date: normal

will retrieve a value only if the date intersects a segment; before or after
will use the value of the segment immediately before or after the requested
date, if no segment intersects the date directly.

// Define bands to select.
var SELECT_BANDS = ['RED', 'GREEN', 'BLUE', 'NIR'];

// Define coefficients to select.
// This list contains all possible coefficients, and the RMSE
var SELECT_COEFS = ['INTP', 'SLP', 'RMSE'];

// Obtain coefficients.
var coefs = utils.CCDC.getMultiCoefs(

ccdImage, formattedDate, SELECT_BANDS, SELECT_COEFS, true,
SEGS, 'after');

print(coefs);

// Show a single coefficient.
var slpVisParams = {

palette: palettes.matplotlib.viridis[7],
min: -0.0005,
max: 0.005

};

19 Interpreting Time Series with CCDC 371

Map.addLayer(coefs.select('RED_SLP'), slpVisParams,
'RED SLOPE 2005-09-25');

var rmseVisParams = {
palette: palettes.matplotlib.viridis[7],
min: 0,
max: 0.1

};
Map.addLayer(coefs.select('NIR_RMSE'), rmseVisParams,

'NIR RMSE 2005-09-25');

// Show an RGB with three coefficients.
var rgbVisParams = {

bands: ['RED_INTP', 'GREEN_INTP', 'BLUE_INTP'],
min: 0,
max: 0.1

};
Map.addLayer(coefs, rgbVisParams, 'RGB 2005-09-25');

The slope and RMSE images are shown in Fig. 19.5. For the slopes, high pos-
itive values are bright, while large negative values are very dark. Most of the
remaining forest is stable and has a slope close to zero, while areas that have expe-
rienced transformation and show agricultural activity tend to have positive slopes
in the RED band, appearing bright in the image. Similarly, for the RMSE image,
stable forests present more predictable time series of surface reflectance that are
captured more faithfully by the time segments, and therefore present lower RMSE
values, appearing darker in the image. Agricultural areas present noisier time series
that are more challenging to model, and result in higher RMSE values, appearing
brighter.

372 P. Arévalo and P. Olofsson

Fig. 19.5 Image showing the slopes (top) and RMSE (bottom) of the segments that intersect the
requested date

Finally, the RGB image we created is shown in Fig. 19.6. The intercepts are cal-
culated for the middle point of the time segment intercepting the date we requested,
representing the average reflectance for the span of the selected segment. In that
sense, when shown together as an RGB image, they are similar to a composite
image for the selected date, with the advantage of always being cloud free.

Code Checkpoint F47e. The book’s repository contains a script that shows what
your code should look like at this point.

19 Interpreting Time Series with CCDC 373

Fig. 19.6 RGB image created using the time segment intercepts for the requested date

19.3 Synthesis

Assignment 1. Use the time series from the first section of this chapter to explore
the time series and time segments produced by CCDC in many locations around
the world. Compare places with different land cover types, and places with more
stable dynamics (e.g., lakes, primary forests) versus highly dynamic places (e.g.,
agricultural lands, construction sites). Pay attention to the variability in data den-
sity across continents and latitudes, and the effect that data density has on the
appearance of the time segments. Use different spectral bands and indices and
notice how they capture the temporal dynamics you are observing.

Assignment 2. Pick three periods within the temporal study period of the CCDC
results we used earlier: one near to the start, another in the middle, and the third
close to the end. For each period, visualize the maximum change magnitude. Com-
pare the spatial patterns between periods, and reflect on the types of disturbances
that might be happening at each stage.

Assignment 3. Select the intercept coefficients of the middle date of each of the
periods you chose in the previous assignment. For each of those dates, load an
RGB image with the band combination of your choosing (or simply use the Red,
Green and Blue intercepts to obtain true-color images). Using the Inspector tab,
compare the values across images in places with subtle and large differences
between them, as well as in areas that do not change. What do the values tell
you in terms of the benefits of using CCDC to study changes in a landscape?

374 P. Arévalo and P. Olofsson

19.4 Conclusion

This chapter provided a guide for the interpretation of the results from the CCDC
algorithm for studying deforestation in the Amazon. Consider the advantages of
such an analysis compared to traditional approaches to change detection, which
are typically based on the comparison of two or a few images collected over the
same area. For example, with time-series analysis, we can study trends and sub-
tle processes such as vegetation recovery or degradation, determine the timing of
land surface events, and move away from retrospective analyses to monitoring
in near-real time. Through the use of all available clear observations, CCDC can
detect intra-annual breaks and capture seasonal patterns, although at the expense
of increased computational requirements and complexity, unlike faster and easier
to interpret methods based on annual composites, such as LandTrendr (Chap. 17).
We expect to see more applications that make use of multiple change detection
approaches (also known as “Ensemble” approaches), and multisensor analyses in
which data from different satellites are fused (radar and optical, for example) for
higher data density.

References

Arévalo P, Bullock EL, Woodcock CE, Olofsson P (2020) A suite of tools for continuous land
change monitoring in Google Earth Engine. Front Clim 2. https://doi.org/10.3389/fclim.2020.
576740

Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control. Prentice
Hall

Gorelick N, Hancher M, Dixon M et al (2017) Google Earth Engine: planetary-scale geospa-
tial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/j.rse.2017.
06.031

Kennedy RE, Andréfouët S, Cohen WB et al (2014) Bringing an ecological view of change
to Landsat-based remote sensing. Front Ecol Environ 12:339–346. https://doi.org/10.1890/
130066

Woodcock CE, Loveland TR, Herold M, Bauer ME (2020) Transitioning from change detection to
monitoring with remote sensing: a paradigm shift. Remote Sens Environ 238:111558. https://
doi.org/10.1016/j.rse.2019.111558

Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using all
available Landsat data. Remote Sens Environ 144:152–171. https://doi.org/10.1016/j.rse.2014.
01.011

https://doi.org/10.3389/fclim.2020.576740
https://doi.org/10.3389/fclim.2020.576740
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1890/130066
https://doi.org/10.1890/130066
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2014.01.011
https://doi.org/10.1016/j.rse.2014.01.011

19 Interpreting Time Series with CCDC 375

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

20Data Fusion: Merging Classification
Streams

Jeffrey A. Cardille , Rylan Boothman, Mary Villamor,
Elijah Perez, Eidan Willis, and Flavie Pelletier

Overview
As the ability to rapidly produce classifications of satellite images grows, it will be
increasingly important to have algorithms that can shift through them to separate the
signal from inevitable classification noise. The purpose of this chapter is to explore
how to update classification time series by blending information from multiple clas-
sifications made from a wide variety of data sources. In this lab, we will explore how
to update the classification time series of the Roosevelt River found in Fortin et al.
(2020). That time series began with the 1972 launch of Landsat 1, blending evidence
from 10 sensors and more than 140 images to show the evolution of the area until
2016. How has it changed since 2016? What new tools and data streams might we
tap to understand the land surface through time?

J. A. Cardille (B) · R. Boothman · M. Villamor · E. Perez · E. Willis · F. Pelletier
Department of Natural Resource Sciences, Bieler School of Environment, McGill University,
Montreal, Canada
e-mail: jeffrey.cardille@mcgill.ca

R. Boothman
e-mail: rylan.boothman@mail.mcgill.ca

E. Perez
e-mail: elijah.perez@mail.mcgill.ca

E. Willis
e-mail: eidan.willis@mail.mcgill.ca

F. Pelletier
e-mail: flavie.pelletier@mail.mcgill.ca

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_20

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_20&domain=pdf
http://orcid.org/0000-0002-4667-9085
mailto:jeffrey.cardille@mcgill.ca
mailto:rylan.boothman@mail.mcgill.ca
mailto:elijah.perez@mail.mcgill.ca
mailto:eidan.willis@mail.mcgill.ca
mailto:flavie.pelletier@mail.mcgill.ca
https://doi.org/10.1007/978-3-031-26588-4_20

378 J. A. Cardille et al.

Learning Outcomes

• Distinguishing between merging sensor data and merging classifications made
from sensors.

• Working with the Bayesian Updating of Land Cover (BULC) algorithm, in its
basic form, to blend classifications made across multiple years and sensors.

• Working with the BULC-D algorithm to highlight locations that changed.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks,

classify images (Part II).
• Create a graph using ui.Chart (Chap. 4).
• Obtain accuracy metrics from classifications (Chap. 7).

20.1 Introduction to Theory

When working with multiple sensors, we are often presented with a challenge:
What to do with classification noise? It is almost impossible to remove all noise
from a classification. Given the information contained in a stream of classifications,
however, you should be able to use the temporal context to distinguish noise from
true changes in the landscape.

The Bayesian Updating of Land Cover (BULC) algorithm (Cardille and Fortin
2016) is designed to extract the signal from the noise in a stream of classifications
made from any number of data sources. BULC’s principal job is to estimate, at
each time step, the likeliest state of land use and land cover (LULC) in a study
area given the accumulated evidence to that point. It takes a stack of provisional
classifications as input; in keeping with the terminology of Bayesian statistics,
these are referred to as “Events,” because they provide new evidence to the system.
BULC then returns a stack of classifications as output that represents the estimated
LULC time series implied by the Events.

BULC estimates, at each time step, the most likely class from a set given the
evidence up to that point in time. This is done by employing an accuracy assess-
ment matrix like that seen in Chap. 7. At each time step, the algorithm quantifies
the agreement between two classifications adjacent in time within a time series.

If the Events agree strongly, they are evidence of the true condition of the
landscape at that point in time. If two adjacent Events disagree, the accuracy
assessment matrix limits their power to change the class of a pixel in the inter-
preted time series. As each new classification is processed, BULC judges the
credibility of a pixel’s stated class and keeps track of a set of estimates of the
probability of each class for each pixel. In this way, each pixel traces its own
LULC history, reflected through BULC’s judgment of the confidence in each of

20 Data Fusion: Merging Classification Streams 379

the classifications. The specific mechanics and formulas of BULC are detailed in
Cardille and Fortin (2016).

BULC’s code is written in JavaScript, with modules that weigh evidence for
and against change in several ways, while recording parts of the data-weighing
process for you to inspect. In this lab, we will explore BULC through its graphical
user interface (GUI), which allows rapid interaction with the algorithm’s main
functionality.

20.2 Practicum

20.2.1 Section 1: Imagery and Classifications of the Roosevelt
River

How has the Roosevelt River area changed in recent decades? One way to view
the area’s recent history is to use Google Earth Timelapse, which shows selected
annual clear images of every part of Earth’s terrestrial surface since the 1980s.
(You can find the site quickly with a web search.) Enter “Roosevelt River, Brazil”
in the search field. For centuries, this area was very remote from agricultural
development. It was so little known to Westerners that when former US President
Theodore Roosevelt traversed it in the early 1900s, there was widespread doubt
about whether his near-death experience there was exaggerated or even entirely
fictional (Millard 2006). After World War II, the region saw increased agricultural
development. Fortin et al. (2020) traced four decades of the history of this region
with satellite imagery. Timelapse, meanwhile, indicates that land cover conversion
continued after 2016. Can we track it using Earth Engine?

In this section, we will view the classification inputs to BULC, which were
made separately from this lab exercise by identifying training points and classify-
ing them using Earth Engine’s regression tree capability. As seen in Table 20.1,
the classification inputs included Sentinel-2 optical data, Landsat 7, Landsat 8, and
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
aboard Terra. Though each classification was made with care, they each contain
noise, with each pixel likely to have been misclassified one or more times. This
could lead us to draw unrealistic conclusions if the classifications themselves were
considered as a time series. For example, we would judge it highly unlikely that
an area represented by a pixel would really be agriculture one day and revert to
intact forest later in the month, only to be converted to agriculture again soon after,
and so on. With careful (though unavoidably imperfect) classifications, we would
expect that an area that had truly been converted to agriculture would consistently
be classified as agriculture, while an area that remained as forest would be clas-
sified as that class most of the time. BULC’s logic is to detect that persistence,
extracting the true LULC change and stability from the noisy signal of the time
series of classifications.

As you have seen in earlier chapters, creating classifications can be very
involved and time consuming. To allow you to concentrate on BULC’s efforts

380 J. A. Cardille et al.

Table 20.1 Images
classified for updating
Roosevelt River LULC with
BULC

Sensor Date Spatial resolution (m)

Sentinel-2 2016: February 8
2017: July 7
2018: May 28
2019: June 17
2020: May 27
2021: May 27, July 11,
August 15

10

Landsat 7 2017: August 16 30

Landsat 8 2021: July 18 30

ASTER 2017: July 15
2018: August 19
2019: June 19
2020: August 8

15–30

to clean noise from an existing ImageCollection, we have created the classi-
fications already and stored them as an ImageCollection asset. You can view
the Event time series using the ui.Thumbnail function, which creates an ani-
mation of the elements of the collection. Paste the code below into a new script to
see those classifications drawn in sequence in the Console.

var events = ee.ImageCollection(
'projects/gee-book/assets/F4-8/cleanEvents');

print(events, 'List of Events');
print('Number of events:', events.size());

print(ui.Thumbnail(events, {
min: 0,
max: 3,
palette: ['black', 'green', 'blue', 'yellow'],
framesPerSecond: 1,
dimensions: 1000

}));

In the thumbnail sequence, the color palette shows Forest (class 1) as green,
Water (class 2) as blue, and Active Agriculture (class 3) as yellow. Areas with no
data in a particular Event are shown in black.

Code Checkpoint F48a. The book’s repository contains a script that shows what
your code should look like at this point.

20 Data Fusion: Merging Classification Streams 381

20.2.2 Section 2: Basics of the BULC Interface

To see if BULC can successfully sift through these Events, we will use BULC’s
GUI (Fig. 20.1), which makes interacting with the functionality straightforward.
Code Checkpoint F48b in the book’s repository contains information about
accessing that interface.

After you have run the script, BULC’s interface requires that a few parameters
be set; these are specified using the left panel. Here, we describe and populate each
of the required parameters, which are shown in red. As you proceed, the default
red color will change to green when a parameter receives a value.

• The interface permits new runs to be created using the Manual or Automated
methods. The Automated setting allows information from a previous run to be
used without manual entry. In this tutorial, we will enter each parameter indi-
vidually using the interface, so you should set this item to Manual by clicking
once on it.

• Select Type of Image: The interface can accept pre-made Event inputs in
one of three forms: (1) as a stored ImageCollection; (2) as a single
multi-banded Image; and (3) as a stream of Dynamic World classifications.
The classifications are processed in the order they are given, either within
the ImageCollection or sequentially through the Image bands. For this
run, select Image Collection from the dropdown menu, then enter the path
to this collection, without enclosing it in quotes: projects/gee-book/assets/F4-
8/cleanEvents.

Fig. 20.1 BULC interface

382 J. A. Cardille et al.

• Remap: In some settings, you might want to remap the input value to combine
classes. Leave this empty for now; an example of this is discussed later in the
lab.

• Number of Classes in Events and Number of Classes to Track: The algorithm
requires the number of classes in each Event and the number of meaningful
classes to track to be entered. Here, there are 3 classes in each classification
(Forest, Water, and Active Agriculture) and 3 classes being tracked. (In the
BULC-U version of the algorithm (Lee et al. 2018, 2020), these numbers may
be different when the Events are made using unsupervised classifications, which
may contain many more classes than are being tracked in a given run.) Mean-
ingful classes are assumed by BULC to begin with 1 rather than 0, while class
values of 0 in Events are treated as no data. As seen in the thumbnail of Events,
there are 3 classes; set both of these values to 3.

• The Default Study Area is used by BULC to delimit the location to analyze.
This value can be pulled from a specially sized Image or set automatically,
using the extent of the inputs. Set this parameter to Event Geometry, which
gets the value automatically from the Event collection.

• The Base Land Cover Image defines the initial land cover condition to which
BULC adds evidence from Events. Here, we are working to update the land
cover map from the end of 2016, as estimated in Fortin et al. (2020). The
ending estimated classification from that study has been loaded as an asset and
placed as the first image in the input ImageCollection. We will direct the
BULC interface to use this first image in the collection as the base land cover
image by selecting Top.

• Overlay Approach: BULC can run in multiple modes, which affect the
outcome of the classification updating. One option, Overlay, overlays each
consecutive Event with the one prior in the sequence, following Cardille and
Fortin (2016). Another option, Custom, allows a user-defined constant array to
be used. For this tutorial, we will choose D (Identity matrix), which uses the
same transition table for every Event, regardless of how it overlays with the
Event prior. That table gives a large conditional likelihood to the chance that
classes agree strongly across the consecutive Event classifications that are used
as inputs.
BULC makes relatively small demands on memory since its arithmetic uses
only multiplication, addition, and division, without the need for complex func-
tion fitting. The specific memory use is tied to the overlay method used. In
particular, Event-by-Event comparisons (the Overlay setting) are considerably
more computationally expensive than pre-defined transition tables (the Iden-
tity and Custom settings). The maximum working Event depth is also slightly
lowered when intermediate probability values are returned for inspection. Our
tests indicate that with pre-defined truth tables and no intermediate probability
values returned, BULC can handle updating problems hundreds of Events deep
across an arbitrarily large area.

• Initialization Approach: If a BULC run of the full intended size ever surpassed
the memory available, you would be able to break the processing into two or

20 Data Fusion: Merging Classification Streams 383

more parts using the following technique. First, create a slightly smaller run
that can complete, and save the final probability image of that run. Because of
the operation of Bayes’ theorem, the ending probability multi-band image can
be used as the prior probability to continue processing Events with the same
answers as if it had been run all at once. For this small run, we will select F
(First Run).

• Levelers: BULC uses three levelers as part of its processing, as described in
Cardille and Fortin (2016). The Initialization Leveler creates the initial prob-
ability vector of the initial LULC image; the Transition Leveler dampens
transitions at each time step, making BULC less reactive to new evidence; and
the Posterior Leveler ensures that each class retains nonzero probability so that
the Bayes formula can function properly throughout the run. For this run, set
the parameters to 0.65, 0.3, and 0.6, respectively. This corresponds to a typical
set of values that is appropriate when moderate-quality classifications are fed
to BULC.

• Color Output Palette: We will use the same color palette as what was seen
in the small script you used to draw the Events, with one exception. Because
BULC will give a value for the estimated class for every pixel, there are no
pixels in the study area with missing or masked data. To line up the colors with
the attainable numbers, we will remove the color ‘black’ from the specifica-
tion. For this field, enter this list: [‘green’, ‘blue’, ‘yellow’]. For all of the text
inputs, make sure to click outside that field after entering text so that the input
information is registered; the changing of the text color to green confirms that
the information was received.

When you have finished setting the required parameters, the interface will look
like Fig. 20.2.

Beneath the required parameters is a set of optional parameters that affect which
intermediate results are stored during a run for later inspection. We are also given
a choice of returning intermediate results for closer inspection. At this stage, you
can leave all optional parameters out of the BULC call by leaving them blanked
or unchecked.

After clicking the Apply Parameters button at the bottom of the left panel, the
classifications and parameters are sent to the BULC modules. The Map will move
to the study area, and after a few seconds, the Console will hold new thumbnails.
The uppermost thumbnail is a rapidly changing view of the input classifications.
Beneath that is a thumbnail of the same area as interpreted by BULC. Beneath
those is a Confidence thumbnail, which is discussed in detail later in this lab.

The BULC interpretation of the landscape looks roughly like the Event inputs,
but it is different in two important ways. First, depending on the leveler settings, it
will usually have less noise than the Event classifications. In the settings above, we
used the Transition and Posterior levelers to tell BULC to trust past accumulated
evidence more than a single new image. The second key difference between the
BULC result and the input classifications is that even when the inputs don’t cover
the whole area at each time step, BULC provides an estimate in every pixel at each

384 J. A. Cardille et al.

Fig. 20.2 Initial settings for the key driving parameters of BULC

time step. To create this continuous classification, if a new classification does not
have data for some part of the study area (beyond the edge of a given image, for
example), the last best guess from the previous iteration is carried forward. Simply
put, the estimate in a given pixel is kept the same until new data arrives.

Meanwhile, below the Console, the rest of the interface changes when BULC
is run. The Map panel displays BULC’s classification for the final date: that is,
after considering the evidence from each of the input classifications. We can use
the Satellite background to judge whether BULC is accurately capturing the state
of LULC. This can be done by unselecting the drawn layers in the map layer set
and selecting Satellite from the choices in the upper-right part of the Map panel.
Earth Engine’s background satellite images are often updated, so you should see
something like the right side of Fig. 20.3, though it may differ slightly.

20 Data Fusion: Merging Classification Streams 385

Fig. 20.3 BULC estimation of the state of LULC at the end of 2021 (left). Satellite backdrop for
Earth Engine (right), which may differ from what you see due to updates

Question 1. When comparing the BULC classification for 2021 against the current
Earth Engine satellite view, what are the similarities and differences? Note that in
Earth Engine, the copyrighted year numbers at the bottom of the screen may not
coincide with the precise date of the image shown.

In the rightmost panel below the Console, the interface offers you multiple
options for viewing the results. These include:

1. Movie. This uses the ui.Thumbnail API function to draw the BULC results
rapidly in the viewer. This option offers you a control on the frame rate (in
frames per second), and a checkbox affecting the drawing resolution. The high-
resolution option uses the maximum resolution permitted given the function’s
constraints. A lower resolution setting constructs the thumbnail more quickly,
but at a loss of detail.

2. Filmstrip. This produces an image like the Movie option, but allows you to
move on request through each image.

3. Mosaic. This draws every BULC result in the panel. Depending on the size of
the stack of classifications, this could become quite a large set of images.

4. Zoom. This draws the final BULC classification at multiple scales, with the
finest-scale image matching that shown in the Map window.

386 J. A. Cardille et al.

Question 2. Select the BULC option, then select the Movie tool to view the result,
and choose a drawing speed and resolution. When viewing the full area, would
you assess the additional LULC changes since 2016 as being minor, moderate, or
major compared to the changes that occurred before 2016? Explain the reasoning
for your assessment.

20.2.3 Section 3: Detailed LULC Inspection with BULC

BULC results can be viewed interactively, allowing you to view more detailed
estimations of the LULC around the study area. We will zoom into a specific area
where change did occur after 2016. To do that, turn on the Satellite view and
zoom in. Watching the scale bar in the lower right of the Map panel, continue
zooming until the scale bar says 5 km. Then, enter “−60.7, −9.83” in the Earth
Engine search tool, located above the code. The text will be interpreted as a longi-
tude/latitude value and will offer you a nearby coordinate, indicated with a value
for the degrees West and the degrees South. Click that entry and Earth Engine will
move to that location, while keeping at the specified zoom level. Let us compare
the BULC result in this sector against the image from Earth Engine’s satellite view
that is underneath it (Fig. 20.4).

BULC captured the changes between 2016 and 2021 with a classification series
that suggests agricultural development (Fig. 20.4, left). Given the appearance of
BULC’s 2021 classification, it suggests that the satellite backdrop at the time of
this writing (Fig. 20.4, right) came from an earlier time period.

Fig. 20.4 Comparison of the final classification of the northern part of the study area to the
satellite view

20 Data Fusion: Merging Classification Streams 387

Now, in the Results panel, select BULC, then Movie. Set your desired frame
speed and resolution, then select Redraw Thumbnail. Then, zoom the main Map
even closer to some agriculture that appears to have been established between
2016 and 2021. Redraw the thumbnail movie as needed to find an interesting set
of pixels.

With this finer-scale access to the results of BULC, you can select individual
pixels to inspect. Move the horizontal divider downward to expose the Inspector
tab and Console tab. Use the Inspector to click on several pixels to learn their
history as expressed in the inputted Events and in BULC’s interpretation of the
noise and signal in the Event series. In a chosen pixel, you might see output that
looks like Fig. 20.5. It indicates a possible conversion in the Event time series after
a few classifications of the pixel as Forest. This decreases the confidence that the
pixel is still Forest (Fig. 20.5, lower panel), but not enough for the Active Agri-
culture class (class 3) to become the dominant probability. After the subsequent
Event labels the pixel as Forest, the confidence (lower panel) recovers slightly,
but not to its former level. The next Event classifies the pixel as Active Agricul-
ture, confidently, by interpreting that second Active Agriculture classification, in
a setting where change was already somewhat suspected after the first non-Forest
classification. BULC’s label (middle panel) changes to be Active Agriculture at
that point in the sequence. Subsequent Event classifications as Active Agriculture
creates a growing confidence that its proper label at the end of the sequence was
indeed Active Agriculture.

Question 3. Run the code again with the same data, but adjust the three levelers,
then view the results presented in the Map window and the Results panel. How
do each of the three parameters affect the behavior of BULC in its results? Use
the thumbnail to assess your subjective satisfaction with the results, and use the
Inspector to view the BULC behavior in individual pixels. Can you produce an
optimal outcome for this given set of input classifications?

20.2.4 Section 4: Change Detection with BULC-D

What if we wanted to identify areas of likely change or stability without trying to
identify the initial and final LULC class? BULC-D is an algorithm that estimates,
at each time step, the probability of noteworthy change. The example below uses
the Normalized Burn Ratio (NBR) as a gauge: BULC-D assesses whether the ratio
has meaningfully increased, decreased, or remained the same. It is then the choice
of the analyst to decide how to treat these assessed probabilities of stability and
change.

BULC-D involves determining an expectation for an index across a user-
specified time period and then comparing new values against that estimation. Using
Bayesian logic, BULC-D then asks which of three hypotheses is most likely, given
evidence from the new values to date from that index. The hypotheses are simple:
Either the value has decreased meaningfully, or it has increased meaningfully, or it

388 J. A. Cardille et al.

Fig. 20.5 History for 2016–2020 for a pixel that appeared to have been newly cultivated during
that period. (above): the input classifications, which suggest a possible conversion from class 1
(Forest) to class 3 (Active Agriculture) midway through the time series. (middle): BULC’s interpre-
tation of the evidence, which changes its estimated classification based on the evidence, in this case
after two occurrences of it being classified as Active Agriculture. (below): BULC’s confidence in
its estimation. This number grows in the initial part of the series as more classifications calling this
pixel Forest classes are encountered, then drops as conflicting evidence is seen. Eventually, after
more Active Agriculture classifications are encountered, its confidence in that new class grows

20 Data Fusion: Merging Classification Streams 389

has not changed substantially compared to the previously established expectation.
The details of the workings of BULC-D are beyond the scope of this exercise,
but we provide it as a tool for exploration. BULC-D’s basic framework is the
following:

• Establish: Fit a harmonic curve with a user-specified number of terms to a
stream of values from an index, such as the Normalized Difference Vegetation
Index (NDVI), and NBR.

• Standardize: For each new image, quantify the deviation of the index’s value
from the expectation on that date.

• Contextualize: Assess the magnitude of that deviation in one of several ordered
bins.

• Synthesize: Use the BULC framework to adjust the vector of change for the
three possibilities: the value went down, the value stayed the same, and the
value went up.

It is worth noting that BULC-D does not label the change with a LULC category;
rather, it trains itself to distinguish likely LULC change from expected variability.
In this way, BULC-D can be thought of as a “sieve” through which you are able
to identify locations of possible change, isolated from likely background noise. In
the BULC-D stage, the likeliness of change is identified across the landscape; in
a separate second stage, the meaning of those changes and any changes to LULC
classes are identified. We will explore the workings of BULC-D using its GUI.

Code Checkpoint F48c. The book’s repository contains information about access-
ing that interface.

After you have run the script to initialize the interface, BULC-D’s interface
requires a few parameters to be set. For this run of BULC-D, we will set the
parameters to the following:

• Expectation years: 2020
• Target year: 2021
• Sensors: Landsat and Sentinel
• Index: NBR
• Harmonic fit: Yes, 1 harmonic term.

Run BULC-D for this area. As a reminder, you should first zoom in enough that
the scale bar reads “5 km” or finer. Then, search for the location “− 60.7624, −
9.8542”. When you run BULC-D, a result like Fig. 20.6 is shown for the layer of
probabilities.

The BULC-D image (Fig. 20.6) shows each pixel as a continuous three-value
vector along a continuous range; the three values sum to 1. For example, a vector
with values of [0.85, 0.10, 0.05] would represent an area estimated with high
confidence according to BULC-D to have experienced a sustained drop in NBR in
the target period compared to the values set by the expectation data. In that pixel,

390 J. A. Cardille et al.

Fig. 20.6 Result for BULC-D for the Roosevelt River area, depicting estimated probability of
change and stability for 2021

the combination of three colors would produce a value that is richly red. You can
see Chap. 2 for more information on drawing bands of information to the screen
using the red–green–blue additive color model in Earth Engine.

Each pixel experiences its own NBR history in both the expectation period
and the target year. Next, we will highlight the history of three nearby areas:
one, marked with a red balloon in your interface, that BULC assessed as having
experienced a persistent drop in NBR; a second in green assessed to not have
changed, and a third in blue assessed to have witnessed a persistent NBR increase.

Figure 20.7 shows the NBR history for the red balloon in the southern part of
the study area in Fig. 20.4. If you click on that pixel or one like it, you can see
that, whereas the values were quite stable throughout the growing season for the
years used to create the pixel’s expectation, they were persistently lower in the
target year. This is flagged as a likely meaningful drop in the NBR by BULC-D,
for consideration by the analyst.

Figure 20.8 shows the NBR history for the blue balloon in the southern part
of the study area in Fig. 20.4. For that pixel, while the values were quite stable
throughout the growing season for the years used to create the pixel’s expectation,
they were persistently higher in the target year.

Question 4. Experiment with turning off one of the satellite sensor data sources
used to create the expectation collection. For example, do you get the same results
if the Sentinel-2 data stream is not used, or is the outcome different. You might
make screen captures of the results to compare with Fig. 20.4. How strongly does
each satellite stream affect the outcome of the estimate? Do differences in the
resulting estimate vary across the study area?

20 Data Fusion: Merging Classification Streams 391

Fig. 20.7 NBR history for a pixel with an apparent drop in NBR in the target year (below) as
compared to the expectation years (above). Pixel is colored a shade of red in Fig. 20.6

Figure 20.8 also shows that, for that pixel, the fit of values for the years used
to build the expectation showed a sine wave (shown in blue), but with a fit that
was not very strong. When data for the target year was assembled (Fig. 20.8,
bottom), the values were persistently above expectation throughout the growing
season. Note that this pixel was identified as being different in the target year as
compared to earlier years, which does not rule out the possibility that the LULC
of the area was changed (e.g., from Forest to Agriculture) during the years used
to build the expectation collection. BULC-D is intended to be run steadily over a
long period of time, with the changes marked as they occur, after which point the
expectation would be recalculated.

392 J. A. Cardille et al.

Fig. 20.8 NBR history for a pixel with an apparent increase in NBR in the target year (below) as
compared to the expectation years (above). Pixel is colored a shade of blue in Fig. 20.6

Figure 20.9 shows the NBR history for the green balloon in the southern part of
the study area in Fig. 20.4. For that pixel, the values in the expectation collection
formed a sine wave, and the values in the target collection deviated only slightly
from the expectation during the target year.

20 Data Fusion: Merging Classification Streams 393

Fig. 20.9 NBR history for a pixel with no apparent increase or decrease in NBR in the target year
(below) as compared to the expectation years (above). Pixel is colored a shade of green in Fig. 20.6

20.2.5 Section 5: Change Detection with BULC and Dynamic
World

Recent advances in neural networks have made it easier to develop consistent
models of LULC characteristics using satellite data. The Dynamic World project
(Brown et al. 2022) applies a neural network, trained on a very large number of
images, to each new Sentinel-2 image soon after it arrives. The result is a near-
real-time classification interpreting the LULC of Earth’s surface, kept continually
up to date with new imagery.

What to do with the inevitable inconsistencies in a pixel’s stated LULC class
through time? For a given pixel on a given image, its assigned class label is chosen

394 J. A. Cardille et al.

by the Dynamic World algorithm as the maximum class probability given the band
values on that day. Individual class probabilities are given as part of the dataset
and could be used to better interpret a pixel’s condition and perhaps its history.
Future work with BULC will involve incorporating these probabilities into BULC’s
probability-based structure. For this tutorial, we will explore the consistency of the
assigned labels in this same Roosevelt River area as a way to illustrate BULC’s
potential for minimizing noise in this vast and growing dataset.

20.2.5.1 Section 5.1: Using BULC to Explore and Refine Dynamic
World Classifications

Code Checkpoint A48d. The book’s repository contains a script to use to begin
this section. You will need to load the linked script and run it to begin.

After running the linked script, the BULC interface will initialize. Select
Dynamic World from the dropdown menu where you earlier selected Image Col-
lection. When you do, the interface opens several new fields to complete. BULC
will need to know where you are interested in working with Dynamic World, since
it could be anywhere on Earth. To specify the location, the interface field expects
a nested list of lists of lists, which is modeled after the structure used inside the
constructor ee.Geometry.Polygon. (When using drawing tools or specify-
ing study areas using coordinates, you may have noticed this structure.) Enter the
following nested list in the text field near the Dynamic World option, without
enclosing it in quotes:

[[[-61.155, -10.559], [-60.285, -10.559], [-60.285, -9.436],
[-61.155, -9.436]]]

Next, BULC will need to know which years of Dynamic World you are inter-
ested in. For this exercise, select 2021. Then, BULC will ask for the Julian days
of the year that you are interested in. For this exercise, enter 150 for the start day
and 300 for the end day. Because you selected Dynamic World for analysis in
BULC, the interface defaults to offering the number 9 for the number of classes
in Events and for the number of classes to track. This number represents the full
set of classes in the Dynamic World classification scheme. You can leave other
required settings shown in green with their default values. For the Color Output
Palette, enter the following palette without quotes. This will render results in the
Dynamic World default colors.

['419BDF', '397D49', '88B053'
, '7A87C6', 'E49635', 'DFC35A'
, 'C4281B', 'A59B8F', 'B39FE1']

20 Data Fusion: Merging Classification Streams 395

Fig. 20.10 BULC classification using default settings for Roosevelt River area for late 2021

When you have finished, select Apply Parameters at the bottom of the input
panel. After BULC subsets the Dynamic World dataset to clip out according to the
dates and location, identifying images from more than 40 distinct dates. The area
covers two of the tiles in which Dynamic World classifications are partitioned to
be served, so BULC receives more than 90 classifications. When BULC finishes
its run, the Map panel will look like Fig. 20.10, BULC’s estimate of the final state
of the landscape at the end of the classification sequence.

Let us explore the suite of information returned by BULC about this time period
in Dynamic World. Enter “Muiraquitã” in the search bar and view the results
around that area to be able to see the changing LULC classifications within farm
fields. Then, begin to inspect the results by viewing a Movie of the Events, with
a data frame rate of 6 frames per second. Because the study area spans multiple
Dynamic World tiles, you will find that many Event frames are black, meaning
that there was no data in your sector on that particular image. Because of this,
and also perhaps because of the very aggressive cloud masking built into Dynamic
World, viewing Events (which, as a reminder, are the individual classified images
directly from Dynamic World) can be a very challenging way to look for change
and stability. BULC’s goal is to sift through those classifications to produce a
time series that reflects, according to its estimation, the most likely LULC value at
each time step. View the Movie of the BULC results and ask yourself whether each

396 J. A. Cardille et al.

Fig. 20.11 Still frame (right image) from the animation of BULC’s adjusted estimate of LULC
through time near Muiraquitã

class is equally well replicated across the set of classifications. A still from midway
through the Movie sequence of the BULC results can be seen in Fig. 20.11.

As BULC uses the classification inputs to estimate the state of the LULC at
each time step, it also tracks its confidence in those estimates. This is shown in
several ways in the interface.

• You can view a Movie of BULC’s confidence through time as it reacts to
the consistency or variability of the class identified in each pixel by Dynamic
World. View that movie now over this area to see the evolution of BULC’s con-
fidence through time of the class of each pixel. A still frame from this movie
can be seen in Fig. 20.12. The frame and animation indicate that BULC’s con-
fidence is lowest in pixels where the estimate flips between similar categories,
such as Grass and Shrub and Scrub. It also is low at the edges of land covers,
even where the covers (such as Forest and Water) are easy to discern from each
other.

• You can inspect the final confidence estimate from BULC, which is shown as
a grayscale image in the set of Map layers in the left lower panel. That single
layer synthesizes how, across many Dynamic World classifications, the confi-
dence in certain LULC classes and locations is ultimately more stable than in
others. For example, generally speaking, the Forest class is classified consis-
tently across this assemblage of Dynamic World images. Agriculture fields are
less consistently classified as a single class, as evidenced by their relatively low
confidence.

• Another way of viewing BULC’s confidence is through the Inspector tab.
You can click on individual pixels to view their values in the Event time

20 Data Fusion: Merging Classification Streams 397

Fig. 20.12 Still frame from the animation of changing confidence through time, near Muiraquitã

series and in the BULC time series, and see BULC’s corresponding confidence
value changing through time in response to the relative stability of each pixel’s
classification.

• Another way to view BULC’s confidence estimation is as a hillshade enhance-
ment of the final BULC classification. If you select the Probability Hillshade
in the set of Map layers, it shows the final BULC classification as a textured
surface, in which you can see where lower-confidence pixels are classified.

20.2.5.2 Section 5.2: Using BULC to Visualize Uncertainty
of Dynamic World in Simplified Categories

In the previous section, you may have noticed that there are two main types of
uncertainty in BULC’s assessment of long-term classification confidence. One type
is due to spatial uncertainty at the edge of two relatively distinct phenomena, like
the River/Forest boundary visible in Fig. 20.12. These are shown in dark tones
in the confidence images, and emphasized in the Probability Hillshade. The other
type of uncertainty is due to some cause of labeling uncertainty, due either (1) to
the similarity of the classes, or (2) to persistent difficulty in distinguishing two
distinct classes that are meaningfully different but spectrally similar. An exam-
ple of uncertainty due to similar labels is distinguishing flooded and non-flooded
wetlands in classifications that contain both those categories. An example of diffi-
culty distinguishing distinct but spectrally similar classes might be distinguishing
a parking lot from a body of water.

BULC allows you to remap the classifications it is given as input, compressing
categories as a way to minimize uncertainty due to similarity among classes. In

398 J. A. Cardille et al.

the setting of Dynamic World in this study area, we notice that several classes are
functionally similar for the purposes of detecting new deforestation: Farm fields
and pastures are variously labeled on any given Dynamic World classification as
Grass, Flooded Vegetation, Crops, Shrub and Scrub, Built, or Bare Ground. What
if we wanted to combine these categories to be similar to the distinctions of the
classified Events from this lab’s Sect. 20.2.1? The classes in that section were
Forest, Water, and Active Agriculture. To remap the Dynamic World classification,
continue with the same run as in Sect. 20.2.5.1. Near where you specified the
location for clipping Dynamic World, there are two fields for remapping. Select
the Remap checkbox and in the “from” field, enter (without quotes):

0, 1, 2, 3, 4, 5, 6, 7, 8

In the “to” field, enter (without quotes):

1, 0, 2, 2, 2, 2, 2, 2, 0

This directs BULC to create a three-class remap of each Dynamic World image.
Next, in the area of the interface where you specify the palette, enter the same
palette used earlier:

['green', 'blue', 'yellow']

Before continuing, think for a moment about how many classes you have now.
From BULC’s perspective, the Dynamic World events will have 3 classes and you
will be tracking 3 classes. Set both the Number of Classes in Events and Number
of Classes to Track to 3. Then click Apply Parameters to send this new run to
BULC.

The confidence image shown in the main Map panel is instructive (Fig. 20.13).
Using data from 2020, 2021, and 2022, it indicates that much of the uncertainty
among the original Dynamic World classifications was in distinguishing labels
within agricultural fields. When that uncertainty is removed by combining classes,
the BULC result indicates that a substantial part of the remaining uncertainty is
at the edges of distinct covers. For example, in the south-central and southern
part of the frame, much of the uncertainty among classifications in the original
Dynamic World classifications was due to distinction among the highly similar,
easily confused classes. Much of what remained (right) after remapping (right)
formed outlines of the river and the edges between farmland and forest: a graphic
depiction of the “spatial uncertainty” discussed earlier. Yet not all of the uncer-
tainty was spatial; the thicker, darker areas of uncertainty even after remapping
(right, at the extreme eastern edge for example) indicates a more fundamental dis-
agreement in the classifications. In those pixels, even when the Agriculture-like
classes were compressed, there was still considerable uncertainty (likely between

20 Data Fusion: Merging Classification Streams 399

Fig. 20.13 Final confidence layer from the run with (left) and without (right) remapping to com-
bine similar LULC classes to distinguish Forest, Water, and Active Agriculture near − 60.696W,
− 9.826S

Forest and Active Agriculture) in the true state of these areas. These might be
of further interest: were they places newly deforested in 2020–2022? Were they
abandoned fields regrowing? Were they degraded at some point? The mapping of
uncertainty may hold promise for a better understanding of uncertainty as it is
encountered in real classifications, thanks to Dynamic World.

Given the tools and approaches presented in this lab, you should now be able to
import your own classifications for BULC (Sects. 20.2.1, 20.2.2 and 20.2.3), detect
changes in sets of raw imagery (Sect. 20.2.4), or use Dynamic World’s pre-created
classifications (Sect. 20.2.5). The following exercises explore this potential.

20.3 Synthesis

Assignment 1. For a given set of classifications as inputs, BULC uses three param-
eters that specify how strongly to trust the initial classification, how heavily to
weigh the evidence of each classification, and how to adjust the confidence at the
end of each time step. For this exercise, adjust the values of these three parameters
to explore the strength of the effect they can have on the BULC results.

Assignment 2. The BULC-D framework produces a continuous three-value vector
of the probability of change at each pixel. This variability accounts for the mottled
look of the figures when those probabilities are viewed across space. Use the
Inspector tool or the interface to explore the final estimated probabilities, both
numerically and as represented by different colors of pixels in the given example.
Compare and contrast the mean NBR values from the earlier and later years, which
are drawn in the Layer list. Then answer the following questions:

400 J. A. Cardille et al.

(1) In general, how well does BULC-D appear to be identifying locations of likely
change?

(2) Does one type of change (decrease, increase, no change) appear to be mapped
better than the others? If so, why do you think this is?

Assignment 3. The BULC-D example used here was for 2021. Run it for 2022 or
later at this location. How well do results from adjacent years complement each
other?

Assignment 4. Run BULC-D in a different area for a year of interest of your
choosing. How do you like the results?

Assignment 5. Describe how you might use BULC-D as a filter for distinguishing
meaningful change from noise. In your answer, you can consider using BULC-
D before or after BULC or some other time-series algorithm, like CCDC or
LandTrendr.

Assignment 6. Analyze stability and change with Dynamic World for other parts
of the world and for other years. For example, you might consider:

(a) Quebec, Canada, days 150–300 for 2019 and 2020:

[[[− 71.578, 49.755], [− 71.578, 49.445], [− 70.483, 49.445], [− 70.483, 49.755]]]

Location of a summer 2020 fire
(b) Addis Ababa, Ethiopia: [[[38.79, 9.00], [38.79, 8.99], [38.81, 8.99], [38.81,

9.00]]]
(c) Calacalí, Ecuador: [[[− 78.537, 0.017], [− 78.537, − 0.047], [− 78.463, −

0.047], [− 78.463, 0.017]]]
(d) Irpin, Ukraine: [[[30.22, 50.58], [30.22, 50.525], [30.346, 50.525], [30.346,

50.58]]]
(e) A different location of your own choosing. To do this, use the Earth Engine

drawing tools to draw a rectangle somewhere on Earth. Then, at the top of the
Import section, you will see an icon that looks like a sheet of paper. Click
that icon and look for the polygon specification for the rectangle you drew.
Paste that into the location field for the Dynamic World interface.

20.4 Conclusion

In this lab, you have viewed several related but distinct ways to use Bayesian
statistics to identify locations of LULC change in complex landscapes. While they
are standalone algorithms, they are each intended to provide a perspective either
on the likelihood of change (BULC-D) or of extracting signal from noisy classi-
fications (BULC). You can consider using them especially when you have pixels

20 Data Fusion: Merging Classification Streams 401

that, despite your best efforts, periodically flip back and forth between similar
but different classes. BULC can help ignore noise, and BULC-D can help reveal
whether this year’s signal has precedent in past years.

To learn more about the BULC algorithm, you can view this interactive prob-
ability illustration tool by a link found in script F48s1—Supplemental in the
book’s repository. In the future, after you have learned how to use the logic of
BULC, you might prefer to work with the JavaScript code version. To do that, you
can find a tutorial at the website of the authors.

References

Brown CF, Brumby SP, Guzder-Williams B et al (2022) Dynamic world, near real-time global 10
m land use land cover mapping. Sci Data 9:1–17. https://doi.org/10.1038/s41597-022-01307-4

Cardille JA, Fortin JA (2016) Bayesian updating of land-cover estimates in a data-rich environ-
ment. Remote Sens Environ 186:234–249. https://doi.org/10.1016/j.rse.2016.08.021

Fortin JA, Cardille JA, Perez E (2020) Multi-sensor detection of forest-cover change across 45
years in Mato Grosso, Brazil. Remote Sens Environ 238. https://doi.org/10.1016/j.rse.2019.
111266

Lee J, Cardille JA, Coe MT (2018) BULC-U: sharpening resolution and improving accuracy of
land-use/land-cover classifications in Google Earth Engine. Remote Sens 10. https://doi.org/
10.3390/rs10091455

Lee J, Cardille JA, Coe MT (2020) Agricultural expansion in Mato Grosso from 1986–2000: a
Bayesian time series approach to tracking past land cover change. Remote Sens 12. https://doi.
org/10.3390/rs12040688

Millard C (2006) The river of doubt: Theodore Roosevelt’s darkest journey. Anchor

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1038/s41597-022-01307-4
https://doi.org/10.1016/j.rse.2016.08.021
https://doi.org/10.1016/j.rse.2019.111266
https://doi.org/10.1016/j.rse.2019.111266
https://doi.org/10.3390/rs10091455
https://doi.org/10.3390/rs10091455
https://doi.org/10.3390/rs12040688
https://doi.org/10.3390/rs12040688
http://creativecommons.org/licenses/by/4.0/

21Exploring Lagged Effects in Time
Series

Andréa Puzzi Nicolau , Karen Dyson , David Saah ,
and Nicholas Clinton

Overview
In this chapter, we will introduce lagged effects to build on the previous work in mod-
eling time series data. Time-lagged effects occur when an event at one point in time
impacts dependent variables at a later point in time. You will be introduced to con-
cepts of autocovariance and autocorrelation, cross-covariance and cross-correlation,
and auto-regressive models. At the end of this chapter, you will be able to examine
how variables relate to one another across time and to fit time series models that take
into account lagged events.

A. P. Nicolau · K. Dyson · D. Saah
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: apnicolau@sig-gis.com

K. Dyson
e-mail: kdyson@sig-gis.com

A. P. Nicolau · K. Dyson
SERVIR-Amazonia, Cali, Colombia

D. Saah (B)
University of San Francisco, San Francisco, CA, USA
e-mail: dssaah@usfca.edu

N. Clinton
Google LLC, Mountain View, CA, USA
e-mail: nclinton@google.com

K. Dyson
Dendrolytics, Seattle, WA, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_21

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_21&domain=pdf
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0001-9999-1219
http://orcid.org/0000-0002-1112-1006
mailto:apnicolau@sig-gis.com
mailto:kdyson@sig-gis.com
mailto:dssaah@usfca.edu
mailto:nclinton@google.com
https://doi.org/10.1007/978-3-031-26588-4_21

404 A. P. Nicolau et al.

Learning Outcomes

. Using the ee.Join function to create time-lagged collections.

. Calculating autocovariance and autocorrelation.

. Calculating cross-covariance and cross-correlation.

. Fitting auto-regressive models.

Assumes you know how to:

. Import images and image collections, filter, and visualize (Part I).

. Perform basic image analysis: select bands, compute indices, create masks,
classify images (Part II).

. Create a graph using ui.Chart (Chap. 4).

. Write a function and map it over an ImageCollection (Chap. 12).

. Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

. Fit linear and nonlinear functions with regression in an ImageCollection
time series (Chap. 18).

21.1 Introduction to Theory

While fitting functions to time series allows you to account for seasonality in
your models, sometimes, the impact of a seasonal event does not impact your
dependent variable until the next month, the next year, or even multiple years later.
For example, coconuts take 18–24 months to develop from flower to harvestable
size. Heavy rains during the flower development stage can severely reduce the
number of coconuts that can be harvested months later, with significant negative
economic repercussions. These patterns—where events in one time period impact
our variable of interest in later time periods—are important to be able to include
in our models.

In this chapter, we introduce lagged effects into our previous discussions on
interpreting time series data (Chaps. 18 and 19). Being able to integrate lagged
effects into our time series models allows us to address many important questions.
For example, streamflow can be accurately modeled by taking into account pre-
vious streamflow, rainfall, and soil moisture; this improved understanding helps
predict and mitigate the impacts of drought and flood events made more likely
by climate change (Sazib et al. 2020). As another example, time series lag analy-
sis was able to determine that decreased rainfall was associated with increases in
livestock disease outbreaks one year later in India (Karthikeyan et al. 2021).

21 Exploring Lagged Effects in Time Series 405

21.2 Practicum

21.2.1 Section 1: Autocovariance and Autocorrelation

If you have not already done so, you can add the book’s code repository to
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The
book’s scripts will then be available in the script manager panel to view, run, or
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help
for help.

Before we dive into autocovariance and autocorrelation, let us set up an area of
interest and dataset that we can use to illustrate these concepts. We will work with
a detrended time series (as seen in Chap. 18) based on the USGS Landsat 8 Level
2, Collection 2, Tier 1 image collection. Copy and paste the code below to filter
the Landsat 8 collection to a point of interest over California and specific dates,
and apply the pre-processing function—to mask clouds (as seen in Chap. 15) and
to scale and add variables of interest (as seen in Chap. 18).

// Define function to mask clouds, scale, and add variables
// (NDVI, time and a constant) to Landsat 8 imagery.
function maskScaleAndAddVariable(image) {

// Bit 0 - Fill
// Bit 1 - Dilated Cloud
// Bit 2 - Cirrus
// Bit 3 - Cloud
// Bit 4 - Cloud Shadow
var qaMask =

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',
2)).eq(0);

var saturationMask = image.select('QA_RADSAT').eq(0);

// Apply the scaling factors to the appropriate bands.
var opticalBands =

image.select('SR_B.').multiply(0.0000275).add(-
0.2);

var thermalBands =
image.select('ST_B.*').multiply(0.00341802)

.add(149.0);

// Replace the original bands with the scaled ones and apply
the masks.

var img = image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);

var imgScaled = image.addBands(img, null, true);

406 A. P. Nicolau et al.

// Now we start to add variables of interest.
// Compute time in fractional years since the epoch.
var date = ee.Date(image.get('system:time_start'));
var years = date.difference(ee.Date('1970-01-01'), 'year');
var timeRadians = ee.Image(years.multiply(2 * Math.PI));
// Return the image with the added bands.
return imgScaled

// Add an NDVI band.
.addBands(imgScaled.normalizedDifference(['SR_B5',

'SR_B4'])
.rename('NDVI'))

// Add a time band.
.addBands(timeRadians.rename('t'))
.float()
// Add a constant band.
.addBands(ee.Image.constant(1));

}

// Import region of interest. Area over California.
var roi = ee.Geometry.Polygon([

[-119.44617458417066,35.92639730653253],
[-119.07675930096754,35.92639730653253],
[-119.07675930096754,36.201704711823844],
[-119.44617458417066,36.201704711823844],
[-119.44617458417066,35.92639730653253]

]);

// Import the USGS Landsat 8 Level 2, Collection 2, Tier 1
collection,
// filter, mask clouds, scale, and add variables.
var landsat8sr = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterBounds(roi)

.filterDate('2013-01-01', '2018-01-01')

.map(maskScaleAndAddVariable);

// Set map center.
Map.centerObject(roi, 10);

Next, copy and paste the code below to estimate the linear trend using the
linearRegression reducer, and remove that linear trend from the time series.

21 Exploring Lagged Effects in Time Series 407

// List of the independent variable names.
var independents = ee.List(['constant', 't']);

// Name of the dependent variable.
var dependent = ee.String('NDVI');

// Compute a linear trend. This will have two bands:
'residuals' and
// a 2x1 band called coefficients (columns are for
dependent variables).
var trend = landsat8sr.select(independents.add(dependent))

.reduce(ee.Reducer.linearRegression(independents.length(),
1));

// Flatten the coefficients into a 2-band image
var coefficients = trend.select('coefficients')

// Get rid of extra dimensions and convert back to a
regular image

.arrayProject([0])

.arrayFlatten([independents]);

// Compute a detrended series.
var detrended = landsat8sr.map(function(image) {

return image.select(dependent)
.subtract(image.select(independents).multiply(

coefficients)
.reduce('sum'))

.rename(dependent)

.copyProperties(image, ['system:time_start']);
});

Now let us turn to autocovariance and autocorrelation. The autocovariance of
a time series refers to the dependence of values in the time series at time t with
values at time h = t − lag. The autocorrelation is the correlation between elements
of a dataset at one time and elements of the same dataset at a different time.
The autocorrelation is the autocovariance normalized by the standard deviations
of the covariates. Specifically, we assume our time series is stationary, and define
the autocovariance and autocorrelation following Shumway and Stoffer (2019).
Comparing values at time t to the previous values is useful not only for computing
autocovariance, but also for a variety of other time series analyzes as you will see
shortly.

To combine image data with the previous values in Earth Engine, the first step
is to join the previous values to the current values. To do that, we will use a

408 A. P. Nicolau et al.

ee.Join function to create what we will call a lagged collection. Copy and paste
the code below to define a function that creates a lagged collection.

// Function that creates a lagged collection.
var lag = function(leftCollection, rightCollection, lagDays)
{

var filter = ee.Filter.and(
ee.Filter.maxDifference({

difference: 1000 * 60 * 60 * 24 * lagDays,
leftField: 'system:time_start',
rightField: 'system:time_start'

}),
ee.Filter.greaterThan({

leftField: 'system:time_start',
rightField: 'system:time_start'

}));

return ee.Join.saveAll({
matchesKey: 'images',
measureKey: 'delta_t',
ordering: 'system:time_start',
ascending: false, // Sort reverse chronologically

}).apply({
primary: leftCollection,
secondary: rightCollection,
condition: filter

});
};

This function joins a collection to itself, using a filter that gets all the images
before each image’s date that are within a specified time difference (in days) of
each image. That list of the previous images within the lag time is stored in a
property of the image called images, sorted reverse chronologically. For example,
to create a lagged collection from the detrended Landsat imagery, copy and
paste:

// Create a lagged collection of the detrended imagery.
var lagged17 = lag(detrended, detrended, 17);

21 Exploring Lagged Effects in Time Series 409

Why 17 days? Recall that the temporal cadence of Landsat is 16 days.
Specifying 17 days in the join gets one previous image, but no more.

Now, we will compute the autocovariance using a reducer that expects a set of
one-dimensional arrays as input. So pixel values corresponding to time t need to
be stacked with pixel values at time t − lag as multiple bands in the same image.
Copy and paste the code below to define a function to do so, and apply it to merge
the bands from the lagged collection.

// Function to stack bands.
var merge = function(image) {

// Function to be passed to iterate.
var merger = function(current, previous) {

return ee.Image(previous).addBands(current);
};
return

ee.ImageCollection.fromImages(image.get('images'))
.iterate(merger, image);

};

// Apply merge function to the lagged collection.
var merged17 = ee.ImageCollection(lagged17.map(merge));

Now, the bands from time t and h are all in the same image. Note that the
band name of a pixel at time h, ph, was the same as time t, pt (band name is
“NDVI” in this case). During the merging process, it gets a ‘_1’ appended to it
(e.g., NDVI_1).

You can print the image collection to check the band names of one of the
images. Copy and paste the code below to map a function to convert the merged
bands to arrays with bands pt and ph, and then reduce it with the covariance
reducer. We use a parallelScale factor of 8 in the reduce function to avoid
the computation to run out of memory (this is not always needed). Note that the
output of the covariance reducer is an array image, in which each pixel stores a
2 ×2 variance–covariance array. The off-diagonal elements are covariance, which
you can map directly using the arrayGet function.

410 A. P. Nicolau et al.

// Function to compute covariance.
var covariance = function(mergedCollection, band, lagBand) {

return mergedCollection.select([band,
lagBand]).map(function(

image) {
return image.toArray();

}).reduce(ee.Reducer.covariance(), 8);
};

// Concatenate the suffix to the NDVI band.
var lagBand = dependent.cat('_1');

// Compute covariance.
var covariance17 = ee.Image(covariance(merged17, dependent,
lagBand))

.clip(roi);

// The output of the covariance reducer is an array image,
// in which each pixel stores a 2x2 variance-covariance
array.
// The off diagonal elements are covariance, which you can
map
// directly using:
Map.addLayer(covariance17.arrayGet([0, 1]),

{
min: 0,
max: 0.02

},
'covariance (lag = 17 days)');

Inspect the pixel values of the resulting covariance image (Fig. 21.1). The
covariance is positive when the greater values of one variable (at time t) mainly
correspond to the greater values of the other variable (at time h), and the same
holds for the lesser values; therefore, the values tend to show similar behavior. In
the opposite case, when the greater values of a variable correspond to the lesser
values of the other variable, the covariance is negative.

The diagonal elements of the variance–covariance array are variances. Copy
and paste the code below to define and map a function to compute correlation
(Fig. 21.2) from the variance–covariance array.

21 Exploring Lagged Effects in Time Series 411

Fig. 21.1 Autocovariance image

// Define the correlation function.
var correlation = function(vcArrayImage) {

var covariance = ee.Image(vcArrayImage).arrayGet([0, 1]);
var sd0 = ee.Image(vcArrayImage).arrayGet([0, 0]).sqrt();
var sd1 = ee.Image(vcArrayImage).arrayGet([1, 1]).sqrt();
return covariance.divide(sd0).divide(sd1).rename(

'correlation');
};

// Apply the correlation function.
var correlation17 = correlation(covariance17).clip(roi);
Map.addLayer(correlation17,

{
min: -1,
max: 1

},
'correlation (lag = 17 days)');

412 A. P. Nicolau et al.

Fig. 21.2 Autocorrelation image

Higher positive values indicate higher correlation between the elements of the
dataset, and lower negative values indicate the opposite.

It is worth noting that you can do this for longer lags as well. Of course, that
images list will fill up with all the images that are within lag of t. Those other
images are also useful—for example, in fitting auto-regressive models as described
later.

Code Checkpoint F49a. The book’s repository contains a script that shows what
your code should look like at this point.

21.2.2 Section 2: Cross-Covariance and Cross-Correlation

Cross-covariance is analogous to autocovariance, except instead of measuring the
correspondence between a variable and itself at a lag, it measures the correspon-
dence between a variable and a covariate at a lag. Specifically, we will define the
cross-covariance and cross-correlation according to Shumway and Stoffer (2019).

21 Exploring Lagged Effects in Time Series 413

You already have all the code needed to compute cross-covariance and cross-
correlation. But you do need a time series of another variable. Suppose, we
postulate that NDVI is related in some way to the precipitation before the NDVI
was observed. To estimate the strength of this relationship in every pixel, copy and
paste the code below to the existing script to load precipitation, join, merge, and
reduce as previously:

// Precipitation (covariate)
var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Join the t-l (l=1 pentad) precipitation images to the
Landsat.
var lag1PrecipNDVI = lag(landsat8sr, chirps, 5);

// Add the precipitation images as bands.
var merged1PrecipNDVI =
ee.ImageCollection(lag1PrecipNDVI.map(merge));

// Compute and display cross-covariance.
var cov1PrecipNDVI = covariance(merged1PrecipNDVI, 'NDVI',

'precipitation').clip(roi);
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {},

'NDVI - PRECIP cov (lag = 5)');

// Compute and display cross-correlation.
var corr1PrecipNDVI =
correlation(cov1PrecipNDVI).clip(roi);
Map.addLayer(corr1PrecipNDVI, {

min: -0.5,
max: 0.5

}, 'NDVI - PRECIP corr (lag = 5)');

414 A. P. Nicolau et al.

Fig. 21.3 Cross-correlation image of NDVI and precipitation with a five-day lag

What do you observe from this result? Looking at the cross-correlation image
(Fig. 21.3), do you observe high values where you would expect high NDVI values
(vegetated areas)? One possible drawback of this computation is that it is only
based on five days of precipitation, whichever five days came right before the
NDVI image.

Perhaps precipitation in the month before the observed NDVI is relevant? Copy
and paste the code below to test the 30-day lag idea.

21 Exploring Lagged Effects in Time Series 415

// Join the precipitation images from the previous month.
var lag30PrecipNDVI = lag(landsat8sr, chirps, 30);

var sum30PrecipNDVI =
ee.ImageCollection(lag30PrecipNDVI.map(function(

image) {
var laggedImages = ee.ImageCollection.fromImages(image

.get('images'));
return ee.Image(image).addBands(laggedImages.sum()

.rename('sum'));
}));

// Compute covariance.
var cov30PrecipNDVI = covariance(sum30PrecipNDVI, 'NDVI',
'sum').clip(

roi);
Map.addLayer(cov1PrecipNDVI.arrayGet([0, 1]), {},

'NDVI - sum cov (lag = 30)');

// Correlation.
var corr30PrecipNDVI =
correlation(cov30PrecipNDVI).clip(roi);
Map.addLayer(corr30PrecipNDVI, {

min: -0.5,
max: 0.5

}, 'NDVI - sum corr (lag = 30)');

Observe that the only change is to the merge method. Instead of merging
the bands of the NDVI image and the covariate (precipitation), the entire list of
precipitation is summed and added as a band (eliminating the need for iterate).

Which changes do you notice between the cross-correlation images—5 days
lag versus 30 days lag (Fig. 21.4)? You can use the Inspector tool to assess if the
correlation increased or not at vegetated areas.

As long as there is sufficient temporal overlap between the time series, these
techniques could be extended to longer lags and longer time series.

Code Checkpoint F49b. The book’s repository contains a script that shows what
your code should look like at this point.

21.2.3 Section 3: Auto-Regressive Models

The discussion of autocovariance preceded this section in order to introduce the
concept of lag. Now that you have a way to get the previous values of a variable,
it is worth considering auto-regressive models. Suppose that pixel values at time

416 A. P. Nicolau et al.

Fig. 21.4 Cross-correlation image of NDVI and precipitation with a 30-day lag

t depend in some way on the previous pixel values—auto-regressive models are
time series models that use observations from the previous time steps as input to a
regression equation to predict the value at the next time step. If you have observed
significant, non-zero autocorrelations in a time series, this is a good assumption.
Specifically, you may postulate a linear model such as the following, where pt is
a pixel at time t, and et is a random error (Chap. 18):

pt = β0 + β1 pt−1 + β2 pt−2 + et (21.1)

To fit this model, you need a lagged collection as created previously, except
with a longer lag (e.g., lag = 34 days). The next steps are to merge the bands then
reduce with the linear regression reducer.

Copy and paste the line below to the existing script to create a lagged collection,
where the images list stores the two previous images:

var lagged34 = ee.ImageCollection(lag(landsat8sr,
landsat8sr, 34));

21 Exploring Lagged Effects in Time Series 417

Copy and paste the code below to merge the bands of the lagged collection
such that each image has bands at time t and bands at times t − 1, …, t − lag.
Note that it is necessary to filter out any images that do not have two previous
temporal neighbors.

var merged34 = lagged34.map(merge).map(function(image) {
return image.set('n', ee.List(image.get('images'))

.length());
}).filter(ee.Filter.gt('n', 1));

Now, copy and paste the code below to fit the regression model using the
linearRegression reducer.

var arIndependents = ee.List(['constant', 'NDVI_1', 'NDVI_2']);

var ar2 = merged34
.select(arIndependents.add(dependent))
.reduce(ee.Reducer.linearRegression(arIndependents.length(),

1));

// Turn the array image into a multi-band image of coefficients.
var arCoefficients = ar2.select('coefficients')

.arrayProject([0])

.arrayFlatten([arIndependents]);

We can compute the fitted values using the expression function in Earth
Engine. Because this model is a function of the previous pixel values, which may
be masked, if any of the inputs to Eq. 21.1 are masked, the output of the equation
will also be masked. That is why you should use an expression here, unlike the
previous linear models of time. Copy and paste the code below to compute the
fitted values.

418 A. P. Nicolau et al.

// Compute fitted values.
var fittedAR = merged34.map(function(image) {

return image.addBands(
image.expression(

'beta0 + beta1 * p1 + beta2 * p2', {
p1: image.select('NDVI_1'),
p2: image.select('NDVI_2'),
beta0: arCoefficients.select('constant'),
beta1: arCoefficients.select('NDVI_1'),
beta2: arCoefficients.select('NDVI_2')

}).rename('fitted'));
});

Finally, copy and paste the code below to plot the results (Fig. 21.5). We will
use a specific point defined as pt. Note the missing values that result from masked
data. If you run into computation errors, try commenting the Map.addLayer calls
from the previous sections to save memory.

// Create an Earth Engine point object to print the time
series chart.
var pt = ee.Geometry.Point([-119.0955, 35.9909]);

print(ui.Chart.image.series(
fittedAR.select(['fitted', 'NDVI']), pt, ee.Reducer

.mean(), 30)

.setSeriesNames(['NDVI', 'fitted'])

.setOptions({
title: 'AR(2) model: original and fitted values',
lineWidth: 1,
pointSize: 3,

}));

At this stage, note that the missing data has become a real problem. Any data
point for which at least one of the previous points is masked or missing is also
masked.

Code Checkpoint F49c. The book’s repository contains a script that shows what
your code should look like at this point.

It may be possible to avoid this problem by substituting the output from
Eq. 21.1 (the modeled value) for the missing or masked data. Unfortunately, the
code to make that happen is not straightforward. You can check a solution in the
following Code Checkpoint:

21 Exploring Lagged Effects in Time Series 419

Fig. 21.5 Observed NDVI and fitted values at selected point

Code Checkpoint F49d. The book’s repository contains a script that shows what
your code should look like at this point.

21.3 Synthesis

Assignment 1. Analyze cross-correlation between NDVI and soil moisture, or
precipitation and soil moisture, for example. Earth Engine contains different soil
moisture datasets in its catalog (e.g., NASA-USDA SMAP, NASA-GLDAS). Try
increasing the lagged time and see if it makes any difference. Alternatively, you
can pick any other environmental variable/index (e.g., a different vegetation index:
EVI instead of NDVI, for example) and analyze its autocorrelation.

21.4 Conclusion

In this chapter, we learned how to use autocovariance and autocorrelation to
explore the relationship between elements of a time series at multiple time steps.
We also explored how to use cross-covariance and cross-correlation to examine
the relationship between elements of two time series at different points in time.
Finally, we used auto-regressive models to regress the elements of a time series
with elements of the same time series at a different point in time. With these skills,
you can now examine how events in one time period impact your variable of inter-
est in later time periods. While we have introduced the linear approach to lagged
effects, these ideas can be expanded to more complex models.

420 A. P. Nicolau et al.

References

Karthikeyan R, Rupner RN, Koti SR et al (2021) Spatio-temporal and time series analysis of
bluetongue outbreaks with environmental factors extracted from Google Earth Engine (GEE)
in Andhra Pradesh, India. Transbound Emerg Dis 68:3631–3642. https://doi.org/10.1111/tbed.
13972

Sazib N, Bolten J, Mladenova I (2020) Exploring spatiotemporal relations between soil moisture,
precipitation, and streamflow for a large set of watersheds using Google Earth Engine. Water
(switzerland) 12:1371. https://doi.org/10.3390/w12051371

Shumway RH, Stoffer DS (2019) Time series: a data analysis approach using R. Chapman and
Hall/CRC

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1111/tbed.13972
https://doi.org/10.1111/tbed.13972
https://doi.org/10.3390/w12051371
http://creativecommons.org/licenses/by/4.0/

Part V

Vectors and Tables

In addition to raster data processing, Earth Engine supports a rich set of vector
processing tools. This part introduces you to the vector framework in Earth Engine,
shows you how to create and to import your vector data, and how to combine vector
and raster data for analyses.

22Exploring Vectors

A. J. Purdy , Ellen Brock, and David Saah

Overview
In this chapter, you will learn about features and feature collections and how to use
them in conjunction with images and image collections in Earth Engine. Maps are
useful for understanding spatial patterns, but scientists often need to extract statistics
to answer a question. For example, you may make a false-color composite showing
which areas of San Francisco are more “green”—i.e., have more healthy vegetation—
than others, but you will likely not be able to directly determine which block in a
neighborhood is the most green. This tutorial will demonstrate how to do just that
by utilizing vectors.

As described in Chap. 12, an important way to summarize and simplify data in
Earth Engine is through the use of reducers. Reducers operating across space were
used in Chap. 8, for example, to enable image regression between bands. More
generally, chapters in Part III and Part IV used reducers mostly to summarize the
values across bands or images on a pixel-by-pixel basis. What if you wanted to
summarize information within the confines of given spatial elements—for example,
within a set of polygons? In this chapter, we will illustrate and explore Earth Engine’s
method for doing that, which is through a reduceRegions call.

A. J. Purdy (B) · D. Saah
University of San Francisco, San Francisco, CA, USA
e-mail: adamjpurdy@gmail.com; apurdy@usca.edu; adpurdy@csumb.edu

D. Saah
e-mail: dssaah@usfca.edu

A. J. Purdy
California State University, Monterey Bay Seaside, CA, USA

E. Brock
Mantle Labs Ltd., Bangalore, Karnataka, India

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_22

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_22&domain=pdf
http://orcid.org/0000-0002-0156-5391
http://orcid.org/0000-0001-9999-1219
mailto:adamjpurdy@gmail.com
mailto:apurdy@usca.edu
mailto:adpurdy@csumb.edu
mailto:dssaah@usfca.edu
https://doi.org/10.1007/978-3-031-26588-4_22

424 A. J. Purdy et al.

Learning Outcomes

. Uploading and working with a shapefile as an asset to use in Earth Engine.

. Creating a new feature using the geometry tools.

. Importing and filtering a feature collection in Earth Engine.

. Using a feature to clip and reduce image values within a geometry.

. Use reduceRegions to summarize an image in irregular neighborhoods.

. Exporting calculated data to tables with Tasks.

Assumes you know how to

. Import images and image collections, filter, and visualize (Part I).

. Calculate and interpret vegetation indices (Chap. 5).

. Use drawing tools to create points, lines, and polygons (Chap. 6).

22.1 Introduction to Theory

In the world of geographic information systems (GIS), data are typically thought
of in one of two basic data structures: raster and vector. In the previous chapters,
we have principally been focused on raster data—data using the remote sensing
vocabulary of pixels, spatial resolution, images, and image collections. Working
within the vector framework is also a crucial skill to master. If you do not know
much about GIS, you can find any number of online explainers of the distinctions
between these data types, their strengths and limitations, and analyzes using both
data types. Being able to move fluidly between a raster conception and a vector
conception of the world is powerful and is facilitated with specialized functions
and approaches in Earth Engine.

For our purposes, you can think of vector data as information represented as
points (e.g., locations of sample sites), lines (e.g., railroad tracks), or polygons
(e.g., the boundary of a national park or a neighborhood). Line data and polygon
data are built up from points: for example, the latitude and longitude of the sample
sites, the points along the curve of the railroad tracks, and the corners of the park
that form its boundary. These points each have a highly specific location on Earth’s
surface, and the vector data formed from them can be used for calculations with
respect to other layers. As will be seen in this chapter, for example, a polygon
can be used to identify which pixels in an image are contained within its borders.
Point-based data have already been used in earlier chapters for filtering image
collections by location (see Part I) and can also be used to extract values from an
image at a point or a set of points (see Chap. 24). Lines possess the dimension of
length and have similar capabilities for filtering image collections and accessing
their values along a transect. In addition to using polygons to summarize values
within a boundary, they can be used for other, similar purposes—for example, to
clip an image.

22 Exploring Vectors 425

As you have seen, raster features in Earth Engine are stored as an Image or as
part of an ImageCollection. Using a similar conceptual model, vector data in
Earth Engine are stored as a Feature or as part of a FeatureCollection.
Features and feature collections provide useful data to filter images and image
collections by their location, clip images to a boundary, or statistically summarize
the pixel values within a region.

In the following example, you will use features and feature collections to iden-
tify which city block near the University of San Francisco (USF) campus is the
most green.

22.2 Practicum

22.2.1 Section 1: Using Geometry Tools to Create Features
in Earth Engine

To demonstrate how geometry tools in Earth Engine work, let us start by creating
a point, and two polygons to represent different elements on the USF campus.

Click on the geometry tools in the top left of the Map pane and create a point
feature. Place a new point where USF is located (see Fig. 22.1).

Use Google Maps to search for “Harney Science Center” or “Lo Schiavo Center
for Science.” Hover your mouse over the Geometry Imports to find the + new
layer menu item and add a new layer to delineate the boundary of a building on
campus.

Next, create another new layer to represent the entire campus as a polygon.

Fig. 22.1 Location of the USF campus in San Francisco, California. Your first point should be in
this vicinity. The red arrow points to the geometry tools

426 A. J. Purdy et al.

Fig. 22.2 Rename the default variable names for each layer in the Imports section of the code at
the top of your script

After you create these layers, rename the geometry imports at the top of
your script. Name the layers usf_point, usf_building, and usf_campus.
These names are used within the script shown in Fig. 22.2.

Code Checkpoint F50a. The book’s repository contains a script that shows what
your code should look like at this point.

22.2.2 Section 2: Loading Existing Features and Feature
Collections in Earth Engine

If you wish to have the exact same geometry imports in this chapter for the rest
of this exercise, begin this section using the code at the Code Checkpoint above.

Next, you will load a city block dataset to determine the amount of vegeta-
tion on blocks near USF. The code below imports an existing feature dataset in
Earth Engine. The Topologically Integrated Geographic Encoding and Referencing
(TIGER) boundaries are census-designated boundaries that are a useful resource
when comparing socioeconomic and diversity metrics with environmental datasets
in the United States.

// Import the Census Tiger Boundaries from GEE.
var tiger = ee.FeatureCollection('TIGER/2010/Blocks');

// Add the new feature collection to the map, but do not
display.
Map.addLayer(tiger, {

'color': 'black'
}, 'Tiger', false);

You should now have the geometry for USF’s campus and a layer added to
your map that is not visualized for census blocks across the United States. Next,
we will use neighborhood data to spatially filter the TIGER feature collection for
blocks near USF’s campus.

22 Exploring Vectors 427

22.2.3 Section 3: Importing Features into Earth Engine

There are many image collections loaded in Earth Engine, and they can cover a
very large area that you might want to study. Borders can be quite intricate (for
example, a detailed coastline), and fortunately, there is no need for you to digitize
the intricate boundary of a large geographic area. Instead, we will show how to
find a spatial dataset online, download the data, and load this into Earth Engine as
an asset for use.

Find a Spatial Dataset of San Francisco Neighborhoods
Use your Internet searching skills to locate the “analysis neighborhoods” dataset
covering San Francisco. This data might be located in a number of places,
including DataSF, the City of San Francisco’s public-facing data repository.

After you find the analysis neighborhoods layer, click Export and select Shape-
file (Fig. 22.3). Keep track of where you save the zipped file, as we will load
this into Earth Engine. Shapefiles contain vector-based data—points, lines, poly-
gons—and include a number of files, such as the location information, attribute
information, and others.

Extract the folder to your computer. When you open the folder, you will see
that there are actually many files. The extensions (.shp,.dbf ,.shx,.prj) all provide a
different piece of information to display vector-based data. The .shp file provides
data on the geometry. The .dbf file provides data about the attributes. The .shx file

Fig. 22.3 DataSF Website neighborhood shapefile to download

428 A. J. Purdy et al.

Fig. 22.4 Import an asset as a zipped folder

is an index file. Lastly, the .prj file describes the map projection of the coordinate
information for the shapefile. You will need to load all four files to create a new
feature asset in Earth Engine.

Upload SF Neighborhoods File as an Asset
Navigate to the Assets tab (near Scripts). Select New > Table Upload > Shape
files (Fig. 22.4).

Select Files and Name Asset
Click the Select button and then use the file navigator to select the component
files of the shapefile structure (i.e., .shp, .dbf , .shx, and .prj) (Fig. 22.5). Assign
an Asset Name so you can recognize this asset.

Uploading the asset may take a few minutes. The status of the upload is pre-
sented under the Tasks tab. After your asset has been successfully loaded, click
on the asset in the Assets folder and find the collection ID. Copy this text and use
it to import the file into your Earth Engine analysis.

Assign the asset to the table (collection) ID using the script below. Note that you
will need to replace ’path/to/your/asset/assetname’ with the actual
path copied in the previous step.

22 Exploring Vectors 429

// Assign the feature collection to the variable
sfNeighborhoods.
var sfNeighborhoods = ee.FeatureCollection(

'path/to/your/asset/assetname');

// Print the size of the feature collection.
// (Answers the question how many features?)
print(sfNeighborhoods.size());
Map.addLayer(sfNeighborhoods, {

'color': 'blue'
}, 'sfNeighborhoods');

Fig. 22.5 Select the four files extracted from the zipped folder. Make sure each file has the same
name and that there are no spaces in the file names of the component files of the shapefile structure

430 A. J. Purdy et al.

Note that if you have any trouble with loading the FeatureCollection
using the technique above, you can follow directions in the Checkpoint script
below to use an existing asset loaded for this exercise.

Code Checkpoint F50b. The book’s repository contains a script that shows what
your code should look like at this point.

22.2.4 Section 4: Filtering Feature Collections by Attributes

Filter by Geometry of Another Feature

First, let us find the neighborhood associated with USF. Use the first point you
created to find the neighborhood that intersects this point; filterBounds is the
tool that does that, returning a filtered feature.

// Filter sfNeighborhoods by USF.
var usfNeighborhood =
sfNeighborhoods.filterBounds(usf_point);

Now, filter the blocks layer by USF’s neighborhood and visualize it on the map.

// Filter the Census blocks by the boundary of the
neighborhood layer.
var usfTiger = tiger.filterBounds(usfNeighborhood);
Map.addLayer(usfTiger, {}, 'usf_Tiger');

Filter by Feature (Attribute) Properties
In addition to filtering a FeatureCollection by the location of another fea-
ture, you can also filter it by its properties. First, let us print the usfTiger
variable to the Console and inspect the object.

print(usfTiger);

You can click on the feature collection name in the Console to uncover
more information about the dataset. Click on the columns to learn about what
attribute information is contained in this dataset. You will notice this feature col-
lection contains information on both housing (’housing10’) and population
(’pop10’).

22 Exploring Vectors 431

Now, you will filter for blocks with just the right amount of housing units. You
do not want it too dense, nor do you want too few neighbors.

Filter the blocks to have fewer than 250 housing units.

// Filter for census blocks by housing units.
var housing10_l250 = usfTiger

.filter(ee.Filter.lt('housing10', 250));

Now filter the already-filtered blocks to have more than 50 housing units.

var housing10_g50_l250 = housing10_l250.filter(ee.Filter.gt(
'housing10', 50));

Now, let us visualize what this looks like.

Map.addLayer(housing10_g50_l250, {
'color': 'Magenta'

}, 'housing');

We have combined spatial and attribute information to narrow the set to only
those blocks that meet our criteria of having between 50 and 250 housing units.

Print Feature (Attribute) Properties to Console
We can print out attribute information about these features. The block of code
below prints out the area of the resultant geometry in square meters.

var housing_area = housing10_g50_l250.geometry().area();
print('housing_area:', housing_area);

The next block of code reduces attribute information and prints out the mean
of the housing10 column.

var housing10_mean = usfTiger.reduceColumns({
reducer: ee.Reducer.mean(),
selectors: ['housing10']

});

print('housing10_mean', housing10_mean);

432 A. J. Purdy et al.

Both of the above sections of code provide meaningful information about each
feature, but they do not tell us which block is the most green. The next section
will address that question.

Code Checkpoint F50c. The book’s repository contains a script that shows what
your code should look like at this point.

22.2.5 Section 5: Reducing Images Using Feature Geometry

Now that we have identified the blocks around USF’s campus that have the right
housing density, let us find which blocks are the greenest.

The normalized difference vegetation index (NDVI), presented in detail in
Chap. 5, is often used to compare the greenness of pixels in different locations.
Values on land range from 0 to 1, with values closer to 1 representing healthier
and greener vegetation than values near 0.

Create an NDVI Image
The code below imports the Landsat 8 ImageCollection as landsat8.
Then, the code filters for images in 2021. Lastly, the code sorts the images from
2021 to find the least cloudy day.

// Import the Landsat 8 TOA image collection.
var landsat8 =
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA');

// Get the least cloudy image in 2015.
var image = ee.Image(

landsat8
.filterBounds(usf_point)
.filterDate('2015-01-01', '2015-12-31')
.sort('CLOUD_COVER')
.first());

The next section of code assigns the near-infrared band (B5) to variable nir
and assigns the red band (B4) to red. Then, the bands are combined together to
compute NDVI as (nir− red)/(nir + red).

var nir = image.select('B5');
var red = image.select('B4');
var ndvi =
nir.subtract(red).divide(nir.add(red)).rename('NDVI');

22 Exploring Vectors 433

Clip the NDVI Image to the Blocks Near USF
Next, you will clip the NDVI layer to only show NDVI over USF’s neighborhood.

The first section of code provides visualization settings.

var ndviParams = {
min: -1,
max: 1,
palette: ['blue', 'white', 'green']

};

The second block of code clips the image to our filtered housing layer.

var ndviUSFblocks = ndvi.clip(housing10_g50_l250);
Map.addLayer(ndviUSFblocks, ndviParams, 'NDVI image');
Map.centerObject(usf_point, 14);

The NDVI map for all of San Francisco is interesting and shows variability
across the region. Now, let us compute mean NDVI values for each block of the
city.

Compute NDVI Statistics by Block
The code below uses the clipped image ndviUSFblocks and computes the mean
NDVI value within each boundary. The scale provides a spatial resolution for the
mean values to be computed on.

// Reduce image by feature to compute a statistic e.g.
mean, max, min etc.
var ndviPerBlock = ndviUSFblocks.reduceRegions({

collection: housing10_g50_l250,
reducer: ee.Reducer.mean(),
scale: 30,

});

Now, we will use Earth Engine to find out which block is greenest.

Export Table of NDVI Data by Block from Earth Engine to Google Drive
Just as we loaded a feature into Earth Engine, we can export information from
Earth Engine. Here, we will export the NDVI data, summarized by block, from
Earth Engine to a Google Drive space so that we can interpret it in a program like
Google Sheets or Excel.

434 A. J. Purdy et al.

Fig. 22.6 Under the Tasks tab, select Run to initiate download

// Get a table of data out of Google Earth Engine.
Export.table.toDrive({

collection: ndviPerBlock,
description: 'NDVI_by_block_near_USF'

});

When you run this code, you will notice that you have the Tasks tab highlighted
on the top right of the Earth Engine Code Editor (Fig. 22.6). You will be prompted
to name the directory when exporting the data.

After you run the task, the file will be saved to your Google Drive. You have
now brought a feature into Earth Engine and also exported data from Earth Engine.

Code Checkpoint F50d. The book’s repository contains a script that shows what
your code should look like at this point.

22.2.6 Section 6: Identifying the Block in the Neighborhood
Surrounding USF with the Highest NDVI

You are already familiar with filtering datasets by their attributes. Now, you will
sort a table and select the first element of the table.

ndviPerBlock = ndviPerBlock.select(['blockid10', 'mean']);
print('ndviPerBlock', ndviPerBlock);
var ndviPerBlockSorted = ndviPerBlock.sort('mean', false);
var ndviPerBlockSortedFirst =
ee.Feature(ndviPerBlock.sort('mean',

false) //Sort by NDVI mean in descending order.
.first()); //Select the block with the highest NDVI.

print('ndviPerBlockSortedFirst', ndviPerBlockSortedFirst);

If you expand the feature of ndviPerBlockSortedFirst in the Console,
you will be able to identify the blockid10 value of the greenest block and the
mean NDVI value for that area.

Another way to look at the data is by exporting the data to a table. Open the
table using Google Sheets or Excel. You should see a column titled “mean.” Sort

22 Exploring Vectors 435

the mean column in descending order from highest NDVI to lowest NDVI, then
use the blockid10 attribute to filter our feature collection one last time and
display the greenest block near USF.

// Now filter by block and show on map!
var GreenHousing = usfTiger.filter(ee.Filter.eq('blockid10',
'#####')); //< Put your id here prepend a 0!
Map.addLayer(GreenHousing, {

'color': 'yellow'
}, 'Green Housing!');

Code Checkpoint F50e. The book’s repository contains a script that shows what
your code should look like at this point.

22.3 Synthesis

Now it is your turn to use both feature classes and to reduce data using a geo-
graphic boundary. Create a new script for an area of interest and accomplish the
following assignments.

Assignment 1. Create a study area map zoomed to a certain feature class that you
made.

Assignment 2. Filter one feature collection using feature properties.

Assignment 3. Filter one feature collection based on another feature’s location in
space.

Assignment 4. Reduce one image to the geometry of a feature in some capacity;
e.g., extract a mean value or a value at a point.

22.4 Conclusion

In this chapter, you learned how to import features into Earth Engine. In
Sect. 22.2.1, you created new features using the geometry tools and loaded a fea-
ture from Earth Engine’s Data Catalog. In Sect. 22.2.2, you loaded a shapefile
to an Earth Engine asset. In Sect. 22.2.3, you filtered feature collections based
on their properties and locations. Finally, in Sects. 22.2.4 and 22.2.5, you used a
feature collection to reduce an image, then exported the data from Earth Engine.
Now, you have all the tools you need to load, filter, and apply features to extract
meaningful information from images using vector features in Earth Engine.

436 A. J. Purdy et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

23Raster/Vector Conversions

Keiko Nomura and Samuel Bowers

Overview
The purpose of this chapter is to review methods of converting between raster and
vector data formats, and to understand the circumstances in which this is useful.
By way of example, this chapter focuses on topographic elevation and forest cover
change in Colombia, but note that these are generic methods that can be applied in
a wide variety of situations.

Learning Outcomes

• Understanding raster and vector data in Earth Engine and their differing properties.
• Knowing how and why to convert from raster to vector.
• Knowing how and why to convert from vector to raster.
• Write a function and map it over a FeatureCollection.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).
• Understand distinctions among Image, ImageCollection, Feature, and
FeatureCollection Earth Engine objects (Part I, Part II, Part V).

• Perform basic image analysis: select bands, compute indices, and create masks
(Part II).

K. Nomura (B)
Climate Engine, 111 W. Proctor Street, Suite 203, Carson City, NV 89703, USA
e-mail: keiko@climateengine.com

S. Bowers
School of Geosciences, The University of Edinburgh, Crew Building, The King’s Buildings,
Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
e-mail: sam.bowers@ed.ac.uk

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_23

437

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_23&domain=pdf
http://orcid.org/0000-0002-5218-3414
http://orcid.org/0000-0001-5418-0359
mailto:keiko@climateengine.com
mailto:sam.bowers@ed.ac.uk
https://doi.org/10.1007/978-3-031-26588-4_23

438 K. Nomura and S. Bowers

• Perform image morphological operations (Chap. 10).
• Understand the filter, map, and reduce paradigm (Chap. 12).
• Write a function and map it over an ImageCollection (Chap. 12).
• Use reduceRegions to summarize an image in irregular shapes (Chap. 22).

23.1 Introduction to Theory

Raster data consist of regularly spaced pixels arranged into rows and columns,
familiar as the format of satellite images. Vector data contain geometry features
(i.e., points, lines, and polygons) describing locations and areas. Each data format
has its advantages, and both will be encountered as part of GIS operations.

Raster data and vector data are commonly combined (e.g., extracting image
information for a given location or clipping an image to an area of interest); how-
ever, there are also situations in which conversion between the two formats is
useful. In making such conversions, it is important to consider the key advantages
of each format. Rasters can store data efficiently where each pixel has a numerical
value, while vector data can more effectively represent geometric features where
homogenous areas have shared properties. Each format lends itself to distinctive
analytical operations, and combining them can be powerful.

In this exercise, we’ll use topographic elevation and forest change images in
Colombia as well as a protected area feature collection to practice the conver-
sion between raster and vector formats, and to identify situations in which this is
worthwhile.

23.2 Practicum

23.2.1 Section 1: Raster to Vector Conversion

23.2.1.1 Section 1.1: Raster to Polygons
In this section, we will convert an elevation image (raster) to a feature collection
(vector). We will start by loading the Global Multi-Resolution Terrain Elevation
Data 2010 and the Global Administrative Unit Layers 2015 dataset to focus on
Colombia. The elevation image is a raster at 7.5 arc-second spatial resolution
containing a continuous measure of elevation in meters in each pixel.

23 Raster/Vector Conversions 439

// Load raster (elevation) and vector (colombia) datasets.
var elevation =
ee.Image('USGS/GMTED2010').rename('elevation');
var colombia = ee.FeatureCollection(

'FAO/GAUL_SIMPLIFIED_500m/2015/level0')
.filter(ee.Filter.equals('ADM0_NAME', 'Colombia'));

// Display elevation image.
Map.centerObject(colombia, 7);
Map.addLayer(elevation, {

min: 0,
max: 4000

}, 'Elevation');

When converting an image to a feature collection, we will aggregate the categor-
ical elevation values into a set of categories to create polygon shapes of connected
pixels with similar elevations. For this exercise, we will create four zones of ele-
vation by grouping the altitudes to 0–100 m = 0, 100–200 m = 1, 200–500 m =
2, and > 500 m = 3.

// Initialize image with zeros and define elevation zones.
var zones = ee.Image(0)

.where(elevation.gt(100), 1)

.where(elevation.gt(200), 2)

.where(elevation.gt(500), 3);

// Mask pixels below sea level (<= 0 m) to retain only
land areas.
// Name the band with values 0-3 as 'zone'.
zones = zones.updateMask(elevation.gt(0)).rename('zone');

Map.addLayer(zones, {
min: 0,
max: 3,
palette: ['white', 'yellow', 'lime', 'green'],
opacity: 0.7

}, 'Elevation zones');

440 K. Nomura and S. Bowers

We will convert this zonal elevation image in Colombia to polygon shapes,
which is a vector format (termed a FeatureCollection in Earth Engine),
using the ee.Image.reduceToVectors method. This will create polygons
delineating connected pixels with the same value. In doing so, we will use the
same projection and spatial resolution as the image. Please note that loading the
vectorized image in the native resolution (232 m) takes time to execute. For faster
visualization, we set a coarse scale of 1000 m (Fig. 23.1).

Fig. 23.1 Raster-based elevation (top left) and zones (top right), vectorized elevation zones over-
laid on the raster (bottom-left), and vectorized elevation zones only (bottom-right)

23 Raster/Vector Conversions 441

var projection = elevation.projection();
var scale = elevation.projection().nominalScale();

var elevationVector = zones.reduceToVectors({
geometry: colombia.geometry(),
crs: projection,
scale: 1000, // scale
geometryType: 'polygon',
eightConnected: false,
labelProperty: 'zone',
bestEffort: true,
maxPixels: 1e13,
tileScale: 3 // In case of error.

});

print(elevationVector.limit(10));

var elevationDrawn = elevationVector.draw({
color: 'black',
strokeWidth: 1

});
Map.addLayer(elevationDrawn, {}, 'Elevation zone polygon');

You may have realized that polygons consist of complex lines, including some
small polygons with just one pixel. That happens when there are no surrounding
pixels of the same elevation zone. You may not need a vector map with such
details—if, for instance, you want to produce a regional or global map. We can
use a morphological reducer focalMode to simplify the shape by defining a
neighborhood size around a pixel. In this example, we will set the kernel radius as
four pixels. This operation makes the resulting polygons look much smoother, but
less precise (Fig. 23.2).

442 K. Nomura and S. Bowers

Fig. 23.2 Before (left) and after (right) applying focalMode

var zonesSmooth = zones.focalMode(4, 'square');
zonesSmooth =
zonesSmooth.reproject(projection.atScale(scale));

Map.addLayer(zonesSmooth, {
min: 1,
max: 3,
palette: ['yellow', 'lime', 'green'],
opacity: 0.7

}, 'Elevation zones (smooth)');

var elevationVectorSmooth = zonesSmooth.reduceToVectors({
geometry: colombia.geometry(),
crs: projection,
scale: scale,
geometryType: 'polygon',
eightConnected: false,
labelProperty: 'zone',
bestEffort: true,
maxPixels: 1e13,
tileScale: 3

});

23 Raster/Vector Conversions 443

var smoothDrawn = elevationVectorSmooth.draw({
color: 'black',
strokeWidth: 1

});
Map.addLayer(smoothDrawn, {}, 'Elevation zone polygon
(smooth)');

We can see now that the polygons have more distinct shapes with many
fewer small polygons in the new map (Fig. 23.2). It is important to note that
when you use methods like focalMode (or other, similar methods such as
connectedComponents and connectedPixelCount), you need to repro-
ject according to the original image in order to display properly with zoom using
the interactive Code Editor.

23.2.1.2 Section 1.2: Raster to Points
Lastly, we will convert a small part of this elevation image into a point vector
dataset. For this exercise, we will use the same example and build on the code from
the previous subsection. This might be useful when you want to use geospatial
data in a tabular format in combination with other conventional datasets such as
economic indicators (Fig. 23.3).

The easiest way to do this is to use sample while activating the geometries
parameter. This will extract the points at the centroid of the elevation pixel.

Fig. 23.3 Elevation point values with latitude and longitude

444 K. Nomura and S. Bowers

var geometry = ee.Geometry.Polygon([
[-89.553, -0.929],
[-89.436, -0.929],
[-89.436, -0.866],
[-89.553, -0.866],
[-89.553, -0.929]

]);

// To zoom into the area, un-comment and run below
// Map.centerObject(geometry,12);
Map.addLayer(geometry, {}, 'Areas to extract points');

var elevationSamples = elevation.sample({
region: geometry,
projection: projection,
scale: scale,
geometries: true,

});

Map.addLayer(elevationSamples, {}, 'Points extracted');

// Add three properties to the output table:
// 'Elevation', 'Longitude', and 'Latitude'.
elevationSamples = elevationSamples.map(function(feature) {

var geom = feature.geometry().coordinates();
return ee.Feature(null, {

'Elevation': ee.Number(feature.get(
'elevation')),

'Long': ee.Number(geom.get(0)),
'Lat': ee.Number(geom.get(1))

});
});

// Export as CSV.
Export.table.toDrive({

collection: elevationSamples,
description: 'extracted_points',
fileFormat: 'CSV'

});

23 Raster/Vector Conversions 445

Fig. 23.4 Stratified random sampling over different elevation zones

We can also extract sample points per elevation zone. Below is an example
of extracting 10 randomly selected points per elevation zone (Fig. 23.4). You can
also set different values for each zone using classValues and classPoints
parameters to modify the sampling intensity in each class. This may be useful, for
instance, to generate point samples for a validation effort.

var elevationSamplesStratified = zones.stratifiedSample({
numPoints: 10,
classBand: 'zone',
region: geometry,
scale: scale,
projection: projection,
geometries: true

});

Map.addLayer(elevationSamplesStratified, {}, 'Stratified
samples');

Code Checkpoint F51a. The book’s repository contains a script that shows what
your code should look like at this point.

446 K. Nomura and S. Bowers

23.2.1.3 Section 1.3: A More Complex Example
In this section, we will use two global datasets, one to represent raster formats and
the other vectors:

• The Global Forest Change (GFC) dataset: a raster dataset describing global tree
cover and change for 2001–present.

• The World Protected Areas Database: a vector database of global protected
areas.

The objective will be to combine these two datasets to quantify rates of deforesta-
tion in protected areas in the ‘arc of deforestation’ of the Colombian Amazon. The
datasets can be loaded into Earth Engine with the following code:

// Read input data.
// Note: these datasets are periodically updated.
// Consider searching the Data Catalog for newer versions.
var gfc =
ee.Image('UMD/hansen/global_forest_change_2020_v1_8');
var wdpa =
ee.FeatureCollection('WCMC/WDPA/current/polygons');

// Print assets to show available layers and properties.
print(gfc);
print(wdpa.limit(10)); // Show first 10 records.

The GFC dataset (first presented in detail in Chap. 2) is a global set of rasters
that quantify tree cover and change for the period beginning in 2001. We’ll use a
single image from this dataset:

• ‘lossyear’: a categorical raster of forest loss (1–20, corresponding to
deforestation for the period 2001–2020), and 0 for no change

The World Database on Protected Areas (WDPA) is a harmonized dataset of global
terrestrial and marine protected area locations, along with details on the classifi-
cation and management of each. In addition to protected area outlines, we’ll use
two fields from this database:

• ‘NAME’: the name of each protected area
• ‘WDPA_PID’: a unique numerical ID for each protected area

23 Raster/Vector Conversions 447

To begin with, we’ll focus on forest change dynamics in ‘La Paya’, a small
protected area in the Colombian Amazon. We’ll first visualize these data using
the paint command, which is discussed in more detail in Chap. 25. This will
display the boundary of the La Paya protected area and deforestation in the region
(Fig. 23.5).

// Display deforestation.
var deforestation = gfc.select('lossyear');

Map.addLayer(deforestation, {
min: 1,
max: 20,
palette: ['yellow', 'orange', 'red']

}, 'Deforestation raster');

// Display WDPA data.
var protectedArea = wdpa.filter(ee.Filter.equals('NAME',
'La Paya'));

// Display protected area as an outline (see F5.3 for
paint()).
var protectedAreaOutline = ee.Image().byte().paint({

featureCollection: protectedArea,
color: 1,
width: 3

});

Map.addLayer(protectedAreaOutline, {
palette: 'white'

}, 'Protected area');

// Set up map display.
Map.centerObject(protectedArea);
Map.setOptions('SATELLITE');

448 K. Nomura and S. Bowers

Fig. 23.5 View of the La Paya protected area in the Colombian Amazon (in white) and deforesta-
tion over the period 2001–2020 (in yellows and reds, with darker colors indicating more recent
changes)

We can use Earth Engine to convert the deforestation raster to a set of polygons.
The deforestation data are appropriate for this transformation as each deforestation
event is labeled categorically by year, and change events are spatially contiguous.
This is performed in Earth Engine using the ee.Image.reduceToVectors
method, as described earlier in this section. Figure 23.6 shows a comparison of
the raster versus vector representations of deforestation within the protected area.

23 Raster/Vector Conversions 449

// Convert from a deforestation raster to vector.
var deforestationVector = deforestation.reduceToVectors({

scale: deforestation.projection().nominalScale(),
geometry: protectedArea.geometry(),
labelProperty: 'lossyear', // Label polygons with a

change year.
maxPixels: 1e13

});

// Count the number of individual change events
print('Number of change events:',
deforestationVector.size());

// Display deforestation polygons. Color outline by change
year.
var deforestationVectorOutline = ee.Image().byte().paint({

featureCollection: deforestationVector,
color: 'lossyear',
width: 1

});

Map.addLayer(deforestationVectorOutline, {
palette: ['yellow', 'orange', 'red'],
min: 1,
max: 20

}, 'Deforestation vector');

Fig. 23.6 Raster (left) versus vector (right) representations of deforestation data of the La Paya
protected area

450 K. Nomura and S. Bowers

Having converted from raster to vector, a new set of operations becomes
available for post-processing the deforestation data. We might, for instance, be
interested in the number of individual change events each year (Fig. 23.7):

Fig. 23.7 Plot of the number of deforestation events in La Paya for the years 2001–2020

var chart = ui.Chart.feature
.histogram({

features: deforestationVector,
property: 'lossyear'

})
.setOptions({

hAxis: {
title: 'Year'

},
vAxis: {

title: 'Number of deforestation events'
},
legend: {

position: 'none'
}

});

print(chart);

There might also be interest in generating point locations for individual change
events (e.g., to aid a field campaign):

23 Raster/Vector Conversions 451

// Generate deforestation point locations.
var deforestationCentroids =
deforestationVector.map(function(feat) {

return feat.centroid();
});

Map.addLayer(deforestationCentroids, {
color: 'darkblue'

}, 'Deforestation centroids');

The vector format allows for easy filtering to only deforestation events of
interest, such as only the largest deforestation events:

// Add a new property to the deforestation
FeatureCollection
// describing the area of the change polygon.
deforestationVector =
deforestationVector.map(function(feat) {

return feat.set('area', feat.geometry().area({
maxError: 10

}).divide(10000)); // Convert m^2 to hectare.
});

// Filter the deforestation FeatureCollection for only
large-scale (>10 ha) changes
var deforestationLarge =
deforestationVector.filter(ee.Filter.gt(

'area', 10));

// Display deforestation area outline by year.
var deforestationLargeOutline = ee.Image().byte().paint({

featureCollection: deforestationLarge,
color: 'lossyear',
width: 1

});

Map.addLayer(deforestationLargeOutline, {
palette: ['yellow', 'orange', 'red'],
min: 1,
max: 20

}, 'Deforestation (>10 ha)');

452 K. Nomura and S. Bowers

Code Checkpoint F51b. The book’s repository contains a script that shows what
your code should look like at this point.

23.2.1.4 Section 1.4: Raster Properties to Vector Fields
Sometimes we want to extract information from a raster to be included in an
existing vector dataset. An example might be estimating a deforestation rate for a
set of protected areas. Rather than performing this task on a case-by-case basis,
we can attach information generated from an image as a property of a feature.

The following script shows how this can be used to quantify a deforestation
rate for a set of protected areas in the Colombian Amazon.

// Load required datasets.
var gfc =
ee.Image('UMD/hansen/global_forest_change_2020_v1_8');
var wdpa =
ee.FeatureCollection('WCMC/WDPA/current/polygons');

// Display deforestation.
var deforestation = gfc.select('lossyear');

Map.addLayer(deforestation, {
min: 1,
max: 20,
palette: ['yellow', 'orange', 'red']

}, 'Deforestation raster');

// Select protected areas in the Colombian Amazon.
var amazonianProtectedAreas = [

'Cordillera de los Picachos', 'La Paya', 'Nukak',
'Serrania de Chiribiquete',
'Sierra de la Macarena', 'Tinigua'

];

var wdpaSubset = wdpa.filter(ee.Filter.inList('NAME',
amazonianProtectedAreas));

// Display protected areas as an outline.
var protectedAreasOutline = ee.Image().byte().paint({

featureCollection: wdpaSubset,
color: 1,
width: 1

});

23 Raster/Vector Conversions 453

Map.addLayer(protectedAreasOutline, {
palette: 'white'

}, 'Amazonian protected areas');

// Set up map display.
Map.centerObject(wdpaSubset);
Map.setOptions('SATELLITE');

var scale = deforestation.projection().nominalScale();

// Use 'reduceRegions' to sum together pixel areas in each
protected area.
wdpaSubset = deforestation.gte(1)

.multiply(ee.Image.pixelArea().divide(10000)).reduceRegions
({

collection: wdpaSubset,
reducer: ee.Reducer.sum().setOutputs([

'deforestation_area']),
scale: scale

});

print(wdpaSubset); // Note the new 'deforestation_area'
property.

The output of this script is an estimate of deforested area in hectares for each
reserve. However, as reserve sizes vary substantially by area, we can normalize by
the total area of each reserve to quantify rates of change.

// Normalize by area.
wdpaSubset = wdpaSubset.map(

function(feat) {
return feat.set('deforestation_rate',

ee.Number(feat.get('deforestation_area'))
.divide(feat.area().divide(10000)) // m2 to ha
.divide(20) // number of years
.multiply(100)); // to percentage points

});

// Print to identify rates of change per protected area.
// Which has the fastest rate of loss?
print(wdpaSubset.reduceColumns({

reducer: ee.Reducer.toList().repeat(2),
selectors: ['NAME', 'deforestation_rate']

}));

454 K. Nomura and S. Bowers

Code Checkpoint F51c. The book’s repository contains a script that shows what
your code should look like at this point.

23.2.2 Section 2: Vector-To-Raster Conversion

In Sect. 23.2.1, we used the protected area feature collection as its original vector
format. In this section, we will rasterize the protected area polygons to produce a
mask and use this to assess rates of forest change.

23.2.2.1 Section 2.1: Polygons to a Mask
The most common operation to convert from vector to raster is the produc-
tion of binary image masks, describing whether a pixel intersects a line or falls
within a polygon. To convert from vector to a raster mask, we can use the
ee.FeatureCollection.reduceToImage method. Let’s continue with
our example of the WDPA database and Global Forest Change data from the
previous section:

// Load required datasets.
var gfc =
ee.Image('UMD/hansen/global_forest_change_2020_v1_8');
var wdpa =
ee.FeatureCollection('WCMC/WDPA/current/polygons');

// Get deforestation.
var deforestation = gfc.select('lossyear');

// Generate a new property called 'protected' to apply to
the output mask.
var wdpa = wdpa.map(function(feat) {

return feat.set('protected', 1);
});

// Rasterize using the new property.
// unmask() sets areas outside protected area polygons to
0.
var wdpaMask = wdpa.reduceToImage(['protected'],
ee.Reducer.first())

.unmask();

23 Raster/Vector Conversions 455

// Center on Colombia.
Map.setCenter(-75, 3, 6);

// Display on map.
Map.addLayer(wdpaMask, {

min: 0,
max: 1

}, 'Protected areas (mask)');

We can use this mask to, for example, highlight only deforestation that occurs
within a protected area using logical operations:

// Set the deforestation layer to 0 where outside a
protected area.
var deforestationProtected =
deforestation.where(wdpaMask.eq(0), 0);

// Update mask to hide where deforestation layer = 0
var deforestationProtected = deforestationProtected

.updateMask(deforestationProtected.gt(0));

// Display deforestation in protected areas
Map.addLayer(deforestationProtected, {

min: 1,
max: 20,
palette: ['yellow', 'orange', 'red']

}, 'Deforestation protected');

In the above example, we generated a simple binary mask, but
reduceToImage can also preserve a numerical property of the input polygons.
For example, we might want to be able to determine which protected area each
pixel represents. In this case, we can produce an image with the unique ID of each
protected area:

// Produce an image with unique ID of protected areas.
var wdpaId = wdpa.reduceToImage(['WDPAID'],
ee.Reducer.first());

Map.addLayer(wdpaId, {
min: 1,
max: 100000

}, 'Protected area ID');

456 K. Nomura and S. Bowers

This output can be useful when performing large-scale raster operations, such
as efficiently calculating deforestation rates for multiple protected areas.

Code Checkpoint F51d. The book’s repository contains a script that shows what
your code should look like at this point.

23.2.2.2 Section 2.2: A More Complex Example
The reduceToImage method is not the only way to convert a feature collection
to an image. We will create a distance image layer from the boundary of the pro-
tected area using distance. For this example, we return to the La Paya protected
area explored in Sect. 23.2.1.

// Load required datasets.
var gfc =
ee.Image('UMD/hansen/global_forest_change_2020_v1_8');
var wdpa =
ee.FeatureCollection('WCMC/WDPA/current/polygons');

// Select a single protected area.
var protectedArea = wdpa.filter(ee.Filter.equals('NAME',
'La Paya'));

// Maximum distance in meters is set in the brackets.
var distance = protectedArea.distance(1000000);

Map.addLayer(distance, {
min: 0,
max: 20000,
palette: ['white', 'grey', 'black'],
opacity: 0.6

}, 'Distance');

Map.centerObject(protectedArea);

We can also show the distance inside and outside of the boundary by using the
rasterized protected area (Fig. 23.8).

23 Raster/Vector Conversions 457

Fig. 23.8 Distance from the La Paya boundary (left), distance within the La Paya (middle), and
distance outside the La Paya (right)

// Produce a raster of inside/outside the protected area.
var protectedAreaRaster = protectedArea.map(function(feat)
{

return feat.set('protected', 1);
}).reduceToImage(['protected'], ee.Reducer.first());

Map.addLayer(distance.updateMask(protectedAreaRaster), {
min: 0,
max: 20000

}, 'Distance inside protected area');

Map.addLayer(distance.updateMask(protectedAreaRaster.unmask
()
.not()), {

min: 0,
max: 20000

}, 'Distance outside protected area');

Sometimes it makes sense to work with objects in raster imagery. This is an
unusual case of vector-like operations conducted with raster data. There is a good
reason for this where the vector equivalent would be computationally burdensome.

An example of this is estimating deforestation rates by distance to the edge
of the protected area, as it is common that rates of change will be higher at the
boundary of a protected area. We will create a distance raster with three zones
from the La Paya boundary (>1 km, > 2 km, > 3 km, and > 4 km) and to estimate
the deforestation by distance from the boundary (Fig. 23.9).

458 K. Nomura and S. Bowers

Fig. 23.9 Distance zones (top left) and deforestation by zone (<1 km, < 3 km, and < 5 km)

var distanceZones = ee.Image(0)
.where(distance.gt(0), 1)
.where(distance.gt(1000), 2)
.where(distance.gt(3000), 3)
.updateMask(distance.lte(5000));

Map.addLayer(distanceZones, {}, 'Distance zones');

var deforestation = gfc.select('loss');
var deforestation1km =
deforestation.updateMask(distanceZones.eq(1));
var deforestation3km =
deforestation.updateMask(distanceZones.lte(2));
var deforestation5km =
deforestation.updateMask(distanceZones.lte(3));

23 Raster/Vector Conversions 459

}, 'Deforestation within a 3km buffer');
Map.addLayer(deforestation5km, {

min: 0,
max: 1,
opacity: 0.5

}, 'Deforestation within a 5km buffer');

Map.addLayer(deforestation1km, {
min: 0,
max: 1

}, 'Deforestation within a 1km buffer');
Map.addLayer(deforestation3km, {

min: 0,
max: 1,
opacity: 0.5

Lastly, we can estimate the deforestation area within 1 km of the protected area
but only outside of the boundary.

var deforestation1kmOutside = deforestation1km
.updateMask(protectedAreaRaster.unmask().not());

// Get the value of each pixel in square meters
// and divide by 10000 to convert to hectares.
var deforestation1kmOutsideArea =
deforestation1kmOutside.eq(1)

.multiply(ee.Image.pixelArea()).divide(10000);

// We need to set a larger geometry than the protected area
// for the geometry parameter in reduceRegion().
var deforestationEstimate = deforestation1kmOutsideArea

.reduceRegion({
reducer: ee.Reducer.sum(),
geometry: protectedArea.geometry().buffer(1000),
scale: deforestation.projection().nominalScale()

});

print('Deforestation within a 1km buffer outside the
protected area (ha)',

deforestationEstimate);

Code Checkpoint F51e. The book’s repository contains a script that shows what
your code should look like at this point.

460 K. Nomura and S. Bowers

23.3 Synthesis

Question 1. In this lab, we quantified rates of deforestation in La Paya. There
is another protected area in the Colombian Amazon named Tinigua. By modify-
ing the existing scripts, determine how the dynamics of forest change in Tinigua
compare to those in La Paya with respect to:

• the number of deforestation events;
• the year with the greatest number of change events;
• the mean average area of change events;
• the total area of loss.

Question 2. In Sect. 23.2.1.4, we only considered losses of tree cover, but
many protected areas will also have increases in tree cover from regrowth (which
is typical of shifting agriculture). Calculate growth in hectares using the Global
Forest Change dataset’s gain layer for the six protected areas in Sect. 23.2.1.4
by extracting the raster properties and adding them to vector fields. Which has
the greatest area of regrowth? Is this likely to be sufficient to balance out the
rates of forest loss? Note: The gain layer shows locations where tree cover has
increased for the period 2001–2012 (0 = no gain, 1 = tree cover increase), so for
comparability use deforestation between the same time period of 2001–2012.

Question 3. In Sect. 23.2.2.2, we considered rates of deforestation in a buffer zone
around La Paya. Estimate the deforestation rates inside of La Paya using buffer
zones. Is forest loss more common close to the boundary of the reserve?

Question 4. Sometimes it’s advantageous to perform processing using raster oper-
ations, particularly at large scales. It is possible to perform many of the tasks
in Sects. 23.2.1.3 and 23.2.1.4 by first converting the protected area vector to
raster and then using only raster operations. As an example, can you display only
deforestation events > 10 ha in La Paya using only raster data? (Hint: Consider
using ee.Image.connectedPixelCount. You may also want to also look
at Sect. 23.2.2.1).

23.4 Conclusion

In this chapter, you learned how to convert raster to vector and vice versa. More
importantly, you now have a better understanding of why and when such conver-
sions are useful. The examples should give you practical applications and ideas
for using these techniques.

23 Raster/Vector Conversions 461

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

24Zonal Statistics

Sara Winsemius and Justin Braaten

Overview
The purpose of this chapter is to extract values from rasters for intersecting points
or polygons. We will lay out the process and a function to calculate zonal statistics,
which includes optional parameters to modify the function, and then apply the process
to three examples using different raster datasets and combinations of parameters.

Learning Outcomes

• Buffering points as square or circular regions.
• Writing and applying functions with optional parameters.
• Learning what zonal statistics are and how to use reducers.
• Exporting computation results to a table.
• Copying properties from one image to another.

Assumes you know how to

• Recognize similarities and differences among Landsat 5, 7, and 8 spectral bands
(Part I, Part II, Part III).

• Understand distinctions among Image, ImageCollection, Feature, and
FeatureCollection Earth Engine objects (Part I, Part II, Part V).

• Use drawing tools to create points, lines, and polygons (Chap. 6).

S. Winsemius (B)
Department of Land, Air and Water Resources, University of California, One Shields Ave, Davis,
CA 95616-8627, USA
e-mail: swinsemius@ucdavis.edu

J. Braaten
Google Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043, USA
e-mail: braaten@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_24

463

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_24&domain=pdf
mailto:swinsemius@ucdavis.edu
mailto:braaten@google.com
https://doi.org/10.1007/978-3-031-26588-4_24

464 S. Winsemius and J. Braaten

• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Export calculated data to tables with Tasks (Chap. 22).
• Understand the differences between raster and vector data (Chaps. 22 and 23).
• Write a function and map it over a FeatureCollection (Chap. 23).

24.1 Introduction to Theory

Anyone working with field data collected at plots will likely need to summarize
raster-based data associated with those plots. For instance, they need to know the
Normalized Difference Vegetation Index (NDVI), precipitation, or elevation for
each plot (or surrounding region). Calculating statistics from a raster within given
regions is called zonal statistics. Zonal statistics were calculated in Chaps. 22
and 23 using ee.Image.ReduceRegions. Here, we present a more general
approach to calculating zonal statistics with a custom function that works for both
ee.Image and ee.ImageCollection objects. In addition to its flexibility,
the reduction method used here is less prone to “Computed value is too large”
errors that can occur when using ReduceRegions with very large or complex
ee.FeatureCollection object inputs.

The zonal statistics function in this chapter works for an Image or an
ImageCollection. Running the function over an ImageCollection will
produce a table with values from each image in the collection per point. Image col-
lections can be processed before extraction as needed—for example, by masking
clouds from satellite imagery or by constraining the dates needed for a particular
research question. In this tutorial, the data extracted from rasters are exported to a
table for analysis, where each row of the table corresponds to a unique point-image
combination.

In fieldwork, researchers often work with plots, which are commonly recorded
as polygon files or as a center point with a set radius. It is rare that plots will be
set directly in the center of pixels from your desired raster dataset, and many field
GPS units have positioning errors. Because of these issues, it may be important to
use a statistic of adjacent pixels (as described in Chap. 10) to estimate the central
value in what’s often called a neighborhood mean or focal mean (Cansler and
McKenzie 2012; Miller and Thode 2007).

To choose the size of your neighborhood, you will need to consider your
research questions, the spatial resolution of the dataset, the size of your field plot,
and the error from your GPS. For example, the raster value extracted for ran-
domly placed 20 m diameter plots would likely merit use of a neighborhood mean
when using Sentinel-2 or Landsat 8—at 10 m and 30 m spatial resolution, respec-
tively—while using a thermal band from MODIS (Moderate Resolution Imaging
Spectroradiometer) at 1000 m may not. While much of this tutorial is written with
plot points and buffers in mind, a polygon asset with predefined regions will serve
the same purpose.

24 Zonal Statistics 465

Table 24.1 Parameters for bufferPoints

Parameter Type Description

radius Number buffer radius (m)

[bounds = false] Boolean An optional flag indicating whether to transform buffered point
(i.e., a circle) to square bounds

24.2 Practicum

24.2.1 Section 1: Functions

Two functions are provided; copy and paste them into your script:

• A function to generate circular or square regions from buffered points.
• A function to extract image pixel neighborhood statistics for a given region.

24.2.1.1 Section 1.1: Function: BufferPoints(Radius, Bounds)
Our first function, bufferPoints, returns a function for adding a buffer to
points and optionally transforming to rectangular bounds (see Table 24.1).

function bufferPoints(radius, bounds) {
return function(pt) {

pt = ee.Feature(pt);
return bounds ? pt.buffer(radius).bounds() :

pt.buffer(radius);
};

}

24.2.1.2 Section 1.2: Function: ZonalStats(Fc, Params)
The second function, zonalStats, reduces images in an ImageCollection
by regions defined in a FeatureCollection. Note that reductions can return
null statistics that you might want to filter out of the resulting feature collection.
Null statistics occur when there are no valid pixels intersecting the region being
reduced. This situation can be caused by points that are outside of an image or in
regions that are masked for quality or clouds.

This function is written to include many optional parameters (see Table 24.2).
Look at the function carefully and note how it is written to include defaults that
make it easy to apply the basic function while allowing customization.

466 S. Winsemius and J. Braaten

Table 24.2 Parameters for zonalStats

Parameter Type Description

ic ee.ImageCollection Image collection from which to
extract values

fc ee.FeatureCollection Feature collection that provides
regions/zones by which to reduce
image pixels

[params] Object An optional Object that provides
function arguments

[params.reducer =
ee.Reducer.mean()]

ee.Reducer The reducer to apply. Optional

[params.scale = null] Number A nominal scale in meters of the
projection to work in. If null, the
native nominal image scale is used.
Optional

[params.crs = null] String The projection to work in. If null, the
native image Coordinate Reference
System (CRS) is used. Optional

[params.bands = null] Array A list of image band names for which
to reduce values. If null, all bands
will be reduced. Band names define
column names in the resulting
reduction table. Optional

[params.bandsRename = null] Array A list of desired image band names.
The length and order must correspond
to the params.bands list. If null, band
names will be unchanged. Band
names define column names in the
resulting reduction table. Optional

[params.imgProps = null] Array A list of image properties to include
in the table of region reduction
results. If null, all image properties
are included. Optional

[params.imgPropsRename =
null]

Array A list of image property names to
replace those provided by
params.imgProps. The length and
order must match the
params.imgProps entries. Optional

[params.datetimeName =
‘datetime]

String The desired name of the datetime
field. The datetime refers to the
‘system:time_start’ value of the
ee.Image being reduced. Optional

[params.datetimeFormat =
‘YYYY-MM-dd HH:mm:ss]

String The desired datetime format. Use
ISO 8601 data string standards. The
datetime string is derived from the
‘system:time_start’ value of the
ee.Image being reduced. Optional

24 Zonal Statistics 467

var imgRep = ic.first();
var nonSystemImgProps = ee.Feature(null)

 .copyProperties(imgRep).propertyNames();
if (!_params.bands) _params.bands = imgRep.bandNames();
if (!_params.bandsRename) _params.bandsRename =

_params.bands;
if (!_params.imgProps) _params.imgProps =

nonSystemImgProps;
if (!_params.imgPropsRename) _params.imgPropsRename =

_params
 .imgProps;

// Map the reduceRegions function over the image
collection.

var results = ic.map(function(img) {

function zonalStats(ic, fc, params) {
// Initialize internal params dictionary.
var _params = {

 reducer: ee.Reducer.mean(),
 scale: null,
 crs: null,
 bands: null,
 bandsRename: null,
 imgProps: null,
 imgPropsRename: null,
 datetimeName: 'datetime',
 datetimeFormat: 'YYYY-MM-dd HH:mm:ss'
 };

// Replace initialized params with provided params.
if (params) {

for (var param in params) {
 _params[param] = params[param] ||
_params[param];
 }
 }

// Set default parameters based on an image
representative.

468 S. Winsemius and J. Braaten

var propsFrom = ee.List(_params.imgProps)
 .cat(ee.List([_params.datetimeName,

'timestamp']));
var propsTo = ee.List(_params.imgPropsRename)

 .cat(ee.List([_params.datetimeName,
'timestamp']));

var imgProps = img.toDictionary(propsFrom).rename(
 propsFrom, propsTo);

// Subset points that intersect the given image.
var fcSub = fc.filterBounds(img.geometry());
// Reduce the image by regions.
return img.reduceRegions({

 collection: fcSub,
 reducer: _params.reducer,

scale: _params.scale,
crs: _params.crs

 })
 // Add metadata to each feature.

 .map(function(f) {
return f.set(imgProps);

 });

// Converts the feature collection of feature
collections to a single

//feature collection.
 }).flatten();

return results;
}

// Select bands (optionally rename), set a datetime
& timestamp property.

 img = ee.Image(img.select(_params.bands, _params
 .bandsRename))

// Add datetime and timestamp features.
 .set(_params.datetimeName, img.date().format(
 _params.datetimeFormat))

 .set('timestamp',
img.get('system:time_start'));

// Define final image property dictionary to set in
output features.

24 Zonal Statistics 469

24.2.2 Section 2: Point Collection Creation

Below, we create a set of points that form the basis of the zonal statistics calcu-
lations. Note that a unique plot_id property is added to each point. A unique
plot or point ID is important to include in your vector dataset for future filtering
and joining.

var pts = ee.FeatureCollection([
ee.Feature(ee.Geometry.Point([-118.6010, 37.0777]), {

plot_id: 1
}),
ee.Feature(ee.Geometry.Point([-118.5896, 37.0778]), {

plot_id: 2
}),
ee.Feature(ee.Geometry.Point([-118.5842, 37.0805]), {

plot_id: 3
}),
ee.Feature(ee.Geometry.Point([-118.5994, 37.0936]), {

plot_id: 4
}),
ee.Feature(ee.Geometry.Point([-118.5861, 37.0567]), {

plot_id: 5
})

]);

print('Points of interest', pts);

Code Checkpoint F52a. The book’s repository contains a script that shows what
your code should look like at this point.

24.2.3 Section 3: Neighborhood Statistic Examples

The following examples demonstrate extracting raster neighborhood statistics for
the following:

• A single raster with elevation and slope bands.
• A multiband MODIS time series.
• A multiband Landsat time series.

In each example, the points created in the previous section will be buffered
and then used as regions to extract zonal statistics for each image in the image
collection.

470 S. Winsemius and J. Braaten

24.2.3.1 Section 3.1: Topographic Variables
This example demonstrates how to calculate zonal statistics for a single multiband
image. This Digital Elevation Model (DEM) contains a single topographic band
representing elevation.

Section 3.1.1: Buffer the Points
Next, we will apply a 45 m radius buffer to the points defined previously by
mapping the bufferPoints function over the feature collection. The radius is
set to 45 m to correspond to the 90 m pixel resolution of the DEM. In this case,
circles are used instead of squares (set the second argument as false, i.e., do not
use bounds).

// Buffer the points.
var ptsTopo = pts.map(bufferPoints(45, false));

Section 3.1.2: Calculate Zonal Statistics
There are two important things to note about the zonalStats function that this
example addresses:

• It accepts only an ee.ImageCollection, not an ee.Image; single images
must be wrapped in an ImageCollection.

• It expects every image in the input image collection to have a timestamp prop-
erty named ‘system:time_start’ with values representing milliseconds
from 00:00:00 UTC on 1 January 1970. Most datasets should have this property,
if not, one should be added.

// Import the MERIT global elevation dataset.
var elev = ee.Image('MERIT/DEM/v1_0_3');

// Calculate slope from the DEM.
var slope = ee.Terrain.slope(elev);

// Concatenate elevation and slope as two bands of an
image.
var topo = ee.Image.cat(elev, slope)

// Computed images do not have a 'system:time_start'
property; add one based

// on when the data were collected.
.set('system:time_start', ee.Date('2000-01-

01').millis());

24 Zonal Statistics 471

// Wrap the single image in an ImageCollection for use in
the
// zonalStats function.
var topoCol = ee.ImageCollection([topo]);

Define arguments for the zonalStats function and then run it. Note that we
are accepting defaults for the reducer, scale, Coordinate Reference System (CRS),
and image properties to copy over to the resulting feature collection. Refer to the
function definition above for defaults.

// Define parameters for the zonalStats function.
var params = {

bands: [0, 1],
bandsRename: ['elevation', 'slope']

};

// Extract zonal statistics per point per image.
var ptsTopoStats = zonalStats(topoCol, ptsTopo, params);
print('Topo zonal stats table', ptsTopoStats);

// Display the layers on the map.
Map.setCenter(-118.5957, 37.0775, 13);
Map.addLayer(topoCol.select(0), {

min: 2400,
max: 4200

}, 'Elevation');
Map.addLayer(topoCol.select(1), {

min: 0,
max: 60

}, 'Slope');
Map.addLayer(pts, {

color: 'purple'
}, 'Points');
Map.addLayer(ptsTopo, {

color: 'yellow'
}, 'Points w/ buffer');

The result is a copy of the buffered point feature collection with new properties
added for the region reduction of each selected image band according to the given
reducer. A part of the FeatureCollection is shown in Fig. 24.1. The data
in that FeatureCollection corresponds to a table containing the information
of Table 24.3. See Fig. 24.2 for a graphical representation of the points and the
topographic data being summarized.

472 S. Winsemius and J. Braaten

Fig. 24.1 A part of the FeatureCollection produced by calculating the zonal statistics

Table 24.3 Example output from zonalStats organized as a table

plot_id timestamp Datetime elevation slope

1 946684800000 2000-01-01 00:00:00 2648.1 29.7

2 946684800000 2000-01-01 00:00:00 2888.2 33.9

3 946684800000 2000-01-01 00:00:00 3267.8 35.8

4 946684800000 2000-01-01 00:00:00 2790.7 25.1

5 946684800000 2000-01-01 00:00:00 2559.4 29.4

Rows correspond to collection features and columns are feature properties. Note that elevation and
slope values in this table are rounded to the nearest tenth for brevity

24.2.3.2 Section 3.2: MODIS Time Series
A time series of MODIS eight-day surface reflectance composites demonstrates
how to calculate zonal statistics for a multiband ImageCollection that
requires no preprocessing, such as cloud masking or computation. Note that there
is no built-in function for performing region reductions on ImageCollection
objects. The zonalStats function that we are using for reduction is mapping
the reduceRegions function over an ImageCollection.

Section 3.2.1: Buffer the Points
In this example, suppose the point collection represents center points for field plots
that are 100 ×100 m, and apply a 50 m radius buffer to the points to match the
size of the plot. Since we want zonal statistics for square plots, set the second

24 Zonal Statistics 473

Fig. 24.2 Sample points and topographic slope. Elevation and slope values for regions intersect-
ing each buffered point are reduced and attached as properties of the points

argument of the bufferPoints function to true, so that square bounds of the
buffered points are returned.

var ptsModis = pts.map(bufferPoints(50, true));

Section 3.2.2: Calculate Zonal Statistic
Import the MODIS 500 m global eight-day surface reflectance composite collec-
tion and filter the collection to include data for July, August, and September from
2015 through 2019.

var modisCol = ee.ImageCollection('MODIS/006/MOD09A1')
.filterDate('2015-01-01', '2020-01-01')
.filter(ee.Filter.calendarRange(183, 245,

'DAY_OF_YEAR'));

Reduce each image in the collection by each plot according to the following
parameters. Note that this time the reducer is defined as the neighborhood median

474 S. Winsemius and J. Braaten

(ee.Reducer.median) instead of the default mean, and that scale, CRS, and
properties for the datetime are explicitly defined.

// Define parameters for the zonalStats function.
var params = {

reducer: ee.Reducer.median(),
scale: 500,
crs: 'EPSG:5070',
bands: ['sur_refl_b01', 'sur_refl_b02',

'sur_refl_b06'],
bandsRename: ['modis_red', 'modis_nir', 'modis_swir'],
datetimeName: 'date',
datetimeFormat: 'YYYY-MM-dd'

};

// Extract zonal statistics per point per image.
var ptsModisStats = zonalStats(modisCol, ptsModis, params);
print('Limited MODIS zonal stats table',
ptsModisStats.limit(50));

The result is a feature collection with a feature for all combinations of plots and
images. Interpreted as a table, the result has 200 rows (5 plots times 40 images)
and as many columns as there are feature properties. Feature properties include
those from the plot asset and the image, and any associated non-system image
properties. Note that the printed results are limited to the first 50 features for
brevity.

24.2.3.3 Section 3.3: Landsat Time Series
This example combines Landsat surface reflectance imagery across three instru-
ments: Thematic Mapper (TM) from Landsat 5, Enhanced Thematic Mapper Plus
(ETM +) from Landsat 7, and Operational Land Imager (OLI) from Landsat 8.

The following section prepares these collections so that band names are con-
sistent and cloud masks are applied. Reflectance among corresponding bands are
roughly congruent for the three sensors when using the surface reflectance product;
therefore, the processing steps that follow do not address inter-sensor harmoniza-
tion. Review the current literature on inter-sensor harmonization practices if you’d
like to apply a correction.

Section 3.3.1: Prepare the Landsat Image Collection
First, define the function to mask cloud and shadow pixels (See Chap. 15 for more
detail on cloud masking).

24 Zonal Statistics 475

// Mask clouds from images and apply scaling factors.
function maskScale(img) {

var qaMask =
img.select('QA_PIXEL').bitwiseAnd(parseInt('11111',

2)).eq(0);
var saturationMask = img.select('QA_RADSAT').eq(0);

// Apply the scaling factors to the appropriate bands.
var getFactorImg = function(factorNames) {

var factorList =
img.toDictionary().select(factorNames)

.values();
return ee.Image.constant(factorList);

};
var scaleImg =

getFactorImg(['REFLECTANCE_MULT_BAND_.']);
var offsetImg =

getFactorImg(['REFLECTANCE_ADD_BAND_.']);
var scaled =

img.select('SR_B.').multiply(scaleImg).add(
offsetImg);

// Replace the original bands with the scaled ones and
apply the masks.

return img.addBands(scaled, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);

}

Next, define functions to select and rename the bands of interest for the Oper-
ational Land Imager (OLI) aboard Landsat 8, and for the TM/ETM + imagers
aboard earlier Landsats. This is important because the band numbers are different
for OLI and TM/ETM+, and it will make future index calculations easier.

476 S. Winsemius and J. Braaten

// Selects and renames bands of interest for Landsat OLI.
function renameOli(img) {

return img.select(
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6',

'SR_B7'],
['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2']);

}

// Selects and renames bands of interest for TM/ETM+.
function renameEtm(img) {

return img.select(
['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',

'SR_B7'],
['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2']);

}

Combine the cloud mask and band renaming functions into preparation func-
tions for OLI and TM/ETM+. Add any other sensor-specific preprocessing steps
that you’d like to the functions below.

// Prepares (cloud masks and renames) OLI images.
function prepOli(img) {

img = maskScale(img);
img = renameOli(img);
return img;

}

// Prepares (cloud masks and renames) TM/ETM+ images.
function prepEtm(img) {

img = maskScale(img);
img = renameEtm(img);
return img;

}

Get the Landsat surface reflectance collections for OLI, ETM+, and TM sen-
sors. Filter them by the bounds of the point feature collection and apply the
relevant image preparation function.

24 Zonal Statistics 477

var ptsLandsat = pts.map(bufferPoints(15, true));

var oliCol = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterBounds(ptsLandsat)
.map(prepOli);

var etmCol = ee.ImageCollection('LANDSAT/LE07/C02/T1_L2')
.filterBounds(ptsLandsat)
.map(prepEtm);

var tmCol = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2')
.filterBounds(ptsLandsat)
.map(prepEtm);

Merge the prepared sensor collections.

var landsatCol = oliCol.merge(etmCol).merge(tmCol);

Section 3.3.2: Calculate Zonal Statistics
Reduce each image in the collection by each plot according to the fol-
lowing parameters. Note that this example defines the imgProps and
imgPropsRename parameters to copy over and rename just two selected image
properties: Landsat image ID and the satellite that collected the data. It also uses
the max reducer, which, as an unweighted reducer, will return the maximum value
from pixels that have their centroid within the buffer (see Sect. 24.2.4.1 below for
more details).

// Define parameters for the zonalStats function.
var params = {

reducer: ee.Reducer.max(),
scale: 30,
crs: 'EPSG:5070',
bands: ['Blue', 'Green', 'Red', 'NIR', 'SWIR1',

'SWIR2'],
bandsRename: ['ls_blue', 'ls_green', 'ls_red',

'ls_nir',
'ls_swir1', 'ls_swir2'

],
imgProps: ['SENSOR_ID', 'SPACECRAFT_ID'],
imgPropsRename: ['img_id', 'satellite'],
datetimeName: 'date',
datetimeFormat: 'YYYY-MM-dd'

};

478 S. Winsemius and J. Braaten

// Extract zonal statistics per point per image.
var ptsLandsatStats = zonalStats(landsatCol, ptsLandsat,
params)

// Filter out observations where image pixels were all
masked.

.filter(ee.Filter.notNull(params.bandsRename));
print('Limited Landsat zonal stats table',
ptsLandsatStats.limit(50));

The result is a feature collection with a feature for all combinations of plots
and images.

Section 3.3.3: Dealing with Large Collections
If your browser times out, try exporting the results (as described in Chap. 29).
It’s likely that point feature collections that cover a large area or contain many
points (point-image observations) will need to be exported as a batch task by either
exporting the final feature collection as an asset or as a CSV/shapefile/GeoJSON
to Google Drive or GCS.

Here is how you would export the above Landsat image-point feature collection
to an asset and to Google Drive. Run the following code, activate the Code Editor
Tasks tab, and then click the Run button. If you don’t specify your own existing
folder in Drive, the folder “EEFA_outputs” will be created.

Export.table.toAsset({
collection: ptsLandsatStats,
description: 'EEFA_export_Landsat_to_points',
assetId: 'EEFA_export_values_to_points'

});

Export.table.toDrive({
collection: ptsLandsatStats,
folder: 'EEFA_outputs', // this will create a new

folder if it doesn't exist
description: 'EEFA_export_values_to_points',
fileFormat: 'CSV'

});

Code Checkpoint F52b. The book’s repository contains a script that shows what
your code should look like at this point.

24 Zonal Statistics 479

24.2.4 Section 4: Additional Notes

24.2.4.1 Section 4.1: Weighted Versus Unweighted Region Reduction
A region used for calculation of zonal statistics often bisects multiple pixels.
Should partial pixels be included in zonal statistics? Earth Engine lets you decide
by allowing you to define a reducer as either weighted or unweighted (or you
can provide per-pixel weight specification as an image band). A weighted reducer
will include partial pixels in the zonal statistic calculation by weighting each
pixel’s contribution according to the fraction of the area intersecting the region.
An unweighted reducer, on the other hand, gives equal weight to all pixels whose
cell center intersects the region; all other pixels are excluded from calculation of
the statistic.

For aggregate reducers like ee.Reducer.mean and
ee.Reducer.median, the default mode is weighted, while identifier reducers
such as ee.Reducer.min and ee.Reducer.max are unweighted. You can
adjust the behavior of weighted reducers by calling unweighted on them, as
in ee.Reducer.mean.unweighted. You may also specify the weights by
modifying the reducer with splitWeights; however, that is beyond the scope
of this book.

24.2.4.2 Section 4.2: Copy Properties to Computed Images
Derived, computed images do not retain the properties of their source image, so
be sure to copy properties to computed images if you want them included in the
region reduction table. For instance, consider the simple computation of unscaling
Landsat SR data:

// Define a Landsat image.
var img =
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2').first();

// Print its properties.
print('All image properties', img.propertyNames());

// Subset the reflectance bands and unscale them.
var computedImg =
img.select('SR_B.').multiply(0.0000275).add(-0.2);

// Print the unscaled image's properties.
print('Lost original image properties',
computedImg.propertyNames());

Notice how the computed image does not have the source image’s properties
and only retains the bands information. To fix this, use the copyProperties
function to add desired source properties to the derived image. It is best practice

480 S. Winsemius and J. Braaten

to copy only the properties you really need because some properties, such as those
containing geometry objects, lists, or feature collections, can significantly increase
the computational burden for large collections.

// Subset the reflectance bands and unscale them, keeping
selected
// source properties.
var computedImg =
img.select('SR_B.').multiply(0.0000275).add(-0.2)

.copyProperties(img, ['system:time_start',
'LANDSAT_PRODUCT_ID']);

// Print the unscaled image's properties.
print('Selected image properties retained', computedImg
.propertyNames());

Now selected properties are included. Use this technique when returning
computed, derived images in a mapped function, and in single-image operations.

24.2.4.3 Section 4.3: Understanding Which Pixels Are Included
in Polygon Statistics

If you want to visualize what pixels are included in a polygon for a region reducer,
you can adapt the following code to use your own region (by replacing geometry),
dataset, desired scale, and CRS parameters. The important part to note is that the
image data you are adding to the map is reprojected using the same scale and CRS
as that used in your region reduction (see Fig. 24.3).

// Define polygon geometry.
var geometry = ee.Geometry.Polygon(

[
[

[-118.6019835717645, 37.079867782687884],
[-118.6019835717645, 37.07838698844939],
[-118.60036351751951, 37.07838698844939],
[-118.60036351751951, 37.079867782687884]

]
], null, false);

// Import the MERIT global elevation dataset.
var elev = ee.Image('MERIT/DEM/v1_0_3');

24 Zonal Statistics 481

Fig. 24.3 Identifying pixels used in zonal statistics. By mapping the image and vector together,
you can see which pixels are included in the unweighted statistic. For this example, three pixels
would be included in the statistic because the polygon covers the center point of three pixels

// Define desired scale and crs for region reduction (for
image display too).
var proj = {

scale: 90,
crs: 'EPSG:5070'

};

482 S. Winsemius and J. Braaten

The count reducer will return how many pixel centers are overlapped by the
polygon region, which would be the number of pixels included in any unweighted
reducer statistic. You can also visualize which pixels will be included in the reduc-
tion by using the toCollection reducer on a latitude/longitude image and
adding resulting coordinates as feature geometry. Be sure to specify CRS and
scale for both the region reducers and the reprojected layer added to the map (see
bullet list below for more details).

// A count reducer will return how many pixel centers are
overlapped by the
// polygon region.
var count = elev.select(0).reduceRegion({

reducer: ee.Reducer.count(),
geometry: geometry,
scale: proj.scale,
crs: proj.crs

});
print('n pixels in the reduction', count.get('dem'));

// Make a feature collection of pixel center points for
those that are
// included in the reduction.
var pixels = ee.Image.pixelLonLat().reduceRegion({

reducer: ee.Reducer.toCollection(['lon', 'lat']),
geometry: geometry,
scale: proj.scale,
crs: proj.crs

});
var pixelsFc =
ee.FeatureCollection(pixels.get('features')).map(

function(f) {
return

f.setGeometry(ee.Geometry.Point([f.get('lon'), f
.get('lat')

]));
});

24 Zonal Statistics 483

// Display layers on the map.
Map.centerObject(geometry, 18);
Map.addLayer(

elev.reproject({
crs: proj.crs,
scale: proj.scale

}),
{

min: 2500,
max: 3000,
palette: ['blue', 'white', 'red']

color: 'white'
}, 'Geometry');
Map.addLayer(pixelsFc, {

color: 'purple'
}, 'Pixels in reduction');

}, 'Image');
Map.addLayer(geometry, {

Code Checkpoint F52c. The book’s repository contains a script that shows what
your code should look like at this point.

Finally, here are some notes on CRS and scale:

• Earth Engine runs reduceRegion using the projection of the image’s first
band if the CRS is unspecified in the function. For imagery spanning mul-
tiple UTM zones, for example, this would lead to different origins. For some
functions Earth Engine uses the default EPSG:4326. Therefore, when the oppor-
tunity is presented, such as by the reduceRegion function, it is important to
specify the scale and CRS explicitly.

• The Map default CRS is EPSG:3857. When looking closely at pixels on the
map, the data layer scale and CRS should also be set explicitly. Note that
zooming out after setting a relatively small scale when reprojecting may result
in memory and/or timeout errors because optimized pyramid layers for each
zoom level will not be used.

• Specifying the CRS and scale in both the reduceRegion and addLayer
functions allows the map visualization to align with the information printed in
the Console.

• The Earth Engine default, WGS 84 lat long (EPSG:4326), is a generic CRS that
works worldwide. The code above reprojects to EPSG:5070, North American
Equal Albers, which is a CRS that preserves area for North American locations.
Use the CRS that is best for your use case when adapting this to your own
project or maintain (and specify) the CRS of the image using, for example,
crs: ‘img.projection().crs()’.

484 S. Winsemius and J. Braaten

24.3 Synthesis

Question 1. Look at the MODIS example (Sect. 24.2.3.2), which uses the
median reducer. Try modifying the reducer to be unweighted, either by specifying
unweighted or by using an identifier reducer like max. What happens and why?

Question 2. Calculate zonal statistics for your own buffered points or polygons
using a raster and reducer of interest. Be sure to consider the spatial scale of the
raster and whether a weighted or unweighted reducer would be more appropriate
for your interests.

If the point or polygon file is stored in a local shapefile or CSV file, first upload
the data to your Earth Engine assets. All columns in your vector file, such as the
plot name, will be retained through this process. Once you have an Earth Engine
table asset ready, import the asset into your script by hovering over the name of
the asset and clicking the arrow at the right side, or by calling it in your script
with the following code.

var pts = ee.FeatureCollection('users/yourUsername/yourAsset');

If you prefer to define points or polygons dynamically rather than loading an
asset, you can add them to your script using the geometry tools. See Chap. 6 and
22 for more detail on adding and creating vector data.

Question 3. Try the code from Sect. 24.2.4.3 using the MODIS data and the first
point from the pts variable. Among other modifications, you will need to create
a buffer for the point, take a single MODIS image from the collection, and change
visualization parameters.

• Think about the CRS in the code: The code reprojects to EPSG:5070, but
MODIS is collected in the sinusoidal projection SR-ORG:6974. Try that CRS
and describe how the image changes.

• Is the count reducer weighted or unweighted? Give an example of a circum-
stance to use a weighted reducer and an example for an unweighted reducer.
Specify the buffer size you would use and the spatial resolution of your dataset.

Question 4. In the examples above, only a single ee.Reducer is passed to
the zonalStats function, which means that only a single statistic is calculated
(e.g., zonal mean or median or maximum). What if you want multiple statistics—
can you alter the code in Sect. 24.2.3.1 to (1) make the point buffer 500 instead of
45; (2) add the reducer parameter to the params dictionary; and (3) as its argu-
ment, supply a combined ee.Reducer that will calculate minimum, maximum,
standard deviation, and mean statistics?

To achieve this you’ll need to chain several ee.Reducer.combine func-
tions together. Note that if you accept all the individual ee.Reducer and

24 Zonal Statistics 485

ee.Reducer.combine function defaults, you’ll run into two problems related
to reducer weighting differences, and whether or not the image inputs are shared
among the combined set of reducers. How can you manipulate the individual
ee.Reducer and ee.Reducer.combine functions to achieve the goal of
calculating multiple zonal statistics in one call to the zonalStats function?

24.4 Conclusion

In this chapter, you used functions containing optional parameters to extract raster
values for collocated points. You also learned how to buffer points and apply
weighted and unweighted reducers to get different types of zonal statistics. These
functions were applied to three examples that differed by raster dataset, reducer,
spatial resolution, and scale. Lastly, you covered related topics like weighting of
reducers and buffer visualization. Now you’re ready to apply these ideas to your
own work!

References

Cansler CA, McKenzie D (2012) How robust are burn severity indices when applied in a new
region? Evaluation of alternate field-based and remote-sensing methods. Remote Sens 4:456–
483. https://doi.org/10.3390/rs4020456

Miller JD, Thode AE (2007) Quantifying burn severity in a heterogeneous landscape with a relative
version of the delta Normalized Burn Ratio (dNBR). Remote Sens Environ 109:66–80. https://
doi.org/10.1016/j.rse.2006.12.006

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/rs4020456
https://doi.org/10.1016/j.rse.2006.12.006
https://doi.org/10.1016/j.rse.2006.12.006
http://creativecommons.org/licenses/by/4.0/

25Advanced Vector Operations

Ujaval Gandhi

Overview
This chapter covers advanced techniques for visualizing and analyzing vector data
in Earth Engine. There are many ways to visualize feature collections, and you will
learn how to pick the appropriate method to create visualizations, such as a choropleth
map. We will also cover geoprocessing techniques involving multiple vector layers,
such as selecting features in one layer by their proximity to features in another layer
and performing spatial joins.

Learning Outcomes

. Visualizing any vector dataset and creating a thematic map.

. Understanding joins in Earth Engine.

. Carrying out geoprocessing tasks with vector layers in Earth Engine.

Assumes you know how to

. Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).

. Write a function and map it over a FeatureCollection (Chaps. 23
and 24).

U. Gandhi (B)
Spatial Thoughts, Ahmedabad, India
e-mail: ujaval@spatialthoughts.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_25

487

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_25&domain=pdf
http://orcid.org/0000-0003-3255-1934
mailto:ujaval@spatialthoughts.com
https://doi.org/10.1007/978-3-031-26588-4_25

488 U. Gandhi

25.1 Practicum

25.1.1 Section 1: Visualizing Feature Collections

There is a distinct difference between how rasters and vectors are visualized. While
images are typically visualized based on pixel values, vector layers use feature
properties (i.e., attributes) to create a visualization. Vector layers are rendered on
the Map by assigning a value to the red, green, and blue channels for each pixel
on the screen based on the geometry and attributes of the features. The functions
used for vector data visualization in Earth Engine are listed below in increasing
order of complexity.

. Map.addLayer: As with raster layers, you can add a
FeatureCollection to the Map by specifying visualization parame-
ters. This method supports only one visualization parameter: color. All
features are rendered with the specified color.

. draw: This function supports the parameters pointRadius and
strokeWidth in addition to color. It renders all features of the layer
with the specified parameters.

. paint: This is a more powerful function that can render each feature with a
different color and width based on the values in the specified property.

. style: This is the most versatile function. It can apply a different style
to each feature, including color, pointSize, pointShape, width,
fillColor, and lineType.

In the exercises below, we will learn how to use each of these functions and see
how they can generate different types of maps.

25.1.1.1 Section 1.1: Creating a Choropleth Map
We will use the TIGER: US Census Blocks layer, which stores census block
boundaries and their characteristics within the United States, along with the San
Francisco neighborhoods layer from Chap. 22 to create a population density map
for the city of San Francisco.

We start by loading the census blocks and San Francisco neighborhoods lay-
ers. We use ee.Filter.bounds to filter the census blocks layer to the San
Francisco boundary.

25 Advanced Vector Operations 489

var blocks = ee.FeatureCollection('TIGER/2010/Blocks');
var roads = ee.FeatureCollection('TIGER/2016/Roads');
var sfNeighborhoods = ee.FeatureCollection(

'projects/gee-book/assets/F5-0/SFneighborhoods');

var geometry = sfNeighborhoods.geometry();
Map.centerObject(geometry);

// Filter blocks to the San Francisco boundary.
var sfBlocks = blocks.filter(ee.Filter.bounds(geometry));

The simplest way to visualize this layer is to use Map.addLayer (Fig. 25.1).
We can specify a color value in the visParams parameter of the function.
Each census block polygon will be rendered with stroke and fill of the specified
color. The fill color is the same as the stroke color but has a 66% opacity.

Fig. 25.1 San Francisco census blocks

490 U. Gandhi

// Visualize with a single color.
Map.addLayer(sfBlocks, {

color: '#de2d26'
}, 'Census Blocks (single color)');

The census blocks table has a property named ‘pop10’ containing the pop-
ulation totals as of the 2010 census. We can use this to create a choropleth map
showing population density. We first need to compute the population density for
each feature and add it as a property. To add a new property to each feature, we
can map a function over the FeatureCollection and calculate the new prop-
erty called ‘pop_density’. Earth Engine provides the area function, which
can calculate the area of a feature in square meters. We convert it to square miles
and calculate the population density per square mile.

// Add a pop_density column.
var sfBlocks = sfBlocks.map(function(f) {

// Get the polygon area in square miles.
var area_sqmi = f.area().divide(2.59e6);
var population = f.get('pop10');
// Calculate population density.
var density = ee.Number(population).divide(area_sqmi);
return f.set({

'area_sqmi': area_sqmi,
'pop_density': density

});
});

Now we can use the paint function to create an image from this
FeatureCollection using the pop_density property. The paint func-
tion needs an empty image that needs to be cast to the appropriate data type. Let’s
use the aggregate_stats function to calculate basic statistics for the given
column of a FeatureCollection.

// Calculate the statistics of the newly computed column.
var stats = sfBlocks.aggregate_stats('pop_density');
print(stats);

25 Advanced Vector Operations 491

You will see that the population density values have a large range. We also have
values that are greater than 100,000, so we need to make sure we select a data type
that can store values of this size. We create an empty image and cast it to int32,
which is able to hold large integer values.

// Create an empty image into which to paint the features.
// Cast to 32-bit integer which supports storing values
// up to 2,147,483,647.

var empty = ee.Image().int32();

Now we can use the paint function, seen briefly in Chap. 23, to assign each
pixel’s value based on the pop_density property.

var sfBlocksPaint = empty.paint({
featureCollection: sfBlocks,
color: 'pop_density',

});

The result is an image with pixel values representing the population density of
the polygons. We can now use the standard image visualization method to add this
layer to the Map (Fig. 25.2). Then, we need to determine minimum and maximum
values for the visualization parameters. A reliable technique to produce a good
visualization is to find minimum and maximum values that are within one standard
deviation. From the statistics that we calculated earlier, we can estimate good
minimum and maximum values to be 0 and 50,000, respectively.

var palette = ['fee5d9', 'fcae91', 'fb6a4a', 'de2d26',
'a50f15'];
var visParams = {

min: 0,
max: 50000,
palette: palette

};
Map.addLayer(sfBlocksPaint.clip(geometry), visParams,

'Population Density');

492 U. Gandhi

Fig. 25.2 San Francisco population density

25.1.1.2 Section 1.2: Creating a Categorical Map
Continuing the exploration of styling methods, we will now learn about draw
and style. These are the preferred methods of styling for points and line layers.
Let’s see how we can visualize the TIGER: US Census Roads layer to create a
categorical map.

We start by filtering the roads layer to the San Francisco boundary and using
Map.addLayer to visualize it.

// Filter roads to San Francisco boundary.
var sfRoads = roads.filter(ee.Filter.bounds(geometry));

Map.addLayer(sfRoads, {
color: 'blue'

}, 'Roads (default)');

25 Advanced Vector Operations 493

Fig. 25.3 San Francisco roads rendered with a line width of 2 pixels (left) and a line width of
1 pixel (right)

The default visualization renders each line using a width of 2 pixels. The draw
function provides a way to specify a different line width. Let’s use it to render the
layer with the same color as before but with a line width of 1 pixel (Fig. 25.3).

// Visualize with draw().
var sfRoadsDraw = sfRoads.draw({

color: 'blue',
strokeWidth: 1

});
Map.addLayer(sfRoadsDraw, {}, 'Roads (Draw)');

The road layer has a column called “MTFCC” (standing for the MAF/TIGER
Feature Class Code). This contains the road priority codes, representing the various
types of roads, such as primary and secondary. We can use this information to
render each road segment according to its priority. The draw function doesn’t
allow us to specify different styles for each feature. Instead, we need to make use
of the style function.

494 U. Gandhi

The column contains string values indicating different road types as indicated
in Table 25.1. This full list is available at the MAF/TIGER Feature Class Code
Definitions page on the US Census Bureau website.

Let’s say we want to create a map with rules based on the MTFCC values
shown in Table 25.2.

Table 25.1 Census Bureau
road priority codes

MTFCC Feature class

S1100 Primary road

S1200 Secondary road

S1400 Local neighborhood road, rural road, city street

S1500 Vehicular trail

S1630 Ramp

S1640 Service drive

S1710 Walkway/pedestrian trail

S1720 Stairway

S1730 Alley

S1740 Private road for service vehicles

S1750 Internal US Census Bureau use

S1780 Parking lot road

S1820 Bike path or trail

S1830 Bridle path

S2000 Road median

Table 25.2 Styling
parameters for road priority
codes

MTFCC Color Line width

S1100 Blue 3

S1200 Green 2

S1400 Orange 1

All other classes Gray 1

25 Advanced Vector Operations 495

Let’s define a dictionary containing the styling information.

var styles = ee.Dictionary({
'S1100': {

'color': 'blue',
'width': 3

},
'S1200': {

'color': 'green',
'width': 2

},
'S1400': {

'color': 'orange',
'width': 1

}
});
var defaultStyle = {

color: 'gray',
'width': 1

};

The style function needs a property in the FeatureCollection that con-
tains a dictionary with the style parameters. This allows you to specify a different
style for each feature. To create a new property, we map a function over the
FeatureCollection and assign an appropriate style dictionary to a new prop-
erty named ‘style’. Note the use of the get function, which allows us to fetch
the value for a key in the dictionary. It also takes a default value in case the spec-
ified key does not exist. We make use of this to assign different styles to the three
road classes specified in Table 25.2 and a default style to all others.

var sfRoads = sfRoads.map(function(f) {
var classcode = f.get('mtfcc');
var style = styles.get(classcode, defaultStyle);
return f.set('style', style);

});

Our collection is now ready to be styled. We call the style function to specify
the property that contains the dictionary of style parameters. The output of the
style function is an RGB image rendered from the FeatureCollection
(Fig. 25.4).

496 U. Gandhi

Fig. 25.4 San Francisco roads rendered according to road priority

var sfRoadsStyle = sfRoads.style({
styleProperty: 'style'

});
Map.addLayer(sfRoadsStyle.clip(geometry), {}, 'Roads
(Style)');

Code Checkpoint F53a. The book’s repository contains a script that shows what
your code should look like at this point.

Save your script for your own future use, as outlined in Chap. 1. Then, refresh
the Code Editor to begin with a new script for the next section.

25.1.2 Section 2: Joins with Feature Collections

Earth Engine was designed as a platform for processing raster data, and that is
where it shines. Over the years, it has acquired advanced vector data processing
capabilities, and users are now able to carry out complex geoprocessing tasks

25 Advanced Vector Operations 497

within Earth Engine. You can leverage the distributed processing power of Earth
Engine to process large vector layers in parallel.

This section shows how you can do spatial queries and spatial joins using mul-
tiple large feature collections. This requires the use of joins. As described for
Image Collections in Chap. 21, a join allows you to match every item in a collec-
tion with items in another collection based on certain conditions. While you can
achieve similar results using map and filter, joins perform better and give you
more flexibility. We need to define the following items to perform a join on two
collections.

1. Filter: A filter defines the condition used to select the features from the
two collections. There is a suite of filters in the ee.Filters mod-
ule that work on two collections, such as ee.Filter.equals and
ee.Filter.withinDistance.

2. Join type: While the filter determines which features will be joined, the join
type determines how they will be joined. There are many join types, including
simple join, inner join, and save-all join.

Joins are one of the harder skills to master, but doing so will help you perform
many complex analysis tasks within Earth Engine. We will go through practical
examples that will help you understand these concepts and the workflow better.

25.1.2.1 Section 2.1: Selecting by Location
In this section, we will learn how to select features from one layer that are within
a specified distance from features in another layer. We will continue to work with
the San Francisco census blocks and roads datasets from the previous section. We
will implement a join to select all blocks in San Francisco that are within 1 km of
an interstate highway.

We start by loading the census blocks and roads collections and filtering the
roads layer to the San Francisco boundary.

var blocks = ee.FeatureCollection('TIGER/2010/Blocks');
var roads = ee.FeatureCollection('TIGER/2016/Roads');
var sfNeighborhoods = ee.FeatureCollection(

'projects/gee-book/assets/F5-0/SFneighborhoods');

var geometry = sfNeighborhoods.geometry();
Map.centerObject(geometry);

// Filter blocks and roads to San Francisco boundary.
var sfBlocks = blocks.filter(ee.Filter.bounds(geometry));
var sfRoads = roads.filter(ee.Filter.bounds(geometry));

498 U. Gandhi

As we want to select all blocks within 1 km of an interstate highway, we first
filter the sfRoads collection to select all segments with the rttyp property
value of I.

var interstateRoads = sfRoads.filter(ee.Filter.eq('rttyp',
'I'));

We use the draw function to visualize the sfBlocks and
interstateRoads layers (Fig. 25.5).

Fig. 25.5 San Francisco blocks and interstate highways

25 Advanced Vector Operations 499

var sfBlocksDrawn = sfBlocks.draw({
color: 'gray',
strokeWidth: 1

})
.clip(geometry);

Map.addLayer(sfBlocksDrawn, {}, 'All Blocks');
var interstateRoadsDrawn = interstateRoads.draw({

color: 'blue',
strokeWidth: 3

})
.clip(geometry);

Map.addLayer(interstateRoadsDrawn, {}, 'Interstate Roads');

Let’s define a join that will select all the features from the sfBlocks layer
that are within 1 km of any feature from the interstateRoads layer. We start
by defining a filter using the ee.Filter.withinDistance filter. We want
to compare the geometries of features in both layers, so we use a special property
called ‘.geo’ to compare the collections. By default, the filter will work with
exact distances between the geometries. If your analysis does not require a very
precise tolerance of spatial uncertainty, specifying a small non-zero maxError
distance value will help speed up the spatial operations. A larger tolerance also
helps when testing or debugging code so you can get the result quickly instead of
waiting longer for a more precise output.

var joinFilter = ee.Filter.withinDistance({
distance: 1000,
leftField: '.geo',
rightField: '.geo',
maxError: 10

});

We will use a simple join as we just want features from the first (primary)
collection that match the features from the other (secondary) collection.

var closeBlocks = ee.Join.simple().apply({
primary: sfBlocks,
secondary: interstateRoads,
condition: joinFilter

});

500 U. Gandhi

Fig. 25.6 Selected blocks within 1 km of an interstate highway

We can visualize the results in a different color and verify that the join worked
as expected (Fig. 25.6).

var closeBlocksDrawn = closeBlocks.draw({
color: 'orange',
strokeWidth: 1

})
.clip(geometry);

Map.addLayer(closeBlocksDrawn, {}, 'Blocks within 1km');

25 Advanced Vector Operations 501

25.1.2.2 Section 2.2: Spatial Joins
A spatial join allows you to query two collections based on the spatial relationship.
We will now implement a spatial join to count points in polygons. We will work
with a dataset of tree locations in San Francisco and polygons of neighborhoods
to produce a CSV file with the total number of trees in each neighborhood.

The San Francisco Open Data Portal maintains a street tree map dataset that
has a list of street trees with their latitude and longitude. We will also use the San
Francisco neighborhood dataset from the same portal. We downloaded, processed,
and uploaded these layers as Earth Engine assets for use in this exercise. We start
by loading both layers and using the paint and style functions, covered in
Sect. 25.1.1, to visualize them (Fig. 25.7).

Fig. 25.7 San Francisco neighborhoods and trees

502 U. Gandhi

var sfNeighborhoods = ee.FeatureCollection(
'projects/gee-book/assets/F5-0/SFneighborhoods');

var sfTrees = ee.FeatureCollection(
'projects/gee-book/assets/F5-3/SFTrees');

// Use paint() to visualize the polygons with only outline
var sfNeighborhoodsOutline = ee.Image().byte().paint({

featureCollection: sfNeighborhoods,
color: 1,
width: 3

});
Map.addLayer(sfNeighborhoodsOutline, {

palette: ['blue']
},
'SF Neighborhoods');

// Use style() to visualize the points
var sfTreesStyled = sfTrees.style({

color: 'green',
pointSize: 2,
pointShape: 'triangle',
width: 2

});
Map.addLayer(sfTreesStyled, {}, 'SF Trees');

To find the tree points in each neighborhood polygon, we will use an
ee.Filter.intersects filter.

var intersectFilter = ee.Filter.intersects({
leftField: '.geo',
rightField: '.geo',
maxError: 10

});

We need a join that can give us a list of all tree features that intersect each
neighborhood polygon, so we need to use a saving join. A saving join will find all
the features from the secondary collection that match the filter and store them in a
property in the primary collection. Once you apply this join, you will get a version
of the primary collection with an additional property that has the matching features
from the secondary collection. Here we use the ee.Join.saveAll join, since
we want to store all matching features. We specify the matchesKey property
that will be added to each feature with the results.

25 Advanced Vector Operations 503

var saveAllJoin = ee.Join.saveAll({
matchesKey: 'trees',

});

Let’s apply the join and print the first feature of the resulting collection to verify
(Fig. 25.8).

var joined = saveAllJoin
.apply(sfNeighborhoods, sfTrees, intersectFilter);

print(joined.first());

You will see that each feature of the sfNeighborhoods collection now
has an additional property called trees. This contains all the features from the
sfTrees collection that were matched using the intersectFilter. We can

Fig. 25.8 Result of the save-all join

504 U. Gandhi

Fig. 25.9 Final FeatureCollection with the new property

now map a function over the results and post-process the collection. As our analy-
sis requires the computation of the total number of trees in each neighborhood,
we extract the matching features and use the size function to get the count
(Fig. 25.9).

// Calculate total number of trees within each feature.
var sfNeighborhoods = joined.map(function(f) {

var treesWithin = ee.List(f.get('trees'));
var totalTrees =

ee.FeatureCollection(treesWithin).size();
return f.set('total_trees', totalTrees);

});

print(sfNeighborhoods.first());

The results now have a property called total_trees containing the count
of intersecting trees in each neighborhood polygon.

The final step in the analysis is to export the results as a CSV file using
the Export.table.toDrive function. Note that as described in detail in
Chap. 29, you should output only the columns you need to the CSV file. Sup-
pose we do not need all the properties to appear in the output; imagine that we
do not need the trees property, for example, in the output. In that case, we can
create only those columns we want in the manner below, by specifying the other
selectors parameters with the list of properties to export.

25 Advanced Vector Operations 505

// Export the results as a CSV.
Export.table.toDrive({

collection: sfNeighborhoods,
description: 'SF_Neighborhood_Tree_Count',
folder: 'earthengine',
fileNamePrefix: 'tree_count',
fileFormat: 'CSV',
selectors: ['nhood', 'total_trees']

});

The final result is a CSV file with the neighborhood names and total numbers
of trees counted using the join (Fig. 25.10).

Code Checkpoint F53b. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 25.10 Exported CSV file with tree counts for San Francisco neighborhoods

506 U. Gandhi

25.2 Synthesis

Assignment 1. What join would you use if you wanted to know which neighbor-
hood each tree belongs to? Modify the code above to do a join and post-process
the result to add a neighborhood property to each tree point. Export the results as
a shapefile.

25.3 Conclusion

This chapter covered visualization and analysis using vector data in Earth Engine.
You should now understand different functions for FeatureCollection visu-
alization and be able to create thematic maps with vector layers. You also learned
techniques for doing spatial queries and spatial joins within Earth Engine. Earth
Engine is capable of handling large feature collections and can be effectively used
for many spatial analysis tasks.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

26GEEDiT—Digitizing from Satellite
Imagery

James Lea

Overview
Earth surface margins and features are often of key interest to environmental scien-
tists. A coastline, the terminus of a glacier, the outline of a landform, and many other
examples can help illustrate past, present, and potential future environmental change.
The information gained from these features can be used to achieve greater under-
standing of the underlying processes that are controlling these systems, to monitor
their responses to ongoing environmental changes, and to assess and inform wider
socio-economic impacts at local to global scales.

While it is common practice in remote sensing to automate identification of mar-
gins from imagery, these attempts are not always successful or transferable between
seasons or locations. Furthermore, in some circumstances, the nature of the mar-
gins that need to be identified means that implementing automated approaches are
not always necessary, desirable, or even possible. In such cases, user-led manual
digitization of margins may be the only appropriate way to generate accurate, user-
verified data. However, users who wish to undertake this analysis at scale often face
the time-consuming challenge of having to download and process large volumes of
satellite imagery. Furthermore, issues such as internet connection speed, local stor-
age capacity, and computational processing power availability can potentially limit
or even preclude this style of analysis, leading to a fundamental inequality in the
ability of users to generate datasets of comparable standards.

The Google Earth Engine Digitisation Tool (GEEDiT) is built to allow any
researcher to rapidly access satellite imagery and directly digitize margins as lines or
polygons. With a simple user interface and no need to download enormous images,
GEEDiT leverages Earth Engine’s cloud computing power and its access to satellite

J. Lea (B)
Department of Geography and Planning, School of Environmental Sciences, University of
Liverpool, Liverpool, UK
e-mail: j.lea@liverpool.ac.uk

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_26

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_26&domain=pdf
http://orcid.org/0000-0003-1885-0858
mailto:j.lea@liverpool.ac.uk
https://doi.org/10.1007/978-3-031-26588-4_26

508 J. Lea

image repositories (Lea 2018). When the delineated vector margins are exported, they
are also appended with standardized metadata from the source imagery. In doing so,
users can easily trace back to which images associate with which digitized margins,
facilitating reproducibility, independent verification, and building of easily shareable
and transferable datasets (e.g., Goliber et al. 2022). Since GEEDiT is used through
a graphical user interface, it requires no coding ability in Earth Engine to use it.

GEEDiT has been used for research in glaciology (e.g., Tuckett et al. 2019; Fahrner
et al. 2021), hydrology (e.g., Boothroyd et al. 2021; Scheingross et al. 2021), and lake
extent (e.g., Kochtitzky et al. 2020; Field et al. 2021) in addition to other fields. Ver-
sion 2 of GEEDiT was released in early 2022 with improved functionality, usability,
and access to new datasets.

Learning Outcomes

. Understanding how to use the GEEDiT v2 interface and export data from it.

. Becoming aware of some of the new functionality introduced in GEEDiT v2.

. Learning about potential options to customize GEEDiT v2 visualization param-
eters.

Assumes you know how to

. Use drawing tools to create points, lines, and polygons (Chap. 6).

. Recognize similarities and differences among satellite spectral bands (Part I,
Part II, Part III).

26.1 Introduction to Theory

As a tool, GEEDiT came about due to the author’s frustration with the require-
ment to download, process, and visualize significant volumes of satellite imagery
for simple margin analysis, in addition to the tedious steps required for appending
comprehensive and consistent metadata to them. GEEDiT was built to take advan-
tage of Earth Engine’s capability for rapid cloud-based data access, processing and
visualization, and potential for fully automated assignment of metadata.

GEEDiT allows users to visualize, review, and analyze an image in poten-
tially a few seconds, whereas previously downloading and processing a single
image would have taken considerably longer in a desktop GIS environment. Con-
sequently, GEEDiT users can obtain margin data from significantly more imagery
than was previously possible in the time available to them. Users can create larger,
more spatially and temporally comprehensive datasets compared to traditional
approaches, with automatically appended metadata also allowing easier dataset
filtering, and tracing of data back to original source imagery. Where coding-based
analysis of GEEDiT output is applied, the standardization of metadata also facil-
itates the transferability of code between datasets, and assists in the collation of

26 GEEDiT—Digitizing from Satellite Imagery 509

homogenized margin and feature datasets that have been generated by multiple
users (e.g., Goliber et al. 2022).

GEEDiT version 2 (hereafter GEEDiT) was released in January 2022 to provide
improvements to the user experience of the tool, and the imagery data that it can
access. Similar to version 1, it is a graphical user interface (GUI) built entirely
within Earth Engine’s JavaScript API. This chapter provides a walkthrough of
GEEDiT’s user interface, alongside information on how users can get the most out
of its functionality.

26.2 Practicum

Code Checkpoint F54a. The book’s repository contains information about access-
ing the interface for GEEDiT.

Below, each step required to extract data from GEEDiT is described, using an
example of digitizing the margin of a Greenlandic marine terminating glacier.

26.2.1 Section 1: Loading GEEDiT and Selecting Imagery Options
and a Location

Click on the link to GEEDiT v2.02 Tier 1, to open the GUI in a new tab as shown
in Fig. 26.1. If you are interested in the underlying code, you can view this in the
Code Editor. Resize the view to maximize the map portion of the Earth Engine
interface. If the interface does not appear, click the Run button above the Code
Editor at the top of the page.

Fig. 26.1 Starting screen of GEEDiT

510 J. Lea

26.2.1.1 Section 1.1: Description of Starting Page Interface
Brief instructions on how to use the GUI are given at the bottom left of the
interface, while image selection options are provided on the right (Fig. 26.2).

In this panel, you can define the date range, month range, maximum allowable
cloud cover, export task frequency, and satellite platforms for the images you want
to analyze. Each of these is explained in turn below:

. Define start/end dates in YYYY-MM-DD format: These fields provide text
boxes for you to define the date range of interest. The default start date is
given as 1950-01-01, and the end date is the date the tool is being run. In this
example, we use the default settings, so you do not need to make any changes to
the default values. However, common issues that arise using this functionality
include:
– Not entering a date that is compatible with the YYYY-MM-DD for-

mat, including: placing days, months, and years in the wrong order (e.g.,
02-22-2022); and not using ‘-’ as a separator (e.g., 2022/22/02).

– Entering a date that cannot exist (e.g., 2022-09-31).
– Not including a leading 0 for single digit days or months (e.g., 2022-2-2).
– Not entering the full four-digit year (e.g., 22-02-02).
– Typographical errors.

Fig. 26.2 Options for which images to include for visualization

26 GEEDiT—Digitizing from Satellite Imagery 511

. Month start and month end: These are optional dropdown menus that allow
users to obtain imagery only from given ranges of months within the previously
defined date range. If users do not define these, imagery for the full year will be
returned. In some cases (e.g., analysis of imagery during the austral summer),
users may wish to obtain imagery from a month range that may span the year
end (e.g., November–February). For this month range, this can be achieved by
selecting a start month of 11, and a month end of 2. Given that glacier margins
are often clearest and easiest to identify during the summer months, set the start
month to July (7) and end month to September (9).

. Max. cloud cover: This field filters imagery by cloud cover metadata val-
ues that are appended to imagery obtained from optical satellite platforms,
such as Landsat, Sentinel-2, and ASTER satellites. The names of the meta-
data that hold this information vary between these satellite platforms and
are ‘CLOUD_COVER’, ‘CLOUDY_PIXEL_PERCENTAGE’, and ‘CLOUD-
COVER’ respectively. Values associated with these image metadata represent
automatically derived estimates of the percentage cloud cover of an entire image
scene. These are calculated in different ways for the different satellites depend-
ing on the processing chain performed by NASA/ESA when the imagery was
acquired.
Also, note that Sentinel-2 and ASTER imagery footprints are smaller than those
of Landsat, meaning that 1% cloud cover for a Landsat image will cover a
larger geographic area than 1% of a Sentinel-2 or ASTER image. Here we use
the default setting (maximum 20% cloud cover), so you can leave this field
unchanged.

. Automatically create data export task every n images: This will generate a
data export task in Earth Engine for every n images viewed, where n is the value
entered. The reason for including this as an option is that manual digitization
features from imagery can be time-consuming depending on the level of detail
required or number of features on an image. While rare, data losses can result
from internet connection dropout, computer crashes, or the Earth Engine server
going offline, so exporting digitized data frequently can help guard against this.

. Satellites: This menu provides a list of checkboxes of all the satellite platforms
from which imagery is available (Table 26.1). Descriptions of aspects of each
satellite that users should be aware of when using these data for digitizing
margins are described below.
– ASTER L1T Radiance: The Advanced Spaceborne Thermal Emission

and Reflection Radiometer (ASTER) collects both daytime and nighttime
imagery. (Some images may appear black.) The lack of a blue spectral band
on ASTER means that it is not possible to visualize imagery as “true color”
(i.e., red–green–blue), though it does allow imagery to be visualized at up
to 15 m pixel resolution. The default color channel visualization for ASTER
within GEEDiT is: B3N, near infrared in the red channel; B02, visible red
in the green channel; B01, visible green/yellow in the blue channel.

– Landsat 4 Top of Atmosphere (TOA): The default image collection for
Landsat 4 and all Landsat satellites listed below are taken from the TOA

512 J. Lea

Table 26.1 Key information for each satellite

Satellite No. of bands True color? Optical/SAR Date range Resolution (dependent
on bands used)

ASTER 14 No Optical 03/00–present Up to 15 m

Landsat 4 7 Yes Optical 08/82–11/93 Up to 30 m

Landsat 5 7 Yes Optical 03/84–05/12 Up to 30 m

Landsat 7 9 Yes Optical 05/99–present Up to 15 m

Landsat 8 11 Yes Optical 03/13–present Up to 15 m

Sentinel-1 Up to 4 No SAR 10/14–present Up to 10 m

Sentinel-2 14 Yes Optical 06/15–present Up to 10 m

collections where the imagery has been calibrated for top of atmosphere
reflectance (see Chander et al. 2009). The density of global coverage for
Landsat 4 is variable, meaning that some regions may not possess any
available images.

– Landsat 5 TOA: Similar to Landsat 4, Landsat 5 has variable global
coverage, meaning that some remote regions may have very few or no
images.

– Landsat 7 Real-Time Data, TOA Reflectance: Beginning in 2003, a failure
in the satellite’s scan-line corrector (SLC) mirror has resulted in data gaps
on Landsat 7 imagery. The impact of this instrument failure is that stripes of
missing data of increasing width emanate from near the center of the image
scene, which can lead to challenges in continuous mapping of features or
margins. The orbit of Landsat has also been drifting since 2017 meaning
that the time of day when imagery is acquired for a given location has been
getting earlier.

– Landsat 8 Real-Time Data, TOA Reflectance: Landsat 8 is automatically
updated with new imagery as it becomes available. Note that the red, green,
and blue bands are different for Landsat 8 compared to Landsat 4, 5, and 7
due to the addition of the coastal aerosol band as band 1.

– Sentinel-1 SAR GRD: Unlike other satellites that are listed as options in
GEEDiT, Sentinel-1 is a synthetic aperture radar (SAR) satellite (i.e., it is
an active source satellite operating in the radio frequency range and does
not collect visible spectrum imagery). A notable advantage of SAR imagery
is that it is unaffected by cloud cover (cloud is transparent at radio fre-
quencies) or sun illumination, providing full scene coverage for each image
acquisition. Sentinel-1 transmits and receives reflected radio waves in either
the vertical (V) or horizontal (H) polarizations, providing up to four bands
available in Sentinel-1 data: VV, VH, HH, and HV. In practice, a subset of
these bands are usually acquired for each Sentinel-1 scene, with GEEDiT
automatically visualizing the first available band. However, care needs to be
taken when using this imagery for digitizing margins or features. This arises

26 GEEDiT—Digitizing from Satellite Imagery 513

from the satellite being “side-looking,” which results in the location accu-
racy and ground resolution of imagery being variable, especially in areas of
steep topography. The Sentinel-1 imagery available in Earth Engine is the
ground range detected (GRD) product, meaning that a global digital eleva-
tion model (DEM) has been used to ortho-correct imagery. However, where
there is a mismatch between the DEM used for ortho-correction and the
true surface elevation (e.g., arising from glacier thinning), this may result
in apparent shifts in topography between images that are non-negligible for
analysis. This is especially the case where vectors are digitized from imagery
obtained from both ascending and descending parts of its orbit. The mag-
nitude of these apparent shifts will be dependent on the satellite look angle
and mismatch between the DEM and true surface elevation, meaning that
applying corrections without up-to-date DEMs is unfortunately non-trivial.
For these reasons, it is suggested that where Sentinel-1 imagery is used to
delineate margins or features that they are used for quantifying relative rather
than absolute change, and significant care should be taken in the interpreta-
tion of margin and feature data generated from this imagery. As a result of
these caveats, Sentinel-1 is not selected as a default option for visualization.

– Sentinel-2 MSI: Level 1C: The image collection included in GEEDiT is the
Level 1C TOA data that provides global coverage. Also note that the ground
control and ortho-correction for Sentinel-2 imagery are performed using a
different DEM compared to Landsat satellites, meaning there may be small
differences in geolocation consistency between imagery from these different
platforms. Where margin or feature data from both these platform types are
combined, users should, therefore, check the level of accuracy it is possible
to derive, especially where fine scale differences between margins or features
(e.g., a few pixels) are important (e.g., Brough et al. 2019).

26.2.1.2 Section 1.2: Visualizing Imagery at a Given Location
To visualize imagery once the desired options have been defined, zoom into your
area of interest (in this case, southwest Greenland) and simply click on the map
where imagery should be loaded. Once this is done, an “Imagery loading” panel
will appear while GEEDiT collates all imagery for the clicked location that sat-
isfies the image selection options. If lots of imagery is returned, then it may take
30 s to a minute for the list of images to be obtained. Once GEEDiT has loaded
this, the vector digitization screen will appear, and the earliest image available
from the list will be visualized automatically (Fig. 26.3).

26.2.2 Section 2: GEEDiT Digitisation Interface

26.2.2.1 Section 2.1: Digitizing and Editing Margins and Features
The GEEDiT digitization interface will load and the first image will appear, pro-
viding you with multiple options to interact with vectors and imagery. However,

514 J. Lea

Fig. 26.3 GEEDiT vector digitization screen with first available image for a glacier in southwest
Greenland visualized

if you wish to begin digitizing straight away, you can do so by clicking directly
on the image, and double clicking to finish the final vertex of the feature or mar-
gin. By default, vectors will be digitized as a line. However, you can also draw
polygons by selecting this option from the top left of the screen.

Once vectors have been digitized, you may wish to modify or delete vectors
where required. To do this, either click the edit button on the top left panel before
clicking on the digitized margin that is to be changed, or press the keyboard escape
key and click to select the margin (Fig. 26.4). The selected vector will show all
digitized vertices as solid white circles, and the midpoints between vertices as
semi-transparent circles. Any of these can be dragged using the cursor to modify
the vector. If you want to delete the entire vector, press your keyboard’s Delete
key.

In order to begin digitizing again, hover your cursor over the geometry layer at
the top left of the screen, and click on the relevant layer so that it changes from
standard to bold typeface (Fig. 26.5). Do not use the “+ new layer” option.

You can then digitize multiple lines and/or polygons to individual images, and
they will be saved in the geometry layer selected. The name of the geometry
layer is given in the format t YYYY MM DD HHmm, also providing you with
information as to the precise time and date that the source image was acquired.

26.2.2.2 Section 2.2: Moving Between Images
There are multiple options in GEEDiT for how you can move from the current
image to the next. Options to move between images are contained in the two panels
on the right-hand side of the screen (Fig. 26.6). Note that when a new image is
loaded, the interface creates a new geometry layer for that image, and sets previous
layers to be not visible on the map (though these can be easily visualized where

26 GEEDiT—Digitizing from Satellite Imagery 515

Fig. 26.4 Digitized vector along a glacier terminus that has been selected for editing

Fig. 26.5 To continue adding vectors to the image after editing, select geometry layer to add
vectors to so that the layer name appears in bold typeface

comparison may be needed). The geometry layer related to the current image will
be black, while vectors digitized from other imagery will be blue.

To move between images, the first option is to click Next image; if you do,
the user interface will load image number 2 in the list. Similarly, the Previous
image button will load the preceding image in the list where one is available. Try
clicking Next image to bring up image number 2.

Other options to move between images are provided in the panel on the upper
right of the screen (Fig. 26.6, right). This panel contains information on which
satellite the image was acquired by, the date that the image was acquired, and the
image number. The date and image number are contained within editable textboxes
and provide two different ways for moving to a new image.

516 J. Lea

Fig. 26.6 Options for how to move between images are contained in the two panels on the right-
hand side of the digitization interface

The first option is to edit the text box containing the date of the current image
(in YYYY-MM-DD format) and allows users to skip to the image in the list that is
closest in time to the date that they define. Once the new date has been entered,
the user should press the keyboard enter key to trigger the image to load. GEEDiT
will then visualize the image that is closest to the user defined date and update the
value of the text box with the actual date of the image. The second option is to
change the image number text box value, press enter, and then GEEDiT will load
that image number from the list of images available. Try each of these options for
yourself.

26.2.2.3 Section 2.3: Visualizing Previously Digitized Margins
or Features on the Current Image

The geometries of each vector digitized from each image are retained as geometry
layers in the digitization interface (Fig. 26.5). Consequently, you can re-visualize
previously digitized vectors on the current image by toggling the checkboxes next
to each geometry layer, providing a means to briefly check how or if a feature
has changed between one date or another. In the user interface the margin relating
to the current image will appear as black, while previously digitized vectors will
appear as blue (Fig. 26.7). This functionality is not intended as a substitute for
analysis, but a means for you to quickly check whether change has occurred, thus
facilitating potential study site identification.

26.2.2.4 Section 2.4: Extra Functionality
GEEDiT provides the ability to compare between images, for interpreting subtle
features in the current image. This functionality is contained in the top left panel
of the digitization interface (Fig. 26.8).

The options in this panel allow users to easily add the images immediately
preceding and following the current image. Try clicking on these buttons to add
imagery to the map and use the Remove added images button to remove any
imagery that has been added to leave only the original image visualized. To aid
comparison between images, try using the image layer transparency slider bars

26 GEEDiT—Digitizing from Satellite Imagery 517

Fig. 26.7 Digitization interface showing a previously digitized margin (blue line, 1999-09-08)
and the currently visualized image (black line, 2021-10-24)

Fig. 26.8 Top left panel of digitization interface showing options to visualize subsequent and
previous imagery

contained in the map Layers dropdown in the top right of the digitization interface
(Fig. 26.9).

When using this option take care to ensure that vectors are digitized directly
from the current image only (in the case above, 1999-09-08) to ensure data
consistency.

26.2.2.5 Section 2.5: Image Quality Flags
For some margins and features, it may be necessary to note problems that have
impacted the quality of vector digitization. To aid in this, GEEDiT includes several

518 J. Lea

Fig. 26.9 The layers menu as it appears on the digitization interface (left) and how it appears when
a user hovers the cursor over it (right). The slider bars can be used to toggle image transparency

quality flags for common issues. These are contained in the panel in the bottom
left of the screen with information from these flags added to vector metadata upon
export (Fig. 26.10).

These quality flags help you to subsequently filter any vectors impacted by
imagery issues that may affect the quality or accuracy of the vector digitization.
These options are:

. Cloud/shadow affected: The user may wish to flag a vector as having been
negatively impacted by cloud or shadow.

. Margin checked against different image: This flag is automatically checked
when you add an image for comparison (see above and Fig. 26.8).

. SLC failure affected: This flag is automatically checked if margins from an
image that is impacted by the Landsat 7 SLC failure are used (see Sect. 26.2.1,
Landsat 7 description). You may wish to uncheck this box if vectors that are dig-
itized from SLC failure affected imagery fall within areas that are not impacted
by image data gaps.

. Only part of margin digitized: When it is only possible for you to digitize part
of the full feature of interest, then this flag should be checked.

. Text box for user notes: This text box provides the opportunity for you to
provide brief notes (up to 256 characters) on the vectors digitized. These notes
will be preserved in the exported data.

Fig. 26.10 Image quality flag options in lower left panel of digitization interface

26 GEEDiT—Digitizing from Satellite Imagery 519

26.2.2.6 Section 2.6: Exporting Data
Once you have digitized all the vectors that you wish to, or you have reviewed
enough imagery to automatically trigger an export task (see Sect. 26.2.1 and
Fig. 26.2), you can export your digitized vectors to your Google Drive or to Earth
Engine as an asset. To manually trigger an export task, try clicking the Export
GeoJSON button in the bottom right panel shown on the screen (Fig. 26.6). It is
important to note that just this step alone will not result in data being exported. To
execute the export task, go to the Tasks tab next to the Earth Engine Code Editor.
To access this, you may need to resize the map from the top of the screen to make
this visible (Fig. 26.11).

To trigger the export, click the blue Run button in the Tasks tab. This will
bring up the Earth Engine data export menu (Fig. 26.12). In this menu, the user
has the option to define the task name (note that this is not how the export will be
saved, but how the name of the export task will appear in the Tasks tab), the folder
in Google Drive where the exported file will be saved, the name of the exported
file, and the format of the exported file. As default, the GeoJSON file format is
selected, due to its capability of retaining both line and polygon vectors within
the same file. If users have digitized only lines or only polygons, it is possible to
export these as shapefiles. However, if a user attempts to export a combination of
lines and polygons as a single shapefile, this will fail. GeoJSON files can be easily
imported into GIS platforms, such as QGIS or ArcGIS, while their consistent file
structure also assists coding-based analysis.

Fig. 26.11 Resizing the map to show the Code Editor (left), and the Tasks tab (right) that can be
found to the right of the Code Editor panel

520 J. Lea

Fig. 26.12 Earth Engine
data export menu

26.2.3 Section 3: Making GEEDiT Fit Your Own Purposes
(Advanced)

26.2.3.1 Section 3.1: Changing Default Image Band Combinations
and Visualization Ranges

GEEDiT has been designed to visualize, where possible, true color satellite
imagery at the highest possible spatial resolution. However, for some applica-
tions, margins or features may be identified more easily using different satellite
image band combinations or minimum/maximum image data ranges. Where this
is necessary, there are two options available to you:

1. After an image has been visualized, try manually editing the image bands
and data range by hovering over the map Layers menu and the image to
be edited (Fig. 26.9), before clicking the Gear icon that appears next to the
image name. This will bring up image visualization options that allow editing
of the image band combination, in addition to a variety of options to define the
minimum/maximum data values. Try exploring some of the options that this
provides, and to implement the changes, click the Apply button to re-visualize
the image using the new band and minimum/maximum visualization options
(Fig. 26.13). However, note that this will not change the default visualization
options in GEEDiT, and if you go to the next image, the default visualization
options will be restored (see below).

2. Changing GEEDiT’s default image band combinations and/or mini-
mum/maximum values requires direct editing GEEDiT’s code within the GEE
code editor and making changes to the imVisParams variable (Fig. 26.14;
L420-428 in GEEDiT v2.02). This will allow you to change the default band
combinations and other image visualization options for each satellite. Once
changes have been made, click the Run button above the Code Editor for the

26 GEEDiT—Digitizing from Satellite Imagery 521

Fig. 26.13 Menu for editing image visualization properties

Fig. 26.14 Default image visualization parameters for GEEDiT

changes to take effect. If you are unfamiliar with Earth Engine or JavaScript,
any changes in GEEDiT’s code should be undertaken with care, given that
any small formatting errors could result in the tool failing to run or resulting
in unexpected behavior. It is suggested that users take care not to delete any
brackets, colons, commas, or inverted commas when editing these visualiza-
tion options. Note that while Sentinel-1 has the HH band selected as default, in
practice this is not frequently used, as some Sentinel-1 images do not contain
this band.

26.2.3.2 Section 3.2: Filtering Image Lists by Other Image Metadata
The GEEDiT user interface is intended to provide a simple means by which
margins and features can be digitized from satellite imagery. It is purposely not
designed to provide comprehensive image filtering options so as to retain an intu-
itive, straightforward user experience. However, it is possible to make additions
to GEEDiT’s code that allow users to filter image collections by other image
metadata.

522 J. Lea

For example, in order to find imagery that highlights margins or features using
shadows, users may wish to only digitize from optical imagery where the sun
angle at the time of image acquisition does not exceed a given value. This can be
achieved by adding lines that will filter imagery by metadata values to L326-387
(GEEDiT v2.02). If you wish to do this, then care should be taken to ensure that the
correct image metadata names are used, and also note that these metadata names
can vary between satellite platforms. More information on the metadata avail-
able for each satellite platform can be found in the relevant links in Sect. 26.2.1
where the satellites are described. For more information on how to filter image
collections, see Chap. 13.

26.2.3.3 Section 3.3: Changing Image Collections Used in GEEDiT
For optical satellites, GEEDiT uses real-time TOA image collections for Landsat
and Sentinel-2, as these provide the highest numbers of images (see Sect. 26.2.1).
However, in some circumstances, it may be more appropriate to use different image
collections that are available in Earth Engine (e.g., surface reflectance imagery that
has been calibrated for atmospheric conditions at the time of acquisition). If this
is the case, you can change GEEDiT’s code to access this imagery as default
by updating the image collection paths used to access satellite data (contained
between L326-387 in GEEDiT v2.02).

The different image collections available within Earth Engine can be explored
using the search bar at the top of the screen above the user interface, and users
should read information relating to each image collection carefully to ensure that
the data will be appropriate for the task that they wish to undertake. Users should
also replace paths in a “like for like” fashion (i.e., Landsat 8 TOA replaced with
Landsat 8 SR), as otherwise this will result in incorrect metadata being appended
to digitized vectors when they are exported. To do this, try replacing the Landsat
8 TOA collection with the path name for a Landsat 8 Surface Reflectance image
collection that can be found using the search bar. Once you have made the changes,
click Run for them to take effect.

26.2.3.4 Section 3.4: Saving Changes to GEEDiT Defaults for Future
Use

If you have edited GEEDiT to implement your own defaults, then you can save
this for future use rather than needing to change these settings each time you open
GEEDiT. This can be easily done by clicking the Save button at the top of the Code
Editor, allowing you to access your edited GEEDiT version via the Scripts tab to
the left of the Code Editor. For more information on the Earth Engine interface,
see Chap. 1.

26.3 Synthesis

You should now be familiar with the GEEDiT user interface, its functionality, and
options to modify default visualization parameters of the tool.

26 GEEDiT—Digitizing from Satellite Imagery 523

Assignment 1. Visualize imagery from your own area of interest and digitize
multiple features or margins using polygons and lines.

Assignment 2. Export these data and visualize them in an offline environment
(e.g., QGIS, ArcMap, Matplotlib), and view the metadata associated with each
vector. Think how these metadata may prove useful when post-processing your
data.

Assignment 3. Try modifying the GEEDiT code to change the tool’s default visu-
alization parameters for Landsat 8 imagery to highlight the features that you are
interested in digitizing (e.g., band combinations and value ranges to highlight
water, vegetation, etc.).

Assignment 4. Using information about the wavelengths detected by different
bands for other optical satellites, change the default visualization parameters for
Landsat 4, 5, and 7, and Sentinel-2 so that they are consistent with the modified
Landsat 8 visualization parameters.

26.4 Conclusion

This chapter has covered background information to the Earth surface margin and
feature digitization tool GEEDiT. It provides an introduction to the imagery used
within GEEDiT and some of the considerations to take into account when dig-
itizing from these, in addition to a walkthrough of how to use GEEDiT and its
functionality. The final section provides some information on how to edit GEEDiT
for bespoke purposes, though you are encouraged to do this with care. You will
be able to confidently use the interface and conceptually understand how the tool
operates.

References

Boothroyd RJ, Williams RD, Hoey TB et al (2021) Applications of Google Earth Engine in flu-
vial geomorphology for detecting river channel change. Wiley Interdiscip Rev Water 8:e21496.
https://doi.org/10.1002/wat2.1496

Brough S, Carr JR, Ross N, Lea JM (2019) Exceptional retreat of Kangerlussuaq Glacier, East
Greenland, between 2016 and 2018. Front Earth Sci 7:123. https://doi.org/10.3389/feart.2019.
00123

Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coeffi-
cients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–
903. https://doi.org/10.1016/j.rse.2009.01.007

Fahrner D, Lea JM, Brough S et al (2021) Linear response of the Greenland ice sheet’s tidewa-
ter glacier terminus positions to climate. J Glaciol 67:193–203. https://doi.org/10.1017/jog.202
1.13

Field HR, Armstrong WH, Huss M (2021) Gulf of Alaska ice-marginal lake area change over the
Landsat record and potential physical controls. Cryosphere 15:3255–3278. https://doi.org/10.
5194/tc-15-3255-2021

https://doi.org/10.1002/wat2.1496
https://doi.org/10.3389/feart.2019.00123
https://doi.org/10.3389/feart.2019.00123
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1017/jog.2021.13
https://doi.org/10.1017/jog.2021.13
https://doi.org/10.5194/tc-15-3255-2021
https://doi.org/10.5194/tc-15-3255-2021

524 J. Lea

Goliber S, Black T, Catania G, Lea JM, Olsen H, Cheng D, Bevan S, Bjørk A, Bunce C, Brough
S, Carr JR (2022) TermPicks: a century of Greenland glacier terminus data for use in scien-
tific and machine learning applications. Cryosphere 16(8):3215-3233. https://doi.org/10.5194/
tc-16-3215-2022

Kochtitzky W, Copland L, Painter M, Dow C (2020) Draining and filling of ice-dammed lakes
at the terminus of surge-type Dań Zhùr (Donjek) Glacier, Yukon, Canada. Can J Earth Sci
57:1337–1348. https://doi.org/10.1139/cjes-2019-0233

Lea JM (2018) The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change
Quantification Tool (MaQiT)—simple tools for the rapid mapping and quantification of chang-
ing Earth surface margins. Earth Surf Dyn 6:551–561. https://doi.org/10.5194/esurf-6-551-
2018

Scheingross JS, Repasch MN, Hovius N et al (2021) The fate of fluvially-deposited organic carbon
during transient floodplain storage. Earth Planet Sci Lett 561:116822. https://doi.org/10.1016/
j.epsl.2021.116822

Tuckett PA, Ely JC, Sole AJ et al (2019) Rapid accelerations of Antarctic Peninsula outlet glaciers
driven by surface melt. Nat Commun 10:1–8. https://doi.org/10.1038/s41467-019-12039-2

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.5194/tc-16-3215-2022
https://doi.org/10.5194/tc-16-3215-2022
https://doi.org/10.1139/cjes-2019-0233
https://doi.org/10.5194/esurf-6-551-2018
https://doi.org/10.5194/esurf-6-551-2018
https://doi.org/10.1016/j.epsl.2021.116822
https://doi.org/10.1016/j.epsl.2021.116822
https://doi.org/10.1038/s41467-019-12039-2
http://creativecommons.org/licenses/by/4.0/

Part VI

Advanced Topics

Although you now know the most basic fundamentals of Earth Engine, there is still
much more that can be done. The part presents some advanced topics that can help
expand your skill set for doing larger and more complex projects. These include tools
for sharing code among users, scaling up with efficient project design, creating apps
for non-expert users, and combining R with other information processing platforms.

27Advanced Raster Visualization

Gennadii Donchyts and Fedor Baart

Overview
This chapter should help users of Earth Engine to better understand raster data by
applying visualization algorithms such as hillshading, hill shadows, and custom
colormaps. We will also learn how image collection datasets can be explored by
animating them as well as by annotating with text labels, using, e.g., attributes of
images or values queried from images.

Learning Outcomes

• Understanding why perceptually uniform colormaps are better to present data and
using them efficiently for raster visualization.

• Using palettes with images before and after remapping values.
• Adding text annotations when visualizing images or features.
• Animating image collections in multiple ways (animated GIFs, exporting video

clips, interactive animations with UI controls).
• Adding hillshading and shadows to help visualize raster datasets.

Assumes you know how to

• Import images and image collections, filter, and visualize (Part I).

G. Donchyts (B)
Google, Mountain View, CA, USA
e-mail: dgena@google.com

F. Baart
Deltares, Delft, Netherlands
e-mail: fedor.baart@deltares.nl

Delft University of Technology , Delft, Netherlands

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_27

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_27&domain=pdf
http://orcid.org/0000-0002-3280-3858
http://orcid.org/0000-0001-8231-094X
mailto:dgena@google.com
mailto:fedor.baart@deltares.nl
https://doi.org/10.1007/978-3-031-26588-4_27

528 G. Donchyts and F. Baart

• Write a function and map it over an ImageCollection (Chap. 12).
• Inspect an Image and an ImageCollection, as well as their properties

(Chap. 13).

27.1 Introduction to Theory

Visualization is the step to transform data into a visual representation. You make
a visualization as soon as you add your first layer to your map in Google Earth
Engine. Sometimes you just want to have a first look at a dataset during the explo-
ration phase. But as you move toward the dissemination phase, where you want to
spread your results, it is good to think about a more structured approach to visu-
alization. A typical workflow for creating visualization consists of the following
steps:

• Defining the story (what is the message?)
• Finding inspiration (e.g., by making a moodboard)
• Choosing a canvas/medium (here, this is the Earth Engine map canvas)
• Choosing datasets (co-visualized or combined using derived indicators)
• Data preparation (interpolating in time and space, filtering/mapping/reducing)
• Converting data into visual elements (shape and color)
• Adding annotations and interactivity (labels, scales, legend, zoom, time slider).

A good standard work on all the choices that one can make while creating a
visualization is provided by the Grammar of Graphics (GoG) by Wilkinson (2005).
It was the inspiration behind many modern visualization libraries (ggplot, vega).
The main concept is that you can subdivide your visualization into several aspects.

In this chapter, we will cover several aspects mentioned in the Grammar of
Graphics to convert (raster) data into visual elements. The accurate representation
of data is essential in science communication. However, color maps that visually
distort data through uneven color gradients or are unreadable to those with color
vision deficiency remain prevalent in science (Crameri et al. 2020). You will also
learn how to add annotation text and symbology, while improving your visual-
izations by mixing images with hillshading as you explore some of the amazing
datasets that have been collected in recent years in Earth Engine.

27.2 Practicum

27.2.1 Section 1: Palettes

In this section, we will explore examples of colormaps to visualize raster data.
Colormaps translate values to colors for display on a map. This requires a set of

27 Advanced Raster Visualization 529

colors (referred to as a “palette” in Earth Engine) and a range of values to map
(specified by the min and max values in the visualization parameters).

There are multiple types of colormaps, each used for a different purpose. These
include the following:

Sequential: These are probably the most commonly used colormaps, and are use-
ful for ordinal, interval, and ratio data. Also referred to as a linear colormap, a
sequential colormap looks like the viridis colormap (Fig. 27.1) from matplotlib. It
is popular because it is a perceptual uniform colormap, where an equal interval in
values is mapped to an equal interval in the perceptual colorspace. If you have a
ratio variable where zero means nothing, you can use a sequential colormap start-
ing at white, transparent, or, when you have a black background, at black—e.g.,
the turku colormap from Crameri (Fig. 27.1). You can use this for variables like
population count or gross domestic product.

Fig. 27.1 Examples of colormaps from a variety of packages: viridis from matplotlib, turku from
Crameri, balance from cmocean, cet-c2 from colorcet and ice from cmocean

Diverging: This type of colormap is used for visualizing data where you have
positive and negative values and where zero has a meaning. Later in this tutorial,
we will use the balance colormap from the cmocean package (Fig. 27.1) to show
temperature change.

Circular: Some variables are periodic, returning to the same value after a period
of time. For example, the season, angle, and time of day are typically represented
as circular variables. For variables like this, a circular colormap is designed to
represent the first and last values with the same color. An example is the circular
cet-c2 colormap (Fig. 27.1) from the colorcet package.

530 G. Donchyts and F. Baart

Semantic: Some colormaps do not map to arbitrary colors but choose colors that
provide meaning. We refer to these as semantic colormaps. Later in this tutorial,
we will use the ice colormap (Fig. 27.1) from the cmocean package for our ice
example.

Popular sources of colormaps include:

• cmocean (semantic perceptual uniform colormaps for geophysical applications)
• colorcet (set of perceptual colormaps with varying colors and saturation)
• cpt-city (comprehensive overview of colormaps)
• colorbrewer (colormaps with variety of colors)
• Crameri (stylish colormaps for dark and light themes).

Our first example in this section applies a diverging colormap to temperature.

// Load the ERA5 reanalysis monthly means.
var era5 = ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY');

// Load the palettes package.
var palettes = require('users/gena/packages:palettes');

// Select temperature near ground.
era5 = era5.select('temperature_2m');

Now we can visualize the data. Here we have a temperature difference. That
means that zero has a special meaning. By using a divergent colormap, we can give
zero the color white, which denotes that there is no significant difference. Here,
we will use the colormap Balance from the cmocean package. The color red is
associated with warmth, and the color blue is associated with cold. We will choose
the minimum and maximum values for the palette to be symmetric around zero (−
2, 2) so that white appears in the correct place. For comparison we also visualize
the data with a simple [‘blue’, ‘white’, ‘red’] palette. As you can see
(Fig. 27.2), the Balance colormap has a more elegant and professional feel to it,
because it uses a perceptual uniform palette and both saturation and value.

27 Advanced Raster Visualization 531

Fig. 27.2 Temperature difference of ERA5 (2011–2020, 1981–1990) using the balance colormap
from cmocean (right) versus a basic blue-white-red colormap (left)

// Choose a diverging colormap for anomalies.
var balancePalette = palettes.cmocean.Balance[7];
var threeColorPalette = ['blue', 'white', 'red'];

// Show the palette in the Inspector window.
palettes.showPalette('temperature anomaly',
balancePalette);
palettes.showPalette('temperature anomaly',
threeColorPalette);

// Select 2 time windows of 10 years.
var era5_1980 = era5.filterDate('1981-01-01', '1991-01-
01').mean();
var era5_2010 = era5.filterDate('2011-01-01', '2020-01-
01').mean();

// Compute the temperature change.
var era5_diff = era5_2010.subtract(era5_1980);

532 G. Donchyts and F. Baart

// Show it on the map.
Map.addLayer(era5_diff, {

palette: threeColorPalette,
min: -2,
max: 2

}, 'Blue White Red palette');

Map.addLayer(era5_diff, {
palette: balancePalette,
min: -2,
max: 2

}, 'Balance palette');

Code Checkpoint F60a. The book’s repository contains a script that shows what
your code should look like at this point.

Our second example in this section focuses on visualizing a region of the
Antarctic, the Thwaites Glacier. This is one of the fast-flowing glaciers that causes
concern because it loses so much mass that it causes the sea level to rise. If we
want to visualize this region, we have a challenge. The Antarctic region is in
the dark for four to five months each winter. That means that we can’t use opti-
cal images to see the ice flowing into the sea. We therefore will use radar images.
Here, we will use a semantic colormap to denote the meaning of the radar images.

Let us start by importing the dataset of radar images. We will use the images
from the Sentinel-1 constellation of the Copernicus program. This satellite uses
a C-band synthetic-aperture radar and has near-polar coverage. The radar senses
images using a polarity for the sender and receiver. The collection has images of
four different possible combinations of sender/receiver polarity pairs. The image
that we’ll use has a band of the Horizontal/Horizontal polarity (HH).

// An image of the Thwaites glacier.
var imageId =

'COPERNICUS/S1_GRD/S1B_EW_GRDM_1SSH_20211216T041925_2021121
6T042029_030045_03965B_AF0A';

// Look it up and select the HH band.
var img = ee.Image(imageId).select('HH');

For the next step, we will use the palette library. We will stylize the radar images
to look like optical images, so that viewers can contrast ice and sea ice from water
(Lhermitte et al. 2020). We will use the Ice colormap from the cmocean package
(Thyng et al. 2016).

27 Advanced Raster Visualization 533

// Use the palette library.
var palettes = require('users/gena/packages:palettes');

// Access the ice palette.
var icePalette = palettes.cmocean.Ice[7];

// Show it in the console.
palettes.showPalette('Ice', icePalette);

// Use it to visualize the radar data.
Map.addLayer(img, {

palette: icePalette,
min: -15,
max: 1

}, 'Sentinel-1 radar');

// Zoom to the grounding line of the Thwaites Glacier.
Map.centerObject(ee.Geometry.Point([-105.45882094907664, -

74.90419580705336
]), 8);

If you zoom in Fig. 27.3, you can see how long cracks have recently appeared
near the pinning point (a peak in the bathymetry that functions as a buttress, see
Wild et al. 2022) of the glacier.

Code Checkpoint F60b. The book’s repository contains a script that shows what
your code should look like at this point.

27.2.2 Section 2: Remapping and Palettes

Classified rasters in Earth Engine have metadata attached that can help with analy-
sis and visualization. This includes lists of the names, values, and colors associated
with class. These are used as the default color palette for drawing a classification,
as seen next. The USGS National Land Cover Database (NLCD) is one such exam-
ple. Let us access the NLCD dataset, name it nlcd, and view it (Fig. 27.4) with
its built-in palette.

534 G. Donchyts and F. Baart

Fig. 27.3 Ice observed in Antarctica by the Sentinel-1 satellite. The image is rendered using the
ice color palette stretched to backscatter amplitude values [− 15; 1]

Fig. 27.4 NLCD visualized with default colors for each class

27 Advanced Raster Visualization 535

// Advanced remapping using NLCD.
// Import NLCD.
var nlcd =
ee.ImageCollection('USGS/NLCD_RELEASES/2016_REL');

// Use Filter to select the 2016 dataset.
var nlcd2016 = nlcd.filter(ee.Filter.eq('system:index',
'2016'))

.first();

// Select the land cover band.
var landcover = nlcd2016.select('landcover');

// Map the NLCD land cover.
Map.addLayer(landcover, null, 'NLCD Landcover');

But suppose you want to change the display palette. For example, you might
want to have multiple classes displayed using the same color, or use different
colors for some classes. Let us try having all three urban classes display as dark
red (‘ab0000’).

// Now suppose we want to change the color palette.
var newPalette = ['466b9f', 'd1def8', 'dec5c5',

'ab0000', 'ab0000', 'ab0000',
'b3ac9f', '68ab5f', '1c5f2c',
'b5c58f', 'af963c', 'ccb879',
'dfdfc2', 'd1d182', 'a3cc51',
'82ba9e', 'dcd939', 'ab6c28',
'b8d9eb', '6c9fb8'

];

// Try mapping with the new color palette.
Map.addLayer(landcover, {

palette: newPalette
}, 'NLCD New Palette');

However, if you map this, you will see an unexpected result (Fig. 27.5).
This is because the numeric codes for the different classes are not sequential.

Thus, Earth Engine stretches the given palette across the whole range of values
and produces an unexpected color palette. To fix this issue, we will create a new
index for the class values so that they are sequential.

536 G. Donchyts and F. Baart

// Extract the class values and save them as a list.
var values =
ee.List(landcover.get('landcover_class_values'));

// Print the class values to console.
print('raw class values', values);

// Determine the maximum index value
var maxIndex = values.size().subtract(1);

// Create a new index for the remap
var indexes = ee.List.sequence(0, maxIndex);

// Print the updated class values to console.
print('updated class values', indexes);

// Remap NLCD and display it in the map.
var colorized = landcover.remap(values, indexes)

.visualize({
min: 0,
max: maxIndex,
palette: newPalette

});
Map.addLayer(colorized, {}, 'NLCD Remapped Colors');

Using this remapping approach, we can properly visualize the new color palette
(Fig. 27.6).

Code Checkpoint F60c. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 27.5 Applying a new palette to a multi-class layer has some unexpected results

27 Advanced Raster Visualization 537

Fig. 27.6 Expected results of the new color palette. All urban areas are now correctly showing as
dark red and the other land cover types remain their original color

27.2.3 Section 3: Annotations

Annotations are the way to visualize data on maps to provide additional informa-
tion about raster values or any other data relevant to the context. In this case, this
additional information is usually shown as geometries, text labels, diagrams, or
other visual elements. Some annotations in Earth Engine can be added by making
use of the ui portion of the Earth Engine API, resulting in graphical user inter-
face elements such as labels or charts added on top of the map. However, it is
frequently useful to render annotations as a part of images, such as by visualizing
various image properties or to highlight specific areas.

In many cases, these annotations can be mixed with output images generated
outside of Earth Engine, e.g., by post-processing exported images using Python
libraries or by annotating using GIS applications such as QGIS or ArcGIS. How-
ever, annotations could also be also very useful to highlight and/or label specific
areas directly within the Code Editor. Earth Engine provides a sufficiently rich
API to turn vector features and geometries into raster images which can serve as
annotations. We recommend checking the ee.FeatureCollection.style
function in the Earth Engine documentation to learn how geometries can be
rendered.

For textual annotation, we will make use of an external package
‘users/gena/packages:text’ that provides a way to render strings into
raster images directly using the Earth Engine raster API. It is beyond the scope of
the current tutorials to explain the implementation of this package, but internally
this package makes use of bitmap fonts which are ingested into Earth Engine as
raster assets and are used to turn every character of a provided string into image
glyphs, which are then translated to desired coordinates.

The API of the text package includes the following mandatory and optional
arguments:

538 G. Donchyts and F. Baart

/**
* Draws a string as a raster image at a given point.
*
* @param {string} str - string to draw
* @param {ee.Geometry} point - location the the string
will be drawn
* @param {{string, Object}} options - optional properties
used to style text
*
* The options dictionary may include one or more of the
following:
* fontSize - 16|18|24|32 - the size of the font
(default: 16)
* fontType - Arial|Consolas - the type of the
font (default: Arial)
* alignX - left|center|right (default: left)
* alignY - top|center|bottom (default: top)
* textColor - text color string (default: ffffff
- white)
* textOpacity - 0-1, opacity of the text (default:
0.9)
* textWidth - width of the text (default: 1)
* outlineColor - text outline color string (default:
000000 - black)
* outlineOpacity - 0-1, opacity of the text outline
(default: 0.4)
* outlineWidth - width of the text outlines
(default: 0)
*/

To demonstrate how to use this API, let us render a simple ‘Hello World!’
text string placed at the map center using default text parameters. The code for this
will be:

27 Advanced Raster Visualization 539

// Include the text package.
var text = require('users/gena/packages:text');

// Configure map (change center and map type).
Map.setCenter(0, 0, 10);
Map.setOptions('HYBRID');

// Draw text string and add to map.
var pt = Map.getCenter();
var scale = Map.getScale();
var image = text.draw('Hello World!', pt, scale);
Map.addLayer(image);

Running the above script will generate a new image containing the ‘Hello
World!’ string placed in the map center. Notice that before calling the
text.draw() function, we configure the map to be centered at specific coordinates
(0, 0) and zoom level 10 because map parameters such as center and scale are
passed as arguments to that text.draw() function. This ensures that the resulting
image containing string characters is scaled properly.

When exporting images containing rendered text strings, it is important to use
proper scale to avoid distorted text strings that are difficult to read, depending on
the selected font size, as shown in Fig. 27.7.

Code Checkpoint F60d. The book’s repository contains a script that shows what
your code should look like at this point.

These artifacts can be avoided to some extent by specifying a larger font size
(e.g., 32). However, it is better to render text at the native 1:1 scale to achieve
best results. The same applies to the text color and outline: They may need to
be adjusted to achieve the best result. Usually, text needs to be rendered using
colors that have opposite brightness and colors when compared to the surrounding
background. Notice that in the above example, the map was configured to have a
dark background (‘HYBRID’) to ensure that the white text (default color) would

Fig. 27.7 Results of the text.draw call, scaled to 1×: var scale =
Map.getScale() * 1 (left); 2×: var scale = Map.getScale() * 2 (center);
and 0.5×: var scale = Map.getScale() * 0.5 (right)

540 G. Donchyts and F. Baart

be visible. Multiple parameters listed in the above API documentation can be used
to adjust text rendering. For example, let us switch font size, font type, text, and
outline parameters to render the same string, as below. Replace the existing one-
line text.draw call in your script with the following code, and then run it again
to see the difference (Fig. 27.8):

Fig. 27.8 Rendering text with adjusted parameters (font type: Consolas, fontSize: 32, textColor:
‘black’, outlineWidth: 1, outlineColor: ‘white’, outlineOpacity: 0.8)

var image = text.draw('Hello World!', pt, scale, {
fontSize: 32,
fontType: 'Consolas',
textColor: 'black',
outlineColor: 'white',
outlineWidth: 1,
outlineOpacity: 0.8

});

// Add the text image to the map.
Map.addLayer(image);

Code Checkpoint F60e. The book’s repository contains a script that shows what
your code should look like at this point.

Of course, non-optional parameters such as pt and scale, as well as the text
string, do not have to be hard-coded in the script; instead, they can be acquired by
the code using, for example, properties coming from a FeatureCollection.
Let us demonstrate this by showing the cloudiness of Landsat 8 images as text
labels rendered in the center of every image. In addition to annotating every image
with a cloudiness text string, we will also draw yellow outlines to indicate image
boundaries. For convenience, we can also define the code to annotate an image
as a function. We will then map that function (as described in Chap. 12) over the
filtered ImageCollection. The code is as follows:

27 Advanced Raster Visualization 541

var text = require('users/gena/packages:text');

var geometry = ee.Geometry.Polygon(
[

[
[-109.248, 43.3913],
[-109.248, 33.2689],
[-86.5283, 33.2689],
[-86.5283, 43.3913]

]
], null, false);

Map.centerObject(geometry, 6);

function annotate(image) {
// Annotates an image by adding outline border and

cloudiness
// Cloudiness is shown as a text string rendered at the

image center.

// Add an edge around the image.
var edge = ee.FeatureCollection([image])

.style({
color: 'cccc00cc',
fillColor: '00000000'

});

// Draw cloudiness as text.
var props = {

textColor: '0000aa',
outlineColor: 'ffffff',
outlineWidth: 2,
outlineOpacity: 0.6,
fontSize: 24,
fontType: 'Consolas'

};
var center = image.geometry().centroid(1);
var str =

ee.Number(image.get('CLOUD_COVER')).format('%.2f');
var scale = Map.getScale();

var textCloudiness = text.draw(str, center, scale,
props);

542 G. Donchyts and F. Baart

textCloudiness = textCloudiness
.translate(-scale * 25, 0, 'meters', 'EPSG:3857');

// Merge results.
return ee.ImageCollection([edge,

textCloudiness]).mosaic();
}

// Select images.
var images =
ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA')

.select([5, 4, 2])

.filterBounds(geometry)

.filterDate('2018-01-01', '2018-01-7');

// dim background.
Map.addLayer(ee.Image(1), {

palette: ['black']
}, 'black', true, 0.5);

// Show images.
Map.addLayer(images, {

min: 0.05,
max: 1,
gamma: 1.4

}, 'images');

// Show annotations.
var labels = images.map(annotate);
var labelsLayer = ui.Map.Layer(labels, {}, 'annotations');
Map.layers().add(labelsLayer);

// Shift left 25 pixels.

The result of defining and mapping this function over the filtered set of images
is shown in Fig. 27.9. Notice that by adding an outline around the text, we can
ensure the text is visible for both dark and light images. Earth Engine requires
casting properties to their corresponding value type, which is why we’ve used
ee.Number (as described in Chap. 1) before generating a formatted string. Also,
we have shifted the resulting text image 25 pixels to the left. This was necessary to
ensure that the text is positioned properly. In more complex text rendering applica-
tions, users may be required to compute the text position in a different way using
ee.Geometry calls from the Earth Engine API: for example, by positioning text
labels somewhere near the corners.

27 Advanced Raster Visualization 543

Fig. 27.9 Annotating Landsat 8 images with image boundaries, border, and text strings indicating
cloudiness

Because we render text labels using the Earth Engine raster API, they are not
automatically scaled depending on map zoom size. This may cause unwanted arti-
facts; to avoid that, the text labels image needs to be updated every time the map
zoom changes. To implement this in a script, we can make use of the Map API—in
particular, the Map.onChangeZoom event handler. The following code snippet
shows how the image containing text annotations can be re-rendered every time
the map zoom changes. Add it to the end of your script.

// re-render (rescale) annotations when map zoom changes.
Map.onChangeZoom(function(zoom) {

labelsLayer.setEeObject(images.map(annotate));
});

544 G. Donchyts and F. Baart

Code Checkpoint F60f. The book’s repository contains a script that shows what
your code should look like at this point.

Try commenting that event handler and observe how annotation rendering
changes when you zoom in or zoom out.

27.2.4 Section 4: Animations

Visualizing raster images as animations is a useful technique to explore changes in
time-dependent datasets, but also, to render short animations to communicate how
changing various parameters affects the resulting image—for example, varying
thresholds of spectral indices resulting in different binary maps or the changing
geometry of vector features.

Animations are very useful when exploring satellite imagery, as they allow
viewers to quickly comprehend dynamics of changes of earth surface or atmo-
spheric properties. Animations can also help to decide what steps should be taken
next to designing a robust algorithm to extract useful information from satellite
image time series. Earth Engine provides two standard ways to generate anima-
tions: as animated GIFs, and as AVI video clips. Animation can also be rendered
from a sequence of images exported from Earth Engine, using numerous tools
such as ffmpeg or moviepy. However, in many cases, it is useful to have a way to
quickly explore image collections as animation without requiring extra steps.

In this section, we will generate animations in three different ways:

1. Generate animated GIF
2. Export video as an AVI file to Google Drive
3. Animate image collection interactively using UI controls and map layers.

We will use an image collection showing sea ice as an input dataset to generate
animations with visualization parameters from earlier. However, instead of query-
ing a single Sentinel-1 image, let us generate a filtered image collection with all
images intersecting with our area of interest. After importing some packages and
palettes and defining a point and rectangle, we’ll build the image collection. Here,
we will use point geometry to define the location where the image date label will
be rendered and the rectangle geometry to indicate the area of interest for the ani-
mation. To do this, we will build the following logic in a new script. Open a new
script and paste the following code into it:

27 Advanced Raster Visualization 545

// Include packages.
var palettes = require('users/gena/packages:palettes');
var text = require('users/gena/packages:text');

var point = /* color: #98ff00 */ ee.Geometry.Point([-
106.15944300895228, -74.58262940096245

]);

var rect = /* color: #d63000 */
ee.Geometry.Polygon(

[
[

[-106.19789515738981, -74.56509549360152],
[-106.19789515738981, -74.78071448733921],
[-104.98115931754606, -74.78071448733921],
[-104.98115931754606, -74.56509549360152]

]
], null, false);

// Lookup the ice palette.
var palette = palettes.cmocean.Ice[7];

// Show it in the console.
palettes.showPalette('Ice', palette);

// Center map on geometry.
Map.centerObject(point, 9);

// Select S1 images for the Thwaites glacier.
var images = ee.ImageCollection('COPERNICUS/S1_GRD')

.filterBounds(rect)

.filterDate('2021-01-01', '2021-03-01')

.select('HH')
// Make sure we include only images which fully contain

the region geometry.
.filter(ee.Filter.isContained({

leftValue: rect,
rightField: '.geo'

}))
.sort('system:time_start');

// Print number of images.
print(images.size());

546 G. Donchyts and F. Baart

As you see from the last lines of the above code, it is frequently useful to print
the number of images in an image collection: an example of what’s often known
as a “sanity check.”

Here, we have used two custom geometries to configure animations: the green
pin named point, used to filter image collection and to position text labels drawn
on top of the image, and the blue rectangle rect, used to define a bounding box
for the exported animations. To make sure that the point and rectangle geometries
are shown under the Geometry Imports in the Code Editor, you need to click on
these variables in the code and then select the Convert link.

Notice that in addition to the bounds and date filter, we have also used a less
known isContained filter to ensure that we get only images that fully cover
our region. To better understand this filter, you could try commenting out the filter
and compare the differences, observing images with empty (masked) pixels in the
resulting image collection.

Code Checkpoint F60g. The book’s repository contains a script that shows what
your code should look like at this point.

Next, to simplify the animation API calls, we will generate a composite RGB
image collection out of satellite images and draw the image’s acquisition date as
a label on every image, positioned within our region geometry.

// Render images.
var vis = {

palette: palette,
min: -15,
max: 1

};

var scale = Map.getScale();
var textProperties = {

outlineColor: '000000',
outlineWidth: 3,
outlineOpacity: 0.6

};

27 Advanced Raster Visualization 547

var imagesRgb = images.map(function(i) {
// Use the date as the label.
var label = i.date().format('YYYY-MM-dd');
var labelImage = text.draw(label, point, scale,

textProperties);

return i.visualize(vis)
.blend(labelImage) // Blend label image on top.
.set({

label: label
}); // Keep the text property.

});
Map.addLayer(imagesRgb.first());
Map.addLayer(rect, {color:'blue'}, 'rect', 1, 0.5);

In addition to printing the size of the ImageCollection, we also often
begin by adding a single image to the map from a mapped collection to see that
everything works as expected—another example of a sanity check. The resulting
map layer will look like Fig. 27.10.

Fig. 27.10 Results of adding the first layer from the RGB composite image collection showing
Sentinel-1 images with a label blended on top at a specified location. The blue geometry is used to
define the bounds for the animation to be exported

Code Checkpoint F60h. The book’s repository contains a script that shows what
your code should look like at this point.

548 G. Donchyts and F. Baart

Fig. 27.11 Console output after running the animated GIF code snippet, showing the GIF URL
and an animation shown directly in the Console

Animation 1: Animated GIF with ui.Thumbnail
The quickest way to generate an animation in Earth Engine is to use the animated
GIF API and either print it to the Console or print the URL to download the
generated GIF. The following code snippet will result in an animated GIF as well
as the URL to the animated GIF printed to Console. This is as shown in Fig. 27.11:

// Define GIF visualization parameters.
var gifParams = {

region: rect,
dimensions: 600,
crs: 'EPSG:3857',
framesPerSecond: 10

};

// Print the GIF URL to the console.
print(imagesRgb.getVideoThumbURL(gifParams));

// Render the GIF animation in the console.
print(ui.Thumbnail(imagesRgb, gifParams));

27 Advanced Raster Visualization 549

Earth Engine provides multiple options to specify the size of the resulting video.
In this example, we specify 600 as the size of the maximum dimension. We also
specify the number of frames per second for the resulting animated GIF as well
as the target projected coordinate system to be used (EPSG:3857 here, which
is the projection used in web maps such as Google Maps and the Code Editor
background).

Animation 2: Exporting an Animation with Export.video.toDrive
Animated GIFs can be useful to generate animations quickly. However, they have
several limitations. In particular, they are limited to 256 colors, become large for
larger animations, and most web players do not provide play controls when play-
ing animated GIFs. To overcome these limitations, Earth Engine provides export
of animations as video files in MP4 format. Let us use the same RGB image col-
lection we have used for the animated GIF to generate a short video. We can ask
Earth Engine to export the video to the Google Drive using the following code
snippet:

Export.video.toDrive({
collection: imagesRgb,
description: 'ice-animation',
fileNamePrefix: 'ice-animation',
framesPerSecond: 10,
dimensions: 600,
region: rect,
crs: 'EPSG:3857'

});

Here, many arguments to the Export.video.toDrive function resemble
the ones we’ve used in the ee.Image.getVideoThumbURL code above. Addi-
tional arguments include description and fileNamePrefix, which are required to
configure the name of the task and the target file of the video file to be saved to
Google Drive. Running the above code will result in a new task created under the
Tasks tab in the Code Editor. Starting the export video task (Fig. 27.12) will result
in a video file saved in the Google Drive once completed.

Animation 3: The Custom Animation Package
For the last animation example, we will use the custom package
‘users/gena/packages:animation’, built using the Earth Engine
User Interface API. The main difference between this package and the above
examples is that it generates an interactive animation by adding Map layers
individually to the layer set, and providing UI controls that allow users to play
animations or interactively switch between frames. The animate function in
that package generates an interactive animation of an ImageCollection, as
described below. This function has a number of optional arguments allowing you

550 G. Donchyts and F. Baart

Fig. 27.12 New export video tasks in the Tasks panel of the Code Editor

to configure, for example, the number of frames to be animated, the number of
frames to be preloaded, or a few others. The optional parameters to control the
function are the following:

• maxFrames: maximum number of frames to show (default: 30)
• vis: visualization parameters for every frame (default: {})
• Label: text property of images to show in the animation controls (default:

undefined)
• width: width of the animation panel (default: ‘600px’)
• compact: show only play control and frame slider (default: false)
• position: position of the animation panel (default: ‘top-center’)
• timeStep: time step (ms) used when playing animation (default: 100)
• preloadCount: number of frames (map layers) to preload (default: all).

Let us call this function to add interactive animation controls to the current Map:

// include the animation package
var animation = require('users/gena/packages:animation');

// show animation controls
animation.animate(imagesRgb, {
label: 'label',
maxFrames: 50

});

Before using the interactive animation API, we need to include the correspond-
ing package using require. Here, we provide our pre-rendered image collection
and two optional parameters (label and maxFrames). The first optional param-
eter label indicates that every image in our image collection has the ‘label’ text
property. The animate function uses this property to name map layers as well
as to visualize in the animation UI controls when switching between frames. This
can be useful when inspecting image collections. The second optional parame-
ter, maxFrames, indicates that the maximum number of animation frames that

27 Advanced Raster Visualization 551

Fig. 27.13 Interactive animation controls when using custom animation API

we would like to visualize is 50. To prevent the Code Editor from crashing, this
parameter should not be too large: it is best to keep it below 100. For a much
larger number of frames, it is better to use the Export video or animated GIF API.
Running this code snippet will result in the animation control panel added to the
map as shown in Fig. 27.13.

It is important to note that the animation API uses asynchronous UI calls to
make sure that the Code Editor does not hang when running the script. The draw-
back of this is that for complex image collections, a large amount of processing
is required. Hence, it may take some time to process all images and to visualize
the interactive animation panel. The same is true for map layer names: they are
updated once the animation panel is visualized. Also, map layers used to visualize
individual images in the provided image collection may require some time to be
rendered.

The main advantage of the interactive animation API is that it provides a way
to explore image collections at frame-by-frame basis, which can greatly improve
our visual understanding of the changes captured in sets of images.

Code Checkpoint F60i. The book’s repository contains a script that shows what
your code should look like at this point.

27.2.5 Section 5: Terrain Visualization

This section introduces several raster visualization techniques useful to visualize
terrain data such as:

• Basic hillshading and parameters (light azimuth, elevation)

552 G. Donchyts and F. Baart

• Combining elevation data and colors using HSV transform (Wikipedia, 2022).
• Adding shadows.

One special type of raster data is data that represents height. Elevation data can
include topography, bathymetry, but also other forms of height, such as sea surface
height can be presented as a terrain.

Height is often visualized using the concept of directional light with a technique
called hillshading. Because height is such a common feature in our environment,
we also have an expectancy of how height is visualized. If height is visualized
using a simple grayscale colormap, it looks very unnatural (Fig. 27.14, top left). By
using hillshading, data immediately looks more natural (Fig. 27.14, top middle).

We can further improve the visualization by including shadows (Fig. 27.14, top
right). A final step is to replace the simple grayscale colormap with a perceptual
uniform topographic colormap and mix this with the hillshading and shadows
(Fig. 27.14, bottom). This section explains how to apply these techniques.

We’ll focus on elevation data stored in raster form. Elevation data is not always
stored in raster formats. Other data formats include Triangulated Irregular Network

Fig. 27.14 Hillshading with shadows. Steps in visualizing a topographic dataset: (1) top left,
topography with grayscale colormap; (2) top middle, topography with grayscale colormap and hill-
shading; (3) top right, topography with grayscale colormap, hillshading, and shadows; (4) bottom,
topography with topographic colormap, hillshading, and shadows

27 Advanced Raster Visualization 553

(TIN), which allows storing information at varying resolutions and as 3D objects.
This format allows one to have overlapping geometries, such as bridges with a
road below it. In raster-based digital elevation models, in contrast, there can only
be one height recorded for each pixel.

Let us start by loading data from a digital elevation model. This loads a topo-
graphic dataset from the Netherlands (Algemeen Hoogtebestand Nederland). It is
a Digital Surface Model, based on airborne LIDAR measurements regridded to
0.5 m resolution. Enter the following code in a new script.

var dem = ee.Image('AHN/AHN2_05M_RUW');

We can visualize this dataset using a sequential gradient colormap from black
to white. This results in Fig. 27.14. One can infer which areas are lower and which
are higher, but the visualization does not quite “feel” like a terrain.

// Change map style to HYBRID and center map on the
Netherlands
Map.setOptions('HYBRID');
Map.setCenter(4.4082, 52.1775, 18);

// Visualize DEM using black-white color palette
var palette = ['black', 'white'];
var demRGB = dem.visualize({

min: -5,
max: 5,
palette: palette

});
Map.addLayer(demRGB, {},'DEM');

An important step to visualize terrain is to add shadows created by a distant
point source of light. This is referred to as hillshading or a shaded relief map.
This type of map became popular in the 1940s through the work of Edward
Imhof, who also used grayscale colormaps (Imhof 2015). Here, we’ll use the
‘gena/packages:utils’ library to combine the colormap image with the
shadows. That Earth Engine package implements a hillshadeRGB function
to simplify rendering of images enhanced with hillshading and shadow effects.
One important argument this function takes is the light azimuth—an angle from
the image plane upward to the light source (the Sun). This should always be set
to the top left to avoid bistable perception artifacts, in which the DEM can be
misperceived as inverted.

554 G. Donchyts and F. Baart

var utils = require('users/gena/packages:utils');

var weight =
0.4; // Weight of Hillshade vs RGB (0 - flat, 1 -

hillshaded).
var exaggeration = 5; // Vertical exaggeration.
var azimuth = 315; // Sun azimuth.
var zenith = 20; // Sun elevation.
var brightness = -0.05; // 0 - default.
var contrast = 0.05; // 0 - default.
var saturation = 0.8; // 1 - default.
var castShadows = false;

var rgb = utils.hillshadeRGB(
demRGB, dem, weight, exaggeration, azimuth, zenith,
contrast, brightness, saturation, castShadows);

Map.addLayer(rgb, {}, 'DEM (no shadows)');

Standard hillshading only determines per pixel if it will be directed to
the light or not. One can also project shadows on the map. That is done
using the ee.Algorithms.HillShadow algorithm. Here, we’ll turn on
castShadows in the hillshadeRGB function. This results in a more realistic
map, as can be seen in Fig. 27.14.

var castShadows = true;

var rgb = utils.hillshadeRGB(
demRGB, dem, weight, exaggeration, azimuth, zenith,
contrast, brightness, saturation, castShadows);

Map.addLayer(rgb, {}, 'DEM (with shadows)');

The final step is to add a topographic colormap. To visualize topographic
information, one often uses special topographic colormaps. Here, we’ll use the
oleron colormap from Crameri. The colors get mixed with the shadows using
the hillshadeRGB function. As you can see in Fig. 27.14, this gives a nice
overview of the terrain. The area colored in blue is located below sea level.

27 Advanced Raster Visualization 555

var palettes = require('users/gena/packages:palettes');
var palette = palettes.crameri.oleron[50];

var demRGB = dem.visualize({
min: -5,
max: 5,
palette: palette

});

var castShadows = true;

var rgb = utils.hillshadeRGB(
demRGB, dem, weight, exaggeration, azimuth, zenith,
contrast, brightness, saturation, castShadows);

Map.addLayer(rgb, {}, 'DEM colormap');

Steps to further improve a terrain visualization include using light sources from
multiple directions. This allows the user to render terrain to appear more natural.
In the real world, light is often scattered by clouds and other reflections.

One can also use lights to emphasize certain regions. To use even more
advanced lighting techniques, one can use a raytracing engine, such as the R
rayshader library, as discussed earlier in this chapter. The raytracing engine in
the Blender 3D program is also capable of producing stunning terrain visualiza-
tions using physical-based rendering, mist, environment lights, and camera effects
such as depth of field.

Code Checkpoint F60j. The book’s repository contains a script that shows what
your code should look like at this point.

27.3 Synthesis

To synthesize what you have learned in this chapter, you can do the following
assignments.

Assignment 1. Experiment with different color palettes from the
palettes library. Try combining palettes with image opacity (using
ee.Image.updateMask call) to visualize different physical features (for
example, hot or cold areas using temperature and elevation).

Assignment 2. Render multiple text annotations when generating animations using
image collection. For example, show other image properties in addition to date or
image statistics generated using regional reducers for every image.

Assignment 3. In addition to text annotations, try blending geometry elements
(lines, polygons) to highlight specific areas of rendered images.

556 G. Donchyts and F. Baart

27.4 Conclusion

In this chapter, we have learned about several techniques that can greatly improve
visualization and analysis of images and image collections. Using predefined
palettes can help to better comprehend and communicate Earth observation data,
and combining with other visualization techniques such as hillshading and anno-
tations can help to better understand processes studied with Earth Engine. When
working with image collections, it is often very helpful to analyze their properties
through time by visualizing them as animations. Usually, this step helps to better
understand dynamics of the changes that are stored in image collections and to
develop a proper algorithm to study these changes.

References

Crameri F, Shephard GE, Heron PJ (2020) The misuse of colour in science communication. Nat
Commun 11:1–10. https://doi.org/10.1038/s41467-020-19160-7

Imhof E (2015) Cartographic relief presentation. Walter de Gruyter GmbH & Co KG
Lhermitte S, Sun S, Shuman C et al (2020) Damage accelerates ice shelf instability and mass loss

in Amundsen Sea Embayment. Proc Natl Acad Sci USA 117:24735–24741. https://doi.org/10.
1073/pnas.1912890117

Thyng KM, Greene CA, Hetland RD et al (2016) True colors of oceanography. Oceanography
29:9–13

Wikipedia (2022) HSL and HSV. https://en.wikipedia.org/wiki/HSL_and_HSV. Accessed 1 Apr
2022

Wild CT, Alley KE, Muto A et al (2022) Weakening of the pinning point buttressing Thwaites
Glacier, West Antarctica. Cryosphere 16:397–417. https://doi.org/10.5194/tc-16-397-2022

Wilkinson L (2005) The grammar of graphics. Springer Verlag

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1073/pnas.1912890117
https://doi.org/10.1073/pnas.1912890117
https://en.wikipedia.org/wiki/HSL_and_HSV
https://doi.org/10.5194/tc-16-397-2022
http://creativecommons.org/licenses/by/4.0/

28Collaborating in Earth Engine
with Scripts and Assets

Sabrina H. Szeto

Overview
Many users find themselves needing to collaborate with others in Earth Engine at
some point. Students may need to work on a group project, people from different
organizations might want to collaborate on research together, or people may want to
share a script or an asset they created with others. This chapter will show you how
to collaborate with others and share your work.

Learning Outcomes

• Understanding when it is important to share a script or asset.
• Understanding what roles and permission options are available.
• Sharing a script with others.
• Sharing an asset with others.
• Sharing an asset so it can be displayed in an app.
• Sharing a repository with others.
• Seeing who made changes to a script and what changes were made.
• Reverting to a previous version of a script.
• Using the require function to load modules.
• Creating a script to share as a module.

Assumes you know how to:

• Sign up for an Earth Engine account, open the Code Editor, and save your script
(Chap. 1).

S. H. Szeto (B)
Thrive GEO GmbH, Vogtland, Germany
e-mail: sabrina@thrivegeo.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_28

557

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_28&domain=pdf
https://orcid.org/0000-0002-3050-837X
mailto:sabrina@thrivegeo.com
https://doi.org/10.1007/978-3-031-26588-4_28

558 S. H. Szeto

28.1 Introduction to Theory

Many people find themselves needing to share a script when they encounter a
problem; they wish to share the script with someone else so they can ask a ques-
tion. When this occurs, sharing a link to the script often suffices. The other person
can then make comments or changes before sending a new link to the modified
script.

If you have included any assets from the Asset Manager in your script, you will
also need to share these assets in order for your script to work for your colleague.
The same goes for sharing assets to be displayed in an app.

Another common situation involves collaborating with others on a project. They
may have some scripts they have written that they want to reuse or modify for the
new project. Alternatively, several people might want to work on the same script
together. For this situation, sharing a repository would be the best way forward;
team members will be able to see who made what changes to a script and even
revert to a previous version.

If you or your group members find yourselves repeatedly reusing certain func-
tions for visualization or for part of your analysis, you could use the require
module to call that function instead of having to copy and paste it into a new script
each time. You could even make this function or module available to others to use
via require.

28.2 Practicum

Let’s get started. For this lab, you will need to work in small groups or pairs.

28.2.1 Section 1: Using Get Link to Share a Script

Copy and paste the following code into the Code Editor.

print('The author of this script is MyName.');

Replace MyName with your name, then click on Save to save the script in your
home repository. Next, click on the Get Link button and copy the link to this
script onto your clipboard. Using your email program of choice, send this script
to one of your group members.

Now add the following code below the line of code that you pasted earlier.

print('I just sent this script to GroupMemberName.');

28 Collaborating in Earth Engine with Scripts and Assets 559

Replace GroupMemberName with the name of the person you sent this script
to, then save the script again. Next, click on the Get Link button and copy the
link to this script onto your clipboard. Using your email program of choice, send
this script to the same person.

Question 1. You should also have received two emails from someone in your group
who is also doing this exercise. Open the first and second links in your Code Editor
by clicking on them. Is the content of both scripts the same?

Answer: No, the scripts will be different, because Get Link sends a snapshot of
the script at a particular point in time. Thus, even though the script was updated,
the first link does not reflect that change.

Question 2. What happens when you check the box for Hide code panel or
Disable auto-run before sharing the script?

Answer: Hide code panel will minimize the code panel so the person you send the
script to will see the Map maximized. This is useful when you want to draw the
person’s attention to the results rather than to the code. To expand the code panel,
they have to click on the Show code button. Disable auto-run is helpful when
you do not want the script to start running when the person you sent it to opens
it. Perhaps your script takes very long to run or requires particular user inputs and
you just want to share the code with the person.

28.2.2 Section 2: Sharing Assets from Your Asset Manager

When you clicked the Get Link button earlier, you may have noticed a note in
the popup reading: “To give others access to assets in the code snapshot, you may
need to share them.” If your script uses an asset that you have uploaded into your
Asset Manager, you will need to share that asset as well. If not, an error message
will appear when the person you shared the script with tries to run it.

Before sharing an asset, think about whether you have permission to share it.
Is this some data that is owned by you, or did you get it from somewhere else?
Do you need permission to share this asset? Make sure you have the permission
to share an asset before doing so.

Now, let’s practice sharing assets. First, navigate to your Asset Manager by
clicking on the Assets tab in the left panel. If you already have some assets
uploaded, pick one that you have permission to share. If not, upload one to your
Asset Manager. If you do not have a shapefile or raster to upload, you can upload
a small text file. Consult the Earth Engine documentation for how to do this; it
will take only a few steps.

Hover your cursor over that asset in your Asset Manager. The asset gets high-
lighted in gray, and three buttons appear to the right of the asset. Click on the first
button from the left (outlined in red in Fig. 28.1). This icon means “share.”

560 S. H. Szeto

Fig. 28.1 Three assets in the Asset Manager

After you click the share button, a Share Image popup will appear (Fig. 28.2).
This popup contains information about the path of the asset and the email address
of the owner. The owner of the asset can decide who can view and edit the asset.

Click on the dropdown menu whose default option is “Reader” (outlined in red
in Fig. 28.2). You will see two options for permissions: Reader and Writer. A
Reader can view the asset, while a Writer can both view and make changes to
it. For example, a Writer could add a new image to an ImageCollection. A
Writer can also add other people to view or edit the asset, and a Writer can delete
the asset. When in doubt, give someone the Reader role rather than the Writer role.

To share an asset with someone, you can type their email address into the Email
or domain text field, choose Reader or Writer in the dropdown menu, and then
click on Add Access. You can also share an asset with everyone with a certain
email domain, which is useful if you want to share an asset with everyone in your
organization, for instance.

Fig. 28.2 Share Image popup window

28 Collaborating in Earth Engine with Scripts and Assets 561

If you want to share reading access publicly, then check the box that says
Anyone can read. Note that you still need to share the link to the asset in order
for others to access it. The only exceptions to this are when you are using the asset
in a script and sharing that script using the Get Link button or when you share the
asset with an Earth Engine app. To do the latter, use the Select an app dropdown
menu (outlined in orange in Fig. 28.2) and click Add App Access. When you have
completed making changes, click on the blue Done button to save these changes.

Question 3. Share an asset with a group member and give them reader access.
Send them the link to that asset. You will also receive a link from someone else in
your group. Open that link. What can you do with that asset? What do you need
to do to import it into a script?

Answer: You can view details about the asset and import it for use in a script in
the Code Editor. To import the asset, click on the blue Import button.

Question 4. Share an asset with a group member and give them writer access.
Send them the link to that asset. You will also receive a link from someone else
in your group. Open that link. What can you do with that asset? Try sharing the
asset with a different group member.

Answer: You can view details about the asset and import it for use in a script in
the Code Editor. You can also share the asset with others and delete the asset.

28.2.3 Section 3: Working with Shared Repositories

Now that you know how to share assets and scripts, let’s move on to sharing
repositories. In this section, you will learn about different types of repositories
and how to add a repository that someone else shared with you. You will also
learn how to view previous versions of a script and how to revert back to an
earlier version.

Earlier, we learned how to share a script using the Get Link button. This link
shares a code snapshot from a script. This snapshot does not reflect any changes
made to the script after the time the link was shared. If you want to share a script
that updates to reflect the most current version when it is opened, you need to
share a repository with that script instead.

If you look under the Scripts tab of the leftmost panel in the Code Editor, you
will see that the first three categories are labeled Owner, Reader, and Writer.

• Repositories categorized under Owner are created and owned by you. No
one else has access to view or make changes to them until you share these
repositories.

• Repositories categorized under Reader are repositories to which you have
reader access. You can view the scripts but not make any changes to them.
If you want to make any changes, you will need to save the script as a new file
in a repository that you own.

562 S. H. Szeto

• Repositories categorized under Writer are repositories to which you have writer
access. This means you can view and make changes to the scripts.

Let’s practice creating and sharing repositories. We will start by making a new
repository. Click on the red New button located in the left panel. Select Repository
from the dropdown menu. A New repository popup window will open (Fig. 28.3).

In the popup window’s text field, type a name for your new repository, such
as “ForSharing1,” then click on the blue Create button. You will see the new
repository appear under the Owner category in the Scripts tab (Fig. 28.4).

Now, share this new repository with your group members: Hover your cursor
over the repository you want to share. The repository gets highlighted in gray, and
three buttons appear. Click on the Gear icon (outlined in red in Fig. 28.4).

A Share Repo popup window appears (Fig. 28.5) which is very similar to
the Share Image popup window we saw in Fig. 28.2. The method for sharing a

Fig. 28.3 New repository popup window

Fig. 28.4 Three repositories under the Owner category

28 Collaborating in Earth Engine with Scripts and Assets 563

Fig. 28.5 Share Repo popup window

repository with a specific user or the general public is the same as for sharing
assets.

Type the email address of a group member in the Email or domain text field
and give this person a writer role by selecting Writer in the dropdown menu, then
click on Add Access. When you have completed making changes, click on the
blue Done button to save your changes.

Your group member should receive an email inviting them to edit the repository.
Check your email inbox for the repository that your group member has shared with
you. When you open that email, you will see content similar to what is shown in
Fig. 28.6.

Now, click on the blue button that says Add [repository path] to your Earth
Engine Code Editor. You will find the new repository added to the Writer cat-
egory in your Scripts tab. The repository path will contain the username of your
group member, such as users/username/sharing.

Now, let’s add a script to the empty repository. Click on the red New button
in the Scripts tab and select File from the dropdown menu. A Create file popup
will appear, as shown in Fig. 28.7. Click on the gray arrow beside the default path
to open a dropdown menu that will allow you to choose the path of the repository
that your group member shared with you. Type a new File Name in the text field,
such as “exercise,” then click on the blue OK button to create the file.

564 S. H. Szeto

Fig. 28.6 “Invitation to edit” email

Fig. 28.7 Create file popup window

A new file should now appear in the shared repository in the Writer category.
If you do not see it, click on the Refresh icon, which is to the right of the red New
button in the Scripts tab.

Double-click on the new script in the shared repository to open it. Then, copy
and paste the following code to your Code Editor.

print('The owner of this repository is GroupMemberName.');

Replace GroupMemberName with the name of your group member, then click
Save to save the script in the shared repository, which is under the Writer category.

Now, navigate to the repository under Owner which you shared with your
group member. Open the new script which they just created by double-clicking it.

Add the following code below the line of code that you pasted earlier.

28 Collaborating in Earth Engine with Scripts and Assets 565

Fig. 28.8 Changes made and previous versions of the script

Fig. 28.9 Revision history popup window

print('This script is shared with MyName.');

Replace MyName with your name, then save the script.
Next, we will compare changes made to the script. Click on the Versions icon

(outlined in red in Fig. 28.8).
A popup window will appear, titled Revision history, followed by the path of

the script (Fig. 28.9). There are three columns of information below the title.

• The left column contains the dates on which changes have been made.
• The middle column contains the usernames of the people who made changes.
• The right column contains information about what changes were made.

The most recent version of the script is shown in the first row, while previous
versions are listed in subsequent rows. (More advanced users may notice that this
is actually a Git repository.)

If you hover your cursor over a row, the row will be highlighted in gray and a
button labeled Compare will appear. Clicking on this button allows you to com-
pare differences between the current version of the script and a previous version
in a Version comparison popup window (Fig. 28.10).

In the Version comparison popup, you will see text highlighted in two different
colors. Text highlighted in red shows code that was present in the older version
but is absent in the current version (the “latest commit”). Text highlighted in green
shows code that is present in the current version but that was absent in the older

566 S. H. Szeto

Fig. 28.10 Version comparison popup window

version. Generally speaking, text highlighted in red has been removed in the cur-
rent version and text highlighted in green has been added to the current version.
Text that is not highlighted shows code that is present in both versions.

Question 5. What text, if any, is highlighted in red when you click on Compare
in your “exercise” script?

Answer: No text is highlighted in red, because none was removed between the
previous and current versions of the script.

Question 6. What text, if any, is highlighted in green when you click on Compare
in your “exercise” script?

Answer: print(‘This script is shared with MyName.’);

Question 7. What happens when you click on the blue Revert button?

Answer: The script reverts to the previous version, in which the only line of code
is

print('The owner of this repository is GroupMemberName.');

28 Collaborating in Earth Engine with Scripts and Assets 567

28.2.4 Section 4: Using the Require Function to Load a Module

In earlier chapters, you may have noticed that the require function allows you
to reuse code that has already been written without having to copy and paste it
into your current script. For example, you might have written a function for cloud
masking that you would like to use in multiple scripts. Saving this function as
a module enables you to share the code across your own scripts and with other
people. Or you might discover a new module with capabilities you need written
by other authors. This section will show you how to use the require function
to create and share your own module or to load a module that someone else has
shared.

The module we will use is ee-palettes, which enables users to visualize
raster data using common specialized color palettes (Donchyts et al. 2019). (If
you would like to learn more about using these color palettes, the ee-palettes
module is described and illustrated in detail in Chap. F6.0.) The first step is to go
to this link to accept access to the repository as a reader: https://code.earthengine.
google.com/?accept_repo=users/gena/packages.

Now, if you navigate to your Reader directory in the Code Editor, you should
see a new repository called ‘users/gena/packages’ listed. Look for a script
called ‘palettes’ and click on it to load it in your Code Editor.

If you scroll down, you will see that the script contains a nested series of dictio-
naries with lists of hexadecimal color specifications (as described in Chap. F2.1)
that describe a color palette, as shown in the code block below. For example, the
color palette named “Algae” stored in the cmocean variable consists of seven
colors, ranging from dark green to light green (Fig. 28.11).

Fig. 28.11 Some of the color palettes from the ee-palettes GitHub repository

https://code.earthengine.google.com/?accept_repo=users/gena/packages
https://code.earthengine.google.com/?accept_repo=users/gena/packages

568 S. H. Szeto

exports.cmocean = {
Thermal: {

7: ['042333', '2c3395', '744992', 'b15f82',
'eb7958', 'fbb43d', 'e8fa5b'

]
},
Haline: {

7: ['2a186c', '14439c', '206e8b', '3c9387',
'5ab978', 'aad85c', 'fdef9a'

]
},
Solar: {

7: ['331418', '682325', '973b1c', 'b66413',
'cb921a', 'dac62f', 'e1fd4b'

]
},
Ice: {

7: ['040613', '292851', '3f4b96', '427bb7',
'61a8c7', '9cd4da', 'eafdfd'

]
},
Gray: {

7: ['000000', '232323', '4a4a49', '727171',
'9b9a9a', 'cacac9', 'fffffd'

]
},
Oxy: {

7: ['400505', '850a0b', '6f6f6e', '9b9a9a',
'cbcac9', 'ebf34b', 'ddaf19'

]
},
Deep: {

7: ['fdfecc', 'a5dfa7', '5dbaa4', '488e9e',
'3e6495', '3f396c', '281a2c'

]
},
Dense: {

7: ['e6f1f1', 'a2cee2', '76a4e5', '7871d5',
'7642a5', '621d62', '360e24'

]
},

28 Collaborating in Earth Engine with Scripts and Assets 569

Algae: {
7: ['d7f9d0', 'a2d595', '64b463', '129450',

'126e45', '1a482f', '122414'
]

},
...

}

Notice that the variable is named exports.cmocean. Adding exports to
the name of a function or variable makes it available to other scripts to use, as it
gets added to a special global variable (Chang 2017).

To see all the color palettes available in this module, go to https://github.com/
gee-community/ee-palettes.

Now let’s try using the ee-palettes module. Look for a script in the same
repository called ‘palettes-test’ and click on it to load it in your Code Edi-
tor. When you run the script, you will see digital elevation data from the National
Aeronautics and Space Administration Shuttle Radar Topography Mission satellite
visualized using two palettes, colorbrewer.Blues and cmocean.Algae.
The map will have two layers that show the same data with different palettes.

The script first imports the digital elevation model data in the Imports section
of the Code Editor.

var dem = ee.Image('USGS/SRTMGL1_003');

The script then loads the ee-palettes module by using the require
function. The path to the module, ‘users/gena/packages:palettes’,
is passed to the function. The require function is then stored in a variable
named ‘palettes’, which will be used later to obtain the palettes for data
visualization.

var palettes = require('users/gena/packages:palettes');

As described by Donchyts et al. (2019), “Each palette is defined by a group
and a name, which are separated by a period (JS object dot notation), and a
color level. To retrieve a desired palette, use JS object notation to specify the
group, name, and number of color levels.” We define the color palette Algae
as palettes.cmocean.Algae[7] because it is part of the group cmocean
and has 7 color levels. In the next code block, you can see that the palettes (i.e.,
lists of hex colors) have been defined for use by setting them as the value for
the palette key in the visParams object supplied to the Map.addLayer
function.

https://github.com/gee-community/ee-palettes
https://github.com/gee-community/ee-palettes

570 S. H. Szeto

// colorbrewer
Map.addLayer(dem, {

min: 0,
max: 3000,
palette: palettes.colorbrewer.Blues[9]

}, 'colorbrewer Blues[9]');

// cmocean
Map.addLayer(dem, {

min: 0,
max: 3000,
palette: palettes.cmocean.Algae[7]

}, 'cmocean Algae[7]');

Question 8. Try adding a third layer to the Map with a different color palette from
ee-palettes. How easy was it to do?

Now that you have loaded and used a module shared by someone else, you
can try your hand at creating your own module and sharing it with someone else
in your group. First, go to the shared repository that you created in Sect. 28.2.3,
create a new script in that repository, and name it “cloudmasking.”

Then, go to the Examples repository at the bottom of the Scripts tab and
select a function from the Cloud Masking repository. Let’s use the Landsat8
Surface Reflectance cloud masking script as an example. In that script,
you will see the code shown in the block below. Copy and paste all of it into your
empty script.

// This example demonstrates the use of the Landsat 8
Collection 2, Level 2
// QA_PIXEL band (CFMask) to mask unwanted pixels.
function maskL8sr(image) {

// Bit 0 - Fill
// Bit 1 - Dilated Cloud
// Bit 2 - Cirrus
// Bit 3 - Cloud
// Bit 4 - Cloud Shadow
var qaMask =

image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',
2)).eq(0);

var saturationMask = image.select('QA_RADSAT').eq(0);

28 Collaborating in Earth Engine with Scripts and Assets 571

// Apply the scaling factors to the appropriate bands.
var opticalBands =

image.select('SR_B.').multiply(0.0000275).add(-
0.2);

var thermalBands =
image.select('ST_B.*').multiply(0.00341802)

.add(149.0);

// Replace the original bands with the scaled ones and
apply the masks.

return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);

}

// Map the function over one year of data.
var collection =
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterDate('2020-01-01', '2021-01-01')

.map(maskL8sr);

var composite = collection.median();

// Display the results.
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula

// Display the results.
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula
Map.addLayer(composite, {

bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 0,
max: 0.3

});

Note that this code is well-commented and has a header that describes what the
script does. Do not forget to comment your code and describe what you are doing
each step of the way. This is a good practice for collaborative coding and for your
own future reference.

Imagine that you want to make the maskL8sr function available to other users
and scripts. To do that, you can turn the function into a module. Copy and paste the
code from the example code into the new script you created called “cloudmask-
ing.” (Hint: Store the function in a variable starting with exports. Be careful
that you do not accidentally use Export, which is used to export datasets.)

Your script should be similar to the following code.

572 S. H. Szeto

exports.maskL8sr = function(image) {
// Bit 0 - Fill
// Bit 1 - Dilated Cloud
// Bit 2 - Cirrus
// Bit 3 - Cloud
// Bit 4 - Cloud Shadow
var qaMask =

image.select('QA_PIXEL').bitwiseAnd(parseInt(
'11111', 2)).eq(0);

var saturationMask = image.select('QA_RADSAT').eq(0);

// Apply the scaling factors to the appropriate bands.
var opticalBands =

image.select('SR_B.').multiply(0.0000275)
.add(-0.2);

var thermalBands =
image.select('ST_B.*').multiply(0.00341802)

.add(149.0);

// Replace the original bands with the scaled ones and
apply the masks.

return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);

}

Next, you will create a test script that makes use of the cloud masking module
you just made. Begin by creating a new script in your shared repository called
“cloudmasking-test.” You can modify the last part of the example cloud masking
script shown in the code block below to use your module.

28 Collaborating in Earth Engine with Scripts and Assets 573

// Map the function over one year of data.
var collection =
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterDate('2020-01-01', '2021-01-01')

.map(maskL8sr);

var composite = collection.median();

// Display the results.
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula
Map.addLayer(composite, {

bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 0,
max: 0.3

});

Question 9. How will you modify the cloud masking script to use your module?
What does the script look like?

Answer: Your code might look something like the code block below.

// Load the module
var myCloudFunctions = require(

'users/myusername/my-shared-repo:cloudmasking');

// Map the function over one year of data.
var collection =
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterDate('2020-01-01', '2021-01-01')

.map(myCloudFunctions.maskL8sr);

var composite = collection.median();

// Display the results.
Map.setCenter(-4.52, 40.29, 7); // Iberian Peninsula
Map.addLayer(composite, {

bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 0,
max: 0.3

});

574 S. H. Szeto

28.3 Synthesis

Apply what you learned in this chapter by setting up a shared repository for your
project, lab group, or organization. What scripts would you share? What permis-
sions should different users have? Are there any scripts that you would turn into
modules?

28.4 Conclusion

In this chapter, you learned how to collaborate with others in the Earth Engine
Code Editor through sharing scripts, assets, and repositories. You learned about
different roles and permissions available for sharing and when it is appropriate to
use each. In addition, you are now able to see what changes have been made to a
script and revert to a previous version. Lastly, you loaded and used a module that
was shared with you and created your own module for sharing. You are now ready
to start collaborating and developing scripts with others.

References

Chang A (2017) Making it easier to reuse code with Earth Engine script modules. In: Google
Earth and Earth Engine. https://medium.com/google-earth/making-it-easier-to-reuse-code-
with-earth-engine-script-modules-2e93f49abb13. Accessed 24 Feb 2022

Donchyts G, Baart F, Braaten J (2019) ee-palettes. https://github.com/gee-community/ee-palettes.
Accessed 24 Feb 2022

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://medium.com/google-earth/making-it-easier-to-reuse-code-with-earth-engine-script-modules-2e93f49abb13
https://medium.com/google-earth/making-it-easier-to-reuse-code-with-earth-engine-script-modules-2e93f49abb13
https://github.com/gee-community/ee-palettes
http://creativecommons.org/licenses/by/4.0/

29Scaling up in Earth Engine

Jillian M. Deines , Stefania Di Tommaso , Nicholas Clinton ,
and Noel Gorelick

Overview
Commonly, when Earth Engine users move from tutorials to developing their own
processing scripts, they encounter the dreaded error messages, “computation timed
out” or “user memory limit exceeded.” Computational resources are never unlimited,
and the team at Earth Engine has designed a robust system with built-in checks to
ensure that server capacity is available to everyone. This chapter will introduce
general tips for creating efficient Earth Engine workflows that accomplish users’
ambitious research objectives within the constraints of the Earth Engine ecosystem.
We use two example case studies: (1) extracting a daily climate time series for
many locations across two decades and (2) generating a regional, cloud-free median
composite from Sentinel-2 imagery.

Learning Outcomes

• Understanding constraints on Earth Engine resource use.
• Becoming familiar with multiple strategies to scale Earth Engine operations.

J. M. Deines (B)
Pacific Northwest National Laboratory, Earth Systems Predictability and Resiliency Group,
Seattle, WA, USA
e-mail: jill.deines@pnnl.gov

J. M. Deines · S. Di Tommaso
Center for Food Security and the Environment, Stanford University, Stanford, CA, USA
e-mail: sditom@stanford.edu

N. Clinton
Google LLC, Mountain View, CA 94043, USA

N. Gorelick
Google Switzerland, Zürich, Switzerland
e-mail: gorelick@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_29

575

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_29&domain=pdf
https://orcid.org/0000-0002-4279-8765
https://orcid.org/0000-0002-0664-3651
https://orcid.org/0000-0002-1112-1006
https://orcid.org/0000-0002-5548-2436
mailto:jill.deines@pnnl.gov
mailto:sditom@stanford.edu
mailto:gorelick@google.com
https://doi.org/10.1007/978-3-031-26588-4_29

576 J. M. Deines et al.

• Managing large projects and multistage workflows.
• Recognizing when using the Python API may be advantageous to execute large

batches of tasks.

Assumes you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Write a function and map it over an ImageCollection (Chap. 12).
• Export and import results as Earth Engine assets (Chap. 22).
• Understand distinctions among Image, ImageCollection, Feature, and
FeatureCollection Earth Engine objects (Parts 1, 2 and 5).

• Use the require function to load code from existing modules (Chap. 28).

29.1 Introduction to Theory

Parts 1–5 of this book have covered key remote sensing concepts and demonstrated
how to implement them in Earth Engine. Most exercises have used local-scale
examples to enhance understanding and complete tasks within a class-length time
period. But Earth Engine’s power comes from its scalability—the ability to apply
geospatial processing across large areas and many years.

How we go from small to large scales is influenced by Earth Engine’s design.
Earth Engine runs on many individual computer servers, and its functions are
designed to split up processing onto these servers. This chapter focuses on common
approaches to implement large jobs within Earth Engine’s constraints. To do so,
we first discuss Earth Engine’s underlying infrastructure to provide context for
existing limits. We then cover four core concepts for scaling:

1. Using best coding practices.
2. Breaking up jobs across time.
3. Breaking up jobs across space.
4. Building a multipart workflow and exporting intermediate assets.

Earth Engine: Under the Hood
As you use Earth Engine, you may begin to have questions about how it works and
how you can use that knowledge to optimize your workflow. In general, the inner
workings are opaque to users. Typical fixes and approaches that data scientists use to
manage memory constraints often do not apply. It is helpful to know what users can
and cannot control and how your scripts translate to Earth Engine’s server operations.

Earth Engine is a parallel, distributed system (see Gorelick et al. 2017), which
means that when you submit tasks, it breaks up pieces of your query onto different
processors to complete them more efficiently. It then collects the results and returns
them to you. For many users, not having to manually design this parallel, distributed
processing is a huge benefit. For some advanced users, it can be frustrating to not

29 Scaling up in Earth Engine 577

have better control. We would argue that leaving the details up to Earth Engine is a
huge time-saver for most cases, and learning to work within a few constraints is a
good time investment.

One core concept useful to master is the relationship between client-side and
server-side operations. Client-side operations are performed within your browser
(for the JavaScript API Code Editor) or local system (for the Python API). These
include things such as manipulating strings or numbers in JavaScript. Server-side
operations are executed on Google’s servers and include all of the ee.* functions.
By using the Earth Engine APIs—JavaScript or Python—you are building a chain
of commands to send to the servers and later receive the result back. As much as
possible, you want to structure your code to send all the heavy lifting to Google and
keep processing off of your local resources.

In other words, your work in the Code Editor is making a description of a compu-
tation. All ee objects are just placeholders for server-side objects—their actual value
does not exist locally on your computer. To see or use the actual value, it has to be
evaluated by the server. If you print an Earth Engine object, it calls getInfo to
evaluate and return the value. In contrast, you can also work with JavaScript/Python
lists or numbers locally and do basic JavaScript/Python things to them, like add num-
bers together or loop over items. These are client-side objects. Whenever you bring
a server-side object into your local environment, there is a computational cost.

Table 29.1 describes some nuts and bolts about Earth Engine and their implica-
tions. Table 29.2 provides some of the existing limits on individual tasks.

The Importance of Coding Best Practices
Good code scales better than bad code. But what is good code? Generally, for Earth
Engine, good code means (1) using Earth Engine’s server-side operators; (2) avoid-
ing multiple passes through the same image collection; (3) avoiding unnecessary
conversions; and (4) setting the processing scale or sample numbers appropriate for
your use case, i.e., avoid using very fine scales or large samples without reason.

We encourage readers to become familiar with the “Coding Best Practices” page
in the online Earth Engine User Guide. This page provides examples for avoiding
mixing client- and server-side functions, unnecessary conversions, costly algorithms,
combining reducers, and other helpful tips. Similarly, the “Debugging Guide–Scaling
Errors” page of the online Earth Engine User Guide covers some common problems
and solutions.

In addition, some Earth Engine functions are more efficient than others. For exam-
ple, Image.reduceRegions is more efficient than Image.sampleRegions,
because sampleRegions regenerates the geometries under the hood. These types
of best practices are trickier to enumerate and somewhat idiosyncratic. We encourage
users to learn about and make use of the Profiler tab, which will track and display
the resources used for each operation within your script. This can help identify areas
to focus efficiency improvements. Note that the profiler itself increases resource use,
so only use it when necessary to develop a script and remove it for production-level
execution. Other ways to discover best practices include following/posting questions

578 J. M. Deines et al.

Table 29.1 Characteristics of Google Earth engine and implications for running large jobs

Earth engine characteristics Implications

A parallel, distributed system Occasionally, doing the exact same thing in
two different orders can result in different
processing distributions, impacting the ability
to complete the task within system limits

Most processing is done per tile (generally a
square that is 256× 256 pixels)

Tasks that require many tiles are the most
memory intensive. Some functions have a
tileScale argument that reduces tile size,
allowing processing-intensive jobs to succeed
(at the cost of reduced speed)

Export mode has higher memory and time
allocations than interactive mode

It is better to export large jobs. You can export
to your Earth Engine assets, your Google
Drive, or Google Cloud Storage

Some operations are cached temporarily Running the same job twice could result in
different run times. Occasionally, tasks may
run successfully on a second try

Underlying infrastructure is composed of
clusters of low-end servers

There is a hard limit on data size for any
individual server; large computations need to
be done in parallel using Earth Engine
functions

The image processing domain, scale, and
projection are defined by the specified output
and applied backward throughout the
processing chain

There are not many cases when you will need
to manually reproject images, and these
operations are costly. Similarly, manually
“clipping” images is typically unnecessary

Table 29.2 Size limits for Earth engine tasks

Earth engine component Limits

Interactive mode Can print up to 5000 records. Computations must finish within five
minutes

Export mode Jobs have no time limit as long as they continue to make reasonable
progress (defined roughly as 600 s per feature, 2 h per aggregation,
and 10 min per tile). If any one tile, feature, or aggregation takes too
long, the whole job will get canceled. Any jobs that take longer than
one week to run will likely fail due to Earth Engine’s software update
release cycles

Table assets Maximum of 100 million features, 1000 properties (columns), and
100,000 vertices for a geometry

to GIS StackExchange or the Earth Engine Developer’s Discussion Group, swapping
code with others, and experimentation.

29 Scaling up in Earth Engine 579

29.2 Practicum

29.2.1 Topic 1: Scaling Across Time

In this section, we use an example of extracting climate data at features (points
or polygons) to demonstrate how to scale an operation across many features
(Sect. 29.2.1.1) and how to break up large jobs by time units when necessary
(e.g., by years; Sect. 29.2.1.2).

29.2.1.1 Scaling up with Earth Engine Operators: Annual Daily
Climate Data

Earth Engine’s operators are designed to parallelize queries on the backend with-
out user intervention. In many cases, they are sufficient to accomplish a scaling
operation.

As an example, we will extract a daily time series of precipitation, maximum
temperature, and minimum temperature for county polygons in the USA. We will
use the GRIDMET Climate Reanalysis product (Abatzoglou 2013), which provides
daily, 4000 m resolution gridded meteorological data from 1979 to the present
across the contiguous USA. To save time for this practicum, we will focus on the
states of Indiana, Illinois, and Iowa in the central USA, which together include
293 counties (Fig. 29.1).

Fig. 29.1 Map of study area, showing 293 county features within the states of Iowa, Illinois, and
Indiana in the USA

580 J. M. Deines et al.

This example uses the ee.Image.reduceRegions operator, which extracts
statistics from an Image for each Feature (point or polygon) in a
FeatureCollection. We will map the reduceRegions operator over each
daily image in an ImageCollection, thus providing us with the daily climate
information for each county of interest.

Note that although our example uses a climate ImageCollection, this
approach transfers to any ImageCollection, including satellite imagery, as
well as image collections that you have already processed, such as cloud masking
(Chap. 15) or time series aggregation (Chap. 14).

First, define the FeatureCollection, ImageCollection, and time
period:

// Load county dataset.
// Filter counties in Indiana, Illinois, and Iowa by state
FIPS code.
// Select only the unique ID column for simplicity.
var countiesAll =
ee.FeatureCollection('TIGER/2018/Counties');
var states = ['17', '18', '19'];
var uniqueID = 'GEOID';
var featColl =
countiesAll.filter(ee.Filter.inList('STATEFP', states))

.select(uniqueID);

print(featColl.size());
print(featColl.limit(1));

// Visualize target features (create Figure F6.2.1).
Map.centerObject(featColl, 5);
Map.addLayer(featColl);

// specify years of interest
var startYear = 2020;
var endYear = 2020;

// climate dataset info
var imageCollectionName = 'IDAHO_EPSCOR/GRIDMET';
var bandsWanted = ['pr', 'tmmn', 'tmmx'];
var scale = 4000;

29 Scaling up in Earth Engine 581

Printing the size of the FeatureCollection indicates that there are 293
counties in our subset. Since we want to pull a daily time series for one year, our
final dataset will have 106,945 rows—one for each county day.

Note that from our county FeatureCollection, we select only the GEOID
column, which represents a unique identifier for each record in this dataset. We
do this here to simplify print outputs; we could also specify which properties
to include in the export function (see below).

Next, load and filter the climate data. Note we adjust the end date to January
1 of the following year, rather than December 31 of the specified year, since the
filterDate function has an inclusive start date argument and an exclusive end
date argument; without this modification, the output would lack data for December
31.

// Load and format climate data.
var startDate = startYear + '-01-01';

var endYear_adj = endYear + 1;
var endDate = endYear_adj + '-01-01';

var imageCollection =
ee.ImageCollection(imageCollectionName)

.select(bandsWanted)

.filterBounds(featColl)

.filterDate(startDate, endDate);

Now, get the mean value for each climate attribute within each county
feature. Here, we map the ee.Image.reduceRegions call over the
ImageCollection, specifying an ee.Reducer.mean reducer. The reducer
will apply to each band in the image, and it returns the FeatureCollection
with new properties. We also add a ‘date_ymd’ time property extracted from
the image to correctly associate daily values with their date. Finally, we flatten
the output to reform a single FeatureCollection with one feature per county
day.

582 J. M. Deines et al.

// get values at features
var sampledFeatures = imageCollection.map(function(image) {

return image.reduceRegions({
collection: featColl,
reducer: ee.Reducer.mean(),
scale: scale

}).filter(ee.Filter.notNull(
bandsWanted)) // drop rows with no data
.map(function(f) { // add date property

var time_start = image.get(
'system:time_start');

var dte = ee.Date(time_start).format(
'YYYYMMdd');

return f.set('date_ymd', dte);
});

}).flatten();

print(sampledFeatures.limit(1));

Note that we include a filter to remove feature-day rows that lacked data. While
this is less common when using gridded climate products, missing data can be
common when reducing satellite images. This is because satellite collections come
in scene tiles, and each image tile likely does not overlap all of our features unless
it has first been aggregated temporally. It can also occur if a cloud mask has been
applied to an image prior to the reduction. By filtering out null values, we can
reduce empty rows.

Now, explore the result. If we simply print(sampledFeatures)
we get our first error message: “User memory limit exceeded.” This is
because we have created a FeatureCollection that exceeds the size
limits set for interactive mode. How many are there? We could try
print(sampledFeatures.size()), but due to the larger size, we receive
a “Computation timed out” message—it is unable to tell us. Of course, we know
that we expect 293 counties ×365 days = 106,945 features. We can, however,
check that our reducer has worked as expected by asking Earth Engine for just
one feature: print(sampledFeatures.limit(1)).

Here, we can see the precipitation, minimum temperature, and maximum tem-
perature for the county with GEOID = 17,121 on January 1, 2020 (Fig. 29.2; note,
temperature is in Kelvin units).

Next, export the full FeatureCollection as a CSV to a folder in your
Google Drive. Specify the names of properties to include. Build part of the file-
name dynamically based on arguments used for year and data scale, so we do not
need to manually modify the filenames.

29 Scaling up in Earth Engine 583

Fig. 29.2 Screenshot of the print output for one feature after the reduceRegions call

// export info
var exportFolder = 'GEE_scalingUp';
var filename = 'Gridmet_counties_IN_IL_IA_' + scale + 'm_'
+

startYear + '-' + endYear;

// prepare export: specify properties/columns to include
var columnsWanted = [uniqueID].concat(['date_ymd'],
bandsWanted);
print(columnsWanted);

Export.table.toDrive({
collection: sampledFeatures,
description: filename,
folder: exportFolder,
fileFormat: 'CSV',
selectors: columnsWanted

});

Code Checkpoint F62a. The book’s repository contains a script that shows what
your code should look like at this point.

On our first export, this job took about eight minutes to complete, producing
a dataset 6.8 MB in size. The data is ready for downstream use but may need
formatting to suit the user’s goals. You can see what the exported CSV looks like
in Fig. 29.3.

584 J. M. Deines et al.

Fig. 29.3 Top six rows of the exported CSV viewed in Microsoft Excel and sorted by county
GEOID

Using the Selectors Argument
There are two excellent reasons to use the selectors argument in your
Export.table.toDrive call. First, if the argument is not specified, Earth
Engine will generate the column names for the exported CSV from the first fea-
ture in your FeatureCollection. If that feature is missing properties, those
properties will be dropped from the export for all features.

Perhaps even more important if you are seeking to scale up an analysis, including
unnecessary columns can greatly increase file size and even processing time. For
example, Earth Engine includes a “.geo” field that contains a GeoJSON description
of each spatial feature. For non-simple geometries, the field can be quite large, as it
lists coordinates for each polygon vertex. For many purposes, it is not necessary to
include this information for each daily record (here, 365 daily rows per feature).

For example, when we ran the same job as above but did not use the selectors
argument, the output dataset was 5.7 GB (versus 6.8 MB!) and the runtime was
slower. This is a cumbersomely large file, with no real benefit. We generally rec-
ommend dropping the “.geo” column and other unnecessary properties. To retain
spatial information, a unique identifier for each feature can be used for downstream
joins with the spatial data or other properties. If working with point data, latitude
and longitude columns can be added prior to export to maintain easily accessible
geographic information, although the.geo column for point data is far smaller than
for irregularly shaped polygon features.

29.2.1.2 Scaling Across Time by Batching: Get 20 Years of Daily
Climate Data

Above, we extracted one year of daily data for our 293 counties. Let us say we
want to do the same thing, but for 2001–2020. We have already written our script
to flexibly specify years, so it is fairly adaptable to this new use case:

29 Scaling up in Earth Engine 585

// specify years of interest
var startYear = 2020;
var endYear = 2020;

If we only wanted a few years for a small number of features, we could just
modify the startYear or endYear and proceed. Indeed, our current example is
modest in size and number of features, and we were able to run 2001–2020 in one
export job that took about 2 h, with an output file size of 299 MB. However, with
larger feature collections, or hourly data, we will again start to bump up against
Earth Engine’s limits. Generally, jobs of this sort do not fail quickly—exports are
allowed to run as long as they continue making progress (see Table 29.2). It is not
uncommon, however, for a large job to take well over 24 h to run, or even to fail
after more than 24 h of run time, as it accumulates too many records or a single
aggregation fails. For users, this can be frustrating.

We generally find it simpler to run several small jobs rather than one large job.
Outputs can then be combined in external software. This avoids any frustration
with long-running jobs or delayed failures, and it allows parts of the task to be
run simultaneously. Earth Engine generally executes from 2 to 20 jobs per user at
a time, depending on overall user load (although 20 is rare). As a counterpoint,
there is some overhead for generating separate jobs.

Important note: When running a batch of jobs, it may be tempting to use mul-
tiple accounts to execute subsets of your batch and thus get your shared results
faster. However, doing so is a direct violation of the Earth Engine terms of service
and can result in your account(s) being terminated.

For-Loops: They are Sometimes OK
Batching jobs in time is a great way to break up a task into smaller units. Other options
include batching jobs by spatial regions defined by polygons (see Sect. 29.2.2) or
for computationally heavy tasks, batching by both space and time.

Because Export functions are client-side functions, however, you cannot create
an export within an Earth Engine map command. Instead, we need to loop over the
variable that will define our batches and create a set of export tasks.

But wait! Are not we supposed to avoid for-loops at all costs? Yes, within a
computational chain. Here, we are using a loop to send multiple computational
chains to the server.

First, we will start with the same script as in Sect. 29.2.1.1, but we will modify
the start year. We will also modify the desired output filename to be a generic base
filename, to which we will append the year for each task within the loop (in the next
step).

586 J. M. Deines et al.

// Load county dataset.
var countiesAll =
ee.FeatureCollection('TIGER/2018/Counties');
var states = ['17', '18', '19'];
var uniqueID = 'GEOID';
var featColl =
countiesAll.filter(ee.Filter.inList('STATEFP', states))

.select(uniqueID);

print(featColl.size());
print(featColl.limit(1));
Map.addLayer(featColl);

// Specify years of interest.
var startYear = 2001;
var endYear = 2020;

// Climate dataset info.
var imageCollectionName = 'IDAHO_EPSCOR/GRIDMET';
var bandsWanted = ['pr', 'tmmn', 'tmmx'];
var scale = 4000;

// Export info.
var exportFolder = 'GEE_scalingUp';
var filenameBase = 'Gridmet_counties_IN_IL_IA_' + scale +
'm_';

Now, modify the code in Sect. 29.2.1.1 to use a looping variable, i, to represent
each year. Here, we are using standard JavaScript looping syntax, where i will take
on each value between our startYear (2001) and our endYear (2020) for each
loop through this section of code, thus creating 20 queries to send to Earth Engine’s
servers.

29 Scaling up in Earth Engine 587

// Initiate a loop, in which the variable i takes on values
of each year.
for (var i = startYear; i <= endYear; i++) { // for
each year....

// Load climate collection for that year.
var startDate = i + '-01-01';

var endYear_adj = i + 1;
var endDate = endYear_adj + '-01-01';
var imageCollection =

ee.ImageCollection(imageCollectionName)
.select(bandsWanted)
.filterBounds(featColl)
.filterDate(startDate, endDate);

// Get values at feature collection.
var sampledFeatures = imageCollection.map(function(image)

{
return image.reduceRegions({
collection: featColl,
reducer: ee.Reducer.mean(),
tileScale: 1,
scale: scale

}).filter(ee.Filter.notNull(bandsWanted)) // remove
rows without data

.map(function(f) { // add date
property

var time_start = image.get('system:time_start');
var dte = ee.Date(time_start).format('YYYYMMdd');
return f.set('date_ymd', dte);

});
}).flatten();

// Prepare export: specify properties and filename.
var columnsWanted = [uniqueID].concat(['date_ymd'],

bandsWanted);
var filename = filenameBase + i;
Export.table.toDrive({
collection: sampledFeatures,
description: filename,

588 J. M. Deines et al.

folder: exportFolder,
fileFormat: 'CSV',
selectors: columnsWanted

});

}

Code Checkpoint F62b. The book’s repository contains a script that shows what
your code should look like at this point.

When we run this script, it builds our computational query for each year, creating
a batch of 20 individual jobs that will show up in the Task pane (Fig. 29.4). Each
task name includes the year, since we used our looping variable i to modify the base
filename we specified.

We now encounter a downside to creating batch tasks within the JavaScript Code
Editor: we need to click Run to execute each job in turn. Here, we made this easier
by programmatically assigning each job the filename we want, so we can hold the
Cmd/Ctrl key and click Run to avoid the export task option window and only need
to click once per task. Still, one can imagine that at some number of tasks, one’s
patience for clicking Run will be exceeded. We assume that number is different for
everyone.

Note: If at any time you have submitted several tasks to the server but want to
cancel them all, you can do so more easily from the Earth Engine Task Manager
that is linked at the top of the Task pane. You can read about that task manager in
the Earth Engine User Guide.

In order to auto-execute jobs in batch mode, we would need to use the Python
API. Interested users can see the Earth Engine User Guide Python API tutorial for
further details about the Python API.

Fig. 29.4 Creation of batch tasks for each year

29 Scaling up in Earth Engine 589

29.2.2 Topic 2: Scaling Across Space via Spatial Tiling

Breaking up jobs in space is another key strategy for scaling operations in Earth
Engine. Here, we will focus on making a cloud-free composite from the Sentinel-2
Level 2A Surface Reflectance product. The approach is similar to that in Chap. 15,
which explores cloud-free compositing. The main difference is that Landsat scenes
come with a reliable quality band for each scene, whereas the process for Sentinel-
2 is a bit more complicated and computationally intense (see below).

Our region of interest is the state of Washington in the USA for demonstration
purposes, but the method will work at much larger continental scales as well.

Cloud Masking Approach
While we do not intend to cover the theory behind Sentinel-2 cloud masking, we do
want to include a brief description of the process to convey the computational needs
of this approach.

The Sentinel-2 Level 2A collection does not come with a robust cloud mask.
Instead, we will build one from related products that have been developed for this pur-
pose. Following the existing Sentinel-2 cloud masking tutorials in the Earth Engine
guides, this approach requires three Sentinel-2 image collections:

• The Sentinel-2 Level 2A Surface Reflectance product. This is the dataset we want
to use to build our final composite.

• The Sentinel-2 Cloud Probability Dataset, an ImageCollection that contains
cloud probabilities for each Sentinel-2 scene.

• The Sentinel-2 Level 1C top-of-atmosphere product. This collection is needed
to run the Cloud Displacement Index to identify cloud shadows, which is calcu-
lated using ee.Algorithms.Sentinel2.CDI (see Frantz et al. 2018 for
algorithm description).

These three image collections all contain 10 m resolution data for every Sentinel-
2 scene. We will join them based on their ‘system:index’ property, so we
can relate each Level 2A scene with the corresponding cloud probability and cloud
displacement index. Furthermore, there are two ee.Image.projection steps
to control the scale when calculating clouds and their shadows.

To sum up, the cloud masking approach is computationally costly, thus requiring
some thought when applying it at scale.

29.2.2.1 Generate a Cloud-Free Satellite Composite: Limits
to On-the-Fly Computing

Note: Our focus here is on code structure for implementing spatial tiling. Below,
we import existing tested functions for cloud masking using the require
command.

First, define our region and time of interest; then, load the module containing
the cloud functions.

590 J. M. Deines et al.

// Set the Region of Interest:Seattle, Washington, United
States
var roi = ee.Geometry.Point([-122.33524518034544,
47.61356183942883]);

// Dates over which to create a median composite.
var start = ee.Date('2019-03-01');
var end = ee.Date('2019-09-01');

// Specify module with cloud mask functions.
var s2mask_tools = require(

'projects/gee-edu/book:Part F - Fundamentals/F6 -
Advanced Topics/F6.2 Scaling Up/modules/s2cloudmask.js'
);

Next, load and filter our three Sentinel-2 image collections.

// Sentinel-2 surface reflectance data for the composite.
var s2Sr = ee.ImageCollection('COPERNICUS/S2_SR')

.filterDate(start, end)

.filterBounds(roi)

.select(['B2', 'B3', 'B4', 'B5']);

// Sentinel-2 Level 1C data (top-of-atmosphere).
// Bands B7, B8, B8A and B10 needed for CDI and the cloud
mask function.
var s2 = ee.ImageCollection('COPERNICUS/S2')

.filterBounds(roi)

.filterDate(start, end)

.select(['B7', 'B8', 'B8A', 'B10']);

// Cloud probability dataset - used in cloud mask function
var s2c =
ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY')

.filterDate(start, end)

.filterBounds(roi);

Now, apply the cloud mask:

29 Scaling up in Earth Engine 591

// Join the cloud probability dataset to surface
reflectance.
var withCloudProbability = s2mask_tools.indexJoin(s2Sr,
s2c,

'cloud_probability');

// Join the L1C data to get the bands needed for CDI.
var withS2L1C =
s2mask_tools.indexJoin(withCloudProbability, s2,

'l1c');

// Map the cloud masking function over the joined
collection.
// Cast output to ImageCollection
var masked = ee.ImageCollection(withS2L1C.map(s2mask_tools
.maskImage));

Next, generate and visualize the median composite:

// Take the median, specifying a tileScale to avoid memory
errors.
var median = masked.reduce(ee.Reducer.median(), 8);

// Display the results.
Map.centerObject(roi, 12);
Map.addLayer(roi);

var viz = {
bands: ['B4_median', 'B3_median', 'B2_median'],
min: 0,
max: 3000

};
Map.addLayer(median, viz, 'median');

Code Checkpoint F62c. The book’s repository contains a script that shows what
your code should look like at this point.

After about 1–3 min, Earth Engine returns our composite to us on the fly
(Fig. 29.5). Note that panning and zooming to a new area require that Earth Engine
must again issue the compositing request to calculate the image for new areas.
Given the delay, this is not a very satisfying way to explore our composite.

592 J. M. Deines et al.

Fig. 29.5 Map view of Seattle, Washington, USA (left), and the corresponding Sentinel-2 com-
posite (right)

Map.centerObject(roi, 9);
Map.addLayer(roi);
Map.addLayer(median, viz, 'median');

Fig. 29.6 Error message for exceeding memory limits in interactive mode

Next, expand our view (set zoom to 9) to exceed the limits of on-the-fly
computation (Fig. 29.6).

As you can see, this is an excellent candidate for an export task rather than
running in “on-the-fly” interactive mode, as above.

29.2.2.2 Generate a Regional Composite Through Spatial Tiling
Our goal is to apply the cloud masking method in Sect. 29.2.2.1 to the state of
Washington, USA. In our testing, we successfully exported one Sentinel-2 com-
posite for this area in about 9 h, but for this tutorial, let us presume we need to
split the task up to be successful.

Essentially, we want to split our region of interest up into a regular grid. For
each grid, we will export a composite image into a new ImageCollection
asset. We can then load and mosaic our composite for use in downstream scripts
(see below).

First, generate a spatial polygon grid (FeatureCollection) of desired size
over your region of interest (see Fig. 29.7).

29 Scaling up in Earth Engine 593

// Specify helper functions.
var s2mask_tools = require(

'projects/gee-edu/book:Part F - Fundamentals/F6 -
Advanced Topics/F6.2 Scaling Up/modules/s2cloudmask.js'
);

// Set the Region of Interest: Washington, USA.
var roi = ee.FeatureCollection('TIGER/2018/States')

.filter(ee.Filter.equals('NAME', 'Washington'));

// Specify grid size in projection, x and y units (based on
projection).
var projection = 'EPSG:4326'; // WGS84 lat lon
var dx = 2.5;
var dy = 1.5;

// Dates over which to create a median composite.
var start = ee.Date('2019-03-01');
var end = ee.Date('2019-09-01');

// Make grid and visualize.
var proj = ee.Projection(projection).scale(dx, dy);
var grid = roi.geometry().coveringGrid(proj);

Map.addLayer(roi, {}, 'roi');
Map.addLayer(grid, {}, 'grid');

Fig. 29.7 Visualization of the regular spatial grid generated for use in spatial batch processing

594 J. M. Deines et al.

Fig. 29.8 The “create new
image collection asset” menu
in the Code Editor

Next, create a new, empty ImageCollection asset to use as our export
destination (Assets > New > Image Collection; Fig. 29.8). Name the image col-
lection ‘S2_composite_WA’ and specify the asset location in your user folder (e.g.,
“path/to/your/asset/s2_composite_WA”).

Specify the ImageCollection to export to, along with a base name for each
image (the tile number will be appended in the batch export).

// Export info.
var assetCollection = 'path/to/your/asset/s2_composite_WA';
var imageBaseName = 'S2_median_';

Extract grid numbers to use as looping variables. Note that there is one
getInfo call here, which should be used sparingly and never within a for-loop
if you can help it. We use it to bring the number of grid cells we have generated
onto the client side to set up the for-loop over grids. Note that if your grid has too
many elements, you may need a different strategy.

// Get a list based on grid number.
var gridSize = grid.size().getInfo();
var gridList = grid.toList(gridSize);

29 Scaling up in Earth Engine 595

Batch generate a composite image task export for each grid via looping:

// In each grid cell, export a composite
for (var i = 0; i < gridSize; i++) {

// Extract grid polygon and filter S2 datasets for this
region.

var gridCell = ee.Feature(gridList.get(i)).geometry();

var s2Sr = ee.ImageCollection('COPERNICUS/S2_SR')
.filterDate(start, end)
.filterBounds(gridCell)
.select(['B2', 'B3', 'B4', 'B5']);

var s2 = ee.ImageCollection('COPERNICUS/S2')
.filterDate(start, end)
.filterBounds(gridCell)
.select(['B7', 'B8', 'B8A', 'B10']);

var s2c =
ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY')

.filterDate(start, end)

.filterBounds(gridCell);

// Apply the cloud mask.
var withCloudProbability = s2mask_tools.indexJoin(s2Sr,

s2c,
'cloud_probability');

var withS2L1C =
s2mask_tools.indexJoin(withCloudProbability, s2,

'l1c');
var masked =

ee.ImageCollection(withS2L1C.map(s2mask_tools
.maskImage));

// Generate a median composite and export.
var median = masked.reduce(ee.Reducer.median(), 8);

// Export.
var imagename = imageBaseName + 'tile' + i;
Export.image.toAsset({

image: median,
description: imagename,
assetId: assetCollection + '/' + imagename,
scale: 10,

596 J. M. Deines et al.

region: gridCell,
maxPixels: 1e13

});
}

Code Checkpoint F62d. The book’s repository contains a script that shows what
your code should look like at this point.

Similar to Sect. 29.2.1.2, we now have a list of tasks to execute. We can hold
the Cmd/Ctrl key and click Run to execute each task (Fig. 29.9). Again, users with
applications requiring large batches may want to explore the Earth Engine Python
API, which is well-suited to batching work. The output ImageCollection is
35.3 GB, so you may not want to execute all (or any) of these tasks but can access
our pre-generated image, as discussed below.

In addition to being necessary for very large regions, batch processing can speed
things up for moderate scales. In our tests, tiles averaged about 1 h to complete.
Because three jobs in our queue were running simultaneously, we covered the full
state of Washington in about 4 h (compared to about 9 h when tested for the full
state of Washington at once). Users should note, however, that there is also an
overhead to spinning up each batch task. Finding the balance between task size
and task number is a challenge for most Earth Engine users that becomes easier
with experience.

In a new script, load the exported ImageCollection and mosaic for use.

Fig. 29.9 Spatial batch tasks have been generated and are ready to run

29 Scaling up in Earth Engine 597

// load image collection and mosaic into single image
var assetCollection = 'projects/gee-book/assets/F6-
2/s2_composite_WA';
var composite =
ee.ImageCollection(assetCollection).mosaic();

// Display the results
var geometry = ee.Geometry.Point([-120.5873563817392,

47.39035206888694
]);
Map.centerObject(geometry, 6);
var vizParams = {

bands: ['B4_median', 'B3_median', 'B2_median'],
min: 0,
max: 3000

};
Map.addLayer(composite, vizParams, 'median');

Code Checkpoint F62e. The book’s repository contains a script that shows what
your code should look like at this point.

Note the ease, speed, and joy of panning and zooming to explore the
pre-computed composite asset (Fig. 29.10) compared to the on-the-fly version
discussed in Sect. 29.2.2.1.

29.2.3 Topic 3: Multistep Workflows and Intermediate Assets

Often, our goals require several processing steps that cannot be completed within
one Earth Engine computational chain. In these cases, the best strategy becomes
breaking down tasks into individual pieces that are created, stored in assets, and
used across several scripts. Each sequential script creates an intermediate output,
and this intermediate output becomes the input to the next script.

As an example, consider the land use classification task of identifying irri-
gated agricultural lands. This type of classification can benefit from several types
of evidence, including satellite composites, aggregated weather information, soil
information, and/or crop type locations. Individual steps for this type of work
might include:

• Generating satellite composites of annual or monthly vegetation indices.
• Processing climate data into monthly or seasonal values.
• Generating random point locations from a ground truth layer for use as a feature

training dataset and accuracy validation, and extracting composite and weather
values at these features.

598 J. M. Deines et al.

Fig. 29.10 Sentinel-2 composite covering the state of Washington, loaded from asset. The
remaining white colors are snow-capped mountains, not clouds

• Training a classifier and applying it, possibly across multiple years; researchers
will often implement multiple classifiers and compare the performance of
different methods.

• Implementing post-classification cleaning steps, such as removing “speckle”.
• Evaluating accuracy at ground truth validation points and against government

statistics using total area per administrative boundary.
• Exporting your work as spatial layers, visualizations, or other formats.

Multipart workflows can become unwieldy to manage, particularly if there are
multiple collaborators or the project has a long timeline; it can be difficult to
remember why each script was developed and where it fits in the overall workflow.

Here, we provide tips for managing multipart workflows. These are some-
what opinionated and based largely on concepts from “Good Enough Practices
in Scientific Computing” (Wilson et al. 2017). Ultimately, your personal workflow
practices will be a combination of what works for you, what works for your larger
team and organization, and hopefully, what works for good documentation and
reproducibility.

29 Scaling up in Earth Engine 599

Tip 1. Create A Repository For Each Project
The repository can be considered the fundamental project unit. In Earth Engine,
sharing permissions are set for each individual repository, so this allows you to share
a specific project with others (see Chap. 28).

By default, Earth Engine saves new scripts in a “default” repository specific for
each user (users/ < username > /default). You can create new repositories on the
Scripts tab of the Code Editor (Fig. 29.11).

To adjust permissions for each repository, click on the Gear icon (Fig. 29.12).
For users familiar with version control, Earth Engine uses a git-based script man-

ager, so each repository can also be managed, edited, and/or synced with your local
copy or collaborative spaces like GitHub.

Tip 2. Make a Separate Script for Each Step, and Make Script File Names
Informative and Self-sorting
Descriptive, self-sorting filenames are an excellent “good enough” way to keep your
projects organized. We recommend starting script names with zero-padded numeric
values to take advantage of default ordering. Because we are generating assets in
early scripts that are used in later scripts, it is important to preserve the order of your
workflow. The name should also include short descriptions of what the script does
(Fig. 29.13).

Fig. 29.11 Code Editor menu for creating new repositories

Fig. 29.12 Access the sharing and permissions’ menu for each repository by clicking the Gear
icon

600 J. M. Deines et al.

Fig. 29.13 Example project
repository with multiple
scripts. Using leading
numbers when naming scripts
allows you to order them by
their position in the workflow

Leaving some decimal places between successive scripts gives you the ability to
easily insert any additional steps you did not originally anticipate. And, zero-padding
means that your self-sorting still works once you move into double-digit numbers.

Other script organization strategies might involve including subfolders to collect
scripts related to main steps. For example, one could have a subfolder “04_classifiers”
to keep alternative classification scripts in one place, using a more tree-based file
structure. Again, each user or group will develop a system that works for them. The
important part is to have an organizational system.

Tip 3. Consider Data Types and File Sizes When Storing Intermediates
Images and image collections are common intermediate file types, since generating
satellite composites or creating land use classifications tends to be computationally
intensive. These assets can also be quite large, depending on the resolution and region
size. Recall that our single-year, subregional Sentinel-2 composite in Sect. 29.2.2
was about 23 GB.

Image values can be stored from 8-bit integers to 64-bit double floats (numbers
with decimals). Higher bits allow for more precision, but have much larger file sizes
and are not always necessary. For example, if we are generating a land use map with
five classes, we can convert that to a signed or unsigned 8-bit integer using toInt8
or toUint8 prior to exporting to asset, which can accommodate 256 unique values.
This results in a smaller file size. Selectively retaining only bands of interest is also
helpful to reduce size.

For cases requiring decimals and precision, consider whether a 32-bit float will
do the job instead of a 64-bit double—toFloat will convert an image to a 32-bit
float. If you find that you need to conserve storage, you can also scale float values and
store as an integer image (image.multiply(100).toInt16(), for example).

29 Scaling up in Earth Engine 601

This would retain precision to the second decimal place and reduce file size by a
factor of two. Note that this may require you to unscale the values in downstream
use. Ultimately, the appropriate data type will be specific to your needs.

And of course, as mentioned above under “The Importance of Best Coding
Practices,” be aware of the scale resolution you are working at, and avoid using
unnecessarily high resolution when it is not supported by either the input imagery
or your research goals.

Tip 4. Consider Google Cloud Platform for Hosting Larger Intermediates
If you are working with very large or very many files, you can link Earth Engine with
Cloud Projects on Google Cloud Platform. See the Earth Engine documentation on
“Setting Up Earth Engine Enabled Cloud Projects” for more information.

29.3 Synthesis and Conclusion

Earth Engine is built to be scaled. Scaling up working scripts, however, can present
challenges when the computations take too long or return results that are too large
or numerous. We have covered some key strategies to use when you encounter
memory or computational limits. Generally, they involve (1) optimizing your code
based on Earth Engine’s functions and infrastructure; (2) working at scales appro-
priate for your data, question, and region of interest and not at higher resolutions
than necessary; and (3) breaking up tasks into discrete units.

References

Abatzoglou JT (2013) Development of gridded surface meteorological data for ecological applica-
tions and modelling. Int J Climatol 33:121–131. https://doi.org/10.1002/joc.3413

Frantz D, Haß E, Uhl A et al (2018) Improvement of the Fmask algorithm for Sentinel-2
images: separating clouds from bright surfaces based on parallax effects. Remote Sens Environ
215:471–481. https://doi.org/10.1016/j.rse.2018.04.046

Gorelick N, Hancher M, Dixon M et al (2017) Google Earth engine: planetary-scale geospa-
tial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/j.rse.2017.
06.031

Wilson G, Bryan J, Cranston K et al (2017) Good enough practices in scientific computing. PLoS
Comput Biol 13:e1005510. https://doi.org/10.1371/journal.pcbi.1005510

https://doi.org/10.1002/joc.3413
https://doi.org/10.1016/j.rse.2018.04.046
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1371/journal.pcbi.1005510

602 J. M. Deines et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

30Sharing Work in Earth Engine: Basic
UI and Apps

Qiusheng Wu

Overview
The purpose of this chapter is to demonstrate how to design and publish Earth
Engine Apps using both JavaScript and Python. You will be introduced to the
Earth Engine User Interface JavaScript API and the geemap Python package. Upon
completion of this chapter, you will be able to publish an Earth Engine App with
a split-panel map for visualizing land cover change.

Learning Outcomes

• Designing a user interface for an Earth Engine App using JavaScript.
• Publishing an Earth Engine App for visualizing land cover change.
• Developing an Earth Engine App using Python and geemap.
• Deploying an Earth Engine App using a local computer as a web server.
• Publishing an Earth Engine App using Python and free cloud platforms.
• Creating a conda environment using Anaconda/Miniconda.
• Installing Python packages and using Jupyter Notebook.
• Committing changes to a GitHub repository.

Q. Wu (B)
University of Tennessee, Knoxville, USA
e-mail: qwu18@utk.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_30

603

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_30&domain=pdf
https://orcid.org/0000-0001-5437-4073
mailto:qwu18@utk.edu
https://doi.org/10.1007/978-3-031-26588-4_30

604 Q. Wu

Assumes you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Use the basic functions and logic of Python.

30.1 Introduction to Theory

Earth Engine has a user interface API that allows users to build and publish inter-
active web apps directly from the JavaScript Code Editor. Many readers will have
encountered a call to ui.Chart in other chapters, but much more interface func-
tionality is available. In particular, users can utilize the ui functions to construct
an entire graphical user interface (GUI) for their Earth Engine script. The GUI
may include simple widgets (e.g., labels, buttons, checkboxes, sliders, text boxes)
as well as more complex widgets (e.g., charts, maps, panels) for controlling the
GUI layout. A complete list of the ui widgets and more information about panels
can be found at the links below. Once a GUI is constructed, users can publish the
App from the JavaScript Code Editor by clicking the Apps button above the script
panel in the Code Editor.

• Widgets: https://developers.google.com/earth-engine/guides/ui_widgets
• Panels: https://developers.google.com/earth-engine/guides/ui_panels.

Unlike the Earth Engine JavaScript API, the Earth Engine Python API does
not provide functionality for building interactive user interfaces. Fortunately, the
Jupyter ecosystem has ipywidgets, an architecture for creating interactive user
interface controls (e.g., buttons, sliders, checkboxes, text boxes, dropdown lists) in
Jupyter notebooks that communicate with Python code. The integration of graphi-
cal widgets into the Jupyter Notebook workflow allows users to configure ad hoc
control panels to interactively sweep over parameters using graphical widget con-
trols. One very powerful widget is the output widget, which can be used to display
rich output generated by IPython, such as text, images, charts, and videos. A com-
plete list of widgets and more information about the output widget can be found
at the links below. By integrating ipyleaflet (for creating interactive maps) and
ipywidgets (for designing interactive user interfaces), the geemap Python package
(https://geemap.org) makes it much easier to explore and analyze massive Earth
Engine datasets via a web browser in a Jupyter environment suitable for interactive
exploration, teaching, and sharing. Users can build interactive Earth Engine Apps
using geemap with minimal coding (Fig. 30.1).

• Widgets: https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.
html

• Output: https://ipywidgets.readthedocs.io/en/latest/examples/Output%20W
idget.html.

https://developers.google.com/earth-engine/guides/ui_widgets
https://developers.google.com/earth-engine/guides/ui_panels
https://geemap.org
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/latest/examples/Output%20Widget.html
https://ipywidgets.readthedocs.io/en/latest/examples/Output%20Widget.html

30 Sharing Work in Earth Engine: Basic UI and Apps 605

Fig. 30.1 GUI of geemap in a Jupyter environment

30.2 Practicum

30.2.1 Section 1. Building an Earth Engine App Using JavaScript

In this section, you will learn how to design a user interface for an Earth Engine
App using JavaScript and the Earth Engine User Interface API. Upon completion
of this section, you will have an Earth Engine App with a split-panel map for
visualizing land cover change using the Landsat-based United States Geological
Survey National Land Cover Database (NLCD).

First, let’s define a function for filtering the NLCD ImageCollection by
year and select the landcover band. The function returns an Earth Engine
ui.Map.Layer of the landcover band of the selected NLCD image. Note
that as of this writing, NLCD spans nine epochs: 1992, 2001, 2004, 2006, 2008,
2011, 2013, 2016, and 2019. The 1992 data are primarily based on unsupervised
classification of Landsat data, while the rest of the images rely on the impervi-
ousness data layer for the urban classes and on a decision-tree classification for
the rest. The 1992 image is not directly comparable to any later editions of NLCD
(see the Earth Engine Data Catalog for more details, if needed). Therefore, we will
use only the eight epochs after 2000 in this lab.

606 Q. Wu

// Get an NLCD image by year.
var getNLCD = function(year) {

// Import the NLCD collection.
var dataset = ee.ImageCollection(

'USGS/NLCD_RELEASES/2019_REL/NLCD');

// Filter the collection by year.
var nlcd = dataset.filter(ee.Filter.eq('system:index',

year))
.first();

// Select the land cover band.
var landcover = nlcd.select('landcover');
return ui.Map.Layer(landcover, {}, year);

};

Our intention is to create a dropdown list so that when a particular epoch is
selected, the corresponding NLCD image layer will be displayed on the map. We
will define a dictionary with each NLCD epoch as the key and its corresponding
NLCD image layer as the value. The keys of the dictionary (i.e., the eight NLCD
epochs) will be used as the input to the dropdown lists (ui.Select) on the
split-level map.

// Create a dictionary with each year as the key
// and its corresponding NLCD image layer as the value.
var images = {

'2001': getNLCD('2001'),
'2004': getNLCD('2004'),
'2006': getNLCD('2006'),
'2008': getNLCD('2008'),
'2011': getNLCD('2011'),
'2013': getNLCD('2013'),
'2016': getNLCD('2016'),
'2019': getNLCD('2019'),

};

The split-panel map is composed of two individual maps, leftMap
and rightMap. The map controls (e.g., zoomControl, scaleControl,
mapTypeControl) will be shown only on rightMap. A control panel
(ui.Panel) composed of a label (ui.Label) and a dropdown list
(ui.Select) is added to each map. When an NLCD epoch is selected from a
dropdown list, the function updateMap will be called to show the corresponding
image layer of the selected epoch.

30 Sharing Work in Earth Engine: Basic UI and Apps 607

// Create the left map, and have it display the first
layer.
var leftMap = ui.Map();
leftMap.setControlVisibility(false);
var leftSelector = addLayerSelector(leftMap, 0, 'top-
left');

// Create the right map, and have it display the last
layer.
var rightMap = ui.Map();
rightMap.setControlVisibility(true);
var rightSelector = addLayerSelector(rightMap, 7, 'top-
right');

// Adds a layer selection widget to the given map, to allow
users to
// change which image is displayed in the associated map.
function addLayerSelector(mapToChange, defaultValue,
position) {

var label = ui.Label('Select a year:');

// This function changes the given map to show the
selected image.

function updateMap(selection) {
mapToChange.layers().set(0, images[selection]);

}

// Configure a selection dropdown to allow the user to
choose

// between images, and set the map to update when a
user

// makes a selection.
var select = ui.Select({

items: Object.keys(images),
onChange: updateMap

});
select.setValue(Object.keys(images)[defaultValue],
true);

608 Q. Wu

style: {
position: position

}
});

mapToChange.add(controlPanel);
}

var controlPanel =
ui.Panel({

widgets: [label, select],

When displaying a land cover classification image on the Map, it would be
useful to add a legend to make it easier for users to interpret the land cover type
associated with each color. Let’s define a dictionary that will be used to construct
the legend. The dictionary contains two keys: names (a list of land cover types)
and colors (a list of colors associated with each land cover type). The legend
will be placed in the bottom right of the Map.

// Set the legend title.
var title = 'NLCD Land Cover Classification';
// Set the legend position.
var position = 'bottom-right';
// Define a dictionary that will be used to make a legend
var dict = {

'names': [
'11 Open Water',
'12 Perennial Ice/Snow',
'21 Developed, Open Space',
'22 Developed, Low Intensity',
'23 Developed, Medium Intensity',
'24 Developed, High Intensity',
'31 Barren Land (Rock/Sand/Clay)',
'41 Deciduous Forest',
'42 Evergreen Forest',
'43 Mixed Forest',
'51 Dwarf Scrub',
'52 Shrub/Scrub',
'71 Grassland/Herbaceous',
'72 Sedge/Herbaceous',

30 Sharing Work in Earth Engine: Basic UI and Apps 609

'73 Lichens',
'74 Moss',
'81 Pasture/Hay',
'82 Cultivated Crops',
'90 Woody Wetlands',
'95 Emergent Herbaceous Wetlands',

],

'colors': [
'#466b9f', '#d1def8', '#dec5c5', '#d99282',
'#eb0000',

'#b3ac9f', '#68ab5f', '#1c5f2c', '#b5c58f',
'#af963c', '#ccb879',

'#dfdfc2', '#d1d182', '#a3cc51', '#82ba9e',
'#dcd939', '#ab6c28',

'#b8d9eb', '#6c9fb8',
]

};

'#ab0000',

With the legend dictionary defined above, we can now create a panel to hold the
legend widget and add it to the Map. Each row on the legend widget is composed
of a color box followed by its corresponding land cover type.

// Create a panel to hold the legend widget.
var legend = ui.Panel({

style: {
position: position,
padding: '8px 15px'

}
});

// Function to generate the legend.
function addCategoricalLegend(panel, dict, title) {

610 Q. Wu

// Creates and styles 1 row of the legend.
var makeRow = function(color, name) {

// Create the label that is actually the colored
box.

var colorBox = ui.Label({
style: {

backgroundColor: color,
// Use padding to give the box height and

width.
padding: '8px',
margin: '0 0 4px 0'

}
});

// Create the label filled with the description
text.

var description = ui.Label({
value: name,
style: {

margin: '0 0 4px 6px'
}

});

return ui.Panel({
widgets: [colorBox, description],
layout: ui.Panel.Layout.Flow('horizontal')

});
};

// Create and add the legend title.
var legendTitle = ui.Label({

value: title,
style: {

fontWeight: 'bold',
fontSize: '18px',
margin: '0 0 4px 0',
padding: '0'

}
});
panel.add(legendTitle);

var loading = ui.Label('Loading legend...', {
margin: '2px 0 4px 0'

});
panel.add(loading);

30 Sharing Work in Earth Engine: Basic UI and Apps 611

// Get the list of palette colors and class names from
the image.

var palette = dict.colors;
var names = dict.names;
loading.style().set('shown', false);

for (var i = 0; i < names.length; i++) {
panel.add(makeRow(palette[i], names[i]));

}

rightMap.add(panel);

}

The last step is to create a split-panel map to hold the linked maps (leftMap
and rightMap) and tie everything together. When users pan and zoom one map,
the other map will also be panned and zoomed to the same extent automatically.
When users select a year from a dropdown list, the image layer will be updated
accordingly. Users can use the slider to swipe through and visualize land cover
change easily (Fig. 30.2). Please make sure you minimize the Code Editor and
maximize the Map so that you can see the dropdown widget in the upper-right
corner of the map.

Fig. 30.2 Split-panel map for visualizing land cover change using NLCD

612 Q. Wu

addCategoricalLegend(legend, dict, title);

// Create a SplitPanel to hold the adjacent, linked maps.
var splitPanel = ui.SplitPanel({

firstPanel: leftMap,
secondPanel: rightMap,
wipe: true,
style: {

stretch: 'both'
}

});

// Set the SplitPanel as the only thing in the UI root.
ui.root.widgets().reset([splitPanel]);
var linker = ui.Map.Linker([leftMap, rightMap]);
leftMap.setCenter(-100, 40, 4);

Code Checkpoint F63a. The book’s repository contains a script that shows what
your code should look like at this point.

30.2.2 Section 2. Publishing an Earth Engine App from the Code
Editor

The goal of this section is to publish the Earth Engine App that we created in
Sect. 30.2.1. The look and feel of interfaces changes often; if the exact windows
described below change over time, the concepts should remain stable to help you to
publish your App. First, load the script (see the Code Checkpoint in Sect. 30.2.1)
into the Code Editor. Then, open the Manage Apps panel by clicking the Apps
button above the script panel in the Code Editor (Fig. 30.3).

Now click on the New App button (Fig. 30.4).
In the Publish New App dialog (Fig. 30.5), choose a name for the App (e.g.,

NLCD Land Cover Change), select a Google Cloud Project, provide a thumbnail to

Fig. 30.3 Apps button in the JavaScript Code Editor

Fig. 30.4 New App button

30 Sharing Work in Earth Engine: Basic UI and Apps 613

be shown in the Public Apps Gallery, and specify the location of the App’s source
code. You may restrict access to the App to a particular Google Group or make it
publicly accessible. Check Feature this app in your Public Apps Gallery if you
would like this App to appear in your public gallery of Apps available at https://
USERNAME.users.earthengine.app. When all fields are filled out and validated,
the Publish button will be enabled; click it to complete publishing the App.

To manage an App from the Code Editor, open the Manage Apps panel
(Fig. 30.6) by clicking the Apps button above the script panel in the Code Editor
(Fig. 30.3). There, you can update your App’s configuration or delete the App.

Fig. 30.5 Publish New App dialog

https://USERNAME.users.earthengine.app
https://USERNAME.users.earthengine.app

614 Q. Wu

Fig. 30.6 Manage Apps panel

30.2.3 Section 3. Developing an Earth Engine App Using geemap

In this section, you will learn how to develop an Earth Engine App using the
geemap Python package and Jupyter Notebook. The geemap package is available
on both PyPI (pip) and conda-forge. It is highly recommended that you create a
fresh conda environment to install geemap.

Code Checkpoint F63b. The book’s repository contains information about setting
up a conda environment and installing geemap.

Once you have launched a Jupyter Notebook in your browser, you can continue
with the next steps of the lab.

On the Jupyter Notebook interface, click the New button in the upper-right
corner and select Python 3 to create a new notebook. Change the name of the
notebook from “Untitled” to something meaningful (e.g., “nlcd_app”). With the
newly created notebook, we can start writing and executing Python code.

First, let’s import the Earth Engine and geemap libraries. Press Alt + Enter to
execute the code and create a new cell below.

import ee
import geemap

Create an interactive map by specifying the map center (latitude, longitude) and
zoom level (1–18). If this is the first time you use geemap and the Earth Engine
Python API, a new tab will open in your browser asking you to authenticate Earth
Engine. Follow the on-screen instructions to authenticate Earth Engine.

Map = geemap.Map(center=[40, -100], zoom=4)
Map

30 Sharing Work in Earth Engine: Basic UI and Apps 615

Retrieve the NLCD 2019 image by filtering the NLCD ImageCollection
and selecting the landcover band. Display the NLCD 2019 image on the
interactive Map by using Map.addLayer.

Import the NLCD collection.
dataset =
ee.ImageCollection('USGS/NLCD_RELEASES/2019_REL/NLCD')

Filter the collection to the 2019 product.
nlcd2019 = dataset.filter(ee.Filter.eq('system:index',
'2019')).first()

Select the land cover band.
landcover = nlcd2019.select('landcover')

Display land cover on the map.
Map.addLayer(landcover, {}, 'NLCD 2019')
Map

Next, add the NLCD legend to the Map. The geemap package has several built-
in legends, including the NLCD legend. Therefore, you can add the NLCD legend
to the Map by using just one line of code (Map.add_legend).

title = 'NLCD Land Cover Classification'
Map.add_legend(legend_title=title, builtin_legend='NLCD')

Alternatively, if you want to add a custom legend, you can define a leg-
end dictionary with labels as keys and colors as values, then you can use
Map.add_legend to add the custom legend to the Map.

616 Q. Wu

legend_dict = {
'11 Open Water': '466b9f',
'12 Perennial Ice/Snow': 'd1def8',
'21 Developed, Open Space': 'dec5c5',
'22 Developed, Low Intensity': 'd99282',
'23 Developed, Medium Intensity': 'eb0000',
'24 Developed High Intensity': 'ab0000',
'31 Barren Land (Rock/Sand/Clay)': 'b3ac9f',
'41 Deciduous Forest': '68ab5f',
'42 Evergreen Forest': '1c5f2c',
'43 Mixed Forest': 'b5c58f',
'51 Dwarf Scrub': 'af963c',
'52 Shrub/Scrub': 'ccb879',
'71 Grassland/Herbaceous': 'dfdfc2',
'72 Sedge/Herbaceous': 'd1d182',
'73 Lichens': 'a3cc51',
'74 Moss': '82ba9e',
'81 Pasture/Hay': 'dcd939',
'82 Cultivated Crops': 'ab6c28',
'90 Woody Wetlands': 'b8d9eb',
'95 Emergent Herbaceous Wetlands': '6c9fb8'

}
title = 'NLCD Land Cover Classification'
Map.add_legend(legend_title=title, legend_dict=legend_dict)

The Map with the NLCD 2019 image and legend should look like Fig. 30.7.
The Map above shows only the NLCD 2019 image. To create an Earth Engine

App for visualizing land cover change, we need a stack of NLCD images. Let’s
print the list of system IDs of all available NLCD images.

dataset.aggregate_array('system:id').getInfo()

The output should look like this.

['USGS/NLCD_RELEASES/2019_REL/NLCD/2001',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2004',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2006',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2008',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2011',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2013',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2016',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2019']

30 Sharing Work in Earth Engine: Basic UI and Apps 617

Fig. 30.7 NLCD 2019 image layer displayed in geemap

Select the eight NLCD epochs after 2000.

years = ['2001', '2004', '2006', '2008', '2011', '2013',
'2016', '2019']

Define a function for filtering the NLCD ImageCollection by year and
select the ’landcover’ band.

Get an NLCD image by year.
def getNLCD(year):

Import the NLCD collection.
dataset =

ee.ImageCollection('USGS/NLCD_RELEASES/2019_REL/NLCD')

Filter the collection by year.
nlcd = dataset.filter(ee.Filter.eq('system:index',

year)).first()

Select the land cover band.
landcover = nlcd.select('landcover');
return landcover

618 Q. Wu

Create an NLCD ImageCollection to be used in the split-panel map.

Create an NLCD image collection for the selected years.
collection = ee.ImageCollection(ee.List(years).map(lambda
year: getNLCD(year)))

Print out the list of system IDs of the selected NLCD images covering the
contiguous United States.

collection.aggregate_array('system:id').getInfo()

The output should look like this.

['USGS/NLCD_RELEASES/2019_REL/NLCD/2001',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2004',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2006',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2008',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2011',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2013',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2016',
'USGS/NLCD_RELEASES/2019_REL/NLCD/2019']

Next, create a list of labels to populate the dropdown list.

labels = [f'NLCD {year}' for year in years]
labels

The output should look like this.

['NLCD 2001',
'NLCD 2004',
'NLCD 2006',
'NLCD 2008',
'NLCD 2011',
'NLCD 2013',
'NLCD 2016',
'NLCD 2019']

30 Sharing Work in Earth Engine: Basic UI and Apps 619

Fig. 30.8 Split-panel map for visualizing land cover change with geemap

The last step is to create a split-panel map by passing the NLCD
ImageCollection and list of labels to Map.ts_inspector.

Map.ts_inspector(left_ts=collection, right_ts=collection,
left_names=labels, right_names=labels)
Map

The split-panel map should look like Fig. 30.8.
To visualize land cover change, choose one NLCD image from the left drop-

down list and another image from the right dropdown list, then use the slider to
swipe through to visualize land cover change interactively. Click the close button
in the bottom-right corner to close the split-panel map and return to the NLCD
2019 image shown in Fig. 30.7.

Code Checkpoint F63c. The book’s repository contains information about what
your code should look like at this point.

620 Q. Wu

Fig. 30.9 Output of the terminal running Voilà

30.2.4 Section 4. Publishing an Earth Engine App Using a Local
Web Server

In this section, you will learn how to deploy an Earth Engine App using a local
computer as a web server. Assume that you have completed Sect. 30.2.3 and
created a Jupyter Notebook named nlcd_app.ipynb. First, you need to down-
load ngrok, a program that can turn your computer into a secure web server and
connect it to the ngrok cloud service, which accepts traffic on a public address.
Download ngrok from https://ngrok.com and unzip it to a directory on your com-
puter, then copy nlcd_app.ipynb to the same directory. Open the Anaconda
Prompt (on Windows) or the Terminal (on macOS/Linux) and enter the following
commands. Make sure you change /path/to/ngrok/dir to your computer
directory where the ngrok executable is located, e.g., ~/Downloads.

cd /path/to/ngrok/dir
conda activate gee
voila --no-browser nlcd_app.ipynb

The output of the terminal should look like this.
Voilà can be used to run, convert, and serve a Jupyter Notebook as a standalone

app. Click the link (e.g., http://localhost:8866) shown in the terminal window to
launch the interactive dashboard. Note that the port number is 8866, which is
needed in the next step to launch ngrok. Open another terminal and enter the
following command.

cd /path/to/ngrok/dir
ngrok http 8866

https://ngrok.com

30 Sharing Work in Earth Engine: Basic UI and Apps 621

Fig. 30.10 Output of the terminal running ngrok

The output of the terminal should look like Fig. 30.10. Click the link shown
in the terminal window to launch the interactive dashboard. The link should look
like https://random-string.ngrok.io, which is publicly accessible. Anyone with the
link will be able to launch the interactive dashboard and use the split-panel map to
visualize NLCD land cover change. Keep in mind that the dashboard might take
several seconds to load, so please be patient.

To stop the web server, press Ctrl+C on both terminal windows. See below for
some optional settings for running Voilà and ngrok.

To show code cells from your App, run the following from the terminal.

voila --no-browser --strip_sources=False nlcd_app.ipynb

To protect your App with a password, run the following.

ngrok http -auth="username:password" 8866

30.2.5 Section 5. Publish an Earth Engine App Using Cloud
Platforms

In this section, you will learn how to deploy an Earth Engine App on cloud
platforms, such as Heroku and Google App Engine. Heroku is a “platform as
a service” that enables developers to build, run, and operate applications entirely

https://random-string.ngrok.io

622 Q. Wu

in the cloud. It has a free tier with limited computing hours, which would be suf-
ficient for this lab. Follow the steps below to deploy the Earth Engine App on
Heroku.

First, go to https://github.com/signup to sign up for a GitHub account if you do
not have one already. Once your GitHub account has been created, log into your
account and navigate to the sample app repository: https://github.com/giswqs/ear
thengine-apps. Click the Fork button in the top-right corner to fork this repository
into your account. Two important files in the repository are worth mentioning here:
requirements.txt lists the required packages (e.g., geemap) to run the App, while
Procfile specifies the commands that are executed by the App on startup. The
content of Procfile should look like this.

web: voila --port=$PORT --no-browser --strip_sources=True -
-enable_nbextensions=True --
MappingKernelManager.cull_interval=60 --
MappingKernelManager.cull_idle_timeout=120 notebooks/

The above command instructs the server to hide the source code and period-
ically check for idle kernels—in this example, every 60s—and cull them if they
have been idle for more than 120s. This can avoid idle kernels using up the server
computing resources. The page served by Voilà will contain a list of any notebooks
in the notebooks directory.

Next, go to https://signup.heroku.com to sign up for a Heroku account if you
do not have one already. Log into your account and click the New button in the
top-right corner, then choose Create new app from the dropdown list (Fig. 30.11).

Choose a name for your App (Fig. 30.12). Note that the App name must be
unique; if an App name has already been taken, you will not be able to use it.

Once the Heroku App has been created, click the Deploy tab and choose
GitHub as the deployment method. Connect to your GitHub account and enter
earthengine-apps in the search box. The repository should be listed beneath
the search box. Click the Connect button to connect the repository to Heroku
(Fig. 30.13).

Fig. 30.11 Creating a new app in Heroku

https://github.com/signup
https://github.com/giswqs/earthengine-apps
https://github.com/giswqs/earthengine-apps
https://signup.heroku.com

30 Sharing Work in Earth Engine: Basic UI and Apps 623

Fig. 30.12 Choosing an App name

Fig. 30.13 Connecting a GitHub account to Heroku

Under the same Deploy tab, scroll down and click Enable Automatic Deploys
(Fig. 30.14). This will enable Heroku to deploy a new version of the App whenever
the GitHub repository gets updated.

Since using Earth Engine requires authentication, we need to set the Earth
Engine token as an environment variable so that the web App can pass the Earth
Engine authentication. If you have completed Sect. 30.2.3, you have successfully
authenticated Earth Engine on your computer and the token can be found in the
following file path, depending on the operating system you are using. Note that
you might need to show the hidden directories on your computer in order to see
the .config folder under the home directory.

624 Q. Wu

Fig. 30.14 Enabling Automatic Deploys on Heroku

Fig. 30.15 Earth Engine authentication token

Windows: C:\Users\USERNAME\.config\earthengine\credentials
Linux: /home/USERNAME/.config/earthengine/credentials
MacOS: /Users/USERNAME/.config/earthengine/credentials

Open the credentials file using a text editor. Select and copy the long string
wrapped by the double quotes (Fig. 30.15). Do not include the double quotes in
the copied string.

Next, navigate to your web App on Heroku. Click the Settings tab, then
click Reveal Config Vars on the page. Enter EARTHENGINE_TOKEN as the
key and paste the string copied above as the value. Click the Add button to set
EARTHENGINE_TOKEN as an environment variable (Fig. 30.16) that will be used
by geemap to authenticate Earth Engine.

The last step is to commit some changes to your forked GitHub repository to
trigger Heroku to build and deploy the App. If you are familiar with Git com-
mands, you can push changes to the repository from your local computer to
GitHub. If you have not used Git before, you can navigate to your repository
on GitHub and make changes directly using the browser. For example, you can
navigate to README.md and click the Edit icon on the page to start editing the
file. Simply place the cursor at the end of the file and press Enter to add an empty
line to the file, then click the Commit changes button at the bottom of the page
to save changes. This should trigger Heroku to build the App. Check the build
status under the latest activities of the Overview tab. Once the App has been

30 Sharing Work in Earth Engine: Basic UI and Apps 625

Fig. 30.16 Setting the Earth Engine token as an environment variable on Heroku

built and deployed successfully, you can click the Open app button in the top-
right corner to launch the web App (Fig. 30.17). When the App is open in your
browser, click nlcd_app.ipynb to launch the split-panel map for visualizing
land cover change. This is the same notebook that we developed in Sect. 30.2.3.
The App URL should look like this: https://APP-NAME.herokuapp.com/voila/ren
der/nlcd_app.ipynb.

Congratulations! You have successfully deployed the Earth Engine App on
Heroku.

Code Checkpoint F63d. The book’s repository contains information about what
your code should look like at this point.

Fig. 30.17 Clicking on the Open app button to launch the web app

https://APP-NAME.herokuapp.com/voila/render/nlcd_app.ipynb
https://APP-NAME.herokuapp.com/voila/render/nlcd_app.ipynb

626 Q. Wu

Question 1. What are the pros and cons of designing Earth Engine Apps using
geemap and ipywidgets, compared to the JavaScript Earth Engine User Interface
API?

Question 2. What are the pros and cons of deploying Earth Engine Apps on
Heroku, compared to a local web server and the Earth Engine Code Editor?

30.3 Synthesis

Assignment 1. Replace the NLCD datasets with other multitemporal land cover
datasets (e.g., United States Department of Agriculture National Agricultural
Statistics Service Cropland Data Layers, visible in the Earth Engine Data Cata-
log) and modify the web App for visualizing land cover change using the chosen
land cover datasets. Deploy the web App using multiple platforms (i.e., JavaScript
Code Editor, ngrok, and Heroku). More land cover datasets can be found at https://
developers.google.com/earth-engine/datasets/tags/landcover.

30.4 Conclusion

In this chapter, you learned how to design Earth Engine Apps using both the Earth
Engine User Interface API (JavaScript) and geemap (Python). You also learned
how to deploy Earth Engine Apps on multiple platforms, such as the JavaScript
Code Editor, a local web server, and Heroku. The skill of designing and deploying
interactive Earth Engine Apps is essential for making your research and data prod-
ucts more accessible to the scientific community and the general public. Anyone
with the link to your web App can analyze and visualize Earth Engine datasets
without needing an Earth Engine account.

References

Earth Engine User Interface API: https://developers.google.com/earth-engine/guides/ui
Earth Engine Apps: https://developers.google.com/earth-engine/guides/apps
Voilà: https://voila.readthedocs.io
geemap: https://geemap.org
ngrok: https://ngrok.com
Heroku: https://heroku.com
Earthengine-apps: https://github.com/giswqs/earthengine-apps

https://developers.google.com/earth-engine/datasets/tags/landcover
https://developers.google.com/earth-engine/datasets/tags/landcover
https://developers.google.com/earth-engine/guides/ui
https://developers.google.com/earth-engine/guides/apps
https://voila.readthedocs.io
https://geemap.org
https://ngrok.com
https://heroku.com
https://github.com/giswqs/earthengine-apps

30 Sharing Work in Earth Engine: Basic UI and Apps 627

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

31Combining R and Earth Engine

Cesar Aybar, David Montero, Antony Barja, Fernando Herrera,
Andrea Gonzales, and Wendy Espinoza

Overview
The purpose of this chapter is to introduce rgee, a non-official API for Earth
Engine. You will explore the main features available in rgee and how to set up
an environment that integrates rgee with third-party R and Python packages. After
this chapter, you will be able to combine R, Python, and JavaScript in the same
workflow.

C. Aybar (B)
Z_GIS, University of Salzburg, Salzburg, Austria
e-mail: csaybar@gmail.com

D. Montero
RSC4Earth, University of Leipzig, Leipzig, Germany
e-mail: david.montero@uni-leipzig.de

A. Barja
Health Innovation Laboratory, Cayetano Heredia University, Lima, Peru
e-mail: antony.barja@upch.pe

F. Herrera · A. Gonzales · W. Espinoza
National University of San Marcos, Lima, Peru
e-mail: fernando.herrera4@unmsm.edu.pe

A. Gonzales
e-mail: karen.gonzales1@unmsm.edu.pe

W. Espinoza
e-mail: wendyjimena.espinoza@unmsm.edu.pe

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_31

629

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_31&domain=pdf
mailto:csaybar@gmail.com
mailto:david.montero@uni-leipzig.de
mailto:antony.barja@upch.pe
mailto:fernando.herrera4@unmsm.edu.pe
mailto:karen.gonzales1@unmsm.edu.pe
mailto:wendyjimena.espinoza@unmsm.edu.pe
https://doi.org/10.1007/978-3-031-26588-4_31

630 C. Aybar et al.

Learning Outcomes

. Becoming familiar with rgee, the Earth Engine R API interface.

. Integrating rgee with other R packages.

. Displaying interactive maps.

. Integrating Python and R packages using reticulate.

. Combining Earth Engine JavaScript and Python APIs with R.

Assumes you know how to

. Install the Python environment (Chap. 30).

. Use the require function to load code from existing modules (Chap. 28).

. Use the basic functions and logic of Python.

. Configure an environment variable and use.Renviron files.

. Create Python virtual environments.

31.1 Introduction to Theory

R is a popular programming language established in statistical science with large
support in reproducible research, geospatial analysis, data visualization, and much
more. To get started with R, you will need to satisfy some extra software require-
ments. First, install an up-to-date R version (at least 4.0) in your work environment.
The installation procedure will vary depending on your operating system (i.e., Win-
dows, Mac, or Linux). Hands-On Programming with R (Garrett Grolemund 2014,
Appendix A) explains step by step how to proceed. We strongly recommend that
Windows users install Rtools to avoid compiling external static libraries.

If you are new to R, a good starting point is the book Geocomputation with
R (Lovelace et al. 2019) or Spatial Data Science with Application in R (Pebesma
and Bivand 2019). In addition, we recommend using an integrated development
environment (e.g., Rstudio) or a Code Editor (e.g., Visual Studio Code) to create
a suitable setting to display and interact with R objects.

The following R packages must be installed (find more information in the R
manual) in order to go through the practicum section.

31 Combining R and Earth Engine 631

Use install.packages to install R packages from the CRAN
repository.
install.packages('reticulate') # Connect Python with R.
install.packages('rayshader') # 2D and 3D data
visualizations in R.
install.packages('remotes') # Install R packages from
remote repositories.
remotes::install_github('r-earthengine/rgeeExtra') # rgee
extended.
install.packages('rgee') # GEE from within R.
install.packages('sf') # Simple features in R.
install.packages('stars') # Spatiotemporal Arrays and
Vector Data Cubes.
install.packages('geojsonio') # Convert data to 'GeoJSON'
from various R classes.
install.packages('raster') # Reading, writing,
manipulating, analyzing and modeling of spatial data.
install.packages('magick') # Advanced Graphics and Image-
Processing in R
install.packages('leaflet.extras2') # Extra Functionality
for leaflet
install.packages('cptcity') # colour gradients from the
'cpt-city' web archive

Earth Engine officially supports client libraries only for the JavaScript and
Python programming languages. While the Earth Engine Code Editor offers a con-
venient environment for rapid prototyping in JavaScript, the lack of a mechanism
for integration with local environments makes the development of complex scripts
tricky. On the other hand, the Python client library offers much versatility, enabling
support for third-party packages. However, not all Earth and environmental scien-
tists code in Python. Hence, a significant number of professionals are not members
of the Earth Engine community. In the R ecosystem, rgee (Aybar et al. 2020) tries
to fill this gap by wrapping the Earth Engine Python API via reticulate. The rgee
package extends and supports all the Earth Engine classes, modules, and functions,
working as fast as the other APIs.

Figure 31.1 illustrates how rgee bridges the Earth Engine platform with the R
ecosystem. When an Earth Engine request is created in R, rgee transforms this
piece of code into Python. Next, the Earth Engine Python API converts the Python
code into JSON. Finally, the JSON file request is received by the server through
a Web REST API. Users could get the response using the getInfo method by
following the same path in reverse.

632 C. Aybar et al.

Fig. 31.1 Simplified diagram of rgee functionality

31.2 Practicum

31.2.1 Section 1. Installing rgee

To run, rgee needs a Python environment with two packages: NumPy and
earthengine-api. Because instructions change frequently, installation is explained
at the following checkpoint:

Code Checkpoint F64a. The book’s repository contains information about setting
up the rgee environment.

After installing both the R and Python requirements, you can now initialize your
Earth Engine account from within R. Consider that R, in contrast to JavaScript
and Python, supports three distinct Google APIs: Earth Engine, Google Drive, and
Google Cloud Storage (GCS).

The Google Drive and GCS APIs will allow you to transfer your Earth Engine
completed task exports to a local environment automatically. In these practice ses-
sions, we will use only the Earth Engine and Google Drive APIs. Users that are
interested in GCS can look up and explore the GCS vignette. To initialize your
Earth Engine account alongside Google Drive, use the following commands.

31 Combining R and Earth Engine 633

Initialize just Earth Engine
ee_Initialize()

Initialize Earth Engine and GD
ee_Initialize(drive = TRUE)

If the Google account is verified and the permission is granted, you will be
directed to an authentication token. Copy and paste this token into your R con-
sole. Consider that the GCS API requires setting up credentials manually; look up
and explore the rgee vignette for more information. The verification step is only
required once; after that, rgee saves the credentials in your system.

Code Checkpoint F64b. The book’s repository contains information about what
your code should look like at this point.

31.2.2 Section 2. Creating a 3D Population Density Map
with rgee and rayshader

First, import the rgee, rayshader, and raster packages.

library(rayshader)
library(raster)
library(rgee)

Initialize the Earth Engine and Google Drive APIs using ee_Initialize.
Both credentials must come from the same Google account.

ee_Initialize(drive = TRUE)

Then, we will access the WorldPop Global Project Population Data dataset.
In rgee, the Earth Engine spatial classes (ee$Image, ee$ImageCollection,
and ee$FeatureCollection) have a special attribute called Dataset. Users
can use it along with autocompletion to quickly find the desired dataset.

collections <- ee$ImageCollection$Dataset
population_data <-
collections$CIESIN_GPWv411_GPW_Population_Density
population_data_max <- population_data$max()

634 C. Aybar et al.

If you need more information about the Dataset, use
ee_utils_dataset_display to go to the official documentation in the
Earth Engine Data Catalog.

population_data %>% ee_utils_dataset_display()

The rgee package provides various built-in functions to retrieve data from Earth
Engine (Aybar et al. 2020). In this example, we use ee_as_raster, which auto-
matically converts an ee$Image (server object) into a RasterLayer (local
object).

sa_extent <- ee$Geometry$Rectangle(
coords = c(-100, -50, -20, 12),
geodesic = TRUE,
proj = "EPSG:4326"

)

population_data_ly_local <- ee_as_raster(
image = population_data_max,
region = sa_extent,
dsn = "/home/pc-user01/population.tif", # change for your

own path.
scale = 5000

)

Now, turn a RasterLayer into a matrix suitable for rayshader.

pop_matrix <- raster_to_matrix(population_data_ly_local)

Next, modify the matrix population density values, adding:

. Texture, based on five colors (lightcolor, shadowcolor, leftcolor,
rightcolor, and centercolor; see rayshader::create_texture
documentation)

. Color and shadows (rayshader::sphere_shade)

31 Combining R and Earth Engine 635

pop_matrix %>%
sphere_shade(
texture = create_texture("#FFFFFF", "#0800F0",

"#FFFFFF", "#FFFFFF", "#FFFFFF")
) %>%
plot_3d(
pop_matrix,
zoom = 0.55, theta = 0, zscale = 100, soliddepth = -24,
solidcolor = "#525252", shadowdepth = -40, shadowcolor

= "black",
shadowwidth = 25, windowsize = c(800, 720)

)

Lastly, define a title and subtitle for the plot. Use
rayshader::render_snapshot to export the final results (Fig. 31.2).

Fig. 31.2 3D population density map of South America

636 C. Aybar et al.

text <- paste0(
"South America\npopulation density",
strrep("\n", 27),
"Source:GPWv411: Population Density (Gridded Population

of the World Version 4.11)"
)

render_snapshot(
filename = "30_poblacionsudamerica.png",
title_text = text,
title_size = 20,
title_color = "black",
title_font = "Roboto bold",
clear = TRUE

)

Code Checkpoint F64c. The book’s repository contains information about what
your code should look like at this point.

31.2.3 Section 3. Displaying Maps Interactively

Similar to the Code Editor, rgee supports the interactive visualization of spatial
Earth Engine objects by Map$addLayer. First, let’s import the rgee and cptcity
packages. The cptcity R package is a wrapper to the cpt-city color gradients web
archive.

library(rgee)
library(cptcity)
ee_Initialize()

We will select an ee$Image; in this case, the Shuttle Radar Topography
Mission 90m (SRTM-90) Version 4.

dem <- ee$Image$Dataset$CGIAR_SRTM90_V4

Then, we will set the visualization parameters as a list with the following
elements.

. min: value(s) to map to 0

. Max: value(s) to map to 1

31 Combining R and Earth Engine 637

. palette: a list of CSS-style color strings.

viz <- list(
min = 600,
max = 6000,
palette = cpt(pal = 'grass_elevation', rev = TRUE)

)

Then, we will create a simple display using Map$addLayer.

m1 <- Map$addLayer(dem, visParams = viz, name = "SRTM",
shown = TRUE)

Optionally, you could add a custom legend using Map$addLayer (Fig. 31.3).

Fig. 31.3 Interactive visualization of SRTM-90 Version 4 elevation values

638 C. Aybar et al.

pal <- Map$addLegend(viz)
m1 + pal

The procedure to display ee$Geometry, ee$Feature, and
ee$FeatureCollections objects is similar to the previous example effected
on an ee$Image. Users just need to change the arguments: eeObject and
visParams.

First, Earth Engine geometries (Fig. 31.4).

vector <- ee$Geometry$Point(-77.011,-11.98) %>%
ee$Feature$buffer(50*1000)

Map$centerObject(vector)
Map$addLayer(vector) # eeObject is a ee$Geometry$Polygon.

Next, Earth Engine feature collections (Fig. 31.5).

Fig. 31.4 Polygon buffer surrounding the city of Lima, Peru

31 Combining R and Earth Engine 639

Fig. 31.5 Building footprints in Lagos, Nigeria

building <- ee$FeatureCollection$Dataset$
`GOOGLE_Research_open-buildings_v1_polygon`

Map$setCenter(3.389, 6.492, 17)
Map$addLayer(building) # eeObject is a ee$FeatureCollection

The rgee functionality also supports the display of ee$ImageCollection
via Map$addLayers (note the extra “s” at the end). Map$addLayers will
use the same visualization parameters for all the images (Fig. 31.6). If you need
different visualization parameters per image, use a Map$addLayer within a for
loop.

640 C. Aybar et al.

Fig. 31.6 MOD16A2 total evapotranspiration values (kg/m2/8 day)

Define a ImageCollection
etp <- ee$ImageCollection$Dataset$MODIS_NTSG_MOD16A2_105
%>%
ee$ImageCollection$select("ET") %>%
ee$ImageCollection$filterDate('2014-04-01', '2014-06-01')

Set viz params
viz <- list(
min = 0, max = 300,
palette = cpt(pal = "grass_bcyr", rev = TRUE)

)

Print map results interactively
Map$setCenter(0, 0, 1)
etpmap <- Map$addLayers(etp, visParams = viz)
etpmap

Another useful rgee feature is the comparison operator (|), which creates a
slider in the middle of the canvas, permitting quick comparison of two maps. For
instance, load a Landsat 4 image:

31 Combining R and Earth Engine 641

landsat <- ee$Image('LANDSAT/LT04/C01/T1/LT04_008067_19890917')

Calculate the Normalized Difference Snow Index.

ndsi <- landsat$normalizedDifference(c('B3', 'B5'))

Define a constant value and use ee$Image$gte to return a binary image
where pixels greater than or equal to that value are set as 1 and the rest are set as
0. Next, filter 0 values using ee$Image$updateMask.

ndsiMasked <- ndsi$updateMask(ndsi$gte(0.4))

Define the visualization parameters.

vizParams <- list(
bands <- c('B5', 'B4', 'B3'), # vector of three bands (R,

G, B).
min = 40,
max = 240,
gamma = c(0.95, 1.1, 1) # Gamma correction factor.

)

ndsiViz <- list(
min = 0.5,
max = 1,
palette = c('00FFFF', '0000FF')

)

Center the map on the Huayhuash mountain range in Peru.

Map$setCenter(lon = -77.20, lat = -9.85, zoom = 10)

Finally, visualize both maps using the | operator (Fig. 31.7).

642 C. Aybar et al.

Fig. 31.7 False-color composite over the Huayhuash mountain range, Peru

m2 <- Map$addLayer(ndsiMasked, ndsiViz, 'NDSI masked')
m1 <- Map$addLayer(landsat, vizParams, 'false color
composite')
m2 | m1

Code Checkpoint F64d. The book’s repository contains information about what
your code should look like at this point.

31.2.4 Section 4. Integrating rgee with Other Python Packages

As noted in Sect. 31.2.1, rgee set up a Python environment with NumPy and
earthengine-api in your system. However, there is no need to limit it to just
two Python packages. In this section, you will learn how to use the Python
package ndvi2gif to perform a Normalized Difference Vegetation Index (NDVI)
multi-seasonal analysis in the Ocoña Valley without leaving R.

Whenever you want to install a Python package, you must run the following.

31 Combining R and Earth Engine 643

library(rgee)
library(reticulate)
ee_Initialize()

The ee_Initialize function not only authenticates your Earth
Engine account but also helps reticulate to set up a Python envi-
ronment compatible with rgee. After running ee_Initialize, use
reticulate::install_python to install the desired Python package.

py_install("ndvi2gif")

The previous procedure is needed just once for each Python environment. Once
installed, we simply load the package using reticulate::import.

ngif <- import("ndvi2gif")

Then, we define our study area using ee$Geometry$Rectangle (Fig. 31.8)
and use the leaflet layers control to switch between basemaps.

colca <- c(-73.15315, -16.46289, -73.07465, -16.37857)
roi <- ee$Geometry$Rectangle(colca)
Map$centerObject(roi)
Map$addLayer(roi)

In ndvi2gif , there is just one class: NdviSeasonality. It has the following
four public methods.

. get_export: Exports NDVI year composites in.GeoTIFF format to your
local folder.

. get_export_single: Exports single composite as.GeoTIFF to your local
folder.

. get_year_composite: Returns the NDVI composites for each year.

. get_gif: Exports NDVI year composites as a.gif to your local folder.

To run, the NdviSeasonality constructor needs to define the following
arguments.

644 C. Aybar et al.

Fig. 31.8 Rectangle drawn over the Ocoña Valley, Peru

. roi: the region of interest

. start_year: the initial year to start to create yearly composites

. end_year: the end year to look for

. sat: the satellite sensor

. key: the aggregation rule that will be used to generate the yearly composite.

For each year, the get_year_composite method generates an NDVI
ee$Image with four bands, one band per season. Color combination between
images and bands will allow you to interpret the vegetation phenology over the
seasons and years. In ndvi2gif, the seasons are defined as follows.

. winter = c(‘-01-01’, ‘-03-31’)

. spring = c(‘-04-01’, ‘-06-30’)

. summer = c(‘-07-01’, ‘-09-30’)

. autumn = c(‘-10-01’, ‘-12-31’).

31 Combining R and Earth Engine 645

myclass <- ngif$NdviSeasonality(
roi = roi,
start_year = 2016L,
end_year = 2020L,
sat = 'Sentinel', # 'Sentinel', 'Landsat', 'MODIS', 'sar'
key = 'max' # 'max', 'median', 'perc_90'

)

Estimate the median of the yearly composites from 2016 to
2020.
median <- myclass$get_year_composite()$median()

Estimate the median of the winter season composites from
2016 to 2020.
wintermax <-
myclass$get_year_composite()$select('winter')$max()

We can display maps interactively using the Map$addLayer (Fig. 31.9) and
use the leaflet layers control to switch between basemaps.

Fig. 31.9 Comparison between the maximum historic winter NDVI and the mean historic NDVI.
Colors represent the season when the maximum value occurred

646 C. Aybar et al.

Map$addLayer(wintermax, list(min = 0.1, max = 0.8),
'winterMax') |
Map$addLayer(median, list(min = 0.1, max = 0.8), 'median')

And we can export the results to a GIF format.

myclass$get_gif()

To get more information about the ndvi2gif package, visit its GitHub repository.

Code Checkpoint F64e. The book’s repository contains information about what
your code should look like at this point.

31.2.5 Section 5. Converting JavaScript Modules to R

In recent years, the Earth Engine community has developed a lot of valuable third-
party modules. Some incredible ones are geeSharp, ee-palettes, spectral (Montero
2021), and LandsatLST (Ermida et al. 2020). While some of these modules have
been implemented in Python and JavaScript (e.g., geeSharp and spectral), most
are available only for JavaScript. This is a critical drawback, because it divides the
Earth Engine community by programming languages. For example, if an R user
wants to use tagee, the user will have to first translate the entire module to R.

In order to close this breach, the ee extra Python package has been developed
to unify the Earth Engine community. The philosophy behind ee extra is that all of
its extended functions, classes, and methods must be functional for the JavaScript,
Julia, R, and Python client libraries. Currently, ee extra is the base of the rgeeExtra
(Aybar et al. 2020) and eemont (Montero 2021) packages.

To demonstrate the potential of ee extra, let’s study an example from the Land-
sat Land Surface Temperature (LST) JavaScript module. The Landsat LST module
computes the land surface temperature for Landsat products (Ermida et al. 2020).
First, we will run it in the Earth Engine Code Editor; then, we will replicate those
results in R.

First, JavaScript. In a new script in the Code Editor, we must require the
Landsat LST module.

var LandsatLST = require(
'users/sofiaermida/landsat_smw_lst:modules/Landsat_LST.js')
;

31 Combining R and Earth Engine 647

The Landsat LST module contains a function named collection. This function
receives the following parameters.

. The Landsat archive ID

. The starting date of the Landsat collection

. The ending date of the Landsat collection

. The region of interest as geometry

. A Boolean parameter specifying if we want to use the NDVI for computing a
dynamic emissivity instead of using the emissivity from ASTER.

In the following code block, we are going to define all required parameters.

var geometry = ee.Geometry.Rectangle([-8.91, 40.0, -8.3,
40.4]);
var satellite = 'L8';
var date_start = '2018-05-15';
var date_end = '2018-05-31';
var use_ndvi = true;

Now, with all our parameters defined, we can compute the land surface
temperature by using the collection method from Landsat LST.

var LandsatColl = LandsatLST.collection(satellite,
date_start, date_end, geometry, use_ndvi);

The result is stored as an ImageCollection in the LandsatColl vari-
able. Now select the first element of the collection as an example by using the
first method.

var exImage = LandsatColl.first();

This example image is now stored in a variable named ‘exImage’. Let’s dis-
play the LST result on the Map. For visualization purposes, we will define a color
palette.

var cmap = ['blue', 'cyan', 'green', 'yellow', 'red'];

Then, we will center the map in the region of interest.

648 C. Aybar et al.

Map.centerObject(geometry);

Finally, let’s display the LST with the cmap color palette by using the
Map.addLayer method (Fig. 31.10). This method receives the image to visu-
alize, the visualization parameters, the color palette, and the name of the layer to
show in the layer control. The visualization parameters will be

. min: 290 (a minimum LST value of 290 K)

. max: 320 (a maximum LST value of 320 K)

. palette: cmap (the color palette that was created some steps before).

The name of the layer in the Map layer set will be LST.

Fig. 31.10 Map illustrating LST, obtained by following the JavaScript example

31 Combining R and Earth Engine 649

Map.addLayer(exImage.select('LST'), {
min: 290,
max: 320,
palette: cmap

}, 'LST')

Code Checkpoint F64f. The book’s repository contains a script that shows what
your code should look like at this point.

Now, let’s use R to implement the same logic. As in the previous sections,
import the R packages: rgee and rgeeExtra. Then, initialize your Earth Engine
session.

library(rgee)
library(rgeeExtra)
library(reticulate)

ee_Initialize()

Install rgeeExtra Python dependencies.

py_install(packages = c("regex", "ee_extra",
"jsbeautifier"))

Using the function rgeeExtra::module loads the JavaScript module.

LandsatLST <-
module("users/sofiaermida/landsat_smw_lst:modules/Landsat_L
ST.js")

The rest of the code is exactly the same as in JavaScript (Fig. 31.11).

650 C. Aybar et al.

Fig. 31.11 Map illustrating LST, obtained by following the R example

geometry <- ee$Geometry$Rectangle(c(-8.91, 40.0, -8.3,
40.4))
satellite <- 'L8'
date_start <- '2018-05-15'
date_end <- '2018-05-31'
use_ndvi <- TRUE

LandsatColl <- LandsatLST$collection(satellite, date_start,
date_end, geometry, use_ndvi)
exImage <- LandsatColl$first()
cmap <- c('blue', 'cyan', 'green', 'yellow', 'red')

lmod <- list(min = 290, max = 320, palette = cmap)
Map$centerObject(geometry)
Map$addLayer(exImage$select('LST'), lmod, 'LST')

Code Checkpoint F64g. The book’s repository contains information about what
your code should look like at this point.

Question 1. When and why might users prefer to use R instead of Python to
connect to Earth Engine?

Question 2. What are the advantages and disadvantages of using rgee instead of
the Earth Engine JavaScript Code Editor?

31 Combining R and Earth Engine 651

31.3 Synthesis

Assignment 1. Estimate the Gaussian curvature map from a digi-
tal elevation model using rgee and rgeeExtra. Hint: Use the module
’users/joselucassafanelli/TAGEE:TAGEE-functions’.

31.4 Conclusion

In this chapter, you learned how to use Earth Engine and R in the same work-
flow. Since rgee uses reticulate, rgee also permits integration with third-party Earth
Engine Python packages. You also learned how to use Map$addLayer, which
works similarly to the Earth Engine User Interface API (Code Editor). Finally, we
also introduced rgeeExtra, a new R package that extends the Earth Engine API
and supports JavaScript module execution.

References

Aybar C, Wu Q, Bautista L, et al (2020) rgee: An R package for interacting with Google Earth
Engine. J Open Source Softw 5:2272. https://doi.org/10.21105/joss.02272

Ermida SL, Soares P, Mantas V et al (2020) Google Earth Engine open-source code for land surface
temperature estimation from the Landsat series. Remote Sens 12:1471. https://doi.org/10.3390/
RS12091471

Grolemund G (2014) Hands-On Programming with R - Write Your Own Functions and Simula-
tions. O’Reilly Media, Inc.

Lovelace R, Nowosad J, Muenchow J (2019) Geocomputation with R. Chapman and Hall/CRC
Montero D (2021) eemont: a Python package that extends Google Earth Engine. J Open Source

Softw 6:3168. https://doi.org/10.21105/joss.03168
Pebesma E, Bivand R (2019) Spatial Data Science. https://r-spatial.org/book/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.21105/joss.02272
https://doi.org/10.3390/RS12091471
https://doi.org/10.3390/RS12091471
https://doi.org/10.21105/joss.03168
https://r-spatial.org/book/
http://creativecommons.org/licenses/by/4.0/

Part VII

Human Applications

This part covers some of the many Human Applications of Earth Engine. It includes
demonstrations of how Earth Engine can be used in agricultural and urban settings,
including for sensing the built environment and the effects it has on air composition
and temperature. This part also covers the complex topics of human health, illicit
deforestation activity, and humanitarian actions.

32Agricultural Environments

Sherrie Wang and George Azzari

Overview
The purpose of this chapter is to introduce how datasets and functions available
in Earth Engine can be used to map agriculture at scale. We will walk through
an example of mapping crop types in the US Midwest, which is one of the main
breadbaskets of the world. The skills learned in this chapter will equip you to
go on to map other agricultural characteristics, such as yields and management
practices.

Learning Outcomes

. Classifying crop type in a county in the US Midwest using the Cropland Data
Layer (CDL) as labels.

. Using ee.Reducer.linearRegression to fit a second-order harmonic
regression to a crop time series and extract harmonic coefficients.

. Using the Green Chlorophyll Vegetation Index (GCVI) for crop type classification.

. Training a random forest to classify crop type from harmonic coefficients.

. Applying the trained random forest classifier to the study region and assessing its
performance.

S. Wang (B)
Massachusetts Institute of Technology, Cambridge, USA
e-mail: sherwang@mit.edu

G. Azzari
AtlasAI, Palo Alto, USA

Stanford University, Stanford, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_32

655

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_32&domain=pdf
mailto:sherwang@mit.edu
https://doi.org/10.1007/978-3-031-26588-4_32

656 S. Wang and G. Azzari

Helps if you know how to

. Import images and image collections, filter, and visualize (Part 1).

. Create a graph using ui.Chart (Chap. 4).

. Perform basic image analysis: select bands, compute indices, create masks,
classify images (Part 2).

. Obtain accuracy metrics from classifications (Chap. 7)

. Recognize similarities and differences among satellite spectral bands (Parts 1–
3).

. Write a function and map it over an ImageCollection (Chap. 12).

. Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

. Fit linear and nonlinear functions with regression in an ImageCollection
time series (Chap. 18).

. Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).

32.1 Introduction to Theory

Agriculture is one of the primary ways in which humans have altered the surface of
our planet. Globally, about five billion hectares, or 38% of Earth’s land surface, is
devoted to agriculture (FAO 2020). About one-third of this is used to grow crops,
while the other two-thirds are used to graze livestock.

In the face of a growing human population and changing climate, it is more
important than ever to manage land resources effectively in order to grow enough
food for all people while minimizing damage to the environment. Toward this end,
remote sensing offers a critical source of data for monitoring agriculture. Since
most agriculture occurs outdoors, sensors on satellites and airplanes can capture
many crop characteristics. Research has shown that crops’ spectral reflectance over
time can be used to classify crop types (Wang et al. 2019), predict yield (Burke
and Lobell 2017), detect crop stress (Ihuoma and Madramootoo 2017), identify
irrigation (Deines et al. 2017), quantify species diversity (Duro et al. 2014), and
pinpoint sowing and harvest dates (Jain et al. 2016). Remotely sensed imagery has
also been key to the rise of precision agriculture, where management practices are
varied at fine scales to respond to differences in crop needs within a field (Azzari
et al. 2019; Jin et al. 2017; Seifert et al. 2018). Ultimately, the goal of measuring
agricultural practices and outcomes is to improve yields and reduce environmental
degradation.

32 Agricultural Environments 657

32.2 Practicum

In this practicum, we will use Earth Engine to pull Landsat imagery and classify
crop types in the US Midwest. The US is the world’s largest producer of corn
and second-largest producer of soybeans; therefore, maintaining high yields in the
US is vital for global food security and price stability. Crop type mapping is an
important prerequisite to using satellite imagery to estimate agricultural produc-
tion. We will show how to obtain features from a time series by fitting a harmonic
regression and extracting the coefficients. Then we will use a random forest to
classify crop type, where the ‘ground truth’ labels will come from the Cropland
Data Layer (CDL) from the US Department of Agriculture. CDL is itself a prod-
uct of a classifier using satellite imagery as input and survey-based ground truth as
training labels (USDA 2021). We demo crop type classification in the US Midwest
because CDL allows us to validate our predictions. While using satellite imagery
to map crop types is already operational in the US, mapping crop types remains
an open challenge in much of the world.

32.2.1 Section 1. Pull All Landsat Imagery for the Study Area

In the Midwest, corn and soybeans dominate the landscape. We will map crop
types in McLean County, Illinois. This is the county that produces the most corn
and soybeans in the United States, at 62.9 and 19.3 million bushels, respectively.
Let’s start by defining the study area and visualizing it (Fig. 32.1). We obtain
county boundaries from the United States Census Bureau’s TIGER dataset, which
can be found in the Earth Engine Data Catalog. We extract the McLean County
feature from TIGER by name and by using Illinois’ FIPS code of 17.

Fig. 32.1 Location and borders of McLean County, Illinois

658 S. Wang and G. Azzari

// Define study area.
var TIGER = ee.FeatureCollection('TIGER/2018/Counties');
var region = ee.Feature(TIGER

.filter(ee.Filter.eq('STATEFP', '17'))

.filter(ee.Filter.eq('NAME', 'McLean'))

.first());
var geometry = region.geometry();
Map.centerObject(region);
Map.addLayer(region, {

'color': 'red'
}, 'McLean County');

Next, we import Landsat 7 and 8 imagery, as presented in Part 1. In particular,
we use Level-2 data, which contains atmospherically corrected surface reflectance
and land surface temperature. While top-of-atmosphere data will also yield good
results for many agricultural applications, we prefer data that has been corrected
for atmospheric conditions when available, since atmospheric variation is just one
more source of noise in the inputs.

// Import Landsat imagery.
var landsat7 =
ee.ImageCollection('LANDSAT/LE07/C02/T1_L2');
var landsat8 =
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2');

We define a few functions that will make it easier to work with Landsat data.
The first two functions, renameL7 and renameL8, rename the bands of either
a Landsat 7 or Landsat 8 image to more intuitive names. For example, instead
of calling the first band of a Landsat 7 image ‘B1’, we rename it to ‘BLUE’,
since band 1 captures light in the blue portion of the visible spectrum. Renaming
also makes it easier to work with Landsat 7 and 8 images together, since the band
numbering of their sensors (ETM+ and OLI) is different.

// Functions to rename Landsat 7 and 8 images.
function renameL7(img) {

return img.rename(['BLUE', 'GREEN', 'RED', 'NIR',
'SWIR1',

'SWIR2', 'TEMP1', 'ATMOS_OPACITY', 'QA_CLOUD',
'ATRAN', 'CDIST',
'DRAD', 'EMIS', 'EMSD', 'QA', 'TRAD', 'URAD',
'QA_PIXEL',
'QA_RADSAT'

]);
}

32 Agricultural Environments 659

function renameL8(img) {
return img.rename(['AEROS', 'BLUE', 'GREEN', 'RED',

'NIR',
'SWIR1',
'SWIR2', 'TEMP1', 'QA_AEROSOL', 'ATRAN', 'CDIST',
'DRAD', 'EMIS',
'EMSD', 'QA', 'TRAD', 'URAD', 'QA_PIXEL',

'QA_RADSAT'
]);

}

The Landsat 7 Level-2 product has seven surface reflectance and tempera-
ture bands, while the Landsat 8 Level-2 product has eight. Both have a number
of other bands for image quality, atmospheric conditions, etc. For this chapter,
we will mostly be concerned with the near-infrared (NIR), short-wave infrared
(SWIR1 and SWIR2), and pixel quality (QA_PIXEL) bands. Many differences
among vegetation types can be seen in the NIR, SWIR1, and SWIR2 bands of
the electromagnetic spectrum. The pixel quality band is important for masking
out clouds when working with optical imagery (Chap. 15). Below, we define two
functions: the addMask function to turn the QA_PIXEL bitmask into multiple
masking layers, and the maskQAClear function to remove all non-clear pixels
from each image.

// Functions to mask out clouds, shadows, and other
unwanted features.
function addMask(img) {

// Bit 0: Fill
// Bit 1: Dilated Cloud
// Bit 2: Cirrus (high confidence) (L8) or unused (L7)
// Bit 3: Cloud
// Bit 4: Cloud Shadow
// Bit 5: Snow
// Bit 6: Clear
// 0: Cloud or Dilated Cloud bits are set
// 1: Cloud and Dilated Cloud bits are not set
// Bit 7: Water
var clear =

img.select('QA_PIXEL').bitwiseAnd(64).neq(0);
clear = clear.updateMask(clear).rename(['pxqa_clear']);

var water =
img.select('QA_PIXEL').bitwiseAnd(128).neq(0);

water = water.updateMask(water).rename(['pxqa_water']);

660 S. Wang and G. Azzari

var cloud_shadow =
img.select('QA_PIXEL').bitwiseAnd(16).neq(0);

cloud_shadow =
cloud_shadow.updateMask(cloud_shadow).rename([

'pxqa_cloudshadow'
]);

var snow =
img.select('QA_PIXEL').bitwiseAnd(32).neq(0);

snow = snow.updateMask(snow).rename(['pxqa_snow']);

var masks = ee.Image.cat([
clear, water, cloud_shadow, snow

]);

return img.addBands(masks);
}

function maskQAClear(img) {
return img.updateMask(img.select('pxqa_clear'));

}

In addition to the raw bands sensed by ETM+ and OLI, vegetation indices
(VI) can also help distinguish different vegetation types. Prior work has found the
Green Chlorophyll Vegetation Index (GCVI) particularly useful for distinguishing
corn from soybeans in the Midwest (Wang et al. 2019). We will add it as a band
to each Landsat image.

// Function to add GCVI as a band.
function addVIs(img){
var gcvi = img.expression('(nir / green) - 1', {

nir: img.select('NIR'),
green: img.select('GREEN')

}).select([0], ['GCVI']);

return ee.Image.cat([img, gcvi]);
}

Now, we are ready to pull Landsat 7 and 8 imagery for our study area and apply
the above functions. We will access all images from January 1 to December 31,
2020, that intersect with McLean County. Because different crops have different
growth characteristics, it is valuable to obtain a time series of images to distinguish

32 Agricultural Environments 661

when crops grow, senesce, and are harvested. Differences in spectral reflectance at
individual points in time can also be informative.

// Define study time period.
var start_date = '2020-01-01';
var end_date = '2020-12-31';

// Pull Landsat 7 and 8 imagery over the study area between
start and end dates.
var landsat7coll = landsat7

.filterBounds(geometry)

.filterDate(start_date, end_date)

.map(renameL7);

var landsat8coll = landsat8
.filterDate(start_date, end_date)
.filterBounds(geometry)
.map(renameL8);

Next, we merge the Landsat 7 and Landsat 8 collections, mask out clouds, and
add GCVI as a band.

// Merge Landsat 7 and 8 collections.
var landsat = landsat7coll.merge(landsat8coll)

.sort('system:time_start');

// Mask out non-clear pixels, add VIs and time variables.
landsat = landsat.map(addMask)

.map(maskQAClear)

.map(addVIs);

We can use a ui.Chart object to visualize the combined Landsat GCVI time
series at a particular point, which in this case falls in a corn field, according to
CDL.

662 S. Wang and G. Azzari

Fig. 32.2 Landsat GCVI time series visualized at a corn point in McLean County, Illinois. A
higher GCVI corresponds to greater leaf chlorophyll content; the crop can be seen greening up
in June and senescing in September

// Visualize GCVI time series at one location.
var point = ee.Geometry.Point([-88.81417685576481,

40.579804398254005
]);
var landsatChart =
ui.Chart.image.series(landsat.select('GCVI'),

point)
.setChartType('ScatterChart')
.setOptions({

title: 'Landsat GCVI time series',
lineWidth: 1,
pointSize: 3,

});
print(landsatChart);

You should see the chart shown in Fig. 32.2 in the Earth Engine Console.
Finally, let’s also take a look at the crop type dataset that we will be using to

train and evaluate our classifier. We load the CDL image for 2020 and select the
layer that contains crop type information.

// Get crop type dataset.
var cdl = ee.Image('USDA/NASS/CDL/2020').select(['cropland']);
Map.addLayer(cdl.clip(geometry), {}, 'CDL 2020');

Corn fields are visualized in yellow and soybean fields in green in CDL
(Fig. 32.3).

Code Checkpoint A11a. The book’s repository contains a script that shows what
your code should look like at this point.

32 Agricultural Environments 663

Fig. 32.3 CDL visualized over McLean County, Illinois. Corn fields are shown in yellow, while
soybean fields are shown in dark green. Other land cover types include urban areas in gray,
deciduous forest in teal, and water in blue

Question 1. How many images were taken by Landsat 7 and Landsat 8 over
McLean County in 2020?

Question 2. By using ui.Chart, can you qualitatively spot any difference
between the time series of corn fields and soybean fields?

32.2.2 Section 2. Add Bands to Landsat Images for Harmonic
Regression

Now that we have a collection that combines all available Landsat imagery over
McLean County in 2020, we can extract features from the time series for crop
type classification. Harmonic regression is one way to extract features by fitting
sine and cosine functions to a time series (Chap. 18). Also known as a Fourier
transform, the harmonic regression is especially well suited for data patterns that
reappear at regular intervals.

In particular, we fit a second-order harmonic regression, which takes the form:

f (t) = a1 cos(2πωt) + b1 sin(2πωt) + a2 cos(4πωt) + b2 sin(4πωt) + c
(32.1)

Here, t is the time variable; f (t) is the observed variable to be fit; a, b, and c are
coefficients found through regression; and ω is a hyperparameter that controls the
periodicity of the harmonic basis. For this exercise, we will use ω = 1.

To prepare the collection, we define two functions that add a harmonic basis
and intercept to the ImageCollection. The first function adds the acquisition
time of each image as a band to the image in units of years. The function takes an
image and a reference date as arguments; the new time band is computed relative
to this reference date.

664 S. Wang and G. Azzari

// Function that adds time band to an image.
function addTimeUnit(image, refdate) {

var date = image.date();

var dyear = date.difference(refdate, 'year');
var t =

image.select(0).multiply(0).add(dyear).select([0], ['t'])
.float();

var imageplus = image.addBands(t);

return imageplus;
}

The second function calls addTimeUnit, then takes the sine and cosine of
each image’s acquisition time and adds them as new bands to each image. We are
fitting a second-order harmonic regression, so we will add two sine and two cosine
terms as bands, along with a constant term. The function also allows you to use
any value of ω (omega). Note that, to create the ‘constant’ band, we divide
the time band by itself; this results in a band with value 1 and the same mask as
the time band.

// Function that adds harmonic basis to an image.
function addHarmonics(image, omega, refdate) {

image = addTimeUnit(image, refdate);
var timeRadians = image.select('t').multiply(2 *

Math.PI * omega);
var timeRadians2 = image.select('t').multiply(4 *

Math.PI *
omega);

return image
.addBands(timeRadians.cos().rename('cos'))
.addBands(timeRadians.sin().rename('sin'))
.addBands(timeRadians2.cos().rename('cos2'))
.addBands(timeRadians2.sin().rename('sin2'))
.addBands(timeRadians.divide(timeRadians)

.rename('constant'));
}

We have all the tools we need to add the sine and cosine terms to each image—
we just use map to apply addHarmonics to each image in the collection. We
use the start_date of January 1, 2020, as the reference date.

32 Agricultural Environments 665

// Apply addHarmonics to Landsat image collection.
var omega = 1;
var landsatPlus = landsat.map(

function(image) {
return addHarmonics(image, omega, start_date);

});
print('Landsat collection with harmonic basis: ',
landsatPlus);

When we print the new ImageCollection, the Console tab should display
a collection of images with bands that now include cos, sin, cos2, sin2, and
constant—the terms we just added.

Code Checkpoint A11b. The book’s repository contains a script that shows what
your code should look like at this point.

Question 3. What assumption are we making about crop spectral reflectance when
we fit a harmonic regression to a variable like GCVI using ω = 1? What types of
time series might be better suited for a smaller value of ω? A larger ω?

Question 4. What happens to the harmonic fit if you change the reference date by
a quarter of a year? By half of a year? By a full year?

32.2.3 Section 3. Fit a Harmonic Regression at Each Landsat Pixel

In the previous section, we added the harmonic basis (cosine, sine, and constant
terms) to each image in our Landsat collection. Now, we can run a linear regression
using this basis as the independent variables, and Landsat bands and GCVI as
the dependent variables. This section defines several functions that will help us
complete this regression.

The key step is linear regression performed by the
ee.Reducer.linearRegression reducer. This reducer takes in two
parameters: the number of independent variables and the number of dependent
variables. When applied to an ImageCollection, it expects each image in
the collection to be composed of its independent variable bands followed by a
dependent variable band or bands. The reducer returns an array image whose first
band is an array of regression coefficients computed through linear least squares
and whose second band is the regression residual.

The first function we define is called arrayimgHarmonicRegr and helps
us apply the linear regression reducer to each image.

666 S. Wang and G. Azzari

// Function to run linear regression on an image.
function arrayimgHarmonicRegr(harmonicColl, dependent,
independents) {

independents = ee.List(independents);
dependent = ee.String(dependent);

var regression = harmonicColl
.select(independents.add(dependent))

.reduce(ee.Reducer.linearRegression(independents.length(),
1));

return regression;
}

Next, we want to transform the returned array image into an image with each
coefficient as its own band (Chap. 9). Furthermore, since we will be running har-
monic regressions for multiple Landsat bands, we want to rename the harmonic
coefficients returned by our regression to match their corresponding band. The
second function, imageHarmonicRegr, performs these operations. The array
image is transformed into a multiband image using the functions arrayProject
and arrayFlatten, and the coefficients for the cosine, sine, and constant terms
are renamed by adding the band name as a prefix (e.g., the first cosine coefficient
for the NIR band becomes NIR_cos).

32 Agricultural Environments 667

// Function to extract and rename regression coefficients.
function imageHarmonicRegr(harmonicColl, dependent,
independents) {

var hregr = arrayimgHarmonicRegr(harmonicColl,
dependent,

independents);

independents = ee.List(independents);
dependent = ee.String(dependent);

var newNames = independents.map(function(b) {
return dependent.cat(ee.String('_')).cat(ee.String(
b));

});

var imgCoeffs = hregr.select('coefficients')
.arrayProject([0])
.arrayFlatten([independents])
.select(independents, newNames);

return imgCoeffs;
}

Finally, the third function is called getHarmonicCoeffs and per-
forms the harmonic regression for all dependent bands by mapping the
imageHarmonicRegr function over each band. It then creates a multiband
image comprised of the regression coefficients.

// Function to apply imageHarmonicRegr and create a multi-
band image.
function getHarmonicCoeffs(harmonicColl, bands,
independents) {

var coefficients =
ee.ImageCollection.fromImages(bands.map(

function(band) {
return imageHarmonicRegr(harmonicColl, band,

independents);
}));

return coefficients.toBands();
}

668 S. Wang and G. Azzari

Now that we have defined all the helper functions, we are ready to apply them to
our Landsat ImageCollection with the harmonic basis. We are using GCVI,
NIR, SWIR1, and SWIR2 as the bands for crop type mapping. For each band, we
have five coefficients from the regression corresponding to the cos, sin, cos2,
sin2, and constant terms. In total, then, we will end up with 4 ×5 = 20
harmonic coefficients. After applying getHarmonicCoeffs, we clip the coef-
ficients to the study area and apply a transformation to change the coefficients
from a 64-bit double data type to a 32-bit integer. This last step allows us to save
space on storage.

// Apply getHarmonicCoeffs to ImageCollection.
var bands = ['NIR', 'SWIR1', 'SWIR2', 'GCVI'];
var independents = ee.List(['constant', 'cos', 'sin',
'cos2',
'sin2']);
var harmonics = getHarmonicCoeffs(landsatPlus, bands,
independents);

harmonics = harmonics.clip(geometry);
harmonics = harmonics.multiply(10000).toInt32();

Let’s take a look at the harmonics that we’ve fit. Following the same logic
as in Chap. 18, we can compute the fitted values by multiplying the regression
coefficients with the independent variables. We’ll do this just for GCVI, as we did
in Sect. 32.2.1.

// Compute fitted values.
var gcviHarmonicCoefficients = harmonics

.select([
'3_GCVI_constant', '3_GCVI_cos',
'3_GCVI_sin', '3_GCVI_cos2', '3_GCVI_sin2'

])
.divide(10000);

var fittedHarmonic = landsatPlus.map(function(image) {
return image.addBands(

image.select(independents)
.multiply(gcviHarmonicCoefficients)
.reduce('sum')
.rename('fitted')

);
});

32 Agricultural Environments 669

Fig. 32.4 Landsat GCVI time series (blue line) and fitted harmonic regression (red line) curve
visualized at a corn point in McLean County, Illinois. While the fit is not perfect, the fitted har-
monic captures the general characteristics of crop green-up and senescence

Now, we can plot the fitted values along with the original Landsat GCVI time
series in one chart (Fig. 32.4).

// Visualize the fitted harmonics in a chart.
var harmonicsChart = ui.Chart.image.series(

fittedHarmonic.select(
['fitted', 'GCVI']), point, ee.Reducer.mean(),

30)
.setSeriesNames(['GCVI', 'Fitted'])
.setOptions({

title: 'Landsat GCVI time series and fitted
harmonic regression values',

lineWidth: 1,
pointSize: 3,

});

print(harmonicsChart);

Before we move on to classifying crop type, we will add CDL as a band to
the harmonics and export the final image as an asset. Recall that CDL will be
the source of crop type labels for model training; adding this band now is not
necessary but makes the labels more accessible at training time.

// Add CDL as a band to the harmonics.
var harmonicsPlus = ee.Image.cat([harmonics, cdl]);

670 S. Wang and G. Azzari

We are ready to export the harmonics we’ve computed to an asset. Exporting
to an asset is an optional step but can make it easier in the next step to train a
model. For a larger study area, the operations may time out without the export step
because computing harmonics is computationally intensive. You should replace
‘your_asset_path_here/’ and filename below with the place you want
to save your harmonics.

// Export image to asset.
var filename = 'McLean_County_harmonics';
Export.image.toAsset({
 image: harmonicsPlus,
 description: filename,
 assetId: 'your_asset_path_here/' + filename,
 dimensions: null,
 region: region,
 scale: 30,
 maxPixels: 1e12
});

We visualized the fitted harmonics at one point in the study area; let’s also
take a look at the coefficients over the entire study area using Map.addLayer.
Since we can only visualize three bands at a time, we will have to pick three and
visualize them in false color. Sometimes, it takes a bit of tweaking to visualize
regression coefficients in false color; below, we transform three fitted GCVI bands
via division and addition by constants (obtained through trial and error) to obtain
a nice image for visualization.

// Visualize harmonic coefficients on map.
var visImage = ee.Image.cat([

harmonics.select('3_GCVI_cos').divide(7000).add(0.6),
harmonics.select('3_GCVI_sin').divide(7000).add(0.5),

harmonics.select('3_GCVI_constant').divide(7000).subtract(
0.6)

]);

Map.addLayer(visImage, {
min: -0.5,
max: 0.5

}, 'Harmonic coefficient false color');

32 Agricultural Environments 671

Fig. 32.5 False-color image of harmonic coefficients fitted to GCVI time series in McLean
County, Illinois

These harmonic features allow us to see differences between urban land cover,
water, and what we are currently interested in, crop types. Looking closely at the
false-color image shown in Fig. 32.5, we can also see striping unrelated to land
cover throughout the image. This striping, most visible in the bottom right of the
image, is due to the failure of Landsat 7’s Scan Line Corrector in 2003, which
resulted in data gaps that occur in a striped pattern across Landsat 7 images. It is
worth noting that these artifacts can affect classification performance, but exactly
how much depends on the task.

Code Checkpoint A11c. The book’s repository contains a script that shows what
your code should look like at this point.

Question 5. What color do forested areas appear as in Fig. 32.5? Urban areas?
Water?

Question 6. Comparing the map layers in Figs. 32.5 and 32.3, can you tell
whether the GCVI cosine, sine, and constant terms capture differences between
corn and soybean time series? What color do corn fields appear as in the false-color
visualization? What about soybean fields?

32.2.4 Section 4. Train and Evaluate a Random Forest Classifier

We have our features, and we are ready to train a random forest in McLean County
to classify crop types. As explained in Chap. 6, random forests are a classifier
available in Earth Engine that can achieve high accuracies while being compu-
tationally efficient. We define a ee.Classifier object with 100 trees and a
minimum leaf population of 10.

672 S. Wang and G. Azzari

// Define a random forest classifier.
var rf = ee.Classifier.smileRandomForest({

numberOfTrees: 50,
minLeafPopulation: 10,
seed: 0

});

The bands that we will use as features in the classification are the harmonic
coefficients fitted to the NIR, SWIR1, SWIR2, and GCVI time series at each pixel.
This may be different from previous classification examples you have seen, where
band values at one time step are used as dependent variables. Using harmonic
coefficients is one way to provide information from the temporal dimension to a
classifier. Temporal information is very useful for distinguishing crop types.

We can obtain the band names by calling bandNames on the harmonics image
and removing the CDL band and the system:index band.

// Get harmonic coefficient band names.
var bands = harmonicsPlus.bandNames();
bands = bands.remove('cropland').remove('system:index');

To prepare the CDL band to be the output of classification, we remap the crop
type values in CDL (corn = 1, soybeans = 5, and over a hundred other crop types)
to corn taking on a value of 1, soybeans a value of 2, and everything else a value
of 0. We focus on classifying corn and soybeans for this exercise.

// Transform CDL into a 3-class band and add to harmonics.
var cornSoyOther = harmonicsPlus.select('cropland').eq(1)

.add(harmonicsPlus.select('cropland').eq(5).multiply(2));
var dataset = ee.Image.cat([harmonicsPlus.select(bands),

cornSoyOther]);

Next, we sample 100 points from McLean County to serve as the training sam-
ple for our model. The classifier will learn to differentiate among corn, soybeans,
and everything else using this set of points.

// Sample training points.
var train_points = dataset.sample(geometry, 30, null, null,
100, 0);
print('Training points', train_points);

32 Agricultural Environments 673

Table 32.1 Confusion matrix obtained for the training set

Predicted crop type

Other (class 0) Corn (class 1) Soy (class 2)

Actual crop type Other (class 0) 27 1 1

Corn (class 1) 2 34 0

Soy (class 2) 3 4 28

Training the model is as simple as calling train on the classifier and feeding
it the training points, the name of the label band, and the names of the input
bands. To assess model performance on the training set, we can then compute the
confusion matrix (Chap. 7) by calling confusionMatrix on the model object.
Finally, we can compute the accuracy by calling accuracy on the confusion
matrix object.

// Train the model!
var model = rf.train(train_points, 'cropland', bands);
var trainCM = model.confusionMatrix();
print('Training error matrix: ', trainCM);
print('Training overall accuracy: ', trainCM.accuracy());

You should see the confusion matrix shown in Table 32.1 on the training set.
Table 32.1 tells us that the classifier is achieving 89% accuracy on the training

set. Given that the model is successful on the training set, we next want to explore
how well it will generalize to the entire study region. To estimate generalization
performance, we can sample a test set (also called a ‘validation set’) and apply the
model to that feature collection using classify(model). To keep the amount
of computation manageable and avoid exceeding Earth Engine’s memory quota,
we sample 50 test points.

// Sample test points and apply the model to them.
var test_points = dataset.sample(geometry, 30, null, null,
50, 1);
var tested = test_points.classify(model);

Next, we can compute the confusion matrix and accuracy on the test set by
calling errorMatrix(‘cropland’, ‘classification’) followed by
accuracy on the classified points. The ‘classification’ argument refers to
the property where the model predictions are stored.

674 S. Wang and G. Azzari

// Compute the confusion matrix and accuracy on the test
set.
var testAccuracy = tested.errorMatrix('cropland',
'classification');
print('Test error matrix: ', testAccuracy);
print('Test overall accuracy: ', testAccuracy.accuracy());

You should see a test set confusion matrix matching (or perhaps almost
matching) Table 32.2.

The test set accuracy of the model is lower than the training set accuracy, which
is indicative of some overfitting and is common when the model is expressive. We
also see from Table 32.2 that most of the error comes from confusing corn pixels
with soybean pixels and vice versa. Understanding the errors in your classifier can
help you build better models in the next iteration.

Beyond estimating the generalization error, we can actually apply the model to
the entire study region and see how well the model performs across space. We do
this by calling classify(model) again on the harmonic image for McLean
County. We add it to the map to visualize our predictions (Fig. 32.6).

Table 32.2 Confusion matrix obtained for the test set

Predicted crop type

Other (class 0) Corn (class 1) Soy (class 2)

Actual crop type Other (class 0) 12 1 0

Corn (class 1) 1 15 2

Soy (class 2) 1 5 13

Fig. 32.6 Model predictions of crop type in McLean County, Illinois. Yellow is corn, green is
soybeans, and gray is other land cover

32 Agricultural Environments 675

// Apply the model to the entire study region.
var regionClassified =
harmonicsPlus.select(bands).classify(model);
var predPalette = ['gray', 'yellow', 'green'];
Map.addLayer(regionClassified, {

min: 0,
max: 2,
palette: predPalette

}, 'Classifier prediction');

How do our model predictions compare to the CDL labels? We can see where
the two are equal and where they differ by calling eq on the two images.

// Visualize agreements/disagreements between prediction
and CDL.
Map.addLayer(regionClassified.eq(cornSoyOther), {

min: 0,
max: 1

}, 'Classifier agreement');

Figure 32.7 shows agreement between our predictions and CDL labels. When
visualized this way, some patterns become clear: Many errors occur along field
boundaries, and sometimes, entire fields are misclassified.

Code Checkpoint A11d. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 32.7 Prediction agreement with CDL as ground truth labels. White pixels are where our pre-
dictions and CDL agree; black pixels are where they disagree. Errors happen on field boundaries
and sometimes inside fields as well

676 S. Wang and G. Azzari

Question 7. As important as accuracy is for summarizing a classifier’s overall
performance, we often want to know class-specific performance as well. What are
the producer’s and user’s accuracies (Chap. 7) for the corn class? For the soybean
class? For the ‘other’ class?

Question 8. Investigate the labels of field boundaries. What class is our model clas-
sifying them as, and what class does CDL classify them as? Now investigate the
GCVI time series and fitted harmonic regressions at field boundaries (Fig. 32.4).
Do they look different from time series inside fields? Why do you think our model
is having a hard time classifying field boundary as the CDL class?

32.3 Synthesis

When we trained the above classifier to identify crop types, we made many
choices, such as which type of classifier to use (random forest), which Landsat
7 bands to use (NIR, SWIR1, SWIR2, GCVI), how to extract features (harmonic
regression), and how to sample training points (100 uniformly random points). In
practice, any machine learning task will involve choices like these, and it is impor-
tant to understand how these choices affect the performance of the classifier we
end up with. To gain an understanding of how some of these choices affect crop
classification accuracy, try the following:

Assignment 1. Instead of using only three Landsat bands plus GCVI, add the blue,
green, and red bands as well. You should end up with 35 harmonic coefficients
per pixel instead of 20. What happens to the out-of-sample classification accuracy
when you add these three additional bands as features?

Assignment 2. Instead of a second-order harmonic regression, try a third-order
harmonic regression. You should end up with 28 harmonic coefficients per pixel
instead of 20. What happens to the out-of-sample classification accuracy?

Assignment 3. Using the original set of features (20 harmonic coefficients), train
a random forest using 10, 20, 50, 200, 500, and 1000 training points. How does
the out-of-sample classification accuracy change as the training set size increases?

Assignment 4. Extra challenge: Instead of using Landsat 7 and 8 as the input
imagery, perform the same crop type classification using Sentinel-2 data and report
the out-of-sample classification accuracy.

32 Agricultural Environments 677

32.4 Conclusion

In this chapter, we showed how to use datasets and functions available in Earth
Engine to classify crop types in the US Midwest. In particular, we used Landsat 7
and 8 time series as inputs, extracted features from the time series using harmonic
regression, obtained labels from the CDL, and predicted crop type with a ran-
dom forest classifier. Remote sensing data can be used to understand many more
aspects of agriculture beyond crop type, such as crop yields, field boundaries, irri-
gation, tillage, cover cropping, soil moisture, biodiversity, and pest pressure. While
the exact imagery source, classifier type, and classification task can all differ, the
general workflow is often similar to what has been laid out in this chapter. Since
farming sustainably while feeding 11 billion people by 2100 is one of the great
challenges of this century, we encourage you to continue exploring how Earth
Engine and remote sensing data can help us understand agricultural environments
around the world.

References

Azzari G, Grassini P, Edreira JIR et al (2019) Satellite mapping of tillage practices in the North
Central US region from 2005 to 2016. Remote Sens Environ 221:417–429. https://doi.org/10.
1016/j.rse.2018.11.010

Burke M, Lobell DB (2017) Satellite-based assessment of yield variation and its determinants
in smallholder African systems. Proc Natl Acad Sci USA 114:2189–2194. https://doi.org/10.
1073/pnas.1616919114

Deines JM, Kendall AD, Hyndman DW (2017) Annual irrigation dynamics in the U.S. Northern
High Plains derived from Landsat satellite data. Geophys Res Lett 44:9350–9360. https://doi.
org/10.1002/2017GL074071

Duro DC, Girard J, King DJ et al (2014) Predicting species diversity in agricultural environments
using Landsat TM imagery. Remote Sens Environ 144:214–225. https://doi.org/10.1016/j.rse.
2014.01.001

Food and Agriculture Organization of the United Nations (2020) Land use in agriculture by the
numbers. Sustain Food Agric. https://www.fao.org/sustainability/news/detail/en/c/1274219/.
Accessed 11 Nov 2021

Ihuoma SO, Madramootoo CA (2017) Recent advances in crop water stress detection. Comput
Electron Agric 141:267–275. https://doi.org/10.1016/j.compag.2017.07.026

Jain M, Srivastava AK, Balwinder-Singh et al (2016) Mapping smallholder wheat yields and
sowing dates using micro-satellite data. Remote Sens 8:860. https://doi.org/10.3390/rs8100860

Jin Z, Prasad R, Shriver J, Zhuang Q (2017) Crop model- and satellite imagery-based recom-
mendation tool for variable rate N fertilizer application for the US Corn system. Precis Agric
18:779–800. https://doi.org/10.1007/s11119-016-9488-z

Seifert CA, Azzari G, Lobell DB (2018) Satellite detection of cover crops and their effects on crop
yield in the Midwestern United States. Environ Res Lett 13:64033. https://doi.org/10.1088/
1748-9326/aaf933

USDA (2022) CropScape—Cropland Data Layer. In: Crop—NASS CDL Progr. https://nassge
odata.gmu.edu/CropScape/. Accessed 12 Nov 2021

Wang S, Azzari G, Lobell DB (2019) Crop type mapping without field-level labels: random forest
transfer and unsupervised clustering techniques. Remote Sens Environ 222:303–317. https://
doi.org/10.1016/j.rse.2018.12.026

https://doi.org/10.1016/j.rse.2018.11.010
https://doi.org/10.1016/j.rse.2018.11.010
https://doi.org/10.1073/pnas.1616919114
https://doi.org/10.1073/pnas.1616919114
https://doi.org/10.1002/2017GL074071
https://doi.org/10.1002/2017GL074071
https://doi.org/10.1016/j.rse.2014.01.001
https://doi.org/10.1016/j.rse.2014.01.001
https://www.fao.org/sustainability/news/detail/en/c/1274219/
https://doi.org/10.1016/j.compag.2017.07.026
https://doi.org/10.3390/rs8100860
https://doi.org/10.1007/s11119-016-9488-z
https://doi.org/10.1088/1748-9326/aaf933
https://doi.org/10.1088/1748-9326/aaf933
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://doi.org/10.1016/j.rse.2018.12.026
https://doi.org/10.1016/j.rse.2018.12.026

678 S. Wang and G. Azzari

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

33Urban Environments

Michelle Stuhlmacher and Ran Goldblatt

Overview
Urbanization has dramatically changed Earth’s surface. This chapter starts with
a qualitative look at the impact urban expansion has on the landscape, covering
three existing urban classification schemes that have been created by other remote
sensing scientists. We look at how these classifications can be used to quantify
urban areas, and close with instructions on how to perform per-pixel supervised
image classification to map built-up land cover at any location on Earth and at any
point in time using Landsat 7 imagery.

Learning Outcomes

. Creating an animated GIF.

. Implementing quantitative and qualitative analyses with pre-existing urban
classifications.

. Running your own classification of built-up land cover.

. Quantifying and mapping the extent of urbanization across space and time.

M. Stuhlmacher (B)
Department of Geography, DePaul University, 990 W Fullerton, Chicago, IL 60614, USA
e-mail: michelle.stuhlmacher@depaul.edu

R. Goldblatt
New Light Technologies, Inc. (NLT), 655 15th Street, NW Suite 800, Washington, DC 20005,
USA
e-mail: ran.goldblatt@nltgis.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_33

679

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_33&domain=pdf
http://orcid.org/0000-0002-2730-7091
http://orcid.org/0000-0001-7792-9510
mailto:michelle.stuhlmacher@depaul.edu
mailto:ran.goldblatt@nltgis.com
https://doi.org/10.1007/978-3-031-26588-4_33

680 M. Stuhlmacher and R. Goldblatt

Helps if you know how to

. Import images and image collections, filter, and visualize (Part 1).

. Use drawing tools to create points lines and polygons (Chap. 6).

. Perform a supervised image classification (Chap. 6).

. Use reduceRegions to summarize an image with zonal statistics in irregular
shapes (Chaps. 22 and 24).

33.1 Introduction to Theory

Urbanization and its consequences have expanded rapidly over the last several
decades. In 1950, only 30% of the world’s population lived in urban areas, but
that figure is expected to be 68% by 2050 (United Nations 2019). Already, over
50% of the world’s population lives in urban areas (United Nations 2019). This
shift to urban dwelling has helped lift millions of people out of poverty, but it
is also creating complicated socio-environmental challenges, such as habitat loss,
urban heat islands, flooding, and greater greenhouse gas emissions (Bazaz et al.
2018; United Nations 2019).

An important part of addressing these challenges is understanding urbaniza-
tion trajectories and their consequences. Satellite imagery provides a rich source
of historic and current information on urbanization all over the globe, and it
is increasingly being leveraged to contribute to research on urban sustainability
(Goldblatt et al. 2018; Prakash et al. 2020). In this chapter, we will cover several
methods for visualizing and quantifying urbanization’s impact on the landscape.

33.2 Practicum

33.2.1 Section 1. Time Series Animation

To start our examination of urban environments, we’ll create a time series ani-
mation (GIF) for a qualitative depiction of the impact of urbanization. We’ll use
Landsat imagery to visualize how the airport northwest of Bengaluru, India, grew
between 2010 and 2020.

First, search for “Gangamuthanahalli” in the Code Editor search bar and click
on the city name to navigate there. Gangamuthanahalli is home to Kempegowda
International Airport. Use the Geometry Tools, as shown in Chap. 6, to draw a
rectangle around the airport.

33 Urban Environments 681

Now search for “landsat 8 level 2” and import the “USGS Landsat 8 Level
2, Collection 2, Tier 1” ImageCollection. Name the import L8. Filter the
collection by the geometry you created and the date range of interest, 2010–2020.
Limit cloud cover on land to 3%.

// Filter collection.
var collection = L8

.filterBounds(geometry)

.filterDate('2010-01-01', '2020-12-31')

.filter(ee.Filter.lte('CLOUD_COVER_LAND', 3));

Next, set up the parameters for creating a GIF. We want to visualize the three
visible bands over the airport region and cycle through the images at 15 frames
per second.

// Define GIF visualization arguments.
var gifParams = {

bands: ['SR_B4', 'SR_B3', 'SR_B2'],
min: 0.07 * 65536,
max: 0.3 * 65536,
region: geometry,
framesPerSecond: 15,
format: 'gif'

};

Last, render the GIF in the Console.

// Render the GIF animation in the console.
print(ui.Thumbnail(collection, gifParams));

Code Checkpoint A12a. The book’s repository contains a script that shows what
your code should look like at this point.

The GIF gives a qualitative sense of the way the airport has changed. To
quantify urban environment change (i.e., summing the area of total new imper-
vious surfaces), we often turn to classifications. Section 2 covers pre-existing
classifications you can leverage to quantify urban extent.

682 M. Stuhlmacher and R. Goldblatt

33.2.2 Section 2. Pre-existing Urban Classifications

There are several publicly accessible land cover classifications that include urban
areas as one of their classes. These classifications are a quick way to qualify urban
extent. In this section, we’ll cover three from the Earth Engine Data Catalog and
show you how to visualize and quantify the urban classes: (1) the MODIS Land
Cover Type Yearly Global; (2) the Copernicus CORINE Land Cover; and (3) the
United States Geological Survey (USGS) National Land Cover Database (NLCD).
These three classifications vary in their spatial and temporal resolution. For exam-
ple, MODIS is a global dataset, while the NLCD covers only the United States, and
CORINE covers only the European Union. We’ll explore more of these differences
later.

First, start a new code and search for “MODIS land cover.” Find the
ImageCollection titled “MCD12Q1.006 MODIS Land Cover Type Yearly
Global 500 m,” import it, and rename it to MODIS. We will first look at the MODIS
land cover classification over Accra, Ghana:

// MODIS (Accra)
// Center over Accra.
Map.setCenter(-0.2264, 5.5801, 10);

The Land Cover Type Yearly Global dataset contains multiple classifica-
tions (Fig. 33.1). We will use LC_Type1, the annual classification using the
International Geosphere-Biosphere Programme (IGBP) categories, in this example.

Select the LC_Type1 band, copy and paste the visualization parameters for
the classification, and visualize the full classification.

// Visualize the full classification.
var MODIS_lc = MODIS.select('LC_Type1');
var igbpLandCoverVis = {

min: 1.0,
max: 17.0,
palette: ['05450a', '086a10', '54a708', '78d203',

'009900',
'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05',
'27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8',
'f9ffa4', '1c0dff'

],
};
Map.addLayer(MODIS_lc, igbpLandCoverVis, 'IGBP Land
Cover');

33 Urban Environments 683

Fig. 33.1 Metadata of the MODIS land cover classification types

Press Run and view the output with the classification visualization. Use the
Inspector tab to click on the different colors and determine the land cover classes
they represent.

Next, we’re going to visualize only the urban class at points almost two decades
apart: from 2001 and 2019. We’ll start by filtering for 2019 dates.

// Visualize the urban extent in 2001 and 2019.
// 2019
var MODIS_2019 = MODIS_lc.filterDate(ee.Date('2019-01-
01'));

Looking at the metadata shows us that the urban class has a value of 13
(Fig. 33.2), so we’ll select only the pixels with this value and visualize them
for 2019. To show only the urban pixels, mask the urban image with itself in the
Map.addLayer command.

684 M. Stuhlmacher and R. Goldblatt

Fig. 33.2 Classes for the LC_Type1 classification

var M_urb_2019 = MODIS_2019.mosaic().eq(13);
Map.addLayer(M_urb_2019.mask(M_urb_2019), {

'palette': 'FF0000'
}, 'MODIS Urban 2019');

Repeat the same steps for 2001, but give it a gray palette to contrast with the
red palette of 2019.

var MODIS_2001 = MODIS_lc.filterDate(ee.Date('2001-01-
01'));
var M_urb_2001 = MODIS_2001.mosaic().eq(13);
Map.addLayer(M_urb_2001.mask(M_urb_2001), {

'palette': 'a5a5a5'
}, 'MODIS Urban 2001');

The result is a visualization showing the extent of Accra in 2002 in gray and
the new urbanization between 2001 and 2019 in red (Fig. 33.3).

Code Checkpoint A12b. The book’s repository contains a script that shows what
your code should look like at this point.

33 Urban Environments 685

Fig. 33.3 Output of MODIS visualization

Next, we’ll look at CORINE. Open a new script, search for “CORINE,” select
the Copernicus CORINE Land Cover dataset to import, rename it to CORINE, and
center it over London, England.

// CORINE (London)
// Center over London
Map.setCenter(-0.1795, 51.4931, 10);

Conducting a similar process to the one we used with MODIS, first select the
image for 2018.

// Visualize the urban extent in 2000 and 2018.
// 2018 (2017-2018)
var CORINE_2018 =
CORINE.select('landcover').filterDate(ee.Date(

'2017-01-01'));

Why filter by 2017 and not 2018? The description section of CORINE’s meta-
data shows that the time period covered by the 2018 asset includes both 2017 and
2018. To select the 2018 asset in the code above, we filter by the date of the first

686 M. Stuhlmacher and R. Goldblatt

year. (If you’re curious, you can test what happens when you filter using 2018 as
the date.)

The metadata for CORINE shows that the built-up land cover classes range
from 111 to 133, so we’ll select all classes less than or equal to 133 and visualize
them in red.

var C_urb_2018 = CORINE_2018.mosaic().lte(133); //Select
urban areas
Map.addLayer(C_urb_2018.mask(C_urb_2018), {

'palette': 'FF0000'
}, 'CORINE Urban 2018');

Repeat the same steps for 2000, but visualize the pixels in gray.

// 2000 (1999-2001)
var CORINE_2000 =
CORINE.select('landcover').filterDate(ee.Date(

'1999-01-01'));
var C_urb_2000 = CORINE_2000.mosaic().lte(133); //Select
urban areas
Map.addLayer(C_urb_2000.mask(C_urb_2000), {

'palette': 'a5a5a5'
}, 'CORINE Urban 2000');

The output shows the extent of London’s built-up land in 2000 in gray, and the
larger extent in 2018 in red (Fig. 33.4).

Code Checkpoint A12c. The book’s repository contains a script that shows what
your code should look like at this point.

Last, we’ll look at NLCD for 2016. Open a new script, search for “NLCD,”
import the NLCD: USGS National Land Cover Database, rename it to NLCD, and
center it over Chicago, Illinois, USA.

// NLCD (Chicago)
// Center over Chicago.
Map.setCenter(-87.6324, 41.8799, 10);

33 Urban Environments 687

Fig. 33.4 Output of CORINE visualization

Select the landcover classification band and filter it to the 2016 classifica-
tion. Previously, we have done so using the filterDate command, but you can
also filter on the system:index.

// Select the land cover band.
var NLCD_lc = NLCD.select('landcover');

// Filter NLCD collection to 2016.
var NLCD_2016 = NLCD_lc.filter(ee.Filter.eq('system:index',
'2016'))

.first();
Map.addLayer(NLCD_2016, {}, 'NLCD 2016');

Hit Run and view the classification visualization. Use the Inspector tab to
explore the classification values. The shades of red represent different levels of
development. Dark red is “Developed, High Intensity” and the lightest pink is
“Developed, Open Space.” You can look at the metadata description of this dataset
to learn about the rest of the classes and their corresponding colors.

688 M. Stuhlmacher and R. Goldblatt

One of the benefits of classifications is that you can use them to calculate quan-
titative information such as the area of a specific land cover. Now we’ll cover how
to do so by summing the high-intensity urban development land cover in Chicago.
Import a boundary of the city of Chicago and clip the NLCD classification to its
extent.

// Calculate the total area of the 'Developed high
intensity' class (24) in Chicago.
var Chicago = ee.FeatureCollection(

'projects/gee-book/assets/A1-2/Chicago');

// Clip classification to Chicago
var NLCD_2016_chi = NLCD_2016.clip(Chicago);

Select the “Developed, High Intensity” class (24), and mask the class with itself
(to ensure that we calculate the area of only the highly developed pixels and no
surrounding ones), then visualize the output.

// Set class 24 pixels to 1 and mask the rest.
var NLCD_2016_chi_24 = NLCD_2016_chi.eq(24).selfMask();
Map.addLayer(NLCD_2016_chi_24, {},
 'Chicago developed high intensity');

Multiply the pixels by their area, and use reduceRegions to sum the area
of the pixels.

// Area calculation.
var areaDev =
NLCD_2016_chi_24.multiply(ee.Image.pixelArea())

.reduceRegion({
reducer: ee.Reducer.sum(),
geometry: Chicago.geometry(),
scale: 30

})
.get('landcover');

print(areaDev);

33 Urban Environments 689

Table 33.1 Spatial and temporal extents of three classifications

Pixel size (m) Years available Coverage Number of urban classes

MODIS 500 m

CORINE European Union

NLCD 4

Code Checkpoint A12d. The book’s repository contains a script that shows what
your code should look like at this point.

If everything worked correctly, you should see “203722704.70588234” printed to
the Console. This means that highly developed land covered about 204,000,000 m2

(204 km2) in the city of Chicago in 2016. Let’s roughly check this answer by
looking up the area of the city of Chicago. Chicago is about 234 square miles (~
606 km2), which means highly developed areas cover about a third of the city,
which visually matches what we see in the Map viewer.

Question 1. Return to your MODIS classification visualization of Accra and look
at the pixels that became urban between 2002 and 2019. What land cover classes
were they before they became urbanized? Hint: you will need to change the date
of your full classification visualization to 2002 in order to answer this question.

Question 2. Return to your NLCD area calculation. Write new code to calculate
the area of the highly developed class in Chicago in 2001. How much did the
highly developed class change between 2001 and 2016? Report your answer in
square meters.

Question 3. Fill out Table 33.1 on the spatial and temporal extents of the three
classifications that we’ve just experimented with (some entries are filled in as an
example). Based on your table, what are the benefits and the limitations of each
of the classifications for studying urban areas?

33.2.3 Section 3. Classifying Urban Areas

In the previous section, we relied on several LULC classifications to estimate
the distribution of built-up land cover and its change over time. While for many
applications these products would be sufficient, for others their temporal or spa-
tial granularity may be a limiting factor. For example, your research question
may require tracking monthly changes in the distribution of built-up land cover
or depicting granular intra-city spatial patterns of built-up areas.

690 M. Stuhlmacher and R. Goldblatt

Luckily, with emerging and more accessible machine learning tools—like those
available in Earth Engine—you can now create your own classification maps,
including maps that depict the distribution of built-up land cover (Goldblatt et al.
2016). Machine learning deals with how machines learn rules from examples and
generalize these rules to new examples. In this section, we will use one of the
most common supervised machine learning classifiers: Random Forests (Breiman
2001).

You will use Landsat 7 imagery to classify built-up land cover in the city of
Ahmedabad, Gujarat, India, at two points in time, 2020 and 2010. You will hand
draw polygons (rectangles) representing areas of built-up and not-built-up land
cover, and then build a Random Forest classifier and train it to predict whether a
pixel is “built-up” or not.

First, start a new script. In the search bar, search for “USGS Landsat 7 Collec-
tion 2 Tier 1.” Of the similarly named datasets that come up, select the one with the
data set specifier “LANDSAT/LE07/C02/T1_L2.” The metadata shows that this is
an ImageCollection of images collected since 1999 (Fig. 33.5, left) and that
each pixel is characterized by 11 spectral bands (Fig. 33.5, right). In this exercise,
we will work only with bands 1–6. Import this ImageCollection and change
the name of the variable to L7.

Fig. 33.5 Metadata for the “USGS Landsat 7 Collection 2 Tier 1” dataset

33 Urban Environments 691

Fig. 33.6 Location of the surface reflectance code in the Examples repository

Next, you will create an annual composite for the year 2020 using the Google
example Landsat457 Surface Reflectance script, located in the Cloud Masking
Examples folder at the bottom of your Scripts section (Fig. 33.6).

This function computes surface reflectance. To create a composite for the
year 2020, use the ee.FilterDate method to identify the images captured
between January 1, 2020, and December 31, 2020, then map the function over
that collection.

692 M. Stuhlmacher and R. Goldblatt

// Surface reflectance function from example:
function maskL457sr(image) {

var qaMask =
image.select('QA_PIXEL').bitwiseAnd(parseInt('11111',

2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands =

image.select('SR_B.').multiply(0.0000275).add(-
0.2);

var thermalBand =
image.select('ST_B6').multiply(0.00341802).add(

149.0);

// Replace the original bands with the scaled ones and
apply the masks.

return image.addBands(opticalBands, null, true)
.addBands(thermalBand, null, true)
.updateMask(qaMask)
.updateMask(saturationMask);

}

// Map the function over one year of data.
var collection = L7.filterDate('2020-01-01', '2021-01-
01').map(

maskL457sr);
var landsat7_2020 = collection.median();

Now, in the search bar, search for and navigate to Ahmedabad, India. Add the
landsat7_2020 composite to the map. Specify the red, green, and blue bands
to achieve a natural color visualization, noting that in Landsat 7, band 3 (B3) is
red, band 2 (B2) is green, and band 1 (B1) is blue. Also specify the colors’ stretch
parameters. In this case, we stretch the values between 0 and 0.3, but feel free to
experiment with other stretches.

Map.addLayer(landsat7_2020, {
bands: ['SR_B3', 'SR_B2', 'SR_B1'],
min: 0,
max: 0.3

}, 'landsat 7, 2020');

Code Checkpoint A12e. The book’s repository contains a script that shows what
your code should look like at this point.

The next step is probably the most time consuming in this exercise. In super-
vised classification, a classifier is trained with labeled examples to predict the
labels of new examples. In our case, each training example will be a pixel, labeled

33 Urban Environments 693

as either built-up or not-built-up. Rather than selecting pixels for the training set
one at a time as was done in Chap. 7, you will hand-draw polygons (rectangles)
and label them as built-up or not-built-up, and assign to each pixel with the label
of the spatially overlapping polygon. You will create two feature collections: one
with 50 rectangles over built-up areas (labeled as “1”) and one with 50 examples of
rectangles over not-built-up areas (labeled as “0”). To do this, follow these steps:

Start by hand-drawing the not-built-up examples. Click on the rectangle icon in
the upper-left corner of the screen (Fig. 33.7). Clicking on this icon will create a
new variable (called geometry). Click on the gear-shaped icon of this imported
variable. Change the name of the variable to nbu (stands for “not-built-up”)
(Fig. 8a). Change the Import as parameter from Geometry to FeatureCollec-
tion (Fig. 8b). Click on the + Property button (Fig. 8c), to create a new property
called “class,” and assign it with a value of 0 (Fig. 8d). You have just created
a new empty FeatureCollection, where each feature will have a property
called “class”, with a value of 0 assigned to it.

The nbu FeatureCollection is now initialized, and empty. You now need
to populate it with features: In this exercise, you will draw 50 rectangles drawn
over areas representing not-built-up locations. To identify these areas, you can
use either the 2020 Landsat 7 scene (landsat7_2020) as the background ref-
erence or use the high-resolution satellite basemap (provided in Earth Engine)
as reference. Note, however, that you can use the basemap as reference only if
you classify the current land cover, since Earth Engine’s satellite background is
continually updated.

For this exercise, we define “not-built-up” land cover as any type of land cover
that is not-built-up (this includes vegetation, bodies of water, bare land, etc.). Click
on the nbu layer you created under Geometry Imports (Fig. 9a) to select it
(the rectangle button will be highlighted; see Fig. 9b) and draw 50 rectangles
representing examples of areas that are not-built-up (Fig. 9c). It is important to
select diverse and representative examples. To avoid exceeding the user memory
limit, draw relatively small rectangles (see examples in Fig. 33.9).

Fig. 33.7 To hand-draw examples of not-built-up rectangles, click on the rectangle icon in the
upper-left corner of the screen

694 M. Stuhlmacher and R. Goldblatt

Fig. 33.8 Creating a new FeatureCollection for examples of not-built-up areas: a change
the name of the variable to nbu; b change the parameter Import as parameter from Geometry to
FeatureCollection; c click on the + Property button; d to create a new property called “class,”
and assign to it the value 0

Fig. 33.9 Rectangles representing example locations of not-built-up areas

Tip: To delete a feature, simply click on Esc, select the feature you want to
delete, and click Delete. You can also click on Esc if you want to navigate (zoom
in, zoom out, pan). If you’d like to re-draw a rectangle, click again on the name
nbu layer under Geometry Imports and modify the geometry. When done, click
on the Exit button or Esc.

33 Urban Environments 695

Fig. 33.10 Creating a new layer for the built-up FeatureCollection To create a new empty feature
collection of built-up examples, click on the + new layer (at the bottom of the Geometry Imports)

Note that while adding more examples may improve the accuracy of your clas-
sification, creating too many examples could potentially improve the accuracy of
the classification of your specific area of interest—but it may not fit well in other
geographical areas. That is an example of a type of “overfitting,” in which samples
used to train a model are overly specific to one area and not generalizable to other
locations.

Now that you created 50 examples of not-built-up areas, it is time to
create a second additional FeatureCollection of 50 examples of built-
up areas. As with the not-built-up examples, you will first create an empty
FeatureCollection and then populate it with example features.

Important: you will need to create a new layer. Make sure that you do not add
these new examples to the not-built-up FeatureCollection. To create a new
layer, click on + new layer (Fig. 33.10). This will create a new variable called
geometry.

Click on the gear-shaped icon next to the new variable you just created. Change
the name of the variable from geometry to bu (stands for built-up) (Fig. 11a).
Change the Import as parameter from geometry to FeatureCollection (Fig. 11b).
Click on + Property (Fig. 11c), and create a property called class (Fig. 11d),
and assign to it a value of 1 (Fig. 11e). Recall that this is the same property name
you used for the nbu examples. Assign the features with a value “1” (Fig. 11e).
Also change the color of the bu examples to red (Fig. 11f), representing built-up
areas. Click OK.

The bu FeatureCollection is now initialized, and empty. To populate
it with examples of built-up areas, hover over the bu FeatureCollection
(Fig. 12a), select the rectangle tool (Fig. 12b), and draw 50 rectangles over built-
up areas. Keep (keep the size of the rectangles similar to the not-built-up examples)
(Fig. 33.12, location ‘c’).

You’ve now created two feature collections: 50 features representing built-
up areas (the variable is called bu), and 50 features representing not-built-up
areas (the variable is called nbu). Next, you will merge these two feature collec-
tions to create one collection of 100 features. Remember that in both collections,
you added a property called class; features in the FeatureCollection
nbu were assigned a value of 0 and features in the FeatureCollection
nbu were assigned a value of 1. The merged FeatureCollection will also
include the property class: 50 features with a value of 1 and 50 with a value

696 M. Stuhlmacher and R. Goldblatt

Fig. 33.11 Creating a new FeatureCollection for examples of built-up areas: a change the
name of the variable to “bu”; b change the parameter Import as parameter from Geometry to
FeatureCollection; c click on the + Property button; d to create a new property called “class,”
and assign to it the value 1

Fig. 33.12 Rectangles representing examples of built-up areas. To create these examples, hover
over the new “bu” feature collection you just created (a), select the rectangle tool (b), and draw 50
examples of rectangles over built-up areas (c)

of 0. To merge the feature collections, use the method merge. Call the merged
FeatureCollection with the variable lc.

var lc = nbu.merge(bu);

Code Checkpoint A12f. The book’s repository contains a script that shows what
your code should look like at this point.

33 Urban Environments 697

List the properties that the classifier will use to determine whether a pixel is
built-up or not-built-up. Recall that Landsat 7 has 11 bands; two of them are QA
Bitmask bands, which likely do not vary by land cover. Create a new variable
called bands with a list of the bands to be used by the classifier.

var bands = ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',
'ST_B6', 'SR_B7'];

Next, you will create the labeled examples (pixels) that will serve as the training
set of the classifier. Remember that, at this point, the pixels are not yet labeled; you
labeled only the rectangles (stored in the lc variable), which are not associated
with the bands of the Landsat pixels. To associate the Landsat pixels with a label,
you will sample the pixels that overlap with these rectangles and assign them with
the class of the overlapping rectangle.

This can be done with the method sampleRegions. Define a new vari-
able and call it training. Under this variable, call the 2020 Landsat composite
(landsat7_2020), select the relevant bands (the variable bands), and sample
the overlapping pixels. You will sample the landsat7_2020 pixels that overlap
with the FeatureCollection lc and copy the property class from each
feature to the overlapping pixel (each pixel will now include the 9 properties and
a class, either 1 or 0). Set the argument scale to 30 (30 m—Landsat 7’s spatial
resolution—is the scale of the projection to sample in). These steps are shown in
the code block below and were described in Chap. 6.

var training = landsat7_2020.select(bands).sampleRegions({
collection: lc,
properties: ['class'],
scale: 30

});

Now it is time to create the classifier. Create an empty Random Forest classi-
fier using the method ee.Classifier.smileRandomForest. You can keep
most of the arguments’ values as default and only set the number of decision trees
in the forest (the argument numberOfTrees) to 20. Use the method train
to train the classifier. This method trains a classifier on a collection of features,
using the specified numeric properties of each feature as training data. The col-
lection to train on is called training and the name of the property containing
the class value is called ‘class’. The list of properties (inputProperties)
to be considered by the classifier is stored in the band’s variable. Note that, by
default, the classifier predicts the class of the pixel (in this case, “1,” built-up, or
“0,” not-built-up). You could also set the mode of the classifier to PROBABILITY,

698 M. Stuhlmacher and R. Goldblatt

which will result in the probability that a pixel has the value “1.” In this example,
we used the default CLASSIFIER mode).

// Create a random forest classifier with 20 trees.
var classifier = ee.Classifier.smileRandomForest({

numberOfTrees: 20
}).train({ // Train the classifier.

// Use the examples we got when we sampled the pixels.
features: training,
// This is the class that we want to predict.
classProperty: 'class',
// The bands the classifier will use for training and

classification.
inputProperties: bands

});

In the previous step, you trained a classifier. Next, you will use the trained
model to predict that class on new pixels, using the method classify. You’ll
define a new variable, classified20, which will take the Landsat composite;
select the relevant bands (the variable bands); and classify this image using the
trained classifier (called ‘classifier’).

// Apply the classifier on the 2020 image.
var classified20 =
landsat7_2020.select(bands).classify(classifier);

You can visualize the classification by adding the classified image to the map. In
our case, we have only two classes (built-up and not-built-up); thus, the classifier’s
prediction is binary (either “1” for built-up, or “0” for not-built-up). To show only
the pixels with a value of 1, use the mask method to mask out the pixels with
a value of 0. Set the visualization parameters to visualize the remaining pixels as
red, with a transparency of 60%.

Map.addLayer(classified20.mask(classified20), {
palette: ['#ff4218'],
opacity: 0.6

}, 'built-up, 2020');

Code Checkpoint A12g. The book’s repository contains a script that shows what
your code should look like at this point.

33 Urban Environments 699

Lastly, many applications require mapping the extent of built-up land cover at
more than one point in time (e.g., to understand urbanization processes). As you
recall, Landsat 7 has been collecting imagery from every location on Earth since
1999. We can use our trained classifier—which was trained based on Landsat 7
2020 imagery—to predict the extent of built-up land cover in any year collected
(with the assumption that the characteristics of a built-up pixel did not change over
time). In this exercise, you will use the trained classifier to map the built-up land
cover in 2010.

First, create a composite for 2010 using the simpleComposite method:

var landsat7_2010 = L7.filterDate('2010-01-01', '2010-12-
31')

.map(maskL457sr).median();

Now, you can use the classifier to classify the 2010 image using the classify
method. Classify the 2010 image (landsat7_2010) and add it to the map, this
time in a yellow color.

// Apply the classifier to the 2010 image.
var classified10 = landsat7_2010.select(bands).classify(

classifier);
Map.addLayer(classified10.mask(classified10), {

palette: ['#f1ff21'],
opacity: 0.6

}, 'built-up, 2010');

The result should be something like what is presented in Fig. 33.13. Built-up
land cover in 2020 is presented in red, and in 2010 in yellow.

Want to see which areas were developed in the period between 2010 and 2020?
Create a new variable and call it difference. In this variable, subtract the values
of 2010 from 2020. Any pixel that changed from “0” in 2010 to “1” in 2020 will
be assigned with a value of 1. You can then visualize this difference on the map
in blue.

var difference = classified20.subtract(classified10);

Map.addLayer(difference.mask(difference), {
palette: ['#315dff'],
opacity: 0.6

}, 'difference');

700 M. Stuhlmacher and R. Goldblatt

Fig. 33.13 The classified built-up land cover in 2020 (red) and in 2010 (yellow)

Code Checkpoint A12h. The book’s repository contains a script that shows what
your code should look like at this point.

If your code worked as expected, you should be able to see the three layers you
classified: the built-up land cover in 2010, in 2020, and the difference between the
two.

Question 4. Calculate the total built-up land cover in Ahmedabad in 2010 and in
2020. How much built-up area was added to the city? What is the percent increase
of this growth?

Note: Use this FeatureCollection, filtered to Ahmedabad, to bound your
area calculation:

var indiaAdmin3 = ee.FeatureCollection(
 'projects/gee-book/assets/A1-2/IndiaAdmin3');
var ahmedabad = indiaAdmin3.filterMetadata('VARNAME_3',
'equals',
 'Ahmadabad city');
Map.addLayer(ahmedabad, {}, 'Ahmedabad city');

Question 5. Add two lines to your code to visualize the built-up area that was
added between 2010 and 2020.

33 Urban Environments 701

33.3 Synthesis

Assignment 1. In this exercise, we mapped built-up land cover with Landsat 7
imagery. Now try to repeat this exercise using Sentinel-2 as an input to the clas-
sifier. Calculate the total area of built-up land cover in Ahmedabad in 2020, and
answer the following questions.

Note, that you can create an annual Sentinel-2 composite by calculating the
median value of all cloud-free scenes captured in a given year (see an example of
how to filter by cloud values in Sect. 33.2.1 of this chapter). Note that the property
that stores the cloudy pixel percentage in the Sentinel-2 ImageCollection is
‘CLOUDY_PIXEL_PERCENTAGE’.

Question 6. How do the area totals differ from each other? (Use the Ahmedabad
FeatureCollection boundary from Question 4)?

Question 7. Why do you think that is the case? Think about spatial and spectral
resolutions.

Question 8. What is the area of the MODIS urban classification in 2019?

Question 9. Is it larger or smaller than Landsat/Sentinel? Why?

1. How do the area totals differ from each other? (Use the Ahmedabad FeatureC-
ollectionfeature collection boundary from Question 4 above.)

2. Why do you think that is the case? Think about spatial and spectral resolutions.
3. What is the area of the MODIS urban classification in 2019?
4. Is it larger or smaller than Landsat/Sentinel? Why?

33.4 Conclusion

In this chapter, you have learned how to visualize and quantify the magnitude
and pace of urbanization anywhere in the world. Combined with your knowledge
from other chapters, you’re now equipped to look at urban heat islands, food and
water system stresses, and many other socio-environmental impacts of urbanization
(Bazaz et al. 2018). As more and higher-resolution remote sensing data become
available, the scope of questions we can answer about urban areas will widen
and the accuracy of our predictions will improve. This knowledge can be used
for policy and decision-making, in particular in the context of the United Nations
Sustainable Development Goals (United Nations 2020; Prakash et al. 2020).

702 M. Stuhlmacher and R. Goldblatt

References

Bazaz A, Bertoldi P, Buckeridge M et al (2018) Summary for urban policymakers—what the IPCC
special report on 1.5°C means for cities. IIHS Indian Institute for Human Settlements

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:101093340
4324

Goldblatt R, Stuhlmacher MF, Tellman B et al (2018) Using Landsat and nighttime lights for super-
vised pixel-based image classification of urban land cover. Remote Sens Environ 205:253–275.
https://doi.org/10.1016/j.rse.2017.11.026

Goldblatt R, You W, Hanson G, Khandelwal AK (2016) Detecting the boundaries of urban areas
in India: a dataset for pixel-based image classification in Google Earth Engine. Remote Sens
8:634. https://doi.org/10.3390/rs8080634

Prakash M, Ramage S, Kavvada A, Goodman S (2020) Open Earth observations for sustainable
urban development. Remote Sens 12:1646. https://doi.org/10.3390/rs12101646

United Nations Department of Economic and Social Affairs (2019) World urbanization prospects:
the 2018 revision

United Nations Department of Economic and Social Affairs (2020) The sustainable development
goals report 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.rse.2017.11.026
https://doi.org/10.3390/rs8080634
https://doi.org/10.3390/rs12101646
http://creativecommons.org/licenses/by/4.0/

34Built Environments

Erin Trochim

Overview
The built environment consists of the human-made physical parts of the environ-
ment, including homes, buildings, streets, open spaces, and infrastructure. This
chapter will focus on analyzing global infrastructure datasets.

Learning Outcomes

• Quantifying road characteristics.
• Comparing road and transmission line distributions.
• Contrasting changes in impervious surfaces with flooding.
• Understanding vector-based versus raster-based approaches.

Helps if you know how to

• Create a function for code reuse (Chap. 1).
• Summarize an ImageCollection with reducers (Chaps. 12 and 12).
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).
• Convert between raster and vector data (Chap. 23).
• Join elements of vector datasets together (Chap. 25).

E. Trochim (B)
Alaska Center for Energy and Power, University of Alaska Fairbanks, PO Box 755910, Fairbanks,
AK 99775-5910, USA
e-mail: edtrochim@alaska.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_34

703

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_34&domain=pdf
http://orcid.org/0000-0002-2225-4955
mailto:edtrochim@alaska.edu
https://doi.org/10.1007/978-3-031-26588-4_34

704 E. Trochim

34.1 Introduction to Theory

Until the recent past, data about the built environment were mostly produced and
managed at local and regional levels, and global datasets were very rare. Munic-
ipal, state, and national governments require easy access to data in order to plan,
build, and maintain assets, which can be either privately or publicly owned. In the
last decade, there has been a push to produce globally consistent data to support
economic assessment and environmental transitions. The existence of these data
makes it possible to explore the impact of factors including weather, climate, and
growth over time.

Built environment datasets currently available in the Earth Engine Data Catalog
include the Global Power Plant Database, Open Buildings V1 Polygons (which
currently includes over half of Africa), and Global Artificial Impervious Area.
Complementary environmental information includes the Global Flood Database. In
addition, the Awesome GEE Community Catalog hosts the Global Roads Inventory
Project, Global Power System, and Global Fixed Broadband and Mobile (Cellular)
Network Performance collections.

As will be seen in the rest of this chapter, information on the built environment
is most often stored as vector data: that is, as points, lines, and polygons. This
format readily lends itself to representing, for example, bridges as points, roads
as lines, and buildings as polygons. Many of the built environment datasets listed
above now have both raster and vector components. It is useful to understand the
utility of each of these formats and how to extract information between them and
ancillary datasets.

34.2 Practicum

34.2.1 Section 1. Road Characteristics

We will start by calculating road length using the Global Roads Inventory Project
(GRIP) dataset (Meijer et al. 2018). This dataset was created to provide a consis-
tent global roadways’ dataset for environmental and biodiversity assessments. For
this exercise, we will focus on examining the largest countries in Africa, North
America, and Europe.

Start by importing the grip4 datasets into Earth Engine using the following
code, and examine how they look in the Code Editor.

34 Built Environments 705

// Import roads data.
var grip4_africa = ee.FeatureCollection(

'projects/sat-io/open-datasets/GRIP4/Africa'),
grip4_north_america = ee.FeatureCollection(

'projects/sat-io/open-datasets/GRIP4/North-
America'),

grip4_europe = ee.FeatureCollection(
'projects/sat-io/open-datasets/GRIP4/Europe');

// Check the roads data sizes.
print('Grip4 Africa size', grip4_africa.size());
print('Grip4 North America size',
grip4_north_america.size());
print('Grip4 Europe size', grip4_europe.size());

// Display the roads data.
Map.addLayer(ee.FeatureCollection(grip4_africa).style({

color: '413B3A',
width: 1

}), {}, 'Grip4 Africa');
Map.addLayer(ee.FeatureCollection(grip4_north_america).styl
e({

color: '413B3A',
width: 1

}), {}, 'Grip4 North America');
Map.addLayer(ee.FeatureCollection(grip4_europe).style({

color: '413B3A',
width: 1

}), {}, 'Grip4 Europe');

Using the Large Scale International Boundary dataset from the US Office of
the Geographer, below we will import the simplified country boundaries. After
calculating the area enclosed by the boundary of each country, we will select
Algeria, a quite large country with many roads.

706 E. Trochim

// Import simplified countries.
var countries =
ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017');

// Add a function to calculate the feature's geometry area.
// Add the function as a property.
var addArea = function(feature) {

return feature.set({
areaKm: feature.geometry().area().divide(1000 *

1000)
}); // km2 squared

};

// Map the area getting function over the
FeatureCollection.
var countriesArea = countries.map(addArea);

// Filter to the largest country in Africa.
var Algeria =
countriesArea.filter(ee.Filter.inList('country_na', [

'Algeria'
]));

// Display the selected countries.
Map.addLayer(Algeria.style({

fillColor: 'b5ffb4',
color: '00909F',
width: 1.0

}), {}, 'Algeria');

Next, we will calculate the road density for Algeria. For this example, we will
implement a function to join the roads to each of the countries. The approach
below joins the roads to the countries if there is spatial overlap between the
features. Then, for each joined road in the specified country, an intersection is
performed to keep only the portion of the road within the country. The length of
the road is calculated and added as a property per feature, as is the road density
per country.

34 Built Environments 707

// This function calculates the road length per country for
the associated GRIP dataset.
var roadLength4Country = function(country, grip4) {

// Join roads to countries.
var intersectsFilter = ee.Filter.intersects({

leftField: '.geo',
rightField: '.geo',
maxError: 10

});

var grip4Selected = grip4.filterBounds(country);

var countriesWithRds = ee.Join.saveAll('roads').apply({
primary: country,
secondary: grip4Selected,
condition: intersectsFilter

}).filter(ee.Filter.neq('roads', null));

// Return country with calculation of roadLength and
roadsPerArea.

return countriesWithRds.map(function(country) {
var roadsList = ee.List(country.get('roads'));
var roadLengths = roadsList.map(function(road) {

return ee.Feature(road).intersection(
country, 10).length(10);

});
var roadLength = ee.Number(roadLengths.reduce(ee

.Reducer.sum()));
return country.set({

roadLength: roadLength.divide(
1000), // Convert to km.

roadsPerArea: roadLength.divide(ee
.Number(country.get('areaKm'))

)
});

}).select(['country_na', 'areaKm', 'roadLength',
'roadsPerArea'

]);
};

// Apply the road length function to Algeria.
var roadLengthAlgeria = roadLength4Country(Algeria,
grip4_africa);

708 E. Trochim

Print the roads per area in Algeria.

// Print the road statistics for Algeria.
print('Roads statistics in Algeria', roadLengthAlgeria);

Question 1. How many roads are there in Africa? Hint: Check the size of the
grip4 Africa dataset.

Question 2. Which continent has the most roads: Africa, Europe, or North
America?

Question 3. How many roads per square kilometer are there in Algeria?

Question 4. What is the total road length in kilometers in Algeria?

Code Checkpoint A13a. The book’s repository contains a script that shows what
your code should look like at this point.

Earth Engine is powerful, but its processing power is not infinite. If you try
applying the same code to countries such as Canada and France, it does not run
very well interactively due to the enormous size of the request. To successfully exe-
cute long-running, complex tasks, you can export results. Exporting forces Earth
Engine to continue to run for a very long time; in that case, you cannot see the
results interactively, but you will be able to get an answer for even very large
problems, and then load the exported data. An example of this is shown below.

// Export feature collection to drive.
Export.table.toDrive({

collection: roadLengthAlgeria,
description: 'RoadStatisticsforAlgeria',
selectors: ['country_na', 'roadLength', 'roadsPerArea']

});

Let us think about how to simplify this analysis, to see if we can optimize
the computation in an interactive environment. Print the first feature of the grip4
Africa feature collection and display it using the following commands.

// Print the first feature of the grip4 Africa feature
collection.
print(grip4_africa.limit(1));

Map.setCenter(-0.759, 9.235, 6);
Map.addLayer(grip4_africa.limit(1),

{},
'Road length comparison');

34 Built Environments 709

Fig. 34.1 Exploring the GRIP datasets by visualizing the first feature in the Africa region.
According to the feature properties, the road is 0.76, but the unit is not specified. Compare this
to the scale at the bottom of the Map panel in the Code Editor

You can find the road in northern Ghana as shown in Fig. 34.1.
In the Console, examine the properties of the road. Notice that there is an

existing column called Shape_Leng. The length of each road appears to have
already been precalculated and included as a value. The length of this road is
given as 0.76, but the unit is not specified. This looks suspicious in comparison
to the scale—the road is obviously longer than 0.76 m, kilometers, or miles. It is
easy to recalculate the length of the lines: use the following code to do so and
compare the results.

// This function adds line length in km.
var addLength = function(feature) {

return feature.set({
lengthKm: feature.length().divide(1000)

});
};

// Calculate the line lengths for all roads in Africa.
var grip4_africaLength = grip4_africa.map(addLength);

// Compare with other values.
print('Calculated road length property',
grip4_africaLength.limit(1));

The road in Ghana has a new calculated length of about 84 km, which looks
accurate.

710 E. Trochim

Repeat the road calculation analysis, but examine each step. First, filter the road
data in Africa for Algeria. Visualize the result, taking note of whether any roads
are included that originate in Algeria but extend into other countries. Then, reduce
the lengthKm column and calculate the sum in the filtered Algeria road data.

// Repeat the analysis to calculate the length of all
roads.
// Filter the table geographically: only keep roads in
Algeria.
var grip4_Algeria =
grip4_africaLength.filterBounds(Algeria);

// Visualize the output.
Map.addLayer(grip4_Algeria.style({

color: 'green',
width: 2.0

}), {}, 'Algeria roads');

// Sum the lengths for roads in Algeria.
var sumLengthKmAlgeria = ee.Number(

// Reduce to get the sum.
grip4_Algeria.reduceColumns(ee.Reducer.sum(),

['lengthKm'])
.get('sum')

);

// Print the result.
print('Length of all roads in Algeria',
sumLengthKmAlgeria);

Question 5. What is the total recalculated road length in kilometers in Algeria?

Question 6. Is this higher or lower than the first value?

Code Checkpoint A13b. The book’s repository contains a script that shows what
your code should look like at this point.

The difference in values when recalculating is due to extra roads being included
in the second calculation. This was due to skipping the joining and intersection of
the Algeria feature collection. Using only filterBounds to approximate the
road limits was not as accurate.

Let us try another method to make this more computationally efficient. Rasterize
the roads by interpolating the current feature collection into an image, and use
reduceRegions to calculate the area of the road pixels. For this exercise, set
the scale as 100 m. In order to convert the area into the appropriate dimension and

34 Built Environments 711

units, divide the results by 1000 and apply a square root to transform the length
into kilometers.

// Repeat the analysis again to calculate length of all
roads using rasters.
// Convert to raster.
var empty = ee.Image().float();

var grip4_africaRaster = empty.paint({
featureCollection: grip4_africaLength,
color: 'lengthKm'

}).gt(0);

Map.addLayer(grip4_africaRaster, {
palette: ['orange'],
max: 1

}, 'Rasterized roads');

// Add reducer output to the features in the collection.
var AlgeriaRoadLength = ee.Image.pixelArea()

.addBands(grip4_africaRaster)

.reduceRegions({
collection: Algeria,
reducer: ee.Reducer.sum(),
scale: 100,

}).map(function(feature) {
var num = ee.Number.parse(feature.get('area'));
return feature.set('length',

num.divide(1000).sqrt()
.round());

});

// Print the first feature to illustrate the result.
print('Length of all roads in Algeria calculated via
rasters', ee

.Number(AlgeriaRoadLength.first().get('length')));

Notice that this value is about 13%, or 7000 km, lower than the first estimate.
Take a look at the rasterized roads’ visualization. With no scale set, it looks very

similar to the vectors. Zoom in to an area like the example in Fig. 34.2 and examine
the structure of the vectors, rasters, and roads themselves. Note that, in some areas,
divided roads are represented by two separate features (vectors). The initial rasters
match the scale of the vector. One 100 m pixel, though, would cover both roads
and represent only a single unit length. Understanding how the data represent the

712 E. Trochim

Fig. 34.2 Examining roads from the GRIP dataset as features (in green) versus rasters (in orange)
overlaid with transparency on the Map view. There can be offset between datasets and different
spatial shapes (lines, polygons, and rasters)

actual built environment is critical for accuracy and precision estimates. There is
also a tradeoff in computation time and whether the calculations can be performed
on the fly.

The advantage to this approach is that the analysis can be performed interac-
tively across much larger areas. We will test this by calculating total road length
for the largest countries in Africa, North America, and Europe, which are Algeria,
Canada, and France.

// Calculate line lengths for all roads in North America
and Europe.
var grip4_north_americaLength =
grip4_north_america.map(addLength);
var grip4_europeLength = grip4_europe.map(addLength);

// Merge all vectors.
var roadLengthMerge = grip4_africaLength.merge(

grip4_north_americaLength).merge(grip4_europeLength);

// Convert to raster.
var empty = ee.Image().float();

var roadLengthMergeRaster = empty.paint({
featureCollection: roadLengthMerge,
color: 'roadsPerArea'

}).gt(0);

34 Built Environments 713

// Add reducer output to the features in the collection.
var countriesRoadLength = ee.Image.pixelArea()

.addBands(roadLengthMergeRasterClipped)

.reduceRegions({
collection: countriesSelected,
reducer: ee.Reducer.sum(),
scale: 100,

}).map(function(feature) {
var num = ee.Number.parse(feature.get('area'));
return feature.set('length',

num.divide(1000).sqrt()
.round());

});

// Compute totaled road lengths in km, grouped by country.
print('Length of all roads in Canada',
countriesRoadLength.filter(ee

.Filter.equals('country_na', 'Canada')).aggregate_sum(
'length'));

print('Length of all roads in France',
countriesRoadLength.filter(ee

.Filter.equals('country_na', 'France')).aggregate_sum(
'length'));

// Filter to largest countries in Africa, North America and
Europe.
var countriesSelected = countries.filter(ee.Filter.inList(

'country_na', ['Algeria', 'Canada', 'France']));

// Clip image to only countries of analysis.
var roadLengthMergeRasterClipped = roadLengthMergeRaster

.clipToCollection(countriesSelected);

Question 7. Which country has the highest total length of roads?

Question 8. Explore the effect of the scale value
by reprojecting the rasterized roads (for example,
Map.addLayer(grip4_africaRaster.reproject({crs:
‘EPSG:4326’, scale: 100}), {palette: [‘orange’], max:
1}, ‘Rasterized roads 100 m’)). Does increasing the scale result in
an over- or underestimation of roads? What is an optimal scale to still allow the
large calculations to run in real time?

Code Checkpoint A13c. The book’s repository contains a script that shows what
your code should look like at this point.

714 E. Trochim

34.2.2 Section 2. Road and Transmission Line Comparison

Next, let us compare the overlap between roads and transmission lines, which often
are found in the same vicinity. We will test this concept by examining the Global
Power System data (Arderne et al. 2020).

Let us start by creating a new script and importing data into the Code Editor.
As in the first exercise, import the GRIP road datasets. We will reuse the same
addLength function from the previous exercise and apply it to roads in Africa.
Then, convert the roads to a raster using length in kilometers as the pixel value.

// Import roads data.
var grip4_africa = ee.FeatureCollection(

'projects/sat-io/open-datasets/GRIP4/Africa'),
grip4_europe = ee.FeatureCollection(

'projects/sat-io/open-datasets/GRIP4/Europe'),
grip4_north_america = ee.FeatureCollection(

'projects/sat-io/open-datasets/GRIP4/North-
America');

// Add a function to add line length in km.
var addLength = function(feature) {

return feature.set({
lengthKm: feature.length().divide(1000)

}); // km;
};

// Calculate line lengths for all roads in Africa.
var grip4_africaLength = grip4_africa.map(addLength);

// Convert the roads to raster.
var empty = ee.Image().float();

var grip4_africaRaster = empty.paint({
featureCollection: grip4_africaLength,
color: 'lengthKm'

});

Next, import the simplified countries again and filter the feature collection, this
time to all countries on the continent of Africa.

Import the global power system data that represent transmission lines. For this
exercise, we will use both the OpenStreetMap and predicted values in this dataset.
Validation of this dataset included several parts of Africa, so it tends to have higher
accuracy here than in other parts of the world like the Arctic.

34 Built Environments 715

Apply a filter to the transmission lines’ data to limit the analysis to Africa.
Calculate the length of the lines and convert it to rasters, as with the roads’ data.

// Import simplified countries.
var countries =
ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017');

// Filter to Africa.
var Africa = countries.filter(ee.Filter.eq('wld_rgn',
'Africa'));

// Import global power transmission lines.
var transmission = ee.FeatureCollection(

'projects/sat-io/open-datasets/predictive-global-power-
system/distribution-transmission-lines'
);

// Filter transmission lines to Africa.
var transmissionAfrica = transmission.filterBounds(Africa);

// Calculate line lengths for all transmission lines in
Africa.
var transmissionAfricaLength =
transmissionAfrica.map(addLength);

// Convert the transmission lines to raster.
var transmissionAfricaRaster = empty.paint({

featureCollection: transmissionAfricaLength,
color: 'lengthKm'

});

Question 9. In this exercise, we are rasterizing our feature collections to calculate
spatial association indicators. If the data were left as a feature collection, what
would be the simplest way of comparing the two datasets in a similar way?

Code Checkpoint A13d. The book’s repository contains a script that shows what
your code should look like at this point.

In order to compare the road and transmission line rasters, they need to be
stacked together into a single image. It is a good idea to rename the bands to keep
track of the input values. Clip this dataset to the Africa feature collection in order
to minimize computation in the following steps.

716 E. Trochim

// Add roads and transmission lines together into one
image.
// Clip to Africa feature collection.
var stack = grip4_africaRaster

.addBands(transmissionAfricaRaster)

.rename(['roads', 'transmission'])

.clipToCollection(Africa);

Next, use the following code to calculate the spatial statistics’ local Geary’s C
(Anselin 1995). This will indicate clustering due to spatial autocorrelation. In this
case, we are comparing whether roads and transmission lines are located together.
Geary’s C values of− 1 indicate dispersion, while those of 1 indicate clustering.

// Calculate spatial statistics: local Geary's C.
// Create a list of weights for a 9x9 kernel.
var list = [1, 1, 1, 1, 1, 1, 1, 1, 1];

// The center of the kernel is zero.
var centerList = [1, 1, 1, 1, 0, 1, 1, 1, 1];

// Assemble a list of lists: the 9x9 kernel weights as a 2-
D matrix.
var lists = [list, list, list, list, centerList, list,
list, list, list

];

// Create the kernel from the weights.
// Non-zero weights represent the spatial neighborhood.
var kernel = ee.Kernel.fixed(9, 9, lists, -4, -4, false);

// Use the max among bands as the input.
var maxBands = stack.reduce(ee.Reducer.max());

// Convert the neighborhood into multiple bands.
var neighs = maxBands.neighborhoodToBands(kernel);

34 Built Environments 717

// Compute local Geary's C, a measure of spatial
association
// - 0 indicates perfect positive autocorrelation/clustered
// - 1 indicates no autocorrelation/random
// - 2 indicates perfect negative autocorrelation/dispersed
var gearys =
maxBands.subtract(neighs).pow(2).reduce(ee.Reducer.sum())

.divide(Math.pow(9, 2));

// Convert to a -/+1 scale by: calculating C* = 1 - C
// - 1 indicates perfect positive autocorrelation/clustered
// - 0 indicates no autocorrelation/random
// - -1 indicates perfect negative
autocorrelation/dispersed
var gearysStar = ee.Image(1).subtract(gearys);

Examine the output by creating a custom palette and using a high-contrast
basemap. The example illustrated in Fig. 34.3 shows how to add a focal max
to the final image in order to better visualize the results as a raster. The color blue
indicates values toward − 1 and therefore dispersion, while red represents values
toward 1 and therefore spatially clustered.

Fig. 34.3 Results of Geary’s C* spatial autocorrelation between roads and transmission lines in
South Africa. Red indicates clustering, while blue indicates dispersion. Shorter stretches in this
example appear to have more co-located linear infrastructure

718 E. Trochim

// Import palettes.
var palettes = require('users/gena/packages:palettes');

// Create custom palette, blue is negative while red is
positive autocorrelation/clustered.
var palette = palettes.colorbrewer.Spectral[7].reverse();

// Normalize the image and add it to the map.
var visParams = {

min: -1,
max: 1,
palette: palette

};

// Display the image.
Map.setCenter(19.8638, -34.5705, 10);
Map.addLayer(gearysStar.focalMax(1), visParams, 'local
Gearys C*');

Question 10. What are the characteristics of the roads and transmission lines that
are clustered?

Question 11. What are some other local indicators of spatial association?

Code Checkpoint A13e. The book’s repository contains a script that shows what
your code should look like at this point.

Save your script for your own future use, as outlined in Chap. 1. Then, refresh
the Code Editor to begin with a new script for the next section.

34.2.3 Section 3. Impervious Surfaces and Flooding

For our final exercise, we will compare impervious surfaces and flooding over
time in a new script. The Global Artificial Impervious Area dataset captures
annual change information at a 30 m resolution of impervious surface area from
1985 to 2018 (Gong et al. 2020). Impervious surfaces can include a variety of
built environment surfaces, including anything with pavement or water-resistant
materials—roads, sidewalks, airports, parking lots, ports, distribution centers,
rooftops, etc. Artificial impervious areas are important because they are a clear
representation of human settlements (Gong et al. 2020).

We will compare these impervious areas with the Global Flood Database, which
describes flood extent and population characteristics for 913 large flood events
from 2000 to 2018 at 250 m resolution (Tellman et al. 2021).

In this example, let us compare the area of impervious surfaces in 2000 ver-
sus 2018 over the satellite-observed historical floodplain. Below, we will load the

34 Built Environments 719

Global Artificial Impervious Area dataset, to display the images and compare the
data for the two dates.

// Import Tsinghua FROM-GLC Year of Change to Impervious
Surface
var impervious = ee.Image('Tsinghua/FROM-GLC/GAIA/v10');

// Use the change year values found in the band.
// The change year values is described here:
// https://developers.google.com/earth-
engine/datasets/catalog/Tsinghua_FROM-GLC_GAIA_v10#bands
// Select only those areas which were impervious by 2000.
var impervious2000 = impervious.gte(19);

// Select only those areas which were impervious by 2018.
var impervious2018 = impervious.gte(1);

Map.setCenter(-98.688, 39.134, 5);

// Display the images.
Map.addLayer(

impervious2000.selfMask(),
{

min: 0,
max: 1,
palette: ['014352', '856F96']

},
'Impervious Surface 2000');

Map.addLayer(
impervious2018.selfMask(),
{

min: 0,
max: 1,
palette: ['014352', '1A492C']

},
'Impervious Surface 2018');

Subtract the two images to find the change between 2018 and 2000, and again
display the results:

720 E. Trochim

// Calculate the difference between impervious areas in
2000 and 2018.
var imperviousDiff =
impervious2018.subtract(impervious2000);

Map.addLayer(
imperviousDiff.selfMask(),
{

min: 0,
max: 1,
palette: ['014352', 'FFBF00']

},
'Impervious Surface Diff 2000-18');

Import the Global Flood Database. Select the ‘flooded’ band, and sum all
values to create the satellite-observed historical floodplain. Mask out the areas of
permanent water in the floodplain using the JRC Global Surface Water dataset
included in the Global Flood Database as the ‘jrc_perm_water’ band. The
JRC data use the dataset’s original ‘transition’ band. Display the final
floodplain results:

// Import the Global Flood Database v1 (2000-2018).
var gfd =
ee.ImageCollection('GLOBAL_FLOOD_DB/MODIS_EVENTS/V1');

// Map all floods to generate the satellite-observed
historical flood plain.
var gfdFloodedSum = gfd.select('flooded').sum();

// Mask out areas of permanent water.
var gfdFloodedSumNoWater =
gfdFloodedSum.updateMask(gfd.select(

'jrc_perm_water').sum().lt(1));

var durationPalette = ['C3EFFE', '1341E8', '051CB0',
'001133'];

Map.addLayer(
gfdFloodedSumNoWater.selfMask(),
{

min: 0,
max: 10,
palette: durationPalette

},
'GFD Satellite Observed Flood Plain');

34 Built Environments 721

Now, we will calculate which states have been developing the great-
est amounts of impervious surfaces in floodplain areas. Start by masking
out areas in the imperviousDiff image that are not in the floodplains
(gfdFloodedSumNoWater greater than or equal to 1). Then, we will import
the first-order administrative Global Administrative Unit Layers from the UN Food
and Agriculture Organization. Filter this feature collection to administrative names
(‘ADM0_NAME’) equal to ‘United States of America’. Create an area
image by multiplying the impervious difference flood image by pixel area. Apply
a reduceRegions reducer to the area image using the US feature collection
and an initial scale of 100 m. Sort the output sum by descending order and get
only the five highest states. Print the output.

// Mask areas in the impervious difference image that are
not in flood plains.
var imperviousDiffFloods = imperviousDiff

.updateMask(gfdFloodedSumNoWater.gte(1));

// Which state has built the most area in the flood plains?
// Import FAO countries with first level administrative
units.
var countries =
ee.FeatureCollection('FAO/GAUL/2015/level1');

// Filter to the United States.
var unitedStates =
countries.filter(ee.Filter.eq('ADM0_NAME',

'United States of America'));

// Calculate the image area.
var areaImage =
imperviousDiffFloods.multiply(ee.Image.pixelArea());

// Sum the area image for each state.
var unitedStatesImperviousDiffFlood =
areaImage.reduceRegions({

collection: unitedStates,
reducer: ee.Reducer.sum(),
scale: 100,

}) // Sort descending.
.sort('sum', false)
// Get only the 5 highest states.
.limit(5);

722 E. Trochim

// Print state statistics for change in impervious area in
flood plain.
print('Impervious-flood change statistics for states in
US',

unitedStatesImperviousDiffFlood);

Question 12. Which state built the highest amount of impervious surfaces on
satellite-derived floodplains between 2000 and 2018?

Question 13. Which state built the lowest amount of impervious surfaces on
satellite-derived floodplains between 2000 and 2018?

Code Checkpoint A13f. The book’s repository contains a script that shows what
your code should look like at this point.

34.3 Synthesis

Assignment 1. Rerun the first exercise using the first-order administrative Global
Administrative Unit Layers. Try selecting different countries to explore which ones
have the highest road density. You will likely need to save the output in order to
run this analysis.

Assignment 2. Compute local Geary’s C for roads and transmission lines on other
continents. Which continent appears to have the strongest clustering?

Assignment 3. Examine the Global Flood Database in relation to roads in an area
of your choice. Try country-level analysis. Which country in your area has the
highest proportion of roads potentially affected by flooding?

34.4 Conclusion

In this chapter, we have examined data from the built environment. We started by
looking at characteristics of roads, then examined the interactions between roads
and transmission lines, and finished by examining where built environments were
most commonly developed in floodplains. Data in the built environment can be
found in both vector and raster forms. We examined analysis using both forms,
including rasterizing vector data. Our analysis also focused on larger-scale spatial
analysis at the state, country, and continental levels. Understanding how to do this
type of analysis allows us to develop a better understanding of these systems as
more seamless data across temporal and spatial dimensions continue to become
available.

34 Built Environments 723

References

Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115. https://
doi.org/10.1111/j.1538-4632.1995.tb00338.x

Arderne C, Zorn C, Nicolas C, Koks EE (2020) Predictive mapping of the global power system
using open data. Sci Data 7:1–12. https://doi.org/10.1038/s41597-019-0347-4

Gong P, Li X, Wang J et al (2020) Annual maps of global artificial impervious area (GAIA)
between 1985 and 2018. Remote Sens Environ 236:111510. https://doi.org/10.1016/j.rse.2019.
111510

Meijer JR, Huijbregts MAJ, Schotten KCGJ, Schipper AM (2018) Global patterns of current
and future road infrastructure. Environ Res Lett 13:64006. https://doi.org/10.1088/1748-9326/
aabd42

Tellman B, Sullivan JA, Kuhn C et al (2021) Satellite imaging reveals increased proportion of
population exposed to floods. Nature 596:80–86. https://doi.org/10.1038/s41586-021-03695-w

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1038/s41597-019-0347-4
https://doi.org/10.1016/j.rse.2019.111510
https://doi.org/10.1016/j.rse.2019.111510
https://doi.org/10.1088/1748-9326/aabd42
https://doi.org/10.1088/1748-9326/aabd42
https://doi.org/10.1038/s41586-021-03695-w
http://creativecommons.org/licenses/by/4.0/

35Air Pollution and Population
Exposure

Zander S Venter and Sourangsu Chowdhury

Overview
After high blood pressure and smoking, air pollution is the third-largest risk factor
for death globally (Murray et al. 2020). Air pollution can therefore be described as a
global “pandemic” that should arguably be monitored and addressed with the same
intensity with which the COVID-19 pandemic has been. Remote sensing and cloud
computing technologies allow us to do so.

The purpose of this chapter is to explore and analyze gridded air pollution data
from Sentinel-5P in the context of changes brought about by COVID-19 lockdowns.
Practical components will include analyzing changes in nitrogen dioxide (NO2)
concentrations over time and quantifying population-weighted NO2 concentrations
for selected administrative units.

Learning Outcomes

• Understanding Sentinel-5P data.
• Quantifying changes in air pollutant concentrations over time.
• Generating a split-panel map to compare two time epochs.
• Calculating population-weighted air pollutant concentrations.

Z. S. Venter (B)
Norwegian Institute for Nature Research, Trondheim, Norway
e-mail: zander.venter@nina.no

S. Chowdhury
Center for International Climate and Environmental Research (CICERO), University of Oslo,
0349 Oslo, Norway
e-mail: sourangsu.chowdhury@cicero.oslo.no

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_35

725

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_35&domain=pdf
http://orcid.org/0000-0003-2638-7162
mailto:zander.venter@nina.no
mailto:sourangsu.chowdhury@cicero.oslo.no
https://doi.org/10.1007/978-3-031-26588-4_35

726 Z. S. Venter and S. Chowdhury

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Create a graph using ui.Chart (Chap. 4).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).
• Use ee.Reducer functions to summarize pixels over an area (Chaps. 8 and

9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Design user interfaces for an Earth Engine App (Chap. 30).

35.1 Introduction to Theory

Air pollution can be generally defined as any chemical, physical, or biological
agent that alters the natural composition of the atmosphere. Pollutants that are
of primary concern for public health include particulate matter with diameter less
than 2.5 µm (PM2.5), carbon monoxide (CO), ozone (O3), NO2, and sulfur dioxide
(SO2). Globally, chronic exposure to air pollution results in greater loss of life
than HIV/AIDS, malaria, and tuberculosis combined, and more than an order of
magnitude more deaths than all forms of violence (Lelieveld et al. 2020). Exposure
to PM2.5 and O3 is estimated to result in ~ 4.7 million excess deaths annually across
the globe (Murray et al. 2020), although these estimates range between 3 and 10
million excess deaths per year, based on the disease categories considered and the
exposure–response function used (Burnett et al. 2018; Chowdhury et al. 2022).
Exposure to NO2 may result in 4 million new pediatric asthma cases annually
(Achakulwisut et al. 2019).

Knowledge about the global distribution of these air pollutants and their sources
has improved over the last decade, with the expansion of networks of ground-
based monitors in many countries, the evolution of satellite products, and the
advancement of complex atmospheric chemistry models. Studies have found that

35 Air Pollution and Population Exposure 727

more than 70% of the global health burden from air pollution is attributable to
anthropogenic emissions (Chowdhury et al. 2022; Lelieveld et al. 2019). The main
anthropogenic sources of air pollution are industries, motor vehicles, power gener-
ation, agricultural activities, and household combustion, while non-anthropogenic
sources include desert dust, biogenic emissions, forest fires, and even volcanoes.
The reduction in transport and industrial activity during the COVID-19 lockdowns
significantly reduced global air pollution levels, thereby highlighting the signifi-
cance of anthropogenic emissions (Venter et al. 2020). In fact, it is estimated that
the decline in air pollution during the first five months of 2020 resulted in 49,900
avoided deaths and 89,000 fewer pediatric asthma emergency room visits (Venter
et al. 2021).

Despite the recent growth in monitoring networks, the air in most regions
of Earth is insufficiently monitored, limiting air quality management. Given the
paucity of ground-based monitoring, alternative monitoring approaches such as
satellite remote sensing are gaining popularity and becoming more accurate (e.g.,
Griffin et al. 2019). Over the past few decades, we have had increasing access to
a range of satellite sensors that monitor the contents of Earth’s atmosphere. How-
ever, it is important to note that satellites measure pollutant concentrations in the
troposphere and stratosphere, which extend for many kilometers above the Earth’s
surface. As a result, satellite measurements are not necessarily representative of
the concentrations humans are exposed to on the ground, and consequently, rely-
ing on satellite data alone for human health applications is not advised. However,
more sophisticated methods combine information from satellite remote sensing
data, complex atmospheric chemistry models, and ground-based monitors to pro-
vide ground-level concentrations of pollutants with high confidence (Dey et al.
2020, Donkelar et al. 2021).

35.2 Practicum

35.2.1 Section 1: Data Importing and Cleaning

There is a range of satellite-based datasets on air pollution to choose from in the
Earth Engine Data Catalog. The main datasets relevant to air pollution include
the Moderate Resolution Imaging Spectroradiometer and Advanced Very-High-
Resolution Radiometer for monitoring aerosol optical depth (a proxy for PM2.5);
the Total Ozone Mapping Spectrometer Ozone Monitoring Instrument for monitor-
ing O3; and more recently the TROPOspheric Monitoring Instrument (TROPOMI)
on board the Sentinel-5 Precursor (Sentinel-5P), which monitors a range of air pol-
lutants. We will use Sentinel-5P in this practicum, but the methods covered here
are easily transferable to the datasets mentioned above.

728 Z. S. Venter and S. Chowdhury

Fig. 35.1 Earth engine data catalog results for the search term “tropomi”

Now, let’s load the satellite data for this practicum. If you search “tropomi” in
the Earth Engine Data Catalog, you will see a range of datasets from Sentinel-5P,
which can all be of value in quantifying air quality (Fig. 35.1).

Although Sentinel-5 was launched in October 2017, the data available for analy-
sis in Earth Engine are from July 2018 onward. TROPOMI, the sensor on board the
satellite, is a spectrometer sensing ultraviolet, visible, near-infrared, and shortwave
infrared wavelengths to monitor NO2, O3, aerosol, methane (CH4), formaldehyde,
CO, and SO2 in the atmosphere. The swath width of TROPOMI is approximately
2600 km on the ground, resulting in a global daily coverage with a spatial resolu-
tion of 7×7 km. All of the Sentinel-5P datasets, except CH4, have two versions:
Near Real-Time (NRTI) and Offline (OFFL); CH4 is available as OFFL only. The
NRTI assets cover a smaller area than the OFFL assets but appear more quickly
after acquisition. The OFFL assets have a delayed availability, but each asset con-
tains data from an entire orbit and is arguably easier to work with for retrospective
analyses. We will use the OFFL NO2 product in this practicum.

First we need to define an area of interest. Wuhan is infamous for being the
epicenter of the COVID-19 pandemic and witnessed severe lockdowns. In the next
section of this practicum, we will test to see if we can detect a reduction in NO2
during the early 2020 lockdowns in the surrounding province, Hubei. To start,
in the code below, we import a global dataset of administrative boundaries and

35 Air Pollution and Population Exposure 729

filter them for intersection with an ee.Geometry.Point object, which appears
under the Imports section at the top of your script. This geometry has to be
drawn with the drawing tool and can be moved to a new location to rerun the
analysis for that administrative boundary.

After centering the Map on Hubei Province, we will import a population
dataset, which is necessary for calculating population-weighted exposures in
Sect. 3 of this practicum. We will use the Gridded Population of the World dataset
for 2020, which includes a total population count per ~ 1 × 1 km grid (Fig. 35.2).

Fig. 35.2 Population density over Hubei Province. Brighter areas have higher population counts

730 Z. S. Venter and S. Chowdhury

// Import a global dataset of administrative units level 1.
var adminUnits = ee.FeatureCollection(

'FAO/GAUL_SIMPLIFIED_500m/2015/level1');

// Filter for the administrative unit that intersects
// the geometry located at the top of this script.
var adminSelect = adminUnits.filterBounds(geometry);

// Center the map on this area.
Map.centerObject(adminSelect, 8);

// Make the base map HYBRID.
Map.setOptions('HYBRID');

// Add it to the map to make sure you have what you want.
Map.addLayer(adminSelect, {}, 'selected admin unit');

// Import the population count data from Gridded Population of
the World Version 4.
var population = ee.ImageCollection(

'CIESIN/GPWv411/GPW_Population_Count')
// Filter for 2020 using the calendar range function.
.filter(ee.Filter.calendarRange(2020, 2020, 'year'))
// There should be only 1 image, but convert to an image

using .mean().
.mean();

// Clip it to your area of interest (only necessary for
visualization purposes).
var populationClipped =
population.clipToCollection(adminSelect);

// Add it to the map to see the population distribution.
var popVis = {

min: 0,
max: 4000,
palette: ['black', 'yellow', 'white'],
opacity: 0.55

};
Map.addLayer(populationClipped, popVis, 'population count');

Question 1. There are two other datasets of gridded population in the Earth Engine
Data Catalog, namely WorldPop and Global Human Settlement Layers. Use the
search bar to find them and add them to the map to compare them with the Gridded
Population of the World dataset. Which one looks more realistic in your opinion,
and why?

Now it is time to import the NO2 data. As with most optical satellite data,
there can be things in the atmosphere that contaminate the signal from the object

35 Air Pollution and Population Exposure 731

or chemical you want to measure. Clouds are a common issue for land surface
reflectance products (Chap. 15), and they are also an issue when trying to measure
air pollutant concentrations. In the code below, we create a function to mask out
pixels with a cloud fraction above 0.3 (i.e., 30% cloud cover). You can test dif-
ferent masking thresholds to see what suits your use case best. After masking out
cloudy pixels, we create a median composite from images during March 2021. It
is important to note that we are working with the band that gives measurements for
the tropospheric vertical column of NO2 and not the stratospheric or total vertical
column. The troposphere is the closest we can get to ground-level measurements
with Sentinel-5P. The median image for March 2021 should look like the map
shown in Fig. 35.3.

Fig. 35.3 Tropospheric NO2 concentrations over Hubei Province. Hotter colors have higher con-
centrations, while cooler colors have lower concentrations

732 Z. S. Venter and S. Chowdhury

// Import the Sentinel-5P NO2 offline product.
var no2Raw = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2');

// Define function to exclude cloudy pixels.
function maskClouds(image) {

// Get the cloud fraction band of the image.
var cf = image.select('cloud_fraction');
// Create a mask using 0.3 threshold.
var mask = cf.lte(0.3); // You can play around with this

value.
// Return a masked image.
return image.updateMask(mask).copyProperties(image);

}

// Clean and filter the Sentinel-5P NO2 offline product.
var no2 = no2Raw

// Filter for images intersecting our area of interest.
.filterBounds(adminSelect)
// Map the cloud masking function over the image collection.
.map(maskClouds)
// Select the tropospheric vertical column of NO2 band.
.select('tropospheric_NO2_column_number_density');

// Create a median composite for March 2021
var no2Median = no2.filterDate('2021-03-01', '2021-04-
01').median();

// Clip it to your area of interest (only necessary for
visualization purposes).
var no2MedianClipped = no2Median.clipToCollection(adminSelect);

// Visualize the median NO2.
var no2Viz = {

min: 0,
max: 0.00015,
palette: ['black', 'blue', 'purple', 'cyan', 'green',

'yellow', 'red'
]

};
Map.addLayer(no2MedianClipped, no2Viz, 'median no2 Mar 2021');

Code Checkpoint A14a. The book’s repository contains a script that shows what
your code should look like at this point.

35 Air Pollution and Population Exposure 733

35.2.2 Section 2: Quantifying and Visualizing Changes

Next we will test to see if we can visualize a change in NO2 concentrations during
the 2020 COVID-19 lockdowns. We will compare the median NO2 concentration
during March 2020 (during which Hubei Province was in lockdown) with the
median value during March 2019.

Weather can significantly affect air pollutant concentrations (e.g., wind causing
long-range transport of smoke), and therefore differences between 2020 and 2019
could be an artifact of differences in weather. By comparing the same month in
different years, we partly control for the effects of seasonal weather patterns, but
not completely. If you would like to control for weather effects more thoroughly,
see Venter et al. (2020) for details. In the code below, we calculate and visualize
median composite images for March 2019 and March 2020. The visualization
makes use of Earth Engine’s comprehensive library of user-interface widgets (see
Chap. 30 for more details). Specifically, we use the ui.SplitPanel widget to
compare the two median composites side by side (Fig. 35.4). This widget can be
set to have a wiping effect where maps are overlaid on top of one another, or a
side-by-side comparison.

Fig. 35.4 Split-panel map showing tropospheric NO2 concentrations over Hubei Province for
March 2019 (left) and March 2020 (right). Hotter colors have higher concentrations, while cooler
colors have lower concentrations

734 Z. S. Venter and S. Chowdhury

orientation: 'horizontal',
wipe: true,
style: {

stretch: 'both'
}

});
var linker = ui.Map.Linker([leftMap, rightMap]);

// Make a function to add a label with fancy styling.
function makeMapLab(lab, position) {

var label = ui.Label({
value: lab,
style: {

fontSize: '16px',
color: '#ffffff',
fontWeight: 'bold',
backgroundColor: '#ffffff00',
padding: '0px'

}
});

// Define a lockdown NO2 median composite.
var no2Lockdown = no2.filterDate('2020-03-01', '2020-04-
01')

.median().clipToCollection(adminSelect);

// Define a baseline NO2 median using the same month in the
previous year.
var no2Baseline = no2.filterDate('2019-03-01', '2019-04-
01')

.median().clipToCollection(adminSelect);

// Create a ui map widget to hold the baseline NO2 image.
var leftMap = ui.Map().centerObject(adminSelect,
8).setOptions(

'HYBRID');

// Create ta ui map widget to hold the lockdown NO2 image.
var rightMap = ui.Map().setOptions('HYBRID');

// Create a split panel widget to hold the two maps.
var sliderPanel = ui.SplitPanel({

firstPanel: leftMap,
secondPanel: rightMap,

35 Air Pollution and Population Exposure 735

var panel = ui.Panel({
widgets: [label],
layout: ui.Panel.Layout.flow('horizontal'),
style: {

position: position,
backgroundColor: '#00000057',
padding: '0px'

}
});
return panel;

}

// Create baseline map layer, add it to the left map, and
add the label.
var no2BaselineLayer = ui.Map.Layer(no2Baseline, no2Viz);
leftMap.layers().reset([no2BaselineLayer]);
leftMap.add(makeMapLab('Baseline 2019', 'top-left'));

// Create lockdown map layer, add it to the right map, and
add the label.
var no2LockdownLayer = ui.Map.Layer(no2Lockdown, no2Viz);
rightMap.layers().reset([no2LockdownLayer]);
rightMap.add(makeMapLab('Lockdown 2020', 'top-right'));

// Reset the map interface (ui.root) with the split panel
widget.
// Note that the Map.addLayer() calls earlier on in Section
1
// will no longer be shown because we have replaced the Map
widget
// with the sliderPanel widget.
ui.root.widgets().reset([sliderPanel]);

Question 2. Comparing the two maps in the split-panel map, do you find a reduc-
tion in NO2 concentrations during the lockdown? Where is the change in NO2
concentrations most significant?

Question 3. How are changes in NO2 concentrations related to population density?
To help answer this question, you can (1) create a difference image by subtract-
ing the no2Lockdown image from the no2Baseline image, (2) create a new
ui.Map.Layer for the difference image and the population image created in
Sect. 35.1, and (3) add these to the left or right map. Hint: You can change the
opacity of the NO2 layers to aid interpretability.

736 Z. S. Venter and S. Chowdhury

Fig. 35.5 Time-series graph showing average NO2 concentrations for Hubei Province during
March 2019 and March 2020

Exploring the differences in NO2 concentrations as ee.Image objects can be
visually informative, but quantifying the changes for specific regions requires fur-
ther work. In the code below, we calculate the mean NO2 concentrations for Hubei
Province by applying a reduceRegion function to each image in the March
2019 and March 2020 collections. The resulting time series are visualized in the
chart shown in Fig. 35.5.

// Create a function to get the mean NO2 for the study
region
// per image in the NO2 collection.
function getConc(collectionLabel, img) {

return function(img) {
// Calculate the mean NO2.
var no2Mean = img.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: adminSelect.geometry(),
scale: 7000

}).get('tropospheric_NO2_column_number_density');

// Get the day-of-year of the image.
var doy = img.date().getRelative('day', 'year');

35 Air Pollution and Population Exposure 737

// Get the concentrations for a baseline and lockdown
collection
// and merge for plotting.
var no2AggChange_forPlotting = no2

.filterDate('2020-03-01', '2020-04-01')

.map(getConc('lockdown'))

.merge(no2.filterDate('2019-03-01', '2019-04-01')
.map(getConc('baseline')));

no2AggChange_forPlotting = no2AggChange_forPlotting
.filter(ee.Filter.notNull(['conc']));

// Make a chart.
var chart1 = ui.Chart.feature.groups(

no2AggChange_forPlotting, 'DOY', 'conc', 'type')
.setChartType('LineChart')
.setOptions({

title: 'DOY time series for mean [NO2] during ' +
'March 2019 (baseline) and 2020 (lockdown)'

});

// Print it to the console.
print('Baseline vs lockdown NO2 for the study region by
DOY', chart1);

// Return a feature with NO2 concentration and day-
of-year properties.

return ee.Feature(null, {
'conc': no2Mean,
'DOY': doy,
'type': collectionLabel

});
};

}

Code Checkpoint A14b. The book’s repository contains a script that shows
what your code should look like at this point.

35.2.3 Section 3: Calculating Population-Weighted Concentrations

In Sect. 35.2, we used the ee.Reducer.mean reducer in the reduceRegion
function to get the average NO2 concentration over Hubei Province. However,
when aggregating pollutant concentrations to define population exposure, we need
a different approach. Imagine there was a large concentration of NO2 in a rural area
in the east of Hubei Province where very few people live. If we simply calculated

738 Z. S. Venter and S. Chowdhury

the average of all pixels, this rural NO2 anomaly would skew our representation of
population exposure. Using the population number dataset imported in Sect. 35.1,
we can calculate the population-weighted exposure (Exp) aggregated across n
pixels in the area of interest (in this case, Hubei Province) using Eq. A1.4.1 below,
where Ci is the NO2 concentration and Pi is the subpopulation in pixel i .

Exp =
n∑

i

Pi∑n
i (P)

· Ci (35.1)

In the code below, we map a function to calculate population-weighted exposure
over all the images in the NO2 ImageCollection. Remember that in Sect. 35.1
we masked out pixels from images that had a cloud cover value greater than 30%.
Therefore, an important step in this function is to calculate the percentage of avail-
able Sentinel-5P pixels within Hubei Province per image. We need to decide what
percentage pixel coverage is enough to calculate a representative average for the
province. Here we choose 25% for illustrative purposes, but depending on your
research question, you may want to calculate averages only when you have 100%
coverage by/from Sentinel-5P that is free of clouds. The contrast between the sim-
ple average and population-weighted average is shown in Fig. 35.6. The difference
may appear small in this case, but when aggregating over larger areas with greater
variation in population density, population-weighted averages can be very different
from simple averages.

Fig. 35.6 Time-series graph showing average (no2ConcRaw) and population-weighted average
(no2ConcPopWeighted) NO2 concentrations for Hubei Province in March 2020

35 Air Pollution and Population Exposure 739

// Define the spatial resolution of the population data.
var scalePop = 927.67; // See details in GEE Catalogue.

// Now we define a function that will map over the NO2
collection
// and calculate population-weighted concentrations.
// We will use the formula Exp = SUM {(Pi/P)*Ci}.
// We can calculate P outside of the function
// so that it is not computed multiple times for each NO2 image.
var P = population.reduceRegion({

reducer: ee.Reducer.sum(),
geometry: adminSelect.geometry(),
scale: scalePop

}).get('population_count');

// And here is the function.
function getPopWeightedConc(P, region, regionName, img) {

return function(img) {
var Ci = img;
var Pi = population;
// Calculate the percentage of valid pixels in the

region.
// (masked pixels will not be counted).
var pixelCoverPerc = Ci.gte(0).unmask(0).multiply(100)

.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: region.geometry(),
scale: scalePop // Add in the scale of the

population raster.
}).get('tropospheric_NO2_column_number_density');

// Calculate the per-pixel EXP (see formula above).
var exp =

Pi.divide(ee.Image(ee.Number(P))).multiply(Ci);

// Sum the exp over the region.
var expSum = exp.reduceRegion({

reducer: ee.Reducer.sum(),
geometry: region.geometry(),
scale: scalePop

}).get('population_count');

740 Z. S. Venter and S. Chowdhury

// Calculate the mean NO2 - the approach that would
usually

// be taken without population weighting.
var no2Mean = Ci.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: region.geometry(),
scale: scalePop

}).get('tropospheric_NO2_column_number_density');

// Return a feature with properties
var featOut = ee.Feature(null, {

'system:time_start': img.get(
'system:time_start'),

'dateString': img.date().format('YYYY-MM-DD'),
'regionName': regionName,
'no2ConcPopWeighted': expSum,
'no2ConcRaw': no2Mean,
'pixelCoverPerc': pixelCoverPerc

});

return featOut;
};

}

// Filter the NO2 collection for March 2020 and map the function
over it.
var no2Agg_popWeighted = no2.filterDate('2020-03-01', '2020-04-
01')

.map(getPopWeightedConc(P, adminSelect, 'Wuhan'));
no2Agg_popWeighted = ee.FeatureCollection(no2Agg_popWeighted);

// Define the percentage of valid pixels you want in your region
per time point.
// Here we choose 25; i.e. only images with at least 25% valid
NO2 pixels.
var validPixelPerc = 25; // you can play around with this value

// Filter the feature collection based on your pixel criteria.
no2Agg_popWeighted = no2Agg_popWeighted

.filter(ee.Filter.greaterThanOrEquals('pixelCoverPerc',
validPixelPerc));

print('Population weighted no2 feature collection:',

no2Agg_popWeighted);

35 Air Pollution and Population Exposure 741

// Create a feature collection for plotting the mean [NO2]
// and the mean pop-weighted [NO2] on the same graph.
var no2Agg_forPlotting = no2Agg_popWeighted.map(function(ft) {

return ft.set('conc', ft.get('no2ConcPopWeighted'),
'type', 'no2ConcPopWeighted');

}).merge(no2Agg_popWeighted.map(function(ft) {
return ft.set('conc', ft.get('no2ConcRaw'), 'type',

'no2ConcRaw');
}));

// Make a chart
var chart2 = ui.Chart.feature.groups(

no2Agg_forPlotting, 'system:time_start', 'conc', 'type')
.setChartType('LineChart')
.setOptions({

title: 'Time series for mean [NO2] and the pop-weighted
[NO2]'

});

// Print it to the console
print('Raw vs population-weighted NO2 for the study region',
chart2);

Finally, although we can plot this data in Earth Engine, it is often easier to
process with other statistical software, such as R or Python. So, to conclude, let
us code for exporting time series of population-weighted averages for more than
one area of interest (in this case, administrative units). In the code below, we map
the function over two regions and then export the resulting table as a CSV file to
Google Drive.

// Export population-weighted data for multiple regions.
// First select the regions. This can also be done with
// .filterBounds() as in Line 9 above.
var regions = adminUnits

.filter(ee.Filter.inList('ADM1_NAME', ['Chongqing Shi',
'Hubei Sheng'

]));

742 Z. S. Venter and S. Chowdhury

// Map a function over the regions that calculates population-
weighted [NO2].
var No2AggMulti_popWeighted = regions.map(function(region) {

var P = population.reduceRegion({
reducer: ee.Reducer.sum(),
geometry: region.geometry(),
scale: scalePop

}).get('population_count');
var innerTable = no2.filterDate('2020-03-01',

'2020-04-01')
.map(getPopWeightedConc(P, region, region.get(

'ADM1_NAME')));
return innerTable;

}).flatten();
// Remember to filter out readings that have pixel percentage
cover
// below your threshold
No2AggMulti_popWeighted = No2AggMulti_popWeighted

.filter(ee.Filter.greaterThanOrEquals('pixelCoverPerc',
validPixelPerc));

// Run the export under the 'Tasks' tab on the right
// and find your CSV file in Google Drive later on.
Export.table.toDrive({

collection: No2AggMulti_popWeighted,
description: 'no2_popWeighted',
fileFormat: 'CSV'

});

Code Checkpoint A14c. The book’s repository contains a script that shows
what your code should look like at this point.

35.3 Synthesis

In this practicum, we focused on a particular pollutant (NO2), region (Hubei), and
time period (March 2019 and March 2020). To reinforce your comprehension and
understanding, consider the following assignments.

Assignment 1. How would you run this analysis for a different pollutant? Try
substituting the NO2 collection with the Sentinel-5P NRTI SO2 collection. Hint:
The main emission source for SO2 is electricity generation, for which coal is the
most significant fuel. Use this information to inform your selection of a location
and time period so that you can detect interesting changes.

Assignment 2. How would you run this analysis for a different geographic area?
Try deleting the ee.Geometry.Point at the top of your script and using the
Geometry Tools to digitize your own point on which to focus the analysis. If you

35 Air Pollution and Population Exposure 743

are running the latter part of the script, you can also change the list of named
administrative units. Hint: Add the adminUnits object from Sect. 35.1 of the
code to the map. You can use the Inspector tab to click on polygons and get the
name of the administrative unit under the ‘ADM1_NAME’ property.

Assignment 3. Finally, try changing the dates in the script so that you are compar-
ing two different time periods. Remember that the Sentinel-5P data are available
from July 2018 onward; defining dates before this will cause the script to throw
an error.

35.4 Conclusion

In this chapter, we covered the basics of importing Sentinel-5P air pollution data,
comparing changes over time, and calculating population-weighted averages for
spatial units. Satellite detection of air pollutants is an important tool for monitor-
ing air quality from local to global scales, but ground-station measurements and
atmospheric modeling are often necessary to draw conclusions about human health
risk. The fusion of ground-level and satellite data with advanced machine learning
models to map and forecast air pollution is a growing research field with important
societal applications (e.g., https://www.iqair.com/). Earth Engine is a well-suited
and currently underutilized resource to advance this field.

References

Achakulwisut P, Brauer M, Hystad P, Anenberg SC (2019) Global, national, and urban burdens
of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global
datasets. Lancet Planet Heal 3:e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4

Benedetti A, Morcrette J-J, Boucher O, et al (2009) Aerosol analysis and forecast in the European
centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation. J
Geophys Res Atmos 114https://doi.org/10.1029/2008JD011235

Burnett R, Chen H, Szyszkowicz M et al (2018) Global estimates of mortality associated with
long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA 115:9592–9597.
https://doi.org/10.1073/pnas.1803222115

Chowdhury S, Pozzer A, Haines A et al (2022) Global health burden of ambient PM2.5 and the con-
tribution of anthropogenic black carbon and organic aerosols. Environ Int 159:107020. https://
doi.org/10.1016/j.envint.2021.107020

Dey S, Purohit B, Balyan P et al (2020) A satellite-based high-resolution (1-km) ambient PM2.5
database for India over two decades (2000–2019): applications for air quality management.
Remote Sens 12:1–22. https://doi.org/10.3390/rs12233872

Griffin D, Zhao X, McLinden CA et al (2019) High-resolution mapping of nitrogen dioxide with
TROPOMI: first results and validation over the Canadian oil sands. Geophys Res Lett 46:1049–
1060. https://doi.org/10.1029/2018GL081095

Lelieveld J, Klingmüller K, Pozzer A et al (2019) Effects of fossil fuel and total anthropogenic
emission removal on public health and climate. Proc Natl Acad Sci USA 116:7192–7197.
https://doi.org/10.1073/pnas.1819989116

https://www.iqair.com/
https://doi.org/10.1016/S2542-5196(19)30046-4
https://doi.org/10.1029/2008JD011235
https://doi.org/10.1073/pnas.1803222115
https://doi.org/10.1016/j.envint.2021.107020
https://doi.org/10.1016/j.envint.2021.107020
https://doi.org/10.3390/rs12233872
https://doi.org/10.1029/2018GL081095
https://doi.org/10.1073/pnas.1819989116

744 Z. S. Venter and S. Chowdhury

Lelieveld J, Pozzer A, Pöschl U et al (2020) Loss of life expectancy from air pollution compared
to other risk factors: a worldwide perspective. Cardiovasc Res 116:1910–1917. https://doi.org/
10.1093/cvr/cvaa025

Murray CJL, Aravkin AY, Zheng P et al (2020) Global burden of 87 risk factors in 204 countries
and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019.
Lancet 396:1223–1249.https://doi.org/10.1016/S0140-6736(20)30752-2

Van Donkelaar A, Hammer MS, Bindle L et al (2021) Monthly global estimates of fine particulate
matter and their uncertainty. Environ Sci Technol 55:15287–15300. https://doi.org/10.1021/acs.
est.1c05309

Venter ZS, Aunan K, Chowdhury S, Lelieveld J (2020) COVID-19 lockdowns cause global air pol-
lution declines. Proc Natl Acad Sci USA 117:18984–18990. https://doi.org/10.1073/pnas.200
6853117

Venter ZS, Aunan K, Chowdhury S, Lelieveld J (2021) Air pollution declines during COVID-19
lockdowns mitigate the global health burden. Environ Res 192:110403. https://doi.org/10.1016/
j.envres.2020.110403

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1093/cvr/cvaa025
https://doi.org/10.1093/cvr/cvaa025
https://doi.org/10.1016/S0140-6736(20)30752-2
https://doi.org/10.1021/acs.est.1c05309
https://doi.org/10.1021/acs.est.1c05309
https://doi.org/10.1073/pnas.2006853117
https://doi.org/10.1073/pnas.2006853117
https://doi.org/10.1016/j.envres.2020.110403
https://doi.org/10.1016/j.envres.2020.110403
http://creativecommons.org/licenses/by/4.0/

36Heat Islands

TC Chakraborty

Overview
In this chapter, you will learn about urban heat islands and how they can be calculated
from satellite measurements of thermal radiation from the Earth’s surface.

Learning Outcomes

• Understanding how to derive land surface temperature.
• Understanding how to generate urban and rural references.
• Knowing how to calculate the surface urban heat island intensity.

Helps if you know how to

• Import, filter, and visualize images (Part I).
• Perform basic image analysis: select bands, compute indices, and create masks

(Part II).
• Use expressions to perform calculations on image bands (Chap. 9).
• Write a function and map it over an ImageCollection (Chap.12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Conduct basic vector analyses: vectorizing and buffering (Part 5).
• Write a function and map it over a FeatureCollection (Chap. 23 and 24).

T C Chakraborty (B)
Pacific Northwest National Laboratory, Yale School of the Environment, Yale University, New
Haven, CT, USA
e-mail: tc.chakraborty@pnnl.gov

Pacific Northwest National Laboratory, Richland, WA, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_36

745

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_36&domain=pdf
http://orcid.org/0000-0003-1338-3525
mailto:tc.chakraborty@pnnl.gov
https://doi.org/10.1007/978-3-031-26588-4_36

746 T C Chakraborty

36.1 Introduction to Theory

Urbanization involves the replacement of natural landscapes with built-up struc-
tures such as buildings, roads, and parking lots. This land cover modification also
changes the properties of the land surface. These changes can range from how
much radiation is reflected and absorbed by the surface to how the heat is dissi-
pated from the surface (e.g., removal of vegetation for urban development reduces
evaporative cooling). These changes in surface properties can modify local weather
and climate (Kalnay and Cai 2003). The most-studied local climate modification
due to urbanization is the urban heat island (UHI) effect (Arnfield 2003; Qian
et al. 2022). The UHI is the phenomenon in which a city is warmer than either its
surroundings or an equivalent surface that is not urbanized. We have known about
the UHI effect for almost 200 years (Howard 1833).

Traditionally, the UHI was defined as the difference in air temperature, mea-
sured by weather stations, between a city and some rural reference outside the city
(Oke 1982). One issue with this method is that different parts of the city can have
different air temperatures, making it difficult to capture the UHI for the entire city.
Using satellite observations in the thermal bands allows us to get another mea-
sure of temperature: the radiometric skin temperature, often known as the land
surface temperature (LST). We can use LST to calculate a surface UHI (SUHI)
intensity, including how it varies within cities at the pixel scale (Ngie et al. 2014).
It is important to stress here that the UHI values observed by satellites and those
calculated using air temperature measurements can be very different (Chakraborty
et al. 2017; Hu et al. 2019; Venter et al. 2021).

36.2 Practicum

36.2.1 Deriving Land Surface Temperature

36.2.2 Deriving Land Surface Temperature from MODIS

Land surface temperature can either be extracted from derived products, such as the
MODIS Terra and Aqua satellite products (Wan 2006), or estimated directly from
satellite measurements in the thermal band. We will explore both options using the
city of New Haven, Connecticut, USA, as the region of interest (Fig. 36.1). We
will start with the MODIS LST.

36 Heat Islands 747

Fig. 36.1 Boundary of New Haven, Connecticut

We start by loading the feature collection, which, being a census tract-level
aggregation, we dissolve to get the overall boundary using the union operation.
The FeatureCollection is added to the map for demonstration:

// Load feature collection of New Haven's census tracts
from user assets.
var regionInt = ee.FeatureCollection(

'projects/gee-book/assets/A1-5/TC_NewHaven');

// Get dissolved feature collection using an error margin
of 50 meters.
var regionInt = regionInt.union(50);

// Set map center and zoom level (Zoom level varies from 1
to 20).
Map.setCenter(-72.9, 41.3, 12);

// Add layer to map.
Map.addLayer(regionInt, {}, 'New Haven boundary');

748 T C Chakraborty

Next we load in the MODIS MYD11A2 version 6 product, which provides
eight-day composites of LST from the Aqua satellite. This corresponds to an equa-
torial crossing time of roughly 1:30 p.m. during daytime and 1:30 a.m. at night.
In contrast, the MODIS sensor onboard the Terra platform (MOD11A2 version 6)
has an overpass of roughly 10:30 a.m. and 10:30 p.m local time.

// Load MODIS image collection from the Earth Engine data
catalog.
var modisLst = ee.ImageCollection('MODIS/006/MYD11A2');

// Select the band of interest (in this case: Daytime LST).
var landSurfTemperature = modisLst.select('LST_Day_1km');

We want to focus on only summertime SUHI, so we will create a five-year
summer composite of LST using a day-of-year filter assembling images from June
1 (day 152) to August 31 (day 243) in each year:

// Create a summer filter.
var sumFilter = ee.Filter.dayOfYear(152, 243);

// Filter the date range of interest using a date filter.
var lstDateInt = landSurfTemperature

.filterDate(('2014-01-01', '2019-01-01'

.filter(sumFilter);

// Take pixel-wise mean of all the images in the
collection.
var lstMean = lstDateInt.mean();

We now convert this image into LST in degrees Celsius and mask out all the
water pixels (the high specific heat capacity of water would affect LST, and we
are focused on land pixels). For the water mask, we use the Global Surface Water
dataset (Pekel et al. 2016); to convert the pixel values, we use the scaling factor
for the band from the data provider and then subtract by 273.15 to convert from
Kelvin to degrees Celsius. The scaling factor can be found in the Earth Engine
data summary page (Fig. 36.2).

36 Heat Islands 749

Fig. 36.2 Scaling factor in the data summary

Finally, we clip the image using the city boundary and add the layer to the map.

// Multiply each pixel by scaling factor to get the LST
values.
var lstFinal = lstMean.multiply(0.02);

// Generate a water mask.
var water =
ee.Image('JRC/GSW1_0/GlobalSurfaceWater').select(

'occurrence');
var notWater = water.mask().not();
// Clip data to region of interest, convert to degree
Celsius, and mask water pixels.
var lstNewHaven = lstFinal.clip(regionInt).subtract(273.15)

.updateMask(notWater);

// Add layer to map.
Map.addLayer(lstNewHaven, {

palette: ['blue', 'white', 'red'],
min: 25,
max: 38

},
'LST_MODIS');

750 T C Chakraborty

Fig. 36.3 Five-year summer composite of daytime MODIS Aqua LST over New Haven, Con-
necticut. Red pixels show higher LST values and blue pixels have lower values

Code Checkpoint A15a. The book’s repository contains a script that shows what
your code should look like at this point.

36.2.2.1 Section 1.2: Deriving Land Surface Temperature
from Landsat

Working with MODIS LST is relatively simple because the data are already pro-
cessed by the NASA team. You can also derive LST from Landsat, which has a
much finer native resolution (between ~60 m and ~120 m depending on satellite)
than the ~ 1 km MODIS pixels. However, you need to derive LST yourself from
the measurements in the thermal bands, which also usually involves some estimate
of surface emissivity (Li et al. 2013). The surface emissivity (ε) of a material is the
effectiveness with which it can emit thermal radiation compared to a black body
at the same temperature and can range from 0 (for a perfect reflector) to 1 (for a
perfect absorber and emitter). Since the thermal radiation captured by satellites is
a function of both LST and ε, you need to accurately prescribe or estimate ε to get
to the correct LST. Let’s consider one such simple method using Landsat 8 data.

We will start by loading in the Landsat data, cloud screening, and then filtering
to a time and region of interest. Continuing in the same script, add the following
code:

36 Heat Islands 751

// Function to filter out cloudy pixels.
function cloudMask(cloudyScene) {

// Add a cloud score band to the image.
var scored =

ee.Algorithms.Landsat.simpleCloudScore(cloudyScene);

// Create an image mask from the cloud score band and
specify threshold.

var mask = scored.select(['cloud']).lte(10);

// Apply the mask to the original image and return the
masked image.

return cloudyScene.updateMask(mask);
}

// Load the collection, apply coud mask, and filter to date
and region of interest.
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')

.filterBounds(regionInt)

.filterDate('2014-01-01', '2019-01-01')

.filter(sumFilter)

.map(cloudMask);

print('Landsat collection', col);

After creating a median composite as a simple way to further reduce the influ-
ence of clouds, we mask out the water pixels and select the brightness temperature
band.

// Generate median composite.
var image = col.median();

// Select thermal band 10 (with brightness temperature).
var thermal = image.select('B10')

.clip(regionInt)

.updateMask(notWater);

Map.addLayer(thermal, {
min: 295,
max: 310,
palette: ['blue', 'white', 'red']

},
'Landsat_BT');

752 T C Chakraborty

Brightness temperature (Fig. 36.4) is the temperature equivalent of the infrared
radiation escaping the top of the atmosphere, assuming the Earth to be a black
body. It is not the same as the LST, which requires accounting for atmospheric
absorption and re-emission, as well as the emissivity of the land surface. One
way to derive pixel-level emissivity is as a function of the vegetation fraction of
the pixel (Malakar et al. 2018). For this, we start by calculating the Normalized
Difference Vegetation Index (NDVI) from the Landsat surface reflectance data (see
Fig. 36.5).

Fig. 36.4 Five-year summer median composite of Landsat brightness temperature over New
Haven, Connecticut. Red pixels show higher values, and blue pixels have lower values

36 Heat Islands 753

Fig. 36.5 Five-year summer median composite of Landsat-derived NDVI over New Haven, Con-
necticut. White pixels show higher NDVI values, and blue pixels have lower values

754 T C Chakraborty

// Calculate Normalized Difference Vegetation Index (NDVI)
// from Landsat surface reflectance.
var ndvi = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')

.filterBounds(regionInt)

.filterDate('2014-01-01', '2019-01-01')

.filter(sumFilter)

.median()

.normalizedDifference(['SR_B5',
'SR_B4']).rename('NDVI')

.clip(regionInt)

.updateMask(notWater);

Map.addLayer(ndvi, {
min: 0,
max: 1,
palette: ['blue', 'white', 'green']

},
'ndvi');

To map NDVI for each pixel to the actual fraction of the pixel with vegetation
(fractional vegetation cover), we next use a relationship based on the range of
NDVI values for each pixel.

// Find the minimum and maximum of NDVI. Combine the
reducers
// for efficiency (single pass over the data).
var minMax = ndvi.reduceRegion({

reducer: ee.Reducer.min().combine({
reducer2: ee.Reducer.max(),
sharedInputs: true

}),
geometry: regionInt,
scale: 30,
maxPixels: 1e9

});
print('minMax', minMax);

var min = ee.Number(minMax.get('NDVI_min'));
var max = ee.Number(minMax.get('NDVI_max'));

36 Heat Islands 755

// Calculate fractional vegetation.
var fv =
ndvi.subtract(min).divide(max.subtract(min)).rename('FV');
Map.addLayer(fv, {

min: 0,
max: 1,
palette: ['blue', 'white', 'green']

}, 'fv');

Now we use an empirical model of emissivity based on this fractional vegetation
cover (Sekertekin and Bonafoni 2020).

// Emissivity calculations.
var a = ee.Number(0.004);
var b = ee.Number(0.986);
var em =
fv.multiply(a).add(b).rename('EMM').updateMask(notWater);

Map.addLayer(em, {
min: 0.98,
max: 0.99,
palette: ['blue', 'white', 'green']

},
'EMM');

As seen in Fig. 36.6, emissivity is lower over the built-up structures compared
to over vegetation, which is expected. Note that different models of estimating
emissivity would lead to some differences in LST values as well as the SUHI
intensity (Sekertekin and Bonafoni 2020; Chakraborty et al. 2021a).

Then we combine this emissivity with the brightness temperature to calcu-
late the LST for each pixel using a simple single-channel algorithm, which is
a linearized approximation of the radiation transfer equation (Ermida et al. 2020).

756 T C Chakraborty

Fig. 36.6 Surface emissivity over New Haven, Connecticut, based on vegetation fraction. Green
pixels show higher values, and white pixels have lower values

// Calculate LST from emissivity and brightness
temperature.
var lstLandsat = thermal.expression(

'(Tb/(1 + (0.001145* (Tb / 1.438))*log(Ep)))-273.15', {
'Tb': thermal.select('B10'),
'Ep': em.select('EMM')

}).updateMask(notWater);

Map.addLayer(lstLandsat, {
min: 25,
max: 35,
palette: ['blue', 'white', 'red'],

},
'LST_Landsat');

36 Heat Islands 757

Fig. 36.7 Five-year summer median composite of Landsat-derived LST over New Haven, Con-
necticut. Red pixels show higher LST values, and blue pixels have lower values

The Landsat-derived values correspond to those of the MODIS Terra daytime
overpass. Overall, you do see similar patterns in Figs. 36.3 and 36.7, but Landsat
picks up a lot more heterogeneity than MODIS due to its finer resolution.

Code Checkpoint A15b. The book’s repository contains a script that shows what
your code should look like at this point.

36.2.2.2 Section 1.3: Deriving Land Surface Temperature Using
the Earth Engine Landsat LST Toolbox

In the previous section, we explored an LST retrieval algorithm to give an example
of the standard steps to get to LST from the satellite measurements in the thermal
bands. In this section, we will use an Earth Engine module developed for this
purpose to calculate LST (Fig. 36.8).

758 T C Chakraborty

Fig. 36.8 Five-year summer median composite of Landsat-derived LST over New Haven, Con-
necticut, using the Statistical Mono-Window algorithm. Red pixels show higher LST values, and
blue pixels have lower values

36 Heat Islands 759

// Link to the module that computes the Landsat LST.
var landsatLST = require(

'projects/gee-edu/book:Part A - Applications/A1 - Human
Applications/A1.5 Heat Islands/modules/Landsat_LST.js');

// Select region of interest, date range, and Landsat
satellite.
var geometry = regionInt.geometry();
var satellite = 'L8';
var dateStart = '2014-01-01';
var dateEnd = '2019-01-01';
var useNdvi = true;

// Get Landsat collection with additional necessary
variables.
var landsatColl = landsatLST.collection(satellite,
dateStart, dateEnd,

geometry, useNdvi);

// Create composite, clip, filter to summer, mask, and
convert to degree Celsius.
var landsatComp = landsatColl

.select('LST')

.filter(sumFilter)

.median()

.clip(regionInt)

.updateMask(notWater)

.subtract(273.15);

Map.addLayer(landsatComp, {
min: 25,
max: 38,
palette: ['blue', 'white', 'red']

},
'LST_SMW');

As an aside, the Landsat Collection 2 products have recently incorporated LST
bands, which can be processed similar to the MODIS data, but with the bands’
own specific offsets and scaling factors.

Code Checkpoint A15c. The book’s repository contains a script that shows what
your code should look like at this point.

36.2.2.3 Section 2: Defining Urban and Rural References
Now that we have estimates of LST using various products and algorithms, we can
calculate the rural LST and subtract from the urban LST to get the SUHI intensity.

760 T C Chakraborty

There are many ways to estimate the rural reference temperature (Li et al. 2022),
and we will explore a few of them in this section.

The simplest and probably the most commonly used method to get the rural
reference when calculating the SUHI is to generate a buffered area around the
urban boundary. The exact width of the buffer varies across studies, with buffers
of 2–30 km in width being used in previous studies (Clinton and Gong 2013;
Venter et al. 2021; Yao et al. 2019). In Earth Engine, generating such a buffer is
simple:

// Function to subtract the original urban cluster from the
buffered cluster
// to generate rural references.
function bufferSubtract(feature) {

return ee.Feature(feature.geometry()
.buffer(2000)
.difference(feature.geometry()));

}

var ruralRef = regionInt.map(bufferSubtract);

Map.addLayer(ruralRef, {
color: 'green'

}, 'Buffer_ref');

In the script above, a buffered polygon with a 2 km width is generated around
the urban boundary, and the original urban boundary is subtracted from the
buffered polygon. The result is shown in Fig. 36.9.

The use of a constant buffer assumes that all urban areas, regardless of size,
have a similar influence around the city. This may not be true for large cities. In
fact, there is some evidence that there is a footprint of the SUHI that is dependent
on the size of the city (Yang et al. 2019; Zhou et al. 2015). As such, another way to
define the buffered region is to normalize its area by the area of the urban cluster
it surrounds (Chakraborty et al. 2021b, Peng et al. 2012). One way to do so in
Earth Engine is by using an iterative method. This method (see code block below)
uses functions to first calculate buffers of different widths around a geometry and
then select the buffered region that is closest in size to the original geometry.

36 Heat Islands 761

Fig. 36.9 A 2 km buffer around the original city boundary to serve as the rural reference

// Define sequence of buffer widths to be tested.
var buffWidths = ee.List.sequence(30, 3000, 30);

// Function to generate standardized buffers (approximately
comparable to area of urban cluster).
function bufferOptimize(feature) {

function buff(buffLength) {
var buffedPolygon = ee.Feature(feature.geometry()

.buffer(ee.Number(buffLength)))
.set({

'Buffer_width': ee.Number(buffLength)
});

762 T C Chakraborty

var area =
buffedPolygon.geometry().difference(feature

.geometry()).area();
var diffFeature = ee.Feature(

buffedPolygon.geometry().difference(feature
.geometry()));

return diffFeature.set({
'Buffer_diff': area.subtract(feature.geometry()

.area()).abs(),
'Buffer_area': area,
'Buffer_width':

buffedPolygon.get('Buffer_width')
});

}

var buffed =
ee.FeatureCollection(buffWidths.map(buff));

var sortedByBuffer = buffed.sort({
property: 'Buffer_diff'

});
var firstFeature = ee.Feature(sortedByBuffer.first());
return firstFeature.set({

'Urban_Area': feature.get('Area'),
'Buffer_width': firstFeature.get('Buffer_width')

});
}

// Map function over urban feature collection.

var ruralRefStd = regionInt.map(bufferOptimize);

Map.addLayer(ruralRefStd, {
color: 'brown'

}, 'Buffer_ref_std');

print('ruralRefStd', ruralRefStd);

Note how mapping the buff function over a sequence of pre-defined values,
as done here, does not require loops, which are best avoided when using Earth
Engine. The same is true of mapping the bufferOptimize function: here it
is mapped over a FeatureCollection with a single feature, but it would
work even if regionInt contained multiple features. In this way, nested map
functions in Earth Engine have the utility of nested loops in other languages.

Check the printed value on the Console. According to the result, within an
uncertainty of 30 m, a buffer of 1170 m in width creates a polygon that is roughly

36 Heat Islands 763

equal to the area of the city. This function is best to run via export when working
with large feature collections.

The final way to define a rural reference does not use a buffer at all, but relies on
land cover classes to select pixels that are urban versus non-urban (the Simplified
Urban Extent algorithm; Chakraborty et al. 2020; Chakraborty and Lee 2019). For
this, we will rely on the NLCD 2016 land cover data (Wickham et al. 2021) and
create masks for urban and non-urban pixels (Fig. 36.10).

Fig. 36.10 Urban (red) and rural (blue) pixels in New Haven, Connecticut

764 T C Chakraborty

// Select the NLCD land cover data.
var landCover =
ee.Image('USGS/NLCD/NLCD2016').select('landcover');
var urban = landCover;

// Select urban pixels in image.
var urbanUrban =
urban.updateMask(urban.eq(23).or(urban.eq(24)));

// Select background reference pixels in the image.
var nonUrbanVals = [41, 42, 43, 51, 52, 71, 72, 73, 74, 81,
82];
var nonUrbanPixels =
urban.eq(ee.Image(nonUrbanVals)).reduce('max');
var urbanNonUrban = urban.updateMask(nonUrbanPixels);

Map.addLayer(urbanUrban.clip(regionInt), {
palette: 'red'

}, 'Urban pixels');
Map.addLayer(urbanNonUrban.clip(regionInt), {

palette: 'blue'
}, 'Non-urban pixels');

We can then subsequently use these as masks to select urban versus rural LST
pixels. You will find more about this in the next section.

Code Checkpoint A15d. The book’s repository contains a script that shows what
your code should look like at this point.

36.2.2.4 Section 3: Calculating the Surface Urban Heat Island
Intensity

Since the SUHI is the temperature difference between the urban area and the rural
reference, we will calculate summary temperature values for the urban boundary
and the different versions of rural reference using the Landsat and MODIS LST.

36 Heat Islands 765

// Define function to reduce regions and summarize pixel
values
// to get mean LST for different cases.
function polygonMean(feature) {

// Calculate spatial mean value of LST for each case
// making sure the pixel values are converted to °C

from Kelvin.
var reducedLstUrb =

lstFinal.subtract(273.15).updateMask(notWater)
.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 30

});
var reducedLstUrbMask =

lstFinal.subtract(273.15).updateMask(
notWater)

.updateMask(urbanUrban)

.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 30

});
var reducedLstUrbPix =

lstFinal.subtract(273.15).updateMask(
notWater)

.updateMask(urbanUrban)

.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 500

});
var reducedLstLandsatUrbPix =

landsatComp.updateMask(notWater)
.updateMask(urbanUrban)
.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 30

});

766 T C Chakraborty

var reducedLstRurPix =
lstFinal.subtract(273.15).updateMask(

notWater)
.updateMask(urbanNonUrban)
.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 500

});
var reducedLstLandsatRurPix =

landsatComp.updateMask(notWater)
.updateMask(urbanNonUrban)
.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 30

});

// Return each feature with the summarized LSY values
as properties.

return feature.set({
'MODIS_LST_urb': reducedLstUrb.get('LST_Day_1km'),
'MODIS_LST_urb_mask': reducedLstUrbMask.get(

'LST_Day_1km'),
'MODIS_LST_urb_pix': reducedLstUrbPix.get(

'LST_Day_1km'),
'MODIS_LST_rur_pix': reducedLstRurPix.get(

'LST_Day_1km'),
'Landsat_LST_urb_pix': reducedLstLandsatUrbPix.get(

'LST'),
'Landsat_LST_rur_pix': reducedLstLandsatRurPix.get(

'LST')
});

}

// Map the function over the urban boundary to get mean
urban and rural LST
// for cases without any explicit buffer-based boundaries.
var reduced = regionInt.map(polygonMean);

As you know from the code above, we extract urban temperature
from MODIS (’MODIS_LST_urb) and from Landsat and MODIS
(’MODIS_LST_urb_pix’ and ’Landsat_LST_urb_pix’) after
considering only the urban pixels within the boundary.

36 Heat Islands 767

Corresponding values are also extracted from the rural reference (including
using only rural reference pixels within the urban boundary). For the buffered
regions (both using constant width and variable width), we define and call another
function.

// Define a function to reduce region and summarize pixel
values
// to get mean LST for different cases.
function refMean(feature) {

// Calculate spatial mean value of LST for each case
// making sure the pixel values are converted to °C

from Kelvin.
var reducedLstRur =

lstFinal.subtract(273.15).updateMask(notWater)
.reduceRegion({

reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 30

});
var reducedLstRurMask =

lstFinal.subtract(273.15).updateMask(
notWater)

.updateMask(urbanNonUrban)

.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: feature.geometry(),
scale: 30

});
return feature.set({

'MODIS_LST_rur': reducedLstRur.get('LST_Day_1km'),
'MODIS_LST_rur_mask': reducedLstRurMask.get(

'LST_Day_1km'),
});

}

768 T C Chakraborty

// Map the function over the constant buffer rural
reference boundary one.
var reducedRural =
ee.FeatureCollection(ruralRef).map(refMean);

// Map the function over the standardized rural reference
boundary.
var reducedRuralStd = ruralRefStd.map(refMean);

print('reduced', reduced);
print('reducedRural', reducedRural);
print('reducedRuralStd', reducedRuralStd);

We can print the newly created feature collections to go through these values
for the different cases. Even though absolute MODIS and Landsat urban LSTs
are different (29 for Landsat and 34 for MODIS), the SUHI is similar (3.6 C for
MODIS and 4.8 C from Landsat). As one might expect, when only urban pixels
are considered within the boundary, the average LST is higher (and lower for rural
LST).

The SUHI variability within the city (Fig. 36.11) can then be displayed by
subtracting the rural LST from the total LST:

// Display SUHI variability within the city.
var suhi = landsatComp

.updateMask(urbanUrban)

.subtract(ee.Number(ee.Feature(reduced.first())
.get('Landsat_LST_rur_pix')));

Map.addLayer(suhi, {
palette: ['blue', 'white', 'red'],
min: 2,
max: 8

}, 'SUHI');

Code Checkpoint A15e. The book’s repository contains a script that shows what
your code should look like at this point.

36 Heat Islands 769

Fig. 36.11 Spatial variability in SUHI for the period of interest for New Haven, Connecticut. Red
pixels show higher values and blue pixels show lower values

36.3 Synthesis

Now that you know the different ways to calculate the SUHI and estimate LST
using Earth Engine, load in your own city’s feature collection and compare the
different methods.

Question 1. What are the SUHI values during summer and winter from the two
products?

Question 2. How does a pixel-based urban–rural delineation method compare to a
buffer-based method for SUHI estimation?

770 T C Chakraborty

36.4 Conclusion

You should now have a good understanding of satellite measurements in the ther-
mal bands, how they can be used to estimate LST, and how we can calculate the
SUHI using these measurements.

References

Arnfield AJ (2003) Two decades of urban climate research: A review of turbulence, exchanges of
energy and water, and the urban heat island. Int J Climatol 23:1–26. https://doi.org/10.1002/
joc.859

Chakraborty TC, Lee X, Ermida S, Zhan W (2021a) On the land emissivity assumption
and Landsat-derived surface urban heat islands: A global analysis. Remote Sens Environ
265:112682. https://doi.org/10.1016/j.rse.2021.112682

Chakraborty TC, Sarangi C, Lee X (2021b) Reduction in human activity can enhance the urban
heat island: Insights from the COVID-19 lockdown. Environ Res Lett 16:54060. https://doi.
org/10.1088/1748-9326/abef8e

Chakraborty T, Hsu A, Manya D, Sheriff G (2020) A spatially explicit surface urban heat
island database for the United States: Characterization, uncertainties, and possible applications.
ISPRS J Photogramm Remote Sens 168:74–88. https://doi.org/10.1016/j.isprsjprs.2020.07.021

Chakraborty T, Lee X (2019) A simplified urban-extent algorithm to characterize surface urban
heat islands on a global scale and examine vegetation control on their spatiotemporal variability.
Int J Appl Earth Obs Geoinf 74:269–280. https://doi.org/10.1016/j.jag.2018.09.015

Chakraborty T, Sarangi C, Tripathi SN (2017) Understanding diurnality and inter-seasonality of
a sub-tropical urban heat island. Boundary-Layer Meteorol 163:287–309. https://doi.org/10.
1007/s10546-016-0223-0

Clinton N, Gong P (2013) MODIS detected surface urban heat islands and sinks: Global locations
and controls. Remote Sens Environ 134:294–304. https://doi.org/10.1016/j.rse.2013.03.008

Ermida SL, Soares P, Mantas V et al (2020) Google Earth Engine open-source code for land surface
temperature estimation from the Landsat series. Remote Sens 12:1471. https://doi.org/10.3390/
RS12091471

Howard L (1833) The Climate of London: Deduced from Meteorological Observations Made in
the Metropolis and at Various Places Around it. Harvey and Darton, J. and A. Arch, Longman,
Hatchard, S. Highley and R. Hunter

Hu Y, Hou M, Jia G et al (2019) Comparison of surface and canopy urban heat islands within
megacities of eastern China. ISPRS J Photogramm Remote Sens 156:160–168. https://doi.org/
10.1016/j.isprsjprs.2019.08.012

Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 425:102.
https://doi.org/10.1038/nature01952

Li K, Chen Y, Gao S (2022) Uncertainty of city-based urban heat island intensity across 1112
global cities: Background reference and cloud coverage. Remote Sens Environ 271:112898.
https://doi.org/10.1016/j.rse.2022.112898

Li ZL, Wu H, Wang N et al (2013) Land surface emissivity retrieval from satellite data. Int J
Remote Sens 34:3084–3127. https://doi.org/10.1080/01431161.2012.716540

Malakar NK, Hulley GC, Hook SJ et al (2018) An operational land surface temperature product for
Landsat thermal data: Methodology and validation. IEEE Trans Geosci Remote Sens 56:5717–
5735. https://doi.org/10.1109/TGRS.2018.2824828

Ngie A, Abutaleb K, Ahmed F et al (2014) Assessment of urban heat island using satellite remotely
sensed imagery: A review. South African Geogr J 96:198–214. https://doi.org/10.1080/037
36245.2014.924864

https://doi.org/10.1002/joc.859
https://doi.org/10.1002/joc.859
https://doi.org/10.1016/j.rse.2021.112682
https://doi.org/10.1088/1748-9326/abef8e
https://doi.org/10.1088/1748-9326/abef8e
https://doi.org/10.1016/j.isprsjprs.2020.07.021
https://doi.org/10.1016/j.jag.2018.09.015
https://doi.org/10.1007/s10546-016-0223-0
https://doi.org/10.1007/s10546-016-0223-0
https://doi.org/10.1016/j.rse.2013.03.008
https://doi.org/10.3390/RS12091471
https://doi.org/10.3390/RS12091471
https://doi.org/10.1016/j.isprsjprs.2019.08.012
https://doi.org/10.1016/j.isprsjprs.2019.08.012
https://doi.org/10.1038/nature01952
https://doi.org/10.1016/j.rse.2022.112898
https://doi.org/10.1080/01431161.2012.716540
https://doi.org/10.1109/TGRS.2018.2824828
https://doi.org/10.1080/03736245.2014.924864
https://doi.org/10.1080/03736245.2014.924864

36 Heat Islands 771

Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24. https://
doi.org/10.1002/qj.49710845502

Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface
water and its long-term changes. Nature 540:418–422. https://doi.org/10.1038/nature20584

Peng S, Piao S, Ciais P et al (2012) Surface urban heat island across 419 global big cities. Environ
Sci Technol 46:6889–6890. https://doi.org/10.1021/es301811b

Qian Y, Chakraborty TC, Li J et al (2022) Urbanization impact on regional climate and extreme
weather: Current understanding, uncertainties, and future research directions. Adv Atmos Sci
39:819–860. https://doi.org/10.1007/s00376-021-1371-9

Sekertekin A, Bonafoni S (2020) Sensitivity analysis and validation of daytime and nighttime land
surface temperature retrievals from Landsat 8 using different algorithms and emissivity models.
Remote Sens 12:2776. https://doi.org/10.3390/RS12172776

Venter ZS, Chakraborty T, Lee X (2021) Crowdsourced air temperatures contrast satellite measures
of the urban heat island and its mechanisms. Sci Adv 7:eabb9569. https://doi.org/10.1126/sci
adv.abb9569

Wan Z (2006) MODIS land surface temperature products users’ guide. Inst Comput Earth Syst Sci
Univ Calif St Barbar CA, USA, p 805

Wickham J, Stehman SV, Sorenson DG et al (2021) Thematic accuracy assessment of the NLCD
2016 land cover for the conterminous United States. Remote Sens Environ 257:112357. https://
doi.org/10.1016/j.rse.2021.112357

Yang Q, Huang X, Tang Q (2019) The footprint of urban heat island effect in 302 Chinese cities:
Temporal trends and associated factors. Sci Total Environ 655:652–662. https://doi.org/10.
1016/j.scitotenv.2018.11.171

Yao R, Wang L, Huang X et al (2019) Greening in rural areas increases the surface urban heat
island intensity. Geophys Res Lett 46:2204–2212. https://doi.org/10.1029/2018GL081816

Zhou D, Zhao S, Zhang L et al (2015) The footprint of urban heat island effect in China. Sci Rep
5:1–11. https://doi.org/10.1038/srep11160

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1002/qj.49710845502
https://doi.org/10.1038/nature20584
https://doi.org/10.1021/es301811b
https://doi.org/10.1007/s00376-021-1371-9
https://doi.org/10.3390/RS12172776
https://doi.org/10.1126/sciadv.abb9569
https://doi.org/10.1126/sciadv.abb9569
https://doi.org/10.1016/j.rse.2021.112357
https://doi.org/10.1016/j.rse.2021.112357
https://doi.org/10.1016/j.scitotenv.2018.11.171
https://doi.org/10.1016/j.scitotenv.2018.11.171
https://doi.org/10.1029/2018GL081816
https://doi.org/10.1038/srep11160
http://creativecommons.org/licenses/by/4.0/

37Health Applications

Dawn Nekorchuk

Overview
The purpose of this chapter is to demonstrate how Google Earth Engine may be
used to support modeling and forecasting of vector-borne infectious diseases such
as malaria. In doing so, the chapter will also show how Earth Engine may be used
to gather data for subsequent analyses outside of Earth Engine, the results of which
can then also be brought back into Earth Engine.

We will be calculating and exporting data of remotely sensed environmental vari-
ables: precipitation, temperature, and a vegetation water index. These factors can
impact mosquito life cycles, malaria parasites, and transmission dynamics. These
data can then be used in R for modeling and forecasting malaria in the Amhara
region of Ethiopia, using the Epidemic Prognosis Incorporating Disease and Envi-
ronmental Monitoring for Integrated Assessment (EPIDEMIA) system, developed
by the EcoGRAPH research group at the University of Oklahoma.

Learning Outcomes

• Extracting and calculating malaria-relevant variables from existing datasets:
precipitation, temperature, and wetness.

• Importing satellite data and filtering for images over a region and time period.
• Joining two data products to get additional quality information.
• Computing zonal summaries of the calculated variables for elements in a
FeatureCollection.

D. Nekorchuk (B)
Ecological and Geospatial Research and Application in Planetary Health Lab, Department of
Geography and Environmental Sustainability, University of Oklahoma, Norman, OK, USA

Spatial Informatics Group, Pleasanton, CA, USA
e-mail: dnekorchuk@sig-gis.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_37

773

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_37&domain=pdf
https://orcid.org/0000-0001-8200-2146
mailto:dnekorchuk@sig-gis.com
https://doi.org/10.1007/978-3-031-26588-4_37

774 D. Nekorchuk

Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks (Part

2).
• Use expressions to perform calculations on image bands (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Flatten a table for export to CSV (Chap. 22).
• Use reduceRegions to summarize an image with zonal statistics in irregular

shapes (Chaps. 22 and 24).
• Write a function and map it over a FeatureCollection (Chaps. 23 and 24).

37.1 Introduction to Theory

Vector-borne diseases cause more than 700,000 deaths per year, of which approx-
imately 400,000 are due to malaria, a parasitic infection spread by Anopheles
mosquitoes (World Health Organization 2018, 2020). The WHO estimates that
there were around 229 million clinical cases of malaria worldwide in 2019 (WHO
2020). Environmental factors including temperature, humidity, and rainfall are
known to be important determinants of malaria risk as these affect mosquito and
parasite development and life cycles, including larval habitats, mosquito fecun-
dity, growth rates, mortality, and Plasmodium parasite development rates within
the mosquito vector (Franklinos et al. 2019; Jones et al. 2008; Wimberly et al.
2021).

Data from Earth-observing satellites can be used to monitor spatial and tempo-
ral changes in these environmental factors (Ford et al. 2009). These data can be
incorporated into disease modeling, usually as lagged functions, to help develop
early warning systems for forecasting outbreaks (Wimberly et al. 2021, 2022).
Accurate forecasts would allow limited resources for prevention and control to be
more efficiently and effectively targeted at appropriate locations and times (WHO
2018).

To implement near-real-time forecasting, meteorological and climatic data must
be acquired, processed, and integrated on a regular and frequent basis. Over the
past 10 years, the Epidemic Prognosis Incorporating Disease and Environmen-
tal Monitoring for Integrated Assessment (EPIDEMIA) project has developed and
tested a malaria forecasting system that integrates public health surveillance with
monitoring of environmental and climate conditions. Since 2018, the environmen-
tal data have been acquired using Earth Engine scripts and apps (Wimberly et al.
2022). In 2019, a local team at Bahir Dar University in Ethiopia had been using
EPIDEMIA with near-real-time epidemiological data to generate weekly malaria
early warning reports in the Amhara region of Ethiopia.

37 Health Applications 775

In this example, we are looking at near-real-time environmental conditions that
affect disease vectors and human transmission dynamics. On longer time scales,
issues such as climate change can alter vector-borne disease transmission cycles
and the geographic distributions of various vector and host species (Franklinos
et al. 2019). More broadly, health applications involving Earth Engine data likely
align with a One Health approach to complex health issues. Under One Health, a
core assumption is that environmental, animal, and human health are inextricably
linked (Mackenzie and Jeggo 2019).

37.2 Practicum

The goal of the practicum is to create a download of three environmental variables:

1. Precipitation.
2. Mean land surface temperature (LST).
3. Normalized Difference Water Index (NDWI) spectral index.

These downloads will be zonal summaries based on our uploaded shapefile of
woredas (districts) in the Amhara region of Ethiopia.

The practicum is an extract from the longer Retrieving Environmental Ana-
lytics for Climate and Health (REACH) Earth Engine script (developed by Dr.
Michael C. Wimberly and Dr. Dawn Nekorchuk) used in the EPIDEMIA project
(Dr. Michael C. Wimberly, PI). This script also has a more advanced user interface
for the user to request date ranges for the download of data. Links to this script
and related apps can be found in the “For Further Reading” section of this book.

37.2.1 Section 1: Data Import

To start, we need to import the data we will be working with. The first item is
an external asset of our study area—these are woredas in the Amhara region of
Ethiopia. The four that follow are remotely sensed data that we will be processing:

• The Integrated Multi-satellite Retrievals for GPM (IMERG) rainfall estimates
from Global Precipitation Measurement (GPM) v6.

• Terra Land Surface Temperature and Emissivity 8-Day Global 1 km.
• MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)

Adjusted Reflectance Daily 500 m.
• MODIS BRDF-Albedo Quality Daily 500 m.

776 D. Nekorchuk

// Section 1: Data Import
var woredas = ee.FeatureCollection(

'projects/gee-book/assets/A1-
6/amhara_woreda_20170207');
// Create region outer boundary to filter products on.
var amhara = woredas.geometry().bounds();
var gpm = ee.ImageCollection('NASA/GPM_L3/IMERG_V06');
var LSTTerra8 = ee.ImageCollection('MODIS/061/MOD11A2')

// Due to MCST outage, only use dates after this for
this script.

.filterDate('2001-06-26', Date.now());
var brdfReflect = ee.ImageCollection('MODIS/006/MCD43A4');
var brdfQa = ee.ImageCollection('MODIS/006/MCD43A2');

We can take a look at the woreda boundaries by adding the following code to
draw it onto the map (Fig. 37.1). See Chap. 25 for more information on visualizing
feature collections.

// Visualize woredas with black borders and no fill.
// Create an empty image into which to paint the features,
cast to byte.
var empty = ee.Image().byte();
// Paint all the polygon edges with the same number and
width.
var outline = empty.paint({

featureCollection: woredas,
color: 1,
width: 1

});
// Add woreda boundaries to the map.
Map.setCenter(38, 11.5, 7);
Map.addLayer(outline, {

palette: '000000'
}, 'Woredas');

// Visualize woredas with black borders and no fill.
// Create an empty image into which to paint the features,
cast to byte.
var empty = ee.Image().byte();
// Paint all the polygon edges with the same number and
width.
var outline = empty.paint({

featureCollection: woredas,
color: 1,
width: 1

});
// Add woreda boundaries to the map.
Map.setCenter(38, 11.5, 7);
Map.addLayer(outline, {

palette: '000000'
}, 'Woredas');

Code Checkpoint A16a. The book’s repository contains a script that shows what
your code should look like at this point.

37 Health Applications 777

Fig. 37.1 Woreda (district) boundaries in the Amhara region of Ethiopia

37.2.2 Section 2: Date Preparation

The user will be requesting the date range for the summarized data, and it is
expected that they will be looking for near-real-time data. Different data products
that we are using have different data lags, and some data may not be available in
the user-requested date range. We will want to get the last available data date, so
we can properly create and name our export datasets.

We need daily data, but the LST data are in 8-day composites. For this, we
will assign the 8-day composite value to each of the eight days in the range. This
means we also need to acquire the 8-day composite value that covers the requested
start date (i.e., the previous image).

778 D. Nekorchuk

// Section 2: Handling of dates

// 2.1 Requested start and end dates.
var reqStartDate = ee.Date('2021-10-01');
var reqEndDate = ee.Date('2021-11-30');

// 2.2 LST Dates
// LST MODIS is every 8 days, and a user-requested date
will likely not match.
// We want to get the latest previous image date,
// i.e. the date the closest, but prior to, the requested
date.
// We will filter later.
// Get date of first image.
var LSTEarliestDate = LSTTerra8.first().date();
// Filter collection to dates from beginning to requested
start date.
var priorLstImgCol = LSTTerra8.filterDate(LSTEarliestDate,

reqStartDate);

// Get the latest (max) date of this collection of earlier
images.
var LSTPrevMax = priorLstImgCol.reduceColumns({

reducer: ee.Reducer.max(),
selectors: ['system:time_start']

});
var LSTStartDate = ee.Date(LSTPrevMax.get('max'));
print('LSTStartDate', LSTStartDate);

// 2.3 Last available data dates
// Different variables have different data lags.
// Data may not be available in user range.
// To prevent errors from stopping script,
// grab last available (if relevant) & filter at end.

// 2.3.1 Precipitation
// Calculate date of most recent measurement for gpm (of
all time).
var gpmAllMax = gpm.reduceColumns(ee.Reducer.max(), [

'system:time_start'
]);
var gpmAllEndDateTime = ee.Date(gpmAllMax.get('max'));
// GPM every 30 minutes, so get just date part.

37 Health Applications 779

var gpmAllEndDate = ee.Date.fromYMD({
year: gpmAllEndDateTime.get('year'),
month: gpmAllEndDateTime.get('month'),
day: gpmAllEndDateTime.get('day')

});

// If data ends before requested start, take last data
date,
// otherwise use requested date.
var precipStartDate = ee.Date(gpmAllEndDate.millis()

.min(reqStartDate.millis()));
print('precipStartDate', precipStartDate);

// 2.3.2 BRDF
// Calculate date of most recent measurement for brdf (of
all time).
var brdfAllMax = brdfReflect.reduceColumns({

reducer: ee.Reducer.max(),
selectors: ['system:time_start']

});
var brdfAllEndDate = ee.Date(brdfAllMax.get('max'));
// If data ends before requested start, take last data
date,
// otherwise use the requested date.
var brdfStartDate = ee.Date(brdfAllEndDate.millis()

.min(reqStartDate.millis()));
print('brdfStartDate', brdfStartDate);
print('brdfEndDate', brdfAllEndDate);

Code Checkpoint A16b. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. Explore the earliest date of LST images you get if you do not
specifically acquire the previous image. The following code may be useful:

var naiveLstFilter = LSTTerra8.filterDate(reqStartDate,
reqEndDate);
var naiveLstStart = naiveLstFilter.reduceColumns({

reducer: ee.Reducer.min(),
selectors: ['system:time_start']

});
var naiveLstStartDate = ee.Date(naiveLstStart.get('min'));
print('naiveLstStartDate', naiveLstStartDate);

780 D. Nekorchuk

Question 2. Try changing the requested dates to closer to the current date to see
how the dates for the different data products adjust. If you have a narrow window
(1–2 weeks), you may find that some data products do not have any data available
for the requested time period yet.

37.2.3 Section 3: Precipitation

Now, we will calculate our precipitation variable for the appropriate date range
and then perform a zonal summary (see Chap. 24) of our woredas.

37.2.3.1 Section 3.1: Precipitation Filtering and Dates
Using the dates when data actually exist in the user-requested date range, we create
a list of dates for which we will calculate our variable.

// Section 3: Precipitation

// Section 3.1: Precipitation filtering and dates

// Filter gpm by date, using modified start if necessary.
var gpmFiltered = gpm

.filterDate(precipStartDate, reqEndDate.advance(1,
'day'))

.filterBounds(amhara)

.select('precipitationCal');

// Calculate date of most recent measurement for gpm
// (in the modified requested window).
var gpmMax = gpmFiltered.reduceColumns({

reducer: ee.Reducer.max(),
selectors: ['system:time_start']

});
var gpmEndDate = ee.Date(gpmMax.get('max'));
var precipEndDate = gpmEndDate;
print('precipEndDate ', precipEndDate);

37 Health Applications 781

// Create a list of dates for the precipitation time
series.
var precipDays = precipEndDate.difference(precipStartDate,
'day');
var precipDatesPrep = ee.List.sequence(0, precipDays, 1);

function makePrecipDates(n) {
return precipStartDate.advance(n, 'day');

}
var precipDates = precipDatesPrep.map(makePrecipDates);

37.2.3.2 Section 3.2: Calculate Daily Precipitation
In this section, we will map a function over our filtered FeatureCollection
(gpmFiltered) to calculate the total daily rainfall per day. In this product, pre-
cipitation in millimeters per hour is recorded every half hour, so we will sum the
day and divide by two.

// Section 3.2: Calculate daily precipitation

// Function to calculate daily precipitation:
function calcDailyPrecip(curdate) {

curdate = ee.Date(curdate);
var curyear = curdate.get('year');
var curdoy = curdate.getRelative('day', 'year').add(1);
var totprec = gpmFiltered

.filterDate(curdate, curdate.advance(1, 'day'))

.select('precipitationCal')

.sum()
//every half-hour
.multiply(0.5)
.rename('totprec');

return totprec
.set('doy', curdoy)
.set('year', curyear)
.set('system:time_start', curdate);

}

782 D. Nekorchuk

// Map function over list of dates.
var dailyPrecipExtended =

ee.ImageCollection.fromImages(precipDates.map(calcDailyPrec
ip));

// Filter back to the original user requested start date.
var dailyPrecip = dailyPrecipExtended

.filterDate(reqStartDate, precipEndDate.advance(1,
'day'));

37.2.3.3 Section 3.3: Summarize Daily Precipitation by Woreda
In the last section for precipitation, we will calculate a zonal summary, a mean,
of the rainfall per woreda and flatten for export as a CSV. The exports (of all
variables) will be all done in Sect. 37.2.7.

// Section 3.3: Summarize daily precipitation by woreda

// Filter precip data for zonal summaries.
var precipSummary = dailyPrecip

.filterDate(reqStartDate, reqEndDate.advance(1,
'day'));

// Function to calculate zonal statistics for precipitation
by woreda.
function sumZonalPrecip(image) {

// To get the doy and year,
// convert the metadata to grids and then summarize.
var image2 = image.addBands([

image.metadata('doy').int(),
image.metadata('year').int()

]);
// Reduce by regions to get zonal means for each

county.
var output = image2.select(['year', 'doy', 'totprec'])

.reduceRegions({
collection: woredas,
reducer: ee.Reducer.mean(),
scale: 1000

});
return output;

}

37 Health Applications 783

// Map the zonal statistics function over the filtered
precip data.
var precipWoreda = precipSummary.map(sumZonalPrecip);
// Flatten the results for export.
var precipFlat = precipWoreda.flatten();

Code Checkpoint A16c. The book’s repository contains a script that shows what
your code should look like at this point.

37.2.4 Section 4: Land Surface Temperature

We will follow a similar pattern of steps for land surface temperatures, though
first we will calculate the variable (mean LST). Then, we will calculate the daily
values and summarize them by woreda.

37.2.4.1 Section 4.1: Calculate LST Variables
We will use the daytime and nighttime observed values to calculate a mean value
for the day. We will use the quality layers to mask out poor-quality pixels. Working
with the bitmask below, we are taking advantage of the fact that bits 6 and 7 are
at the end, so the rightShift(6) just returns these two. Then, we check if
they are less than or equal to 2, meaning average LST error <= 3k (see MODIS
documentation for the meaning of each element in the bit sequence). For more
information on how to use bitmasks in other situations, see Chap. 15. To convert
the pixel values, we will use the scaling factor in the data product (0.2) and convert
from Kelvin to Celsius values (−273.15). See Chap. 36, about Heat Islands, for
another example using LST data.

// Section 4: Land surface temperature

// Section 4.1: Calculate LST variables

// Filter Terra LST by altered LST start date.
// Rarely, but at the end of the year if the last image is
late in the year
// with only a few days in its period, it will sometimes
not grab
// the next image. Add extra padding to reqEndDate and
// it will be trimmed at the end.
var LSTFiltered = LSTTerra8

.filterDate(LSTStartDate, reqEndDate.advance(8, 'day'))

.filterBounds(amhara)

.select('LST_Day_1km', 'QC_Day', 'LST_Night_1km',
'QC_Night');

784 D. Nekorchuk

// Filter Terra LST by QA information.
function filterLstQa(image) {

var qaday = image.select(['QC_Day']);
var qanight = image.select(['QC_Night']);
var dayshift = qaday.rightShift(6);
var nightshift = qanight.rightShift(6);
var daymask = dayshift.lte(2);
var nightmask = nightshift.lte(2);
var outimage = ee.Image(image.select(['LST_Day_1km',

'LST_Night_1km'
]));
var outmask = ee.Image([daymask, nightmask]);
return outimage.updateMask(outmask);

}
var LSTFilteredQa = LSTFiltered.map(filterLstQa);

// Rescale temperature data and convert to degrees Celsius
(C).
function rescaleLst(image) {

var LST_day = image.select('LST_Day_1km')
.multiply(0.02)
.subtract(273.15)
.rename('LST_day');

var LST_night = image.select('LST_Night_1km')
.multiply(0.02)
.subtract(273.15)
.rename('LST_night');

var LST_mean = image.expression(
'(day + night) / 2', {

'day': LST_day.select('LST_day'),
'night': LST_night.select('LST_night')

}
).rename('LST_mean');
return image.addBands(LST_day)

.addBands(LST_night)

.addBands(LST_mean);
}
var LSTVars = LSTFilteredQa.map(rescaleLst);

37 Health Applications 785

37.2.4.2 Section 4.2: Calculate Daily LST
Now, using a mapped function over our filtered collection, we will calculate a
daily value from the 8-day composite value by assigning each of the eight days
the value of the composite. We will also filter to our user-requested dates, as data
exist in that range.

// Section 4.2: Calculate daily LST

// Create list of dates for time series.
var LSTRange = LSTVars.reduceColumns({

reducer: ee.Reducer.max(),
selectors: ['system:time_start']

});
var LSTEndDate = ee.Date(LSTRange.get('max')).advance(7,
'day');
var LSTDays = LSTEndDate.difference(LSTStartDate, 'day');
var LSTDatesPrep = ee.List.sequence(0, LSTDays, 1);

function makeLstDates(n) {
return LSTStartDate.advance(n, 'day');

}
var LSTDates = LSTDatesPrep.map(makeLstDates);
// Function to calculate daily LST by assigning the 8-day
composite summary
// to each day in the composite period:
function calcDailyLst(curdate) {

var curyear = ee.Date(curdate).get('year');
var curdoy = ee.Date(curdate).getRelative('day',

'year').add(1);
var moddoy =

curdoy.divide(8).ceil().subtract(1).multiply(8).add(
1);

var basedate = ee.Date.fromYMD(curyear, 1, 1);
var moddate = basedate.advance(moddoy.subtract(1),

'day');

786 D. Nekorchuk

var LST_day = LSTVars
.select('LST_day')
.filterDate(moddate, moddate.advance(1, 'day'))
.first()
.rename('LST_day');

var LST_mean = LSTVars
.select('LST_mean')
.filterDate(moddate, moddate.advance(1, 'day'))
.first()
.rename('LST_mean');

return LST_day
.addBands(LST_night)
.addBands(LST_mean)
.set('doy', curdoy)

var LST_night = LSTVars

.filterDate(moddate, moddate.advance(1, 'day'))

.first()

.rename('LST_night');

.select('LST_day')

.set('year', curyear)

.set('system:time_start', curdate);
}
// Map the function over the image collection
var dailyLstExtended =

ee.ImageCollection.fromImages(LSTDates.map(calcDailyLst));

// Filter back to original user requested start date
var dailyLst = dailyLstExtended

.filterDate(reqStartDate, LSTEndDate.advance(1,
'day'));

37.2.4.3 Section 4.3: Summarize Daily LST by Woreda
In the final section for LST, we will perform a zonal mean of the temperature
to our woredas and flatten in preparation for export as CSV. The exports (of all
variables) will be all done in Sect. 37.2.7.

37 Health Applications 787

// Section 4.3: Summarize daily LST by woreda

// Filter LST data for zonal summaries.
var LSTSummary = dailyLst

.filterDate(reqStartDate, reqEndDate.advance(1,
'day'));
// Function to calculate zonal statistics for LST by
woreda:
function sumZonalLst(image) {

// To get the doy and year, we convert the metadata to
grids

// and then summarize.
var image2 = image.addBands([

image.metadata('doy').int(),
image.metadata('year').int()

]);
// Reduce by regions to get zonal means for each

county.
var output = image2

.select(['doy', 'year', 'LST_day', 'LST_night',
'LST_mean'])

.reduceRegions({
collection: woredas,
reducer: ee.Reducer.mean(),
scale: 1000

});
return output;

}
// Map the zonal statistics function over the filtered LST
data.
var LSTWoreda = LSTSummary.map(sumZonalLst);
// Flatten the results for export.
var LSTFlat = LSTWoreda.flatten();

Code Checkpoint A16d. The book’s repository contains a script that shows what
your code should look like at this point.

788 D. Nekorchuk

37.2.5 Section 5: Spectral Index: NDWI

We will follow a similar pattern of steps for our spectral index, NDWI, as we did
for precipitation and land surface temperatures: first, calculate the variable(s), then
calculate the daily values, and finally summarize by woreda.

37.2.5.1 Section 5.1: Calculate NDWI
Here, we will focus on NDWI, which we actively used in forecasting malaria. For
examples on other indices, see Chap. 9.

The MODIS MCD43A4 product contains simplified band quality information,
and it is recommended to use the additional quality information in the MCD43A2
product for your particular application. We will join these two products to apply
our selected quality information. (Note that we do not have to worry about snow in
our study area.) For more information on joining image collections, see Chap. 21.

// Section 5: Spectral index NDWI

// Section 5.1: Calculate NDWI

// Filter BRDF-Adjusted Reflectance by date.
var brdfReflectVars = brdfReflect

.filterDate(brdfStartDate, reqEndDate.advance(1,
'day'))

.filterBounds(amhara)

.select([
'Nadir_Reflectance_Band1',

'Nadir_Reflectance_Band2',
'Nadir_Reflectance_Band3',

'Nadir_Reflectance_Band4',
'Nadir_Reflectance_Band5',

'Nadir_Reflectance_Band6',
'Nadir_Reflectance_Band7'

],
['red', 'nir', 'blue', 'green', 'swir1', 'swir2',

'swir3']);

37 Health Applications 789

// Filter BRDF QA by date.
var brdfReflectQa = brdfQa

.filterDate(brdfStartDate, reqEndDate.advance(1,
'day'))

.filterBounds(amhara)

.select([
'BRDF_Albedo_Band_Quality_Band1',
'BRDF_Albedo_Band_Quality_Band2',
'BRDF_Albedo_Band_Quality_Band3',
'BRDF_Albedo_Band_Quality_Band4',
'BRDF_Albedo_Band_Quality_Band5',
'BRDF_Albedo_Band_Quality_Band6',
'BRDF_Albedo_Band_Quality_Band7',
'BRDF_Albedo_LandWaterType'

],
['qa1', 'qa2', 'qa3', 'qa4', 'qa5', 'qa6', 'qa7',

'water']);

// Join the 2 collections.
var idJoin = ee.Filter.equals({

leftField: 'system:time_end',
rightField: 'system:time_end'

});
// Define the join.
var innerJoin = ee.Join.inner('NBAR', 'QA');
// Apply the join.
var brdfJoined = innerJoin.apply(brdfReflectVars,
brdfReflectQa,

idJoin);

// Add QA bands to the NBAR collection.
function addQaBands(image) {

var nbar = ee.Image(image.get('NBAR'));
var qa = ee.Image(image.get('QA')).select(['qa2']);
var water =

ee.Image(image.get('QA')).select(['water']);
return nbar.addBands([qa, water]);

}
var brdfMerged =
ee.ImageCollection(brdfJoined.map(addQaBands));

790 D. Nekorchuk

// Function to mask out pixels based on QA and water/land
flags.
function filterBrdf(image) {

// Using QA info for the NIR band.
var qaband = image.select(['qa2']);
var wband = image.select(['water']);
var qamask = qaband.lte(2).and(wband.eq(1));
var nir_r =

image.select('nir').multiply(0.0001).rename('nir_r');
var swir2_r =

image.select('swir2').multiply(0.0001).rename(
'swir2_r');

return image.addBands(nir_r)
.addBands(swir2_r)
.updateMask(qamask);

}
var brdfFilteredVars = brdfMerged.map(filterBrdf);

// Function to calculate spectral indices:
function calcBrdfIndices(image) {

var curyear =
ee.Date(image.get('system:time_start')).get('year');

var curdoy = ee.Date(image.get('system:time_start'))
.getRelative('day', 'year').add(1);

var ndwi6 = image.normalizedDifference(['nir_r',
'swir2_r'])

.rename('ndwi6');
return image.addBands(ndwi6)

.set('doy', curdoy)

.set('year', curyear);
}
// Map function over image collection.
brdfFilteredVars = brdfFilteredVars.map(calcBrdfIndices);

37 Health Applications 791

37.2.5.2 Section 5.2: Calculate Daily NDWI
Similar to the other variables, we will calculate a daily value and filter to our
user-requested dates, as data exist in that range.

// Section 5.2: Calculate daily NDWI

// Create list of dates for full time series.
var brdfRange = brdfFilteredVars.reduceColumns({

reducer: ee.Reducer.max(),
selectors: ['system:time_start']

});
var brdfEndDate = ee.Date(brdfRange.get('max'));
var brdfDays = brdfEndDate.difference(brdfStartDate,
'day');
var brdfDatesPrep = ee.List.sequence(0, brdfDays, 1);

function makeBrdfDates(n) {
return brdfStartDate.advance(n, 'day');

}
var brdfDates = brdfDatesPrep.map(makeBrdfDates);

// List of dates that exist in BRDF data.
var brdfDatesExist = brdfFilteredVars

.aggregate_array('system:time_start');

// Get daily brdf values.
function calcDailyBrdfExists(curdate) {

curdate = ee.Date(curdate);
var curyear = curdate.get('year');
var curdoy = curdate.getRelative('day', 'year').add(1);
var brdfTemp = brdfFilteredVars

.filterDate(curdate, curdate.advance(1, 'day'));
var outImg = brdfTemp.first();
return outImg;

}
var dailyBrdfExtExists =

ee.ImageCollection.fromImages(brdfDatesExist.map(
calcDailyBrdfExists));

792 D. Nekorchuk

.filterDate(curdate, curdate.advance(1, 'day'));
var brdfSize = brdfTemp.size();
var outImg = ee.Image.constant(0).selfMask()

.addBands(ee.Image.constant(0).selfMask())

.addBands(ee.Image.constant(0).selfMask())

.addBands(ee.Image.constant(0).selfMask())

.addBands(ee.Image.constant(0).selfMask())

.rename(['ndvi', 'evi', 'savi', 'ndwi5', 'ndwi6'])

.set('doy', curdoy)

.set('year', curyear)

.set('system:time_start', curdate)

.set('brdfSize', brdfSize);
return outImg;

}
// Create filler for all dates.
var dailyBrdfExtendedFiller =

ee.ImageCollection.fromImages(brdfDates.map(calcDailyBrdfF
iller));
// But only used if and when size was 0.
var dailyBrdfExtFillFilt = dailyBrdfExtendedFiller

.filter(ee.Filter.eq('brdfSize', 0));
// Merge the two collections.
var dailyBrdfExtended = dailyBrdfExtExists

.merge(dailyBrdfExtFillFilt);

// Filter back to original user requested start date.
var dailyBrdf = dailyBrdfExtended

.filterDate(reqStartDate, brdfEndDate.advance(1,
'day'));

// Create empty results, to fill in dates when BRDF data
does not exist.
function calcDailyBrdfFiller(curdate) {

curdate = ee.Date(curdate);
var curyear = curdate.get('year');
var curdoy = curdate.getRelative('day', 'year').add(1);
var brdfTemp = brdfFilteredVars

37 Health Applications 793

37.2.5.3 Section 5.3: Summarize Daily Spectral Indices by Woreda
Lastly, in our NDWI section, we will use the mean to summarize the values for
each of the woredas and prepare for export by flattening the dataset. The exports
(of all variables) will be all done in Sect. 37.2.7.

// Section 5.3: Summarize daily spectral indices by woreda

// Filter spectral indices for zonal summaries.
var brdfSummary = dailyBrdf

.filterDate(reqStartDate, reqEndDate.advance(1,
'day'));

// Function to calculate zonal statistics for spectral
indices by woreda:

function sumZonalBrdf(image) {
// To get the doy and year, we convert the metadata to

grids
// and then summarize.
var image2 = image.addBands([

image.metadata('doy').int(),
image.metadata('year').int()

]);
// Reduce by regions to get zonal means for each

woreda.
var output = image2.select(['doy', 'year', 'ndwi6'])

.reduceRegions({
collection: woredas,
reducer: ee.Reducer.mean(),
scale: 1000

});
return output;

}

// Map the zonal statistics function over the filtered
spectral index data.
var brdfWoreda = brdfSummary.map(sumZonalBrdf);
// Flatten the results for export.
var brdfFlat = brdfWoreda.flatten();

Code Checkpoint A16e. The book’s repository contains a script that shows what
your code should look like at this point.

794 D. Nekorchuk

Question 3. Here, we are only calculating NDWI, which is calculated from the
near-infrared (NIR) and shortwave infrared 2 (SWIR2) bands. If we wanted to cal-
culate a vegetation index like the Normalized Difference Vegetation Index (NDVI),
which bands would we need to add? Where in Sects. 37.2.5.1 through 37.2.5.3,
would we need to add or select the raw bands and/or our new calculated band?
Note: Fully implementing this is one of the synthesis challenges, so this is a good
head start!

37.2.6 Section 6: Map Display

Here, we will take a look at our calculated variables but prior to zonal summary
(Fig. 37.2). The full user interface restricts the date to display within the requested
range, so be mindful in the code below which date you choose to view (we set our
time range here in code Sect. 2.1, Sect. 37.2.2).

// Section 6: Map display of calculated environmental
variables
var displayDate = ee.Date('2021-10-01');

var precipDisp = dailyPrecip
.filterDate(displayDate, displayDate.advance(1,

'day'));
var brdfDisp = dailyBrdf

.filterDate(displayDate, displayDate.advance(1,
'day'));
var LSTDisp = dailyLst

.filterDate(displayDate, displayDate.advance(1,
'day'));

// Select the image (should be only one) from each
collection.
var precipImage = precipDisp.first().select('totprec');
var LSTmImage = LSTDisp.first().select('LST_mean');
var ndwi6Image = brdfDisp.first().select('ndwi6');

// Palettes for environmental variable maps:
var palettePrecip = ['f7fbff', '08306b'];
var paletteLst = ['fff5f0', '67000d'];
var paletteSpectral = ['ffffe5', '004529'];

37 Health Applications 795

// Add layers to the map.
// Show precipitation by default,
// others hidden until users picks them from layers drop
down.
Map.addLayer({

eeObject: precipImage,
visParams: {

min: 0,
max: 20,
palette: palettePrecip

},
name: 'Precipitation',
shown: true,
opacity: 0.75

});

Map.addLayer({
eeObject: LSTmImage,
visParams: {

min: 0,
max: 40,
palette: paletteLst

},
name: 'LST Mean',
shown: false,
opacity: 0.75

});

Map.addLayer({
eeObject: ndwi6Image,
visParams: {

min: 0,
max: 1,
palette: paletteSpectral

},
name: 'NDWI6',
shown: false,
opacity: 0.75

});

Code Checkpoint A16f. The book’s repository contains a script that shows what
your code should look like at this point.

796 D. Nekorchuk

Fig. 37.2 Calculated total daily precipitation overlaid on woreda boundaries in the Amhara region
of Ethiopia

37.2.7 Section 7: Exporting

Two important strengths of Google Earth Engine are the ability to gather and
process the remotely sensed data all in the cloud and to have the only download
be a small text file ready to use in the forecasting software. Most of our partners
on this project were experts in public health and did not have a remote sensing or
programming background. We also had partners in areas of limited or unreliable
internet connectivity. We needed something that could be easily usable by our
users in these types of situations.

In this section, we will create small text CSV downloads for each of our three
environmental factors prepared earlier. Each factor may have different data avail-
abilities within the user’s requested range, and these dates will be added to the file
name to indicate the actual date range of the downloaded data (Fig. 37.3).

37 Health Applications 797

Fig. 37.3 Examples of the three CSV files returned from the script

798 D. Nekorchuk

// BRDF
var brdfPrefix = 'Export_Spectral_Data';
var brdfLastDate = ee.Date(reqEndDate.millis()

.min(brdfEndDate.millis()));
var brdfSummaryEndDate = brdfLastDate

.format('yyyy-MM-dd').getInfo();
var brdfFilename = brdfPrefix

.concat('_', reqStartDateText,
'_', brdfSummaryEndDate);

// 7.2 Export flattened tables to Google Drive
// Need to click 'RUN in the Tasks tab to configure and
start each export.
Export.table.toDrive({

collection: precipFlat,
description: precipFilename,

// Section 7: Exporting

// 7.1 Export naming
var reqStartDateText = reqStartDate.format('yyyy-MM-
dd').getInfo();

// Precipitation
var precipPrefix = 'Export_Precip_Data';
var precipLastDate = ee.Date(reqEndDate.millis()

.min(precipEndDate.millis()));
var precipSummaryEndDate = precipLastDate

.format('yyyy-MM-dd').getInfo();
var precipFilename = precipPrefix

.concat('_', reqStartDateText,
'_', precipSummaryEndDate);

// LST
var LSTPrefix = 'Export_LST_Data';
var LSTLastDate = ee.Date(reqEndDate.millis()

.min(LSTEndDate.millis()));
var LSTSummaryEndDate = LSTLastDate

.format('yyyy-MM-dd').getInfo();
var LSTFilename = LSTPrefix

.concat('_', reqStartDateText,
'_', LSTSummaryEndDate);

selectors: ['wid', 'woreda', 'doy', 'year', 'totprec']
});

Export.table.toDrive({
collection: LSTFlat,
description: LSTFilename,

37 Health Applications 799

selectors: ['wid', 'woreda', 'doy', 'year',
'LST_day', 'LST_night', 'LST_mean'

]
});
Export.table.toDrive({

collection: brdfFlat,
description: brdfFilename,
selectors: ['wid', 'woreda', 'doy', 'year', 'ndwi6']

});

Code Checkpoint A16g. The book’s repository contains a script that shows what
your code should look like at this point.

In the Earth Engine Tasks tab, click Run to configure and start each export to
Google Drive.

37.2.8 Section 8: Importing and Viewing External Analysis Results

As mentioned at the start of the chapter, the environmental data obtained from
Earth Engine can be used for infectious disease modeling and forecasting. The
above Earth Engine code was written in support of EPIDEMIA, a software system
based in the R language and computing environment for forecasting malaria, and
was actively used in certain study pilot woredas in the Amhara region of Ethiopia.
The R system consists of an R package—epidemiar—for generic functions and a
companion R project for handling all the location-specific data and settings.

One of the main outputs of EPIDEMIA is the forecasted incidence of malaria
in each woreda by week from one to eight (or more) weeks in advance. Using
our publicly available demo project that uses synthetic data (not for use in epi-
demiological study), we created forecasts for week 32 of 2018 made eight weeks
prior (“knowing” data up to week 24) and also added the observed incidence for
comparison. (Note: dates and weeks follow International Organization for Stan-
dardization [ISO] standard 8601). These new data can be re-uploaded to Earth
Engine for further analyses or exploration.

Starting a new script, you can use Sect. 37.2.8 code that follows to visualize
the pre-generated demo 2018W32 results (Fig. 37.4).

800 D. Nekorchuk

// Paint the pilot woredas with different colors for
forecasted* incidence
// fc_n_inc here is the forecasted incidence (cut into
factors)
// made on (historical) 2018W24 (i.e. 8 weeks in advance).
// * based on synthetic data for demonstration only.
// Incidence per 1000
// 1 : [0 - 0.25)
// 2 : [0.25 - 0.5)
// 3 : [0.5 - 0.75)
// 4 : [0.75 - 1)
// 5 : > 1

Map.setCenter(38, 11.5, 7);

// This is using *synthetic* malaria data.
// For demonstration only, not to be used for
epidemiological purposes.
var epidemiaResults = ee.FeatureCollection(

'projects/gee-book/assets/A1-
6/amhara_pilot_synthetic_2018W32'
);
// Filter to only keep pilot woredas with forecasted
values.
var pilot = epidemiaResults

.filter(ee.Filter.neq('inc_n_fc', null));
var nonpilot = epidemiaResults

.filter(ee.Filter.eq('inc_n_fc', null));

// Section 8: Viewing external analyses results

var empty = ee.Image().byte();
var fill_fc = empty.paint({

featureCollection: pilot,
color: 'inc_n_fc',

});
var palette = ['fee5d9', 'fcae91', 'fb6a4a', 'de2d26',
'a50f15'];
Map.addLayer(

fill_fc, {

palette: palette,
min: 1,
max: 5

},

37 Health Applications 801

'Forecasted Incidence'
);

// Paint the woredas with different colors for the
observed* incidence.
// * based on synthetic data for demonstration only

var fill_obs = empty.paint({
featureCollection: pilot,
color: 'inc_n_obs',

});
var palette = ['fee5d9', 'fcae91', 'fb6a4a', 'de2d26',
'a50f15'];
// Layer is off by default, users change between the two
in the map viewer.
Map.addLayer(

fill_obs, {
palette: palette,

min: 1,
max: 5

},
'Observed Incidence',
false

);

// Add gray fill for nonpilot woredas (not included in
study).
var fill_na = empty.paint({

featureCollection: nonpilot
});
Map.addLayer(

fill_na, {
palette: 'a1a9a8'

},
'Non-study woredas'

);

// Draw borders for ALL Amhara region woredas.
var outline = empty.paint({

featureCollection: epidemiaResults,
color: 1,
width: 1

802 D. Nekorchuk

});
// Add woreda boundaries to map.
Map.addLayer(

outline, {
palette: '000000'

},
'Woredas'

);

Code Checkpoint A16h. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 37.4 Visualization of forecasted malaria incidence for week 32 of 2018 made during week
24 (an eight-week lead time). Malaria data are synthetic, for demonstration purposes only. The
incidence has been categorized into five categories (from lighter to dark red): 0–0.25, 0.25–0.5,
0.5–0.75, 0.75–1, and greater than 1. Only woredas in the pilot project have values; the rest of the
Amhara region is marked in gray fill. Another layer available to view is the observed (synthetic)
incidence rate for 2018W32

37 Health Applications 803

37.3 Synthesis

Assignment 1. Calculate other spectral indices: In this chapter, we only calculate
and export the NDWI from the spectral data. Calculate another index, such as a
vegetation index like NDVI, Soil Adjusted Vegetation Index (SAVI), or Enhanced
Vegetation Index (EVI) to the calculations. Think about what bands you will
need, how to calculate the index, and how to propagate the band through all the
remaining processing steps (including exporting).

Assignment 2. Change location: In this chapter, we obtained data for woredas
in the Amhara region of Ethiopia. Upload or import a new shapefile of different
locations and acquire environmental data for there instead. Remember that you will
need to adjust any references to asset-specific fields (as we did here for “woreda”).
See Chap. 22 for help with uploading assets, if needed.

37.4 Conclusion

In this chapter, we saw how Earth Engine can be used to acquire environmental
data to support external analyses, such as forecasting of malaria, a vector-borne
disease. An understanding of the biology of the vector (e.g., mosquito, tick) and
how different environmental conditions can affect the disease system and trans-
mission risk will help identify environmental variables to investigate for use in
mathematical modeling.

In this chapter, we obtained data from three different satellite-based datasets:
rainfall from IMERG/GPM, land surface temperature 8-day composite values from
MODIS, and the calculation of spectral indices from MODIS bands. We saw how
to perform zonal summaries to our location of interest and download CSV files
that are suitable for import into other programs for additional analyses.

This chapter shows the value of cloud computation and generates small down-
loads for use by professionals who may not have expertise in remote sensing or
the computing resources that would otherwise be needed. Finally, we saw that
the results of intermediate processing and work outside of Earth Engine can be
re-imported for additional analyses within Earth Engine.

References

Ford TE, Colwell RR, Rose JB et al (2009) Using satellite images of environmental changes to
predict infectious disease outbreaks. Emerg Infect Dis 15:1341–1346. https://doi.org/10.3201/
eid/1509.081334

Franklinos LHV, Jones KE, Redding DW, Abubakar I (2019) The effect of global change on
mosquito-borne disease. Lancet Infect Dis 19:e302–e312. https://doi.org/10.1016/S1473-309
9(19)30161-6

Jones KE, Patel NG, Levy MA et al (2008) Global trends in emerging infectious diseases. Nature
451:990–993. https://doi.org/10.1038/nature06536

https://doi.org/10.3201/eid/1509.081334
https://doi.org/10.3201/eid/1509.081334
https://doi.org/10.1016/S1473-3099(19)30161-6
https://doi.org/10.1016/S1473-3099(19)30161-6
https://doi.org/10.1038/nature06536

804 D. Nekorchuk

Mackenzie JS, Jeggo M (2019) The one health approach—why is it so important? Trop Med Infect
Dis 4:88. https://doi.org/10.3390/tropicalmed4020088

Wimberly MC, de Beurs KM, Loboda TV, Pan WK (2021) Satellite observations and malaria:
new opportunities for research and applications. Trends Parasitol 37:525–537. https://doi.org/
10.1016/j.pt.2021.03.003

Wimberly MC, Nekorchuk DM, Kankanala RR (2022) Cloud-based applications for accessing
satellite Earth observations to support malaria early warning. Sci Data 9:1–11. https://doi.org/
10.1038/s41597-022-01337-y

World Health Organization (2018) Malaria surveillance, monitoring and evaluation: a reference
manual. World Health Organization

World Health Organization (2020) World Malaria report 2020: 20 years of global progress and
challenges. World Health Organization

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/tropicalmed4020088
https://doi.org/10.1016/j.pt.2021.03.003
https://doi.org/10.1016/j.pt.2021.03.003
https://doi.org/10.1038/s41597-022-01337-y
https://doi.org/10.1038/s41597-022-01337-y
http://creativecommons.org/licenses/by/4.0/

38Humanitarian Applications

Jamon Van Den Hoek and Hannah K. Friedrich

Overview
The global refugee population has never been as large as it is today, with at least
26 million refugees living in more than 100 countries. Refugees are international
migrants who have been forcibly displaced from their home countries due to violence
or persecution and who cross an international border and settle elsewhere, most often
in a neighboring country. Remote sensing can help refugee leaders, humanitarian
agencies, and refugee-hosting countries gain new insights into refugee settlement,
population, and land cover change dynamics (Maystadt et al. 2020; Van Den Hoek
et al. 2021). In this chapter, we will examine the value of using satellite imagery and
satellite-derived data to map a refugee settlement in Uganda, estimate its population,
and gauge land cover changes in and around the settlement.

Learning Outcomes

• Using a range of techniques—maps, videos, and charts—to visualize and measure
land cover changes before and after the establishment of a refugee settlement.

• Understanding the considerations and limitations involved in automated detection
of refugee settlement boundaries using unsupervised classification.

• Becoming familiar with satellite-derived human settlement and population
datasets and their application in a refugee settlement context.

J. Van Den Hoek (B)
Geography and Geospatial Science, College of Earth, Ocean, and Atmospheric Sciences, Oregon
State University, Strand Agriculture Hall 347, 170 SW Waldo Place, Corvallis, OR 97331, USA
e-mail: vandenhj@oregonstate.edu

H. K. Friedrich
School of Geography, Development and Environment, University of Arizona, ENR2 Building,
South 4th Floor, 1064 E. Lowell Street, Tucson, AZ 85721, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_38

805

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_38&domain=pdf
http://orcid.org/0000-0001-8074-0022
mailto:vandenhj@oregonstate.edu
https://doi.org/10.1007/978-3-031-26588-4_38

806 J. Van Den Hoek and H. K. Friedrich

Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks,

classify images (Part 2).
• Create a graph using ui.Chart (Chap. 4).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Perform pixel-based supervised or unsupervised classification (Chap. 6).
• Use ee.Reducer functions to summarize pixels over an area (Chaps. 8 and 9).
• Perform image morphological operations (Chap. 10).
• Write a function and map it over an ImageCollection (Chap. 12).
• Use reduceRegions to summarize an image with zonal statistics in irregular

shapes (Chaps. 22 and 24).
• Convert from a vector to a raster representation with reduceToImage

(Chap. 23).
• Write a function and map it over a FeatureCollection (Chaps. 23 and 24).

38.1 Introduction to Theory

In a humanitarian context, remote sensing data and analysis have become essential
tools for monitoring refugee settlement dynamics both immediately after refugee
arrival and over the long term. Nonetheless, there remain important challenges
to characterizing refugee settlement conditions. First, dwellings, roadways, and
agricultural plots tend to be small in size within refugee settlements and generally
difficult to detect without the use of very high resolution satellite imagery. Second,
dwellings and other structures within refugee settlements may be diffusely dis-
tributed and intermixed with vegetation and bare earth. Third, data on settlement
features, boundaries, and refugee populations are often out of date or otherwise
inappropriate for detailed geospatial analysis. In this chapter, we will examine
these challenges and do our best to document refugee settlement dynamics through
analysis of multi-date Landsat imagery.

38 Humanitarian Applications 807

38.2 Practicum

The study area for this chapter is Pagirinya Refugee Settlement in northwestern
Uganda (Fig. 38.1a). As of 2020, Uganda was home to 1.4 million refugees, the
fourth-largest refugee population in the world and the largest in Africa (UNHCR
2020). Refugees living in Uganda primarily fled violence in South Sudan and
the Democratic Republic of the Congo, and most live in rural refugee settle-
ments. Pagirinya in particular is home to 36,000 South Sudanese refugees and
was established in mid-2016.

In this practicum, we will visualize and document the land cover changes that
have taken place in Pagirinya (Fig. 38.1b, c), use satellite data to estimate the set-
tlement’s boundary and compare it to the official boundary laid out by the United
Nations High Commissioner for Refugees (UNHCR), and use satellite-derived
demographic products to estimate the refugee population within Pagirinya.

38.2.1 Section 1: Seeing Refugee Settlements from Above

In preparation for the arrival of refugees, humanitarian actors and refugee settle-
ment planners are often interested in analyzing local land cover conditions before
a refugee settlement is established. The goal of this first section is to use Land-
sat satellite imagery to characterize initial land cover conditions and land cover
changes at Pagirinya Refugee Settlement in the years before and following the
settlement’s establishment in 2016.

Fig. 38.1 Maps of a UNHCR refugee settlements in Uganda, b OpenStreetMap features, road-
ways, and the UNHCR settlement boundary for Pagirinya, and c European Space Agency 2020
WorldCover land cover at Pagirinya

808 J. Van Den Hoek and H. K. Friedrich

Let’s begin by adding the refugee settlement’s boundary to the Map by loading
the FeatureCollection of refugee settlement boundaries in Uganda and fil-
tering to Pagirinya Refugee Settlement. We will also initialize the Map to center
on Pagirinya and default to showing the satellite basemap for visual reference.

Map.setOptions('SATELLITE');

// Load UNHCR settlement boundary for Pagirinya Refugee
Settlement.
var pagirinya = ee.Feature(ee.FeatureCollection(

'projects/gee-book/assets/A1-
7/pagirinya_settlement_boundary'
).first());

Map.addLayer(pagirinya, {}, 'Pagirinya Refugee
Settlement');
Map.centerObject(pagirinya, 14);

Next, let’s create annual Landsat composites using the Landsat 8
surface reflectance ImageCollection. We will spatially filter the
ImageCollection to a buffered settlement boundary and temporally filter to
2015–2020, which includes the full year before the settlement was established
and the four years that followed. We will also apply a cloud filter of less than or
equal to 40% to help ensure that our annual composites are cloud free.

For better legibility, we will rename the Landsat bands and add three new
spectral index bands to each image in the ImageCollection using the
addIndices function, which calculates the Normalized Difference Vegetation
Index (NDVI), Normalized Difference Building Index (NDBI), and Normalized
Burn Ratio (NBR) using normalizedDifference. Each of these metrics
offers a different approach to characterizing land cover conditions and change over
time. NDVI is commonly used for monitoring vegetation health; NDBI helps to
characterize impervious and built-up surfaces; and NBR helps to identify land that
has been cleared with fire, a common practice in our study region. Note that other
spectral metrics or remote sensing platforms may be better suited for identifying
refugee settlements in other regions.

38 Humanitarian Applications 809

// Create buffered settlement boundary geometry.
// 500 meter buffer size is arbitrary but large enough
// to capture area outside of the study settlement.
var bufferSize = 500; // (in meters)

// Buffer and convert to Geometry for spatial filtering and
clipping.
var bufferedBounds = pagirinya.buffer(bufferSize)

.bounds().geometry();

function addIndices(img) {
var ndvi = img.normalizedDifference(['nir', 'red'])

.rename('NDVI'); // NDVI = (nir-red)/(nir+red)
var ndbi = img.normalizedDifference(['swir1', 'nir'])

.rename(['NDBI']); // NDBI = (swir1-
nir)/(swir1+nir)

var nbr = img.normalizedDifference(['nir', 'swir2'])
.rename(['NBR']); // NBR = (nir-swir2)/(nir+swir2)

var imgIndices =
img.addBands(ndvi).addBands(ndbi).addBands(nbr);

return imgIndices;
}

// Create L8 SR Collection 2 band names and new names.
var landsat8BandNames = ['SR_B2', 'SR_B3', 'SR_B4',
'SR_B5', 'SR_B6', 'SR_B7'];

var landsat8BandRename = ['blue', 'green', 'red', 'nir',
'swir1', 'swir2'];

// Create image collection.
var landsat8Sr =
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2');
var ic = ee.ImageCollection(landsat8Sr.filterDate('2015-01-
01', '2020-12-31')

.filterBounds(bufferedBounds)

.filter(ee.Filter.lt('CLOUD_COVER', 40))

.select(landsat8BandNames, landsat8BandRename).select(landsat8BandNames, landsat8BandRename)

.map(addIndices));

To build annual composites from before and after Pagirinya’s establishment in
2016, let’s create two temporal subsets of the ImageCollection—one from
2015 and one from 2017—and use the median function to composite images for
each time frame (Fig. 38.2). We will also clip our image collections to the buffered
region around Pagirinya. To visualize the NDVI composites, we will use true-color

810 J. Van Den Hoek and H. K. Friedrich

Fig. 38.2 Pre-establishment (left) and post-establishment (right) true-color composites with
Pagirinya Refugee Settlement boundary overlaid in blue

and false-color visualizations and color palettes, which should help us identify and
interpret features within and surrounding the settlement boundary.

// Make annual pre- and post-establishment composites.
var preMedian = ic.filterDate('2015-01-01', '2015-12-
31').median()

.clip(bufferedBounds);
var postMedian = ic.filterDate('2017-01-01', '2017-12-
31').median()

.clip(bufferedBounds);

// Import visualization palettes https://github.com/gee-
community/ee-palettes.
var palettes = require('users/gena/packages:palettes');
var greenPalette = palettes.colorbrewer.Greens[9];
var prGreenPalette = palettes.colorbrewer.PRGn[9];

38 Humanitarian Applications 811

// Set-up "true color" visualization parameters.
var TCImageVisParam = {

bands: ['red', 'green', 'blue'],
gamma: 1,
max: 13600,
min: 8400,
opacity: 1

};

// Set-up "false color" visualization parameters.
var FCImageVisParam = {

bands: ['nir', 'red', 'green'],
gamma: 1,
min: 9000,
max: 20000,
opacity: 1

};

// Display true-color composites.
Map.addLayer(preMedian, TCImageVisParam,

'Pre-Establishment Median TC');
Map.addLayer(postMedian, TCImageVisParam,

'Post-Establishment Median TC');

'Post-Establishment Median FC');

// Display median NDVI composites.
Map.addLayer(preMedian, {

min: 0,
max: 0.7,
bands: ['NDVI'],
palette: greenPalette

}, 'Pre-Establishment Median NDVI');

// Display false-color composites.
Map.addLayer(preMedian, FCImageVisParam,

'Pre-Establishment Median FC');
Map.addLayer(postMedian, FCImageVisParam,

812 J. Van Den Hoek and H. K. Friedrich

Map.addLayer(postMedian, {
min: 0,
max: 0.7,
bands: ['NDVI'],
palette: greenPalette

}, 'Post-Establishment Median NDVI');

// Create an empty byte Image into which we'll paint the
settlement boundary.
var empty = ee.Image().byte();

// Convert settlement boundary's geometry to an Image for
overlay.
var pagirinyaOutline = empty.paint({

featureCollection: pagirinya,
color: 1,
width: 2

});

// Display Pagirinya boundary in blue.
Map.addLayer(pagirinyaOutline,

{
palette: '0000FF'

},
'Pagirinya Refugee Settlement boundary');

Now that we have pre- and post-establishment composites to support a visual
qualitative assessment, let’s make a complementary quantitative assessment by
measuring pre- and post-establishment differences in median NDVI and plotting
the distribution of NDVI from both periods.

// Compare pre- and post-establishment differences in NDVI.
var diffMedian = postMedian.subtract(preMedian);
Map.addLayer(diffMedian,

{
min: -0.1,
max: 0.1,
bands: ['NDVI'],
palette: prGreenPalette

},
'Difference Median NDVI');

38 Humanitarian Applications 813

}).setSeriesNames(['Pre-Establishment', 'Post-
Establishment'])

.setOptions({
title: 'NDVI Frequency Histogram',
hAxis: {

title: 'NDVI',
titleTextStyle: {

italic: false,
bold: true

},
},
vAxis:
{

title: 'Count',
titleTextStyle: {

italic: false,
bold: true

}
},
colors: ['cf513e', '1d6b99']

});
print(prePostNDVIFrequencyChart);

// Chart the NDVI distributions for pre- and post-
establishment.
var combinedNDVI = preMedian.select(['NDVI'], ['pre-NDVI'])

.addBands(postMedian.select(['NDVI'], ['post-NDVI']));

var prePostNDVIFrequencyChart =
ui.Chart.image.histogram({

image: combinedNDVI,
region: bufferedBounds,
scale: 30

In addition to the pre- and post-establishment annual composites, let’s create
an annotated video time series of the full 2015–2020 Landsat 8 surface reflectance
ImageCollection. We will be able to use this video to view changes at our
study refugee settlement image by image.

814 J. Van Den Hoek and H. K. Friedrich

// Import package to support text annotation.
var text = require('users/gena/packages:text');
var rgbVisParam = {

bands: ['red', 'green', 'blue'],
gamma: 1,
max: 12011,
min: 8114,
opacity: 1

};

// Define arguments for animation function parameters.
var videoArgs = {

region: bufferedBounds,
framesPerSecond: 3,
scale: 10

};

var annotations = [{
position: 'left',
offset: '5%',
margin: '5%',
property: 'label',
scale: 30

}];

function addText(image) {
var date =

ee.String(ee.Date(image.get('system:time_start'))
.format('YYYY-MM-dd'));

// Set a property called label for each image.
var image =

image.clip(bufferedBounds).visualize(rgbVisParam)
.set({

'label': date
});

// Create a new image with the label overlaid using
gena's package.

var annotated = text.annotateImage(image, {},
bufferedBounds, annotations);

return annotated;
}

38 Humanitarian Applications 815

// Add timestamp annotation to all images in video.
var tempCol = ic.map(addText);

// Click the URL to watch the time series video.
print('L8 Time Series Video',
tempCol.getVideoThumbURL(videoArgs));

Code Checkpoint A17a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. How would you describe the land cover type in the area in 2015,
before the establishment of the refugee settlement? Is the land cover consistent
within the settlement’s boundary in the pre-establishment period? Does the set-
tlement boundary conform to land cover type or condition in any meaningful
way?

Question 2. What features (dwellings, roadways, agricultural plots, etc.) present
the greatest visual difference between the pre- and post-establishment periods?
Comparing the visual differences in true color, false color, and NDVI with the
satellite image basemap may be helpful here.

Question 3. Which of the annual composite visualizations (true color, false color,
or NDVI) do you prefer for distinguishing the refugee settlement in the post-
establishment period, and why?

Question 4. How do the range and mode of NDVI values change from pre- to post-
establishment? How might the changes in NDVI distribution correlate to overall
changes in land cover type in the post-establishment period?

Question 5. Beyond the rapid establishment of the settlement’s dwellings and
roads, what changes do you observe in the time series video? Do these changes
occur within or outside the settlement boundary? What kinds of changes do you
see in the imagery from 2019 or 2020, well after the settlement was established in
2016?

816 J. Van Den Hoek and H. K. Friedrich

38.2.2 Section 2: Mapping Features Within the Refugee
Settlement

In Sect. 38.2.1, we used Landsat data to gauge changes in land cover conditions
and types, but we can also draw upon data products derived from satellite imagery.
For instance, satellite-derived building footprints, which represent geometries of
individual structures and dwellings, are often used to estimate human populations
and population density in humanitarian contexts and to support the planning and
delivery of food and other kinds of aid. In this section, we will identify differ-
ent features within Pagirinya, which we will use to create a satellite image-based
settlement boundary map in Sect. 38.2.3.

Let’s add to our script from Sect. 38.2.1 by first loading the Open Buildings
V1 Polygons dataset from the Earth Engine Data Catalog. This dataset includes
satellite-derived building footprints based on very high resolution (0.5 m) satellite
imagery, and each footprint has a confidence score. Let’s visualize building foot-
prints with a confidence score above 75% as orange and building footprints with
a 75% or lower confidence score as purple.

// Visualize Open Buildings dataset.
var footprints = ee.FeatureCollection(

'GOOGLE/Research/open-buildings/v1/polygons');
var footprintsHigh = footprints.filter('confidence > 0.75');
var footprintsLow = footprints.filter('confidence <= 0.75');

Map.addLayer(footprintsHigh, {
color: 'FFA500'

}, 'Buildings high confidence');
Map.addLayer(footprintsLow, {

color: '800080'
}, 'Buildings low confidence');

With a map of building footprints in place, let’s turn to examining other features
of interest that we identified in Sect. 38.2.1. Let’s load a FeatureCollection
of sample locations of infrastructure, forest, and agriculture visible on the satellite
basemap as well as a sample of building footprint locations. Note in the print
output that each feature has a value, which represents the feature type. Let’s
write a function to use this value property to automatically assign a unique color
to each feature as part of a style (Fig. 38.3).

38 Humanitarian Applications 817

// Load land cover samples.
var lcPts = ee.FeatureCollection(

'projects/gee-book/assets/A1-7/lcPts');
print('lcPts', lcPts);

// Create a function to set Feature properties based on
value.
var setColor = function(f) {

var value = f.get('class');
var mapDisplayColors = ee.List(['#13a1ed', '#7d02bf',

'#f0940a', '#d60909'
]);
// Use the class as an index to lookup the

corresponding display color.
return f.set({

style: {
color: mapDisplayColors.get(value)

}
});

};

// Apply the function and view the results.
var styled = lcPts.map(setColor);
Map.addLayer(styled.style({

styleProperty: 'style'
}), {}, 'Land cover samples');

Since we want to use these sample land cover locations to help delineate the
refugee settlement boundary, these different land cover types should be spectrally
distinguishable from each other. To see how the spectral values vary among differ-
ent features, let’s create spectral signature plots for the post-establishment period.
We first need to add the land cover class to the post-establishment composites
that we made in Sect. 38.2.1 so that the class and spectral value information
can be referenced together in our spectral signature plots. To do that, let’s use
reduceToImage to convert our lcPts FeatureCollection to an image,
lcBand, and then add that image to the post-establishment composite.

818 J. Van Den Hoek and H. K. Friedrich

Fig. 38.3 Feature samples across Pagirinya Refugee Settlement (boundary shown in blue)

// Convert land cover sample FeatureCollection to an Image.
var lcBand = lcPts.reduceToImage({

properties: ['class'],
reducer: ee.Reducer.first()

}).rename('class');

// Add lcBand to the post-establishment composite.
postMedian = postMedian.addBands(lcBand);

38 Humanitarian Applications 819

Now we have a postMedian image that we can sample at specific sample
locations and identify not only the spectral values but also the class type. Let’s
plot the spectral values by class type. Note that since band names are sorted alpha-
betically on the x-axis, nir values are plotted in between green and red and
are therefore out of order with respect to band wavelengths.

// Define bands that will be visualized in chart.
var chartBands = ['blue', 'green', 'red', 'nir', 'swir1',
'swir2', 'class'

];

print(postMedian, 'postMedian');

// Plot median band value for each land cover type.
var postBandsChart = ui.Chart.image

.byClass({
image: postMedian.select(chartBands),
classBand: 'class',
region: lcPts,
reducer: ee.Reducer.median(),
scale: 30,
classLabels: ['Settlement', 'Road', 'Forest',

'Agriculture'
],
xLabels: chartBands

})

.setChartType('ScatterChart')

.setOptions({
title: 'Band Values',
hAxis: {

title: 'Band Name',
titleTextStyle: {

italic: false,
bold: true

},
},
vAxis: {

title: 'Reflectance (x1e4)',
titleTextStyle: {

italic: false,
bold: true

}
},

820 J. Van Den Hoek and H. K. Friedrich

colors: ['#13a1ed', '#7d02 bf', '#f0940a', '#d60909'],
pointSize: 0,
lineSize: 5,
curveType: 'function'

});
print(postBandsChart);

Remember that we also calculated NDVI, NDBI, and NBR spectral indices in
Sect. 38.2.1. Since these bands range from − 1 to 1, we have to plot their values
separately from the Landsat band spectral signature plots above, which use scaled
reflectance values.

// Define spectral indices that will be visualized in the
chart.
var indexBands = ['NDVI', 'NDBI', 'NBR', 'class'];

// Plot median index value for each land cover type.
var postIndicesChart = ui.Chart.image

.byClass({
image: postMedian.select(indexBands),
classBand: 'class',
region: lcPts,
reducer: ee.Reducer.median(),
scale: 30,
classLabels: ['Settlement', 'Road', 'Forest',

'Agriculture'
],
xLabels: indexBands

})

.setChartType('ScatterChart')

.setOptions({
title: 'Index Values',
hAxis: {

title: 'Index Name',
titleTextStyle: {

italic: false,
bold: true

},
//viewWindow: {min: wavelengths[0], max:

wavelengths[2]}
scaleType: 'string'

},

38 Humanitarian Applications 821

vAxis: {
title: 'Value',
titleTextStyle: {

italic: false,
bold: true

}
},
colors: ['#13a1ed', '#7d02bf', '#f0940a',

'#d60909'],
pointSize: 5

});
print(postIndicesChart);

// Create an empty image into which to paint the features,
cast to byte.
var empty = ee.Image().byte();

// Paint all the polygon edges with the same number and
width, display.
var pagirinyaOutline = empty.paint({

featureCollection: pagirinya,
color: 1,
width: 2

});

// Map outline of Pagirinya in blue.
Map.addLayer(pagirinyaOutline,

{
palette: '0000FF'

},
'Pagirinya Refugee Settlement boundary');

Code Checkpoint A17b. The book’s repository contains a script that shows what
your code should look like at this point.

Question 6. How would you describe the coverage of the footprints within the
settlement? Are there sections of the settlement visible in the basemap or the
post-establishment composite that are missing footprints?

Question 7. How do NDVI, NDBI, and NBR change from the pre- to post-
establishment period at building footprint locations?

Question 8. Are the spectral profiles of the four feature types distinct from each
other? Which profiles are the most similar overall?

Question 9. Which bands or indices provide the greatest separation between the
four feature types?

822 J. Van Den Hoek and H. K. Friedrich

38.2.3 Section 3: Delineating Refugee Settlement Boundaries

Now that we have become familiar with the different land cover types and
the changes that can occur once a refugee settlement is established, let’s turn
to formally delineating the refugee settlement from its surroundings by map-
ping a settlement boundary. Having information on refugee settlement boundaries
is helpful for the basic accounting of refugee settlement extent and for confi-
dently attributing land cover or land use changes to a specific refugee settlement
(Friedrich and Van Den Hoek 2020; Van Den Hoek and Friedrich 2021). In this
section, we will use a k-means unsupervised classifier to generate a settlement/non-
settlement map that represents land that has been transformed by the refugee
settlement’s establishment or subsequent use. Note that the settlement boundary
that we used in Sect. 38.2.1 is a settlement planning boundary established by the
UNHCR and so represents the land within the formal boundary that potentially
could be accessed or used by refugees.

To start making a binary classification that separates settlement from non-
settlement, let’s create a random sample of 500 NDVI values from across the
post-establishment composite. Remember that the postMedian composite was
clipped to the 500-m-buffered extent of the UNHCR settlement boundary geom-
etry, so these sample sites should be dispersed inside and outside of the UNHCR
boundary’s geometry. For parameterization, we only need two values output from
the classifier (numClusters = 2) and can set the maximum number of iterations
to a low value of 5 (maxIter = 5) and the seed value to an arbitrary value of
21. Now let’s apply the classifier to the post-establishment composite, view the
coverage of settlement (pixel value of 1) and non-settlement (pixel value of 0),
and visually compare the result with the UNHCR settlement boundary.

// Create samples to input to a K-means classifier.
var numPx = 500;
var samples = postMedian.select('NDVI').sample({

scale: 30, // Landsat resolution
numPixels: numPx,
geometries: true

});

Map.addLayer(samples, {}, 'K-means samples');

// Set-up the parameters for K-means.
var numClusters = 2;
var maxIter = 5;
var seedValue = 21;

38 Humanitarian Applications 823

// Seed the classifier using land cover samples.
var clusterer = ee.Clusterer.wekaKMeans({

nClusters: numClusters,
maxIterations: maxIter,
seed: seedValue

}).train(samples);

// Apply the K-means classifier.
var kmeansResult = postMedian.cluster(clusterer);
Map.addLayer(kmeansResult, {

bands: ['cluster'],
max: 1,
min: 0

}, 'K-means output');

The resulting k-means classification looks promising for separating settlement
from non-settlement pixels, but it has many gaps in settlement coverage as well
as isolated settlement patches and pixels. To produce a single contiguous settle-
ment coverage, let’s apply spatial morphological operations of dilation and erosion
on the k-means output. Dilation incrementally expands the boundary of a raster
dataset, filling gaps and connecting patches along the way. Conversely, erosion
chips away at the outermost pixels, thereby removing the surplus pixels that were
added during the dilation step but still maintaining the filled-in gaps.

We will apply these in sequence, first dilation and then erosion, using
focal_max and focal_min, respectively; focal_max works as a dilation
since it outputs the maximum value detected within the kernel, which will always
be a settlement pixel because the settlement pixel value of 1 is always greater than
the non-settlement pixel value of 0. Since we just need to do some fine-tuning on
the boundary of the settlement coverage, we can use a kernel with a small radius
of 3. Finally, let’s convert the output of the dilation and erosion to a polygon
FeatureCollection where each contiguous patch of pixels becomes its own
polygon (Fig. 38.4). Feel free to map the outline of Pagirinya in blue, as above,
for a helpful visual reference.

824 J. Van Den Hoek and H. K. Friedrich

// Define the kernel used for morphological operations.
var kernel = ee.Kernel.square({

radius: 3
});

// Perform a dilation followed by an erosion.
var kMeansCleaned = kmeansResult

.focal_max({
kernel: kernel,
iterations: 1

}) // Dilation
.focal_min({

kernel: kernel,
iterations: 1

}); // Erosion
Map.addLayer(kMeansCleaned, {

bands: ['cluster'],
max: 1,
min: 0

}, 'K-means cleaned');

// Convert cleaned K-means settlement and non-settlement
coverages to polygons.
var kMeansCleanedPolygon = kMeansCleaned.reduceToVectors({

scale: 30,
eightConnected: true

});

Map.addLayer(kMeansCleanedPolygon, {}, 'K-Means cleaned
polygon');

// Map outline of Pagirinya in blue.
Map.addLayer(pagirinyaOutline,

{
palette: '0000FF'

},
'Pagirinya Refugee Settlement boundary');

We have created a usable vector map of settlement and non-settlement poly-
gons, but we are aiming for a single polygon that represents the settlement
boundary. To filter these polygons to a single polygon that represents the refugee
settlement’s boundary, let’s use a simple logic rule and select the polygon that has
the largest overlap (i.e., intersected area) with the UNHCR boundary (Fig. 38.5).

38 Humanitarian Applications 825

Fig. 38.4 K-means output before (left) and after (right) dilation and erosion, with Pagirinya
Refugee Settlement boundary overlaid in blue

// Intersect K-means polygons with UNHCR settlement
boundary and
// return intersection area as a feature property.
var kMeansIntersect =
kMeansCleanedPolygon.map(function(feat) {

var boundaryIsect = pagirinya.intersection(feat, ee
.ErrorMargin(1));

return ee.Feature(feat).set({
'isectArea': boundaryIsect.area()

});
});

// Sort to select the polygon with largest overlap with the
UNHCR settlement boundary.
var kMeansBoundary =
ee.Feature(kMeansIntersect.sort('isectArea',

false).first());
Map.addLayer(kMeansBoundary, {}, 'K-Means Settlement
Boundary');

826 J. Van Den Hoek and H. K. Friedrich

Fig. 38.5 K-means settlement boundary (black) overlaid by UNHCR settlement boundary (blue)

Code Checkpoint A17c. The book’s repository contains a script that shows what
your code should look like at this point.

Question 10. In your opinion, does the k-means boundary accurately separate the
settlement from its surroundings? Considering differences between the UNHCR
boundary and the k-means boundary, comment on potential errors of commission
(areas that are inaccurately included in the k-means boundary) and omission (areas
that are inaccurately excluded).

Question 11. Rather than collecting samples for input to k-means based only on
NDVI in the postMedian image, adjust the script above to sample from all
bands in postMedian. How does the resulting settlement polygon differ? Does

38 Humanitarian Applications 827

increasing the amount of spectral information available to the classifier improve
the result?

Question 12. Rerun the k-means classifier based on the diffMedian image
from Sect. 38.2.1 rather than the postMedian image while keeping the other
parameters the same. How does the resulting settlement boundary polygon differ?

38.2.4 Section 4: Estimating Refugee Population Within
the Settlement

Thus far, we have looked at land cover conditions and land cover changes at
Pagirinya and used that information to help map the extent of the settlement. Let’s
turn toward using satellite-derived data to estimate the size of the refugee popula-
tion at Pagirinya. Knowing how many refugees are at a settlement is essential for
gauging the need for food aid and for guiding sustainable development and disas-
ter risk reduction efforts. Satellite-informed population estimates can be useful for
these purposes, especially if no other data are available.

In this final section, we will work with several datasets designed to estimate
the geographic distribution of human populations, each of which is based in part
on remote sensing detection of buildings. We will analyze population estimates at
Pagirinya Refugee Settlement from the Global Human Settlement Layer (GHSL),
High Resolution Settlement Layer (HRSL), and WorldPop data products. To gauge
the accuracy of these products, we will compare the population estimates with
UNHCR-recorded refugee population data from September 2020.

These versions of HRSL and WorldPop are from 2020, and this version of
GHSL has data for multiple years, most recently 2015. Let’s filter the GHSL
ImageCollection to only the 2015 dataset. We will also rename all relevant
bands to ‘population’ for consistency and visualize all population maps using
the same approach to support a direct comparison. Use the Inspector tool to iden-
tify the different pixel-level values for each population dataset within and around
Pagirinya. These values represent the human population estimated to be present at
each pixel.

828 J. Van Den Hoek and H. K. Friedrich

Map.centerObject(pagirinya, 14);

var ghslPop =
ee.ImageCollection('JRC/GHSL/P2016/POP_GPW_GLOBE_V1')

.filter(ee.Filter.date('2015-01-01', '2016-01-
01')).first()

.select(['population_count'], ['population']);
var hrslPop = ee.Image('projects/gee-book/assets/A1-
7/HRSL')

.select(['b1'], ['population']);
var worldPop = ee.ImageCollection(

'WorldPop/GP/100m/pop_age_sex_cons_unadj')
.filterMetadata('country', 'equals', 'UGA')
.first()
.select(['population']);

// Set-up visualization to be shared by all population
datasets.
var visualization = {

bands: ['population'],
min: 0.0,
max: 50.0,
palette: ['24126c', '1fff4f', 'd4ff50']

};

// Map population datasets.
Map.addLayer(ghslPop, visualization, 'GHSL Pop');
Map.addLayer(hrslPop, visualization, 'HRSL Pop');
Map.addLayer(worldPop, visualization, 'WorldPop');

You will notice that each dataset has a different spatial resolution (also
commonly referred to as the “scale”). We will need to know these different spa-
tial resolutions when we summarize each dataset’s population estimate across
Pagirinya using reduceRegion. Once we have a population estimate, we will
add it to the Pagirinya feature as a new property.

38 Humanitarian Applications 829

// Collect spatial resolution of each dataset.
var ghslPopProjection = ghslPop.projection();
var ghslPopScale = ghslPopProjection.nominalScale();
print(ghslPopScale, 'GHSL scale');

var hrslPopProjection = hrslPop.projection();
var hrslPopScale = hrslPopProjection.nominalScale();
print(hrslPopScale, 'HRSL scale');

var worldPopProjection = worldPop.projection();
var worldPopScale = worldPopProjection.nominalScale();
print(worldPopScale, 'WorldPop scale');

// Summarize population totals for each population product
at each settlement and
// assign as new properties to the UNHCR boundary Feature.
pagirinya = pagirinya.set(ghslPop.select(['population'],
['GHSL'])

.reduceRegion({
reducer: 'sum',
scale: ghslPopScale,
geometry: pagirinya.geometry(),
maxPixels: 1e9,

}));

pagirinya = pagirinya.set(hrslPop.select(['population'],
['HRSL'])

.reduceRegion({
reducer: 'sum',
scale: hrslPopScale,
geometry: pagirinya.geometry(),
maxPixels: 1e9,

}));

pagirinya = pagirinya.set(worldPop.select(['population'], [
'WorldPop'])
.reduceRegion({

reducer: 'sum',
scale: worldPopScale,
geometry: pagirinya.geometry(),
maxPixels: 1e9,

}));

print(pagirinya, 'Pagirinya with population estimates');

Now we have three very different population estimates for Pagirinya based
on the three population datasets. Let’s see how they compare to the population

830 J. Van Den Hoek and H. K. Friedrich

recorded in 2020 by UNHCR, which is also stored as a property of the Pagirinya
feature.

To do so, we will simply subtract the UNHCR population total from each
dataset’s estimated population total and store each difference as a new prop-
erty. A negative difference indicates an underestimation of the UNHCR-recorded
population, and a positive difference indicates an overestimation.

// Measure difference between settlement product and UNHCR-
recorded population values.
var unhcrPopulation =
ee.Number(pagirinya.get('UNHCR_Pop'));
var ghslDiff = ee.Number(pagirinya.get('GHSL')).subtract(

unhcrPopulation);
var hrslDiff = ee.Number(pagirinya.get('HRSL')).subtract(

unhcrPopulation);
var worldPopDiff =
ee.Number(pagirinya.get('WorldPop')).subtract(

unhcrPopulation);

// Update UNHCR boundary Feature with population difference
properties.
pagirinya =
pagirinya.set(ee.Dictionary.fromLists(['GHSL_diff',

'HRSL_diff', 'WorldPop_diff'],

[ghslDiff, hrslDiff, worldPopDiff]));

print('Pagirinya Population Estimations', pagirinya);

Code Checkpoint A17d. The book’s repository contains a script that shows what
your code should look like at this point.

Question 13. Visually interpret the coverage of each population dataset alongside
the building footprint data from Sect. 38.2.2. Which population dataset seems to
better capture population density at hot spots of building footprints?

Question 14. Many buildings in Pagirinya are not household dwellings but rather
administrative offices, shops, food market buildings, etc., and such differences in
building use are not necessarily considered in generating the population estimates.
How would the inclusion of non-dwellings in population datasets bias settlement-
level population estimates?

Question 15. Note that the coverage of the WorldPop population data at Pagirinya
is not wholly contained within the UNHCR settlement boundary. Is this “spillover”
better captured by the k-means boundary from Sect. 38.2.3?

38 Humanitarian Applications 831

38.3 Synthesis

You may have noticed that we showed a 2020 land cover map from the European
Space Agency (ESA) based on Sentinel-1 and Sentinel-2 data in Fig. 38.1c but
did not make use of those land cover data in the practicum. How would your
settlement boundary detection approach and results change if you used Sentinel-2
instead of Landsat data and sampled land cover sites from this ESA dataset? As a
homework challenge, please complete the following assignment.

Assignment 1. Use Sentinel-2 surface reflectance data collected in 2020. Col-
lect 20 samples of each land cover class in the ESA land cover product within
Pagirinya using ee.Image.stratifiedSample. Assess the spectral separa-
bility between land cover classes. Then, run a modified k-means classifier that
makes use of Sentinel-2 NDVI values collected across the ESA land cover map.

38.4 Conclusion

This chapter introduced approaches for characterizing land cover dynamics within
and surrounding Pagirinya Refugee Settlement using a range of open-access satel-
lite data and geospatial products. We saw that satellite remote sensing approaches
are effective for characterizing land cover changes before and following the estab-
lishment of Pagirinya in 2016, and for delineating a refugee settlement boundary
that represents land directly affected by the settlement’s establishment and use. We
also noted wide disagreement and pronounced inaccuracies in Pagirinya refugee
population estimates based on satellite-informed human population datasets. This
chapter shows the value of remote sensing for long-term monitoring of refugee
settlements as well as the need for deeper integration of humanitarian data and
scenarios in remote sensing applications.

References

Friedrich HK, Van Den Hoek J (2020) Breaking ground: automated disturbance detection with
Landsat time series captures rapid refugee settlement establishment and growth in North
Uganda. Comput Environ Urban Syst 82:101499. https://doi.org/10.1016/j.compenvurbsys.
2020.101499

Maystadt JF, Mueller V, Van Den Hoek J, Van Weezel S (2020) Vegetation changes attributable to
refugees in Africa coincide with agricultural deforestation. Environ Res Lett 15:44008. https://
doi.org/10.1088/1748-9326/ab6d7c

UNHCR (2020) Global trends: forced displacement in 2020
Van Den Hoek J, Friedrich HK (2021) Satellite-based human settlement datasets inadequately

detect refugee settlements: a critical assessment at thirty refugee settlements in Uganda.
Remote Sens 13:3574. https://doi.org/10.3390/rs13183574

Van Den Hoek J, Friedrich HK, Wrathall D (2021) A primer on refugee-environment relation-
ships. In: PERN cyberseminar on refugee and internally displaced populations, environmental
impacts and climate risks

https://doi.org/10.1016/j.compenvurbsys.2020.101499
https://doi.org/10.1016/j.compenvurbsys.2020.101499
https://doi.org/10.1088/1748-9326/ab6d7c
https://doi.org/10.1088/1748-9326/ab6d7c
https://doi.org/10.3390/rs13183574

832 J. Van Den Hoek and H. K. Friedrich

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

39Monitoring Gold Mining Activity
Using SAR

Lucio Villa , Sidney Novoa , Milagros Becerra ,
Andréa Puzzi Nicolau , Karen Dyson , Karis Tenneson ,
and John Dilger

Overview
The expansion of gold mining has had a large impact on the rainforests of the Amazon
over the last decades. To take just one example, it has affected both the biodiversity
and the lives of local people in the Madre de Dios region of southeastern Peru. In
this chapter, we will review a methodology developed to generate early warnings
of deforestation based on the use of synthetic aperture radar (SAR) images. First,
we will identify the Sentinel-1 images suitable for the construction of a time series
of preprocessed datasets. Second, we will run a change detection analysis based on
a statistical analysis of the Sentinel-1 images. Finally, we will show the steps to
follow in the post-processing stage by filtering information with forest/non-forest
and bodies of water datasets.

L. Villa (B)
Universidad Nacional Agraria La Molina (UNALM), Av. La Molina s/n. La Molina, 15024 Lima,
Peru
e-mail: luciovilla@lamolina.edu.pe

S. Novoa · M. Becerra
Conservación Amazónica - ACCA, 627 Calle General Vargas Machuca, Miraflores, 15047 Lima,
Peru

S. Novoa · M. Becerra · A. P. Nicolau · K. Dyson · K. Tenneson · J. Dilger
SERVIR-Amazonia, Cali, Colombia

A. P. Nicolau · K. Dyson · K. Tenneson · J. Dilger
Spatial Informatics Group, Pleasanton, CA, USA

K. Dyson
Dendrolytics, Seattle, WA, USA

J. Dilger
Astraea, Charlottesville, VA, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_39

833

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_39&domain=pdf
https://orcid.org/0000-0002-4879-4060
https://orcid.org/0000-0003-3467-2780
https://orcid.org/0000-0003-3581-7195
http://orcid.org/0000-0002-7529-2074
http://orcid.org/0000-0002-8860-3396
http://orcid.org/0000-0001-5842-0663
http://orcid.org/0000-0001-8837-5445
mailto:luciovilla@lamolina.edu.pe
https://doi.org/10.1007/978-3-031-26588-4_39

834 L. Villa et al.

Learning Outcomes

• Selecting and creating a multi-temporal SAR mosaic.
• Generating SAR change detection based on a statistical analysis of Sentinel-1

images.
• Post-processing of alerts generated by filtering maximum area patches and

information of forest/non-forest and water bodies.

Helps if you know how to

• Import, filter, and visualize images (Part 1).
• Work with time series data in Earth Engine (Part 4).
• Write a function and map it over an ImageCollection (Chap. 12).
• Use the require function to load code from existing modules (Chap. 28).
• Export results to assets (Chap. 29).

39.1 Introduction to Theory

Accelerated demand for natural resources has transformed the Amazon rainfor-
est into a new economic frontier that generates commodities such as agricultural
products, livestock, and more recently, minerals, especially gold (RAISG 2020).
In Peru, illegal gold mining is a serious problem that affects local populations in
the southeastern region of Madre de Dios (Yard et al. 2012; Asner and Tupay-
achi 2017, Alvarez-Berrios et al. (2021). According to Caballero et al. (2018), it
has led to the deforestation of about 1000 km2 of rainforest, affecting protected
areas, Indigenous communities, and sustainable management areas. Gold mining
is carried out throughout the year, even during the rainy season.

Optical Earth observation satellites have played a very important role in mon-
itoring gold mining deforestation in recent years. Madre de Dios is one of the
few tropical regions in the world for which there is well-documented informa-
tion on annual forest loss due to this deforestation driver (Asner et al. 2013;
Asner and Tupayachi 2017; Caballero et al. 2018; Nicolau et al. 2019; Csillick
and Asner 2020; Aguirre et al. 2021). However, these resources do not reveal the
progress of illegal mining during the rainy season and at other times when the
optical images are obscured by clouds. This reduces the window of opportunity
to know the dynamics of the activity and guide actions to control the advance of
deforestation.

Satellite-based SAR sensors obtain information throughout the entire year
thanks to the ability of microwaves to penetrate cloud cover (Ballère et al. 2021;
Nicolau et al. 2021). Therefore, we are able to capture changes due to gold min-
ing expansion with SAR data from the European Space Agency (ESA) Sentinel-1
C-band satellite. In this chapter, we will look at a successful example of how to
process radar images to generate early warnings of gold mining deforestation.

39 Monitoring Gold Mining Activity Using SAR 835

39.2 Practicum

SAR sensors transmit microwave signals at an oblique angle and measure the
backscattered portion of the signal in order to analyze features on the surface.
Unlike optical sensors, which are passive, SAR is an active instrument with its
own source of illumination, and it is one of the few sensing instruments that allows
full control of the signal polarization on both the transmit and receive paths. The
majority of today’s SAR sensors are linearly polarized, and transmit horizontally
and/or vertically polarized wave forms (i.e., SAR bands can be VV, VH, HV, or
HH). While interpreting optical imagery is similar to interpreting a photograph,
interpreting SAR data requires a different way of thinking, in that the signal is
instead responsive in complex ways to surface characteristics such as structure
and moisture. More information about the theory and concepts behind SAR is
available in the SAR Handbook (Flores-Anderson et al. 2019).

The area of study for this chapter is the region surrounding a mining corridor
located in Madre de Dios in the southern Peruvian Amazon (Fig. 39.1).

Fig. 39.1 Maps of (a) the area of study in the southern Peruvian Amazon and the expansion of
alluvial mining activity between (b) 2006 and (c) 2020

Alluvial gold mining exploitation generates changes in the radar backscattering
mechanism over forested areas, since it involves deforestation, removal of topsoil,
excavation, and the use of water for the extraction of gold from the loose sediment.
Figure 39.2 shows the changes in SAR Sentinel-1 images and a radar backscat-
tering mechanism before (Fig. 39.2a) and after (Fig. 39.2b) the impact of alluvial
gold mining activity.

836 L. Villa et al.

Fig. 39.2 Radar backscattering mechanism from an area affected by alluvial mining activity
(a) before: backscattering signal from primary forest (volume scattering); (b) after: specular scat-
tering from bearing soil and water as a result of clearing forest cover, removing topsoil, digging
pits, and using water in the extraction process of gold from the loose sediment

Therefore, you will learn how to use SAR Sentinel-1 time series to detect
changes generated by alluvial gold mining activities in forested areas.

The first step is to create a SAR mosaic for a given period of time and orbit
pass. Then, we will apply the omnibus Q test algorithm to generate change alerts
from the SAR Sentinel-1 time series. Finally, we will filter and eliminate potential
false positive alerts coming from other activities with the same temporal pattern as
the mining activity (e.g., natural forest loss by river expansion or water over bare
soil during the rainy season).

39.2.1 Section 1: Creating a Single SAR Mosaic

We will use ESA’s Sentinel-1 dual-polarized (VV + VH) in descending orbit pass
to create a single SAR mosaic over the area of study. Sentinel-1 SAR Ground
Range Detected (GRD) data (Fig. 39.3) are stored in Earth Engine in two formats:
logarithmic scale (dB) and the original values (power scale named as FLOAT). We
will use the latter since mathematical operations should not be applied into data on
a logarithmic scale. The Sentinel-1 dataset is composed of Level-1 SAR amplitude
multi-look images preprocessed according to the following steps: orbit metadata

39 Monitoring Gold Mining Activity Using SAR 837

update, removal of border and thermal noise, radiometric calibration, and terrain
correction.

Sentinel-1 imagery available in the Earth Engine data catalog

Area of study around the mining corridor located in the Madre de Dios region

838 L. Villa et al.

Copy and paste the code below to define the area of study (Fig. 39.1), convert
this vector to a boundary image, and add it to the map (Fig. 39.4).

//
/// Section One
//

// Define the area of study.
var aoi = ee.FeatureCollection('projects/gee-
book/assets/A1-8/mdd');

// Center the map at the aoi.
Map.centerObject(aoi, 9);

// Create an empty image.
var empty = ee.Image().byte();

// Convert the area of study to an EE image object
// so we can visualize only the boundary.
var aoiOutline = empty.paint({

featureCollection: aoi,
color: 1,
width: 2

});

// Select the satellite basemap view.
Map.setOptions('SATELLITE');

// Add the area of study boundary to the map.
Map.addLayer(aoiOutline, {

palette: 'red'
}, 'Area of Study');

Next, copy and paste the code below to define two functions, maskAngle and
getCollection. The first function masks sections of SAR images acquired at
an incidence angle less than 31° or greater than 45°. The second function filters
the Sentinel-1 imagery to a specific period of time, region of interest, and orbit
pass. Note that the Sentinel-1 GRD dataset is imported inside the second function.

39 Monitoring Gold Mining Activity Using SAR 839

// Function to mask the SAR images acquired with an
incidence angle
// lower or equal to 31 and greater or equal to 45
degrees.
function maskAngle(image) {

var angleMask = image.select('angle');
return

image.updateMask(angleMask.gte(31).and(angleMask.lte(45)))
;
}

// Function to get the SAR Collection.
function getCollection(dates, roi, orbitPass0) {

var sarCollFloat =
ee.ImageCollection('COPERNICUS/S1_GRD_FLOAT')

.filterBounds(roi)

.filterDate(dates[0], dates[1])

.filter(ee.Filter.eq('orbitProperties_pass',
orbitPass0));

return sarCollFloat.map(maskAngle).select(['VV',
'VH']);
}

Copy and paste the code below to import the Sentinel-1 collection, define time
variables (a list of dates) and the orbit pass variable, apply the functions, create a
mosaic by using the mosaic function, and clip the mosaic to the study area.

// Define variables: the period of time and the orbitpass.
var listOfDates = ['2021-08-01', '2021-08-12'];
var orbitPass = 'DESCENDING';

// Apply the function to get the SAR mosaic.
var sarImageColl = getCollection(listOfDates, aoi,
orbitPass)

.mosaic()

.clip(aoi);
print('SAR Image Mosaic', sarImageColl);

Before adding the mosaic to the map, it’s important to scale the values to a
logarithmic scale (log10().multiply(10.0)). The parameters of visualiza-
tion (sarVis) should be taken between 3 and −23 dB (decibels). Copy and paste
the code below to do so and to add the mosaic to the map (Fig. 39.5). The code
creates a scaled image and draws it using visualization parameters set through trial
and error.

840 L. Villa et al.

Fig. 39.5 SAR Sentinel-1 mosaic generated in previous section

// Apply logarithmic scale.
var sarImageScaled = sarImageColl.log10().multiply(10.0);

// Visualize results.
var sarVis = {

bands: ['VV', 'VH', 'VV'],
min: [-18, -23, 3],
max: [-4, -11, 15]

};
Map.addLayer(sarImageScaled, sarVis, 'Sentinel-1 / SAR
Mosaic');

Code Checkpoint A18a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. How many bands (polarizations) does Sentinel-1 have over the area
of study?

Question 2. Using the Inspector tool, explore the values from the VV and VH
bands over different land covers. Which one do you think is better able to detect
forested areas?

39 Monitoring Gold Mining Activity Using SAR 841

39.2.2 Section 2: Creating a SAR Mosaic Time Series

We will reuse most of the code from Sect. 39.2.1, only changing the period of
time and not applying the mosaic function just yet. Start this section by opening
the following code checkpoint.

Code Checkpoint A18b. The book’s repository contains a script to use to begin
this section. You will need to start with that script and paste code below into it.

Expand the SAR ImageCollection in the Console and note that it is com-
posed of 30 elements. To create a time series of mosaics, we need to define two
additional functions (getDates and mosaicSAR). The first function converts
the format of the date from milliseconds to format ‘YYYY-MM-dd’. The second
function filters the SAR ImageCollection using the list of dates and gener-
ates a mosaic. The result is an ImageCollection of mosaics per date. Copy and
paste the code below to define these two functions.

// Function to get dates in 'YYYY-MM-dd' format.
function getDates(dd) {

return ee.Date(dd).format('YYYY-MM-dd');
}

// Function to get a SAR Mosaic clipped to the study area.
function mosaicSAR(dates1) {

dates1 = ee.Date(dates1);
var imageFilt = sarImageColl

.filterDate(dates1, dates1.advance(1, 'day'));
return imageFilt.mosaic()

.clip(aoi)

.set({
'system:time_start': dates1.millis(),
'dateYMD': dates1.format('YYYY-MM-dd')

});
}

Now, copy and paste the code below to generate a list of dates without duplicate
elements (i.e., where there are images from the same dates in the collection, we
only keep one). We avoid duplicates by using the ee.List.distinct and the
getDates functions and output an ImageCollection of mosaics per date.

842 L. Villa et al.

// Function to get a SAR Collection of mosaics by date.
var datesMosaic = ee.List(sarImageColl

.aggregate_array('system:time_start'))
.map(getDates)
.distinct();

// Get a SAR List and Image Collection of mosaics by date.
var getMosaicList = datesMosaic.map(mosaicSAR);
var getMosaicColl = ee.ImageCollection(getMosaicList);
print('get Mosaic Collection', getMosaicColl);

Finally, copy and paste the code below to set the visualization parameter
(sarVis) and add two SAR mosaics filtered by the date of acquisition as an
example (one from 2021-01-04 and the other from 2021-12-18; Fig. 39.6).

Fig. 39.6 SAR Sentinel-1 mosaics generated in Sect. 39.2.2. The Inspector tool shows a compar-
ison between before and after values of VV and VH SAR bands

39 Monitoring Gold Mining Activity Using SAR 843

// Visualize results.
var sarVis = {

bands: ['VV', 'VH', 'VV'],
min: [-18, -23, 3],
max: [-4, -11, 15]

};

var image1 = getMosaicColl
.filter(ee.Filter.eq('dateYMD', '2021-01-04'))
.first().log10().multiply(10.0);

var image2 = getMosaicColl
.filter(ee.Filter.eq('dateYMD', '2021-12-18'))
.first().log10().multiply(10.0);

Map.addLayer(image1, sarVis, 'Sentinel-1 | 2021-01-04');
Map.addLayer(image2, sarVis, 'Sentinel-1 | 2021-12-18');

Note that we applied the logarithmic scale for visualization purposes. Zoom in
and switch between the layers to note the differences between the images.

Code Checkpoint A18c. The book’s repository contains a script that shows what
your code should look like at this point.

Question 3. How many images were taken by Sentinel-1 over the area of study
between 2018-01-01 and 2020-01-01?

Question 4. Using the Inspector tool, explore the temporal changes of the values
from VV and VH bands over new mining areas.

39.2.3 Section 3: Generate SAR Change Detection

There are different methods for detecting changes using SAR data. In this case,
we will use a SAR change detection method based on Canty et al. (2020).

This methodology allows us to identify changes for a series of ‘k’ uncorre-
lated SAR images using a pixel-based omnibus likelihood ratio test statistic Q for
covariance matrices (

∑
i, i = 1... k), based on a Wishart distribution. The Q test is

defined by

ln Q = n

(

pk ln k +
k∑

i=1

ln |Xi | − k ln

|
|
|
|
|

k∑

i=1

Xi

|
|
|
|
|

)

where Xi = n∑* (with ∑* being the maximum likelihood estimate of the covari-
ance matrices ∑i), ‘n’ the number of looks, and ‘p’ the dimensionality of the
covariance matrices (with p = 2 for dual polarización SAR data). The | · | denotes
the determinant.

844 L. Villa et al.

The Q test is an omnibus test statistic because it evaluates the equality of several
covariance matrices simultaneously. Thus, this test statistic tests the null hypothesis
(no change, H0) against alternative hypothesis (change, H1) using SAR time series
pixel-based data and the level of significance (probability that the null hypothesis
H0 is true, also known as p-value) estimated in each iteration.

In the first iteration, the first two first images in the time series are tested (null
hypothesis of no change against the alternative of change):

(1) H0 : ∑1 = ∑2 against H1 : ∑1 /= ∑2 → Null hypothesis rejected?

If the null hypothesis (H0) is not rejected, then the test continues including the
values of the next image in the series:

(B) H0 : ∑1 = ∑2 = ∑3 against H1 : ∑1 = ∑2 /= ∑3 → Null hypothesis
rejected?

However, if the null hypothesis is rejected in this iteration, then the interval of
time for this change is labeled and the test is restarted from there.

The explanation of the Omnibus likelihood ratio test statistic is beyond the
scope of this chapter but more details can be found in Canty et al. (2020).

The next steps correspond to obtaining a single change detection output image
using the time series of mosaics generated in Sect. 39.2.2.

To do so, we will use modules adapted from the original JavaScript libraries by
Canty et al. (2020). Beginning from the last code checkpoint from Sect. 39.2.2,
copy and paste the code below to import the adapted modules and define a variable
that stores the number of images in our collection. This number will be used later
on for visualization purposes.

// Libraries of SAR Change Detection (version modified).
// The original version can be found in:
// users/mortcanty/changedetection
var omb = require(

'projects/gee-edu/book:Part A - Applications/A1 -
Human Applications/A1.8 Monitoring Gold Mining Activity
Using SAR/modules/omnibusTest_v1.1'
);
var util = require(

'projects/gee-edu/book:Part A - Applications/A1 -
Human Applications/A1.8 Monitoring Gold Mining Activity
Using SAR/modules/utilities_v1.1'
);

// Count the length of the list of dates of the time-
series.
var countDates = datesMosaic.size().getInfo();

39 Monitoring Gold Mining Activity Using SAR 845

Before applying the SAR change algorithm, we need to define the input param-
eters such as the significance and the reducer to be applied (median in this
case). The result is an ee.Dictionary that contains several images: among
these are cmap, smap, fmap, bmap. The cmap image shows the occurrence of
the most recent significant change, smap shows the first significant change, fmap
shows the frequency of significant changes, and bmap shows the interval in which
each significant change occurred.

Copy and paste the code below to define such variables, apply the algorithm to
the list of SAR mosaics (getMosaicList), and extract the results.

// Run the algorithm and print the results.
var significance = 0.0001;
var median = true;
var result = ee.Dictionary(omb.omnibus(getMosaicList,
significance,

median));
print('result', result);

// Change maps generated (cmap, smap, fmap and bmap)
// are detailed in the next commented lines.

// cmap: the interval in which the most recent significant
change occurred (single-band).
// smap: the interval in which the first significant
change occurred (single-band).
// fmap: the frequency of significant changes (single-
band).
// bmap: the interval in which each significant change
occurred ((k − 1)-band).

// Extract and print the images result
// (cmap, smap, fmap and bmap) from the ee.Dictionary.
var cmap = ee.Image(result.get('cmap')).byte();
var smap = ee.Image(result.get('smap')).byte();
var fmap = ee.Image(result.get('fmap')).byte();
var bmap = ee.Image(result.get('bmap')).byte();

The values for cmap, smap, and bmap are numbers that correspond to dates.
These are the dates that are stored in the datesMosaic list. For example, the
pixel value of 0 corresponds to the first date (2021-01-04), the pixel value of 1
corresponds to the second date (2021-01-16), and so on (Fig. 39.7).

If we want to export the resulting images, we need to also export the list of
dates. To do so, we need to create a FeatureCollection since we can’t cur-
rently export lists directly in Earth Engine. Copy and paste the code below to

846 L. Villa et al.

Fig. 39.7 List of dates to be exported as a CSV file. Each value (index) is associated with a
specific date of change of the raster file (smap)

39 Monitoring Gold Mining Activity Using SAR 847

create a FeatureCollection where each feature contains the date informa-
tion as a property. We are also printing the dates in order to visualize the pixel-date
association (expand the list on the Console to see it.)

// Build a Feature Collection from Dates.
var fCollectionDates = ee.FeatureCollection(datesMosaic

.map(function(element) {
return ee.Feature(null, {

prop: element
});

}));
print('Dates', datesMosaic);

Now, we can add the results to the map. Copy and paste the code below to
define visualizations parameters, make a legend that associates date numbers with
colors, and add the resulting images (Fig. 39.8).To load results faster, change the
Map.centerObject function at the top of the script to Map.setCenter
(−70.003, −12.849, 12)—we are zooming in to a specific area—and
leave only the smap layer checked under the Layers panel.

Fig. 39.8 SAR change detection results from applying the Q test algorithm

848 L. Villa et al.

// Visualization parameters.
var jet = ['black', 'blue', 'cyan', 'yellow', 'red'];
var vis = {

min: 0,
max: countDates,
palette: jet

};

// Add resulting images and legend to the map.
Map.add(util.makeLegend(vis));
Map.addLayer(cmap, vis, 'cmap - recent change
(unfiltered)');
Map.addLayer(smap, vis, 'smap - first change
(unfiltered)');
Map.addLayer(fmap.multiply(2), vis, 'fmap*2 - frequency of
changes');

Now, copy and paste the code below to export two items to Google Drive:
fCollectionDates, the dates of SAR images processed (Fig. 39.7); and
smap, the image of the first significant change (Fig. 39.8).

// Export the Feature Collection with the dates of
change.
var exportDates = Export.table.toDrive({

collection: fCollectionDates,
folder: 'datesChangesDN',
description: 'dates',
fileFormat: 'CSV'

});
// Export the image of the first significant changes.
var exportImgChanges = Export.image.toAsset({

image: smap,
description: 'smap',
assetId: 'your_asset_path_here/' + 'smap',
region: aoi,
scale: 10,
maxPixels: 1e13

});

Code Checkpoint A18d. The book’s repository contains a script that shows what
your code should look like at this point.

39 Monitoring Gold Mining Activity Using SAR 849

Question 5. What is the difference between the smap and cmap images?

Question 6. How does the FeatureCollection fCollectionDate relate
to the change maps smap, cmap, and fmap?

39.2.4 Section 4: Filtering and Post-processing Alerts

As explained earlier in the Practicum, the smap results need to be filtered in
order to eliminate possible false positives. The false positives are associated with
the forest loss due to river morphology and the presence of muddy water bodies
(Fig. 39.2).

In this section, we will explore different options to filter false positives and,
therefore, post-process the results generated.

Like we did in previous sections, copy and paste the code below into a new
script to import the study area and the exported smap image. Remember that our
analysis covered 30 Sentinel-1 images from distinct dates.

//
/// Section Four
//

// Define the area of study.
var aoi = ee.FeatureCollection('projects/gee-
book/assets/A1-8/mdd');

// Center the map.
Map.centerObject(aoi, 10);

// Create an empty image.
var empty = ee.Image().byte();
// Convert the area of study to an EE image object so we
can visualize
// only the boundary.
var aoiOutline = empty.paint({

featureCollection: aoi,
color: 1,
width: 2

});

// Select the satellite basemap view.
Map.setOptions('SATELLITE');

850 L. Villa et al.

// Add the area of study boundary to the map.
Map.addLayer(aoiOutline, {

palette: 'red'
}, 'Area of Study');

// Import the smap result from section 3.
var changeDetect = ee.Image('projects/gee-book/assets/A1-
8/smap');

// Visualization parameters.
var countDates = 30;
var jet = ['black', 'blue', 'cyan', 'yellow', 'red'];
var vis = {

min: 0,
max: countDates,
palette: jet

};

// Add results to the map.
Map.addLayer(changeDetect, vis, 'Change Map Unfiltered');

Next, copy and paste the code below to import from the Earth Engine data cat-
alog and add to the map all the sources of information for filtering false positives:
Shuttle Radar Topography Mission (SRTM) digital elevation data, Hansen Global
Forest Change data, and JRC Global Surface Water data (Fig. 39.9).

39 Monitoring Gold Mining Activity Using SAR 851

Fig. 39.9 Layers used to filter false positives alerts: (a) SRTM elevation, red color shows areas
over 1000 m above sea level; (b) SRTM slope, red color shows areas with slope over 15°;
(c) Hansen Global Forest Change, green color shows forested areas updated to 2020; (d) JRC
Yearly Water Classification History, blue color shows the maximum extent of water surface
detected from 1984 to 2020

// Digital Elevation Model SRTM.
// https://developers.google.com/earth-
engine/datasets/catalog/USGS_SRTMGL1_003
var srtm = ee.Image('USGS/SRTMGL1_003').clip(aoi);
var slope = ee.Terrain.slope(srtm);
var srtmVis = {

min: 0,
max: 1000,
palette: ['black', 'blue', 'cyan', 'yellow', 'red']

};
Map.addLayer(srtm, srtmVis, 'SRTM Elevation');
var slopeVis = {

min: 0,
max: 15,
palette: ['black', 'blue', 'cyan', 'yellow', 'red']

};
Map.addLayer(slope, slopeVis, 'SRTM Slope');

852 L. Villa et al.

// Hansen Global Forest Change v1.8 (2000-2020)
// https://developers.google.com/earth-
engine/datasets/catalog/UMD_hansen_global_forest_change_20
20_v1_8
var gfc =
ee.Image('UMD/hansen/global_forest_change_2020_v1_8').clip
(

aoi);
var forest2020 = gfc.select('treecover2000')

.gt(0)

.updateMask(gfc.select('loss')
.neq(1))

.selfMask();
Map.addLayer(forest2020,

{
min: 0,
max: 1,
palette: ['black', 'green']

},
'Forest cover 2020');

// JRC Yearly Water Classification History, v1.3 (Updated
until Dec 2020).
// https://developers.google.com/earth-

engine/datasets/catalog/JRC_GSW1_3_GlobalSurfaceWater
var waterJRC =
ee.Image('JRC/GSW1_3/GlobalSurfaceWater').select(

'max_extent');
var waterVis = {

min: 0,
max: 1,
palette: ['blue', 'black']

};
Map.addLayer(waterJRC.eq(0), waterVis, 'Water Bodies until
2020');

You can toggle these layers on and off, zoom in and out, and inspect pixel
values to analyze them.

The SRTM elevation layer (‘SRTM Elevation’) and the slope (‘SRTM
Slope’) derived from it with ee.Terrain.slope show red areas that corre-
spond to an altitude over 1000 m above sea level and a slope over 15°, compared
to blue areas, which are closer to sea level or to flat terrain. We chose these options
because mining activity in this region is located in lowlands. Furthermore, the SAR
Sentinel-1 data provided by Earth Engine are not radiometric-terrain corrected. So,

39 Monitoring Gold Mining Activity Using SAR 853

steep slopes (> 15°) generate distortions in SAR images, and therefore, potential
false changes between two or more images taken at different times.

The Hansen Global Forest Change data are composed of forested areas in 2000
(the ‘treecover2000’ band) and the forest loss between 2001 and 2020. In
this sense, the binary layer ‘Forest cover 2020’ previously generated and
added shows in green the forested areas updated until 2020, with all the non-
forested and the forest loss between 2001 and 2020 areas masked.

The JRC Yearly Water Classification History data show surface water extent
and change between 1984 and 2020. The binary layer ‘Water Bodies until
2020’ previously added shows in blue the water bodies’ maximum extent
between 1984 and 2020. Non-water bodies are shown in black.

Note that alluvial mining expansion pattern in the study area is associated with
primary forest loss and the appearance of new surface water patches (Fig. 39.2).

Now, we will filter the false positives based on thresholds. We will mask any
pixel in smap marked as changeover areas greater than 1000 m above sea level,
slope greater than 15° according to the SRTM data (classified as forest until 2020
by the Hansen data), and that are not classified as water bodies by the JRC dataset.
Copy and paste below to add the filtered results to the map.

// Apply filters through masks.
var alertsFiltered = changeDetect

.updateMask(srtm.lt(1000))

.updateMask(slope.lt(15))

.updateMask(forest2020.eq(1))

.updateMask(waterJRC.eq(0))

.selfMask();

// Add filtered results to the map.
Map.addLayer(alertsFiltered,

{
min: 0,
max: countDates,
palette: jet

},
'Change Map Filtered',
1);

We can still improve the results a bit more. Copy and paste the code below to
define and apply a function that eliminates small pixel patches and isolated pixels.
We do this because we know that in this area, mining activities occur in areas of
at least 0.5 ha.

854 L. Villa et al.

// Function to filter small patches and isolated pixels.
function filterMinPatchs(alerts0, minArea0, maxSize0) {

var pixelCount =
alerts0.gt(0).connectedPixelCount(maxSize0);

var minPixelCount = ee.Image(minArea0).divide(ee.Image
.pixelArea());
return

alerts0.updateMask(pixelCount.gte(minPixelCount));
}

// Apply the function and visualize the filtered results.
var alertsFiltMinPatchs = filterMinPatchs(alertsFiltered,
10000, 200);

Map.addLayer(alertsFiltMinPatchs, vis,
'Alerts Filtered - Minimum Patches');

Turn off all the other layers to visualize the filtered result. By analyzing the
results without the filters and with the filters, we can see that we eliminated most
of the false positives (Fig. 39.10).

Finally, we can export the outcome. Copy and paste the code below to export
to the Drive.

Fig. 39.10 A comparison of results, after (‘Alerts Filtered - Minimum Patches’)
and before filtering false positives (‘Change Map Unfiltered’)

39 Monitoring Gold Mining Activity Using SAR 855

// Export filtered results to the Drive.
Export.image.toDrive({

image: alertsFiltMinPatchs,
description: 'alertsFiltered',
folder: 'alertsFiltered',
region: aoi,
scale: 10,

});

Code Checkpoint A18e. The book’s repository contains a script that shows what
your code should look like at this point.

39.3 Synthesis

In this chapter, we mapped the changes generated by the alluvial mining activity
over a forested area and between a period of time using Sentinel-1 SAR time
series. For this, we separated the methodology into three steps. First, we were able
to build a time series from Sentinel-1 mosaics. Second, we estimate all the changes
based on the omnibus Q test change detection algorithm. Finally, we filter the
detected changes based on existing forest/non-forest, water bodies, and elevation
data, and a minimum mapping unit in order to retrieve the changes generated by
the alluvial mining activity only.

Now, it’s your turn to explore the use of the methodology.

Assignment 1. In this chapter, we applied the methodology for a given SAR orbit.
Describe how we could identify the different SAR orbits over a specific area of
study.

Assignment 2. Describe whether these alerts, which are generated by a change
detection algorithm, are different for the ascending or descending orbit over our
area of study.

39.4 Conclusion

In this chapter, you have learned how to analyze the changes generated by allu-
vial mining activity over forested areas based on the application of a SAR change
detection methodology. This is possible because of the significant impact gener-
ated by this activity over the environment (that is, the deforestation and the use
of water in the alluvial gold wash machine) that is reflected in the backscatter
signal of SAR data. This methodology can be applied to other study cases since
a good understanding of the principles of change detection has been achieved in
this chapter and complemented by Chaps. 16 through 21.

856 L. Villa et al.

References

Aguirre GA, Robles RRC, Duarez FMG et al (2021) Dinámica de la pérdida de bosques en el
sureste de la Amazonia peruana: Un estudio de caso en Madre de Dios. Ecosistemas 30:2175.
https://doi.org/10.7818/ECOS.2175

Álvarez-Berríos N, L’Roe J, Naughton-Treves L (2021) Does formalizing artisanal gold mining
mitigate environmental impacts? Deforestation evidence from the Peruvian Amazon. Environ
Res Lett 16:64052. https://doi.org/10.1088/1748-9326/abede9

Asner GP, Tupayachi R (2017) Accelerated losses of protected forests from gold mining in the
Peruvian Amazon. Environ Res Lett 12:94004. https://doi.org/10.1088/1748-9326/aa7dab

Asner GP, Llactayo W, Tupayachi R, Luna ER (2013) Elevated rates of gold mining in the Ama-
zon revealed through high-resolution monitoring. Proc Natl Acad Sci U S A 110:18454–18459.
https://doi.org/10.1073/pnas.1318271110

Ballère M, Bouvet A, Mermoz S et al (2021) SAR data for tropical forest disturbance alerts in
French Guiana: benefit over optical imagery. Remote Sens Environ 252:112159. https://doi.org/
10.1016/j.rse.2020.112159

Caballero Espejo J, Messinger M, Román-Dañobeytia F et al (2018) Deforestation and forest
degradation due to gold mining in the Peruvian Amazon: a 34-year perspective. Remote Sens
10:1903. http://doi.org/10.20944/preprints201811.0113.v1

Canty MJ, Nielsen AA, Conradsen K, Skriver H (2020) Statistical analysis of changes in Sentinel-
1 time series on the Google Earth Engine. Remote Sens 12:46. https://doi.org/10.3390/rs1201
0046

Csillik O, Asner GP (2020) Near-real time aboveground carbon emissions in Peru. PLoS One
15:e0241418. https://doi.org/10.1371/journal.pone.0241418

Flores-Anderson AI, Herndon KE, Thapa RB, Cherrington E (2019) The SAR handbook: compre-
hensive methodologies for forest monitoring and biomass estimation

Nicolau AP, Herndon K, Flores-Anderson A, Griffin R (2019) A spatial pattern analysis of forest
loss in the Madre de Dios region, Peru. Environ Res Lett 14:124045. https://doi.org/10.1088/
1748-9326/ab57c3

Nicolau AP, Flores-Anderson A, Griffin R et al (2021) Assessing SAR C-band data to effectively
distinguish modified land uses in a heavily disturbed Amazon forest. Int J Appl Earth Obs
Geoinf 94:102214. https://doi.org/10.1016/j.jag.2020.102214

RAISG (2020) Amazonia under pressure. https://atlas2020.amazoniasocioambiental.org/en.
Accessed 25 Feb 2022

Yard EE, Horton J, Schier JG et al (2012) Mercury exposure among artisanal gold miners in Madre
de Dios, Peru: a cross-sectional study. J Med Toxicol 8:441–448

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.7818/ECOS.2175
https://doi.org/10.1088/1748-9326/abede9
https://doi.org/10.1088/1748-9326/aa7dab
https://doi.org/10.1073/pnas.1318271110
https://doi.org/10.1016/j.rse.2020.112159
https://doi.org/10.1016/j.rse.2020.112159
http://doi.org/10.20944/preprints201811.0113.v1
https://doi.org/10.3390/rs12010046
https://doi.org/10.3390/rs12010046
https://doi.org/10.1371/journal.pone.0241418
https://doi.org/10.1088/1748-9326/ab57c3
https://doi.org/10.1088/1748-9326/ab57c3
https://doi.org/10.1016/j.jag.2020.102214
https://atlas2020.amazoniasocioambiental.org/en
http://creativecommons.org/licenses/by/4.0/

Part VIII

Aquatic and Hydrological Applications

Earth Engine’s global scope and long time series allow analysts to understand the
water cycle in new and unique ways. These include surface water in the form of
floods and river characteristics, long-term issues of water balance, and the detection
of subsurface ground water.

40Groundwater Monitoring with GRACE

A. J. Purdy and J. S. Famiglietti

Overview
The following tutorial details how to use observations from the Gravity Recovery
and Climate Experiment (GRACE) to evaluate changes in groundwater storage for
a large river basin. Here, you will learn how to apply remote sensing estimates of
total water storage anomalies, land surface model output, and in situ observations to
resolve groundwater storage changes in California’s Central Valley. The following
method has been applied to study water storage changes around the world, and can
be ported to quantify groundwater storage change for major river basins.

Learning Outcomes

. Plotting changes in total water storage using GRACE.

. Mapping trends in water storage.

. Resolving changes in groundwater storage for a river basin.

. Import image collections and create image collections from assets.

. Create charts by reducing an ImageCollection with a feature geometry.

A. J. Purdy (B)
University of San Francisco, San Francisco, CA, USA
e-mail: adamjpurdy@gmail.com; apurdy@usca.edu; adpurdy@csumb.edu

California State University, Monterey Bay Seaside, CA, USA

J. S. Famiglietti
Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
e-mail: jay.famiglietti@usask.ca

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_40

859

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_40&domain=pdf
http://orcid.org/0000-0002-0156-5391
http://orcid.org/0000-0002-6053-5379
mailto:adamjpurdy@gmail.com
mailto:apurdy@usca.edu
mailto:adpurdy@csumb.edu
mailto:jay.famiglietti@usask.ca
https://doi.org/10.1007/978-3-031-26588-4_40

860 A. J. Purdy and J. S. Famiglietti

Helps if you know how to

. Use expressions to perform calculations on image bands (Chap. 9).

. Write a function and map it over an ImageCollection (Chap. 12).

. Fit linear and nonlinear functions with regression in an ImageCollection
time series (Chap. 18).

. Use ee.Join to join one ImageCollection to another to compute differ-
ences (Chap. 21).

. Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).

40.1 Introduction to Theory

Since 2002, GRACE and the follow-on mission, GRACE-FO, have provided a new
vantage to track changes in water resources (Tapley et al. 2004). GRACE holds the
unique ability to directly track changes in total water storage anomalies (TWSa),
according to the following equation:

TWSa = CANa + SWa + SMa + SWEa + GWa (40.1)

where CANa is canopy water storage anomaly, SWa is the surface water anomaly,
SMa is the soil moisture anomaly, SWEa is the snow water equivalent anomaly,
and GWa is the groundwater storage anomaly.

By utilizing supplemental observations from other remote sensing platforms
and land surface models and rearranging Eq. 40.1, scientists have been able to
resolve changes in groundwater storage within major river basins around the planet
(Famiglietti 2014). From Bangladesh (Purdy et al. 2019) and India (Rodell et al.
2009) to the Middle East (Voss et al. 2013) and the American Southwest (Cas-
tle et al. 2014), the problem of declining groundwater storage has emerged with
varying levels of severity (Richey et al. 2015). Along with many other regions
around the world, California shares an overreliance on groundwater (Famiglietti
et al. 2011). This tutorial demonstrates the analytical steps to resolve groundwater
storage changes using GRACE for California’s Central Valley.

40.2 Practicum

40.2.1 Section 1: Exploring the Study Area

Evaluating changes in hydrologic storage requires examining change within a
hydrologically connected system. Watersheds and basins represent areas of land
where precipitation drains to a common point. We will use already-generated
basins from the Watershed Boundary Dataset (WBD) to delineate the drainage area

40 Groundwater Monitoring with GRACE 861

for California’s Central Valley. The WBD includes hydrologic unit codes (HUCs)
to identify connected basins within the United States.

In the following sections of code, we will load three basins by their unique four-
digit HUCs and merge the basins together. To accomplish this task, we will use
the ee.Filter.inList function to filter the basins variable by the ‘huc4’
property, extracting three to a variable basin.

// Import Basins.
var basins = ee.FeatureCollection('USGS/WBD/2017/HUC04');

// Extract the 3 HUC 04 basins for the Central Valley.
var codes = ['1802', '1803', '1804'];
var basin = basins.filter(ee.Filter.inList('huc4', codes));

// Add the basin to the map to show the extent of our
analysis.
Map.centerObject(basin, 6);
Map.addLayer(basin, {

color: 'green'
}, 'Central Valley Basins', true, 0.5);

40.2.1.1 Section 1.1: Map the Extent of Agriculture in the Region
To get a sense for the extent of agriculture in California, we can visualize all
cultivated land in the Central Valley. This will map where the greatest need for
water occurs.

var landcover = ee.ImageCollection('USDA/NASS/CDL')
.filter(ee.Filter.date('2019-01-01', '2019-12-31'))
.select('cultivated');

Map.addLayer(landcover.first().clip(basin), {}, 'Cropland',
true,

0.5);

The extent of cultivated lands shows up as a translucent purple (Fig. 40.1).

40.2.1.2 Section 1.2: Load Reservoir Locations
California has over 150 reservoirs distributed across the state. These reservoirs vary
in size and capacity, and the regions of the state that they support. For the Central

862 A. J. Purdy and J. S. Famiglietti

Fig. 40.1 California’s
Central Valley Basin,
including agricultural lands

Valley, water conveyance infrastructure allows the transport of water from north to
south. We will use our basin boundary to select the reservoirs within our basin to
quantify changes in surface water storage. The list of reservoirs was gathered from
the California Department of Water Resources’ Data Exchange Center (CDEC).
For an application in another study region, acquiring in situ surface water storage
would be required to resolve that region’s groundwater storage changes.

// This table was generated using the index from the CDEC
website
var res = ee.FeatureCollection(

'projects/gee-book/assets/A2-1/ca_reservoirs_index');
// Filter reservoir locations by the Central Valley
geometry
var res_cv = res.filterBounds(basin);
Map.addLayer(res_cv, {

'color': 'blue'
}, 'Reservoirs');

The blue dots that now appear on the map represent the distribution of water
storage across the Central Valley. Water conveyance infrastructure and natural
rivers deliver water to farms across the valley. Despite all these reservoirs, many

40 Groundwater Monitoring with GRACE 863

water users continue to rely on groundwater to meet their needs. A 2011 study
detailed the magnitude of this reliance using gravity-sensing satellites (Famiglietti
et al. 2011). The next sections of this chapter reveal how to resolve groundwater
storage changes using these methods.

Code Checkpoint A21a. The book’s repository contains a script that shows what
your code should look like at this point.

40.2.2 Section 2: Tracking Total Water Storage Changes
in California with GRACE

GRACE can directly track changes in TWSa. Changes in TWSa indicate which
regions are gaining or losing water.

40.2.2.1 Section 2.1: Import GRACE Data and Plot Changes in Total
Water Storage in California

First, we will import the image collection and select the proper band to chart.

var GRACE =
ee.ImageCollection('NASA/GRACE/MASS_GRIDS/MASCON_CRI');
// Subset GRACE for liquid water equivalent dataset
var basinTWSa = GRACE.select('lwe_thickness');

The GRACE data imported here have already been processed to provide units of
TWSa. The data contained in this dataset are units of “equivalent water thickness”
anomalies. GRACE hydrologic data are presented as anomalies because GRACE
does not directly observe the gravitational pull of only water. The gravity observed
also includes Earth’s surface (e.g., mountains). To disentangle the signal of water,
we can look at changes relative to a longer term mean gravity signal. The anoma-
lies represent the difference between a given month’s observation and a multi-year
mean. We will now plot TWSa for basins in a large part of California (Fig. 40.2).

864 A. J. Purdy and J. S. Famiglietti

Fig. 40.2 TWSa for the Sacramento-San Joaquin Basin

// Make plot of TWSa for Basin Boundary
var TWSaChart = ui.Chart.image.series({

imageCollection: basinTWSa.filter(ee.Filter.date(
'2003-01-01', '2016-12-31')),

region: basin,
reducer: ee.Reducer.mean(),

})
.setOptions({

title: 'TWSa',
hAxis: {

format: 'MM-yyyy'
},
vAxis: {

title: 'TWSa (cm)'
},
lineWidth: 1,

});
print(TWSaChart);

In the Console, you will see a plot of TWSa. Notice the seasonality and interan-
nual variations in TWSa. Winter months reveal periods of maximum water storage
due to snowpack, full reservoirs, and wet soil. Summer and early fall reveal less
TWSa, as the snow has melted, reservoir water has been used, and soil is drying
out. Additionally, summer months are periods when groundwater is extracted and
used to supplement a limited surface water supply. Evidence of drought emerged
through declining TWSa between 2006–2009 and 2012–2017.

Next, we will look at the trend in TWSa for the entire period of record.

40 Groundwater Monitoring with GRACE 865

40.2.2.2 Section 2.2: Estimate the Linear Trend in TWSa Over Time
As presented in Chap. 18, Earth Engine can fit linear models to time series data,
with unique linear fits for each pixel based on the values through time. Consider
the following linear model, where et is a random error:

pt = β0 + β1t + et(1) (40.2)

This is the model behind the trendline added to the chart we just created. This
model is useful for detrending data and reducing non-stationarity in the time series.
The goal of the regression is to discover the values of the β’s in each pixel.

To fit this trend model to the GRACE-based TWSa series using ordinary least
squares, we can use the linearRegression reducer.

// Compute Trend for each pixel to map regions of most
change
var addVariables = function(image) {

// Compute time in fractional years since the epoch.
var date = ee.Date(image.get('system:time_start'));
var years = date.difference(ee.Date('2003-01-01'),

'year');
// Return the image with the added bands.
return image

// Add a time band.
.addBands(ee.Image(years).rename('t').float())
// Add a constant band.
.addBands(ee.Image.constant(1));

};
var cvTWSa =
basinTWSa.filterBounds(basin).map(addVariables);
print(cvTWSa);
// List of the independent variable names
var independents = ee.List(['constant', 't']);

// Name of the dependent variable.
var dependent = ee.String('lwe_thickness');
// Compute a linear trend. This will have two bands:
'residuals' and
// a 2x1 band called coefficients (columns are for
dependent variables).
var trend = cvTWSa.select(independents.add(dependent))

.reduce(ee.Reducer.linearRegression(independents.length(),
1));

866 A. J. Purdy and J. S. Famiglietti

The image of coefficients, computed below, is a two-band image in which each
pixel contains values for β0 and β1. The β1 value will represent the temporal
slope for the GRACE mascon.

// Flatten the coefficients into a 2-band image
var coefficients = trend.select('coefficients')

.arrayProject([0])

.arrayFlatten([independents]);

Next, we can visualize the GRACE trends to capture the spatial scales on which
GRACE can resolve TWSa. GRACE is adept at capturing these changes only for
larger basins.

// Create a layer of the TWSa slope to add to the map
var slope = coefficients.select('t');
// Set visualization parameters to represent positive
(blue) & negative (red) trends
var slopeParams = {

min: -3.5,
max: 3.5,
palette: ['red', 'white', 'blue']

};
Map.addLayer(slope.clip(basin), slopeParams, 'TWSa Trend',
true,

0.75);

The slope layer reveals that the Tulare Basin (the southernmost basin in the
Central Valley) experienced the largest negative changes in TWSa over the time
period (Fig. 40.3). Darker reds indicate greater negative change, and blue repre-
sents positive change. This is a result of the region not receiving winter rain or
snow and having the most junior surface water rights in the Central Valley.

The next steps in this chapter will review how to unpack the TWSa signal to
resolve changes in groundwater storage anomalies for the basin.

Code Checkpoint A21b. The book’s repository contains a script that shows what
your code should look like at this point.

40.2.3 Section 3: Tracking Changes in Soil Water Storage
and Snow Water Equivalent in California

The Global Land Data Assimilation System (GLDAS) utilizes multiple land sur-
face models to globally resolve fluxes in storage of water (like soil moisture and

40 Groundwater Monitoring with GRACE 867

Fig. 40.3 Slope in TWSa for California. Darker reds indicate greater declines in total water
storage. Blue represents increases in water storage. White represents no change in water storage

snow) and energy at a three-hour frequency (Rodell et al. 2004). An example of
how to convert three-hourly GLDAS snow water equivalent to annual SWEa for
2003 can be found in script A21s1 in the book’s repository. Running the supple-
mental script is an optional part of this lab: it is added to provide clarity on how
the image assets were created for each GLDAS variable in this chapter.

For the next analysis, you will be starting with a script that imports the GLDAS
SMa and SWEa processed by the methods above. GLDAS estimates of soil mois-
ture and snow water equivalent are resolved at a three-hour temporal frequency.
Therefore, we have taken the time to reduce the GLDAS data to annual means
from the three-hour estimates.

Additionally, we aggregated monthly GRACE observations to annual average
estimates to improve the efficiency of running this analysis. More experienced
users can adapt these methods to resolve monthly changes. However, it should
be noted that to replicate the same methods at a monthly cadence would require
the interpolation of missing months of GRACE observations. Please use the code
starting point below, as the script imports the necessary assets to complete the final
analysis.

868 A. J. Purdy and J. S. Famiglietti

40.2.3.1 Section 3.1: Load GLDAS Soil Moisture Images
from an Asset to an Image Collection

Code Checkpoint A21c. The book’s repository contains a script to use to begin
this section. You will need to start with that script and paste code below into it.

When you run the script, you will see a number of assets being imported and
an annual time series of GRACE. Additionally, the script is set to convert the list
of annual mean soil moisture images to an ImageCollection.

var gldas_sm_list = ee.List([sm2003, sm2004, sm2005,
sm2006, sm2007,

sm2008, sm2009, sm2010, sm2011, sm2012, sm2013, sm2014,
sm2015, sm2016

]);
var sm_ic = ee.ImageCollection.fromImages(gldas_sm_list);

Before we compute groundwater storage anomalies from GRACE and GLDAS
data following Eq. 40.1, we should inspect the units to ensure that our math is
sound. In the search bar of Earth Engine, search for “GLDAS” and click on
GLDAS-2.1: Global Land Data Assimilation System, then navigate to Bands to
see what the units are for ‘RootMoist_inst’ and ‘SWE_inst’.

The units for GLDAS are currently showing as kg/m2. We need to con-
vert the soil moisture and snow values to equivalent water depth units of
centimeters. Define the following conversion variable and map this over the
ImageCollection. As described in Chaps. 12 and 13, mapping over an
ImageCollection is similar to running a loop: You apply the same function
to each image and return the value back to the ImageCollection.

var kgm2_to_cm = 0.10;
var sm_ic_ts = sm_ic.map(function(img) {

var date = ee.Date.fromYMD(img.get('year'), 1, 1);
return

img.select('RootMoist_inst').multiply(kgm2_to_cm)
.rename('SMa').set('system:time_start', date);

});

In addition to converting the units, the code renames the variable and sets
properties such as ‘system:time_start’, which is necessary in Earth
Engine to plot data and compare it with other image collections. Note that
you might print out the variables sm_ic and sm_ic_ts to explore the differ-
ences between them. You should notice the new band name and properties (e.g.,
‘system:time_start’).

Next, plot the data to evaluate soil moisture anomalies during the study period.

40 Groundwater Monitoring with GRACE 869

// Make plot of SMa for Basin Boundary
var SMaChart = ui.Chart.image.series({

imageCollection: sm_ic_ts.filter(ee.Filter.date(
'2003-01-01', '2016-12-31')),

region: basin,
reducer: ee.Reducer.mean(),
scale: 25000

})
.setChartType('ScatterChart')
.setOptions({

title: 'Soil Moisture anomalies',
trendlines: {

0: {
color: 'CC0000'

}
},
hAxis: {

format: 'MM-yyyy'
},
vAxis: {

title: 'SMa (cm)'
},
lineWidth: 2,
pointSize: 2

});
print(SMaChart);

You may notice that SMa is of a similar magnitude to TWSa but is slightly out
of phase with TWSa.

40.2.3.2 Section 3.2: Load GLDAS Snow Water Equivalent Images
from an Asset to an Image Collection

Use similar code to load the snow water equivalent data to Earth Engine.

var gldas_swe_list = ee.List([swe2003, swe2004, swe2005,
swe2006,

swe2007, swe2008, swe2009, swe2010, swe2011, swe2012,
swe2013, swe2014, swe2015, swe2016

]);
var swe_ic = ee.ImageCollection.fromImages(gldas_swe_list);

Next, convert the snow values to equivalent water depth units of centimeters.

870 A. J. Purdy and J. S. Famiglietti

var swe_ic_ts = swe_ic.map(function(img) {
var date = ee.Date.fromYMD(img.get('year'), 1, 1);
return

img.select('SWE_inst').multiply(kgm2_to_cm).rename(
'SWEa').set('system:time_start', date);

});

Next, we will visualize the new ImageCollection. If you did not do the
previous step, your code here will not run.

// Make plot of SWEa for Basin Boundary
var SWEaChart = ui.Chart.image.series({

imageCollection: swe_ic_ts.filter(ee.Filter.date(
'2003-01-01', '2016-12-31')),

region: basin,
reducer: ee.Reducer.mean(),
scale: 25000

})
.setChartType('ScatterChart')
.setOptions({

title: 'Snow Water Equivalent anomalies',
trendlines: {

0: {
color: 'CC0000'

}
},
hAxis: {

format: 'MM-yyyy'
},
vAxis: {

title: 'SWEa (cm)'
},
lineWidth: 2,
pointSize: 2

});
print(SWEaChart);

You successfully plotted soil moisture and snow water equivalent (Fig. 40.4).
You may notice that SWEa is much smaller in magnitude than the other two
variables.

Code Checkpoint A21d. The book’s repository contains a script that shows what
your code should look like at this point.

40 Groundwater Monitoring with GRACE 871

Fig. 40.4 Time-series charts of SMa and SWEa in units of equivalent water height (centimeters)

40.2.4 Section 4: Importing a Table of Surface Water Storage

Reservoir storage data from the California Data Exchange Center (CDEC) facili-
tated computing Surface Water storage anomalies (SWa) for the Sacramento-San
Joaquin Basin. Surface water storage, unlike the other components of water stor-
age, is not represented in land surface models. Instead, SWa is sourced from in situ
observations. Here, the reservoir storage observations were summed for the Cen-
tral Valley and then total converted to annual anomalies to directly compare with
SWEa and SMa. Prior to reading the table of reservoir storage, we compute the
area from the combined HUC8 basins.

// Extract geometry to convert time series of anomalies in
km3 to cm
var area_km2 = basin.geometry().area().divide(1000 * 1000);
var km_2_cm = 100000;

872 A. J. Purdy and J. S. Famiglietti

Next, the imported table res_table is converted to an ImageCollection
of constant values to facilitate combining the data with GRACE and GLDAS-
resolved water storage anomalies.

// Convert csv to image collection
var res_list = res_table.toList(res_table.size());
var yrs = res_list.map(function(ft) {

return ee.Date.fromYMD(ee.Feature(ft).get('YEAR'), 1,
1);
});
var SWanoms = res_list.map(function(ft) {

return
ee.Image.constant(ee.Feature(ft).get('Anom_km3'));
});
var sw_ic_ts = ee.ImageCollection.fromImages(

res_list.map(
function(ft) {

var date =
ee.Date.fromYMD(ee.Feature(ft).get('YEAR'),

1, 1);
return ee.Image.constant(ee.Feature(ft).get(

'Anom_km3')).divide(area_km2).multiply(
km_2_cm).rename('SWa').set(
'system:time_start', date);

}
)

);

Plot SWa in equivalent units of centimeters per year (Fig. 40.5).

Fig. 40.5 Time-series chart of SWa in units of equivalent water height (centimeters)

40 Groundwater Monitoring with GRACE 873

// Create a time series of Surface Water Anomalies
var SWaChart = ui.Chart.image.series({

imageCollection: sw_ic_ts.filter(ee.Filter.date(
'2003-01-01', '2016-12-31')),

region: basin,
reducer: ee.Reducer.mean(),
scale: 25000

})
.setChartType('ScatterChart')
.setOptions({

title: 'Surface Water anomalies',
trendlines: {

0: {
color: 'CC0000'

}
},
hAxis: {

format: 'MM-yyyy'
},
vAxis: {

title: 'SWa (cm)'
},
lineWidth: 2,
pointSize: 2

});
print(SWaChart);

The chart shows that surface water anomalies are of a similar magnitude to
soil moisture anomalies. As expected, SWa decreases during each drought period
in California (2006–2008 and 2012–2016). These reservoir storage declines show
use is greater than inputs during each period.

Now, we will combine the previous datasets to resolve changes in groundwater
during the period of record. Unfortunately, it’s still hard to quantify change without
having all the variables on one plot. It might be best to compute the differences
via Eq. 40.1 from the introductory paragraph at the top of the document.

Code Checkpoint A21e. The book’s repository contains a script that shows what
your code should look like at this point.

40.2.5 Section 5: Combining Image Collections

Here, you will see how to combine multiple image collections and compute dif-
ferences via an expression. We will start by joining the GLDAS image collections
together. This is accomplished with the ee.Join.inner function.

874 A. J. Purdy and J. S. Famiglietti

// Combine GLDAS & GRACE Data to compute change in human
accessible water
var filter = ee.Filter.equals({

leftField: 'system:time_start',
rightField: 'system:time_start'

});
// Create the join.
var joindata = ee.Join.inner();
// Join GLDAS data
var firstJoin =
ee.ImageCollection(joindata.apply(swe_ic_ts, sm_ic_ts,

filter));
var join_1 = firstJoin.map(function(feature) {

return ee.Image.cat(feature.get('primary'),
feature.get(

'secondary'));
});
print('Joined', join_1);

Next, we join the reservoir data.

// Repeat to append Reservoir Data now
var secondJoin = ee.ImageCollection(joindata.apply(join_1,
sw_ic_ts,

filter));
var res_GLDAS = secondJoin.map(function(feature) {

return ee.Image.cat(feature.get('primary'),
feature.get(

'secondary'));
});

Lastly, we need to repeat this step by joining GRACE to the output from the
last join.

40 Groundwater Monitoring with GRACE 875

// Repeat to append GRACE now
var thirdJoin =
ee.ImageCollection(joindata.apply(res_GLDAS, GRACE_yr,

filter));
var GRACE_res_GLDAS = thirdJoin.map(function(feature) {

return ee.Image.cat(feature.get('primary'),
feature.get(

'secondary'));
});

Take a moment to print out the ImageCollection GRACE_res_GLDAS.
To resolve groundwater storage changes in the basin, one can rearrange Eq. 40.1

to solve for GWa. Here we assume canopy storage anomalies are very small
relative to other storage components and ignore them in the equation below.

GWa = TWSa − SWa − SMa − SWEa (40.3)

To execute this step, we map an expression across an ImageCollection to
produce a new variable named GWa.

// Compute groundwater storage anomalies
var GWa =
ee.ImageCollection(GRACE_res_GLDAS.map(function(img) {

var date = ee.Date.fromYMD(img.get('year'), 1, 1);
return img.expression(

'TWSa - SWa - SMa - SWEa', {
'TWSa': img.select('TWSa'),
'SMa': img.select('SMa'),
'SWa': img.select('SWa'),
'SWEa': img.select('SWEa')

}).rename('GWa').copyProperties(img, [
'system:time_start'

]);
}));
print('GWa', GWa);

You can see how the variable img is used to extract bands from the combined
ImageCollection and create a new one with just one band.

We’ll plot this to see how groundwater storage is changing (Fig. 40.6).

876 A. J. Purdy and J. S. Famiglietti

Fig. 40.6 Time-series chart of GWa in units of equivalent water height (centimeters)

// Chart Results
var GWaChart = ui.Chart.image.series({

imageCollection: GWa.filter(ee.Filter.date('2003-
01-01',

'2016-12-31')),
region: basin,
reducer: ee.Reducer.mean(),
scale: 25000

})
.setChartType('ScatterChart')
.setOptions({

title: 'Changes in Groundwater Storage',
trendlines: {

0: {
color: 'CC0000'

}
},
hAxis: {

format: 'MM-yyyy'
},
vAxis: {

title: 'GWa (cm)'
},
lineWidth: 2,
pointSize: 2

});
print(GWaChart);

You can see how reliant California is on groundwater. The chart shows large
declines during recent drought periods. Using the chart, you can estimate how
much groundwater was used during the 2012–2016 drought period. In the Console,

40 Groundwater Monitoring with GRACE 877

hover your mouse over the chart and jot down the value for GWa in 2012 and in
2016. You will use this information, in addition to the area and unit conversion, to
estimate groundwater usage during this period in cubic kilometers.

// Now look at the values from the start of 2012 to the end
of 2016 drought.
// 2012 -3.874 cm --> 2016 -16.95 cm
// This is a ~13 cm / 100000 (cm/km) * Area 155407 km2 =
var loss_km3 = ee.Number(-3.874).subtract(-
16.95).divide(km_2_cm)

.multiply(area_km2);
print('During the 2012-2016 drought, CA lost ', loss_km3,

'km3 in groundwater');

Code Checkpoint A21f. The book’s repository contains a script that shows what
your code should look like at this point.

40.3 Synthesis

Assignment 1. This chapter provides a roadmap to monitor changes in groundwa-
ter storage at a basin scale using observations of TWSa from the GRACE satellites
and hydrologic data from GLDAS. Now you can apply these methods to another
river basin anywhere in the world.

40.4 Conclusion

In this chapter, we reviewed how GRACE observations can be used to estimate
changes in water storage for a region of interest like California’s Central Valley.
Specifically, this chapter demonstrated how to combine equivalent water thick-
ness observations from GRACE with model simulations of soil moisture, snow
water equivalent, and in situ reservoir storage observations to quantify ground-
water storage declines. Along the way, some advanced Earth Engine skills were
explored, including creating an ImageCollection from a table and joining
multiple image collections. Earth Engine users now have the skills and the knowl-
edge of GRACE observations to apply this methodology to other regions around
the world.

878 A. J. Purdy and J. S. Famiglietti

References

Castle SL, Thomas BF, Reager JT et al (2014) Groundwater depletion during drought threatens
future water security of the Colorado River Basin. Geophys Res Lett 41:5904–5911. https://
doi.org/10.1002/2014GL061055

Famiglietti JS (2014) The global groundwater crisis. Nat Clim Change 4:945–948. https://doi.org/
10.1038/nclimate2425

Famiglietti JS, Lo M, Ho SL et al (2011) Satellites measure recent rates of groundwater depletion
in California’s Central Valley. Geophys Res Lett 38. https://doi.org/10.1029/2010GL046442

Purdy AJ, David CH, Sikder MS et al (2019) An open-source tool to facilitate the processing of
GRACE observations and GLDAS outputs: an evaluation in Bangladesh. Front Environ Sci 7.
https://doi.org/10.3389/fenvs.2019.00155

Richey AS, Thomas BF, Lo MH et al (2015) Quantifying renewable groundwater stress with
GRACE. Water Resour Res 51:5217–5237. https://doi.org/10.1002/2015WR017349

Rodell M, Houser PR, Jambor U et al (2004) The global land data assimilation system. Bull Am
Meteorol Soc 85:381–394. https://doi.org/10.1175/BAMS-85-3-381

Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in
India. Nature 460:999–1002. https://doi.org/10.1038/nature08238

Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of
mass variability in the Earth system. Science 305(5683):503–505. https://doi.org/10.1126/sci
ence.1099192

Voss KA, Famiglietti JS, Lo M et al (2013) Groundwater depletion in the Middle East from
GRACE with implications for transboundary water management in the Tigris-Euphrates-
Western Iran region. Water Resour Res 49:904–914. https://doi.org/10.1002/wrcr.20078

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1002/2014GL061055
https://doi.org/10.1002/2014GL061055
https://doi.org/10.1038/nclimate2425
https://doi.org/10.1038/nclimate2425
https://doi.org/10.1029/2010GL046442
https://doi.org/10.3389/fenvs.2019.00155
https://doi.org/10.1002/2015WR017349
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.1038/nature08238
https://doi.org/10.1126/science.1099192
https://doi.org/10.1126/science.1099192
https://doi.org/10.1002/wrcr.20078
http://creativecommons.org/licenses/by/4.0/

41Benthic Habitats

Dimitris Poursanidis , Aurélie C. Shapiro ,
and Spyridon Christofilakos

Overview
Shallow-water coastal benthic habitats, which can comprise seagrasses, sandy soft
bottoms, and coral reefs are essential ecosystems, supporting fisheries, providing
coastal protection, and sequestering ‘blue’ carbon. Multispectral satellite imagery,
particularly with blue and green spectral bands, can penetrate clear, shallow water,
allowing us to identify what lies on the seafloor. In terrestrial habitats, atmospheric
and topographic corrections are important, whereas in shallow waters, it is essential to
correct the effects of the water column, as different depths can change the reflectance
observed by the satellite sensor. Once you know the water depth, you can accurately
assess benthic habitats such as seagrass, sand, and coral. In this chapter, we will
describe how to estimate water depth from high-resolution Planet data and map
benthic habitats.

D. Poursanidis (B)
Institute of Applied and Computational Mathematics, Foundation for Research and Technology
Hellas, The Remote Sensing Lab, 100 N. Plastira Str., Vassilika Vouton, 70013, Heraklion, Greece
e-mail: dpoursanidis@iacm.forth.gr

A. C. Shapiro
Here+There Mapping Solutions, Berlin, Germany

S. Christofilakos
German Aerospace Center (DLR), Remote Sensing Technology Institute, Department of
Photogrammetry and Image Analysis, Rutherfordstraße 2, 12489 Berlin, Germany

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_41

879

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_41&domain=pdf
https://orcid.org/0000-0003-3228-280X
https://orcid.org/0000-0001-9693-9394
https://orcid.org/0009-0006-4163-5426
mailto:dpoursanidis@iacm.forth.gr
https://doi.org/10.1007/978-3-031-26588-4_41

880 D. Poursanidis et al.

Learning Outcomes

• Separating land from water with a supervised classification.
• Removing surface sunglint and wave glint.
• Correcting for water depth to derive bottom surface reflectance through a

regression approach.
• Identifying and classifying benthic habitats using machine learning.
• Developing regression models to estimate water depth using training data.
• Evaluating training data and model accuracy.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks,

classify images (Part 2).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Perform a supervised Random Forest image classification (Chap. 6).
• Obtain accuracy metrics from classifications (Chap. 7).
• Use reducers to implement linear regression between image bands (Chap. 8).
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).
• Convert between raster and vector data (Chap. 23).

41.1 Introduction to Theory

Coastal benthic habitats include several ecosystems across the globe. One com-
mon element is the seagrass meadow, a significant component of coastal marine
ecosystems (UNEP/MAP 2009). Seagrass meadows are among the most produc-
tive habitats in the coastal zone, performing essential ecosystem functions and
providing essential ecosystem services (Duarte et al. 2013), such as water oxy-
genation and nutrient provision, seafloor and beach stabilization (as sediment is
controlled and trapped within the rhizomes of the meadows), carbon burial, and
nursery areas and refuge for commercial and endemic species (Boudouresque et al.
2012; Vassallo et al. 2013; Campagne et al. 2014).

However, seagrass meadows are experiencing a global decline due to intensive
human activities and climate change (Boudouresque et al. 2009). Threats from
climate change include sea surface temperature increases and sea level rise, as
well as more frequent and intensive storms (Pergent et al. 2014). These threats
represent a pressing challenge for coastal management and are predicted to have
deleterious effects on seagrasses.

Several programs have focused on coastal seabed mapping, and a wide range
of methods have been utilized for mapping seagrasses (Poursanidis et al. 2021;
Borfecchia et al. 2013; Eugenio et al. 2015). Satellite remote sensing has been

41 Benthic Habitats 881

employed for the mapping of seagrass meadows and coral reefs in several areas
(Goodman et al. 2011; Hedley et al. 2016; Knudby and Nordlund 2011; Koedsin
et al. 2016; Lyons et al. 2012).

In this chapter, we will show you how to map coastal habitats using high-
resolution Earth observation data from Planet with updated field data collected in
the same period as the imagery acquisition. You will learn how to calculate coastal
bathymetry using high-quality field data and machine learning regression methods.
In the end, you will be able to adapt the code and use your own data to work in
your own coastal area of interest, which can be tropical or temperate as long as
there are clear waters up to 30 m deep.

41.2 Practicum

41.2.1 Section 1: Inputting Data

The first step is to define the data that you will work on. By uploading raster
and vector data via the Earth Engine asset inventory, you will be able to analyze
and process them through the Earth Engine API. The majority of satellite data
are stored with values scaled by 10,000 and truncated in order to occupy less
memory. In this setting, it is crucial to scale them back to their physical values
before processing them.

// Section 1
// Import and display satellite image.
var planet = ee.Image('projects/gee-book/assets/A2-
2/20200505_N2000')

.divide(10000);

Map.centerObject(planet, 12);
var visParams = {

bands: ['b3', 'b2', 'b1'],
min: 0.17,
max: 0.68,
gamma: 0.8

};
Map.addLayer({

eeObject: planet,
visParams: visParams,
name: 'planet initial',
shown: true

});

882 D. Poursanidis et al.

Code Checkpoint A22a. The book’s repository contains a script that shows what
your code should look like at this point.

41.2.2 Section 2: Preprocessing Functions

Code Checkpoint A22b. The book’s repository contains a script to use to begin
this section. You will need to start with that script and paste code below into it.
When you run the script, you will see several assets being imported for water,
land, sunglint, and sandy patches to correct for the water column.

With the Planet imagery imported into Earth Engine, we now need to pre-
pare for the classification and bathymetry procedures that will follow. The aim
of the preprocessing is to correct or minimize spectral alterations due to physical
conditions like sunglint, waves, and the water column. The landmask function
below will remove the land area from our image in order to focus on the marine
area of interest. This prevents the land reflectance values, which are relatively
high, from biasing the main process of classification over dark water with low
reflectance. To implement this step, we will perform a supervised classification
to obtain the land/water mask. To prepare for the classification, we drew water
and land geometry imports and set them as a FeatureCollection with prop-
erty ‘class’ and values 1 and 0, respectively (Fig. 41.1). We will employ the
Normalized Difference Water Index (NDWI) (Gao 1996) using a Random For-
est classifier (Breiman 2001). Due to the distinct spectral reflectances of terrain
and water surfaces, there is no need to ensure a balanced dataset between the two
classes. However, the size of the training dataset is still important and therefore, the
more the better. For this task, we create ‘line’ geometries because we can get more
training points than ‘point’ geometries with fewer clicks. For more information
regarding generating training lines, points or polygons, please see Chap. 6.

41 Benthic Habitats 883

Fig. 41.1 Labeling of land and water regions using lines in preparation for the Random Forests
classification

// Section 2
// Mask based to NDWI and RF.
function landmask(img) {

var ndwi = img.normalizedDifference(['b2', 'b4']);
var training = ndwi.sampleRegions(land.merge(water),

['class'],
3);

var trained = ee.Classifier.smileRandomForest(10)
.train(training, 'class');

var classified = ndwi.classify(trained);
var mask = classified.eq(1);

return img.updateMask(mask);
}

var maskedImg = landmask(planet);

Map.addLayer(maskedImg, visParams, 'maskedImg', false);

Sunglint is a phenomenon that occurs when the sun angle and the sensor are
positioned such that there is a mirror-like reflection at the water surface. In areas
of glint, we cannot detect reflectance from the ocean floor. This will affect image

884 D. Poursanidis et al.

Fig. 41.2 Identification of areas with sunglint. Raising the gamma parameter during the visual-
ization makes the phenomenon appear more intense, making it easier to draw the glint polygons

processing and needs to be corrected. The user adds polygons identifying areas of
glint (Fig. 41.2), and these areas aid the linear model to remove sunglint areas in
the whole image extend (Hedley et al. 2005).

// Sun-glint correction.
function sunglintRemoval(img) {

var linearFit1 = img.select(['b4',
'b1']).reduceRegion({

reducer: ee.Reducer.linearFit(),
geometry: sunglint,
scale: 3,
maxPixels: 1e12,
bestEffort: true,

});
var linearFit2 = img.select(['b4',

'b2']).reduceRegion({
reducer: ee.Reducer.linearFit(),
geometry: sunglint,
scale: 3,
maxPixels: 1e12,

41 Benthic Habitats 885

bestEffort: true,
});
var linearFit3 = img.select(['b4',

'b3']).reduceRegion({
reducer: ee.Reducer.linearFit(),
geometry: sunglint,
scale: 3,
maxPixels: 1e12,
bestEffort: true,

});

var slopeImage = ee.Dictionary({
'b1': linearFit1.get('scale'),
'b2': linearFit2.get('scale'),
'b3': linearFit3.get('scale')

}).toImage();

var minNIR = img.select('b4').reduceRegion({
reducer: ee.Reducer.min(),
geometry: sunglint,
scale: 3,
maxPixels: 1e12,
bestEffort: true,

}).toImage(['b4']);

return img.select(['b1', 'b2', 'b3'])

.subtract(slopeImage.multiply((img.select('b4')).subtract(
minNIR)))

.addBands(img.select('b4'));
}
var sgImg = sunglintRemoval(maskedImg);
Map.addLayer(sgImg, visParams, 'sgImg', false);

Question 1. If you design more polygons for sunglint correction, can you see
any improvement in the results visually and by examining values in pixels? Keep
in mind that in already drawn rectangles (sunglint polygons), you cannot draw
free-shaped polygons or lines. Try instead adding some more points or rectangles.

886 D. Poursanidis et al.

You can design more polygons, or select areas with severe or moderate sunglint
to see how the site selection influences the final results.

The Depth Invariant Index (DIV) is a tool that creates a proxy image that helps
minimize the bias of the spectral values due to the water column during classifi-
cation and bathymetry procedures. Spectral signatures tend to be affected by the
depth of the water column due to suspended material and the absorption of light.
A typical result is that shallow seagrasses and deeper sandy seafloors will have
similar spectral signatures. The correction of that error is based on the correlation
between depth and logged bands (Lyzenga 1981).

In our example, the correction of water column alterations is based on the ratio
of the green and blue bands, because of their higher penetrating properties com-
pared to the red and near-infrared (NIR) bands. As in the previous functions,
a requirement for this procedure is to identify sandy patches in different depth
ranges. If needed, you can use the satellite image layer to do so.

Since we will use log values in the current step, it is crucial to transform all
the negative values to positive before estimating DIV and since the majority of the
values are in optically deep waters, the value 0.0001 will be assigned to values
less than 0 in an attempt to avoid altering the pixels with positive values at the
coastal zone. Moreover, a low-pass filter will be applied to normalize the observed
noise that occurred during the previous steps (see Chap. 10).

// DIV procedure.
function kernel(img) {

var boxcar = ee.Kernel.square({
radius: 2,
units: 'pixels',
normalize: true

});
return img.convolve(boxcar);

}

function makePositive(img) {
return img.where(img.lte(0), 0.0001);

}

41 Benthic Habitats 887

maxPixels: 1e12,
bestEffort: true,

});

var covarMatrix =
ee.Array(covariance.get('array'));

var var1 = covarMatrix.get([0, 0]);
var var2 = covarMatrix.get([1, 1]);
var covar = covarMatrix.get([0, 1]);var covar = covarMatrix.get([0, 1]);

var a =
var1.subtract(var2).divide(covar.multiply(2));

var attenCoeffRatio =
a.add(((a.pow(2)).add(1)).sqrt());

var depthInvariantIndex = img.expression(
'image1 - (image2 * coeff)', {

'image1': imageLog.select([x]),
'image2': imageLog.select([y]),
'coeff': attenCoeffRatio

});

function div(img) {
var band1 = ee.List(['b1', 'b2', 'b3', 'b1', 'b2']);
var band2 = ee.List(['b3', 'b3', 'b2', 'b2', 'b1']);
var nband = ee.List(['b1b3', 'b2b3', 'b3b2', 'b1b2',

'b2b1']);

for (var i = 0; i < 5; i += 1) {
var x = band1.get(i);
var y = band2.get(i);
var z = nband.get(i);

var imageLog = img.select([x, y]).log();

var covariance = imageLog.toArray().reduceRegion({
reducer: ee.Reducer.covariance(),
geometry: DIVsand,
scale: 3,

888 D. Poursanidis et al.

Question 2. How can the selection of sandy patches influence the final result?
Sandy patches can also include signals from sparse seagrass or other types

of benthic cover. Select different areas of variable depths and therefore different
spectral reflectance to explore the changes in the final DIV result.

Code Checkpoint A22c. The book’s repository contains a script that shows what
your code should look like at this point.

41.2.3 Section 3: Supervised Classification

To create accurate classifications, it is beneficial for the training data set to be cre-
ated from in situ data. This is especially important in marine remote sensing, due to
dynamic, varying ecosystems. In our example, all the reference data were acquired
during scientific dives. The reference data consist of three classes: SoftBottom
for sandy patches, rockyBottom for rocky patches, and pO for posidonia-seagrass
patches. Here, we provide a dataset that will be split using a 70–30% partitioning
strategy into training and validation data (see Chap. 6) and is already pre-loaded
in the assets of this book.

41 Benthic Habitats 889

// Section 3, classification
// Import of reference data and split.
var softBottom = ee.FeatureCollection(

'projects/gee-book/assets/A2-2/SoftBottom');
var rockyBottom = ee.FeatureCollection(

'projects/gee-book/assets/A2-2/RockyBottom');
var pO = ee.FeatureCollection('projects/gee-book/assets/A2-
2/PO');

var sand = ee.FeatureCollection.randomPoints(softBottom,
150).map(

function(s) {
return s.set('class', 0);

}).randomColumn();
var sandT = sand.filter(ee.Filter.lte('random',
0.7)).aside(print,

'sand training');
var sandV = sand.filter(ee.Filter.gt('random',
0.7)).aside(print,

'sand validation');
Map.addLayer(sandT, {

color: 'yellow'
}, 'Sand Training', false);
Map.addLayer(sandV, {

color: 'yellow'
}, 'Sand Validation', false);

var hard = ee.FeatureCollection.randomPoints(rockyBottom,
79).map(

function(s) {
return s.set('class', 1);

}).randomColumn();
var hardT = hard.filter(ee.Filter.lte('random',
0.7)).aside(print,

'hard training');
var hardV = hard.filter(ee.Filter.gt('random',
0.7)).aside(print,

'hard validation');

890 D. Poursanidis et al.

For this procedure, we chose the ee.Classifier.libsvm classifier
because of its established performance in aquatic environments (Poursanidis et al.
2018; da Silveira et al. 2021). The function below does the classification and also
estimates overall user’s and producer’s accuracy (see Chap. 7):

// Classification procedure.
function classify(img) {

var mergedT = ee.FeatureCollection([sandT, hardT,
posiT])

.flatten();
var training = img.sampleRegions(mergedT, ['class'],

3);
var trained = ee.Classifier.libsvm({

kernelType: 'RBF',
gamma: 1,
cost: 500

}).train(training, 'class');
var classified = img.classify(trained);

var mergedV = ee.FeatureCollection([sandV, hardV,
posiV])

.flatten();
var accuracyCol = classified.unmask().reduceRegions({

collection: mergedV,
reducer: ee.Reducer.first(),
scale: 10

});

41 Benthic Habitats 891

var classificationErrorMatrix =
accuracyCol.errorMatrix({

actual: 'class',
predicted: 'first',
order: [0, 1, 2]

});
var classNames = ['soft_bot', 'hard_bot', 'seagrass'];
var accuracyOA = classificationErrorMatrix.accuracy();
var accuraccyCons = ee.Dictionary.fromLists({

keys: classNames,
values:

classificationErrorMatrix.consumersAccuracy()
.toList()
.flatten()

});
var accuracyProd = ee.Dictionary.fromLists({

keys: classNames,
values:

classificationErrorMatrix.producersAccuracy()
.toList()
.flatten()

});

var classificationErrormatrixArray =
classificationErrorMatrix

.array();

var arrayToDatatable = function(array) {
var classesNames = ee.List(classNames);

function toTableColumns(s) {
return {

id: s,
label: s,
type: 'number'

};
}
var columns = classesNames.map(toTableColumns);

function featureToTableRow(f) {
return {

c: ee.List(f).map(function(c) {

892 D. Poursanidis et al.

return {
v: c

};
})

};
}
var rows = array.toList().map(featureToTableRow);
return ee.Dictionary({

cols: columns,
rows: rows

});
};

var dataTable =
arrayToDatatable(classificationErrormatrixArray)

.evaluate(function(dataTable) {
print('------------- Error matrix -------------

',
ui.Chart(dataTable, 'Table')
.setOptions({

pageSize: 15
}),
'rows: reference, cols: mapped');

});
print('Overall Accuracy', accuracyOA);
print('Users accuracy', accuraccyCons);
print('Producers accuracy', accuracyProd);
return classified;

}

var svmClassification = classify(divImg);
var svmVis = {

min: 0,
max: 2,
palette: ['ffffbf', 'fc8d59', '91cf60']

};
Map.addLayer(svmClassification, svmVis, 'classification');

Code Checkpoint A22d. The book’s repository contains a script that shows what
your code should look like at this point.

41 Benthic Habitats 893

41.2.4 Section 4: Bathymetry by Random Forests Regression

For the bathymetry procedure, we will exploit the setOutputMode
(‘REGRESSION’) option of ee.Classifier.smile RandomForest.
For this example, reference data came from a sonar that was mounted on a boat.
In contrast to the classification accuracy assessment, the accuracy assessment of
bathymetry is based on R2 and the root-mean-square error (RMSE).

With regard to visualization of the resulting bathymetry, we have to consider
the selection of colors and their physical meanings. In the classification, which is
a categorical image, we use a diverging palette, while in bathymetry, which shows
a continuous value, we should use a sequential palette. Tip: ‘cold’ colors better
convey depth. For the satellite-derived bathymetry, we use pre-loaded assets with
the in situ depth measurement. The quality of these measurements is crucial to the
success of the classifier.

// Section 4, Bathymetry
// Import and split training and validation data for the
bathymetry.
var depth = ee.FeatureCollection(

'projects/gee-book/assets/A2-
2/DepthDataTill09072020_v2');
depth = depth.randomColumn();
var depthT = depth.filter(ee.Filter.lte('random', 0.7));
var depthV = depth.filter(ee.Filter.gt('random', 0.7));
Map.addLayer(depthT, {

color: 'black'
}, 'Depth Training', false);
Map.addLayer(depthV, {

color: 'gray'
}, 'Depth Validation', false);

So that every pixel contains at most one measurement, the vector depth assets
are rasterized prior to using them for the regression.

894 D. Poursanidis et al.

function vector2image(vector) {
var rasterisedVectorData = vector

.filter(ee.Filter.neq('Depth',
null)) // Filter out NA depth values.

.reduceToImage({
properties: ['Depth'],
reducer: ee.Reducer.mean()

});
return (rasterisedVectorData);

}

var depthTImage = vector2image(depthT)
.aside(Map.addLayer, {

color: 'white'
}, 'Depth Training2', false);

var depthVImage = vector2image(depthV)
.aside(Map.addLayer, {

color: 'white'
}, 'Depth Validation2', false);

Finally, we need to enter down and execute the function to calculate the satellite
derived bathymetry function, based on the Random Forest classifier.

function rfbathymetry(img) {
var training = img.sampleRegions({

collection: depthT,
scale: 3

});

var regclass = ee.Classifier.smileRandomForest(15)
.train(training, 'Depth');

var bathyClass = img

.classify(regclass.setOutputMode('REGRESSION')).rename(
'Depth');

var sdbEstimate = bathyClass.clip(depthV);

// Prepare data by putting SDB estimated data and in
situ data

// in one image to compare them afterwards.
var imageI = ee.Image.cat([sdbEstimate, depthVImage]);
// Calculate covariance.

41 Benthic Habitats 895

// Print together, so that they appear in the same
output.

print('R²', rSqr, 'RMSE', rmse);
return bathyClass;

}

var rfBathymetry = rfbathymetry(divImg);
var bathyVis = {

min: -50,
max: 0,
palette: ['084594', '2171b5', '4292c6', '6baed6',

'9ecae1', 'c6dbef', 'deebf7', 'f7fbff'
]

};
Map.addLayer(rfBathymetry, bathyVis, 'bathymetry');

var covariance = imageI.toArray().reduceRegion({
reducer: ee.Reducer.covariance(),
geometry: depthV,
scale: 3,
bestEffort: true,
maxPixels: 1e9

});
var covarMatrix = ee.Array(covariance.get('array'));
var rSqr = covarMatrix.get([0, 1]).pow(2)

.divide(covarMatrix.get([0, 0])
.multiply(covarMatrix.get([1, 1])));

var deviation = depthVImage.select('mean')
.subtract(sdbEstimate.select('Depth')).pow(2);

var rmse = ee.Number(deviation.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: depthV,
scale: 3,
bestEffort: true,
maxPixels: 1e12

}).get('mean'))
.sqrt();.sqrt();

Question 3. Does the selection of different color ramps lead to misinterpretations?
By choosing different color ramps for the same data set, you can see how visual

interpretation can be changed based on color. Trying different color ramps will
reveal how some can better visualize the final results for further use in maritime
spatial planning activities, while others, including commonly seen rainbow ramps,
can lead to erroneous decisions.

896 D. Poursanidis et al.

Code Checkpoint A22e. The book’s repository contains a script that shows what
your code should look like at this point.

41.3 Synthesis

With what you learned in this chapter, you can analyze Earth observation data—
here, specifically from the Planet Cubesat constellation—to create your own map
of coastal benthic habitats and coastal bathymetry for a specific case study. Feel
free to test out the approach in another part of the world using your own data or
open-access data, or use your own training data for a more refined classification
model.

You can add your own point data to the map, collected via a fieldwork campaign
or by visually interpreting the imagery, and merge with the training data to improve
a classification, or clean areas that need to be removed by drawing polygons and
masking them in the classification.

For the bathymetry, you can select different calibration/validation ratio
approaches and test the optimum ratio of splitting to see how it influences the
final bathymetry map. You can also add a smoothing filter to create a visually
smoother image of coastal bathymetry.

41.4 Conclusion

Many coastal habitats, especially seagrass meadows, are dynamic ecosystems that
change over time and can be lost through natural and anthropogenic causes.

The power of Earth Engine lies in its cloud-based, lightning-fast, automated
approach to workflows, especially its processing power. This process would take
days when performed offline in traditional remote sensing software, especially over
large areas. And the Earth Engine approach is not only fast but also consistent:
The same method can be applied to images from different dates to assess habitat
changes over time, both gain and loss.

The availability of Planet imagery allows us to use a high-resolution prod-
uct. Natively, Earth Engine hosts the archives of Sentinel-2 and Landsat data.
The Landsat archive spans from 1984 to the present, while Sentinel-2, a higher-
resolution product, is available from 2017 to today. All of this imagery can be used
in the same workflow in order to map benthic habitats and monitor their changes
over time, allowing us to understand the past of the coastal seascape and envision
its future.

41 Benthic Habitats 897

References

Borfecchia F, Micheli C, Carli F et al (2013) Mapping spatial patterns of Posidonia oceanica mead-
ows by means of Daedalus ATM airborne sensor in the coastal area of Civitavecchia (Central
Tyrrhenian Sea, Italy). Remote Sens 5:4877–4899. https://doi.org/10.3390/rs5104877

Boudouresque CF, Bernard G, Pergent G et al (2009) Regression of Mediterranean seagrasses
caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot
Mar 52:395–418. http://doi.org/10.1515/BOT.2009.057

Boudouresque CF, Bernard G, Bonhomme P et al (2012) Protection and conservation of Posidonia
Oceanica meadows. RAMOGE and RAC/SPA

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:101093340
4324

Campagne CS, Salles JM, Boissery P, Deter J (2014) The seagrass Posidonia oceanica: ecosystem
services identification and economic evaluation of goods and benefits. Mar Pollut Bull 97:391–
400. https://doi.org/10.1016/j.marpolbul.2015.05.061

da Silveira CBL, Strenzel GMR, Maida M et al (2021) Coral reef mapping with remote sensing
and machine learning: a nurture and nature analysis in marine protected areas. Remote Sens
13:2907. https://doi.org/10.3390/rs13152907

Duarte CM, Kennedy H, Marbà N, Hendriks I (2013) Assessing the capacity of seagrass mead-
ows for carbon burial: current limitations and future strategies. Ocean Coast Manag 83:32–38.
https://doi.org/10.1016/j.ocecoaman.2011.09.001

Eugenio F, Marcello J, Martin J (2015) High-resolution maps of bathymetry and benthic habitats
in shallow-water environments using multispectral remote sensing imagery. IEEE Trans Geosci
Remote Sens 53:3539–3549. https://doi.org/10.1109/TGRS.2014.2377300

Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liq-
uid water from space. Remote Sens Environ 58:257–266. https://doi.org/10.1016/S0034-425
7(96)00067-3

Goodman J, Purkis S, Phinn SR (2011) Coral reef remote sensing: a guide for mapping, monitoring
and management. Springer, Berlin

Hedley JD, Harborne AR, Mumby PJ (2005) Simple and robust removal of sun glint for mapping
shallow-water benthos. Int J Remote Sens 26:2107–2112. https://doi.org/10.1080/014311605
00034086

Hedley JD, Roelfsema CM, Chollett I et al (2016) Remote sensing of coral reefs for monitoring
and management: a review. Remote Sens 8:118. https://doi.org/10.3390/rs8020118

Knudby A, Nordlund L (2011) Remote sensing of seagrasses in a patchy multi-species environ-
ment. Int J Remote Sens 32:2227–2244. https://doi.org/10.1080/01431161003692057

Koedsin W, Intararuang W, Ritchie RJ, Huete A (2016) An integrated field and remote sensing
method for mapping seagrass species, cover, and biomass in Southern Thailand. Remote Sens
8:292. https://doi.org/10.3390/rs8040292

Lyons MB et al (2012) Long term land cover and seagrass mapping using Landsat and object-
based image analysis from 1972 to 2010 in the coastal environment of South East Queensland,
Australia. ISPRS J Photogrammetry Remote Sens 71:34–46. https://doi.org/10.1016/j.isprsjprs.
2012.05.002

Lyzenga DR (1981) Remote sensing of bottom reflectance and water attenuation parameters in
shallow water using aircraft and Landsat data. Int J Remote Sens 2:71–82. https://doi.org/10.
1080/01431168108948342

Pergent G, Bazairi H, Bianchi CN et al (2014) Climate change and Mediterranean seagrass mead-
ows: a synopsis for environmental managers. Mediterr Mar Sci 15:462–473. http://doi.org/10.
12681/mms.621

Poursanidis D, Topouzelis K, Chrysoulakis N (2018) Mapping coastal marine habitats and delin-
eating the deep limits of the Neptune’s seagrass meadows using very high resolution Earth
observation data. Int J Remote Sens 39:8670–8687. https://doi.org/10.1080/01431161.2018.
1490974

https://doi.org/10.3390/rs5104877
http://doi.org/10.1515/BOT.2009.057
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.marpolbul.2015.05.061
https://doi.org/10.3390/rs13152907
https://doi.org/10.1016/j.ocecoaman.2011.09.001
https://doi.org/10.1109/TGRS.2014.2377300
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1080/01431160500034086
https://doi.org/10.1080/01431160500034086
https://doi.org/10.3390/rs8020118
https://doi.org/10.1080/01431161003692057
https://doi.org/10.3390/rs8040292
https://doi.org/10.1016/j.isprsjprs.2012.05.002
https://doi.org/10.1016/j.isprsjprs.2012.05.002
https://doi.org/10.1080/01431168108948342
https://doi.org/10.1080/01431168108948342
http://doi.org/10.12681/mms.621
http://doi.org/10.12681/mms.621
https://doi.org/10.1080/01431161.2018.1490974
https://doi.org/10.1080/01431161.2018.1490974

898 D. Poursanidis et al.

Poursanidis D, Traganos D, Teixeira L, Shapiro A, Muaves L (2021) Cloud-native seascape map-
ping of Mozambique’s Quirimbas National Park with Sentinel-2. Remote Sens Ecol Conserv
7(2):275–291. https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.187

UNEP/MAP (2009) State of the Mediterranean marine and coastal environment. In: Ecological
applications, pp 1047–1056

Vassallo P, Paoli C, Rovere A, Montefalcone M, Morri C, Bianchi CN (2013) The value of the
seagrass Posidonia oceanica: a natural capital assessment. Mar Pollut Bull 75(1–2):157–167.
https://doi.org/10.1016/j.marpolbul.2013.07.044

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.187
https://doi.org/10.1016/j.marpolbul.2013.07.044
http://creativecommons.org/licenses/by/4.0/

42Surface Water Mapping

K. Markert , G. Donchyts , and A. Haag

Overview
In this chapter, you will learn the step-by-step implementation of an efficient and
robust approach for mapping surface water. You will also learn how the extracted
surface water information can be used in conjunction with historical surface water
information to extract flooded areas. This chapter will focus mostly on the use of
Sentinel-1 Synthetic Aperture Radar (SAR) data, but the approaches apply to both
SAR and optical remotely sensed data.

Learning Outcomes

• Applying Otsu thresholding techniques for surface water mapping.
• Understanding the considerations of global versus adaptive histogram sampling.
• Implementing an adaptive histogram sampling approach.
• Extracting flooded areas from a surface water map.

Helps if you know how to

• Import images and image collections, filter, and visualize (Chaps. 2 and 3).
• Create a graph using ui.Chart (Chap. 4).

K. Markert · G. Donchyts
Google, Mountain View, USA
e-mail: kmarkert@google.com

G. Donchyts
e-mail: dgena@google.com

A. Haag (B)
Deltares, Delft, The Netherlands
e-mail: arjen.haag@deltares.nl

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_42

899

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_42&domain=pdf
http://orcid.org/0000-0002-7557-0425
http://orcid.org/0000-0002-3280-3858
http://orcid.org/0000-0001-8805-0923
mailto:kmarkert@google.com
mailto:dgena@google.com
mailto:arjen.haag@deltares.nl
https://doi.org/10.1007/978-3-031-26588-4_42

900 K. Markert et al.

• Write a function and map it over an ImageCollection (Chap. 12).
• Understand basics of working with Synthetic Aperture Radar images

(Chap. 39).

42.1 Introduction to Theory

Flooding impacts more people than any other environmental hazard, and flood
exposure is expected to increase in the future (Tellman et al. 2021). Remote sens-
ing data plays a pivotal role in mapping historical flood zones and producing
spatial maps of flood events that can be used to guide response efforts (Oddo
and Bolten 2019). Oftentimes, flood maps need to be created and delivered to dis-
aster managers within hours of image acquisition. Thus, computationally efficient
approaches are required to reduce latency. Furthermore, these approaches need to
produce accurate results without increasing processing time.

Image thresholding is an efficient method for mapping surface water (Schu-
mann et al. 2009). Among the numerous methods available for image thresholding,
a popular one is ‘Otsu’s method’ (Otsu 1979). Otsu’s method is a histogram-based
thresholding approach where the inter-class variance between two classes, a fore-
ground class and a background class, is maximized. As this approach assumes that
only two classes are present within an image, which is rarely the case, methods
have been developed (Donchyts et al. 2016; Cao et al. 2019) to constrain histogram
sampling to areas that are more likely to represent a bimodal histogram of water/no
water. Otsu’s method applied on such a constrained histogram provides a more
accurate estimation of a water threshold without sacrificing the computational
efficiency of the method.

This chapter explores surface water mapping using Otsu’s method and walks
through an adaptive thresholding technique initially developed by Donchyts et al.
2016 and applied on optical imagery, then adapted by Markert et al. 2020 for
detecting surface water in SAR imagery. Furthermore, the resulting surface water
map will be compared with the Joint Research Centre’s (JRC) Global Surface
Water dataset (Pekel et al. 2016) to extract the flooded areas. This chapter will
focus on the use of Sentinel-1 (S1) SAR data, but the concepts apply to other
satellite imagery where we can distinguish water.

42.2 Practicum

42.2.1 Otsu Thresholding

Otsu’s method is widely used for determining the optimal threshold of an image
with two classes. In this section, we will explore the use of Otsu’s method
for segmenting water using an image-wide histogram (also known as a global
histogram).

42 Surface Water Mapping 901

We will start by accessing Sentinel-1 data. We will focus our analysis on South-
east Asia, which experiences yearly flooding and so provides plenty of good test
cases. To do this, we will assign the Sentinel-1 collection to a variable and filter
by space, time, and metadata properties to get our image for processing.

// Define a point in Cambodia to filter by location.
var point = ee.Geometry.Point(104.9632, 11.7686);

Map.centerObject(point, 11);

// Get the Sentinel-1 collection and filter by space/time.
var s1Collection = ee.ImageCollection('COPERNICUS/S1_GRD')

.filterBounds(point)

.filterDate('2019-10-05', '2019-10-06')

.filter(ee.Filter.eq('orbitProperties_pass',
'ASCENDING'))

.filter(ee.Filter.eq('instrumentMode', 'IW'));

// Grab the first image in the collection.
var s1Image = s1Collection.first();

Now, we can add our image to the map.

// Add the Sentinel-1 image to the map.
Map.addLayer(s1Image, {

min: -25,
max: 0,
bands: 'VV'

}, 'Sentinel-1 image');

The map should now have a Sentinel-1 image in Cambodia that looks like
Fig. 42.1.

Now that we have our image, we can begin our processing to extract surface
water information using Otsu’s threshold. Otsu’s thresholding algorithm uses his-
tograms, so we will need to create one for the pixels of the image. Otsu’s method
works on a single band of values, so we will use the VV band from Sentinel-
1, as seen in Fig. 42.1. Earth Engine allows us to easily calculate a histogram
using the reducer ee.Reducer.histogram applied across the image using
the reduceRegion operation:

902 K. Markert et al.

Fi
g
. 4
2
.1

Se
nt
in
el
-1
 V
V
 im

ag
e
fr
om

 O
ct
ob
er
 5
, 2

01
9
hi
gh
lig

ht
in
g
a
flo

od
in
g
ev
en
t i
n
C
am

bo
di
a

42 Surface Water Mapping 903

// Specify band to use for Otsu thresholding.
var band = 'VV';

// Define a reducer to calculate a histogram of values.
var histogramReducer = ee.Reducer.histogram(255, 0.1);

// Reduce all of the image values.
var globalHistogram = ee.Dictionary(

s1Image.select(band).reduceRegion({
reducer: histogramReducer,
geometry: s1Image.geometry(),
scale: 90,
maxPixels: 1e10

}).get(band)
);

// Extract out the histogram buckets and counts per bucket.
var x = ee.List(globalHistogram.get('bucketMeans'));
var y = ee.List(globalHistogram.get('histogram'));

// Define a list of values to plot.
var dataCol = ee.Array.cat([x, y], 1).toList();

// Define the header information for data.
var columnHeader = ee.List([

[
{

label: 'Backscatter',
role: 'domain',
type: 'number'

},
{

label: 'Values',
role: 'data',
type: 'number'

},]
]);

// Concat the header and data for plotting.
var dataTable = columnHeader.cat(dataCol);

904 K. Markert et al.

// Create plot using the ui.Chart function with the
dataTable.
// Use 'evaluate' to transfer the server-side table to the
client.
// Define the chart and print it to the console.
dataTable.evaluate(function(dataTableClient) {

var chart = ui.Chart(dataTableClient)
.setChartType('AreaChart')
.setOptions({

title: band + ' Global Histogram',
hAxis: {

title: 'Backscatter [dB]',
viewWindow: {

min: -35,
max: 15

}
},
vAxis: {

title: 'Count'
}

});
print(chart);

});

After running that code, you should see the chart in Fig. 42.2 printed in the
Console. This is the histogram of values across the image.

In the histogram, the data points are heavily concentrated around −9 dB. We
can see a small peak of low backscatter values around −22 dB; these are the likely

Fig. 42.2 Histogram of values from the Sentinel-1 VV image from October 5, 2019

42 Surface Water Mapping 905

open-water values. The SAR signal bounces off large, smooth surfaces like water,
so likely open-water values are low, and non-water values are high.

How should we split the histogram into two parts to create a high-quality parti-
tion of the image into two classes? That is the job of Otsu’s thresholding algorithm.
Earth Engine does not have a built-in function for Otsu’s method, so we will create
a function that implements the algorithm’s logic. This function takes in a histogram
as input, applies the algorithm, and returns a single value where Otsu’s method
suggests breaking the histogram into two parts. (More information about Otsu’s
method can be found in the ‘For Further Reading’ section of this book.)

function otsu(histogram) {
// Make sure histogram is an ee.Dictionary object.
histogram = ee.Dictionary(histogram);
// Extract relevant values into arrays.
var counts = ee.Array(histogram.get('histogram'));
var means = ee.Array(histogram.get('bucketMeans'));
// Calculate single statistics over arrays
var size = means.length().get([0]);
var total = counts.reduce(ee.Reducer.sum(),

[0]).get([0]);
var sum =

means.multiply(counts).reduce(ee.Reducer.sum(), [0])
.get([0]);

var mean = sum.divide(total);
// Compute between sum of squares, where each mean

partitions the data.

var indices = ee.List.sequence(1, size);
var bss = indices.map(function(i) {

var aCounts = counts.slice(0, 0, i);
var aCount = aCounts.reduce(ee.Reducer.sum(), [0])

.get([0]);
var aMeans = means.slice(0, 0, i);
var aMean = aMeans.multiply(aCounts)

.reduce(ee.Reducer.sum(), [0]).get([0])

.divide(aCount);
var bCount = total.subtract(aCount);
var bMean = sum.subtract(aCount.multiply(aMean))

.divide(bCount);

906 K. Markert et al.

return aCount.multiply(aMean.subtract(mean).pow(2))
.add(

bCount.multiply(bMean.subtract(mean).pow(2)));
});
// Return the mean value corresponding to the maximum

BSS.
return means.sort(bss).get([-1]);

}

When the threshold is calculated, it can be applied to the imagery, and we can
inspect where it falls within our histogram. The following code creates a new array
of values and checks where the threshold is so that we can see how the algorithm
performed.

// Apply otsu thresholding.
var globalThreshold = otsu(globalHistogram);
print('Global threshold value:', globalThreshold);

// Create list of empty strings that will be used for
annotation.
var thresholdCol = ee.List.repeat('', x.length());
// Find the index where the bucketMean equals the
threshold.
var threshIndex = x.indexOf(globalThreshold);
// Set the index to the annotation text.
thresholdCol = thresholdCol.set(threshIndex, 'Otsu
Threshold');

42 Surface Water Mapping 907

return row.add(ee.String(thresholdCol.get(i)));
});

// Concat the header and data for plotting.
dataTable = columnHeader.cat(dataCol);

// Create plot using the ui.Chart function with the
dataTable.
// Use 'evaluate' to transfer the server-side table to the
client.
// Define the chart and print it to the console.
dataTable.evaluate(function(dataTableClient) {

// Redefine the column header information with annotation
column.
columnHeader = ee.List([

[
{

label: 'Backscatter',
role: 'domain',
type: 'number'

},
{

label: 'Values',
role: 'data',
type: 'number'

},
{

label: 'Threshold',
role: 'annotation',
type: 'string'

}]
]);

// Loop through the data rows and add the annotation
column.
dataCol = ee.List.sequence(0,
x.length().subtract(1)).map(function(
i) {

i = ee.Number(i);
var row = ee.List(dataCol.get(i));

908 K. Markert et al.

}
var chart = ui.Chart(dataTableClient)

.setChartType('AreaChart')

.setOptions({
title: band +

' Global Histogram with Threshold
annotation',

hAxis: {
title: 'Backscatter [dB]',
viewWindow: {

min: -35,
max: 15

}
},
vAxis: {

title: 'Count'
},
annotations: {

style: 'line'
}

});
print(chart);

});

// loop through the client-side table and set empty
strings to null

for (var i = 0; i < dataTableClient.length; i++) {
if (dataTableClient[i][2] === '') {

dataTableClient[i][2] = null;
}

Once you have run the above code, you should see another histogram chart that
looks like Fig. 42.3. Note the addition of the text and light vertical line indicating
the location of the threshold value.

We can see that the threshold is around −15 dB, which is about halfway
between the two peaks. We can now apply that threshold on the imagery and
inspect how the extracted water looks compared to the original image. Using the
code below, we apply the threshold and add the water image to the map (Fig. 42.4).

42 Surface Water Mapping 909

Fig. 42.3 Histogram of values from the Sentinel-1 VV image with the threshold calculated using
Otsu’s method

// Apply the threshold on the image to extract water.
var globalWater = s1Image.select(band).lt(globalThreshold);

// Add the water image to the map and mask 0 (no-water)
values.
Map.addLayer(globalWater.selfMask(),

{
palette: 'blue'

},
'Water (global threshold)');

The results look promising. The blue areas overlap with the low backscatter
(specular reflectance) that is representative of open water in C-band SAR imagery.
However, upon closer inspection we can see that the extracted water overestimates
in some areas (Fig. 42.5).

We see an overestimation as large local errors may be introduced when cal-
culating a constant threshold for distinguishing water from land when using an
image-wide histogram. It is due to this issue that algorithms have been devel-
oped to constrain the histogram sampling and estimate a more locally contextual
threshold.

Code Checkpoint A23a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. Do some reading on Otsu’s method (the Wikipedia page has a good
description). How does Otsu’s threshold work? What underlying assumptions does
Otsu’s threshold make?

Question 2. Based on the results and your understanding of Otsu’s thresholding,
why do you think the calculated histogram overestimated water areas?

910 K. Markert et al.

Fi
g
. 4
2
.4

E
xt
ra
ct
ed
 s
ur
fa
ce
 w
at
er
 f
ro
m
 O
ts
u’
s
m
et
ho
d
fo
r
th
e
Se
nt
in
el
-1
 V
V
 im

ag
e
fr
om

 O
ct
ob
er
 5
, 2

01
9,
 h
ig
hl
ig
ht
in
g
a
flo

od
in
g
ev
en
t i
n
C
am

bo
di
a

42 Surface Water Mapping 911

Fig. 42.5 Close-up inspection of extracted surface water. The extracted water is toggled on and
off to illustrate where global Otsu thresholding overestimated water

42.2.2 Adaptive Thresholding

Surface water usually constitutes only a small fraction of the overall land cover
within an Earth observation image. This makes it harder to apply threshold-based
methods to extract water. The challenge is to establish a varying threshold that can
be derived automatically. In images that show flooding, like the one from the pre-
vious section, this limitation is not so significant. Nevertheless, this section walks
through an adaptive thresholding technique designed to overcome the challenges
of using a global threshold.

The method we will discuss was developed by Donchyts et al. (2016) and
applied to the Modified Normalized Difference Water Index (MNDWI) from Land-
sat 8 imagery. The algorithm finds edges within the image, buffers the areas around
the identified edges, and uses the buffered area to sample a histogram for Otsu
thresholding. This approach assumes that the edges detected are from water. The
result is a bimodal histogram from the area around water edges that can be used

912 K. Markert et al.

to calculate a refined threshold. The overall workflow of the algorithm is shown
in Fig. 42.6.

This approach was refined by Markert et al. (2020), where the main change is
that instead of calculating the edges on the raw values (from an index or other-
wise), an initial segmentation threshold is provided to create a binary image as
input for the edge detection. This overcomes issues with SAR speckle and other
artifacts, as well as with any edges being defined from other classes that are present
in imagery (e.g., urban areas or forests). The defined edges are then filtered by
length to omit small edges that can occur and can skew the histogram sampling.
This requires that a few parameters be tuned, namely the initial threshold, edge
length, and buffer size. Here, we define a few of those parameters.

// Define parameters for the adaptive thresholding.
// Initial estimate of water/no-water for estimating the
edges
var initialThreshold = -16;
// Number of connected pixels to use for length
calculation.
var connectedPixels = 100;
// Length of edges to be considered water edges.
var edgeLength = 20;
// Buffer in meters to apply to edges.
var edgeBuffer = 300;
// Threshold for canny edge detection.
var cannyThreshold = 1;
// Sigma value for gaussian filter in canny edge detection.
var cannySigma = 1;
// Lower threshold for canny detection.
var cannyLt = 0.05;

With these parameters defined, we can begin the process of constraining the
histogram sampling.

// Get preliminary water.
var binary = s1Image.select(band).lt(initialThreshold)

.rename('binary');

// Get projection information to convert buffer size to
pixels.
var imageProj = s1Image.select(band).projection();

42 Surface Water Mapping 913

Fi
g
. 4
2
.6

W
or
kfl

ow
 o
f
ad
ap
tiv

e
th
re
sh
ol
di
ng
 te
ch
ni
qu
es
. F

ig
ur
e
ta
ke
n
fr
om

 D
on
ch
yt
s
et
 a
l.
(2
01
6)
 u
nd
er
 th

e
C
re
at
iv
e
C
om

m
on
s
A
ttr
ib
ut
io
n
L
ic
en
se

914 K. Markert et al.

// Get canny edges.
var canny = ee.Algorithms.CannyEdgeDetector({

image: binary,
threshold: cannyThreshold,
sigma: cannySigma

});

// Process canny edges.

// Get the edges and length of edges.
var connected = canny.updateMask(canny).lt(cannyLt)

.connectedPixelCount(connectedPixels, true);

// Mask short edges that can be noise.
var edges = connected.gte(edgeLength);

// Calculate the buffer in pixel size.
var edgeBufferPixel =
ee.Number(edgeBuffer).divide(imageProj

.nominalScale());

// Buffer the edges using a dilation operation.
var bufferedEdges =
edges.fastDistanceTransform().lt(edgeBufferPixel);

// Mask areas not within the buffer .
var edgeImage =
s1Image.select(band).updateMask(bufferedEdges);

Now that we have the edge information and the data to sample processed,
we can visually inspect what the algorithm is doing. Here, we will display the
calculated edges as well as the buffered edges to highlight which data is being
sampled.

// Add the detected edges and buffered edges to the map.
Map.addLayer(edges, {

palette: 'red'
}, 'Detected water edges');
var edgesVis = {

palette: 'yellow',
opacity: 0.5

};
Map.addLayer(bufferedEdges.selfMask(), edgesVis,

'Buffered water edges');

42 Surface Water Mapping 915

Fig. 42.7 Results from the water edge detection process, where the edges are shown in red (top
image) and the buffered edges highlighting the sampling regions in yellow (bottom image)

You should now have the data added to the map, which should look like the
images in Fig. 42.7 when zoomed in.

At this point, we have our regions that we want to sample that are more rep-
resentative of a bimodal histogram, and we have masked out areas that we don’t
want to sample. Now, we can calculate the histogram as before and make a plot
(Fig. 42.8).

Fig. 42.8 Histogram of values from the Sentinel-1 VV image using the adaptive thresholding

916 K. Markert et al.

// Reduce all of the image values.
var localHistogram = ee.Dictionary(

edgeImage.reduceRegion({
reducer: histogramReducer,
geometry: s1Image.geometry(),
scale: 90,
maxPixels: 1e10

}).get(band)
);

// Apply otsu thresholding.
var localThreshold = otsu(localHistogram);
print('Adaptive threshold value:', localThreshold);

// Extract out the histogram buckets and counts per bucket.
var x = ee.List(localHistogram.get('bucketMeans'));
var y = ee.List(localHistogram.get('histogram'));

// Define a list of values to plot.
var dataCol = ee.Array.cat([x, y], 1).toList();

// Concat the header and data for plotting.
var dataTable = columnHeader.cat(dataCol);

// Create list of empty strings that will be used for
annotation.
var thresholdCol = ee.List.repeat('', x.length());
// Find the index that bucketMean equals the threshold.
var threshIndex = x.indexOf(localThreshold);
// Set the index to the annotation text.
thresholdCol = thresholdCol.set(threshIndex, 'Otsu
Threshold');

// Redefine the column header information now with
annotation col.
columnHeader = ee.List([

[
{

label: 'Backscatter',
role: 'domain',
type: 'number'

},

42 Surface Water Mapping 917

{
label: 'Values',
role: 'data',
type: 'number'

},
{

label: 'Threshold',
role: 'annotation',
type: 'string'

}]
]);

// Loop through the data rows and add the annotation col.
dataCol = ee.List.sequence(0,
x.length().subtract(1)).map(function(
i) {

i = ee.Number(i);
var row = ee.List(dataCol.get(i));
return row.add(ee.String(thresholdCol.get(i)));

});

// Concat the header and data for plotting.
dataTable = columnHeader.cat(dataCol);

// Create plot using the ui.Chart function with the
dataTable.
// Use 'evaluate' to transfer the server-side table to the
client.
// Define the chart and print it to the console.
dataTable.evaluate(function(dataTableClient) {

// Loop through the client-side table and set empty
strings to null.

for (var i = 0; i < dataTableClient.length; i++) {
if (dataTableClient[i][2] === '') {

dataTableClient[i][2] = null;
}

}
var chart = ui.Chart(dataTableClient)

.setChartType('AreaChart')

.setOptions({
title: band +

' Adaptive Histogram with Threshold
annotation',

918 K. Markert et al.

hAxis: {
title: 'Backscatter [dB]',
viewWindow: {

min: -35,
max: 15

}
},
vAxis: {

title: 'Count'
},
annotations: {

style: 'line'
}

});
print(chart);

});

We can see from the histogram that we have two distinct peaks. This meets
the assumption of Otsu thresholding that only two classes are present within an
image, which allows the algorithm to more accurately calculate the threshold for
water. The last thing left to do is to apply the calculated adaptive threshold on the
imagery and add it to the map (Fig. 42.9).

Fig. 42.9 Extracted surface water using the adaptive Otsu thresholding method for Sentinel-1 VV
image (top image) and close-up inspection of extracted surface water for almost the same area as
in Sect. 42.2.1 (bottom image)

42 Surface Water Mapping 919

// Apply the threshold on the image to extract water.
var localWater = s1Image.select(band).lt(localThreshold);

// Add the water image to the map and mask 0 (no-water)
values.
Map.addLayer(localWater.selfMask(),

{
palette: 'darkblue'

},
'Water (adaptive threshold)');

It can be seen from the resulting images that the adaptive thresholding technique
produces a reasonable surface water map. Furthermore, the resulting threshold
value was −15.799, as compared to −14.598 from the global thresholding. A
lower threshold in this case means less surface water area extracted. However, less
surface water area does not necessarily mean more accuracy. There needs to be a
balance between producer’s and user’s accuracy.

Now that we have a surface water map and we are moderately confident that it
represents the actual surface water for that day, we can begin to identify flooded
areas by differencing our map with historical information.

Code Checkpoint A23b. The book’s repository contains a script that shows what
your code should look like at this point.

Question 3. Why do we apply an initial threshold to the SAR imagery prior to
detecting edges? What happens to the detected edges if we do not apply an initial
threshold? Explain why you are or are not getting a difference in detected edges.
Recall that we defined some parameters for the Canny edge detection. Show a
comparison.

Question 4. Compare the threshold calculated with the adaptive technique to the
global threshold. In your own words, explain why the two thresholds are different.

Question 5. Change the parameters used for the adaptive thresholding to see how
the results change. Which parameters is the algorithm most sensitive to?

42.2.3 Extracting Flood Areas

Up to this point, we have been mapping surface water, which includes permanent
and seasonal water that was observed by the sensor. What we need to do now
is to identify areas from our image that are considered permanent water. There
are typically two approaches to mapping flooded areas with a thematic surface
water map: (1) comparing pre- and post-event images to estimate changes; or (2)
comparing extracted surface water with historically observed permanent water.

920 K. Markert et al.

To achieve the goal of flood mapping, we will use the historical JRC Global
Surface Water dataset to define permanent water and then find the difference to
extract flooded areas. We already have our post-event surface water map. Now, we
need to access and use the JRC data.

// Get the previous 5 years of permanent water.

// Get the JRC historical yearly dataset.
var jrc = ee.ImageCollection('JRC/GSW1_3/YearlyHistory')

// Filter for historical data up to date of interest.
.filterDate('1985-01-01', s1Image.date())
// Grab the 5 latest images/years.
.limit(5, 'system:time_start', false);

Because this data is a yearly classification of permanent and seasonal water, we
need to reclassify the imagery to just permanent water.

var permanentWater = jrc.map(function(image) {
// Extract out the permanent water class.
return image.select('waterClass').eq(3);
// Reduce the collection to get information on if a

pixel has
// been classified as permanent water in the past 5

years.
}).sum()
// Make sure we have a value everywhere.
.unmask(0)
// Get an image of 1 if permanent water in the past 5

years, otherwise 0.
.gt(0)
// Mask for only the water image we just calculated.
.updateMask(localWater.mask());

// Add the permanent water layer to the map.
Map.addLayer(permanentWater.selfMask(),

{
palette: 'royalblue'

},
'JRC permanent water');

42 Surface Water Mapping 921

The final thing we need to do is apply a simple differencing between the surface
water map from Sentinel-1 and the JRC permanent water (Fig. 42.10).

// Find areas where there is not permanent water, but water
is observed.
var floodImage = permanentWater.not().and(localWater);

// Add flood image to map.
Map.addLayer(floodImage.selfMask(), {

palette: 'firebrick'
}, 'Flood areas');

There are nuances associated with comparing optically derived water informa-
tion (like from JRC) with SAR water maps. For example, any surface that is large
enough and smooth can ‘look’ like water in SAR imagery because of specular
reflectance and can be wrongly classified as a flooded area. Examples of this are
airports, exposed channel beds, and highways. It should also be noted that there is a
component of seasonal flooding—flooding that occurs every year and is expected.
Currently, our flood map contains areas of seasonal flooding as well. Therefore,
to accurately map the “abnormal” area of a flood, we’d also have to account for
seasonal patterns. Lastly, rivers are in constant flux, changing patterns, and even
change due to flooding events, so comparing historical observations with flood-
ing events may yield some areas that have changed. Therefore, comparing pre-
and post-event imagery from the same sensor is best. However, it is challenging to
define events in seasonal flooding (such as this case), making a pre- and post-event
comparison a little more complicated.

Code Checkpoint A23c. The book’s repository contains a script that shows what
your code should look like at this point.

Fig. 42.10 Extracted flood areas by comparing the calculated surface water map against the JRC
permanent water data. Bottom image shows a close-up of the flood map around the confluence of
the Mekong and Tonle Sap rivers near Phnom Penh, Cambodia

922 K. Markert et al.

42.3 Synthesis

In this chapter, we covered a common image segmentation method, Otsu’s thresh-
olding, and applied it to map surface water using Sentinel-1 SAR imagery.
Furthermore, we illustrated an image processing technique to constrain the his-
togram sampling for input into the Otsu thresholding method. Lastly, we created
a flood map from the segmented surface water map using historical permanent
surface water data. You should now have a good grasp on the Otsu threshold-
ing technique for surface water mapping, understand the considerations of global
versus localized histogram sampling, be able to implement an adaptive histogram
sampling approach, and take a surface water map and convert it to a flood map.

Assignment 1. Identify a flooding event of interest (a good source is https://flo
odlist.com) and walk through the process of creating a flood map for the event
you chose. Do you notice anything different with the resulting flood map? Make
note of the identified threshold value. Does the threshold value represent water
versus no-water areas? Keep in mind the physical properties of SAR—some areas
naturally have low backscatter like water does.

Assignment 2. In your own words, describe the difference between a surface water
map and a flood map. Conceptually, what do you need to take into consideration
when extracting flood areas?

Assignment 3. Find a pre-event Sentinel-1 image for the case we have gone
through, extract surface water from the pre-event image, and compare it to
the post-event image. Do you find differences in the flood areas derived from
pre/post-comparison versus historical comparison?

Assignment 4. Refactor the code to make the adaptive thresholding algorithm
and flood mapping into a callable function that can be mapped over an image
collection.

42.4 Conclusion

It should be noted that Sentinel-1 SAR imagery ideally should undergo prepro-
cessing to remove the effects of terrain and speckle in imagery, as in Mullissa
et al. (2021), before applying surface water mapping algorithms. However, SAR
preprocessing is outside the scope of this chapter.

There are many more sophisticated algorithms for mapping surface water from
satellite imagery (such as Mayer et al. 2021). The application illustrated in this
chapter is meant to highlight a practical workflow for mapping surface water and
floods that can be implemented in Earth Engine.

https://floodlist.com
https://floodlist.com

42 Surface Water Mapping 923

References

Cao H, Zhang H, Wang C, Zhang B (2019) Operational flood detection using Sentinel-1 SAR data
over large areas. Water (switzerland) 11:786. https://doi.org/10.3390/w11040786

Donchyts G, Schellekens J, Winsemius H et al (2016) A 30 m resolution surface water mask
including estimation of positional and thematic differences using Landsat 8, SRTM and Open-
StreetMap: a case study in the Murray-Darling basin, Australia. Remote Sens 8:386. https://
doi.org/10.3390/rs8050386

Markert KN, Markert AM, Mayer T et al (2020) Comparing Sentinel-1 surface water mapping
algorithms and radiometric terrain correction processing in Southeast Asia utilizing Google
Earth Engine. Remote Sens 12:2469. https://doi.org/10.3390/RS12152469

Mayer T, Poortinga A, Bhandari B et al (2021) Deep learning approach for Sentinel-1 surface water
mapping leveraging Google Earth Engine. ISPRS Open J Photogramm Remote Sens 2:100005.
https://doi.org/10.1016/j.ophoto.2021.100005

Mullissa A, Vollrath A, Odongo-Braun C et al (2021) Sentinel-1 SAR backscatter analysis ready
data preparation in Google Earth Engine. Remote Sens 13:1954. https://doi.org/10.3390/rs1310
1954

Oddo PC, Bolten JD (2019) The value of near real-time Earth observations for improved flood
disaster response. Front Environ Sci 7:127. https://doi.org/10.3389/fenvs.2019.00127

Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man
Cybern SMC-9:62–66. https://doi.org/10.1109/tsmc.1979.4310076

Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface
water and its long-term changes. Nature 540:418–422. https://doi.org/10.1038/nature20584

Schumann G, Di Baldassarre G, Bates PD (2009) The utility of spaceborne radar to render
flood inundation maps based on multialgorithm ensembles. IEEE Trans Geosci Remote Sens
47:2801–2807. https://doi.org/10.1109/TGRS.2009.2017937

Tellman B, Sullivan JA, Kuhn C et al (2021) Satellite imaging reveals increased proportion of
population exposed to floods. Nature 596:80–86. https://doi.org/10.1038/s41586-021-03695-w

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/w11040786
https://doi.org/10.3390/rs8050386
https://doi.org/10.3390/rs8050386
https://doi.org/10.3390/RS12152469
https://doi.org/10.1016/j.ophoto.2021.100005
https://doi.org/10.3390/rs13101954
https://doi.org/10.3390/rs13101954
https://doi.org/10.3389/fenvs.2019.00127
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1038/nature20584
https://doi.org/10.1109/TGRS.2009.2017937
https://doi.org/10.1038/s41586-021-03695-w
http://creativecommons.org/licenses/by/4.0/

43River Morphology

Xiao Yang , Theodore Langhorst , and Tamlin M. Pavelsky

Overview
The purpose of this chapter is to showcase Earth Engine’s application in fluvial
hydrology and geomorphology. Specifically, we show examples demonstrating how
to use Earth Engine to extract a river’s centerline and width, and how to calculate the
bank erosion rate. At the end of this chapter, you will be able to distinguish rivers
from other water bodies, perform basic morphological analyses, and detect changes
in river form over time.

Learning Outcomes

• Working with Landsat surface water products.
• Calculating river centerline location and width.
• Quantifying river bank erosion.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).
• Perform image morphological operations (Chap. 10).
• Write a function and map it over an ImageCollection (Chap. 12).

X. Yang (B)
Southern Methodist University, Dallas, USA
e-mail: xnayang@smu.edu

T. Langhorst · T. M. Pavelsky
University of North Carolina at Chapel Hill, Chapel Hill, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_43

925

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_43&domain=pdf
http://orcid.org/0000-0002-0046-832X
http://orcid.org/0000-0003-0366-4809
http://orcid.org/0000-0002-0613-3838
mailto:xnayang@smu.edu
https://doi.org/10.1007/978-3-031-26588-4_43

926 X. Yang et al.

• Use reduceRegions to summarize an image with zonal statistics in irregular
shapes (Chaps. 22 and 24).

• Work with vector data (Chap. 23)

43.1 Introduction to Theory

The shape of a river viewed from above, known as its “planview geometry,” can
reveal many things about the river, including its morphological evolution and the
flow of water and sediment within its channel. For example, hydraulic geometry
establishes that a river’s width and its discharge satisfy a power-law relation (rating
curve). Thus, one can use such a relationship to monitor a river’s discharge from
river widths derived from remote sensing images (Smith et al. 1996). Similarly, in
addition to the natural variability of river size, rivers also adjust their courses on the
landscape as water flows from the headwaters toward lowland downstream regions.
These adjustments result in meandering, lateral variations in a river’s course result-
ing from the erosion and accretion of sediment along the banks. Many tools have
been developed to study morphological changes of rivers using remotely sensed
images.

Early remote sensing of river form was done by manual interpretation of aerial
imagery, but advances in computing power have facilitated and the volume of
imagery from satellites has necessitated automated processing. The RivWidth soft-
ware (Pavelsky and Smith 2008) first presented an automated method for river
width extraction, and RivWidthCloud (RWC) (Yang et al. 2020) later applied and
expanded these methods to Earth Engine. Similarly, methods for detecting changes
in river form have evolved from simple tools that track hand-drawn river center-
lines (Shields et al. 2000) to automated methods that can process entire basins
(Constantine et al. 2014; Rowland et al. 2016). This progression toward automated
software for studies in fluvial geomorphology has paired well with the capabilities
of Earth Engine, and as a result, many tools are being built for large-scale analysis
in the cloud (Boothroyd et al. 2021).

43.2 Practicum

43.2.1 Creating and Analyzing a Single River Mask

In this section, we will prepare an image and calculate some simple morphological
attributes of a river. To do this, we will use a pre-classified image of surface water
occurrence, identify which pixels represent the river and channel bars, and finally
calculate the centerline, width, and bank characteristics.

43 River Morphology 927

43.2.1.1 Isolate River from Water Surface Occurrence Map

Code Checkpoint A24a. The book’s repository contains a script to use to begin
this section. You will need to start with that script and paste code below into it.

The script includes our example area of interest (in the variable aoi) and two
helper functions for reprojecting data to the local UTM coordinates. We force this
projection and scale for many of our map layers because we are trying to observe
and measure the river morphology. As data is viewed at different zoom levels, the
shapes and apparent connectivity of many water bodies will change. To allow a
given dataset to be viewed with the same detail at multiple scales, we can force
the data to be reprojected, as we do here.

The Joint Research Centre’s surface water occurrence dataset (Pekel et al. 2016)
classified the entire Landsat 5, 7, and 8 history and produced annual maps that
identify seasonal and permanent water classes. Here, we will include both seasonal
and permanent water classes (represented by pixel values of≥ 2) as water pixels
(with value = 1) and the rest as non-water pixels (with value = 0). In this section,
we will look at only one image at a time by choosing the image from the year
2000 (Fig. 1a). In the code below, bg serves as a dark background layer for other
map layers to be seen easily.

// IMPORT AND VISUALIZE SURFACE WATER MASK.
// Surface water occurrence dataset from the JRC (Pekel et
al., 2016).
var jrcYearly =
ee.ImageCollection('JRC/GSW1_3/YearlyHistory');

// Select the seasonal and permanent pixels image
representing the year 2000
var watermask = jrcYearly.filter(ee.Filter.eq('year',
2000)).first()

.gte(2).unmask(0)

.clip(aoi);

Map.centerObject(aoi);
Map.addLayer(ee.Image.constant(0), {

min: 0,
palette: ['black']

}, 'bg', false);
Map.addLayer(watermask, {}, 'watermask', false);

928 X. Yang et al.

Fig. 43.1 a Water mask; b filled water mask with prior centerline points; c channel mask; d river
mask

Next, we clean up the water mask by filling in small gaps by performing
a closing operation (dilation followed by erosion). Areas of non-water pixels
inside surface water bodies in the water mask may represent small channel
bars, which we will fill in to create a simplified water mask. We identify these
bars using a vectorization; however, you could do a similar operation with the
connectedPixelCount method for bars up to 256 pixels in size (Fig. 1b). Fill-
ing in these small bars in the river mask improves the creation of a new centerline
later in the lab.

43 River Morphology 929

// REMOVE NOISE AND SMALL ISLANDS TO SIMPLIFY THE TOPOLOGY.

// a. Image closure operation to fill small holes.
watermask = watermask.focal_max().focal_min();

// b. Identify small bars and fill them in to create a
filled water mask.
var MIN_SIZE = 2E3;
var barPolys = watermask.not().selfMask()

.reduceToVectors({
geometry: aoi,
scale: 30,
eightConnected: true

})
.filter(ee.Filter.lte('count', MIN_SIZE)); // Get small

polys.
var filled = watermask.paint(barPolys, 1);

Map.addLayer(rpj(filled), {
min: 0,
max: 1

}, 'filled water mask', false);

Note here that we forced reprojection of the map layer using the helper function
rpj. This means we have to be careful to keep our domain small enough to be
processed at the set scale when doing the calculation on the fly in the Code Editor;
otherwise, we will run out of memory. The reprojection may not be necessary when
exporting the output using a task.

In the following step, we extract water bodies in the water mask that correspond
to rivers. We will define a river mask (Fig. 1d) to be pixels that are connected to
the river centerline according to the filled water mask. The channel mask (Fig. 1c)
is defined also by connectivity but excludes the small bars, which will give us more
accurate widths and areas for change detection in Sects. 43.2.1.2 and 43.2.1.3.

We can extract the river mask by checking the water pixels’ connectivity to
a provided river location database. Specifically, we use the Earth Engine method
cumulativeCost to identify connectivity between the filled water mask and
the pixels corresponding to the river dataset. By inverting the filled mask, the
cost to traverse water pixels is 0, and the cost over land pixels is 1. Pixels in
the cost map with a value of 0 are entirely connected to the Surface Water and
Ocean Topography (SWOT) Mission River Database (SWORD) centerline points
by water, and pixels with values greater than 0 are separated from SWORD by
land. The SWORD data, which were loaded as assets in the starter script, have
some points located on land, either because the channel bifurcates or because
the channel has migrated, so we must exclude those from our cumulative cost
parameter source, or they will appear as single pixels of 0 in our cost map.

930 X. Yang et al.

The maxDistance parameter must be set to capture maximum distance
between centerline points and river pixels. In a single-threaded river with an accu-
rate centerline, the ideal maxDistance value would be about half the river width.
However, in reality, the centerlines are not perfect, and large islands may separate
pixels from their nearest centerline. Unfortunately, increasing maxDistance has
a large computational penalty, so some tweaking is required to get an optimal
value. We can set geodeticDistance to false to regain some computational
efficiency, because we are not worried about the accuracy of the distances.

// IDENTIFYING RIVERS FROM OTHER TYPES OF WATER BODIES.
// Cumulative cost mapping to find pixels connected to a
reference centerline.
var costmap = filled.not().cumulativeCost({

source: watermask.and(ee.Image().toByte().paint(sword,
1)),

maxDistance: 3E3,
geodeticDistance: false

});

var rivermask = costmap.eq(0).rename('riverMask');
var channelmask = rivermask.and(watermask);

Map.addLayer(sword, {
color: 'red'

}, 'sword', false);
Map.addLayer(rpj(costmap), {

min: 0,
max: 1E3

}, 'costmap', false);
Map.addLayer(rpj(rivermask), {}, 'rivermask', false);
Map.addLayer(rpj(channelmask), {}, 'channelmask', false);

Code Checkpoint A24b. The book’s repository contains a script that shows what
your code should look like at this point.

43.2.1.2 Obtain River Centerline and Width
After processing the image to create a river mask, we will use existing functions
from RivWidthCloud to process the image further to obtain river centerlines and
widths. Here, we will call RivWidthCloud functions directly, taking advantage of
the ability to use functions from another Earth Engine script (using the require
functionality to load another script as a module). We will explain the usage and
purpose of the RivWidthCloud functions used here.

43 River Morphology 931

There are three major steps involved in obtaining river widths from a given
river mask:

1. Calculate one-pixel-width river centerlines.
2. Estimate the direction orthogonal to the flow direction for each centerline pixel.
3. Quantify river width on the channel mask along the orthogonal directions.

Extract River Centerline
We rely on morphological image analysis techniques to extract a river centerline.
This process involves three steps:

1. Using distance transform to enhance pixels near the centerline of the river.
2. Using gradient to further isolate the centerline pixel having local minimal

gradient values.
3. Cleaning the raw centerline by removing spurious centerlines.

First, a distance transform is applied to the river mask, resulting in a raster image
where the value of each water pixel in the river mask is replaced by the closest
distance to the shore. This step is done by using the CalcDistanceMap function
from RWC. From Fig. 2a, we can see that, in the distance transform, the center of
the river has the highest values.

// Import existing functions from RivWidthClo
var riverFunctions =

ud.
(require

);
var clFunctions =
'users/eeProject/RivWidthCloudPaper:functions_river.js'

(require

'users/eeProject/RivWidthCloudPaper:functions_centerline_wi

);
dth.js'

//Calculate distance from shoreline using distance
tra

var distance = clFunctions.

nsform.

(rivermask, CalcDistanceMap ,
scale);

256

.Map (rpj(distance), {
min:
addLayer

,
max:

0

},
500

, false);'distance raster'

932 X. Yang et al.

Fig. 43.2 Steps extracting river centerline: a distance transform of a river mask; b gradient of the
distance map (a); c raw centerline after skeletonization; d centerline after pruning

Second, to isolate the centerline of the river, we apply a gradient calculation
to the distance raster. If we treat the distance raster as a digital elevation model
(DEM), then the locations of the river centerline can be visualized as ridgelines.
They will thus have minimal gradient value. The gradient calculation is important,
as it converts a local property of the centerline (local maximum distance) to a
global property (global minimal gradient) to allow extraction of the centerline
with a fixed gradient threshold (Fig. 2b). We use a 0.9 threshold (recommended
for RivWidth (Pavelsky and Smith 2008) and RWC) to extract the centerline pixels
from the gradient image. However, the resulting initial centerline is not always one
pixel wide. To ensure a one-pixel-wide centerline, iterative image skeletonization
is applied to thin the initial centerline (Fig. 2c).

43 River Morphology 933

// Calculate gradient of the distance raster.
// There are three different ways (kernels) to calculate
the gradient.
// By default, the function used the second approach.
// For details on the kernels, please see the source code
for this function.
var gradient = clFunctions.CalcGradientMap(distance, 2,
scale);
Map.addLayer(rpj(gradient), {}, 'gradient raster', false);

// Threshold the gradient raster and derive 1px width
centerline using skeletonization.

var centerlineRaw =
clFunctions.CalcOnePixelWidthCenterline(rivermask,

gradient, 0.9);
var raw1pxCenterline = rpj(centerlineRaw).eq(1).selfMask();
Map.addLayer(raw1pxCenterline, {

palette: ['red']
}, 'raw 1px centerline', false);

Third, the centerline from the previous step will have noise along the shore-
line and will have spurious branches resulting from side channels or irreg-
ular channel forms that need to be pruned. The pruning function in RWC,
CleanCenterline, works by first identifying end pixels of the centerline
(i.e., centerline pixels with only one neighboring pixel) and then erasing pixels
along the centerline pixels starting from the end pixels for a distance specified
by MAXDISTANCE_BRANCH_REMOVAL. It will stop if the specified distance is
reached or the erasing encounters a joint pixel (i.e., pixels having more than two
neighboring pixels). After pruning, the final centerline should look like Fig. 2d.

934 X. Yang et al.

// Prune the centerline to remove spurious branches.
var MAXDISTANCE_BRANCH_REMOVAL = 500;
// Note: the last argument of the CleanCenterline function
enables removal of the pixels so that the resulting
centerline will have 1px width in an 8-connected way. Once
it is done, it doesn’t need to be done the second time
(thus it equals false)
var cl1px = clFunctions

.CleanCenterline(centerlineRaw,
MAXDISTANCE_BRANCH_REMOVAL, true);
var cl1px = clFunctions

.CleanCenterline(cl1px, MAXDISTANCE_BRANCH_REMOVAL,
false);
var final1pxCenterline = rpj(cl1px).eq(1).selfMask();
Map.addLayer(final1pxCenterline, {

palette: ['red']
}, 'final 1px centerline', false);

Estimate Cross-Sectional Direction
Now we will use the centerline we obtained from the previous step to help us
measure the widths of the river. River width is often measured along the direction
perpendicular to the flow, which we will approximate using the course of its center-
line. To estimate cross-sectional directions, we convolve the centerline image with
a customized kernel. The square 9×9 kernel has been designed so that each pixel
on its rim has the radian value of the angle between the line connecting the rim
pixel and the center of the kernel and the horizontal x-axis (radian angle 0). The
convolution works by overlapping the center of the kernel with the centerline and
calculating the average of the values of the rim pixels that overlap the centerline
pixels, which corresponds to the cross-sectional direction of the particular center-
line point under consideration. Here, we use the function CalculateAngle to
estimate the cross-sectional angles. The resulting raster will replace each centerline
pixel with the value of the cross-sectional directions in degrees.

43 River Morphology 935

// Calculate perpendicular direction for the cleaned
centerline.
var angle = clFunctions.CalculateAngle(cl1px);
var angleVis = {

min: 0,
max: 360,
palette: ['#ffffd4', '#fed98e', '#fe9929', '#d95f0e',

'#993404'
]

};
Map.addLayer(rpj(angle), angleVis, 'cross-sectional
directions',

false);

Quantify River Widths
To estimate river width, we will be using the RWC function rwGen_waterMask.
This function can take any binary water mask image as input to calculate river
widths, so long as the band name is “waterMask” and contains the following
three properties: (1) crs—UTM projection code, (2) scale—native spatial res-
olution, and (3) image_id—acting as an identifier for the output widths. This
function works by first processing the input water mask to create all the interme-
diate images mentioned before (channel mask, river mask, centerline, and angle
image). Then, it creates a FeatureCollection of cross-sectional lines, each
centered on one centerline pixel (from the centerline raster) along the direction
estimated in the “Estimate Cross-Sectional Direction” section (from the angle
raster) and with a length three times longer than the distance from the center-
line point to the closest shoreline pixel (obtained from the distance raster). This
FeatureCollection is then used in the Image.reduceRegions method
as the FeatureCollection input. With a mean reducer, the result denotes the
ratio between the actual river width and the length of the line segment (which
is known). Thus, the final river width can be estimated by multiplying the ratio
with the length of each line segment in the FeatureCollection. However,
the scaling factor of 3 is chosen empirically, and can over- or underestimate the
maximum extent of river width. This is because the width, scaled by 3, is the min-
imal distance from centerline pixels to the nearest shoreline pixels. When aligning
line segments along the directions orthogonal to the river centerline, we might
encounter situations when the length of these segments is too short to cover the
width of the river (underestimation) or too long that they overlap with neighboring

936 X. Yang et al.

river reaches (overestimation). In both cases, the end(s) of the line segment over-
laps with a pixel identified as “water” in the channel mask. Thus, additional steps
are taken to flag these measurements.

The rwGen_waterMask takes four arguments—maximum search distance
(unit: meter) to label river pixels, maximum size of islands (unit: pixel) to be
filled in to calculate river mask, distance (unit: meter) to be pruned to clean the
raw centerline, and the area of interest to carry out the width calculation. The
output of the rwc function is a FeatureCollection with each feature having
the properties listed in Table 43.1.

// Estimate width.
var rwcFunction = require(

'users/eeProject/RivWidthCloudPaper:rwc_watermask.js');
var rwc = rwcFunction.rwGen_waterMask(4000, 333, 500, aoi);
watermask =
ee.Image(watermask.rename(['waterMask']).setMulti({

crs: crs,
scale: 30,
image_id: 'aoi'

}));

var widths = rwc(watermask);
print('example width output', widths.first());

Table 43.1 Output variables from the rwc function

longitude Longitude of the centerline point

latitude Latitude of the centerline point

width Wetted river width measured at the centerline point

orthogonalDirection Angle of the cross-sectional direction at the centerline point

flag_elevation Mean elevation across the river surface (unit: meter) based on
MERIT DEM

image_id Image ID of the input image

crs The projection of the input image

endsInWater Indicates inaccurate width due to the insufficient length of the
cross-sectional segment that was used to measure the river width

endsOverEdge Indicates calculated width too close to the edge of the image
such that the width can be inaccurate

43 River Morphology 937

43.2.1.3 Bank Morphology
In addition to a river’s centerline and width, we can also extract information about
the banks of the river, such as their aspect and total length. To identify the banks,
we simply dilate the channel mask and compare it to the original channel mask.
The difference in these images represents the land pixels adjacent to the channel
mask.

var bankMask = channelmask.focal_max(1).neq(channelmask);

Next, we will calculate the aspect, or compass direction, of the bank faces. We
use the Image.cumulativeCost method with the entire river channel as our
source to create a new image (bankDistance) with increasing values away from
the river channel, similar to an elevation map of river banks. In this image, the
banks will “slope” toward the river channel and we can take advantage of the
terrain methods in EE. We will call the Terrain.aspect method on the bank
distance and select the bank pixels by applying the bank mask. In the end, our bank
aspect data will give us the direction from each bank pixel toward the center of
the channel. These data could be useful for interpreting any directional preferences
in erosion as a result of geological features or thawed permafrost soils from solar
radiation.

var bankDistance = channelmask.not().cumulativeCost({
source: channelmask,
maxDistance: 1E2,
geodeticDistance: false

});

var bankAspect = ee.Terrain.aspect(bankDistance)
.multiply(Math.PI).divide(180)
.mask(bankMask).rename('bankAspect');

Last, we calculate the length represented by each bank pixel by convolving the
bank mask with a Euclidean distance kernel. Sections of bank oriented along the
pixel edges will have a value of 30 m per pixel, whereas a diagonal section will
have a value of

√
2 * 30 m per pixel.

938 X. Yang et al.

var distanceKernel = ee.Kernel.euclidean({
radius: 30,
units: 'meters',
magnitude: 0.5

});
var bankLength = bankMask.convolve(distanceKernel)

.mask(bankMask).rename('bankLength');

var radianVis = {
min: 0,
max: 2 * Math.PI,
palette: ['red', 'yellow', 'green', 'teal', 'blue',

'magenta',
'red'

]
};
Map.addLayer(rpj(bankAspect), radianVis, 'bank aspect',
false);
Map.addLayer(rpj(bankLength), {

min: 0,
max: 60

}, 'bank length', false);

Code Checkpoint A24c. The book’s repository contains a script that shows what
your code should look like at this point.

43.2.2 Multitemporal River Width

Refresh the Code Editor to begin with a new script for this section.
In Sect. 43.2.1.2, we walked through the process of extracting the river center-

line and width from a given water mask. In that section, we intentionally unpacked
the different steps used to extract river centerline and width so that readers can:
(1) get an intuitive idea of how the image processes work step by step and see
the resulting images at each stage; (2) combine these functions to answer differ-
ent questions (e.g., readers might only be interested in river centerlines instead
of getting all the way to widths). In this section, we will walk you through how
to use some high-level functions in RivWidthCloud to more efficiently implement
these steps across multiple water mask images to extract time series of widths at
a given location. To do this, we need to provide two inputs: a point of interest
(longitude, latitude) and a collection of binary water masks. The code below re-
introduces a helper function to convert between projections, then accesses other
data and functionality.

43 River Morphology 939

var getUTMProj = function(lon, lat) {
// Given longitude and latitude in decimal degrees,
// return EPSG string for the corresponding UTM

projection. See:
// https://apollomapping.com/blog/gtm-finding-a-utm-

zone-number-easily
// https://sis.apache.org/faq.html
var utmCode =

ee.Number(lon).add(180).divide(6).ceil().int();
var output = ee.Algorithms.If({

condition: ee.Number(lat).gte(0),
trueCase: ee.String('EPSG:326').cat(utmCode

.format('%02d')),
falseCase: ee.String('EPSG:327').cat(utmCode

.format('%02d'))
});
return (output);

};

// IMPORT AND VISUALIZE SURFACE WATER MASK
// Surface water occurrence dataset from the JRC (Pekel et
al., 2016).
var jrcYearly =
ee.ImageCollection('JRC/GSW1_3/YearlyHistory');
var poi = ee.Geometry.LineString([

[110.77450764660864, 30.954167027937988],
[110.77158940320044, 30.950633845897112]

]);

var rwcFunction = require(
'users/eeProject/RivWidthCloudPaper:rwc_watermask.js');

Remember that the widths from Sect. 43.2.1.2 are stored in a
FeatureCollection with multiple width values from different locations
along a centerline. To extract the multitemporal river width for a particular
location along a river, we only need one width measurement from each water
mask. Here, we choose the width for the centerline pixel that is nearest to the
given point of interest using the function getNearestCl. This function takes
the width FeatureCollection from Sect. 43.2.1.2 as input and returns a
feature corresponding to the width closest to the point of interest.

940 X. Yang et al.

// Function to identify the nearest river width to a given
location.
var GetNearestClGen = function(poi) {

var temp = function(widths) {
widths = widths.map(function(f) {

return f.set('dist2cl', f.distance(poi,
30));

});

return ee.Feature(widths.sort('dist2cl', true)
.first());

};
return temp;

};
var getNearestCl = GetNearestClGen(poi);

Then, we will need to use the map method on the input collection of water
masks to apply the rwc to all the water mask images. This will result in a
FeatureCollection, each feature of which will contain the width quantified
from one image (Fig. 43.3).

Fig. 43.3 River width time series upstream of the Three Gorges Dam in China. The series shows
the abrupt increase in river width around the year 2003, when the dam was completed

43 River Morphology 941

// Multitemporal width extraction.
var polygon = poi.buffer(2000);
var coords = poi.centroid().coordinates();
var lon = coords.get(0);
var lat = coords.get(1);
var crs = getUTMProj(lon, lat);
var scale = ee.Number(30);

var multiwidths =
ee.FeatureCollection(jrcYearly.map(function(i) {

var watermask = i.gte(2).unmask(0);

watermask = ee.Image(watermask.rename(['waterMask'])
.setMulti({

crs: crs,
scale: scale,
image_id: i.getNumber('year')

}));
var rwc = rwcFunction.rwGen_waterMask(2000, 333, 300,

polygon);
var widths = rwc(watermask)

.filter(ee.Filter.eq('endsInWater', 0))

.filter(ee.Filter.eq('endsOverEdge', 0));

return ee.Algorithms.If(widths.size(), getNearestCl(
widths), null);

}, true));

var widthTs = ui.Chart.feature.byFeature(multiwidths,
'image_id', [

'width'
])
.setOptions({

hAxis: {
title: 'Year',
format: '####'

},
vAxis: {

title: 'Width (meter)'
},
title: 'River width time series upstream of the

Three Gorges Dam'

942 X. Yang et al.

});
print(widthTs);

Map.centerObject(polygon);
Map.addLayer(polygon, {}, 'area of width calculation');

Code Checkpoint A24d. The book’s repository contains a script that shows what
your code should look like at this point.

43.2.3 Riverbank Erosion

In this section, we will apply the methods we developed in Sect. 43.2.1 to multiple
images, calculate the amount of bank erosion, and summarize our results back
onto our centerline. Before doing so, we will create a new script that wraps the
masking and morphology code in Sects. 43.2.1.1 and 43.2.1.3 into a function called
makeChannelmask that has one argument for the year. We return an image with
bands for all of the masks and bank calculations, plus a property named ‘year’
that contains the year argument. If you have time, you could try to create this
function on your own and then compare with our implementation of it, in the next
code checkpoint. Note that we would not expect that your code would look the
same, but it should ideally have the same functionality.

Code Checkpoint A24e. The book’s repository contains a script to use to begin
this section. You will need to start with that script and paste code below into it.

Change Detection
We will use a section of the Madre de Dios River as our study area for this example
because it migrates very quickly, more than 30 m per year in some locations. Our
methods will work best if the two channel masks partially overlap everywhere
along the length of the river; if there is a gap between the two masks, we will
underestimate the amount of change and not be able to calculate the direction of
change. As such, we will pick the years 2015 and 2020 for our example. However,
in other locations, you may want to increase the time span in order to observe
more change. We first create these two sets of channel masks and add them to the
map (Fig. 4a).

43 River Morphology 943

Fig. 43.4 Single meander bend of the Madre de Dios River in Bolivia, showing areas of erosion
and accretion: a channel mask from 2015 in blue and channel mask from 2020 in red at 50%
transparency; b pixels that represent erosion between 2015 and 2020

var masks1 = makeChannelmask(2015);
var masks2 = makeChannelmask(2020);
Map.centerObject(aoi, 13);
var year1mask =
rpj(masks1.select('channelmask').selfMask());
Map.addLayer(year1mask, {
 palette: ['blue']
}, 'year 1');
var year2mask =
rpj(masks2.select('channelmask').selfMask());
Map.addLayer(year2mask, {
 palette: ['red']
}, 'year 2', true, 0.5);

Next, we create an image to represent the eroded area (Fig. 4b). We can quickly
calculate this by comparing the channel mask in year 2 to the inverse water mask
from year 1. In alluvial river systems, avulsions and meander cutoffs can leave
fragments of old channels near the river. If the river meanders back into these
water bodies, we want to be careful not to count these as fully eroded, which is
why we need to compare our river pixels in year 2 (channel mask) to the land
pixels in year 1 (inverse water mask). If you were to compare only the channel
masks from year to year, water in the floodplains that is captured by the channel
migration would be falsely counted as erosion.

944 X. Yang et al.

// Pixels that are now the river channel but were
previously land.
var erosion = masks2.select('channelmask')

.and(masks1.select('watermask').not()).rename('erosion');
Map.addLayer(rpj(erosion).selfMask(), {}, 'erosion',
false);

Now we are going to approximate the direction of erosion. We will define
the direction of erosion by the shortest path through the eroded area from each
bank pixel in year 1 to any of the bank pixels in year 2. In reality, meander-
ing rivers often translate their shape downvalley, which breaks our definition of
the shortest path between banks. However, the shortest path produces a reason-
able approximation in most cases and is easy to calculate. We will again use
Image.cumulativeCost to measure the distance using the erosion image as
our cost surface. The erosion image has to be dilated by 1 pixel to compensate for
the missing edge pixels in the gradient calculations and masked in order to limit
the cost paths to within the eroded area.

// Erosion distance assuming the shortest distance between
banks.
var erosionEndpoints =
erosion.focal_max(1).and(masks2.select(

'bankMask'));
var erosionDistance = erosion.focal_max(1).selfMask()

.cumulativeCost({
source: erosionEndpoints,
maxDistance: 1E3,
geodeticDistance: true

}).rename('erosionDistance');
Map.addLayer(rpj(erosionDistance),

{
min: 0,
max: 300

},
'erosion distance',
false);

43 River Morphology 945

Now we can use the same Terrain.aspect method that we used for the
bank aspect to calculate the direction of the shortest path along our cost surface.
You could also calculate this direction (and the bank aspect in Sect. 43.2.1.3) using
the Image.gradient method and then calculating the tangent of the resulting
x and y components.

// Direction of the erosion following slope of distance.
var erosionDirection = ee.Terrain.aspect(erosionDistance)
 .multiply(Math.PI).divide(180)
 .clip(aoi)
 .rename('erosionDirection');
erosionDistance = erosionDistance.mask(erosion);
Map.addLayer(rpj(erosionDirection),
 {
 min: 0,
 max: Math.PI
 },
 'erosion direction',
 false);

Connecting to the Centerline
We now have all of our change metrics calculated as images in Earth Engine. We
could export these and make maps and figures using these data. However, when
analyzing a lot of river data, we often want to look at long profiles of a river
or tributary networks in a watershed. In order to do this, we will use reducers
to summarize our raster data back onto our vector centerline. The first step is to
identify which pixels should be assigned to which centerline points. We will start
by calculating a single image representing the distance to any SWORD centerline
point with the FeatureCollection.distance method. Next, we will use
a convolution with the Laplacian kernel (Chap. 10) as an edge detection method
on our distance raster. By convolving the distance to the nearest SWORD node
with the Laplacian kernel, we are calculating the second derivative of distance
and can find the locations where the distance surface starts sloping toward another
SWORD point.

946 X. Yang et al.

// Distance to nearest SWORD centerline point.
var distance = sword.distance(2E3).clip(aoi);

// Second derivatives of distance.
// Finding the 0s identifies boundaries between centerline
points.
var concavityBounds =
distance.convolve(ee.Kernel.laplacian8())
 .gte(0).rename('bounds');

Map.addLayer(rpj(distance), {
 min: 0,
 max: 1E3
}, 'distance', false);
Map.addLayer(rpj(concavityBounds), {}, 'bounds', false);

Next, we need to create an image where each pixel’s value is set to the unique
node identifier of the nearest SWORD centerline point. We will create a two-band
image, where the first band is the concavity boundaries found in the last step, and
the second band has the unique node identifiers painted on their location. When
we reduce this image using the Image.reduceConnectedComponents
method, we set all pixels in each region with the corresponding node ID. Last,
we need to dilate these pixels to fill in the boundary gaps using a call to the
Image.focalMode method (Fig. 43.5).

// Reduce the pixels according to the concavity boundaries,
// and set the value to SWORD node ID. Note that focalMode
is used
// to fill in the empty pixels that were the boundaries.
var swordImg = ee.Image(0).paint(sword,
'node_id').rename('node_id')

.clip(aoi);
var nodePixels = concavityBounds.addBands(swordImg)

.reduceConnectedComponents({
reducer: ee.Reducer.max(),
labelBand: 'bounds'

}).focalMode({
radius: 3,
iterations: 2

});
Map.addLayer(rpj(nodePixels).randomVisualizer(),

{},
'node assignments',
false);

43 River Morphology 947

Fig. 43.5 Section of the Madre de Dios River where each pixel is assigned to its closest centerline
node

Summarizing the Data
The final step in this section is to apply a reducer that uses our nodePixels
image from the previous step to group our raster data. We will com-
bine the reducer.forEach and reducer.group methods into our own
custom function that we can use with different reducers to get our final
results. The reducer.forEach method sets up a different reducer and
output for each band in our image, which is necessary when we use the
reducer.group method. The reducer.group method is conceptually sim-
ilar to reducer.reduceRegions, except our regions are defined by an
image band instead of by polygons. In some cases, the group method is much
faster than the reducer.reduceRegions method, particularly if you were
to have to convert your regions to polygons in order to provide the input to
reducer.reduceRegions. The grouped reducers in our function return a list
of dictionaries. However, it is much easier to work with feature collections, so we
will map over the list and create a FeatureCollection before returning from
the function.

948 X. Yang et al.

// Set up a custom reducing function to summarize the data.
var groupReduce = function(dataImg, nodeIds, reducer) {

// Create a grouped reducer for each band in the data
image.

var groupReducer = reducer.forEach(dataImg.bandNames())
.group({

groupField: dataImg.bandNames().length(),
groupName: 'node_id'

});

// Apply the grouped reducer.
var statsList = dataImg.addBands(nodeIds).clip(aoi)

.reduceRegion({
reducer: groupReducer,
scale: 30,

}).get('groups');

// Convert list of dictionaries to FeatureCollection.
var statsOut = ee.List(statsList).map(function(dict) {

return ee.Feature(null, dict);
});
return ee.FeatureCollection(statsOut);

};

For some variables—such as the erosion, the channel mask, or the bank
length—we want the total number of pixels or bank length, so we will use the
Reducer.sum method with our grouped reducer function. For our aspect and
directional variables, we need to use the Reducer.circularMean method to
find the mean direction. The returned variables sumStats and angleStats
are feature collections with properties for our reduced data and the corresponding
node ID.

43 River Morphology 949

var dataMask = masks1.addBands(masks2).reduce(ee.Reducer
 .anyNonZero());

var sumBands = ['watermask', 'channelmask', 'bankLength'];
var sumImg = erosion
 .addBands(masks1, sumBands)
 .addBands(masks2, sumBands);
var sumStats = groupReduce(sumImg, nodePixels,
ee.Reducer.sum());

var angleImg = erosionDirection
 .addBands(masks1, ['bankAspect'])
 .addBands(masks2, ['bankAspect']);
var angleStats = groupReduce(angleImg, nodePixels,
ee.Reducer
 .circularMean());

Finally, we will join these two new feature collections to our original centerline
data and print the results (Fig. 43.6).

var vectorData = sword.filterBounds(aoi).map(function(feat)
{

var nodeFilter = ee.Filter.eq('node_id', feat.get(
'node_id'));

var sumFeat = sumStats.filter(nodeFilter).first();
var angleFeat = angleStats.filter(nodeFilter).first();
return feat.copyProperties(sumFeat).copyProperties(

angleFeat);
});

print(vectorData);
Map.addLayer(vectorData, {}, 'final data');

Code Checkpoint A24f. The book’s repository contains a script that shows what
your code should look like at this point.

This workflow can be used to add many new properties to the river centerlines
based on raster calculations. For example, we calculated the amount of erosion
between these two years, but you could use very similar code to calculate the
amount of accretion that occurred. Other interesting properties of the river, like the
slope of the banks from a DEM, could be calculated and added to our centerline
dataset.

950 X. Yang et al.

Fig. 43.6 Updated list of properties in our centerline dataset; new properties are outlined in
black. The erosion and mask fields are in units of pixels, but you could convert to area using the
Image.pixelArea method on the masks

43.3 Synthesis

Assignment 1. RivWidthCloud can estimate individual channel width in the case
of multichannel rivers. Change the AOI to a multichannel river and observe the
resulting centerline and width data. Note down things you think are different from
the single-channel case.

43 River Morphology 951

Assignment 2. Answer the following question. When rivers experience both vari-
able width over time and bank migration, how can we apply the methods in this
chapter to distinguish these two types of changes?

43.4 Conclusion

In this chapter, we provide ways in which Earth Engine can be used to aid river
planview morphological studies. In the first half of the chapter, we show how to
distinguish river pixels from other types of water bodies, as well as how to extract
river centerline, river width, bank aspect, and length. In the second half of the
chapter, we give examples of how to apply these methods to multitemporal image
collections to estimate changes in river widths for rivers that have stable channels
and to estimate bank erosion for rivers that tend to meander quickly. The analysis
makes use of both raster- and vector-based methods provided by Earth Engine to
help quantify river morphology. More importantly, these methods can be applied
at scale.

References

Boothroyd RJ, Williams RD, Hoey TB et al (2021) Applications of Google Earth Engine in flu-
vial geomorphology for detecting river channel change. Wiley Interdiscip Rev Water 8:e21496.
https://doi.org/10.1002/wat2.1496

Constantine JA, Dunne T, Ahmed J et al (2014) Sediment supply as a driver of river meandering
and floodplain evolution in the Amazon Basin. Nat Geosci 7:899–903. https://doi.org/10.1038/
ngeo2282

Pavelsky TM, Smith LC (2008) RivWidth: a software tool for the calculation of river widths from
remotely sensed imagery. IEEE Geosci Remote Sens Lett 5:70–73. https://doi.org/10.1109/
LGRS.2007.908305

Pekel JF, Cottam A, Gorelick N, Belward AS (2016) High-resolution mapping of global surface
water and its long-term changes. Nature 540:418–422. https://doi.org/10.1038/nature20584

Rowland JC, Shelef E, Pope PA et al (2016) A morphology independent methodology for quan-
tifying planview river change and characteristics from remotely sensed imagery. Remote Sens
Environ 184:212–228. https://doi.org/10.1016/j.rse.2016.07.005

Shields FD Jr, Simon A, Steffen LJ (2000) Reservoir effects on downstream river channel migra-
tion. Environ Conserv 27:54–66. https://doi.org/10.1017/S0376892900000072

Smith LC, Isacks BL, Bloom AL, Murray AB (1996) Estimation of discharge from three braided
rivers using synthetic aperture radar satellite imagery: potential application to ungaged basins.
Water Resour Res 32:2021–2034. https://doi.org/10.1029/96WR00752

Yang X, Pavelsky TM, Allen GH, Donchyts G (2020) RivWidthCloud: an automated Google
Earth Engine algorithm for river width extraction from remotely sensed imagery. IEEE Geosci
Remote Sens Lett 17:217–221. https://doi.org/10.1109/LGRS.2019.2920225

https://doi.org/10.1002/wat2.1496
https://doi.org/10.1038/ngeo2282
https://doi.org/10.1038/ngeo2282
https://doi.org/10.1109/LGRS.2007.908305
https://doi.org/10.1109/LGRS.2007.908305
https://doi.org/10.1038/nature20584
https://doi.org/10.1016/j.rse.2016.07.005
https://doi.org/10.1017/S0376892900000072
https://doi.org/10.1029/96WR00752
https://doi.org/10.1109/LGRS.2019.2920225

952 X. Yang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

44Water Balance and Drought

Ate Poortinga , Quyen Nguyen, Nyein Soe Thwal ,
and Andréa Puzzi Nicolau

Overview
In this chapter, you will learn simple water balance calculations using remote sensing-
derived products related to precipitation and evapotranspiration. You will work at the
river basin scale and perform time-series analysis, while comparing the data series
with remote sensing vegetation and drought indices using the Earth Engine platform.
You will also overlay the various indices with a land cover map to estimate potential
drought impacts throughout the region.

Learning Outcomes

• Understanding the basics of remote sensing-derived precipitation and evapotran-
spiration products.

• Calculating monthly aggregate statistics.
• Performing time-series analysis.
• Calculating vegetation and drought indices.

A. Poortinga (B) · A. P. Nicolau
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: apoortinga@sig-gis.com

A. P. Nicolau
e-mail: apnicolau@sig-gis.com

Q. Nguyen · N. S. Thwal
Asian Disaster Preparedness Center, Bangkok, Thailand
e-mail: nguyen.quyen@adpc.net

N. S. Thwal
e-mail: nyein.thwal@adpc.net

A. Poortinga · Q. Nguyen · N. S. Thwal
SERVIR-Southeast Asia, Bangkok, Thailand

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_44

953

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_44&domain=pdf
https://orcid.org/0000-0001-9647-2317
https://orcid.org/0000-0003-2082-3605
https://orcid.org/0000-0002-7529-2074
mailto:apoortinga@sig-gis.com
mailto:apnicolau@sig-gis.com
mailto:nguyen.quyen@adpc.net
mailto:nyein.thwal@adpc.net
https://doi.org/10.1007/978-3-031-26588-4_44

954 A. Poortinga et al.

Helps if you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Create a graph using ui.Chart (Chap. 4).
• Perform basic image analysis: select bands, compute indices, create masks (Part

2).
• Write a function and map it over an ImageCollection (Chap. 12).
• Summarize an ImageCollection with reducers (Chaps. 12 and 13).
• Aggregate data to build a time series (Chap. 14).
• Work with CHIRPS rainfall data (Chap. 14)
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

44.1 Introduction to Theory

Water is vital for sustaining human life, ensuring food security, generating power,
and supporting industrial processes in river basins. Both terrestrial and aquatic
ecosystems are dependent on water to provide valuable ecosystem services, not
only for the current generation but also for generations in the future. Managing the
complex flow paths of water to and from these different water-use sectors requires
a quantitative understanding of hydrological processes. Quantitative insights are
necessary to help manage water consumption more efficiently by means of reten-
tion, withdrawals, and land use change. Managers need background data to help
them optimize water allocation to sectors without further depleting the natural
capital in the basin.

The water balance (Fig. 44.1) is the key concept in understanding the avail-
ability of water resources in a hydrological system. The water balance includes
both input and extractions of water. In its simplest form, the water balance can
be defined as Eq. (44.1). Inputs to the hydrological system are defined by precip-
itation (P; rainfall and snow). Extractions for the system are from runoff (Q) and
evapotranspiration (ET), with evapotranspiration denoting the sum of evaporation
from the land surface plus transpiration from plants. Water balance changes in
groundwater and soil storage are indicated by ΔS.

P = Q + ET + ΔS (44.1)

A hydrological system, also referred to as river basin or drainage basin, is any
land area where precipitation collects and drains off into a common outlet. The
hydrological processes between upstream and downstream are interconnected: For
example, extractions of water resources upstream will impact the amount of avail-
able downstream water resources. Similarly, upstream activities such as logging
and swidden agriculture might impact the quality of downstream water resources.
Figure 44.2 shows the boundaries of the Lower Mekong River Basin, which cov-
ers parts of Laos, Thailand, Cambodia, Myanmar, and Vietnam. Water is a shared

44 Water Balance and Drought 955

Fig. 44.1 The key
components of the
hydrological cycle

resource among the countries, although each country has its own legal framework
to maintain and protect water supplies. A quantitative understanding of this shared
resource is imperative to formulating effective management strategies.

In the following exercises, we will calculate the main components of the water
balance and link them with vegetation growth, drought information, and land cover
information in the Lower Mekong Basin.

44.2 Practicum

44.2.1 Section 1: Calculating Monthly Precipitation

If you have not already done so, you can add the book’s code repository to
the Code Editor by entering https://code.earthengine.google.com/?accept_repo=pro
jects/gee-edu/book (or the short URL bit.ly/EEFA-repo) into your browser. The
book’s scripts will then be available in the script manager panel to view, run, or
modify. If you have trouble finding the repo, you can visit bit.ly/EEFA-repo-help
for help.

Precipitation has been measured for many centuries (Strangeways 2010). The
traditional method is point measurement, which was standardized in the previ-
ous century to make measurements comparable in space and time. Figure 44.3
shows a conventional weather station used to measure various weather-related
parameters, including the amount of rainfall. Although statistical methods exist
to calculate area averaged rainfall from weather stations, the limited number of
data points remains a constraint, especially in developing countries and sparsely
populated regions where the density of weather stations is low. Satellites can fill

https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book
https://code.earthengine.google.com/?accept_repo=projects/gee-edu/book

956 A. Poortinga et al.

Fig. 44.2 The upper and
lower Mekong River Basin

this information gap, as they observe the planet at a regular interval with calibrated
sensors.

The Tropical Rainfall Measuring Mission (TRMM), a joint mission of the Japan
Aerospace Exploration Agency (JAXA) and NASA, was a notable effort to monitor
and study tropical rainfall (Kummerow et al. 1998). The satellite, which operated
for 17 years, contained various instruments to measure clouds and cloud struc-
tures in order to advance understanding of the global energy and water cycles.
The Global Precipitation Measurement (GPM; Fig. 44.4) mission is the successor,
with the primary aim of making frequent (every 2–3 h) observations of Earth’s
precipitation (Hou et al. 2014). A wide variety of data products are available for
both TRMM and GPM. Precipitation estimates are derived from the Precipitation
Radar (PR), TRMM Microwave Imager (TMI), Visible Infrared Scanner (VIRS),
Clouds and Earth’s Radiant Energy System (CERES), and Lightning Imaging Sen-
sor (LSI). Frequently used products of TRMM have a spatial resolution of 0.25°
(~ 25 km), whereas GPM has a higher resolution of 0.1° (~ 10 km). Data is avail-
able on a 3-h time interval. The data can be obtained through NASA but also can
be accessed from the Earth Engine data repository.

44 Water Balance and Drought 957

Fig. 44.3 Conventional weather station that measures various parameters, including precipitation

Fig. 44.4 The satellite for the Global Precipitation Measurement (GPM) mission

958 A. Poortinga et al.

The Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data
is a quasi-global rainfall dataset (Funk et al. 2015) covering more than 35 years.
CHIRPS provides precipitation information at a 0.5° (~ 5 km) spatial resolution.
The dataset estimates precipitation by combining data from observing meteorolog-
ical stations with satellite data. CHIRPS data is available at intervals from daily
to annual and can be very valuable in hydrology studies, as it provides a long
and consistent time series with precipitation estimates at a relatively high spatial
resolution.

Below is the code and an exercise to calculate monthly precipitation using these
satellite data.

We begin by importing our area of interest, the Lower Mekong River Basin
(Fig. 44.5).

Fig. 44.5 The lower
Mekong Basin

44 Water Balance and Drought 959

// Import the Lower Mekong boundary.
var mekongBasin = ee.FeatureCollection(

'projects/gee-book/assets/A2-5/lowerMekongBasin');

// Center the map.
Map.centerObject(mekongBasin, 5);

// Add the Lower Mekong Basin boundary to the map.
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin');

In the next step, we set the start and end dates for our analysis. We create a list
for both years and months, which we will later use to iterate over.

// Set start and end years.
var startYear = 2010;
var endYear = 2020;

// Create two date objects for start and end years.
var startDate = ee.Date.fromYMD(startYear, 1, 1);
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1);

// Make a list with years.
var years = ee.List.sequence(startYear, endYear);

// Make a list with months.
var months = ee.List.sequence(1, 12);

We import the CHIRPS ImageCollection and select the imagery for the
relevant dates, as presented in Chap. 14. Note that we used the pentad time series;
each image in this collection contains the accumulated rainfall for five days. The
daily product is also available in Earth Engine. The pentad dataset was used
rather than the daily data product to reduce the number of computations needed to
aggregate the data.

// Import the CHIRPS dataset.
var CHIRPS = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Filter for the relevant time period.
CHIRPS = CHIRPS.filterDate(startDate, endDate);

960 A. Poortinga et al.

The year and month lists are used in the function below to calculate the monthly
rainfall. We use a server-side nested loop where we first map over the years (2010,
2011, … 2020) and then map over the months (1, 2, … 12). This returns an image
with the total rainfall for each month. We set the year, month, and timestamp
(’system:time_start’) for each image and flatten the image to turn the
object into a single ImageCollection.

// We apply a nested loop where we first map over
// the relevant years and then map over the relevant
// months. The function returns an image with the total
(sum)
// rainfall for each month. A flatten is applied to convert
a
// feature collection of features into a single feature
collection.
var monthlyPrecip = ee.ImageCollection.fromImages(

years.map(function(y) {
return months.map(function(m) {

var w = CHIRPS.filter(ee.Filter
.calendarRange(y, y, 'year'))

.filter(ee.Filter.calendarRange(m, m,
'month'))

.sum();
return w.set('year', y)

.set('month', m)

.set('system:time_start', ee.Date
.fromYMD(y, m, 1));

});
}).flatten()

);

Add a layer with the monthly mean precipitation to the map and calculate a
chart with monthly mean precipitation (Fig. 44.6).

44 Water Balance and Drought 961

// Add the layer with monthly mean. Note that we clip for
the Mekong river basin.
var precipVis = {

min: 0,
max: 250,
palette: 'white, blue, darkblue, red, purple'

};

Map.addLayer(monthlyPrecip.mean().clip(mekongBasin),
precipVis,
'2015 precipitation');

// Set the title and axis labels for the chart.
var title = {

title: 'Monthly precipitation',
hAxis: {

title: 'Time'
},
vAxis: {

title: 'Precipitation (mm)'
},

};

// Plot the chart using the Mekong boundary.
var chartMonthly = ui.Chart.image.seriesByRegion({

imageCollection: monthlyPrecip,
regions: mekongBasin.geometry(),
reducer: ee.Reducer.mean(),
band: 'precipitation',
scale: 5000,
xProperty: 'system:time_start'

}).setSeriesNames(['P'])
.setOptions(title)
.setChartType('ColumnChart');

// Print the chart.
print(chartMonthly);

Code Checkpoint A25a. The book’s repository contains a script that shows what
your code should look like at this point.

962 A. Poortinga et al.

Fig. 44.6 Mean precipitation in the Lower Mekong Basin (left) and the monthly average precip-
itation (right)

44.2.2 Section 2: Calculating Monthly Evapotranspiration

Measuring evapotranspiration at large scales is important for assessing climate and
anthropogenic effects on natural and agricultural ecosystems (Kustas and Norman
1996). Methods exist to measure ET at a field scale, but those methods cannot
be extrapolated to larger areas. Traditional ways of estimating ET have been to
use reference ET, derived from various weather-related parameters, with a crop
coefficient. However, there are large uncertainties due to, for example, spatial and
temporal heterogeneity and data gaps. Satellite information can be very useful as
it provides spatially and temporally dense information for ET estimation.

Different methods exist to map ET from remote sensing data, including simple
empirical models that relate spectral reflectance with ET, vegetation index models,
energy budget, and deterministic models (Courault et al. 2005). Fundamentally,
however, ET is governed by the energy budget and driving variables such as sur-
face temperature. The total amount of available net radiant energy is divided into
a soil heat flux and the atmospheric convective fluxes, which are the sensible heat
flux (H) and latent energy exchanges (LE). This essentially means that the tem-
perature decreases when energy is used for ET. Indeed, there are different ways
to further quantify the different energy fluxes in more detail, and there is a wide
body of scientific literature that describes those methods.

There are different readily available ET products derived from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS), including Atmosphere-Land
Exchange Inverse (ALEXI; Anderson et al. 1997; Mecikalski et al. 1999), the
operational Simplified Surface Energy Balance (SSEB; Senay et al. 2013), CSIRO
MODIS Rescaled Evapotranspiration (CMRSET; Guerschman et al. 2009), and
MOD16. The MOD16 algorithm is based on the logic of the Penman–Monteith
equation, which uses daily meteorological reanalysis data and eight-day remotely

44 Water Balance and Drought 963

sensed vegetation property dynamics from MODIS as inputs. The MOD16 prod-
uct is available in the Earth Engine assets, and we will use this product for ET
estimation in the next exercise.

First, we start a new script and repeat the first two steps of the previous section
by copying and pasting the following code:

// Import the Lower Mekong boundary.
var mekongBasin = ee.FeatureCollection(

'projects/gee-book/assets/A2-5/lowerMekongBasin');

// Center the map.
Map.centerObject(mekongBasin, 5);

// Add the Lower Mekong Basin boundary to the map.
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin');

// Set start and end years.
var startYear = 2010;
var endYear = 2020;

// Create two date objects for start and end years.
var startDate = ee.Date.fromYMD(startYear, 1, 1);
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1);

// Make a list with years.
var years = ee.List.sequence(startYear, endYear);

// Make a list with months.
var months = ee.List.sequence(1, 12);

We import the MOD16 dataset and select the ET band, which represents total
evapotranspiration.

// Import the MOD16 dataset.
var mod16 =
ee.ImageCollection('MODIS/006/MOD16A2').select('ET');

// Filter for the relevant time period.
mod16 = mod16.filterDate(startDate, endDate);

964 A. Poortinga et al.

We use the same function to calculate monthly values as in the previous section.
Note that we multiply by 0.1 as a scaling factor. The scaling factor can be found
in the description of the dataset in Earth Engine. Scaling factors are applied to
reduce the required storage capacity by changing the data type.

// We apply a nested loop where we first map over
// the relevant years and then map over the relevant
// months. The function returns an image with the total
(sum)
// evapotranspiration for each month. A flatten is applied
to convert a
// collection of collections into a single collection.
// We multiply by 0.1 because of the ET scaling factor.
var monthlyEvap = ee.ImageCollection.fromImages(
 years.map(function(y) {
 return months.map(function(m) {
 var w = mod16.filter(ee.Filter
 .calendarRange(y, y, 'year'))
 .filter(ee.Filter.calendarRange(m, m,
 'month'))
 .sum()
 .multiply(0.1);
 return w.set('year', y)
 .set('month', m)
 .set('system:time_start', ee.Date
 .fromYMD(y, m, 1));

 });
 }).flatten()
);

We use the code below to visualize the results (Fig. 44.7). Note that we changed
the color of the bar chart and applied the reducer on a 500 m spatial resolution.

44 Water Balance and Drought 965

// Add the layer with monthly mean. Note that we clip for
the Mekong river basin.
var evapVis = {

min: 0,
max: 140,
palette: 'red, orange, yellow, blue, darkblue'

};

Map.addLayer(monthlyEvap.mean().clip(mekongBasin),
evapVis,
'Mean monthly ET');

// Set the title and axis labels for the chart.
var title = {

title: 'Monthly evapotranspiration',
hAxis: {

title: 'Time'
},
vAxis: {

title: 'Evapotranspiration (mm)'
},
colors: ['red']

};

// Plot the chart using the Mekong boundary.
var chartMonthly = ui.Chart.image.seriesByRegion({

imageCollection: monthlyEvap,
regions: mekongBasin.geometry(),
reducer: ee.Reducer.mean(),
band: 'ET',
scale: 500,
xProperty: 'system:time_start'

}).setSeriesNames(['ET'])
.setOptions(title)
.setChartType('ColumnChart');

// Print the chart.
print(chartMonthly);

966 A. Poortinga et al.

Fig. 44.7 Mean ET in the lower Mekong basin (left) and the monthly average ET (right)

Code Checkpoint A25b. The book’s repository contains a script that shows what
your code should look like at this point.

44.2.3 Section 3: Monthly Water Balance

We learned that the water balance is calculated using precipitation, evapotran-
spiration, runoff, and storage changes (Eq. 44.1). In the previous two sections,
we calculated the monthly precipitation (P) on a 5 km spatial resolution and the
monthly evapotranspiration (ET) on a 500 m spatial resolution. In Eq. (44.2), we
rearrange Eq. (44.1) so that we can calculate the portion of Q and ΔS on a pixel
level and aggregate that information to a basin level.

P − ET = Q + ΔS (44.2)

In this section, we will use the previous data to calculate the monthly water
balance. First, we set the dates and import the relevant ImageCollection, as
shown in the previous sections. Copy and paste the code below in a new script.

44 Water Balance and Drought 967

// Import the Lower Mekong boundary.
var mekongBasin = ee.FeatureCollection(
 'projects/gee-book/assets/A2-5/lowerMekongBasin');

// Center the map.
Map.centerObject(mekongBasin, 5);

// Add the Lower Mekong Basin boundary to the map.
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin');

// Set start and end years.
var startYear = 2010;
var endYear = 2020;

// Create two date objects for start and end years.
var startDate = ee.Date.fromYMD(startYear, 1, 1);
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1);

// Make a list with years.
var years = ee.List.sequence(startYear, endYear);

// Make a list with months.
var months = ee.List.sequence(1, 12);

// Import the CHIRPS dataset.
var CHIRPS = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Filter for relevant time period.
CHIRPS = CHIRPS.filterDate(startDate, endDate);

// Import the MOD16 dataset.
var mod16 =
ee.ImageCollection('MODIS/006/MOD16A2').select('ET');

// Filter for relevant time period.
mod16 = mod16.filterDate(startDate, endDate);

968 A. Poortinga et al.

Now we use the function that we used earlier to calculate monthly ET and P to
calculate the water balance.

// We apply a nested loop where we first map over
// the relevant years and then map over the relevant
// months. The function returns an image with P - ET
// for each month. A flatten is applied to convert an
// collection of collections into a single collection.
var waterBalance = ee.ImageCollection.fromImages(
 years.map(function(y) {
 return months.map(function(m) {

 var P = CHIRPS.filter(ee.Filter
 .calendarRange(y, y, 'year'))
 .filter(ee.Filter.calendarRange(m, m,
 'month'))
 .sum();

 var ET = mod16.filter(ee.Filter
 .calendarRange(y, y, 'year'))
 .filter(ee.Filter.calendarRange(m, m,
 'month'))
 .sum()
 .multiply(0.1);

 var wb = P.subtract(ET).rename('wb');

 return wb.set('year', y)
 .set('month', m)
 .set('system:time_start', ee.Date
 .fromYMD(y, m, 1));

 });
 }).flatten()
);

44 Water Balance and Drought 969

Next, we add the monthly mean water balance to the map and calculate the
monthly water balance (Fig. 44.8). Note that negative numbers in the map indicate
regions with an overall surplus of ET, whereas negative monthly water balances
indicate a surplus ET for the whole region.

// Add layer with monthly mean. note that we clip for the
Mekong river basin.
var balanceVis = {
 min: -50,
 max: 200,
 palette: 'red, orange, yellow, blue, darkblue, purple'
};

Map.addLayer(waterBalance.mean().clip(mekongBasin),
 balanceVis,
 'Mean monthly water balance');

// Set the title and axis labels for the chart.
var title = {
 title: 'Monthly water balance',
 hAxis: {
 title: 'Time'
 },
 vAxis: {
 title: 'Evapotranspiration (mm)'
 },
 colors: ['green']
};

// Plot the chart using the Mekong boundary.
var chartMonthly = ui.Chart.image.seriesByRegion({
 imageCollection: waterBalance,
 regions: mekongBasin.geometry(),
 reducer: ee.Reducer.mean(),
 band: 'wb',
 scale: 500,
 xProperty: 'system:time_start'
 }).setSeriesNames(['WB'])
 .setOptions(title)
 .setChartType('ColumnChart');

// Print the chart.
print(chartMonthly);

970 A. Poortinga et al.

Fig. 44.8 Mean water balance in the lower Mekong basin (left) and the monthly average water
balance (right)

Code Checkpoint A25c. The book’s repository contains a script that shows what
your code should look like at this point.

44.2.4 Section 4: Vegetation and Drought Indices

Calculating vegetation indices is a common practice when working with remote
sensing data. The Normalized Difference Vegetation Index (NDVI; Rouse et al.
1973) and Enhanced Vegetation Index (EVI; Chap. 9) (Huete et al. 1994) are
among the most commonly used. Vegetation indices rely on the absorption and
reflection spectra of chlorophyll, often including the red band, where absorption
is high, and near infrared, where reflection is high. Vegetation indices are often
used to measure crop health and density, but they can also be used to measure,
for example, biophysical health over longer time periods (Poortinga et al. 2018).
Vegetation indices can be calculated from the spectral reflectance, but readily avail-
able products can be used as well. The latter have been processed and contain, for
example, corrections for outliers and artifacts.

Besides vegetation indices, there are many other indices to describe specific
natural phenomena or detect specific land surface features. These indices often rely
on simple band ratios or more sophisticated formulas containing multiple bands.
Drought indices are another category of important indicators as they enable us
to depict spatiotemporal drought patterns in great detail. This can be particularly
useful for remote areas where people rely on local agriculture for their livelihoods
but production data is scarce. In the next exercise, we will be using the Moisture
Stress Index (MSI; Vogelmann and Rock 1985), as this index has been shown to
be highly related to soil moisture. Equation (44.3) shows that MSI is calculated

44 Water Balance and Drought 971

from the shortwave infrared (SWIR) and near infrared (NIR) bands.

MSI = SWIR/NIR (44.3)

In this section, we use the EVI product for the vegetation index from MODIS.
This data is collected daily and can be used for calculation of the monthly vege-
tation index. You may note that we import the readily available EVI product and
also import the spectral reflectance dataset.

We first import all the relevant datasets and define the period of interest, as in
the other exercises, starting a new script.

// Import the Lower Mekong boundary.
var mekongBasin = ee.FeatureCollection(

'projects/gee-book/assets/A2-5/lowerMekongBasin');

// Center the map.
Map.centerObject(mekongBasin, 5);

// Add the Lower Mekong Basin boundary to the map.
Map.addLayer(mekongBasin, {}, 'Lower Mekong basin');

// Set start and end years.
var startYear = 2010;
var endYear = 2020;

// Create two date objects for start and end years.
var startDate = ee.Date.fromYMD(startYear, 1, 1);
var endDate = ee.Date.fromYMD(endYear + 1, 1, 1);

// Make a list with years.
var years = ee.List.sequence(startYear, endYear);

// Make a list with months.
var months = ee.List.sequence(1, 12);

972 A. Poortinga et al.

// Import the CHIRPS dataset.
var CHIRPS = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Filter for relevant time period.
CHIRPS = CHIRPS.filterDate(startDate, endDate);

// Import the MOD16 dataset.
var mod16 =
ee.ImageCollection('MODIS/006/MOD16A2').select('ET');

// Filter for relevant time period.
mod16 = mod16.filterDate(startDate, endDate);

// Import and filter the MOD13 dataset.
var mod13 = ee.ImageCollection('MODIS/006/MOD13A1');
mod13 = mod13.filterDate(startDate, endDate);

// Select the EVI.
var EVI = mod13.select('EVI');

// Import and filter the MODIS Terra surface reflectance
dataset.
var mod09 = ee.ImageCollection('MODIS/006/MOD09A1');
mod09 = mod09.filterDate(startDate, endDate);

Two steps are needed to calculate the MSI. First, we need to remove the clouds
and cloud shadows. This can be done by using the StateQA quality band that
comes with the MOD09 product. After all the artifacts have been removed, we
can calculate the MSI in the next function.

// We use a function to remove clouds and cloud shadows.
// We map over the mod09 image collection and select the
StateQA band.
// We mask pixels and return the image with clouds and
cloud shadows masked.
mod09 = mod09.map(function(image) {

var quality = image.select('StateQA');
var mask = image.and(quality.bitwiseAnd(1).eq(

0)) // No clouds.
.and(quality.bitwiseAnd(2).eq(0)); // No cloud

shadow.

return image.updateMask(mask);
});

44 Water Balance and Drought 973

// We use a function to calculate the Moisture Stress
Index.
// We map over the mod09 image collection and select the
NIR and SWIR bands
// We set the timestamp and return the MSI.
var MSI = mod09.map(function(image) {

var nirband = image.select('sur_refl_b02');
var swirband = image.select('sur_refl_b06');

var msi = swirband.divide(nirband).rename('MSI')
.set('system:time_start', image.get(

'system:time_start'));
return msi;

});

We use the same nested loop as the previous sections, but now we calculate all
layers and return an image where the layers are included as bands. Note that EVI
and MOD16 are multiplied by the scale factor. For P, ET, and WB, we calculate
the sum; for MSI and EVI, we calculate the mean.

// We apply a nested loop where we first map over
// the relevant years and then map over the relevant
// months. The function returns an image with bands for
// water balance (wb), rainfall (P), evapotranspiration
(ET),
// EVI and MSI for each month. A flatten is applied to
// convert an collection of collections
// into a single collection.
var ic = ee.ImageCollection.fromImages(

years.map(function(y) {
return months.map(function(m) {

// Calculate rainfall.
var P = CHIRPS.filter(ee.Filter

.calendarRange(y, y, 'year'))
.filter(ee.Filter.calendarRange(m, m,

'month'))
.sum();

// Calculate evapotranspiration.
var ET = mod16.filter(ee.Filter

.calendarRange(y, y, 'year'))
.filter(ee.Filter.calendarRange(m, m,

'month'))
.sum()
.multiply(0.1);

974 A. Poortinga et al.

// Calculate EVI.
var evi = EVI.filter(ee.Filter

.calendarRange(y, y, 'year'))
.filter(ee.Filter.calendarRange(m, m,

'month'))
.mean()
.multiply(0.0001);

// Calculate MSI.
var msi = MSI.filter(ee.Filter

.calendarRange(y, y, 'year'))
.filter(ee.Filter.calendarRange(m, m,

'month'))
.mean();

// Calculate monthly water balance.
var wb = P.subtract(ET).rename('wb');

// Return an image with all images as bands.
return ee.Image.cat([wb, P, ET, evi, msi])

.set('year', y)

.set('month', m)

.set('system:time_start', ee.Date
.fromYMD(y, m, 1));

});
}).flatten()

);

We display the monthly mean EVI and MSI and show the time series
(Fig. 44.9).

44 Water Balance and Drought 975

// Add the mean monthly EVI and MSI to the map.
var eviVis = {

min: 0,
max: 0.7,
palette: 'red, orange, yellow, green, darkgreen'

};

Map.addLayer(ic.select('EVI').mean().clip(mekongBasin),
eviVis,
'EVI');

var msiVis = {
min: 0.25,
max: 1,
palette: 'darkblue, blue, yellow, orange, red'

};

Map.addLayer(ic.select('MSI').mean().clip(mekongBasin),
msiVis,
'MSI');

// Define the water balance chart and print it to the
console.
var chartWB =

ui.Chart.image.series({
imageCollection: ic.select(['wb', 'precipitation',

'ET']),
region: mekongBasin,
reducer: ee.Reducer.mean(),
scale: 5000,
xProperty: 'system:time_start'

})
.setSeriesNames(['wb', 'P', 'ET'])
.setOptions({

title: 'water balance',
hAxis: {

title: 'Date',
titleTextStyle: {

italic: false,
bold: true

}
},

976 A. Poortinga et al.

vAxis: {
title: 'Water (mm)',
titleTextStyle: {

italic: false,
bold: true

}
},
lineWidth: 1,
colors: ['green', 'blue', 'red'],
curveType: 'function'

});

// Print the water balance chart.
print(chartWB);

// Define the indices chart and print it to the console.
var chartIndices =

ui.Chart.image.series({
imageCollection: ic.select(['EVI', 'MSI']),
region: mekongBasin,
reducer: ee.Reducer.mean(),
scale: 5000,
xProperty: 'system:time_start'

})
.setSeriesNames(['EVI', 'MSI'])
.setOptions({

title: 'Monthly indices',
hAxis: {

title: 'Date',
titleTextStyle: {

italic: false,
bold: true

}
},
vAxis: {

title: 'Index',
titleTextStyle: {

italic: false,
bold: true

}
},
lineWidth: 1,

44 Water Balance and Drought 977

Fig. 44.9 Monthly mean EVI (left), monthly mean MSI (middle), and the time series for the water
balance (top right) and indices (bottom right)

colors: ['darkgreen', 'brown'],
curveType: 'function'

});

// Print the indices chart.
print(chartIndices);

Code Checkpoint A25d. The book’s repository contains a script that shows what
your code should look like at this point.

44.2.5 Section 5: Partitioning Water Resources and Mapping
Drought Impacts

Historical and near-real-time remote-sensing-derived data can be very useful to
assess the impact on the ground. For example, overlaying information layers
on water resources with land cover information enables us to partition water
resources by land cover and investigate consumptive use of, for example, differ-
ent agricultural commodities. Overlaying land cover with vegetation and drought
indicators helps to investigate land cover categories that are most impacted by
water shortage. It also helps to assess the impacts on crop production and food
security (Poortinga et al. 2019), as well as potential environmental impacts, includ-
ing impacts on biodiversity. However, in many cases, maps are produced and
updated only infrequently and are often not accompanied by appropriate accuracy
assessment information and documentation (Saah et al. 2019). Therefore, SERVIR-
Mekong developed a time series of yearly land cover maps covering the greater
Mekong region, including the Lower Mekong Basin (Saah et al. 2020; Potapov

978 A. Poortinga et al.

Fig. 44.10 Land cover map
of the Lower Mekong Basin

et al. 2019; Poortinga et al. 2020). Figure 44.10 shows the land cover map of
2018.

44.2.5.1 Section 5.1: Annual Classifications
In the following subsections, we illustrate annual land cover maps and a variety
of interpretations of them. The annual maps can be accessed using script A25s1—
Annual in the book repository.

Note: if you get an error related to “too many concurrent aggregations” in this
last script link or the following ones, try re-running the script.

44 Water Balance and Drought 979

Fig. 44.11 The amount of P (left) and ET (right) per land cover category

44.2.5.2 Section 5.2: Precipitation and Evapotranspiration
An example of partitioning water inputs and consumption is shown in Fig. 44.11.
Here we calculate the mean P and ET for each land cover category using the
land cover map. We can see that the largest portions of water are being used by
cropland and agriculture; plantations also consume a large portion of the water.
The pie charts can be created and viewed using script A25s2—PET in the book
repository.

44.2.5.3 Section 5.3: Monthly Water Balance
We can apply a similar overlaying method of partitioning for the water balance.
Figure 44.12 shows the monthly water balance for deciduous forest, evergreen
broadleaf, cropland, and rice. It can be seen that a large portion of the water
stored in the wet season is used by forest and cropland in the dry season. The
area of paddy rice is smaller, so the total water consumption in the dry season
of those categories is smaller. The monthly water balance charts can be found in
script A25s3—Monthly in the book repository.

Fig. 44.12 Water balance for four different land cover categories: deciduous forest, evergreen
broadleaf, cropland, and rice

980 A. Poortinga et al.

44.2.5.4 Section 5.4: Per-class Water Balance Across Seasons
Partitioning can also be done per land cover category. In Fig. 44.13, we calculated
the EVI and MSI for four land cover categories. There are very distinct patterns:
we see little variation in the signal from the EVI but large variations for the decid-
uous forest. For cropland, we found a signal that closely corresponds to the yearly
dry and wet seasons, whereas we see multiple cropping seasons per year. The
long time series enables us to investigate deviations from the mean, which in turn
provides valuable information on, for example, potential drought impacts. The per-
class water balance charts can be found in script A25s4—Per Class Balance in
the book repository.

44.3 Synthesis

With what you learned in this chapter, you can analyze large-scale hydrological
processes in a river basin. The approach can be applied for any river basin in the
world using your own data or the open-access data in the exercises.

Assignment 1. Test the approach in another part of the world using your own data
or open-access data, or use your own training data for a more refined classification
model.

Assignment 2. For further analysis, we encourage you to (1) replace MODIS with
data from the Visible Infrared Imaging Radiometer Suite (VIIRS); (2) replace the
CHIRPS data with the Integrated Multi-satellite Retrievals for GPM (IMERG)
data and change the time intervals; and (3) use a different land cover map for
partitioning the water resources.

44 Water Balance and Drought 981

Fig. 44.13 EVI and MSI per land cover category

982 A. Poortinga et al.

44.4 Conclusion

A safe and sustainable supply of water is essential for drinking, washing, cleaning,
cooking, and growing food. However, water is often a scarce resource that needs
to be managed in a sustainable and equitable way. Satellite data products in Earth
Engine can help us to map the quantity of water in space and time. It enables us
to partition water according to its consumptive use and evaluate how this affects a
wide variety of important functions within a water basin.

References

Anderson MC, Norman JM, Diak GR et al (1997) A two-source time-integrated model for estimat-
ing surface fluxes using thermal infrared remote sensing. Remote Sens Environ 60:195–216.
https://doi.org/10.1016/S0034-4257(96)00215-5

Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote
sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst 19:223–249.
https://doi.org/10.1007/s10795-005-5186-0

Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with sta-
tions—a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/
10.1038/sdata.2015.66

Guerschman JP, Van Dijk AIJM, Mattersdorf G et al (2009) Scaling of potential evapotranspira-
tion with MODIS data reproduces flux observations and catchment water balance observations
across Australia. J Hydrol 369:107–119. https://doi.org/10.1016/j.jhydrol.2009.02.013

Hou AY, Kakar RK, Neeck S et al (2014) The global precipitation measurement mission. Bull Am
Meteorol Soc 95:701–722. https://doi.org/10.1175/BAMS-D-13-00164.1

Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS.
Remote Sens Environ 49:224–234. https://doi.org/10.1016/0034-4257(94)90018-3

Kummerow C, Barnes W, Kozu T et al (1998) The tropical rainfall measuring mission (TRMM)
sensor package. J Atmos Ocean Technol 15:809–817. https://doi.org/10.1175/1520-0426(199
8)015%3c0809:TTRMMT%3e2.0.CO;2

Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land
surfaces. Hydrol Sci J 41:495–516. https://doi.org/10.1080/02626669609491522

Mecikalski JR, Diak GR, Anderson MC, Norman JM (1999) Estimating fluxes on continental
scales using remotely sensed data in an atmospheric-land exchange model. J Appl Meteorol
38:1352–1369. https://doi.org/10.1175/1520-0450(1999)038%3c1352:EFOCSU%3e2.0.CO;2

Poortinga A, Clinton N, Saah D et al (2018) An operational before-after-control-impact (BACI)
designed platform for vegetation monitoring at planetary scale. Remote Sens 10:760. https://
doi.org/10.3390/rs10050760

Poortinga A, Nguyen Q, Tenneson K et al (2019) Linking Earth observations for assessing the food
security situation in Vietnam: a landscape approach. Front Environ Sci 7:186. https://doi.org/
10.3389/fenvs.2019.00186

Poortinga A, Aekakkararungroj A, Kityuttachai K et al (2020) Predictive analytics for identify-
ing land cover change hotspots in the Mekong region. Remote Sens 12:1472. https://doi.org/
10.3390/RS12091472

Potapov P, Tyukavina A, Turubanova S et al (2019) Annual continuous fields of woody vegeta-
tion structure in the Lower Mekong region from 2000–2017 Landsat time-series. Remote Sens
Environ 232:111278. https://doi.org/10.1016/j.rse.2019.111278

Rouse Jr JW, Haas RH, Schell JA, Deering DW (1973) Paper a 20. In: Third earth resources
technology Satellite-1 symposium: Section AB. Technical presentations, p 309

https://doi.org/10.1016/S0034-4257(96)00215-5
https://doi.org/10.1007/s10795-005-5186-0
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1016/j.jhydrol.2009.02.013
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1016/0034-4257(94)90018-3
https://doi.org/10.1175/1520-0426(1998)015%3c0809:TTRMMT%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(1998)015%3c0809:TTRMMT%3e2.0.CO;2
https://doi.org/10.1080/02626669609491522
https://doi.org/10.1175/1520-0450(1999)038%3c1352:EFOCSU%3e2.0.CO;2
https://doi.org/10.3390/rs10050760
https://doi.org/10.3390/rs10050760
https://doi.org/10.3389/fenvs.2019.00186
https://doi.org/10.3389/fenvs.2019.00186
https://doi.org/10.3390/RS12091472
https://doi.org/10.3390/RS12091472
https://doi.org/10.1016/j.rse.2019.111278

44 Water Balance and Drought 983

Saah D, Tenneson K, Matin M et al (2019) Land cover mapping in data scarce environments: chal-
lenges and opportunities. Front Environ Sci 7:150. https://doi.org/10.3389/fenvs.2019.00150

Saah D, Tenneson K, Poortinga A et al (2020) Primitives as building blocks for constructing land
cover maps. Int J Appl Earth Obs Geoinf 85:101979. https://doi.org/10.1016/j.jag.2019.101979

Senay GB, Bohms S, Singh RK et al (2013) Operational evapotranspiration mapping using remote
sensing and weather datasets: a new parameterization for the SSEB approach. J Am Water
Resour Assoc 49:577–591. https://doi.org/10.1111/jawr.12057

Strangeways I (2010) A history of rain gauges. Weather 65:133–138. https://doi.org/10.1002/
wea.548

Vogelmann JE, Rock BN (1985) Spectral characterization of suspected acid deposition damage
in red spruce (Picea Rubens) stands from Vermont. In: Proceedings of the Airborne imaging
spectrometer data analysis workshop

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3389/fenvs.2019.00150
https://doi.org/10.1016/j.jag.2019.101979
https://doi.org/10.1111/jawr.12057
https://doi.org/10.1002/wea.548
https://doi.org/10.1002/wea.548
http://creativecommons.org/licenses/by/4.0/

45Defining Seasonality: First Date
of No Snow

Amanda Armstrong , Morgan Tassone, and Justin Braaten

Overview
The purpose of this chapter is to demonstrate how to produce annual maps repre-
senting the first day within a year on which a given pixel reaches 0% snow cover. It
also provides suggestions for summarizing and visualizing the results over time and
space.

Learning Outcomes

• Generating and using a date band in image compositing.
• Applying temporal filtering to an ImageCollection.
• Identifying patterns of seasonal snowmelt.

A. Armstrong (B)
Biospheric Sciences Laboratory, University of Maryland Baltimore County, GESTAR II NASA’s
Goddard Space Flight Center Code 618, Greenbelt, MD 20771, USA
e-mail: amanda.h.armstrong@nasa.gov

M. Tassone
Department of Environmental Sciences, University of Virginia, 290 McCormick Road,
Charlottesville, VA 22902, USA
e-mail: mms3sh@virginia.edu

J. Braaten
Google Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043, USA
e-mail: braaten@google.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_45

985

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_45&domain=pdf
https://orcid.org/0000-0002-9123-8924
mailto:amanda.h.armstrong@nasa.gov
mailto:mms3sh@virginia.edu
mailto:braaten@google.com
https://doi.org/10.1007/978-3-031-26588-4_45

986 A. Armstrong et al.

Helps if you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Perform basic image analysis: select bands, compute indices, create masks (Part

2).
• Work with time-series data in Earth Engine (Part 4).
• Fit linear and nonlinear functions with regression in an ImageCollection

time series (Chap. 18).

45.1 Introduction to Theory

The timing of annual seasonal snowmelt (Fig. 45.1) and any potential change in
that timing have broad ecological implications and thus impact human livelihoods,
particularly in and around high-latitude and mountainous systems. The annual
melting of accumulated winter snowfall, one of the most important phases of the
hydrologic cycle within these regions, provides the dominant source of water for
streamflow and groundwater recharge for approximately one sixth of the global
population (Musselman et al. 2017; Barnhart et al. 2016; Bengtsson 1976). The
timing of snowmelt in the Arctic and Antarctic influences the length of the growing
season, and consistent snow cover throughout the winter insulates vegetation from
harsh temperatures and wind (Duchesne et al. 2012; Kudo et al. 1999). In moun-
tainous regions, such as the Himalayas, snowmelt is a major source of freshwater
downstream (Barnhart et al. 2016) and is essential in recharging groundwater.

Fig. 45.1 Arctic polar stereographic projection showing the pattern of snowmelt timing in the
Northern Hemisphere. The image shows the first day in 2018 on which each pixel no longer con-
tained snow, as detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) Snow
Cover Daily Global product. The color grades from purple (earlier) to yellow (later)

45 Defining Seasonality: First Date of No Snow 987

This seasonal water resource is one of the fastest-changing hydrologic systems
under Earth’s warming climate, and these changes will broadly impact regional
economies and ecosystem functioning and increase the potential for flood hazards
(Musselman et al. 2017; IPCC 2007; Beniston 2012; Allan and Casillo 2007; Bar-
nett and Lettenmaier 2005). An analysis focusing on the Yamal Peninsula in the
northwestern Siberian tundra found that the timing of snowmelt (calculated using
the methods outlined here) was an important predictor of differences in ecosystem
functioning across the landscape (Tassone et al. 2020).

The anticipated warmer temperatures will alter the type and onset of pre-
cipitation. Multiple regions, including the Rocky Mountains of North America,
have already measured a reduction in snowpack volume, and warmer temperatures
have shifted precipitation from snowfall to rain, causing snowmelt to occur earlier
(Barnhart et al. 2016; Clow 2010; Harpold et al. 2012).

This tutorial demonstrates how to calculate the first day of no snow annually
at the pixel level, providing the user with the ability to track the seasonal and
interannual variability in the timing of snowmelt toward a better understanding
of how the hydrological cycles of higher-latitude and mountainous regions are
responding to climate change.

45.2 Practicum

45.2.1 Section 1: Identifying the First Day of 0% Snow Cover

This section covers building an ImageCollection where each image is a
mosaic of pixels that describe the first day in a given year that 0% snow cover
was recorded. Snow cover is defined by the MODIS Normalized Difference Snow
Index (NDSI) Snow Cover Daily Global product. The general workflow is as
follows.

1. Define the date range to consider for analysis.
2. Define a function that adds date information as bands to snow cover images.
3. Define an analysis mask.
4. For each year:

a. Filter the ImageCollection to observations from the given year.
b. Add date bands to the filtered images.
c. Identify the first day of the year without any snow per pixel.
d. Apply an analysis mask to the image mosaic.
e. Summarize the findings with a series of visualizations.

45.2.1.1 Section 1.1: Define the Date Range
First, we specify the day of year (DOY) on which to start the search for the first day
with 0% snow cover. For applications in the Northern Hemisphere, you will likely
want to start with January 1 (DOY 1). However, if you are studying snowmelt
timing in the Southern Hemisphere (e.g., the Andes), where snowmelt can occur

988 A. Armstrong et al.

on dates on either side of January 1, it is more appropriate to start the year on July
1 (DOY 183), for instance. In this calculation, a year is defined as the 365 days
beginning from the specified startDoy.

var startDoy = 1;

Then, we define the years to start and end tracking snow cover fraction. All
years in the range will be included in the analysis.

var startYear = 2000;
var endYear = 2019;

45.2.1.2 Section 1.2: Define the Date Bands
Next, we will define a function to add several date bands to the images; the added
bands will be used in a future step. Each image has a metadata timestamp property,
but since we will be creating annual image mosaics composed of pixels from many
different images, the date needs to be encoded per pixel as a value in an image
band so that it is retained in the final mosaics. The function encodes:

• Calendar DOY (calDoy): enumerated DOY from January 1.
• Relative DOY (relDoy): enumerated DOY from a given startDoy.
• Milliseconds elapsed since the Unix epoch (millis).
• Year (year): Note that the year is tied to the startDoy. For example, if the
startDoy is set at 183, the analysis will cross into the next calendar year,
and the year given to all pixels will be the earlier year, even if a particular
image was collected on or after January 1 of the subsequent year.

Additionally, two global variables are initialized (startDate and startYear)
that will be redefined iteratively in a subsequent step.

45 Defining Seasonality: First Date of No Snow 989

var startDate;
var startYear;

function addDateBands(img) {
 // Get image date.
 var date = img.date();
 // Get calendar day-of-year.
 var calDoy = date.getRelative('day', 'year');
 // Get relative day-of-year; enumerate from user-
defined startDoy.
 var relDoy = date.difference(startDate, 'day');
 // Get the date as milliseconds from Unix epoch.
 var millis = date.millis();
 // Add all of the above date info as bands to the snow
fraction image.
 var dateBands = ee.Image.constant([calDoy, relDoy,
millis,
 startYear
])
 .rename(['calDoy', 'relDoy', 'millis', 'year']);
 // Cast bands to correct data type before returning
the image.
 return img.addBands(dateBands)
 .cast({
 'calDoy': 'int',
 'relDoy': 'int',
 'millis': 'long',
 'year': 'int'
 })
 .set('millis', millis);
}

45.2.1.3 Section 1.3: Define an Analysis Mask
Here is the opportunity to define a mask for your analysis. This mask can be used
to constrain the analysis to certain latitudes, land cover types, geometries, etc. In
this case, we will (1) mask out water so that the analysis is confined to pixels over
landforms only, (2) mask out pixels that have very few days of snow cover, and (3)
mask out pixels that are snow covered for a good deal of the year (e.g., glaciers).

Import the MODIS Land/Water Mask dataset, select the ‘water_mask’
band, and set all land pixels to value 1.

var waterMask =
ee.Image('MODIS/MOD44W/MOD44W_005_2000_02_24')

.select('water_mask')

.not();

990 A. Armstrong et al.

Import the MODIS Snow Cover Daily Global 500 m product and select the
‘NDSI_Snow_Cover’ band.

var completeCol = ee.ImageCollection('MODIS/006/MOD10A1')
 .select('NDSI_Snow_Cover');

Mask pixels based on the frequency of snow cover.

// Pixels must have been 10% snow covered for at least 2
weeks in 2018.
var snowCoverEphem = completeCol.filterDate('2018-01-01',
 '2019-01-01')
 .map(function(img) {
 return img.gte(10);
 })
 .sum()
 .gte(14);

// Pixels must not be 10% snow covered more than 124 days
in 2018.
var snowCoverConst = completeCol.filterDate('2018-01-01',
 '2019-01-01')
 .map(function(img) {
 return img.gte(10);
 })
 .sum()
 .lte(124);

Combine the water mask and the snow cover frequency masks.

var analysisMask =
waterMask.multiply(snowCoverEphem).multiply(

snowCoverConst);

45.2.1.4 Section 1.4: Identify the First Day of the Year Without Snow
per Pixel, per Year

Make a list of the years to process. The input variables were defined in
Sect. 45.2.1.1.

var years = ee.List.sequence(startYear, endYear);

45 Defining Seasonality: First Date of No Snow 991

Map the following function over the list of years. For each year, identify the
first day with 0% snow cover.

1. Define the start and end dates to filter the dataset for the given year.
2. Filter the ImageCollection by the date range.
3. Add the date bands to each image in the filtered collection.
4. Sort the filtered collection by date. (Note: To determine the first day with snow

accumulation in the fall, reverse sort the filtered collection.)
5. Make a mosaic using the min reducer to select the pixel with 0 (minimum)

snow cover. Since the collection is sorted by date, the first image with 0 snow
cover is selected. This operation is conducted per pixel to build the complete
image mosaic.

6. Apply the analysis mask to the resulting mosaic.

An ee.List of images is returned.

var annualList = years.map(function(year) {
// Set the global startYear variable as the year being

worked on so that
// it will be accessible to the addDateBands mapped to

the collection below.
startYear = year;
// Get the first day-of-year for this year as an

ee.Date object.
var firstDoy = ee.Date.fromYMD(year, 1, 1);
// Advance from the firstDoy to the user-defined

startDay; subtract 1 since
// firstDoy is already 1. Set the result as the global

startDate variable so
// that it is accessible to the addDateBands mapped to

the collection below.
startDate = firstDoy.advance(startDoy - 1, 'day');
// Get endDate for this year by advancing 1 year from

startDate.
// Need to advance an extra day because end date of

filterDate() function
// is exclusive.
var endDate = startDate.advance(1, 'year').advance(1,

'day');
// Filter the complete collection by the start and end

dates just defined.

992 A. Armstrong et al.

var yearCol = completeCol.filterDate(startDate,
endDate);

// Construct an image where pixels represent the first
day within the date

// range that the lowest snow fraction is observed.
var noSnowImg = yearCol

// Add date bands to all images in this particular
collection.

.map(addDateBands)
// Sort the images by ascending time to identify

the first day without
// snow. Alternatively, you can use

.sort('millis', false) to
// reverse sort (find first day of snow in the

fall).
.sort('millis')
// Make a mosaic composed of pixels from images

that represent the
// observation with the minimum percent snow cover

(defined by the
// NDSI_Snow_Cover band); include all associated

bands for the selected
// image.
.reduce(ee.Reducer.min(5))
// Rename the bands - band names were altered by

previous operation.
.rename(['snowCover', 'calDoy', 'relDoy',

'millis',
'year'

])
// Apply the mask.
.updateMask(analysisMask)
// Set the year as a property for filtering by

later.
.set('year', year);

// Mask by minimum snow fraction - only include pixels
that reach 0

// percent cover. Return the resulting image.
return

noSnowImg.updateMask(noSnowImg.select('snowCover')
.eq(0));

});

45 Defining Seasonality: First Date of No Snow 993

Convert the ee.List of images to an ImageCollection.

var annualCol = ee.ImageCollection.fromImages(annualList);

Code Checkpoint A26a. The book’s repository contains a script that shows what
your code should look like at this point.

45.2.2 Section 2: Data Summary and Visualization

The following is a series of examples for how to display and explore the “first
DOY with no snow” dataset you just generated.

• These examples refer to the calendar date (calDoy band) when displaying and
incorporating date information in calculations. If you are using a date range
that begins on any day other than January 1 (DOY 1) you may want to replace
calDoy with relDoy in all cases below.

• Results may appear different as you zoom in and out of the Map because of tile
aggregation, which is described in the Earth Engine documentation. It is best to
view Map data interactively with a relatively high zoom level. Additionally, for
any analysis where a function provides a scale parameter (e.g., region reduction,
exporting results), it is best to define it with the native resolution of the dataset
(500 m).

• MODIS cloud masking can influence results. If there are a number of sequen-
tially masked image pixel observations (e.g., clouds, poor quality), the actual
date of the first observation with 0% snow cover may be earlier than identified
in the image time series. Regional patterns may be less influenced by this bias
than local results. For local results, please inspect image masks to understand
their influence on the dates near snowmelt timing.

45.2.2.1 Section 2.1: Single-Year Map
Filter a single year from the collection (2018 in the example below) and display
the image to the Map to see spatial patterns of snowmelt timing. Setting the min
and max parameters of the visArgs variable to a narrow range around expected
snowmelt timing is important for getting a good color stretch.

994 A. Armstrong et al.

// Define a year to visualize.
var thisYear = 2018;

// Define visualization arguments.
var visArgs = {
 bands: ['calDoy'],
 min: 150,
 max: 200,
 palette: [
 '0D0887', '5B02A3', '9A179B', 'CB4678', 'EB7852',
 'FBB32F', 'F0F921'
]
};

// Subset the year of interest.
var firstDayNoSnowYear =
annualCol.filter(ee.Filter.eq('year',
 thisYear)).first();

// Display it on the map.
Map.setCenter(-95.78, 59.451, 5);
Map.addLayer(firstDayNoSnowYear, visArgs,
 'First day of no snow, 2018');

Running this code produces something similar to Fig. 45.2. The color represents
the DOY when 0% snow cover was first observed per pixel (blue is earlier, yellow
is later).

One can notice a number of interesting patterns. Frozen lakes have been shown
to decrease air temperatures in adjacent pixels, resulting in delayed snowmelt
(Rouse et al. 1997; Salomonson and Appel 2004; Wang and Derksen 2008). Addi-
tionally, the protected estuaries of the Northwest Passages have earlier dates of no
snow compared to the landscapes exposed to the currents and winds of the North-
ern Atlantic. Latitude, elevation, and proximity to ocean currents are the strongest
determinants in this region.

Note that pixels representing glaciers that did not get removed by the analysis
mask can produce anomalies in the data. Since glaciers are generally snow covered,
the DOY with the least snow cover according to the MODIS Snow Cover Daily
Global product is presented in the Map. In Fig. 45.2, this is evident in the abrupt
transition within alpine areas of Baffin Island (white pixels represent glaciers in
this case).

45.2.2.2 Section 2.2: Year-to-Year Difference Map
Compare year-to-year difference in snowmelt timing by selecting two years of
interest from the collection and subtracting them. Here, we are calculating the
difference in snowmelt timing between 2005 and 2015.

45 Defining Seasonality: First Date of No Snow 995

Fig. 45.2 Thematic map representing the first DOY with 0% snow cover. Color grades from blue
to yellow as the DOY increases

// Define the years to difference.
var firstYear = 2005;
var secondYear = 2015;

// Calculate difference image.
var firstImg = annualCol.filter(ee.Filter.eq('year',
firstYear))

.first().select('calDoy');
var secondImg = annualCol.filter(ee.Filter.eq('year',
secondYear))

.first().select('calDoy');
var dif = secondImg.subtract(firstImg);

// Define visualization arguments.
var visArgs = {

min: -15,
max: 15,
palette: ['b2182b', 'ef8a62', 'fddbc7', 'f7f7f7',

'd1e5f0',
'67a9cf', '2166ac'

]
};

// Display it on the map.
Map.setCenter(95.427, 29.552, 8);
Map.addLayer(dif, visArgs, '2015-2005 first day no snow
dif');

996 A. Armstrong et al.

Fig. 45.3 Year-to-year (2005–2015) difference map of the Himalayas on the Nepal–China border.
Color grades from red to blue, with red indicating an earlier date of no snow in 2015 and blue
indicating a later date of no snow in 2015. White areas indicate little or no change

Running this code produces something similar to Fig. 45.3. The color represents
the difference, in each pixel, between the 2005 and 2015 DOY when 0% snow
cover was first observed. Red represents a negative change (an earlier no-snow
date in 2015), blue represents a positive change (a later no-snow date in 2015),
and white represents a negligible or no change in the no-snow dates for 2005 and
2015.

45.2.2.3 Section 2.3: Trend Analysis Mapping
It is also possible to identify trends in the shifting first DOY with no snow by
calculating the slope through a pixel’s time-series points. Here, the slope for each
pixel is calculated with year as the x variable and the first DOY with no snow as
the y variable.

45 Defining Seasonality: First Date of No Snow 997

// Calculate slope image.
var slope = annualCol.sort('year').select(['year',
'calDoy'])
 .reduce(ee.Reducer.linearFit()).select('scale');

// Define visualization arguments.
var visArgs = {
 min: -1,
 max: 1,
 palette: ['b2182b', 'ef8a62', 'fddbc7', 'f7f7f7',
 'd1e5f0', '67a9cf', '2166ac'
]
};

// Display it on the map.
Map.setCenter(11.25, 59.88, 6);
Map.addLayer(slope, visArgs, '2000-2019 first day no snow
slope');

The result is a map (Fig. 45.4) where red represents a negative slope (pro-
gressively earlier first DOY with no snow), white represents a slope of 0, and
blue represents a positive slope (progressively later first DOY with no snow). In
southern Norway and Sweden, the trend in the first DOY with no snow between
2002 and 2019 appears to be influenced by various factors. Coastal areas exhibit
progressively earlier first DOY of no snow than inland areas; however, high vari-
ability in slopes can be observed around fjords and in mountainous regions. This
map reveals the complexity of seasonal snow dynamics in these areas.

Note that goodness-of-fit calculations are not measured here, nor is significance
considered. While a slope can indicate regional trends, more local trends should be
investigated using a time-series chart (see the next section). Interannual variability
can be influenced by masked pixels, as described above.

45.2.2.4 Section 2.4: Time-Series Chart
To visually understand the temporal patterns of the first DOY with no snow
through time, we can display our results in a time-series chart. In this case, we have
defined a circle with a radius of 500 m around a point of interest and calculated
the annual mean first DOY with no snow for pixels within that circle.

998 A. Armstrong et al.

Fig. 45.4 Map representing the slope of the first DOY with no snow cover between 2000 and
2019. The slope represents the overall trend. Color grades from red (negative slope) to blue (pos-
itive slope). White indicates areas of little to no change

// Define an AOI.
var aoi = ee.Geometry.Point(-94.242, 65.79).buffer(1e4);
Map.addLayer(aoi, null, 'Area of interest');

// Calculate annual mean DOY of AOI.
var annualAoiMean =
annualCol.select('calDoy').map(function(img) {
 var summary = img.reduceRegion({
 reducer: ee.Reducer.mean(),
 geometry: aoi,
 scale: 1e3,
 bestEffort: true,
 maxPixels: 1e14,
 tileScale: 4,
 });
 return ee.Feature(null, summary).set('year', img.get(
 'year'));
});

45 Defining Seasonality: First Date of No Snow 999

// Print chart to console.
var chart = ui.Chart.feature.byFeature(annualAoiMean,
'year',
 'calDoy')
 .setOptions({
 title: 'Regional mean first day of year with no
snow cover',
 legend: {
 position: 'none'
 },
 hAxis: {
 title: 'Year',
 format: '####'
 },
 vAxis: {
 title: 'Day-of-year'
 }
 });
print(chart);

Code Checkpoint A26b. The book’s repository contains a script that shows what
your code should look like at this point.

As is evident in the displayed results (Fig. 45.5), the first DOY with no snow
was mostly stable from 2000 to 2012; following this, it has become more erratic.

Fig. 45.5 Annual mean first DOY with no snow time series for pixels within a small region of
interest

1000 A. Armstrong et al.

45.3 Synthesis

Assignment 1. In Sect. 45.2.2.4, a time-series chart for a region of interest was
generated. Suppose you wanted to compare several regions in the same chart;
how would you change the code to achieve this? For instance, try plotting the
first DOY of no snow at points (− 69.271, 65.532) and (− 104.484, 65.445) in
the same chart. Some helpful functions include ee.Image.reduceRegions,
ee.FeatureCollection.flatten, and ui.Chart.feature.groups.

Assignment 2. The objective of this chapter was to identify the first DOY of 0%
snow cover. However, Sect. 45.2.1.4 provides a suggestion for altering the code to
identify the last day of 0% snow cover. Can you modify the code to achieve this
result?

Assignment 3. How could you determine regions that are often masked dur-
ing the time of year when snowmelt occurs? (The results from such regions
might not be reliable.) Hint: Think about how you can use the mask
function on images and investigate the ‘NDSI_Snow_Cover_Class’ and
‘Snow_Albedo_Daily_Tile_Class’ bands.

45.4 Conclusion

In this chapter, we provided a method to identify the annual, per pixel, first DOY
with no snow from MODIS snow cover image data. The result can be used to
investigate patterns of seasonal snowmelt spatially and temporally. The method
relied on adding a date band to each image in the collection, temporal sorting,
and ImageCollection reduction. We demonstrated several different ways to
analyze the results using map and chart interpretation, image differencing, and
linear regression.

References

Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer
Nature

Barnhart TB, Molotch NP, Livneh B et al (2016) Snowmelt rate dictates streamflow. Geophys Res
Lett 43:8006–8016. https://doi.org/10.1002/2016GL069690

Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water
availability in snow-dominated regions. Nature 438(7066):303–309. https://doi.org/10.1038/
nature04141

Bengtsson L (1976) Snowmelt estimated from energy budget studies. Nord Hydrol 7:3–18. https://
doi.org/10.2166/nh.1976.0001

Beniston M (2012) Impacts of climatic change on water and associated economic activities in the
Swiss Alps. J Hydrol 412–413:291–296. https://doi.org/10.1016/j.jhydrol.2010.06.046

Clow DW (2010) Changes in the timing of snowmelt and streamflow in Colorado: a response to
recent warming. J Clim 23:2293–2306. https://doi.org/10.1175/2009JCLI2951.1

https://doi.org/10.1002/2016GL069690
https://doi.org/10.1038/nature04141
https://doi.org/10.1038/nature04141
https://doi.org/10.2166/nh.1976.0001
https://doi.org/10.2166/nh.1976.0001
https://doi.org/10.1016/j.jhydrol.2010.06.046
https://doi.org/10.1175/2009JCLI2951.1

45 Defining Seasonality: First Date of No Snow 1001

Duchesne L, Houle D, D’Orangeville L (2012) Influence of climate on seasonal patterns of stem
increment of balsam fir in a boreal forest of Québec, Canada. Agric for Meteorol 162–163:108–
114. https://doi.org/10.1016/j.agrformet.2012.04.016

Harpold A, Brooks P, Rajagopal S et al (2012) Changes in snowpack accumulation and ablation in
the intermountain west. Water Resour Res 48. https://doi.org/10.1029/2012WR011949

Kudo G, Nordenhäll U, Molau U (1999) Effects of snowmelt timing on leaf traits, leaf production,
and shoot growth of alpine plants: comparisons along a snowmelt gradient in northern Sweden.
Ecoscience 6:439–450. https://doi.org/10.1080/11956860.1999.11682543

Musselman KN, Clark MP, Liu C et al (2017) Slower snowmelt in a warmer world. Nat Clim Chang
7:214–219. https://doi.org/10.1038/nclimate3225

Rouse WR, Douglas MSV, Hecky RE et al (1997) Effects of climate change on the freshwaters of
arctic and subarctic North America. Hydrol Process 11:873–902. https://doi.org/10.1002/(SIC
I)1099-1085(19970630)11:8%3c873::AID-HYP510%3e3.0.CO;2-6

Salomonson VV, Appel I (2004) Estimating fractional snow cover from MODIS using the nor-
malized difference snow index. Remote Sens Environ 89:351–360. https://doi.org/10.1016/j.
rse.2003.10.016

Solomon S, Manning M, Marquis M et al (2007) Climate change 2007—the physical science
basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge
University Press

Tassone M, Epstein HE (2020) Drivers of spatial and temporal variability in vegetation productivity
on the Yamal Peninsula, Siberia, Russia. In: AGU fall meeting abstracts, pp B084-04

Wang L, Derksen C, Brown R (2008) Detection of pan-Arctic terrestrial snowmelt from
QuikSCAT, 2000–2005. Remote Sens Environ 112:3794–3805. https://doi.org/10.1016/j.rse.
2008.05.017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.agrformet.2012.04.016
https://doi.org/10.1029/2012WR011949
https://doi.org/10.1080/11956860.1999.11682543
https://doi.org/10.1038/nclimate3225
https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8%3c873::AID-HYP510%3e3.0.CO;2-6
https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8%3c873::AID-HYP510%3e3.0.CO;2-6
https://doi.org/10.1016/j.rse.2003.10.016
https://doi.org/10.1016/j.rse.2003.10.016
https://doi.org/10.1016/j.rse.2008.05.017
https://doi.org/10.1016/j.rse.2008.05.017
http://creativecommons.org/licenses/by/4.0/

Part IX

Terrestrial Applications

Earth’s terrestrial surface is analyzed regularly by satellites, in search of both change
and stability. These are of great interest to a wide cross-section of Earth Engine users,
and projects across large areas illustrate both the challenges and opportunities for
life on Earth. Chapters in this part illustrate the use of Earth Engine for disturbance,
understanding long-term changes of rangelands, and creating optimum study sites.

46Active Fire Monitoring

Morgan A. Crowley and Tianjia Liu

Overview
Fire monitoring across the world benefits from raw satellite imagery and processed
fire mapping datasets. Google Earth Engine supports fire monitoring throughout
fire seasons with satellite data from sources like Landsat 8, Sentinel-2, and Moder-
ate Resolution Imaging Spectroradiometer (MODIS), and by hosting multiple fire
datasets from the Geostationary Operational Environmental Satellite (GOES) and
the Fire Information for Resource Management System (FIRMS). In this chapter,
you will access, process, and explore three fire monitoring datasets available in the
data catalog. By the end of this chapter, you will learn how to use the Code Editor
and user apps to summarize and compare the characteristics of fires, fire seasons,
and fire monitoring datasets.

Learning Outcomes

• Accessing and visualizing fire monitoring datasets in the JavaScript UI.
• Adjusting previously drafted code to calculate fire characteristics in the JavaScript

UI for a fire of your choice.
• Exploring fire metrics and visualization with user apps.

Morgan A. Crowley and Tianjia Liu: Shared first-authorship.

M. A. Crowley (B)
Canadian Forest Service—Great Lakes Forestry Centre, Natural Resources Canada, 1219 Queen
Street E, Sault Ste. Marie, ON, Canada
e-mail: morgan.crowley@nrcan-rncan.gc.ca

T. Liu
Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge,
MA, USA
e-mail: tianjia.liu@columbia.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_46

1005

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_46&domain=pdf
https://orcid.org/0000-0001-5946-529X
https://orcid.org/0000-0003-3129-0154
mailto:morgan.crowley@nrcan-rncan.gc.ca
mailto:tianjia.liu@columbia.edu
https://doi.org/10.1007/978-3-031-26588-4_46

1006 M. A. Crowley and T. Liu

• Identifying pros and cons of different fire datasets for a variety of monitoring
objectives.

Helps if you know how to:

• Import images and image collections, filter, and visualize (Part 1).
• Write a function and map it over an ImageCollection (Chap. 12).
• Filter a FeatureCollection to obtain a subset (Chaps. 22 and 23).
• Design user interfaces for an Earth Engine App (Chap. 30).
• Access and interact with previously made Earth Engine user apps (Chap. 30).

46.1 Introduction to Theory

Fire has many roles around the world. It is both a naturally occurring ecological
process in fire-prone regions and a tool used by humans for land and resource
management. However, fires and their emissions continue to have more extreme
impacts as human settlements expand, climatic conditions become less predictable,
and fire seasons lengthen (Jolly et al. 2015). To better identify and quantify the
effects of fires across the globe, it is vital to monitor fires using various methods,
including hand-drawn maps, ground-based sensors, GPS tracking, aerial surveys,
imagery collection, and satellite-based data (Andela et al. 2017; Archibald et al.
2009; Nogueira et al. 2017; Stinson et al. 2011; Veraverbeke et al. 2014).

Different sources of satellite imagery can be used to visualize fire conditions
and progressions, calculate band ratios reflecting disturbance and fire severity, and
map burned areas with training data-informed classification algorithms (Crowley
et al. 2019a, b; Hawbaker et al. 2017; Hermosilla et al. 2018; Parks 2014; Parks
et al. 2019; Veraverbeke et al. 2014). Many premade fire datasets are readily avail-
able for monitoring global fire locations, extents, and progressions (Andela et al.
2019; Chuvieco et al. 2016; Giglio et al. 2016; Humber et al. 2019). In the case
of existing fire datasets available for large spatial and temporal extents, remote
sensing scientists apply their robust classification algorithms on satellite imagery
and other geospatial data. Earth Engine makes fire monitoring more accessible by
sharing multiple data sources in the data catalog so users can easily access and
process these data to meet their desired objectives (Liu and Crowley 2021).

46 Active Fire Monitoring 1007

46.2 Practicum

46.2.1 Section 1: Fire Datasets in Google Earth Engine

In the following example, we use MODIS and GOES datasets (Table 46.1) to map
the Bobcat Fire, a megafire that burned 115,796 acres in Los Angeles County,
California, in September 2020.

First, we need to define temporal and spatial variables to filter the datasets,
namely the approximate ignition coordinates and start date of the fire.

// Define the location of the fire.
var lon = -117.868;
var lat = 34.241;
var zoom = 9;

// Filter datasets to a specific date range:
// start date of fire.
var inYear = 2020;
var inMonth = 9;
var inDay = 6;

Using the ignition date (September 6, 2020), we can define separate date ranges
to filter the active fire and burned area datasets to account for differences in the
temporal structure of the datasets, i.e., daily versus monthly. Here, we set the
temporal filter range for active fire datasets as the two-week period starting from
the ignition date and for the burned area dataset as the month of September. The
duration variables can be modified according to the fire of interest.

Table 46.1 MODIS and GOES fire mapping datasets available in the Google Earth Engine data
catalog

Satellite/sensor Dataset Variable Resolution Dataset coverage

MODIS Terra,
MODIS Aqua*

MOD/MYD14A1 Active fires 1 km, daily Global, 2001 to
present

MCD64A1 Burned area 500 m, monthly** Global, 2001 to
present

GOES-16,
GOES-17*

FDCF Active fires 2 km, every 15 min North/South
America, 2017 to
present

* MODIS Terra (from 2000), MODIS Aqua (from 2002), GOES-16 (from 2016), GOES-17 (from
2017)
** Can be disaggregated into daily resolution using the MCD64A1 burn date variable

1008 M. A. Crowley and T. Liu

var durationAF = 15; // in days
var durationBA = 1; // in months

// Date range for active fires.
var startDateAF = ee.Date.fromYMD(inYear, inMonth, inDay);
var endDateAF = startDateAF.advance(durationAF, 'day');

// Date range for burned area.
var startDateBA = ee.Date.fromYMD(inYear, inMonth, 1);
var endDateBA = startDateBA.advance(durationBA, 'month');

With these input variables defined, we can preprocess the fire datasets. We
will upload a high-resolution reference perimeter provided by the U.S. National
Interagency Fire Center (NIFC) and then add the MODIS and GOES datasets from
the Earth Engine data catalog.

Reference Fire Perimeter
The NIFC produces wildland fire perimeters using information from local fire
agencies. For this tutorial, we uploaded the NIFC perimeter for the Bobcat Fire,
converting it from a shapefile to an Earth Engine asset. We will access the asset
from the book repository and use it as a reference layer to compare with the
MODIS and GOES datasets.

// -------------------------------
// 1. Reference Perimeter (WFIGS)
// -------------------------------
// Note: each fire has multiple versions, so here we are
// filtering WFIGS by the name of the fire, sorting the
// area of the filtered polygons in descending order,
// and retrieving the polygon with the highest area.
var WFIGS = ee.FeatureCollection(

'projects/gee-book/assets/A3-1/WFIGS');
var reference =
ee.Feature(WFIGS.filter(ee.Filter.eq('irwin_In_1',

'BOBCAT'))
.sort('poly_Acres', false).first());

MODIS Active Fire Products
The gridded 1 km MODIS active fire datasets, MOD14A1 (Terra) and MYD14A1
(Aqua), have daily collection rates and global coverage (Giglio et al. 2016; Giglio
2010). The MODIS sensor is mounted on the two separate satellites, Terra and
Aqua, both operated by NASA for environmental monitoring. Here, we define two

46 Active Fire Monitoring 1009

functions to process the fire mask and fire radiative power (FRP) variables. The
fire mask provides a categorical classification of the confidence in fire detection,
where values ≥ 7 indicate that fire is present. FRP is a continuous variable that is a
proxy for fire intensity, in units of megawatts (MW). Note that MODIS FRP must
be multiplied by 0.1 to be in units of MW.

// -------------------------------
// 2. MODIS active fire datasets
// -------------------------------
// MOD14A1, MYD14A1 = MODIS/Terra and Aqua active fires and
thermal anomalies
// resolution: daily, gridded at 1km in sinusoidal
projection (SR-ORG:6974)
// variables: fire mask (FireMask), fire radiative power in
MW (MaxFRP)
// satellite overpasses: Terra (10:30am/pm local time),
Aqua (1:30am/pm local time)

// Define the Earth Engine paths for MOD14A1 and MYD14A1,
collection 6.
var mod14a1 = ee.ImageCollection('MODIS/006/MOD14A1');
var myd14a1 = ee.ImageCollection('MODIS/006/MYD14A1');

// Filter the datasets according to the date range.
var mod14a1Img = mod14a1.filterDate(startDateAF,
endDateAF);
var myd14a1Img = myd14a1.filterDate(startDateAF,
endDateAF);

var getFireMask = function(image) {
// Fire Mask (FireMask): values ≥ 7 are active fire

pixels
return image.select('FireMask').gte(7);

};

var getMaxFRP = function(image) {
// FRP (MaxFRP): MaxFRP needs to be scaled by 0.1 to be

in units of MW.
return image.select('MaxFRP').multiply(0.1);

};

// Define the active fire mask (count of active fire
pixels).
var mod14a1ImgMask = mod14a1Img.map(getFireMask).sum();
var myd14a1ImgMask = myd14a1Img.map(getFireMask).sum();

1010 M. A. Crowley and T. Liu

// Define the total FRP (MW).
var mod14a1ImgFrp = mod14a1Img.map(getMaxFRP).sum();
var myd14a1ImgFrp = myd14a1Img.map(getMaxFRP).sum();

MODIS Burned Area Product
The gridded 500 m MODIS burned area dataset, MCD64A1, is monthly with
global coverage but can be disaggregated to daily resolution with its burn date
variable (Giglio et al. 2016; Humber et al. 2019). Here, we define a function to
retrieve the burn date.

// ------------------------------
// 3. MODIS burned area dataset
// ------------------------------
// MCD64A1 = MODIS/Terra and Aqua combined burned area
// resolution: monthly, gridded at 500m in sinusoidal
projection (SR-ORG:6974),
// can be disaggregated to daily resolution
// variables: burn date as day of year (BurnDate)

// Define the Earth Engine paths for MCD64A1, collection 6.
var mcd64a1 = ee.ImageCollection('MODIS/006/MCD64A1');

var getBurnDate = function(image) {
// burn day of year (BurnDate)
return image.select('BurnDate');

};

// Define the burned area mask.
var mcd64a1Img = mcd64a1.filterDate(startDateBA,
endDateBA);
var mcd64a1ImgMask = mcd64a1Img.map(getBurnDate).min();

GOES Active Fire Products
The gridded 2 km GOES-16 (East) and GOES-17 (West) active fire datasets cover
North and South America in the full disk version (FDCF) with a temporal revisit
rate of 15-min increments (Hall et al. 2019; Schroeder et al. 2008). The two
GOES satellites are operated by the National Oceanic and Atmospheric Adminis-
tration (NOAA) and are primarily used for meteorological monitoring. Note that
the pixel orientation and shape differ between GOES-16 and GOES-17 because of
the different viewing angles of the two satellites.

46 Active Fire Monitoring 1011

// ------------------------------
// 4. GOES 16/17 active fires
// ------------------------------
// GOES-16/17 - geostationary satellites over North/South
America
// resolution: every 10-30 minutes, 2 km
// variables: fire mask (Mask), FRP (Power)

// Define the Earth Engine paths for GOES-16/17.
var goes16 = ee.ImageCollection('NOAA/GOES/16/FDCF');
var goes17 = ee.ImageCollection('NOAA/GOES/17/FDCF');

var filterGOES = ee.Filter.calendarRange(0, 0, 'minute');

// Filter the datasets according to the date range.
var goes16Img = goes16.filterDate(startDateAF, endDateAF)

.filter(filterGOES);
var goes17Img = goes17.filterDate(startDateAF, endDateAF)

.filter(filterGOES);

var getFireMask = function(image) {
// fire mask (Mask): values from 10-35 are active fire

pixels,
// see the description for QA values to filter out low

confidence fires
return

image.select('Mask').gte(10).and(image.select('Mask')
.lte(35));

};

var getFRP = function(image) {
// FRP (Power), in MW
return image.select('Power');

};

// Define the active fire mask (count of active fire
pixels).
var goes16ImgMask = goes16Img.map(getFireMask).sum();
var goes17ImgMask = goes17Img.map(getFireMask).sum();
// Define the total FRP (MW).
var goes16ImgFrp = goes16Img.map(getFRP).sum();
var goes17ImgFrp = goes17Img.map(getFRP).sum();

1012 M. A. Crowley and T. Liu

Now, we will visualize the three datasets, along with the reference Bobcat Fire
perimeter, and plot the layers on the Earth Engine interactive map.

// -------------------------------
// 5. Map Visualization - Layers
// -------------------------------
// Use the 'Layers' dropdown menu on the map panel to
toggle on and off layers.
Map.addLayer(mod14a1ImgMask.selfMask(), {

palette: 'orange'
}, 'MOD14A1');
Map.addLayer(myd14a1ImgMask.selfMask(), {

palette: 'red'
}, 'MYD14A1');

Map.addLayer(mcd64a1ImgMask.selfMask(), {
palette: 'black'

}, 'MCD64A1');

Map.addLayer(goes16ImgMask.selfMask(), {
palette: 'skyblue'

}, 'GOES16', false);
Map.addLayer(goes17ImgMask.selfMask(), {

palette: 'purple'
}, 'GOES17', false);

Map.setCenter(lon, lat, 9);

We can also visualize the datasets side by side as shown in Fig. 46.1 by using
the ui.Panel and ui.Map.Linker using the code provided by the “Linked
Maps” script under Examples > User Interface in the Scripts panel.

46 Active Fire Monitoring 1013

Fig. 46.1 Side-by-side panel comparison of the Bobcat Fire as seen in (clockwise from top left)
MODIS active fires, GOES-16/17 active fires, MODIS burned area, and a reference fire perimeter
from the WFIGS dataset

// ------------------------------------
// 6. Map Visualization - Panel Layout
// ------------------------------------

// Define the panel layout.
var panelNames = [

'MODIS active fires', // panel 0 - top left
'MODIS burned area', // panel 1 - bottom left
'GOES active fires', // panel 2 - top right
'Reference' // panel 3 - bottom right

];

// Create a map for each visualization option.
var maps = [];
panelNames.forEach(function(name, index) {

var map = ui.Map();
map.setControlVisibility({

fullscreenControl: false
});

1014 M. A. Crowley and T. Liu

if (index === 0) {
map.addLayer(mod14a1ImgMask.selfMask(), {

palette: 'orange'
}, 'MOD14A1');
map.addLayer(myd14a1ImgMask.selfMask(), {

palette: 'red'
}, 'MYD14A1');
map.add(ui.Label(panelNames[0], {

fontWeight: 'bold',
position: 'bottom-left'

}));
}
if (index == 1) {

map.addLayer(mcd64a1ImgMask.selfMask(), {
palette: 'black'

}, 'MCD64A1');
map.add(ui.Label(panelNames[1], {

fontWeight: 'bold',
position: 'bottom-left'

}));
}
if (index == 2) {

map.addLayer(goes16ImgMask.selfMask(), {
palette: 'skyblue'

}, 'GOES16');
map.addLayer(goes17ImgMask.selfMask(), {

palette: 'purple'
}, 'GOES17');
map.add(ui.Label(panelNames[2], {

fontWeight: 'bold',
position: 'bottom-left'

}));
}
if (index == 3) {

map.addLayer(reference, {}, 'Reference');
map.add(ui.Label(panelNames[3], {

fontWeight: 'bold',
position: 'bottom-left'

}));
}
maps.push(map);

});

46 Active Fire Monitoring 1015

var linker = ui.Map.Linker(maps);
// Make a label for the main title of the app.
var title = ui.Label(

'Visualizing Fire Datasets in Google Earth Engine', {
stretch: 'horizontal',
textAlign: 'center',
fontWeight: 'bold',
fontSize: '24px'

});

// Define a map grid of 2x2 sub panels.
var mapGrid = ui.Panel(

[
ui.Panel([maps[0], maps[1]], null, {

stretch: 'both'
}),
ui.Panel([maps[2], maps[3]], null, {

stretch: 'both'
})

],
ui.Panel.Layout.Flow('horizontal'), {

stretch: 'both'
}

);
maps[0].setCenter(lon, lat, zoom);

// Add the maps and title to the ui.root().
ui.root.widgets().reset([title, mapGrid]);
ui.root.setLayout(ui.Panel.Layout.Flow('vertical'));

Code Checkpoint A31a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. How does the burned area classification (i.e., burned versus unburned)
and the spatial resolution (i.e., pixel size) differ across the three datasets?

Question 2. There appears to be a gap in fire activity between the MODIS incident
data and burned area map for the Bobcat Fire, as shown in the split-panel app.
What differences in the datasets might account for the mismatched fire classifi-
cations? Hint: Use https://worldview.earthdata.nasa.gov/ to examine raw MODIS
imagery of the fire location and date.

Question 3. How does the temporal resolution of 15 min for GOES impact
monitoring fires in the event of smoke and haze?

https://worldview.earthdata.nasa.gov/

1016 M. A. Crowley and T. Liu

46.2.2 Section 2: In-Depth Visualization and Analysis of Fires
in Earth Engine Apps

Earth Engine Apps help to curate in-depth visualization and analysis of fires. Here
we present two apps using datasets from the Earth Engine public data catalog.

In the remainder of this chapter, you will use these two apps to learn more
about the Bobcat Fire and to explore findings from the two datasets.

App 1: FIRMS Active Fires
FIRMS currently monitors active fires detected by MODIS, Visible Infrared Imag-
ing Radiometer Suite (VIIRS), and NOAA-20 in near real time. FIRMS retains the
coordinates of the centroid of pixels where one or more active fires are detected.
The FIRMS dataset in the Earth Engine data catalog includes only MODIS active
fires, gridded at 1 km spatial resolution. Note that the FIRMS dataset is meant for
exploratory rather than rigorous scientific analyzes.

The “FIRMS Active Fires” Earth Engine app allows users to visualize the
spatial and temporal variation in FIRMS active fires within a defined region.

Code Checkpoint A31b. The book’s repository contains information about
accessing the app.

Using the control panel, you can specify the date range (start year, end year,
and day-of-year range) and draw a region of interest using either a rectangle or a
polygon. The map shows the number of years that one or more active fires were
detected in each pixel. The chart panel shows the total daily fire counts within the
region as a timeseries, where each color represents a different year (Fig. 46.2).
You can also change the chart type to display the cumulative active fire count.

Fig. 46.2 Bobcat Fire in the Earth Engine app FIRMS Active Fires. The chart panel on the lower
right displays the history of active fires in the Bobcat Fire area from July–November in the years
2010–2020. The map layer shows the number of years in each pixel that had at least one active fire

46 Active Fire Monitoring 1017

Question 4. Navigate to the Bobcat Fire using the ignition coordinates (longitude,
latitude). Using the satellite or map base layer, draw a polygon similar to the one
shown in a Fig. 46.2. Submit your task and confirm your results with the above
details.

Code Checkpoint A31c. The book’s repository contains information about how
your app should look at this point.

Question 5. Examine the chart. Approximately how many days did the fire actively
burn? Hint: Hover over the chart and compare the first DOY value and the final
DOY value.

App 2: U.S. Fire Dashboard
In a more advanced app, the “U.S. Fire Dashboard”, GOES-16/17 gridded active
fires are used to calculate a smoothed burn perimeter for the various wildfires
in 2020 by modifying the code from the Google Earth Engine Medium article,
“How to generate wildfire boundary maps with Earth Engine” (Restif and Hoffman
2020). The code takes advantage of the different GOES-16 and GOES-17 pixel
orientation and shape to downscale the burn classification to a finer resolution
than that of the native GOES imagery. In the following example, we will use this
app to visualize how the Bobcat Fire progressed in space and time from ignition
(Fig. 46.3).

Code Checkpoint A31d. The book’s repository contains information about
accessing the app.

Fig. 46.3 Bobcat Fire in the Earth Engine app U.S. Fire Dashboard. The map displays the
smoothed burn perimeter derived from GOES active fires, where the color gradient represents the
confidence in the classification of the burned area. The black line shows the burn perimeter derived
from pixels with > 90% confidence. The charts on the left-hand panel show the evolution of the
Bobcat Fire in terms of its cumulative area and spatial growth

1018 M. A. Crowley and T. Liu

Fig. 46.4 Bobcat Fire in the Earth Engine app U.S. Fire Dashboard (https://globalfires.earthe
ngine.app/view/us-fire-dashboard). The left-hand panel shows the burn severity derived from
Sentinel-2A surface reflectance. The right-hand panel shows the confidence of the burned area clas-
sification derived from GOES active fires. The black line in both panels shows the burn perimeter
derived from pixels having > 90% confidence

Question 6. Navigate to the Bobcat Fire using the dropdown panel at the top right
corner of the app and wait a few minutes for the results to load. Examine the fire
progression chart drawn at the top of the left panel. How many hours did it take
for the fire to reach its maximum burned area? Now examine the animated fire
progression GIF at the bottom of the left panel. What direction did the Bobcat
Fire burn?

Question 7. Now drag the split panel from the left to reveal a second panel. Use
the drop-down menu on the legend to navigate to the burn severity option. Let
the results load and you will see a burn severity map calculated from Sentinel-2
imagery in the left-hand panel. For this question, consider all burn severities as
burned area. Where do the Sentinel-2 map and the GOES map for the Bobcat Fire
agree on the burned area (Fig. 46.4)? Where do they disagree?

Question 8. Having explored the different datasets and the two apps, what features
would you include in your own wildfire mapping app? Explore additional data
sources in the Synthesis section to get more inspiration for your app.

46.3 Synthesis

Assignment 1. You are now familiar with three fire datasets available in Earth
Engine. Table 46.2 presents some additional fire datasets that are also available in
the data catalog. Use the example codes written in each dataset’s description in
the data catalog to load and explore the datasets in the Code Editor.

https://globalfires.earthengine.app/view/us-fire-dashboard
https://globalfires.earthengine.app/view/us-fire-dashboard

46 Active Fire Monitoring 1019

Table 46.2 Additional external fire mapping datasets that can be uploaded into Google Earth
Engine

Dataset Variable Resolution Geographic
coverage

Temporal extent

FireCCI51 Burned area 250 m raster, daily Global 2001–2019

GlobFire fire
event

Fire boundaries Polygon, daily and
final

Global 2001–2021

MODIS FIRMS
near-real-time
hotspot

Active fires 1 km, daily Global 2000–present

For each dataset, we describe their variable type, resolution, geographic coverage, and temporal
extent features

Assignment 2. While Earth Engine provides access to many existing fire datasets,
there are other commonly used fire mapping datasets that are also quite useful for
examining active and past fires. Select and import one of the external fire datasets
shown in Table 46.3 into Earth Engine as a personal asset to compare it with the
active fire datasets already loaded in your script.

Assignment 3. In addition to comparing active fire maps using the datasets sug-
gested in Tables 46.2 and 46.3, you can examine fire conditions and impacts using
ancillary datasets readily available in Earth Engine. For example, you can overlay
the fire datasets with vegetation conditions and fire regimes from the LANDFIRE
program to better understand the ecological context of active fires.

Select one ancillary dataset to load from the data catalog and explore it along-
side an active fire dataset. Land cover datasets such as MODIS, the USGS National
Land Cover Database, and Copernicus Global Land Cover can help indicate types
of fires and where they are occurring. By examining active fire maps with aerosol
and other emission data from Sentinel-5P and MODIS Multi-Angle Implementa-
tion of Atmospheric Correction, you can begin to identify relationships between

Table 46.3 Additional external fire-related datasets that can be uploaded into Google Earth
Engine

Dataset Variable Resolution Geographic
coverage

Temporal extent

Monitoring trends in
burn severity

Burned severity
and perimeters

30 m, final United States 1984–2019

Canadian national
fire database

Fire locations,
perimeters, and
burned area

30 m, final Canada 1980–2020

Landsat burned area Burned area 30 m, 8-day United States 1984–present

For each dataset, we describe their variable type, resolution, geographic coverage, and temporal
extent features

1020 M. A. Crowley and T. Liu

fires and air quality. These are just some of the many analyzes you can explore
using ancillary datasets that are already on hand in the data catalog.

46.4 Conclusion

Earth Engine provides access to multiple fire monitoring datasets that are useful
for tracking active fires throughout fire seasons and retrospectively for prior years.
In this chapter, you examined one fire using three datasets (MODIS active fire,
MODIS burned areas, and GOES active fire). You learned how to access, visualize,
and analyze the raster datasets by adjusting code in the Code Editor and interacting
with the data in premade user apps. By comparing the fire mapping characteristics
of each dataset, you learned how to weigh the pros and cons of existing datasets
for meeting fire mapping objectives. Now that you understand the basics of what
we look for in fire mapping, you can compare additional fire datasets available
in Earth Engine, or explore how to make your dataset using satellite and other
geospatial data.

References

Andela N, Morton DC, Giglio L et al (2017) A human-driven decline in global burned area. Science
356:1356–1362. https://doi.org/10.1126/science.aal4108

Andela N, Morton DC, Giglio L et al (2019) The Global Fire Atlas of individual fire size, dura-
tion, speed and direction. Earth Syst Sci Data 11:529–552. https://doi.org/10.5194/essd-11-
529-2019

Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of
drivers of burnt area in Southern Africa. Glob Chang Biol 15:613–630. https://doi.org/10.1111/
j.1365-2486.2008.01754.x

Chuvieco E, Yue C, Heil A et al (2016) A new global burned area product for climate assessment
of fire impacts. Glob Ecol Biogeogr 25:619–629. https://doi.org/10.1111/geb.12440

Crowley MA, Cardille JA, White JC, Wulder MA (2019a) Generating intra-year metrics of
wildfire progression using multiple open-access satellite data streams. Remote Sens Environ
232:111295. https://doi.org/10.1016/j.rse.2019.111295

Crowley MA, Cardille JA, White JC, Wulder MA (2019b) Multi-sensor, multi-scale, Bayesian data
synthesis for mapping within-year wildfire progression. Remote Sens Lett 10:302–311. https://
doi.org/10.1080/2150704X.2018.1536300

Giglio L (2010) MODIS collection 5 active fire product user’s guide version 2.4. Science Systems
and Applications, Inc. University of Maryland

Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm
and fire products. Remote Sens Environ 178:31–41. https://doi.org/10.1016/j.rse.2016.02.054

Hall JV, Zhang R, Schroeder W et al (2019) Validation of GOES-16 ABI and MSG SEVIRI
active fire products. Int J Appl Earth Obs Geoinf 83:101928. https://doi.org/10.1016/j.jag.2019.
101928

Hawbaker TJ, Vanderhoof MK, Beal YJ et al (2017) Mapping burned areas using dense time-series
of Landsat data. Remote Sens Environ 198:504–522. https://doi.org/10.1016/j.rse.2017.06.027

Hermosilla T, Wulder MA, White JC et al (2018) Disturbance-informed annual land cover classifi-
cation maps of Canada’s forested ecosystems for a 29-year Landsat time series. Can J Remote
Sens 44:67–87. https://doi.org/10.1080/07038992.2018.1437719

https://doi.org/10.1126/science.aal4108
https://doi.org/10.5194/essd-11-529-2019
https://doi.org/10.5194/essd-11-529-2019
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1111/geb.12440
https://doi.org/10.1016/j.rse.2019.111295
https://doi.org/10.1080/2150704X.2018.1536300
https://doi.org/10.1080/2150704X.2018.1536300
https://doi.org/10.1016/j.rse.2016.02.054
https://doi.org/10.1016/j.jag.2019.101928
https://doi.org/10.1016/j.jag.2019.101928
https://doi.org/10.1016/j.rse.2017.06.027
https://doi.org/10.1080/07038992.2018.1437719

46 Active Fire Monitoring 1021

Humber ML, Boschetti L, Giglio L, Justice CO (2019) Spatial and temporal intercomparison of
four global burned area products. Int J Digit Earth 12:460–484. https://doi.org/10.1080/175
38947.2018.1433727

Jolly WM, Cochrane MA, Freeborn PH et al (2015) Climate-induced variations in global wildfire
danger from 1979 to 2013. Nat Commun 6:1–11. https://doi.org/10.1038/ncomms8537

Liu T, Crowley MA (2021) Detection and impacts of tiling artifacts in MODIS burned area clas-
sification. IOP SciNotes 2:014003. https://doi.org/10.1088/2633-1357/abd8e2

Nogueira JMP, Ruffault J, Chuvieco E, Mouillot F (2017) Can we go beyond burned area in the
assessment of global remote sensing products with fire patch metrics? Remote Sens 9:7. https://
doi.org/10.3390/rs9010007

Parks SA (2014) Mapping day-of-burning with coarse-resolution satellite fire-detection data. Int J
Wildl Fire 23:215–223. https://doi.org/10.1071/WF13138

Parks SA, Holsinger LM, Koontz MJ et al (2019) Giving ecological meaning to satellite-derived
fire severity metrics across North American forests. Remote Sens 11:1735. https://doi.org/10.
3390/rs11141735

Restif BC, Hoffman A (2020) How to generate wildfire boundary maps with Earth Engine. In:
Google Earth and Earth Engine. https://medium.com/google-earth/how-to-generate-wildfire-
boundary-maps-with-earth-engine-b38eadc97a38. Accessed 1 Oct 2020

Schroeder W, Prins E, Giglio L et al (2008) Validation of GOES and MODIS active fire detection
products using ASTER and ETM+ data. Remote Sens Environ 112:2711–2726. https://doi.org/
10.1016/j.rse.2008.01.005

Stinson G, Kurz WA, Smyth CE et al (2011) An inventory-based analysis of Canada’s managed for-
est carbon dynamics, 1990 to 2008. Glob Chang Biol 17:2227–2244. https://doi.org/10.1111/j.
1365-2486.2010.02369.x

Veraverbeke S, Sedano F, Hook SJ et al (2014) Mapping the daily progression of large wildland
fires using MODIS active fire data. Int J Wildl Fire 23:655–667. https://doi.org/10.1071/WF1
3015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1080/17538947.2018.1433727
https://doi.org/10.1080/17538947.2018.1433727
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1088/2633-1357/abd8e2
https://doi.org/10.3390/rs9010007
https://doi.org/10.3390/rs9010007
https://doi.org/10.1071/WF13138
https://doi.org/10.3390/rs11141735
https://doi.org/10.3390/rs11141735
https://medium.com/google-earth/how-to-generate-wildfire-boundary-maps-with-earth-engine-b38eadc97a38
https://medium.com/google-earth/how-to-generate-wildfire-boundary-maps-with-earth-engine-b38eadc97a38
https://doi.org/10.1016/j.rse.2008.01.005
https://doi.org/10.1016/j.rse.2008.01.005
https://doi.org/10.1111/j.1365-2486.2010.02369.x
https://doi.org/10.1111/j.1365-2486.2010.02369.x
https://doi.org/10.1071/WF13015
https://doi.org/10.1071/WF13015
http://creativecommons.org/licenses/by/4.0/

47Mangroves

Aurélie Shapiro

Overview
Mangrove ecosystems are tropical coastal forests that are adapted to saltwater envi-
ronments. Their unique qualities of existing primarily in moist environments at low
elevation along shorelines, lack of seasonality, and compact pattern make them rel-
atively easy to identify in satellite images. In this chapter, we present a series of
automated steps, including water masking, to extract mangroves from a fusion of
optical and active radar data. Furthermore, as global mangrove datasets are readily
available in Google Earth Engine, we present an approach to automatically extract
training data from existing information, saving time and effort in your supervised
classification. The method can be adapted to create subsequent maps from your own
results to produce changes in mangrove ecosystems over time.

Learning Outcomes

• Fusing Sentinel-1 and -2 optical/radar sensors.
• Sampling points on an image to create training and testing datasets.
• Calculating additional indices to add to the image stack.
• Applying an automatic water masking function and buffering to focus classifica-

tion on coastal areas likely to have mangroves.
• Understanding supervised classification with random forests using automatically

derived training data.
• Evaluating training and model accuracy.

A. Shapiro (B)
Here+There Mapping Solutions, Berlin, Germany
e-mail: aurelie@here-there-mapping.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_47

1023

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_47&domain=pdf
mailto:aurelie@here-there-mapping.com
https://doi.org/10.1007/978-3-031-26588-4_47

1024 A. Shapiro

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).
• Perform pixel-based supervised or unsupervised classification (Chap. 6).
• Use expressions to do calculations on image bands (Chap. 9).
• Perform image morphological operations (Chap. 10).
• Create or access image mosaics (Chap. 15).
• Interpret Otsu’s method for partitioning a histogram (Chap. 42).

47.1 Introduction to Theory

Mangrove forests consist of specialized species adapted to saltwater environ-
ments located in tropical and subtropical latitudes. They are highly productive
environments that provide essential services, notably the storage of blue carbon,
stabilization and protection of coastlines from storms and coastal events, and the
provision of nurseries for fish (Alongi, 2002). Mangroves also enhance associated
coral reef ecosystems, which are crucial to supporting local livelihoods (Bryan-
Brown et al. 2020). Over 1.3 billion people live in tropical coastal areas and rely
on mangrove and associated ecosystems for their health, safety, and livelihood.
It is therefore important to map, monitor, and quantify their change over time in
order to properly conserve and restore them.

In this chapter, we will review the basic process for mapping mangroves using
Sentinel-1 and -2 imagery. Mangroves are particularly recognizable in satellite
imagery by their wetness—these ecosystems thrive at the water/land interface,
making them easy to distinguish with satellite sensors that are sensitive to veg-
etation and water. We use sensor fusion to combine the advantages of radar and
optical satellite imagery. For optical data, we extract relevant vegetation and water
indices to discern mangroves, and we use active radar data for its capacity to mask
water and derive canopy texture information.

In this chapter, we will show you how to evaluate mangroves at 10 m resolution
using a fusion of optical and radar sensors (Sentinel-1 and -2) and derived indices.
We will also implement automatic water masking (see also Chap. 42) and a random
forest machine-learning supervised (see Chaps. 40 and 41) classification, to which
you can potentially add your own improvements as needed.

If you are interested in learning more about mangrove mapping with Earth
Engine, a thorough workflow for analyzing Landsat imagery for mangroves with
a light graphic user interface is presented as the Google Earth Engine Mangrove
Mapping Methodology (GEMMM) in Yancho et al. (2020). The advantages of
this approach are the evaluation of the shoreline buffer areas, assessment of high-
and low-tide imagery, a user-friendly interface, and the freely available and well-
explained code.

47 Mangroves 1025

47.2 Practicum

Several assets are provided for you to work with. As a first step, define the area of
interest (aoi) and view it. In this case, we choose the Sundarbans ecosystem on the
border of India and Bangladesh, which is an iconic mangrove forest (also known
for its mysterious native tiger population) and a simple example to showcase water
masking and mangrove mapping:

// Create an ee.Geometry.
var aoi = ee.Geometry.Polygon([

[
[88.3, 22.61],
[90, 22.61],
[90, 21.47],
[88.3, 21.47]

]
]);

// Locate a coordinate in the aoi with land and water.
var point = ee.Geometry.Point([89.2595, 21.7317]);

// Position the map.
Map.centerObject(point, 13);
Map.addLayer(aoi, {}, 'AOI');

// Sentinel-1 wet season data.
var wetS1 = ee.Image(

'projects/gee-book/assets/A3-
2/wet_season_tscan_2020');
// Sentinel-1 dry season data.
var dryS1 = ee.Image(

'projects/gee-book/assets/A3-
2/dry_season_tscan_2020');
// Sentinel-2 mosaic.
var S2 = ee.Image('projects/gee-book/assets/A3-
2/Sundarbans_S2_2020');

We will fuse radar and optical data at 10 m resolution for this exercise using
multi-temporal composites that were developed using the Food and Agriculture
Organization (FAO) freely available SEPAL (https://sepa.io), which is a cloud-
based image and data processing platform that has several modules built on Earth
Engine. The available recipes let you choose dates and processing parameters
and export composites directly to your Earth Engine account. For radar, we used

https://sepa.io

1026 A. Shapiro

SEPAL to produce two composite “timescan” images - one for the wet sea-
son and one for dry season) created from multi-temporal statistics derived from
multiple Sentinel-1 images, a compilation of all filtered, terrain-corrected images
that are available in Earth Engine for a certain time period (Esch et al. 2018,
Mulissa et al. 2021, Vollrath et al. 2020). Additionally, the SEPAL platform cal-
culates statistics (standard deviation, minimum, maximum) of different bands. We
developed two timescan images for the 2020 dry (March to September) and wet
(October to April) seasons of the study area.

The Sentinel-2 optical composite was also generated in SEPAL, applying
the bidirectional reflectance distribution function (BRDF) correction to surface
reflectance corrected images and producing the median value of all cloud-free
pixels for 2020.

You will now access both exported SEPAL composites using the Code Editor.

//Visualize the input data.
var s1VisParams = {

bands: ['VV_min', 'VH_min', 'VVVH_ratio_min'],
min: -36,
max: 3

};
var s2VisParams = {

bands: ['swir1', 'nir', 'red'],
min: 82,
max: 3236

};

Map.addLayer(dryS1, s1VisParams, 'S1 dry', false);
Map.addLayer(wetS1, s1VisParams, 'S1 wet', false);
Map.addLayer(S2, s2VisParams, 'S2 2020');

47.2.1 Section 1: Deriving Additional Indices

It is a good idea to complement your data stack with additional indices (see
Chap. 5) that are relevant to mangroves—such as indices sensitive to water,
greenness, and vegetation (see Wang et al. 2018). You can add these via band
calculations and equations, and we will present several here. But the list of indices
is virtually endless; what is useful can depend on the location.

47 Mangroves 1027

To compute the normalized vegetation index (NDVI) using an existing Earth
Engine NDVI function, add this line:

var NDVI = S2.normalizedDifference(['nir',
'red']).rename(['NDVI']);

You can also use an image expression (see Chap. 9) for any calculation, such
as a band ratio:

var ratio_swir1_nir = S2.expression(
'swir1/(nir+0.1)', {

'swir1': S2.select('swir1'),
'nir': S2.select('nir')

})
.rename('ratio_swir1_nir_wet');

You add the rename function so you can recognize the band more easily in
your data stack. You create a data stack by adding the different indices to the input
image by using addBands and the name of the index or expression. Don’t forget
to add your Sentinel-1 data too:

var data_stack =
S2.addBands(NDVI).addBands(ratio_swir1_nir).addBands(

dryS1).addBands(wetS1).addBands(S2);

And finally, you can see the names of all your bands by entering:

print(data_stack);

Question 1. What other indices could be useful for mapping mangroves?

There are a number of useful articles on mangrove mapping that provide assess
the value of additional indices; if you know how they are calculated, you can add
them to your data stack with image expressions.

Code Checkpoint A32a. The book’s repository contains a script that shows what
your code should look like at this point.

1028 A. Shapiro

47.2.2 Section 2: Automatic Water Masking and Buffering

As explained above, mangroves are found close to coastlines, which tend to be at
low elevations. The next steps involve automatic water masking to delineate land
from sea; then we will use an existing dataset to buffer the area of interest so that
we are only mapping mangroves where we would expect to find them.

We will use the Canny edge detector and Otsu thresholding (Donchyts et al.
2016) approach to automatically detect water. For this, we use the point provided
at the beginning of the script that is located near land and water. The function
will then automatically identify an appropriate threshold that delineates land pix-
els from water, based on the calculation of edges in a selected region with both
land and water. This approach is also demonstrated in Chap. 42 using different
parameters and settings, where it is described in detail.

Paste the code below to add functionality that can compute the threshold, detect
edges, and create the water mask:

/***
* This script computes surface water mask using
* Canny Edge detector and Otsu thresholding.
* See the following paper for details:
* http://www.mdpi.com/2072-4292/8/5/386
*
* Author: Gennadii Donchyts
* Contributors: Nicholas Clinton
*
*/

/***
* Return the DN that maximizes interclass variance in B5
(in the region).
*/

var otsu = function(histogram) {
histogram = ee.Dictionary(histogram);

47 Mangroves 1029

varvar counts = counts = eeee..ArrayArray(histogram.(histogram.getget(('histogram''histogram'));));
varvar means = means = eeee..ArrayArray(histogram.(histogram.getget(('bucketMeans''bucketMeans'));));
varvar size = means.size = means.lengthlength().().getget([([00]);]);
varvar total = counts.total = counts.reducereduce((eeee..Reducer.sumReducer.sum(),(),

[[00]).]).getget([([00]);]);
varvar sum = sum =

means.means.multiplymultiply(counts).(counts).reducereduce((eeee..Reducer.sumReducer.sum(), [(), [00])])
..getget([([00]);]);

varvar mean = sum.mean = sum.dividedivide(total);(total);

varvar indices = indices = eeee..List.sequenceList.sequence((11, size);, size);

// Compute between sum of squares, where each mean // Compute between sum of squares, where each mean
partitions the data.partitions the data.

varvar bss = indices.bss = indices.mapmap((functionfunction(i) {(i) {
varvar aCounts = counts.aCounts = counts.sliceslice((00,, 00, i);, i);
varvar aCount = aCounts.aCount = aCounts.reducereduce((eeee..Reducer.sumReducer.sum(), [(), [00])])

..getget([([00]);]);
varvar aMeans = means.aMeans = means.sliceslice((00,, 00, i);, i);
varvar aMean = aMeans.aMean = aMeans.multiplymultiply(aCounts)(aCounts)

..reducereduce((eeee..Reducer.sumReducer.sum(), [(), [00]).]).getget([([00])])

..dividedivide(aCount);(aCount);
varvar bCount = total.bCount = total.subtractsubtract(aCount);(aCount);
varvar bMean = sum.bMean = sum.subtractsubtract(aCount.(aCount.multiplymultiply(aMean))(aMean))

..dividedivide(bCount);(bCount);
returnreturn aCount.aCount.multiplymultiply(aMean.(aMean.subtractsubtract(mean).(mean).powpow((

22)).)).addadd((
bCount.bCount.multiplymultiply(bMean.(bMean.subtractsubtract(mean).(mean).powpow((

22)));)));
});});

// Return the mean value corresponding to the maximum // Return the mean value corresponding to the maximum
BSS.BSS.

returnreturn means.means.sortsort(bss).(bss).getget([([-1-1]);]);
};};

/***/***
* Compute a threshold using Otsu method (bimodal).* Compute a threshold using Otsu method (bimodal).
//

1030 A. Shapiro

function computeThresholdUsingOtsu(image, scale, bounds,
cannyThreshold,
cannySigma, minValue, debug) {
// Clip image edges.
var mask = image.mask().gt(0)

.focal_min(ee.Number(scale).multiply(3), 'circle',
'meters');

// Detect sharp changes.
var edge = ee.Algorithms.CannyEdgeDetector(image,

cannyThreshold,
cannySigma);

edge = edge.multiply(mask);

// Buffer around NDWI edges.
var edgeBuffer = edge

.focal_max(ee.Number(scale).multiply(1), 'square',
'meters');

var imageEdge = image.mask(edgeBuffer);

// Compute threshold using Otsu thresholding.
var buckets = 100;
var hist = ee.Dictionary(ee.Dictionary(imageEdge

.reduceRegion({
reducer: ee.Reducer.histogram(buckets),
geometry: bounds,
scale: scale,
maxPixels: 1e9

}))
.values()
.get(0));

var threshold = ee.Number(ee.Algorithms.If({
condition: hist.contains('bucketMeans'),
trueCase: otsu(hist),
falseCase: 0.3

}));

if (debug) {

47 Mangroves 1031

Map.addLayer(edge.mask(edge), {
palette: ['ff0000']

}, 'edges', false);
print('Threshold: ', threshold);
print(ui.Chart.image.histogram(image, bounds,

scale,
buckets));

print(ui.Chart.image.histogram(imageEdge, bounds,
scale,

buckets));
}

return minValue !== 'undefined' ?
threshold.max(minValue) :

threshold;
}

var bounds = ee.Geometry(Map.getBounds(true));

var image = data_stack;
print('image', image);

var ndwi_for_water = image.normalizedDifference(['green',
'nir']);
var debug = true;
var scale = 10;var cannyThreshold = 0.9;
var cannySigma = 1;
var minValue = -0.1;
var th = computeThresholdUsingOtsu(ndwi_for_water, scale,
bounds,

cannyThreshold, cannySigma, minValue, debug);

print('th', th);

function getEdge(mask) {
return mask.subtract(mask.focal_min(1));

}

var water_mask =
ndwi_for_water.mask(ndwi_for_water.gt(th));

1032 A. Shapiro

th.evaluate(function(th) {
Map.addLayer(water_mask, {

palette: '0000ff'
}, 'water mask (th=' + th + ')');

});

You’ll notice that new layers are loaded in the map, which include the edge
detection and a water mask that identifies all marine and surface water (Fig. 47.1).

Fig. 47.1 Automatic water mask identifies all open and surface water pixels

47 Mangroves 1033

Question 2. Is the point well located to appropriately identify the water mask?
What happens with turbid water?

Move the point around and see if it improves the automatic water masking.
Turbid water can be an issue and may not be detected by the mask. Be certain that
these muddy waters are not classified as mangrove later on.

Next, we create the land mask by inverting the water mask, and removing
any areas with elevation greater than 40 m above sea level using the NASADEM
(Digital Elevation Model from NASA) data collection. This will ensure we aren’t
erroneously mapping mangroves far inland, where they don’t occur. You can of
course change the elevation threshold according to your study area.

// Create land mask area.
var land = water_mask.unmask();
var land_mask = land.eq(0);
Map.addLayer(land_mask, {}, 'Land mask', false);

// Remove areas with elevation greater than mangrove
elevation threshold.
var elev_thresh = 40;
var dem =
ee.Image('NASA/NASADEM_HGT/001').select('elevation');
var elev_mask = dem.lte(elev_thresh);
var land_mask = land_mask.updateMask(elev_mask);

Next, we will buffer the area of interest to restrict the analysis only to areas
where mangroves might realistically be found. For this, we will use the Global
Mangrove Dataset from 2000 available in Earth Engine (note: this is one of sev-
eral mangrove datasets; you could also have used other datasets such as Global
Mangrove Watch or any other available raster data.)

The Global Mangrove Dataset was derived from Landsat 2000 (Giri et al. 2011);
we will buffer 1000 m around it. The 1000 m buffer allows for the possibility that
some mangroves were missed in the original map, and that mangroves might have
expanded in some areas since 2000. You can change the buffer distance to any
value suitable for your study area.

1034 A. Shapiro

// Load global mangrove dataset as reference for training.
var mangrove_ref =
ee.ImageCollection('LANDSAT/MANGROVE_FORESTS')

.filterBounds(aoi)

.first()

.clip(aoi);
Map.addLayer(mangrove_ref, {

palette: 'Green'
}, 'Reference Mangroves', false);

// Buffer around known mangrove area with a specified
distance.
var buffer_dist = 1000;
var mang_buffer = mangrove_ref

.focal_max(buffer_dist, 'square', 'meters')

.rename('mangrove_buffer');
Map.addLayer(mang_buffer, {}, 'Mangrove Buffer', false);

Question 3. Can the buffer distance or elevation threshold be changed to cap-
ture more mangroves or remove extra areas where mangroves aren’t likely to be
found—and that we don’t need to classify? We don’t want to miss any mangrove
areas, but we also want an efficient code that does not process large areas that can’t
be mangroves, which can add processing complexity and commit easily avoidable
errors. To restrict the processing to the potential mangrove area, can you change
the buffer distance or elevation threshold to best capture the area you are interested
in?

We will now mask the mangrove buffer, create the area to classify, and mask it
from the data stack.

47 Mangroves 1035

// Mask land from mangrove buffer.
var area_to_classify =
mang_buffer.updateMask(land_mask).selfMask();
Map.addLayer(area_to_classify,

{},
'Mangrove buffer with water and elevation mask',
false);

var image_to_classify =
data_stack.updateMask(area_to_classify);
Map.addLayer(image_to_classify,

{
bands: ['swir1', 'nir', 'red'],
min: 82,
max: 3236

},
'Masked Data Stack',
false);

Code Checkpoint A32b. The book’s repository contains a script that shows
what your code should look like at this point.

47.2.3 Section 3: Creating Training Data and Running
and Evaluating a Random Forest Classification

We will now automatically select mangrove and non-mangrove locations as train-
ing data for our model. We use morphological image processing (see Chap. 10) to
select areas deep inside the reference mangrove dataset as areas we can be sure are
mangroves, because mangrove forests tend to be lost or deforested at edges rather
than in the interior. Using the same theory, we select areas far away from man-
grove edges as our non-forest areas. This approach allows us to use a relatively
older dataset from 2000 for current data training. We will extract mangrove and
non-mangrove from the reference data. First we create the feature layers to store
our training data.

1036 A. Shapiro

// Create training data from existing data
// Class values: mangrove = 1, not mangrove = 0
var ref_mangrove = mangrove_ref.unmask();
var mangroveVis = {

min: 0,
max: 1,
palette: ['grey', 'green']

};
Map.addLayer(ref_mangrove, mangroveVis, 'mangrove = 1');

// Class values: not mangrove = 1 and mangrove = 0
var notmang = ref_mangrove.eq(0);
var notMangroveVis = {

min: 0,
max: 1,
palette: ['grey', 'red']

};
Map.addLayer(notmang, notMangroveVis, 'not mangrove = 1',
false);

We then use erosion and dilation (as described in Chap. 10) to identify areas
at the center of mangrove forests and far from outside edges. We put every-
thing together in a training layer where mangroves = 1, non-mangroves = 2,
and everything else = 0.

// Define a kernel for core mangrove areas.
var kernel = ee.Kernel.circle({

radius: 3
});

// Perform a dilation to identify core mangroves.
var mang_dilate = ref_mangrove

.focal_min({
kernel: kernel,
iterations: 3

});
var mang_dilate = mang_dilate.updateMask(mang_dilate);
var mang_dilate =
mang_dilate.rename('auto_train').unmask();
Map.addLayer(mang_dilate, {}, 'Core mangrove areas to
sample', false);

47 Mangroves 1037

// Do the same for non-mangrove areas.
var kernel1 = ee.Kernel.circle({

radius: 3
});
var notmang_dilate = notmang

.focal_min({
kernel: kernel1,
iterations: 2

});
var notmang_dilate =
notmang_dilate.updateMask(notmang_dilate);
var notmang_dilate =
notmang_dilate.multiply(2).unmask().rename(

'auto_train');
Map.addLayer(notmang_dilate, {}, 'Not mangrove areas to
sample',

false);

// Core mangrove = 1, core non mangrove = 2, neither = 0.
var train_labels =
notmang_dilate.add(mang_dilate).clip(aoi);
var train_labels =
train_labels.int8().updateMask(area_to_classify);
var trainingVis = {

min: 0,
max: 2,

Question 4. How do the kernel radius and iteration parameters identify or miss
important core mangrove areas?

To obtain good training data, we want samples located throughout the area of
interest. Sometimes, if the mangroves occur in very small patches, if the radius is
too large, or if there are too many iterations, we don’t end up with enough core
forest to sample.

Change the parameters to see what works best for you. You may need to zoom
in to see the core mangrove areas.

The next step is the supervised classification (see Chap. 6). We will collect
random samples from the training areas to train and run the random forest classi-
fier. We will conduct two classifications. One is for creating the map and another
for validation, to obtain the test accuracy and determine how consistent the training
areas are between two random samples.

1038 A. Shapiro

// Begin Classification.
// Get image and bands for training - including automatic
training band.
var trainingImage =
image_to_classify.addBands(train_labels);
var trainingBands = trainingImage.bandNames();
print(trainingBands, 'training bands');

// Get training samples and classify.
// Select the number of training samples per class.
var numPoints = 2000;
var numPoints2 = 2000;

var training = trainingImage.stratifiedSample({
numPoints: 0,
classBand: 'auto_train',
region: aoi,
scale: 100,
classValues: [1, 2],
classPoints: [numPoints, numPoints2],
seed: 0,
dropNulls: true,
tileScale: 16,

});

var validation = trainingImage.stratifiedSample({
numPoints: 0,
classBand: 'auto_train',
region: aoi,
scale: 100,
classValues: [1, 2],
classPoints: [numPoints, numPoints2],
seed: 1,
dropNulls: true,
tileScale: 16,

});
// Create a random forest classifier and train it.
var nTrees = 50;
var classifier = ee.Classifier.smileRandomForest(nTrees)

.train(training, 'auto_train');

classified = image_to_classify.classify(classifier);var

47 Mangroves 1039

// Classify the test set.
var validated = validation.classify(classifier);

// Get a confusion matrix representing resubstitution
accuracy.
var trainAccuracy = classifier.confusionMatrix();
print('Resubstitution error matrix: ', trainAccuracy);
print('Training overall accuracy: ',
trainAccuracy.accuracy());
var testAccuracy = validated.errorMatrix('mangrove',

'classification');

The training accuracy is over 99%, which is very good. According to the sub-
stitution matrix, only a few training points seem to be confused when they are
randomly replaced.

In addition, we can estimate variable importance, or how much each band in
the data stack contributes to the final random forest model. These are always good
metrics to observe, as you can remove the least important bands from the training
image if you need to improve the classification.

var dict = classifier.explain();
print('Explain:', dict);
var variable_importance = ee.Feature(null,
ee.Dictionary(dict).get(

'importance'));

// Chart variable importance.
var chart =
ui.Chart.feature.byProperty(variable_importance)

.setChartType('ColumnChart')

.setOptions({
title: 'Random Forest Variable Importance',
legend: {

position: 'none'
},
hAxis: {

title: 'Bands'
},
vAxis: {

title: 'Importance'
}

});
print(chart);

1040 A. Shapiro

Question 5. What are the most important bands in the classification model?

Question 6. Based on the chart, is one of the sensors more important in the
classification model? Which bands? Why do you think that is?

Next, we will visualize the final classification. We can apply a filter to remove
individual pixels of one class, which effectively applies a minimum mapping unit
(MMU). In this case, any areas with fewer than 25 connected pixels are filtered
out.

var classificationVis = {
min: 1,
max: 2,
palette: ['green', 'grey']

};
Map.addLayer(classified, classificationVis,

'Mangrove Classification');

// Clean up results to remove small patches/pixels.
var mang_only = classified.eq(1);
// Compute the number of pixels in each connected mangrove
patch
// and apply the minimum mapping unit (number of pixels).
var mang_patchsize = mang_only.connectedPixelCount();

//mask pixels based on the number of connected neighbors
var mmu = 25;
var mang_mmu = mang_patchsize.gte(mmu);
var mang_mmu = classified.updateMask(mang_mmu).toInt8();
Map.addLayer(mang_mmu, classificationVis, 'Mangrove Map
MMU');

Your map window should resemble Fig. 47.2 with mangroves in green, and
non-mangroves in gray.

Code Checkpoint A32c. The book’s repository contains a script that shows what
your code should look like at this point.

In the Console window, you’ll see the substitution matrix, training accuracy, and
a chart of variable importance.

Question 7. Do you notice any errors in the map? Omissions or commissions?
How does the map compare to 2000?

47 Mangroves 1041

Fig. 47.2 Final mangrove classification

Question 8. You should be able to see small differences in the mangrove extent
since 2000. What do you see? What could be the causes for the changes?

Question 9. How does the MMU parameter change the output map?

Try out different values and see what the results look like.

47.3 Synthesis

Assignment 1. With what you learned in this chapter, you can fuse Sentinel-1 and
-2 data to create your own map of mangroves for anywhere in the world. You
might now test out the approach in another part of the world, or use your own
training data for a more refined classification model. You can add your own point
data in the map and merge with the training data to improve a classification, or
clean areas that need to be removed by drawing polygons and masking them in
the classification.

1042 A. Shapiro

Assignment 2. You can also add more indices, remove ones that aren’t as infor-
mative, create a map using earlier imagery, use the later date classification as
reference data, and look for differences via post-classification change. Additional
indices can be found in script A32s1—Supplemental in the book’s repository.
Using these other indices, does that change your estimation of what areas are
stable mangrove, and where have we observed gains or losses?

47.4 Conclusion

Mangroves are dynamic ecosystems that can expand over time, and can also be lost
through natural and anthropogenic causes. The power of Earth Engine lies in the
cloud-based, lightning-fast, automated approach to workflows, particularly with
automated training data collection. This process would take days when performed
offline in traditional remote sensing software, especially over large areas. The Earth
Engine approach is not only fast but also consistent. The same method can be
applied to images from different dates to assess mangrove changes over time—both
gain and loss.

References

Donchyts G, Schellekens J, Winsemius H et al (2016) A 30 m resolution surface water mask
including estimation of positional and thematic differences using Landsat 8, SRTM and Open-
StreetMap: a case study in the Murray-Darling basin. Australia. Remote Sens 8:386. https://
doi.org/10.3390/rs8050386

Esch T, Üreyen S, Zeidler J et al (2018) Exploiting big Earth data from space–first experiences with
the TimeScan processing chain. Big Earth Data 2:36–55. https://doi.org/10.1080/20964471.
2018.1433790

Giri C, Ochieng E, Tieszen LL et al (2011) Status and distribution of mangrove forests of the
world using Earth observation satellite data. Glob Ecol Biogeogr 20:154–159. https://doi.org/
10.1111/j.1466-8238.2010.00584.x

Mullissa A, Vollrath A, Odongo-Braun C et al (2021) Sentinel-1 SAR backscatter analysis ready
data preparation in Google Earth Engine. Remote Sens 13:1954. https://doi.org/10.3390/rs1310
1954

Vollrath A, Mullissa A, Reiche J (2020) Angular-based radiometric slope correction for Sentinel-1
on Google Earth Engine. Remote Sens 12:1867. https://doi.org/10.3390/rs12111867

Wang D, Wan B, Qiu P et al (2018) Evaluating the performance of Sentinel-2, Landsat 8 and
Pléiades-1 in mapping mangrove extent and species. Remote Sens 10:1468. https://doi.org/10.
3390/rs10091468

Yancho JMM, Jones TG, Gandhi SR et al (2020) The Google Earth Engine mangrove mapping
methodology (GEEMMM). Remote Sens 12:1–35. https://doi.org/10.3390/rs12223758

Bryan-Brown D, Connolly RM, Richards DR et al (2020) Global trends in mangrove forest frag-
mentation Abstr Sci Rep 10(1). https://doi.org/10.1038/s41598-020-63880-1

Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv
29:331–349

https://doi.org/10.3390/rs8050386
https://doi.org/10.3390/rs8050386
https://doi.org/10.1080/20964471.2018.1433790
https://doi.org/10.1080/20964471.2018.1433790
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.1111/j.1466-8238.2010.00584.x
https://doi.org/10.3390/rs13101954
https://doi.org/10.3390/rs13101954
https://doi.org/10.3390/rs12111867
https://doi.org/10.3390/rs10091468
https://doi.org/10.3390/rs10091468
https://doi.org/10.3390/rs12223758
https://doi.org/10.1038/s41598-020-63880-1

47 Mangroves 1043

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

48Mangroves II—Change Mapping

Celio de Sousa, David Lagomasino, and Lola Fatoyinbo

Overview
The purpose of this chapter is to present two methods of land cover extent change
detection: map-to-map and map-to-image using anomaly data. In a map-to-map
approach, changes are extracted by subtracting a two-date pair of land cover extent
maps: that is, time 2 (T2) extent minus time 1 (T1) extent. By comparison, a map-
to-image approach uses a baseline extent map within which changes are calculated
based on a T2 image where the change classes are defined by threshold values. In
this chapter, we will perform a map-to-map change detection between two mangrove
extent maps from 2000 and 2020 and also perform a vegetation index anomaly
analysis to detect changes within a mangrove extent map from the year 2000 in
Guinea, West Africa.

Learning Outcomes

• Performing change detection by contrasting two pre-existent mangrove extent
maps.

• Harmonizing across Landsat generations to create consistent long-term series.
• Calculating the anomaly of a given vegetation index based on its long-term average

value.

C. de Sousa (B)
University of Maryland Baltimore County/NASA Goddard Space Flight Center, Greenbelt, USA
e-mail: celio.h.resendedesousa@nasa.gov

D. Lagomasino
East Carolina University, Greenville, USA
e-mail: lagomasinod19@ecu.edu

L. Fatoyinbo
NASA Goddard Space Flight Center, Greenbelt, USA
e-mail: lola.fatoyinbo@nasa.gov

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_48

1045

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_48&domain=pdf
mailto:celio.h.resendedesousa@nasa.gov
mailto:lagomasinod19@ecu.edu
mailto:lola.fatoyinbo@nasa.gov
https://doi.org/10.1007/978-3-031-26588-4_48

1046 C. de Sousa et al.

• Performing change detection by interpreting vegetation index anomalies.

Helps if you know how to

• Recognize similarities and differences among satellite spectral bands (Part I,
Part II, Part III).

• Perform basic image analysis: select bands, compute indices, create masks (Part
II).

• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Perform a supervised image classification (Chap. 6).
• Work with array images (Chaps. 9 and 18).
• Use expressions to perform calculations on image bands (Chap. 9).
• Summarize an image with reduceRegion (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).
• Perform a two-period change detection (Chap. 16).

48.1 Introduction to Theory

Mangrove forests are among the most productive ecosystems on Earth, provid-
ing a wide range of critical economic, ecological, and societal services. However,
mangroves worldwide have undergone intense conversion, with human-related dis-
turbances being one of the main causes of global mangrove loss in recent decades
(Goldberg et al. 2020). Thus, regular monitoring of the dynamics of mangrove
ecosystems worldwide is key for establishing better coastal management policies
and mangrove conservation initiatives.

Readily available, low-cost, and repeated-coverage remote sensing data pro-
vides numerous advantages for monitoring mangrove forests and detecting changes
in the landscape over time. In this context, the Landsat data archive, which
covers more than 35 years, has been widely used for mapping land cover dynam-
ics worldwide. Most notably, the Landsat mission coupled with Google Earth
Engine’s computing infrastructure have been leveraged to develop widely used
global datasets at 30 m spatial resolution, such as the global forest cover (Hansen
et al. 2013) and global mangrove extent (Bunting et al. 2018) datasets.

However, as extensively explored in the literature, change detection using
remotely sensed data is challenged by several factors, including (but not limited
to) the following: spatial, spectral, thematic, and temporal constraints, atmospheric
conditions, high cloud-coverage, and differences in sensors’ spectral characteris-
tics. These differences may have a direct effect on the ability to accurately detect
and monitor changes in the landscape, including mangrove forests. As explored
by Roy et al. (2016), the Landsat TM/ETM + and OLI sensors present small but
potentially significant differences between their spectral characteristics, with the

48 Mangroves II—Change Mapping 1047

greatest differences in the near-infrared (NIR) and the shortwave infrared (SWIR)
bands—the most important spectral bands for vegetation studies.

In this chapter, we take advantage of the statistical functions presented in Roy
et al. (2016) to transform between the comparable TM/ETM + and OLI bands in
order to ensure inter-sensor harmonized spectral information and temporal conti-
nuity. We will use this harmonized Landsat TM/ETM + /OLI collection to derive
anomaly-based changes in mangrove extent over 21 years (2000–2020) in Guinea,
West Africa.

48.2 Practicum

48.2.1 Section 1: Map-To-Map Change Detection

Previous chapters demonstrated how to perform a general supervised classification,
as well as how to apply those classifiers and functions to create a mangrove extent
map (Chap. 47). In this section, we will build upon those techniques to perform a
map-to-map change analysis. Paste the code below into a new script, which will
access pre-created assets for two time periods: 2000 and 2020.

var areaOfstudy = ee.FeatureCollection(
'projects/gee-book/assets/A3-3/Border5km');

var mangrove2000 = ee.Image(
'projects/gee-book/assets/A3-3/MangroveGuinea2000_v2');

var mangrove2020 = ee.Image(
'projects/gee-book/assets/A3-3/MangroveGuinea2020_v2');

Start by setting the map center around Conakry, Guinea, and adding your 2000
and 2020 mangrove extent to the map using a color of your choice and naming
them ‘Mangrove Extent 2000’ and ‘Mangrove Extent 2020’:

Map.setCenter(-13.6007, 9.6295, 10);
// Sets the map center to Conakry, Guinea
Map.addLayer(areaOfstudy, {}, 'Area of Study');
Map.addLayer(mangrove2000, {

palette: '#16a596'
}, 'Mangrove Extent 2000');
Map.addLayer(mangrove2020, {

palette: '#9ad3bc'
}, 'Mangrove Extent 2020');

1048 C. de Sousa et al.

Because the assets have the value of 1 (one) assigned to mangrove pixels and
0 (zero) to everything else, you can derive losses and gains from both mangrove
extent maps with a simple subtraction of T1 (2000) from T2 (2020). The value
of 1 has been assigned to mangrove pixels and everything else has been masked.
For the mathematical operation between the two layers to work, every pixel has to
have a value assigned to it. In this case, you can unmask previously masked pixels
and assign the value 0 to them using unmask(0). Finally, subtract T1 from T2
into a new variable change:

var mang2020 = mangrove2020.unmask(0);
var mang2000 = mangrove2000.unmask(0);
var change = mang2020.subtract(mang2000)

.clip(areaOfstudy);

Pixels in the raster change will have values of− 1, 0, or 1, which represent
loss/conversion, no change, and gains, respectively:

• − 1 = no mangroves in 2020, mangroves in 2000 (0− 1 = − 1);
• 0 = mangroves in 2020, mangroves in 2000 (1 − 1 = 0);
• 1 = mangroves in 2020, no mangroves in 2000 (1− 0 = 1)

Finally, add change to the map:

var paletteCHANGE = [
'red', // Loss/conversion
'white', // No Change
'green', // Gain/Expansion

];

Map.addLayer(change, {
min: -1,
max: 1,
palette: paletteCHANGE

}, 'Changes 2000-2020');

You can calculate the area of expansion/conversion by isolating the pixels of
gain/loss from the change into gain and loss. Then, calculate the area of
each pixel using ee.Image.pixelArea and multiplying by the count of pixels in
gain and loss using multiply. The default unit is square meters (m2). You
can use divide to transform into square kilometers (divide(1000000)) or
hectares (divide(10000)). Finally, use ee.Reducer.sum to sum all area
values for both gain and loss and print them to the Console (Fig. 48.1).

48 Mangroves II—Change Mapping 1049

Fig. 48.1 Map-to-map changes in mangrove extent in Guinea from 2000–2020

// Calculate the area of each pixel
var gain = change.eq(1);
var loss = change.eq(-1);

var gainArea =
gain.multiply(ee.Image.pixelArea().divide(1000000));
var lossArea =
loss.multiply(ee.Image.pixelArea().divide(1000000));

// Sum all the areas
var statsgain = gainArea.reduceRegion({

reducer: ee.Reducer.sum(),
scale: 30,
maxPixels: 1e14

});

var statsloss = lossArea.reduceRegion({
reducer: ee.Reducer.sum(),
scale: 30,
maxPixels: 1e14

});

print(statsgain.get('classification'),
'km² of new mangroves in 2020');

print(statsloss.get('classification'),
'of mangrove was lost in 2020');

1050 C. de Sousa et al.

Map.addLayer(gain.selfMask(), {
palette: 'green'

}, 'Gains');
Map.addLayer(loss.selfMask(), {

palette: 'red'
}, 'Loss');

Code Checkpoint A33a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. What are some of the issues that may arise when using a map-to-map
change detection? Explain how these different dates may affect the classification
output and, consequently, the change output.

48.2.2 Section 2: Map-To-Image Change Detection

Using the mangrove extent you created in the previous section, we will look at
another way to detect changes without having to classify an image. In this case,
change classes are defined by threshold values of a specific metric, such as a
vegetation index or a spectral image band. In this section, we will take advantage
of the Landsat archive to create an average reference value of a given vegetation
index at an earlier date T1 and see how it compares to its later value at T2.

The first assumption of this approach is that changes will happen within a buffer
zone from the baseline extent. Start by setting the baseline extent and buffer zone
using focal_max:

var buffer = 1000; // In meters
var extentBuffer = mangrove2000.focal_max(buffer, 'circle',
'meters');
Map.addLayer(mangrove2000, {

palette: '#000000'
}, 'Baseline', false);
Map.addLayer(extentBuffer, {

palette: '#0e49b5',
opacity: 0.3

}, 'Mangrove Buffer', false);

48 Mangroves II—Change Mapping 1051

48.2.2.1 Harmonizing Landsat 5/7/8 Image Collections
As described in the beginning of this chapter, the Landsat TM/ETM + and OLI
sensors present differences between their spectral characteristics. Thus, to ensure
inter-sensor harmonized spectral information and temporal continuity, we will har-
monize the entire Landsat image archive using the statistical functions presented
in Roy et al. (2016). For that, start by defining the temporal parameters for the
harmonization:

var startYear = 1984;
var endyear = 2020;
var startDay = '01-01';
var endDay = '12-31';

Next, we will create several functions for the harmonization of the Landsat
archive:

Harmonization Function: harmonizationRoy uses the regression coefficients
(slopes and intercepts) retrieved from Roy et al. (2016) and performs a linear
transformation of ETM + spectral space to OLI spectral space:

var harmonizationRoy = function(oli) {
var slopes = ee.Image.constant([0.9785, 0.9542, 0.9825,

1.0073, 1.0171, 0.9949
]);
var itcp = ee.Image.constant([-0.0095, -0.0016, -

0.0022, -
0.0021, -0.0030, 0.0029

]);
var y = oli.select(['B2', 'B3', 'B4', 'B5', 'B6',

'B7'], [
'B1', 'B2', 'B3', 'B4', 'B5', 'B7'

])
.resample('bicubic')
.subtract(itcp.multiply(10000)).divide(slopes)
.set('system:time_start',

oli.get('system:time_start'));
return y.toShort();

};

1052 C. de Sousa et al.

Retrieve a Particular Sensor Function: getSRcollection will be used to
retrieve individual sensor collections based on the temporal parameters and the
harmonization function above. Additionally, this function will mask cloud, cloud
shadow, and snow based on the Landsat quality assessment bands:

var getSRcollection = function(year, startDay, endYear,
endDay,

sensor) {
var srCollection = ee.ImageCollection('LANDSAT/' +

sensor +
'/C01/T1_SR')

.filterDate(year + '-' + startDay, endYear + '-' +
endDay)

.map(function(img) {
var dat;
if (sensor == 'LC08') {

dat = harmonizationRoy(img.unmask());
} else {

dat = img.select(['B1', 'B2', 'B3', 'B4',
'B5', 'B7'

])
.unmask()
.resample('bicubic')
.set('system:time_start', img.get(

'system:time_start'));
}
// Cloud, cloud shadow and snow mask.
var qa = img.select('pixel_qa');
var mask = qa.bitwiseAnd(8).eq(0).and(

qa.bitwiseAnd(16).eq(0)).and(
qa.bitwiseAnd(32).eq(0));

return dat.mask(mask);
});

return srCollection;
};

Combining the Collections Function: getCombinedSRcollection will
merge all the individual L5/L7/L8 collections into one:

48 Mangroves II—Change Mapping 1053

var getCombinedSRcollection = function(year, startDay,
endYear,

endDay) {
var lt5 = getSRcollection(year, startDay, endYear,

endDay,
'LT05');

var le7 = getSRcollection(year, startDay, endYear,
endDay,

'LE07');
var lc8 = getSRcollection(year, startDay, endYear,

endDay,
'LC08');

var mergedCollection =
ee.ImageCollection(le7.merge(lc8)

.merge(lt5));
return mergedCollection;

};

Vegetation Indices: addIndices calculates several vegetation/spectral indices
based on the harmonized Landsat bands. In this example, we are including the
Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index
(EVI), the Soil Adjusted Vegetation Index (SAVI), the Normalized Difference
Mangrove Index (NDMI), the Normalized Difference Water index (NDWI), and
the Modified Normalized Difference Water Index (MNDWI). Here is where you
can include your own vegetation indices:

var addIndices = function(image) {
var ndvi = image.normalizedDifference(['B4',

'B3']).rename(
'NDVI');

var evi = image.expression(
'2.5*((NIR-RED)/(NIR+6*RED-7.5*BLUE+1))', {

'NIR': image.select('B4'),
'RED': image.select('B3'),
'BLUE': image.select('B1')

}).rename('EVI');
var savi = image.expression(

'((NIR - RED) / (NIR + RED + 0.5) * (0.5 + 1))', {
'NIR': image.select('B4'),
'RED': image.select('B3'),
'BLUE': image.select('B1')

}).rename('SAVI');
var ndmi = image.normalizedDifference(['B7','B2']).rename(

'NDMI');
var ndwi = image.normalizedDifference(['B5','B4']).rename(

'NDWI');

1054 C. de Sousa et al.

var mndwi = image.normalizedDifference(['B2',
'B5']).rename(

'MNDWI');
return image.addBands(ndvi)

.addBands(evi)

.addBands(savi)

.addBands(ndmi)

.addBands(ndwi)

.addBands(mndwi);
};

Finally, collectionSR_wIndex will include the final harmonized collec-
tion with all the sensors based on the temporal parameters defined previously, with
all spectral bands and vegetation/spectral indices:

var collectionSR_wIndex =
getCombinedSRcollection(startYear, startDay,

endyear, endDay).map(addIndices);

Filter this collection by the bounds of the area of study:

var collectionL5L7L8 =
collectionSR_wIndex.filterBounds(areaOfstudy);

Question 2. Based on your knowledge and the functions described above, what
are the main fundamental differences between Landsat TM, ETM+, and OLI?

Question 3. What are the issues that may arise when using the same function for
calculating vegetation indices using surface reflectance data acquired by ETM +
and OLI sensors?

Vegetation Index Anomaly
By definition, anomaly is anything that deviates from what is standard, normal, or
expected. Usually, anomalies are calculated by subtracting a long-term average of
a variable from the actual value of that variable at a given time. For example, if
X = actual value of average NDVI for mangroves in 2020, and Y = long-term
average NDVI of mangroves (an average over many years), then the anomaly =
X − Y. If the anomaly values are zero (or very close to zero), it means that NDVI
remained relatively stable in that period, which indicates that there has not been
any significant disturbance in that area. On the other hand, a positive anomaly
means that the NDVI signal is greater than its long-term average, which indicates

48 Mangroves II—Change Mapping 1055

that vegetation has shown growth in that area; similarly, a negative anomaly means
that the NDVI signal is weaker than its long-term average, indicating a potential
loss in the area.

To calculate the anomaly, start by defining the index you want to compute the
anomaly for and the reference period to get the average value. In this example, we
are going use the 16 years before the mangrove extent baseline in 2000:

var index = 'NDVI';
var ref_start = '1984-01-01'; // Start of the period
var ref_end = '1999-12-31'; // End of the period

Next, create the reference collection using collectionL5L7L8 and the
parameters above. You can print the size of this reference collection to the Console
using print and size:

var reference = collectionL5L7L8
.filterDate(ref_start, ref_end)
.select(index)
.sort('system:time_start', true);

print('Number of images in Reference Collection',
reference.size());

You can now calculate the mean value (and other statistics) for the reference
collection reference. Mask the results by the baseline mangrove extent using
extentBuffer:

var mean = reference.mean().mask(extentBuffer);
var median = reference.median().mask(extentBuffer);
var max = reference.max().mask(extentBuffer);
var min = reference.min().mask(extentBuffer);

Now that we have our long-term reference metrics, you can define the period
for which you want to compute the gains and losses. In this example, we will
use the full period of 2000–2020. However, any combination of years is possible
depending on what period you are interested in. Then, an anomaly function can
be created to subtract the metric from the average of your period of interest:

1056 C. de Sousa et al.

var period_start = '2000-01-01'; // Full period
var period_end = '2020-12-31';

var anomalyfunction = function(image) {
return image.subtract(mean)

.set('system:time_start',
image.get('system:time_start'));
};

Finally, map the anomalyfunction to the Landsat collection
filtered by your period_start and period_end:

var series = collectionL5L7L8.filterDate(period_start,
period_end)

.map(anomalyfunction);

Finally, map the anomalyfunction to the Landsat collection filtered by
your period_start and period_end:

var seriesSum =
series.select(index).sum().mask(extentBuffer);
var numImages =
series.select(index).count().mask(extentBuffer);
var anomaly = seriesSum.divide(numImages);

The object series will have all the spectral bands and vegetation/spectral
indices for the time period defined above. Their values, however, will be different
from the original collection since we subtracted the average value of the reference
period. The next step is to sum all the values for the index from series and
divide by the number of images available:

Add the anomaly layer to the map using a color ramp of your choice (Fig. 48.2):

48 Mangroves II—Change Mapping 1057

Fig. 48.2 NDVI anomaly for the period of 2000–2000

var visAnon = {
min: -0.20,
max: 0.20,
palette: ['#481567FF', '#482677FF', '#453781FF',

'#404788FF',
'#39568CFF', '#33638DFF', '#2D708EFF', '#287D8EFF',
'#238A8DFF',
'#1F968BFF', '#20A387FF', '#29AF7FFF', '#3CBB75FF',
'#55C667FF',
'#73D055FF', '#95D840FF', '#B8DE29FF', '#DCE319FF',
'#FDE725FF'

]
};
Map.addLayer(anomaly, visAnon, index + ' anomaly');

You can then extract loss areas by selecting a value threshold on the anomaly
(Fig. 48.3):

1058 C. de Sousa et al.

Fig. 48.3 NDVI anomaly losses (orange) and gains (blue) based on change threshold values

var thresholdLoss = -0.05;
var lossfromndvi = anomaly.lte(thresholdLoss)

.selfMask()

.updateMask(
mangrove2000

); // Only show the losses within the mangrove extent
of year 2000

Map.addLayer(lossfromndvi, {
palette: ['orange']

}, 'Loss from Anomaly 00-20');

var thresholdGain = 0.20;
var gainfromndvi = anomaly.gte(thresholdGain)

.selfMask()

.updateMask(
extentBuffer

); // Only show the gains within the mangrove extent
buffer of year 2000

Map.addLayer(gainfromndvi, {
palette: ['blue']

}, 'Gain from Anomaly 00-20');

48 Mangroves II—Change Mapping 1059

Code Checkpoint A33b. The book’s repository contains a script that shows what
your code should look like at this point.

Question 4. What are the main challenges of a map-to-image change detection
approach? Think from a perspective of baseline extent, spectral index, and metric
used (e.g., mean versus median).

48.3 Synthesis

With the content covered in this chapter, you will be able to reproduce a
map-to-map and a map-to-image change detection to your own area of inter-
est. Additionally, the anomaly analysis can be used to detect changes in other
land cover types, including (but not limited to) forests (forest cover loss) and
agricultural land (crop harvest).

Assignment 1. Practice your land cover classification skills by using the code
in script A33s1—Supplemental in the book’s repository. In this code, we show
how to create a mangrove extent map for Guinea using manually and automatically
selected samples. The code covers masking techniques and using data from Google
Earth Engine Catalog to assist in the classification workflow. Using the techniques
you have learned, create two 30 m Landsat-based mangrove extent maps for the
year of 2000 and 2020 for Guinea, West Africa.

Assignment 2. Using what you learned in this chapter, compile the areas (in km2)
of mangrove change in Guinea derived from the anomaly analysis using: (a) vege-
tation spectral index versus a water-based spectral index; (b) mean versus median;
and (c) five-year intervals (2000–2005, 2005–2010, 2010–2015, and 2015–2020.

Assignment 3. Practice the classification and compare the map-to-map and map-
to-image change approaches for another land cover type/area of your choice, such
as the following:

• Agricultural land expansion in the Nile Delta, Egypt.
• Forest burn/loss near Mount Hood, Oregon, United States.

48.4 Conclusion

Google Earth Engine’s computing infrastructure has been revolutionizing time-
consuming remote sensing processes, creating a new way for rapid land cover
classification and change detection at large scales. In the case of mangrove
forests—a highly dynamic ecosystem that has been under increasing anthropogenic
pressure—these approaches allow for a rapid and consistent monitoring of change
in extent over time. These approaches using Earth Engine may be particularly
useful for developing countries where, until very recently, the high computational

1060 C. de Sousa et al.

power and the difficulties of distributing nontrivial classification algorithms across
multiple computational workstations has challenged classification and change
detection at large scales.

References

Bunting P, Rosenqvist A, Lucas RM et al (2018) The global mangrove watch—a new 2010 global
baseline of mangrove extent. Remote Sens 10:1669. https://doi.org/10.3390/rs10101669

Goldberg L, Lagomasino D, Thomas N, Fatoyinbo T (2020) Global declines in human-driven
mangrove loss. Glob Chang Biol 26:5844–5855. https://doi.org/10.1111/gcb.15275

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest
cover change. Science 342:850–853. https://doi.org/science.1244693

Roy DP, Kovalskyy V, Zhang HK et al (2016) Characterization of Landsat-7 to Landsat-8 reflec-
tive wavelength and normalized difference vegetation index continuity. Remote Sens Environ
185:57–70. https://doi.org/10.1016/j.rse.2015.12.024

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/rs10101669
https://doi.org/10.1111/gcb.15275
https://doi.org/10.1016/j.rse.2015.12.024
http://creativecommons.org/licenses/by/4.0/

49Forest Degradation
and Deforestation

Carlos Souza Jr. , Karis Tenneson , John Dilger ,
Crystal Wespestad , and Eric Bullock

Overview
Tropical forests are being disturbed by deforestation and forest degradation at an
unprecedented pace (Hansen et al. 2013; Bullock et al. 2020). Deforestation com-
pletely removes the original forest cover and replaces it with another land cover type,
such as pasture or agriculture fields. Generally speaking, forest degradation is a tem-
porary or permanent disturbance, often caused by predatory logging, fires, or forest
fragmentation, where the tree loss does not entirely change the land cover type. For-
est degradation leads to a more complex environment with a mixture of vegetation,
soil, tree trunks and branches, and fire ash. Defining a boundary between defor-
estation and forest degradation is not straightforward; at the time this chapter was

C. Souza Jr. (B)
Amazon Institute of People and the Environment, Belém, Brazil
e-mail: souzajr@imazon.org.br

K. Tenneson · J. Dilger · C. Wespestad
Spatial Informatics Group, Pleasanton, CA, USA
e-mail: ktenneson@sig-gis.com

J. Dilger
e-mail: jdilger@sig-gis.com

C. Wespestad
e-mail: cwespestad@sig-gis.com

E. Bullock
Boston University, Boston, MA, USA
e-mail: bullocke@bu.edu

K. Tenneson · J. Dilger · C. Wespestad
SERVIR-Amazonia, Cali, Colombia

J. Dilger
Astraea, Charlottesville, VA, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_49

1061

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_49&domain=pdf
http://orcid.org/0000-0002-0205-6134
http://orcid.org/0000-0001-5842-0663
http://orcid.org/0000-0001-8837-5445
http://orcid.org/0000-0002-3093-1178
http://orcid.org/0000-0003-3279-6771
mailto:souzajr@imazon.org.br
mailto:ktenneson@sig-gis.com
mailto:jdilger@sig-gis.com
mailto:cwespestad@sig-gis.com
mailto:bullocke@bu.edu
https://doi.org/10.1007/978-3-031-26588-4_49

1062 C. Souza Jr. et al.

written, there was no universally accepted definition for forest degradation (Aryal
et al. 2021). Furthermore, the signal of forest degradation often disappears within
one to two years, making degraded forests spectrally similar to undisturbed forests.
Due to these factors, detecting and mapping forest degradation with remotely sensed
optical data is more challenging than mapping deforestation.

The purpose of this chapter is to present a spectral unmixing algorithm and the
normalized difference fraction index (NDFI) to detect and map both forest degrada-
tion and deforestation in tropical forests. This spectral unmixing model uses a set of
generic endmembers (Souza et al. 2005) to process any Landsat Surface Reflectance
(Tier 1) scene available in Google Earth Engine. We present two examples of change
detection applications: one comparing a pair of images acquired at different times a
year apart by making a temporal color composite and an empirically defined change
threshold, and another using a more extensive and dense time series approach.

Learning Outcomes

• Calculating NDFI, the Normalized Difference Fraction Index.
• Interpreting fraction images and NDFI using a temporal color composite.
• Analyzing deforestation and forest degradation with NDFI.
• Running a time-series change detection to detect forest change.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, and create masks

(Part II).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Run and interpret spectral unmixing models (Chap. 9).
• Use expressions to perform calculations on image bands (Chap. 9).
• Aggregate data to build a time series (Chap. 14).
• Perform a two-period change detection (Chap. 16).

49.1 Introduction to Theory

Landsat imagery has been extensively used to monitor deforestation (Woodcock
et al. 2020). However, detecting and mapping forest degradation associated with
selective logging is more intricate and challenging. First efforts involved the appli-
cation of spectral and textural indices to enhance the detection of canopy damage
created by logging (Asner et al. 2002; Souza et al. 2005), but these turned out
to be more helpful in enhancing logging infrastructure using Landsat shortwave
infrared bands (i.e., roads and log landings; Matricardi et al. 2007).

Alternatively, spectral mixture analysis (SMA) has been proposed to over-
come the challenge of using whole-pixel information to detect and classify forest

49 Forest Degradation and Deforestation 1063

degradation. Landsat pixels typically contain a mixture of land cover components
(Adams et al. 1995). The SMA method is based on the linear spectral unmixing
model, as described in Chap. 9. The identification of the nature and number of pure
spectra (often referred to in this context as “endmembers”) in the image scene is
an important step in obtaining correct SMA models. In logged forests (and also
in burned forest and forest edges), mixed pixels predominate and are expected
to have a combination of green vegetation (GV), soil, non-photosynthetic vegeta-
tion (NPV), and shade-covered materials. Therefore, fraction images derived from
SMA analyses are more suitable to enhance the detectability of logging infras-
tructure and canopy damage within degraded forests. For example, soil fractions
reveal log landings and logging roads (Souza and Barreto 2000), while the NPV
highlights forest canopy damage (Souza et al. 2003), and the areas decreasing in
GV indicate forest canopy gaps (Asner et al. 2004).

A study has shown that it is possible to generalize the SMA model to Land-
sat sensors (including TM, ETM+, and OLI) (Small 2004). Souza et al. (2005)
expanded the generalized SMA to handle five endmembers—GV, NPV, soil, shade,
and cloud—expected within forest degradation areas and proposed a novel com-
positional index based on SMA fractions, the normalized difference fraction index
(NDFI).

The NDFI is computed as:

NDFI = GVshade − (NPV + Soil)
GVshade + NPV + Soil (49.1)

where GVshade is the shade-normalized GV fraction given by,

GVshade = GV

100 − Shade (49.2)

NDFI values range from − 1 to 1. For intact forests, NDFI shows high values
(i.e., about 1) due to the combination of high GVshade (i.e., high GV and canopy
shade) and low NPV and soil values. The NPV and soil fractions increase as forests
are more degraded, lowering NDFI values relative to the intact forests. Deforested
areas exhibit very low GV and shade and high NPV and soil, making it possible
to distinguish them from degraded forests based on NDFI magnitude.

Recent studies compared NDFI with other spectral indices. NDFI generated
more accurate results in deforestation detection (Schultz et al. 2016) and forest
degradation (Bullock et al. 2018) in time-series analysis. One of the key compo-
nents for its success is lowering unwanted noise and accounting for illumination
variability through the shade normalization applied to the GV fraction.

1064 C. Souza Jr. et al.

49.2 Practicum

49.2.1 Section 1: Spectral Mixture Analysis Model

Let us first define the Landsat endmembers based on Souza et al. (2005). These
endmembers were developed and tested in the Amazon. These endmembers work
well in many other environments (see example applications for calculating NDFI
in non-Amazonian tropical forest in Schultz et al. 2016 [Ethiopia and Viet Nam];
Kusbach et al. 2017 [central Europe]; Hirschmugl et al. 2013 [Cameroon and Cen-
tral African Republic]). If you are working in a different region, assess how well
they perform for your forest types. The ratio of these endmembers that makes up
the spectral signature of each pixel gives a good indication of the plant health and
composition for that area. When the ratio shifts over time towards one or more of
the endmembers, we can quantify how the landscape is changing.

Below, we will create a new variable endmembers by copying the values
from the code block below. The six numbers in square brackets define the pure
reflectance values for the blue, green, red, SWIR1, and SWIR2 bands for each
endmember material.

// SMA Model - Section 1

// Define the Landsat endmembers (source: Souza et al.
2005)
// They can be applied to Landsat 5, 7, 8, and potentially
9.
var endmembers = [
[0.0119,0.0475,0.0169,0.625,0.2399,0.0675], // GV
[0.1514,0.1597,0.1421,0.3053,0.7707,0.1975], // NPV
[0.1799,0.2479,0.3158,0.5437,0.7707,0.6646], // Soil
[0.4031,0.8714,0.79,0.8989,0.7002,0.6607] // Cloud

];

We will choose a single Landsat 5 image to work with for now, and select the
bands we will need for the SMA and NDFI calculation.

Create a new variable image and assign it to the Landsat 5 image from the
code block below. Select the visible, near infrared, and shortwave infrared bands.
Then, center the map around the Landsat 5 image with a zoom scale of 10.

49 Forest Degradation and Deforestation 1065

// Select a Landsat 5 scene on which to apply the SMA
model.
var image =
ee.Image('LANDSAT/LT05/C02/T1_L2/LT05_226068_19840411')

.multiply(0.0000275).add(-0.2);

// Center the map on the image object.
Map.centerObject(image, 10);

// Define and select the Landsat bands to apply the SMA
model.
// use ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',
'SR_B7'] for Landsat 5 and 7.
// use ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6',
'SR_B7'] for Landsat 8.
var bands = ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',
'SR_B7'];
image = image.select(bands);

Next, we will need to create a couple of functions to use the endmembers and
create the NDFI image. We will need to unmix the input Landsat image.

First, we will create a new function, getSMAFractions that takes two
parameters: image and endmembers. To unmix the image, we first select the
visible, near-infrared, and short wave infrared bands, and call the unmix function
with the endmembers used as the argument. Note: The order in which the bands
are selected matters. For each endmember (GV, NPV, soil, and cloud), each value
in the array represents the pure value for each band being passed in. For exam-
ple, if the selected bands were [‘SR_B2’, ‘SR_B3’, ‘SR_B4’, ‘SR_B5’, ‘SR_B6’,
‘SR_B7’] then the selected endmembers at position 0 would be:

• ‘SR_B2’ GV: 119
• ‘SR_B2’ NPV: 1514
• ‘SR_B2’ Soil: 1799
• ‘SR_B2’ Cloud: 4031.

1066 C. Souza Jr. et al.

// Unmixing image using Singular Value Decomposition.
var getSMAFractions = function(image, endmembers) {

var unmixed = ee.Image(image)
.select([0, 1, 2, 3, 4,

5
]) // Use the visible, NIR, and SWIR bands only!
.unmix(endmembers)
.max(0) // Remove negative fractions, mostly Soil.
.rename('GV', 'NPV', 'Soil', 'Cloud');

return ee.Image(unmixed.copyProperties(image));
};

We will now write the function to calculate NDFI. We could write it out line
by line for each time we want to perform SMA or calculate NDFI. But having the
equation implemented as a function gives us many benefits, including reducing
redundancy, allowing us to map the function over a collection of images, and
reducing errors from typos or other little bugs that can find their way into our
code.

We will use the fraction images obtained with the getSMAFractions func-
tion above to calculate shade, GVs, and NDFI using image expressions. This
procedure will return a multiband image with the shade, GVs, and NDFI bands
added to the input image.

First, we will create a new variable sma and pass in the image and endmembers
as arguments. Then calculate the shade and GV shade-normalized (GVs) fractions
from the SMA bands, and add the shade and GVs bands to the SMA image. We
calculate NDFI using an expression implementing Eq. 49.1, and add the new band
to the SMA image.

// Calculate GVS and NDFI and add them to image fractions.
// Run the SMA model passing the Landsat image and the
endmembers.
var sma = getSMAFractions(image, endmembers);

Map.addLayer(sma, {
bands: ['NPV', 'GV', 'Soil'],
min: 0,
max: 0.45

}, 'sma');

49 Forest Degradation and Deforestation 1067

// Calculate the Shade and GV shade-normalized (GVs)
fractions from the SMA bands.
var Shade = sma.reduce(ee.Reducer.sum())

.subtract(1.0)

.abs()

.rename('Shade');

var GVs = sma.select('GV')
.divide(Shade.subtract(1.0).abs())
.rename('GVs');

// Add the new bands to the SMA image variable.
sma = sma.addBands([Shade, GVs]);

// Calculate the NDFI using image expression.
var NDFI = sma.expression(

'(GVs - (NPV + Soil)) / (GVs + NPV + Soil)', {
'GVs': sma.select('GVs'),
'NPV': sma.select('NPV'),
'Soil': sma.select('Soil')

}).rename('NDFI');

// Add the NDFI band to the SMA image.
sma = sma.addBands(NDFI);

We will use a color palette that spans from white, to pink (i.e., bare land),
to yellow, to green to visualize the NDFI image. Higher values of NDFI will be
green, while lower values will span the colors of white, pink, and yellow. Copy
the code block below into your Code Editor.

// Define NDFI color table.
var palettes = require(

'projects/gee-edu/book:Part A - Applications/A3 -
Terrestrial Applications/A3.4 Forest Degradation and
Deforestation/modules/palettes'
);

var ndfiColors = palettes.ndfiColors;

Next, we can visualize all the hard work we have done unmixing each
endmember and the NDFI bands (Fig. 49.1).

Create an image visualization object with bands 5, 4, and 3, chosen for visual-
ization along with a min and max. Add the Landsat 5 image to the map using the
image visualization object.

1068 C. Souza Jr. et al.

c) d)

a) b)

e)

Fig. 49.1 Example maps of a green vegetation shade normalized fraction (more vegetation is
whiter); b shade fraction (more shade is whiter); c non-photosynthetic vegetation fraction (more
NPV is whiter); d green vegetation fraction (more vegetation is whiter); e soil fraction (more soil
is whiter)

49 Forest Degradation and Deforestation 1069

Now add each of the SMA bands and the NDFI band to the map. Note: Rather
than defining the min, max, and bands for each of these in separate variables, we
can pass in the object directly to the Map.addLayer function.

var imageVis = {
'bands': ['SR_B5', 'SR_B4', 'SR_B3'],
'min': 0,
'max': 0.4

};

// Add the Landsat color composite to the map.
Map.addLayer(image, imageVis, 'Landsat 5 RGB-543', true);
// Add the fraction images to the map.
Map.addLayer(sma.select('Soil'), {

min: 0,
max: 0.2

}, 'Soil');
Map.addLayer(sma.select('GV'), {

min: 0,
max: 0.6

}, 'GV');
Map.addLayer(sma.select('NPV'), {

min: 0,
max: 0.2

}, 'NPV');
Map.addLayer(sma.select('Shade'), {

min: 0,
max: 0.8

}, 'Shade');
Map.addLayer(sma.select('GVs'), {

min: 0,
max: 0.9

}, 'GVs');
Map.addLayer(sma.select('NDFI'), {

palette: ndfiColors
}, 'NDFI');

The last thing we will do in this section is to create a water and cloud mask.
Water and clouds will have lower NDFI values. While water may not be too
much of an issue, clouds will impact how we monitor forest degradation and loss,
and thus we can simply mask them out. We can mask them using a thresholding
method based on the values of our fraction images.

First, create a new function variable getWaterMask that takes an SMA image
as the only argument.

1070 C. Souza Jr. et al.

Next, create a water mask using threshold values for the shade, GV, and soil
bands, where shade is greater than or equal to 0.65; GV is less than or equal to
0.15; and soil is less than or equal to 0.05.

Now create a cloud mask by applying a threshold of 0.1 or greater to the Cloud
band.

var getWaterMask = function(sma) {
var waterMask = (sma.select('Shade').gte(0.65))

.and(sma.select('GV').lte(0.15))

.and(sma.select('Soil').lte(0.05));
return waterMask.rename('Water');

};

// You can use the variable below to get the cloud mask.
var cloud = sma.select('Cloud').gte(0.1);
var water = getWaterMask(sma);

Next, we will combine the cloud and water masks using the max reducer. Since
we want to mask both water and clouds, using the max works quite nicely here—
as opposed to adding the images together—so we do not need to worry about
overlaps.

Now add the cloud and water mask as a layer to the map.
Apply the cloud and water mask to the NDFI band using the updateMask

function and invert the mask using the not function. Note: updateMask con-
siders zeroes as invalid (i.e., to be masked) and ones as valid (i.e., to be kept).
Since our original mask had values of 1 for cloud and water, we use the not
function to invert the values.

var cloudWaterMask = cloud.max(water);
Map.addLayer(cloudWaterMask.selfMask(),

{
min: 1,
max: 1,
palette: 'blue'

},
'Cloud and water mask');

// Mask NDFI.
var maskedNDFI =
sma.select('NDFI').updateMask(cloudWaterMask.not());
Map.addLayer(maskedNDFI, {

palette: ndfiColors
}, 'NDFI');

49 Forest Degradation and Deforestation 1071

Code Checkpoint A34a. The book’s repository contains a script that shows what
your code should look like at this point.

49.2.2 Section 2: Deforestation and Forest Degradation Change
Detection

To observe changes in the landscape over time, you need to create an NDFI image
for two points in time and then calculate the difference between them. Previous
studies have shown that images should not be more than one year apart because the
forest degradation disturbance quickly disappears with tree foliage and understory
vegetation growth. Changes in NDFI are a good indicator of forest change.

Now we will start using the functions we have built. First, we perform the SMA
on a Landsat 5 image. Recall that the SMA function wants only the visible, near-
infrared, and shortwave infrared bands. When using Landsat 5, those correspond
to bands 1–5 and band 7.

First, create a variable for the Landsat 5 scene specified in the code block
below and select the visible, near-infrared, and shortwave infrared bands. Use
the getSMAFractions function with the Landsat image and the endmembers.
Rename the output SMA bands as GV, NPV, Soil, and Cloud.

// Select two Landsat 5 scenes on which to apply the SMA
model.

// Select Landsat bands used for forest change detection.
var imageTime0 = ee.Image(

'LANDSAT/LT05/C02/T1_L2/LT05_226068_20000509')
.multiply(0.0000275).add(-0.2);

var bands = ['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',
'SR_B7'];
imageTime0 = imageTime0.select(bands);

// Run the SMA model.
var smaTime0 = getSMAFractions(imageTime0, endmembers);

Before we move on to calculate the NDFI, we will add the previous Landsat
scene and the fractional images to the map to inspect them (example results in
Fig. 49.2).

1072 C. Souza Jr. et al.

Fig. 49.2 Example maps of a RGB composite of bands 5–4–3 (green is vegetation and brown is
barren ground); b soil fraction (more soil is whiter); c green vegetation fraction (more vegetation
is whiter); d non-photosynthetic vegetation fraction (more NPV is whiter)

49 Forest Degradation and Deforestation 1073

// Center the image object.
Map.centerObject(imageTime0, 10);

// Define the visualization parameters.
var imageVis = {

'opacity': 1,
'bands': ['SR_B5', 'SR_B4', 'SR_B3'],
'min': 0,
'max': 0.4,
'gamma': 1

};

// Scale to the expected maximum fraction values.
var fractionVis = {

'opacity': 1,
'min': 0.0,
'max': 0.5

};

// Add the Landsat color composite to the map.
Map.addLayer(imageTime0, imageVis, 'Landsat 5 RGB 543',
true);
// Add the fraction images to the map.
Map.addLayer(smaTime0.select('Soil'), fractionVis, 'Soil
Fraction');
Map.addLayer(smaTime0.select('GV'), fractionVis, 'GV
Fraction');
Map.addLayer(smaTime0.select('NPV'), fractionVis, 'NPV
Fraction');

Next, let’s set up a function to systematically reproduce the work we did com-
puting NDFI, since we will need it a couple more times. Hereafter, we will be
able to call that function instead of needing to explicitly write out each step, thus
simplifying our code and making it easier to change if we need to later.

1074 C. Souza Jr. et al.

function getNDFI(smaImage) {
// Calculate the Shade and GV shade-normalized (GVs)

fractions
// from the SMA bands.
var Shade = smaImage.reduce(ee.Reducer.sum())

.subtract(1.0)

.abs()

.rename('Shade');

var GVs = smaImage.select('GV')
.divide(Shade.subtract(1.0).abs())
.rename('GVs');

// Add the new bands to the SMA image variable.
smaImage = smaImage.addBands([Shade, GVs]);

var ndfi = smaImage.expression(
'(GVs - (NPV + Soil)) / (GVs + NPV + Soil)', {

'GVs': smaImage.select('GVs'),
'NPV': smaImage.select('NPV'),
'Soil': smaImage.select('Soil')

}
).rename('NDFI');

return ndfi;
}

Then, calculate NDFI for the earlier Landsat image’s SMA bands (use
smaTime0 as an input) using the getNDFI function you wrote. Add this NDFI
image to the map displayed in the ndfiColors palette (Fig. 49.3). This will
serve as your calculated NDFI for your earlier point in time, the pre-change time
(this time was defined as imageTime0).

// Create the initial NDFI image and add it to the map.
var ndfiTime0 = getNDFI(smaTime0);
Map.addLayer(ndfiTime0,

{
bands: ['NDFI'],
min: -1,
max: 1,
palette: ndfiColors

},
'NDFI t0',
false);

49 Forest Degradation and Deforestation 1075

Fig. 49.3 NDFI image for the previous year obtained from the Landsat 5 (path/row 226/068)
scene acquired on May 9, 2000. Orange colors indicate signs of forest disturbance associated with
fires and selective logging. Pink and white colors are dry vegetation and bare soil in old deforested
areas. Orange colors in pasturelands mean dry vegetation

Next, you will repeat this procedure to calculate the SMA fractions and NDFI
of the second Landsat 5 image (smaTime1). You will utilize the same SMA
method.

First, create a new variable (imageTime1), using the Landsat 5 scene from
the code block below. Note that the band numbers for Landsat 8 are different
from those for Landsat 5. In general, you should always make sure to check band
names when working with multiple Landsat collections. Then, you will calculate
the SMA fractions. The getSMAFractions function will rename the outputs to
“GV”, “NPV”, “Soil”, and “Cloud”. Then, you will calculate NDFI for the new
scene. Add an RGB composite and the NDFI to the map.

1076 C. Souza Jr. et al.

// Select a second Landsat 5 scene on which to apply the
SMA model.
var imageTime1 = ee.Image(

'LANDSAT/LT05/C02/T1_L2/LT05_226068_20010629')
.multiply(0.0000275).add(-0.2)
.select(['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4', 'SR_B5',

'SR_B7']);
var smaTime1 = getSMAFractions(imageTime1, endmembers);
// Create the second NDFI image and add it to the map.
var ndfiTime1 = getNDFI(smaTime1);

Map.addLayer(imageTime1, imageVis, 'Landsat 5 t1 RGB-5',
true);
Map.addLayer(ndfiTime1,

{
bands: ['NDFI'],
min: -1,
max: 1,
palette: ndfiColors

},
'NDFI_t1',
false);

Before looking at changes between the two NDFI images, use the opacity slider
in the Layers panel of the map to manually view the differences between the
NDFI outputs, and then the RGB outputs. Where do you expect to see the greatest
changes between the two?

An easier way to enhance changes using a pair of images is to build a temporal
color composite. To construct a temporal color composite, we add the first image
date to the R color channel and the second to the G and B channels. An example
of RGB color composite (as first described in Chap. 2) is shown in Fig. 49.4, using
the NDFI_t0 (R) and NDFI_t1 (G and B). Deforestation appears in bright red
colors since we assigned the first NDFI image to the R color channel, indicating
forest in the previous year, and removal in the following (i.e., G and B colors
have low NDFI values due to forest removal). In contrast, the cyan colors in the
NDFI temporal color composite indicate vegetation regrowth in the second year.
The gradient of dark to gray colors suggests no change in NDFI between the two
dates.

49 Forest Degradation and Deforestation 1077

Fig. 49.4 Example of NDFI obtained for the first (a) and second (b) Landsat images, and a visual-
ization of them using a temporal RGB color composite (c). Intense red colors are newly deforested
areas, and light red are selectively logged forests. Cyan colors indicate vegetation regrowth in areas
that were logged or burned a year ago or more. Example of NDFI difference histogram (d), with
positive values indicating an increase in NDFI over time and negative values a decrease. Values at
zero suggest no change

1078 C. Souza Jr. et al.

Fig. 49.4 (continued)

49 Forest Degradation and Deforestation 1079

To find the change between our images, a simple difference method can be
applied by subtracting the previous image from the current image. Then, we
can apply an empirically defined threshold to classify the changes based on the
inspection of the histogram and the NDFI temporal color composite. For more
information on two-date differencing, see Chap. 16.

Next, we will combine the two NDFI images for time t0 and t1. Create a new
variable ndfiChange and subtract the current NDFI image (made using Landsat
5 imagery from 2001) from the previous NDFI image (made using Landsat 5
imagery from 2000). Note: The NDFI is calculated using the image expression
method applied to the SMA fraction presented in the code above. We then combine
the two NDFI bands from 2000 and 2001 in one variable to display the change
over time.

// Combine the two NDFI images in a single variable.
var ndfi = ndfiTime0.select('NDFI')

.addBands(ndfiTime1.select('NDFI'))

.rename('NDFI_t0', 'NDFI_t1');

// Calculate the NDFI change.
var ndfiChange = ndfi.select('NDFI_t1')

.subtract(ndfi.select('NDFI_t0'))

.rename('NDFI Change');

Using the polygon drawing tool (as described in Chap. 6), draw a region that
covers most of the ndfiChange image and rename it region in the variable
import panel.

Next, make a histogram named histNDFIChange that bins the
ndfiChange image using the region you just drew, and prints it to the Console.
Optionally, click Run to view the histogram and identify some potential change
thresholds. In your case the histogram may look slightly different.

1080 C. Souza Jr. et al.

var options = {
title: 'NDFI Difference Histogram',
fontSize: 20,
hAxis: {

title: 'Change'
},
vAxis: {

title: 'Frequency'
},
series: {

0: {
color: 'green'

}
}

};

// Inspect the histogram of the NDFI change image to define
threshold
// values for classification. Make the histogram, set the
options.
var histNDFIChange = ui.Chart.image.histogram(

ndfiChange.select('NDFI Change'), region, 30)
.setSeriesNames(['NDFI Change'])
.setOptions(options);

print(histNDFIChange);

Classify the difference image into new deforestation (red), forest degradation
(orange), regrowth (cyan), and forest (green). The classification is based on slicing
the NDFI difference image. Old deforested areas are detected using the NDFI first
image date (t0).

49 Forest Degradation and Deforestation 1081

Add the change classification and difference images to the map and click Run.

// Classify the NDFI difference image based on thresholds
// obtained from its histogram.
var changeClassification = ndfiChange.expression(

'(b(0) >= -0.095 && b(0) <= 0.095) ? 1 :' +
// No forest change
'(b(0) >= -0.250 && b(0) <= -0.095) ? 2 :' + //

Logging
'(b(0) <= -0.250) ? 3 :' + // Deforestation
'(b(0) >= 0.095) ? 4 : 0') // Vegetation regrowth

.updateMask(ndfi.select('NDFI_t0').gt(
0.60)); // mask out no forest

// Use a simple threshold to get forest in the first image
date.
var forest = ndfi.select('NDFI_t0').gt(0.60);

Finally, add code to add all the new layers to the map and click Run.

// Add layers to map
Map.addLayer(ndfi, {

'bands': ['NDFI_t0', 'NDFI_t1', 'NDFI_t1']
}, 'NDFI Change');
Map.addLayer(ndfiChange, {}, 'NDFI Difference');
Map.addLayer(forest, {}, 'Forest t0 ');
Map.addLayer(changeClassification, {

palette: ['000000', '1eaf0c', 'ffc239', 'ff422f',
'74fff9']

},
'Change Classification');

Figure 49.5 shows an example of forest changes between two dates displayed
using the cutoffs defined by the histogram. Categorizing the whole map into a
simple system of no change, old deforestation, new deforestation, partial forest
disturbance, and regrowth makes the forest use patterns in the region clearer. How-
ever, you must be careful with the thresholds you chose from the histogram when
creating and interpreting the NDFI changes in this way, as those values can dras-
tically alter your map. Consider when it might be more appropriate to use an
RGB temporal color composite, and in what situations the classified map using
the empirically defined thresholds would be better.

1082 C. Souza Jr. et al.

Fig. 49.5 Example of the change detection using two NDFI images. Green is remaining forest;
black is old deforestation as detected in the first NDFI image; red highlights new deforestation;
orange shows forest disturbance by logging or fires; and cyan is vegetation regrowth of forest since
the previous date

Code Checkpoint A34b. The book’s repository contains a script that shows what
your code should look like at this point.

Save your script for your own future use, as outlined in Chap. 1. Then, refresh
the page to begin with a new script for the next section.

49.2.3 Section 3: Deforestation and Forest Degradation Time
Series Analysis

To assess deforestation and forest degradation with a time series, we can use a
Google Earth Engine tool called CODED (Bullock et al. 2018, 2020; Bullock
(2018). The algorithm is based on previous work in continuous land cover mon-
itoring (Zhu and Woodcock 2014) and NDFI-based degradation mapping using
spectral unmixing models (Souza et al. 2003, 2005). CODED has both a user
interface application and an API, which can be accessed in the Earth Engine Code
Editor. For this lesson, we will use the API.

Code Checkpoint A34c. The book’s repository contains a script to use to begin
this section. You will need to start with that script and script and paste code below
into it. The checkpoint accesses the modules of the CODED API and support
functions. Note: importing large modules can cause your browser to hang for a
moment while they load.

Detecting degraded forest regions requires knowledge of the characteristics of
the forest of interest when it is in its normal healthy state. Higher NDFI values,

49 Forest Degradation and Deforestation 1083

near 1, typically indicate a healthy forest, but the magnitude range of NDFI for
a healthy forest is dependent on forest density, type of forest ecosystem, and the
seasonality of the area. In order to determine the typical values of NDFI observed
in each forest over time, CODED employs a training period. Within this period,
a regression model, similar to the one initially introduced in Chap. 18, is fitted
for NDFI values for each pixel. The regression model is composed of a constant
for overall NDFI magnitude, a sine and cosine term encapsulating seasonal and
intra-annual variability, and an RMSE to account for noise. In this way, CODED
can find typical temporal patterns in the landscape, account for clouds and sensor
noise, and better distinguish forests from non-forested areas.

The code below sets up the study area, accesses the Landsat collection to be
used, and defines the study period. For this example, we will use the geome-
try of the previous Landsat scene as our study area. Then, we define a new
variable studyArea and assign it to the image we used when first exploring
NDFI, retrieving its geometry using the geometry method. Then, we use the
utils module to call the Inputs.getLandsat function, which accesses the
ImageCollection. We then filter the images to a start date and end date of
interest. Note: CODED calibrates to find the typical variations in NDFI for the
region by observing the NDFI patterns over time, so it is a good idea to filter the
Landsat data so you have an extra six months to a year of data before the time
period in which you are truly interested. For example, if you wanted to study for-
est change from 2000 to 2010, it would be good practice to use 1999 as the start
date and 2010 as the end date. Paste the code below into your starter script you
opened to begin this section.

// We will use the geometry of the image from the previous
section as
// the study area.
var studyArea = ee.Image(

'LANDSAT/LT05/C02/T1_L2/LT05_226068_19840411')
.geometry();

// Get cloud masked (Fmask) Landsat imagery.
var landsat = utils.Inputs.getLandsat()

.filterBounds(studyArea)

.filterDate('1984-01-01', '2021-01-01');

Getting our ImageCollection this way saves us quite a bit of coding. By
default the returned collection will use every available Landsat mission, perform
some simple cloud masking, and generate our image fractions of green vegeta-
tion (GV), soil, non-photosynthetic vegetation (NPV), shade-covered material, and
NDFI, as well as additional indices.

First, make a new variable gfwImage and add the path to the Global Forest
Change product from Hansen et al. (2013), which is used to create a forest mask.

1084 C. Souza Jr. et al.

Define a threshold of 40 for the percent canopy cover for the mask. Apply the
threshold to the treecover2000 band from the gfwImage. You could also
choose to use a pre-prepared forest mask of your own instead of selecting one from
the Global Forest Change product. This might be useful if you have a local high-
quality forest mask, as it may slightly improve your results or provide consistency
with other work you have done in the area.

// Make a forest mask
var gfwImage =
ee.Image('UMD/hansen/global_forest_change_2019_v1_7');

// Get areas of forest cover above the threshold
var treeCover = 40;
var forestMask = gfwImage.select('treecover2000')

.gte(treeCover)

.rename('landcover');

To identify degradation and deforestation, distinguished by whether the land
cover remains forest or not after the event, we will use a prepared dataset of
forest and non-forested areas. This data already has the predictor data for each
feature, which will speed up the computation. Alternatively, refer back to Chap. 6
on classification for details on how to create your own unique forest and non-
forested area dataset and ensure each feature has a year property with the year
collected as an integer.

var samples = ee.FeatureCollection(
'projects/gee-book/assets/A3-

4/sample_with_pred_hansen_2010');

There are many parameters that can be adjusted when running CODED, as
summarized below.

• minObservations: The minimum number of consecutive observations
required to label a disturbance event.

• chiSquareProbability: The chi-squared probability is a threshold that
controls the sensitivity to change.

• training: A training dataset used to specify forest and non-forest. In this
example, we will set it to the combination of the forest and non-forest training
points using the merge function.

• forestValue: The integer value of forest in your training data.
• startYear, endYear: The start and end years to perform change detection.
• classBands: The bands used to train the coefficients.

49 Forest Degradation and Deforestation 1085

• Note: prepTraining tells the algorithm to add the coefficients to your sam-
ples for training the classifier. This will initiate a task to export the prepared
samples for later use if you wish. In this example, we will set it to false.

var minObservations = 4;
var chiSquareProbability = 0.97;
var training = samples;
var forestValue = 1;
var startYear = 1990;
var endYear = 2020;
var classBands = ['NDFI', 'GV', 'Shade', 'NPV', 'Soil'];
var prepTraining = false;

With the parameters defined, we now have everything needed to run CODED.
CODED takes a single argument, which is stored as a JavaScript dictionary. Since
we defined all the parameters as variables, it may seem redundant to put them into
a dictionary, but having them as variables can be helpful when you are exploring
functionality and adjusting parameter values frequently. Of course, entering the
values directly into the dictionary would work as well.

Create a new dictionary and assign each parameter variable to a key of the same
name.

//---------------- CODED parameters
var codedParams = {

minObservations: minObservations,
chiSquareProbability: chiSquareProbability,
training: training,
studyArea: studyArea,
forestValue: forestValue,
forestMask: forestMask,
classBands: classBands,
collection: landsat,
startYear: startYear,
endYear: endYear,
prepTraining: prepTraining

};

// -------------- Run CODED
var results = api.ChangeDetection.coded(codedParams);
print(results);

Run CODED by clicking Run. This will set up the run, and issue the call to
the ChangeDetection.coded function (Fig. 49.6).

1086 C. Souza Jr. et al.

Fig. 49.6 The result of running the CODED change detection algorithm is an object with the
general and change parameters used for the run and a layers object that has all the image outputs

Code Checkpoint A34d. The book’s repository contains a script that shows what
your code should look like at this point.

Next, you will relabel some of the results so that they are easier to understand
and work with. You will rename the degradation layers to something more human
readable, like ‘degradation_1’, ‘degradation_2’, etc. Rename the deforestation lay-
ers to something more human readable, like ‘deforestation_1’, ‘deforestation_2’,
etc.

Set a variable for the mask layer. This is the same mask that was passed into
CODED, so retrieving it in this method is not strictly necessary.

Set a variable for the change output that is the concatenation of the degrada-
tion and deforestation outputs. This is mostly for organizational purposes. Since
change is more rare, self-masking removes all the non-change pixels, and casting
to Int32 helps keep all the bands in the same type, which you would need for
exporting to a geoTIFF.

Set a variable mag to the minimum magnitude. There are multiple magnitude
bands that correspond to the number of temporal segments that are retrieved when
running CODED. These bands are reduced by the minimum since we want to find
areas where the greatest negative change has occurred.

// Format the results for exporting.
var degradation = results.Layers.DatesOfDegradation

.rename(['degradation_1', 'degradation_2',
'degradation_3', 'degradation_4'

]);
var deforestation = results.Layers.DatesOfDeforestation

.rename(['deforestation_1', 'deforestation_2',
'deforestation_3', 'deforestation_4'

]);
var mask = results.Layers.mask.rename('mask');
var change = ee.Image.cat([degradation,
deforestation]).selfMask()

.toInt32();
var mag = results.Layers.magnitude.reduce(ee.Reducer.min())

.rename('magnitude');

49 Forest Degradation and Deforestation 1087

Finally, we can combine all of this information into a stratified—or classified—
output layer of forest, non-forest, degradation, and deforestation. We can define
a function to take in each of the outputs and apply some logic to decide these
categories. A new threshold we need to apply is the magnitude, magThreshold.
This threshold will define the minimum amount of change we want to qualify as a
degradation or deforestation event. This is a post-processing step in which we will
stratify the results into categories of stable forest, stable non-forest, degradation,
and deforestation.

Next, you will create a new function named makeStrata that takes an image
and a threshold as the arguments. The base of the stratified image will be the mask
which is remapped from [0, 1] to [2, 1]. This keeps the forest class at a value of 1
and updates the non-forest class to a value of 2.

Then, you will create a binary mask of the minimum threshold using the mag-
nitude threshold parameter. Then, create a binary degradation image using all the
degradation bands, and then multiply it by the magnitude mask. Similarly, you’ll
create a binary deforestation image using all the deforestation bands and then
multiply it by the magnitude mask. Update the strata image using the where
functions to first assign degradation to 3 and next to assign deforestation to 4. The
where functions are applied sequentially. Deforestation needs to be updated last,
because in this case, areas of degradation could overlap with areas that are also
deforestation.

var makeStrata = function(img, magThreshold) {
var strata = img.select('mask').remap([0, 1], [2, 1]);
var mag = img.select('magnitude').lte(magThreshold);

var deg =
img.select(['deg.*']).gt(0).reduce(ee.Reducer.max())

.multiply(mag);
var def =

img.select(['def.*']).gt(0).reduce(ee.Reducer.max())
.multiply(mag);

strata = strata.where(deg, 3).where(def, 4);

return strata.clip(studyArea);
};

Concatenate the mask, change, and mag bands into a single image. Define a
magnitude threshold of − 0.6. Apply the makeStrata function using the full
output image and the magnitude threshold. Then, add code to export the strata to
your assets.

1088 C. Souza Jr. et al.

var fullOutput = ee.Image.cat([mask, change, mag]);
var magnitudeThresh = -0.6;
var strata = makeStrata(ee.Image(fullOutput),
magnitudeThresh)

.rename('strata');

Export.image.toAsset({
image: strata,
description: 'strata',
region: studyArea,
scale: 30,
maxPixels: 1e13,

});

Click Run. The CODED algorithm is computationally heavy, so the results
need to be exported before they can be viewed on the map in the Code Editor.
Once the export has finished, you can add the layer to the map. We have created
the asset for you and stored it in the book repository; you can access it with the
code below:

var exportedStrata = ee.Image('projects/gee-book/assets/A3-
4/strata');
Map.addLayer(exportedStrata,

{
min: 1,
max: 4,
palette: 'green,black,yellow,red'

},
'strata');

Map.setCenter(-55.0828, -11.24, 11);

The resulting map should look something like the example in Fig. 49.7. With
these stratified results, you can see the relative amounts and geographic distribution
of forest that have been degraded or deforested in your time period of interest.
What patterns do you observe? Does forest degradation or deforestation seem more
prevalent?

Code Checkpoint A34e. The book’s repository contains a script that shows what
your code should look like at this point.

49 Forest Degradation and Deforestation 1089

Fig. 49.7 Example of classified CODED results for 1990–2020. Non-forested areas are black,
stable forest areas are green, deforestation is red, and degradation is yellow

49.3 Synthesis

Assignment 1. Study how adjusting each parameter affects your results.

a. When you decrease the chi-squared probability, do you see more or less
deforestation, and more or less degradation?

b. When you decrease the magnitude threshold, do you see more or less defor-
estation, and more or less degradation?

c. When you decrease the number of observations, do you see more or less
deforestation, and more or less degradation?

Assignment 2. Try adjusting the CODED parameters to see how they affect the
detection of degradation and deforestation in a study area where you highly suspect
from the imagery that these events have occurred. Observe in the map whether you
are overestimating or underestimating the disturbed forest area with each parameter
combination.

49.4 Conclusion

In this chapter, you learned about the spectral unmixing algorithm (SMA) and the
Normalized Difference Fraction Index (NDFI) in order to map forest degradation
and deforestation. We presented two examples of change detection applications:
two-image differencing and an NDFI time-series approach using the CODED algo-
rithm. NDFI is sensitive to subtle changes in forest composition, making it ideal
for detection of forest degradation. CODED’s use of a regression model fitting of

1090 C. Souza Jr. et al.

NDFI over a training period informs us more about what the NDFI magnitudes
and variability of a forest should be in a healthy state, so changes from the norm
can be more confidently labeled as forest disturbance events. However, your cho-
sen CODED parameters have an important impact on your resulting map of forest
loss and forest degradation.

References

Adams JB, Sabol DE, Kapos V et al (1995) Classification of multispectral images based on frac-
tions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens
Environ 52:137–154. https://doi.org/10.1016/0034-4257(94)00098-8

Aryal RR, Wespestad C, Kennedy RE et al (2021) Lessons learned while implementing a time-
series approach to forest canopy disturbance detection in Nepal. Remote Sens 13:2666. https://
doi.org/10.3390/rs13142666

Asner GP, Keller M, Pereira R, Zweede JC (2002) Remote sensing of selective logging in Ama-
zonia: assessing limitations based on detailed field observations, Landsat ETM+, and textural
analysis. Remote Sens Environ 80:483–496. https://doi.org/10.1016/S0034-4257(01)00326-1

Asner GP, Keller M, Pereira R et al (2004) Canopy damage and recovery after selective logging in
Amazonia: field and satellite studies. Ecol Appl 14:280–298. https://doi.org/10.1890/01-6019

Bullock E (2018) Background and motivation—CODED 0.2 documentation. https://coded.readth
edocs.io/en/latest/background.html. Accessed 28 May 2021

Bullock E, Nolte C, Reboredo Segovia A (2018) Project impact assessment on deforestation and
forest degradation: forest disturbance dataset, pp 1–44

Bullock EL, Woodcock CE, Souza C, Olofsson P (2020) Satellite-based estimates reveal
widespread forest degradation in the Amazon. Glob Change Biol 26:2956–2969. https://doi.
org/10.1111/gcb.15029

Cochrane MA (1998) Linear mixture model classification of burned forests in the Eastern Amazon.
Int J Remote Sens 19:3433–3440. https://doi.org/10.1080/014311698214109

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest
cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693

Hirschmugl M, Steinegger M, Gallaun H, Schardt M (2013) Mapping forest degradation due to
selective logging by means of time series analysis: case studies in Central Africa. Remote Sens
6:756–775. https://doi.org/10.3390/rs6010756

Kusbach A, Friedl M, Zouhar V et al (2017) Assessing forest classification in a landscape-level
framework: an example from Central European forests. Forests 8:461. https://doi.org/10.3390/
f8120461

Matricardi EAT, Skole DL, Cochrane MA et al (2007) Multi-temporal assessment of selective log-
ging in the Brazilian Amazon using Landsat data. Int J Remote Sens 28:63–82. https://doi.org/
10.1080/01431160600763014

Schultz M, Clevers JGPW, Carter S et al (2016) Performance of vegetation indices from Landsat
time series in deforestation monitoring. Int J Appl Earth Obs Geoinf 52:318–327. https://doi.
org/10.1016/j.jag.2016.06.020

Small C (2004) The Landsat ETM+ spectral mixing space. Remote Sens Environ 93:1–17. https://
doi.org/10.1016/j.rse.2004.06.007

Souza CM Jr, Barreto P (2000) An alternative approach for detecting and monitoring selectively
logged forests in the Amazon. Int J Remote Sens 21:173–179. https://doi.org/10.1080/014311
600211064

Souza CM Jr, Firestone L, Silva LM, Roberts D (2003) Mapping forest degradation in the Eastern
Amazon from SPOT 4 through spectral mixture models. Remote Sens Environ 87:494–506.
https://doi.org/10.1016/j.rse.2002.08.002

https://doi.org/10.1016/0034-4257(94)00098-8
https://doi.org/10.3390/rs13142666
https://doi.org/10.3390/rs13142666
https://doi.org/10.1016/S0034-4257(01)00326-1
https://doi.org/10.1890/01-6019
https://coded.readthedocs.io/en/latest/background.html
https://coded.readthedocs.io/en/latest/background.html
https://doi.org/10.1111/gcb.15029
https://doi.org/10.1111/gcb.15029
https://doi.org/10.1080/014311698214109
https://doi.org/10.1126/science.1244693
https://doi.org/10.3390/rs6010756
https://doi.org/10.3390/f8120461
https://doi.org/10.3390/f8120461
https://doi.org/10.1080/01431160600763014
https://doi.org/10.1080/01431160600763014
https://doi.org/10.1016/j.jag.2016.06.020
https://doi.org/10.1016/j.jag.2016.06.020
https://doi.org/10.1016/j.rse.2004.06.007
https://doi.org/10.1016/j.rse.2004.06.007
https://doi.org/10.1080/014311600211064
https://doi.org/10.1080/014311600211064
https://doi.org/10.1016/j.rse.2002.08.002

49 Forest Degradation and Deforestation 1091

Souza CM Jr, Roberts DA, Cochrane MA (2005) Combining spectral and spatial information to
map canopy damage from selective logging and forest fires. Remote Sens Environ 98:329–343.
https://doi.org/10.1016/j.rse.2005.07.013

Woodcock CE, Loveland TR, Herold M, Bauer ME (2020) Transitioning from change detection to
monitoring with remote sensing: a paradigm shift. Remote Sens Environ 238:111558. https://
doi.org/10.1016/j.rse.2019.111558

Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using all
available Landsat data. Remote Sens Environ 144:152–171. https://doi.org/10.1016/j.rse.2014.
01.011

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.rse.2005.07.013
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2019.111558
https://doi.org/10.1016/j.rse.2014.01.011
https://doi.org/10.1016/j.rse.2014.01.011
http://creativecommons.org/licenses/by/4.0/

50Deforestation Viewed from Multiple
Sensors

Xiaojing Tang

Overview
Combining data from multiple sensors is the best way to increase data density and
hence detect change faster. The purpose of this chapter is to demonstrate a simple
method of combining Landsat, Sentinel-2, and Sentinel-1 data for monitoring tropical
forest disturbance. You will learn how to import, preprocess, and fuse optical and
synthetic aperture radar (SAR) remote sensing data. You will also learn how to
monitor change using time-series models.

Learning Outcomes

• Combining optical and SAR images for change detection.
• Fitting a time-series model to an ImageCollection.
• Using established time-series models to detect anomalies in new images.
• Performing change detection with a rolling monitoring window.
• Monitoring forest disturbance in near real time.

Helps if you know how to

• Understand the characteristics and preprocessing of Landsat and Sentinel
images (Part I).

• Understand regressions in Earth Engine (Chap. 8).
• Work with array images (Chaps. 9 and 18).
• Understand the concept of spectral unmixing (Chap. 10).
• Write a function and map it over an ImageCollection (Chap. 12).

X. Tang (B)
James Madison University, Harrisonburg, VA, USA
e-mail: tang3xx@jmu.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_50

1093

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_50&domain=pdf
http://orcid.org/0000-0002-2834-6105
mailto:tang3xx@jmu.edu
https://doi.org/10.1007/978-3-031-26588-4_50

1094 X. Tang

• Fit linear and nonlinear functions with regression in an ImageCollection
time series (Chap. 18).

• Export and import results as Earth Engine assets (Chap. 22).

50.1 Introduction to Theory

Deforestation and forest degradation are large sources of carbon emissions and
negatively impact biodiversity, food security, and human well-being. The ability to
quickly and accurately detect forest disturbance events is essential for preventing
future forest loss and mitigating the negative effects. Combining optical and radar
data has the potential to achieve faster detection of forest disturbance than using an
individual system. The main challenge is the methodological approach for fusing
the different datasets. The Fusion Near Real-Time (FNRT) algorithm (Tang et al.
2023) is a monitoring algorithm for tropical forest disturbance that combines data
from Landsat, Sentinel-2, and Sentinel-1. For each sensor system, the FNRT algo-
rithm fits time-series models over data from a three-year training period prior to
the one-year monitoring period. FNRT then produces a change score for each new
observation collected during the monitoring period based on the residuals and the
root-mean-square error (RMSE) of the time-series model. The change scores from
all three different sensors are then combined to form one dense time series for
change detection. In this chapter, we will learn how to run a simplified version of
FNRT to monitor forest disturbance in 2020 for a test area located in the Brazilian
Amazon.

50.2 Practicum

This lab is designed for advanced users of Earth Engine. We assume that you
already know how to import and preprocess large quantities of Landsat, Sentinel-2,
and Sentinel-1 data as image collections. The code for importing and preprocessing
input data will be provided in the example script, but it will not be discussed in
detail in this chapter. To learn more about FNRT, refer to Tang et al. (2023).

50.2.1 Section 1: Understand How FNRT Works

For this lab, we will use a graphical user interface to help us understand con-
ceptually how FNRT combines data from different sensors and detects forest
disturbance. Figure 50.1 shows the user interface of the app.

Code Checkpoint A35a. The book’s repository contains information about access-
ing the app.

50 Deforestation Viewed from Multiple Sensors 1095

Fig. 50.1 User interface of FNRT app. The red box highlights a test site selected for demonstra-
tion of the algorithm. At the bottom left is a panel for showing plots of time-series data and model
fit. The control menu is at the bottom right

There are three main tools that can be used to explore the FNRT algorithm.
Note that only one plotting tool can be activated at a time, and each tool can be
deactivated by clicking the button again:

1. The Fit button activates the “fit time-series model” tool, which allows users to
click anywhere in the map area, load the time-series data, and fit a harmonic
model for the pixel covering the clicked location, using data from the sensor
selected in the widget just to the right of the Fit button.

2. The Monitor button activates the “near real-time monitoring” tool, which
allows users to click anywhere in the map area and plot the results of FNRT
for the pixel covering the clicked location, using data from all the sensors that
were checked via the checkbox widgets to the right of the Monitor button.

3. The Run button runs FNRT for the entire test area using data from the sensors
that are checked and loads the resulting forest disturbance map to the map area.

Let’s start by looking at some examples of time series so we have a better under-
standing of the model. We first need to know where to look for changes. Let’s try
to have only “Landsat” checked, and click Run. This will run FNRT with only
Landsat data and quickly produce a forest disturbance map for 2020 (Fig. 50.2a).
Now, click Fit to activate the “Fit time-series model” tool, and then click on a
pixel that shows forest disturbance activity according to the map. Wait a few sec-
onds to let the app generate the time-series plot in the time-series panel. Once it
is completed, you should see a plot similar to Fig. 50.2c.

1096 X. Tang

Fig. 50.2 a Forest disturbance map of 2020 for the test area created using Landsat data only; b
Landsat images before and after the forest disturbance; c time series of Landsat NDFI and model
fit; and d time series of change scores and change detection result

The model-fit plot (Fig. 50.2c) shows data from Landsat for the training period
(blue) and monitoring period (red). It also shows a harmonic time-series model fit
to the training data (orange line). The model fit extends into the monitoring period,
which represents the model prediction. Notice that the satellite observations (red
points) are very close to the model fit before the forest disturbance occurs. After
the disturbance, the observations deviate away from the model fit. The algorithm
monitors change by keeping track of differences between the observations and the
model predictions.

50 Deforestation Viewed from Multiple Sensors 1097

Now click Monitor to activate the “near real-time monitoring” tool, and click
the same pixel in the map. The app will then make a plot similar to (d) in Fig. 50.2.
The near real-time monitoring plot (Fig. 50.2d) shows the change scores (Z-score)
for the training and the monitoring period. A large change score indicates that
something looks different in the satellite image. But sometimes that can be caused
by a cloud or a cloud shadow that slipped through the masking process (e.g., the
large change scores in the training period). Therefore, the monitoring algorithm
looks for multiple large scores within a short monitoring window as an indicator
of real forest disturbance.

The monitoring algorithm works through all the observations available during
the monitoring period chronologically. Using baseball as an analogy, we flag each
change score above a threshold as a “strike” and each change score below the
threshold as a “ball.” If the algorithm finds multiple strikes in a short monitoring
window, a “strikeout” would then be called on the pixel and the date of the first
strike would be recorded as the date of change (Fig. 50.2d).

Question 1. How many strikes were detected before a forest disturbance was
confirmed (strikeout)?

When performing multi-sensor data fusion, FNRT would fit a separate time-
series model and calculate change scores using data from each sensor (Fig. 50.3a–
c). The change scores calculated using data from the three sensors are then
combined, and change monitoring is applied to the combined scores (Fig. 50.4d).

The FNRT app also allows us to run change monitoring for the entire test area
by clicking the Run button. A forest disturbance map showing the date of the
disturbances is then added to the map. The users can use the checkbox widgets
to choose which data stream is included in the process of making the map (e.g.,
Fig. 50.4). In general, optical data is more sensitive to forest disturbance than
SAR data. Combining multiple data streams can help detect the disturbance earlier,
compared to using data from each individual sensor.

Question 2. Can you find forest disturbances that were detected earlier through
the use of data from all three sensors rather than using just Landsat data?

Now that we understand conceptually how FNRT works, let’s create a simple
script to implement it.

1098 X. Tang

Fig. 50.3 Time-series data and model fit using a Landsat, b Sentinel-2, and c Sentinel-1 data; d
shows the combined time series of change scores from all three sensors, and the change detection
result

50.2.2 Section 2: Define Study Area and Model Parameters

50.2.2.1 Section 2.1: Study Area
There are several ways to define a study area: (1) import an existing
FeatureCollection from an Earth Engine asset; (2) use the drawing tool
of the Code Editor; and (3) create a polygon by entering the coordinates. Here, we
select a box, approximately 20 km by 20 km, located in the Brazilian Amazon as
our study area.

50 Deforestation Viewed from Multiple Sensors 1099

Fig. 50.4 Forest disturbance map made using data from a Landsat, b Sentinel-2, c Sentinel-1, and
d all three sensors

var testArea = ee.Geometry.Polygon(
[

[
[-66.73156878460787, -8.662236005089952],
[-66.73156878460787, -8.916025640576244],
[-66.44867083538912, -8.916025640576244],
[-66.44867083538912, -8.662236005089952]

]
]);

Map.centerObject(testArea);

1100 X. Tang

Note that because of the complexity of the FNRT algorithm, it requires quite a
lot of computational resources and can result in a “User Memory Limit” error if
applied to too large of an area. Divide the study area into multiple tiles if you are
trying to monitor a large area.

50.2.2.2 Section 2.2: Model Parameters
A few model parameters need to be defined and can be tuned to optimize the
algorithm for specific regions or monitoring conditions.

// Start and end of the training and monitoring period.
var trainPeriod = ee.Dictionary({

'start': '2017-01-01',
'end': '2020-01-01'

});
var monitorPeriod = ee.Dictionary({

'start': '2020-01-01',
'end': '2021-01-01'

});

// Near-real-time monitoring parameters.
var nrtParam = {

z: 2,
m: 5,
n: 4

};

// Sensor specific parameters.
var lstParam = {

band: 'NDFI',
minRMSE: 0.05,
strikeOnly: false

};
var s2Param = {

band: 'NDFI',
minRMSE: 0.05,
strikeOnly: false

};
var s1Param = {

band: 'VV',
minRMSE: 0.01,
strikeOnly: true

};

50 Deforestation Viewed from Multiple Sensors 1101

For demonstration of the algorithm, we define the year 2020 as our monitoring
period (monitorPeriod). We then recommend using the three years prior to the
monitoring period as the training period (trainPeriod) to establish baseline
time-series models.

A few parameters can be used to control the sensitivity of the algorithm: a z-
threshold (z) defines the minimum change score required to flag a possible change
observation; an m-size (m) defines the size of the monitoring window, or how many
consecutive observations we check for change; and an n-change (n) defines the
number of possible change observations within the monitoring window required
to confirm a forest disturbance.

For each sensor, we also need to select the band (band) to use for monitoring;
a minimum RMSE (minRMSE) to prevent overly sensitive detection caused by
unusually good model fit; and a strike-only flag (strikeOnly) to allow a data
stream to contribute only to confirmation of a change.

Code Checkpoint A35b. The book’s repository contains a script that shows what
your code should look like at this point.

50.2.3 Section 3: Import and Preprocess Data

We need to import data from each sensor for the training period and the monitoring
period as two separate image collections. Each image in the ImageCollection
needs to be preprocessed. For optical data, we need to apply spectral unmixing and
calculate the Normalized Difference Fraction Index (NDFI) (Souza et al. 2005).
Since spectral unmixing would be applied to both Landsat and Sentinel-2 data,
let’s first implement a common “unmixing” function.

Several studies (e.g., Bullock et al. 2020; Chen et al. 2021) have shown that
spectral unmixing and NDFI work very well in detecting tropical forest distur-
bance. Here, we use the same endmembers used in Souza et al. (2005) for the
spectral unmixing and calculate NDFI based on Eqs. 4 and 5 in Souza et al. (2005).

1102 X. Tang

var unmixing = function(col) {

// Define endmembers and cloud fraction threshold.
var gv = [500, 900, 400, 6100, 3000, 1000];
var npv = [1400, 1700, 2200, 3000, 5500, 3000];
var soil = [2000, 3000, 3400, 5800, 6000, 5800];
var shade = [0, 0, 0, 0, 0, 0];
var cloud = [9000, 9600, 8000, 7800, 7200, 6500];
var cfThreshold = 0.05;

return col.map(function(img) {
// Select the spectral bands and perform unmixing
var unmixed = img.select(['Blue', 'Green', 'Red',

'NIR',
'SWIR1', 'SWIR2'

])
.unmix([gv, shade, npv, soil, cloud], true,

true)
.rename(['GV', 'Shade', 'NPV', 'Soil',

'Cloud'
]);

// Calculate Normalized Difference Fraction Index.+
var NDFI = unmixed.expression(

'10000 * ((GV / (1 - SHADE)) - (NPV + SOIL)) /
' +

'((GV / (1 - SHADE)) + (NPV + SOIL))', {
'GV': unmixed.select('GV'),
'SHADE': unmixed.select('Shade'),
'NPV': unmixed.select('NPV'),
'SOIL': unmixed.select('Soil')

}).rename('NDFI');

// Mask cloudy pixel.
var maskCloud = unmixed.select('Cloud').lt(

cfThreshold);
// Mask all shade pixel.
var maskShade = unmixed.select('Shade').lt(1);
// Mask pixel where NDFI cannot be calculated.
var maskNDFI = unmixed.expression(

'(GV / (1 - SHADE)) + (NPV + SOIL)', {
'GV': unmixed.select('GV'),
'SHADE': unmixed.select('Shade'),
'NPV': unmixed.select('NPV'),
'SOIL': unmixed.select('Soil')

}).gt(0);

50 Deforestation Viewed from Multiple Sensors 1103

// Scale fractions to 0-10000 and apply masks.
return img

.addBands(unmixed.select(['GV', 'Shade',
'NPV', 'Soil'

])
.multiply(10000))

.addBands(NDFI)

.updateMask(maskCloud)

.updateMask(maskNDFI)

.updateMask(maskShade);
});

};

For Landsat data, we need to load the Landsat 7 and Landsat 8 Surface
Reflectance product as an ImageCollection. We can filter the collection based
on our study area and time period. Each image in the ImageCollection is
masked based on the QA band; then spectral unmixing is applied and NDFI
calculated. The loadLandsatData function is provided for importing and
preprocessing Landsat data.

Preprocessing of Sentinel-2 data is similar to that of Landsat data because they
are both optical remote sensing data and are almost identical in many ways. We
need to load the Sentinel-2 top-of-atmosphere product (surface reflectance data
do not have long enough time series for our purpose) and the Sentinel-2 cloud
probability product as image collections, and filter based on our study area and
time period. We then join the two collections. Each image in the collection is then
masked based on both the QA band and the cloud probability.

For Sentinel-1 data, we use the Sentinel-1 SAR GRD product. Preprocessing of
Sentinel-1 data includes: (1) calculation of backscattering; (2) calculation of the
ratio of VH and VV; (3) calculation of three-pixel spatial mean; (4) choice of the
orbital pass with the most data for the region of interest; and (5) radiometric slope
correction using volume model. Please refer to Mullissa et al. (2021) for more
detail on the preprocessing of SAR data.

Here, we assume you have already learned how to load and preprocess large
quantities of Landsat, Sentinel-2, and Sentinel-1 data. We will not discuss these
steps in detail here in this lab. Instead, three functions (loadLandsatData,
loadS2Data, and loadS1Data) are provided in a separate script with which
we can import using the require function. Now, we can load all the required
input data. We also need to apply the spectral unmixing and calculate NDFI for
the Landsat and Sentinel-2 data.

1104 X. Tang

var input = require(
'projects/gee-edu/book:Part A - Applications/A3 -

Terrestrial Applications/A3.5 Deforestation Viewed from
Multiple Sensors/modules/Inputs'
);
var lstTraining = unmixing(input.loadLandsatData(testArea,

trainPeriod));
var lstMonitoring =
unmixing(input.loadLandsatData(testArea,

monitorPeriod));
var s2Training = unmixing(input.loadS2Data(testArea,
trainPeriod));
var s2Monitoring = unmixing(input.loadS2Data(testArea,

monitorPeriod));
var s1Training = input.loadS1Data(testArea, trainPeriod);
var s1Monitoring = input.loadS1Data(testArea,
monitorPeriod);

In addition to the remote sensing data, we also need to create a forest mask to
limit our monitoring to forested areas. Here, we will use the Hansen Global Forest
Change dataset. We first use the “tree canopy cover” layer to find areas that had
larger than 50% canopy cover in 2000. We then remove all the forest loss area
during 2001–2019 and add in all the forest gain from 2000 to 2012 to create a
mask of forested area by the beginning of our monitoring period.

var hansen =
ee.Image('UMD/hansen/global_forest_change_2020_v1_8')

.unmask();
var forestMask = hansen.select('treecover2000')

.gt(50)

.add(hansen.select('gain'))

.subtract(hansen.select('loss'))

.add(hansen.select('lossyear')
.eq(20))

.gt(0)

.clip(testArea);

Before we move on to the next section, let’s do some simple checking. Print
out the image collections and check whether the correct data is loaded. You can
also load the forest mask and visually examine the quality of the mask.

50 Deforestation Viewed from Multiple Sensors 1105

var maskVis = {
min: 0,
max: 1,
palette: ['blue', 'green']

};
Map.addLayer(forestMask, maskVis, 'Forest Mask');
print('lstTraining', lstTraining);
print('lstMonitoring', lstMonitoring);
print('s2Training', s2Training);
print('s2Monitoring', s2Monitoring);
print('s1Training', s1Training);
print('s1Monitoring', s1Monitoring);

Question 3. How many images are available from each sensor for our monitoring
period? Are you surprised by the numbers? (Note that one sensor may have more
data because the study area happened to be in the side-lap zone where two orbit
passes overlap.) What bands are included in the data of each sensor?

Code Checkpoint A35c. The book’s repository contains a script that shows what
your code should look like at this point.

50.2.4 Section 4: Establish Baseline Time-Series Model

Before we can monitor change in near real time, we need to establish baseline
time-series models using the data of the training period, so that we know what
to expect from new observations in the monitoring period. Due to the different
physical nature of optical and radar data, it is easier to fit a separate time-series
model to data from each sensor. Here, we use a harmonic time-series model similar
to the one used in the Continuous Change Detection and Classification (CCDC)
algorithm (Zhu and Woodcock 2014). Because the timestamps of all the input
images are stored in the unit of milliseconds while the harmonic model prefers a
unit of years, we first need to define a function to convert any date object into the
unit of fractional year (e.g., 2015-03-01 to 2015.1612).

var toFracYear = function(date) {
var year = date.get('year');
var fYear = date.difference(

ee.Date.fromYMD(year, 1, 1), 'year');
return year.add(fYear);

};

1106 X. Tang

Here, we define a function (fitHarmonicMode) to fit a harmonic model
to an ImageCollection of time-series data. We first construct the dependent
variables according to Eq. 1 in Zhu and Woodcock (2014) and add them to each of
the input images as new bands (using addDependents function). Then, we use
a reducer (ee.Reducer.robustLinearRegression) to fit the model to the
data using robust linear regression. The function returns the model coefficients and
the model RMSE.

var fitHarmonicModel = function(col, band) {
// Function to add dependent variables to an image.
var addDependents = function(img) {

// Transform time variable to fractional year.
var t = ee.Number(toFracYear(

ee.Date(img.get('system:time_start')), 1));
var omega = 2.0 * Math.PI;
// Construct dependent variables image.
var dependents = ee.Image.constant([

1, t,
t.multiply(omega).cos(),
t.multiply(omega).sin(),
t.multiply(omega * 2).cos(),
t.multiply(omega * 2).sin(),
t.multiply(omega * 3).cos(),
t.multiply(omega * 3).sin()

])
.float()
.rename(['INTP', 'SLP', 'COS', 'SIN',

'COS2', 'SIN2', 'COS3', 'SIN3'
]);

return img.addBands(dependents);
};

50 Deforestation Viewed from Multiple Sensors 1107

// Function to add dependent variable images to a ll
images.

var prepareData = function(col, band) {
return ee.ImageCollection(col.map(function(img) {

return addDependents(img.select(band))
.select(['INTP', 'SLP', 'COS',

'SIN',
'COS2', 'SIN2', 'COS3',
'SIN3',
band

])
.updateMask(img.select(band)

.mask());
}));

};

var col2 = prepareData(col, band);
// Fit model to data using robust linear regression.// Fit model to data using robust linear regression.
var ccd = col2

.reduce(ee.Reducer.robustLinearRegression(8, 1), 4)

.rename([band + '_coefs', band + '_rmse']);

// Return model coefficients and model rmse.
return ccd.select(band + '_coefs').arrayTranspose()

.addBands(ccd.select(band + '_rmse'));
};

With this function (fitHarmonicModel), we can fit the harmonic time-
series model to the training data of all three sensors. It is always a good practice
to also add some metadata to the results for future reference. The model fitting
process will take a few minutes and quite a lot of computer memory. Therefore,
it is recommended that we run them as tasks and save the results as assets before
we proceed to the next step.

1108 X. Tang

// Fit harmonic models to training data of all sensors.
var lstModel = fitHarmonicModel(lstTraining, lstParam.band)

.set({
region: 'test',
sensor: 'Landsat'

});
var s2Model = fitHarmonicModel(s2Training, s2Param.band)

.set({
region: 'test',
sensor: 'Sentinel-2'

});
var s1Model = fitHarmonicModel(s1Training, s2Param.band)

.set({
region: 'test',
sensor: 'Sentinel-1'

});

// Define function to save the results.
var saveModel = function(model, prefix) {

Export.image.toAsset({
image: model,
scale: 30,
assetId: prefix + '_CCD',
description: 'Save_' + prefix + '_CCD',
region: testArea,
maxPixels: 1e13,
pyramidingPolicy: {

'.default': 'sample'
}

});
};

// Run the saving function.
saveModel(lstModel, 'LST');
saveModel(s2Model, 'S2');
saveModel(s1Model, 'S1');

Run the script. The model fitting results in export tasks to create assets. Instead
of exporting the results for this exercise, however, you should proceed to the next
section. In that section, we will continue with a precomputed asset that is the same
as what the above tasks would create.

Code Checkpoint A35d. The book’s repository contains a script that shows what
your code should look like at this point.

50 Deforestation Viewed from Multiple Sensors 1109

50.2.5 Section 5: Create Predicted Values for the Monitoring
Period

We will now start exploring the pre-exported results mentioned in the previous
section. Place this code below the checkpoint of the previous section:

var models = ee.ImageCollection('projects/gee-
book/assets/A3-5/ccd');
var lstModel = models

.filterMetadata('sensor', 'equals', 'Landsat').first();
var s2Model = models

.filterMetadata('sensor', 'equals', 'Sentinel-
2').first();
var s1Model = models

.filterMetadata('sensor', 'equals', 'Sentinel-
1').first();

In this section, we will use the time-series models that we produced in
Sect. 50.2.4 to create a predicted image (also commonly referred to as a synthetic
image; see Zhu et al. 2015) for any given date. The predicted image can give us a
good estimate of the reflectance (or index such as NDFI) value of a place assuming
no change has occurred. We can then compare the predicted image to the image
collected by the satellite on the same date. Areas that look very different would
likely be areas that have changed. Note that all the coefficients of the harmonic
model were saved as a single-band array. So the very first step here is to define a
function dearrayModel to convert the array image into a multiband image with
each coefficient in one band.

1110 X. Tang

var dearrayModel = function(model, band) {
band = band + '_';

// Function to extract a non-harmonic coefficients.
var genCoefImg = function(model, band, coef) {

var zeros = ee.Array(0).repeat(0, 1);
var coefImg = model.select(band + coef)

.arrayCat(zeros, 0).float()

.arraySlice(0, 0, 1);
return ee.Image(coefImg

.arrayFlatten([
[ee.String('S1_')

.cat(band).cat(coef)
]

]));
};

// Function to extract harmonic coefficients.
var genHarmImg = function(model, band) {

var harms = ['INTP', 'SLP', 'COS', 'SIN',
'COS2', 'SIN2', 'COS3', 'SIN3'

];
var zeros = ee.Image(ee.Array([

ee.List.repeat(0, harms.length)
]))
.arrayRepeat(0, 1);

var coefImg = model.select(band + 'coefs')
.arrayCat(zeros, 0).float()
.arraySlice(0, 0, 1);

return ee.Image(coefImg
.arrayFlatten([

[ee.String(band).cat('coef')], harms
]));

};

// Extract harmonic coefficients and rmse.
var rmse = genCoefImg(model, band, 'rmse');
var coef = genHarmImg(model, band);
return ee.Image.cat(rmse, coef);

};

Second, we need to define a function that creates a predicted image for all the
dates for which a real image is available during the monitoring period.

50 Deforestation Viewed from Multiple Sensors 1111

var createPredImg = function(modelImg, img, band, sensor) {
// Reformat date.
var date =

toFracYear(ee.Date(img.get('system:time_start')));
var dateString = ee.Date(img.get('system:time_start'))

.format('yyyyMMdd');
// List of coefficients .
var coefs = ['INTP', 'SLP', 'COS', 'SIN',

'COS2', 'SIN2', 'COS3', 'SIN3'
];
// Get coefficients images from model image.
var coef = ee.Image(coefs.map(function(coef) {

return modelImg.select(".*".concat(coef));
})).rename(coefs);
var t = ee.Number(date);
var omega = 2.0 * Math.PI;
// Construct dependent variables.
var pred = ee.Image.constant([

1, t,
t.multiply(omega).cos(),
t.multiply(omega).sin(),
t.multiply(omega * 2).cos(),
t.multiply(omega * 2).sin(),
t.multiply(omega * 3).cos(),
t.multiply(omega * 3).sin()

])
.float();

// Matrix multiply dependent variables with
coefficients.

return pred.multiply(coef).reduce('sum')
// Add original image and rename bands.
.addBands(img, [band]).rename(['predicted', band])
// Preserve some metadata.
.set({

'sensor': sensor,
'system:time_start':

img.get('system:time_start'),
'dateString': dateString

});
};

The createPredImg function calculates a predicted image based on the date
of the real image and the model coefficients. It returns a new image with both the
predicted image and the real image.

1112 X. Tang

We can then apply the createPredImg function to each image in the image
collections of the monitoring data. We can define another function to map over an
ImageCollection to apply createPredImg to all images in the collection.

var addPredicted = function(data, modelImg, band, sensor) {
return ee.ImageCollection(data.map(function(img) {

return createPredImg(modelImg, img, band,
sensor);

}));
};

Let’s apply addPredicted to monitoring data of all three sensors. Note this
process is still sensor-specific. Let’s print out the result for Landsat to examine the
structure of the output.

// Convert models to non-array images.
var lstModelImg = dearrayModel(lstModel, lstParam.band);
var s2ModelImg = dearrayModel(s2Model, s2Param.band);
var s1ModelImg = dearrayModel(s1Model, s1Param.band);

// Add predicted image to each real image.
var lstPredicted = addPredicted(lstMonitoring, lstModelImg,

lstParam.band, 'Landsat');
var s2Predicted = addPredicted(s2Monitoring, s2ModelImg,

s2Param.band, 'Sentinel-2');
var s1Predicted = addPredicted(s1Monitoring, s1ModelImg,

s1Param.band, 'Sentinel-1');

print('lstPredicted', lstPredicted);

Question 4. How many images are in the ImageCollection of the pre-
dicted images? Is it the same number as the original ImageCollection of
the monitoring data?

Code Checkpoint A35e. The book’s repository contains a script that shows what
your code should look like at this point.

50.2.6 Section 6: Calculate Change Scores

Assuming a good model fit, the predicted image would be very close to the real
image of the same date for areas with no change. So what we need to do now
is examine each pair of real and predicted images and look for areas where they

50 Deforestation Viewed from Multiple Sensors 1113

differ from each other. And if we merge the three data streams, we would be
able to significantly increase the data density and potentially detect changes faster.
But before we can fuse the three data streams together, we need to produce a
normalized measurement of the likelihood of change.

The FNRT algorithm calculates a change score (Tang et al. 2019) very similar
to a z-score. First, it calculates the residuals defined as the difference between the
predicted value and the observed value. The residuals are then scaled with the
RMSE of the time-series model to get the change score. If a change score is above
the preset threshold (z in the parameters), then it is flagged as “possible change”
(or a “strike” in baseball terminology). The implementation of this part is quite
simple:

// Function to calculate residuals.
var addResiduals = function(data, band) {

return ee.ImageCollection(data.map(function(img) {
return img.select('predicted')

// Restrict predicted value to be under 10000
.where(img.select('predicted').gt(10000),

10000)
// Calculate the residual
.subtract(img.select(band))
.rename('residual')
// Save some metadata
.set({

'sensor': img.get('sensor'),
'system:time_start': img.get(

'system:time_start'),
'dateString': img.get(

'dateString')
});

}));
};

// Function to calculate change score and flag change.
var addChangeScores = function(data, rmse, minRMSE,

threshold, strikeOnly) {
// If strikeOnly then we need a mask for balls.
var mask = ee.Image(0);
if (strikeOnly) {

mask = ee.Image(1);
}

1114 X. Tang

return ee.ImageCollection(data.map(function(img) {
// Calculate change score
var z = img.divide(rmse.max(minRMSE));
// Check if score is above threshold
var strike = z.multiply(z.gt(threshold));
// Create the output image.
var zStack = ee.Image.cat(z, strike).rename([

'z', 'strike'
])
.set({

'sensor': img.get('sensor'),
'system:time_start': img.get('system:time_start': img.get(

'system:time_start')
});

// Mask balls if strikeOnly.
return zStack.updateMask(strike.gt(0).or(

mask));
}));

};

Note that here, we restrict the predicted value to be under 10,000 because that
is the theoretical maximum for NDFI.

We also need to have a minimum RMSE (minRMSE) when scaling the resid-
uals. This is because when using indices such as NDFI, it is sometimes possible
to have perfect model fits resulting in very low or even zero RMSE, which would
then cause the model to be overly sensitive to subtle variations in the monitoring
data. The minRMSE is calculated for each pixel as a percentage of the average
values of all observations in the training period.

For this particular implementation of FNRT, the determination of a strike is
directional, meaning that we are looking for changes only in one direction. This is
because we already expect that a forest disturbance will cause a decrease in NDFI
or VV backscattering. Modification would be required if monitoring in another
direction (e.g., if using SWIR reflectance) or bidirectional monitoring is desired.
Let’s apply the two new functions to our three data streams:

50 Deforestation Viewed from Multiple Sensors 1115

// Add residuals to collection of predicted images.
var lstResiduals = addResiduals(lstPredicted,
lstParam.band);
var s2Residuals = addResiduals(s2Predicted, s2Param.band);
var s1Residuals = addResiduals(s1Predicted, s1Param.band);

// Add change score to residuals.
var lstScores = addChangeScores(

lstResiduals, lstModelImg.select('.*rmse'),
lstPredicted.select(lstParam.band).mean()
.abs().multiply(lstParam.minRMSE),
nrtParam.z, lstParam.strikeOnly);

var s2Scores = addChangeScores(
s2Residuals, s2ModelImg.select('.*rmse'),
s2Predicted.select(s2Param.band).mean()
.abs().multiply(s2Param.minRMSE),
nrtParam.z, s2Param.strikeOnly);

var s1Scores = addChangeScores(
s1Residuals, s1ModelImg.select('.*rmse'),
s1Predicted.select(s1Param.band).mean()
.abs().multiply(s1Param.minRMSE),
nrtParam.z, s1Param.strikeOnly);

print('lstScores', lstScores);

Code Checkpoint A35f. The book’s repository contains a script that shows what
your code should look like at this point.

Question 5. What bands are included in the change scores images?

50.2.7 Section 7: Multisensor Data Fusion and Change Detection

Now, we are finally ready to fuse the three data streams together. This step is quite
straightforward: we just need to merge the three image collections of the change
scores, and then sort them by their timestamps.

var fused = lstScores.merge(s2Scores).merge(s1Scores)
.sort('system:time_start');

1116 X. Tang

The change monitoring function uses a binary array to keep track of the number
of strikes within a monitoring window. The size of the monitoring window is
defined by the model parameters (nrtParam.m). The default monitoring window
size is five.

We first initiate the monitoring window with a binary array of 0 with a size
of five bits (00000) for each pixel. When we iterate through all the change score
images chronologically, we shift the binary array left for those pixels that were
not masked in the current change score image (00000→ 0000). We then append
the current change flag (strike or not) to the shifted binary array (0000 → 00001).
The process continues, as we iterate through all the change scores images (e.g.,
00001→ 00011 → 00110→01101→11011). Every time a new value is appended
to the binary array, we also check how many strikes (1s) are there. If the number
of strikes exceeds the required number (nrtParam.n) to flag a change, then a
change is flagged and the date of the change recorded.

var monitorChange = function(changeScores, nrtParam) {
// Initialize an empty image.
var zeros = ee.Image(0).addBands(ee.Image(0))

.rename(['change', 'date']);
// Determine shift size based on size of monitoring

window.
var shift = Math.pow(2, nrtParam.m - 1) - 1;
// Function to monitor.
var monitor = function(img, result) {

// Retrieve change image at last step.
var change = ee.Image(result).select('change');
// Retrieve change date image at last step.
var date = ee.Image(result).select('date');
// Create a shift image to shift the change binary

array
// left for one space so that new one can be

appended.
var shiftImg = img.select('z').mask().eq(0)

.multiply(shift + 1).add(shift);
change = change.bitwiseAnd(shiftImg)

.multiply(shiftImg.eq(shift).add(1))

.add(img.select('strike').unmask().gt(0));

50 Deforestation Viewed from Multiple Sensors 1117

// Check if there are enough strike in the current
// monitoring window to flag a change.
date = date.add(change.bitCount().gte(nrtParam.n)

// Ignore pixels where change already detected.
.multiply(date.eq(0))
// Record change date where change is flagged.
.multiply(ee.Number(toFracYear(

ee.Date(img.get(
'system:time_start')), 1))));

// Combine change and date layer for next
iteration.

return (change.addBands(date));
};

// Iterate through the time series and look for change.
return ee.Image(changeScores.iterate(monitor, zeros))

// Select change date layer and selfmask.
.select('date').rename('Alerts').selfMask();

};

Now, we apply the monitoring function (monitorChange) to the fused data
(fused) using the default model parameters (nrtParam). We can then add the
result, the forest disturbance map, to the map panel to visually examine it.

var alerts = monitorChange(fused,
nrtParam).updateMask(forestMask);
print('alerts', alerts);

// Define a visualization parameter.
var altVisParam = {

min: 2020.4,
max: 2021,
palette: ['FF0080', 'EC1280', 'DA2480', 'C83680',

'B64880',
'A35B80', '916D80', '7F7F80', '6D9180', '5BA380',
'48B680', '36C880', '24DA80', '12EC80', '00FF80',
'00EB89', '00D793', '00C49D', '00B0A7', '009CB0',
'0089BA', '0075C4', '0062CE', '004ED7', '003AE1',
'0027EB', '0013F5', '0000FF'

]
};
Map.centerObject(testArea, 10);
Map.addLayer(alerts, altVisParam, 'Forest Disturbance Map
(2020)');
Map.setOptions('SATELLITE');

1118 X. Tang

Code Checkpoint A35g. The book’s repository contains a script that shows what
your code should look like at this point.

If we run the whole script now, we can create a map of forest disturbance that
occurred in 2020 for our test area. The visualization of the map shows us the timing
of all the forest disturbance detected by the FNRT algorithm (Fig. 50.5). You
will notice a few large disturbance events. There may also be some tiny speckles,
which are likely errors of commission. Try adjusting the monitoring parameters
(nrtParam) to see if you can improve the map. Another common practice is to
apply a spatial filter to filter out scattered single pixels of change (Bullock et al.
2020).

Question 6. Can you run the change detection without Sentinel-1 input or with just
Landsat input? Was forest disturbance detected faster when we used data from all
three sensors?

Fig. 50.5 Map of forest disturbance occurring in 2020 for a selected test area located on the
frontline of deforestation in the Brazilian Amazon

50 Deforestation Viewed from Multiple Sensors 1119

50.3 Synthesis

Now that you have learned how to implement the simplified version of FNRT for
the test area that we selected, let’s try to use it to do some real monitoring of
tropical forest disturbance.

Assignment 1. Modify the code and apply it in a different area of your choice.
Note that you will need to keep the area small in order to be able to run everything
easily in the Code Editor.

Assignment 2. Try to monitor more recent changes by changing the monitoring
period to 2021. Note you would need to change the training period to 2018–2020,
and also update the forest mask.

Assignment 3. If you want to try a more challenging task, you can integrate your
results into the FNRT app that we used in Sect. 50.2.1.

50.4 Conclusion

In this chapter, we experimented with a simple way to combine data from three
different sensors (Landsat, Sentinel-2, and Sentinel-1) for the purpose of detect-
ing tropical forest disturbance as early as possible. We started with loading and
preprocessing the input data. We learned how to fit a harmonic model to time-
series data, and how to make predicted observations based on a model fit. We also
learned how to look for changes with a moving monitoring window over a time
series of change scores. The full FNRT algorithm is more complex than the “lite”
version that we implemented in this lab. If interested, please refer to Tang et al.
(2023) for more details.

References

Bullock EL, Woodcock CE, Olofsson P (2020) Monitoring tropical forest degradation using spec-
tral unmixing and Landsat time series analysis. Remote Sens Environ 238:110968. https://doi.
org/10.1016/j.rse.2018.11.011

Chen S, Woodcock CE, Bullock EL et al (2021) Monitoring temperate forest degradation on
Google Earth Engine using Landsat time series analysis. Remote Sens Environ 265:112648.
https://doi.org/10.1016/j.rse.2021.112648

Mullissa A, Vollrath A, Odongo-Braun C et al (2021) Sentinel-1 SAR backscatter analysis ready
data preparation in Google Earth Engine. Remote Sens 13:1954. https://doi.org/10.3390/rs1310
1954

Souza CM Jr, Roberts DA, Cochrane MA (2005) Combining spectral and spatial information to
map canopy damage from selective logging and forest fires. Remote Sens Environ 98:329–343.
https://doi.org/10.1016/j.rse.2005.07.013

Tang X, Bullock EL, Olofsson P et al (2019) Near real-time monitoring of tropical forest distur-
bance: new algorithms and assessment framework. Remote Sens Environ 224:202–218. https://
doi.org/10.1016/j.rse.2019.02.003

https://doi.org/10.1016/j.rse.2018.11.011
https://doi.org/10.1016/j.rse.2018.11.011
https://doi.org/10.1016/j.rse.2021.112648
https://doi.org/10.3390/rs13101954
https://doi.org/10.3390/rs13101954
https://doi.org/10.1016/j.rse.2005.07.013
https://doi.org/10.1016/j.rse.2019.02.003
https://doi.org/10.1016/j.rse.2019.02.003

1120 X. Tang

Tang X, Bratley KH, Cho K et al (2023) Near real-time monitoring of tropical forest disturbance by
fusion of Landsat, Sentinel-2, and Sentinel-1 data. Remote Sens Environ, 294:113626. https://
doi.org/10.1016/j.rse.2023.113626

Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using all
available Landsat data. Remote Sens Environ 144:152–171. https://doi.org/10.1016/j.rse.2014.
01.011

Zhu Z, Woodcock CE, Holden C, Yang Z (2015) Generating synthetic Landsat images based on all
available Landsat data: predicting Landsat surface reflectance at any given time. Remote Sens
Environ 162:67–83. https://doi.org/10.1016/j.rse.2015.02.009

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.rse.2023.113626
https://doi.org/10.1016/j.rse.2023.113626
https://doi.org/10.1016/j.rse.2014.01.011
https://doi.org/10.1016/j.rse.2014.01.011
https://doi.org/10.1016/j.rse.2015.02.009
http://creativecommons.org/licenses/by/4.0/

51Working with GPS and Weather Data

Peder Engelstad , Daniel Carver , and Nicholas E. Young

Overview
The purpose of this chapter is to demonstrate how to use Google Earth Engine as a
means of associating remotely sensed data (weather observations) with open-source
GPS point locations. These methods will provide a quick and easy way to access and
analyze large amounts of information relative to your own research and efficiently
move your data outside Earth Engine.

Learning Outcomes

• Pairing values from remotely sensed data with uploaded data.
• Exporting features from Earth Engine.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Exporting calculated data to tables with tasks (Chap. 22).

P. Engelstad (B) · N. E. Young
Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
e-mail: peder.engelstad@colostate.edu

N. E. Young
e-mail: nicholas.young@colostate.edu

D. Carver
Geospatial Centroid, Colorado State University, Fort Collins, CO, USA
e-mail: carverd@colostate.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_51

1121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_51&domain=pdf
http://orcid.org/0000-0002-3681-9216
http://orcid.org/0000-0002-1344-6357
http://orcid.org/0000-0002-3598-6186
mailto:peder.engelstad@colostate.edu
mailto:nicholas.young@colostate.edu
mailto:carverd@colostate.edu
https://doi.org/10.1007/978-3-031-26588-4_51

1122 P. Engelstad et al.

51.1 Introduction to Theory

Knowing how animals interact with their environment is critical to understanding
how to manage them. The choices animals make are influenced by basic survival
needs (e.g., food, shelter, water) and dynamic factors such as local weather condi-
tions. Without direct observation, it can be difficult to understand the relationship
between animal movement and weather conditions.

In this chapter, we will explore information retrieved from a GPS collar worn
by a cougar and explore its relationship to daily temperature estimates from the
Daymet climatological dataset available in Google Earth Engine. This will require
us to bring an asset into Earth Engine, connect the weather values to the point
locations, and bring those value-added data back out of Earth Engine for further
analysis.

51.2 Practicum

51.2.1 Section 1: GPS Location Data

Using GPS collars, Mahoney and Young (2017) tracked the movement of 2 cougars
and 16 coyotes in Central Utah. These data were used to understand some of the
behavioral patterns of the individuals. These data have been freely shared with the
broader research community and the public through Movebank, an online reposi-
tory for animal movement datasets from across the globe. While some Movebank
datasets list only the contact information of the authors, others (like those from
the Mahoney study) allow you to display and download the information via an
interactive web map.

We will pair the data on cougar movement with Daymet weather data. Accord-
ing to the Daymet website, the dataset “provides gridded estimates of daily weather
parameters. Seven surface weather parameters are available at a daily time step,
1 km ×1 km spatial resolution, with a North American spatial extent allowing a
rich resource of daily surface meteorology.”

With data for every day at a 1 km2 spatial resolution, the Daymet data are a
great resource for the temporal and spatial scales at which a cougar would inter-
act with the landscape. There are seven measured values in total, allowing us to
check multiple aspects of the weather to assess how it may be affecting behavior
(Fig. 51.1).

51.2.2 Section 2: Bringing Data into Earth Engine

In this chapter, we will discuss how to import assets into Earth Engine, extract
values from a dataset, and export those values out of Earth Engine. The processes
by which you can bring data into Earth Engine change frequently, so it is best to
go directly to the documentation to view the latest updates.

51 Working with GPS and Weather Data 1123

Fig. 51.1 Metadata for Daymet imagery within Earth Engine

51.2.2.1 Section 2.1: Bringing in an Asset
Using the following code, start a fresh script and import Mahoney’s cougar move-
ment data from Movebank (which has already been uploaded for you in the assets
of this book). Here, we will focus on a single animal (cougar ID F53). Because the
original dataset was in CSV format, it has been converted into a shapefile outside
of GEE. During this process, it is important to note that data have been projected
to the WGS 1984 (EPSG: 4326) coordinate reference system. Projecting to EPSG:
4326 is recommended in Earth Engine to minimize the reprojection errors during
the uploading process.

// Import the data and add it to the map and print.
var cougarF53 = ee.FeatureCollection(

'projects/gee-book/assets/A3-6/cougarF53');

Map.centerObject(cougarF53, 10);

Map.addLayer(cougarF53, {}, 'cougar presence data');

print(cougarF53, 'cougar data');

You can use the Inspector tool to look at the attribute data associated with the
new asset. With the points visualized, make a geometry feature that encompasses
our area of interest by selecting the square geometry tool and drawing a box that
encompasses the points (Fig. 51.2). We will use the geometry feature to filter our
climate data.

1124 P. Engelstad et al.

Fig. 51.2 Draw a geometry feature around the points to spatially filter the climate data

51.2.2.2 Section 2.2: Defining Weather Variables
In this chapter, we are using Earth Engine as a means of associating remotely
sensed data (i.e., our rasters) with our point locations. While the process is con-
ceptually straightforward, it does take some work to accomplish. With our points
loaded, the next step is to import the Daymet weather variables.

We are using the NASA-derived dataset Daymet V4 due to its 1 km2 spatial
resolution and the fact that it measures the environmental variables we think might
be related to cougar movement or behavior. We will import these variables by
calling the unique ID of the dataset, filtering it to our bounding box geometry and
the dates during which the data were collected.

// Call in image collection and filter.
var Daymet = ee.ImageCollection('NASA/ORNL/DAYMET_V4')

.filterDate('2014-02-11', '2014-11-02')

.filterBounds(geometry)

.map(function(image) {
return image.clip(geometry);

});

print(Daymet, 'Daymet');

51 Working with GPS and Weather Data 1125

Fig. 51.3 View of the structure of the Daymet V4 data from the print statement

From the print statement (Fig. 51.3), we can see that this is an
ImageCollection with 264 images (though your total number of images may
be different, as the dataset changes over time). Each image has seven bands relat-
ing to specific weather measurements (see Fig. 51.1). Now that both datasets are
loaded, we will associate the cougar occurrences data with the weather data.

51.2.2.3 Section 2.3: Extracting Values
With our points and imagery loaded, we can call a function to extract val-
ues from the underlying raster based on the known locations of the cougar.
We will do this using the ee.Image.sampleRegions function. Search for
the ee.Image.sampleRegions function under the Docs tab to familiarize
yourself with the parameters it requires.

If we tried to call this function on the Daymet ImageCollection, we would
get an error, because ee.Image.sampleRegions is a function of an image.
To get around this, we will convert the Daymet ImageCollection into a multi-
band image (Fig. 51.4). Each of the seven measurements for each day will become
a specific band in our multiband image. This process will help us in the end,
because each band is defined by the date it was collected and the variable it shows.
We can use this information to determine which data connects to the positions of
the cougar on a specific day.

1126 P. Engelstad et al.

Fig. 51.4 Print statement showing the result of converting the Daymet ImageCollection into
a multiband image

It is important to note that, with many images in the ImageCollection, we
are going to create a single image with a large number of bands. Because Earth
Engine is good at data manipulations, it can handle this type of request.

// Convert to a multiband image.
var DaymetImage = Daymet.toBands();

print(DaymetImage, 'DaymetImage');

Now that we have a single multiband image, we can use the sampleRegions
function to extract information across multiple dates at each of our GPS point
locations (Fig. 51.5). There are three parameters of this function that should be
considered:

• Collection: This is the vector dataset that the sampled data will be associated
with.

• Properties: This defines which columns of the vector dataset will remain. In
this case, we want to keep the ID column, because that is what we will use to
join this dataset back to the original outside of Earth Engine.

• Scale: This refers to the spatial resolution of the dataset. The scale parameter
should always match the spatial resolution of your raster data. If you are not
sure what the resolution of a raster is, you can search for the dataset using the
search bar and locate that information in the documentation. (If you want to
get the number for use in code, the nominalScale function, as described in
Chap. 4, can extract it from an image.)

51 Working with GPS and Weather Data 1127

Fig. 51.5 Print statement from the sampleRegions function showing that our GPS point loca-
tions now have weather measurements associated with them

// Call the sample regions function.
var samples = DaymetImage.sampleRegions({

collection: cougarF53,
properties: ['id'],
scale: 1000

});

print(samples, 'samples');

Code Checkpoint A36a. The book’s repository contains a script that shows what
your code should look like at this point.

51.2.2.4 Section 2.4: Exporting
Exporting Points

We now have a series of daily weather data associated with the known locations
of the cougar known as F53. While we could work more with these data in Earth

1128 P. Engelstad et al.

Engine, it will be easy to bring them into R, Python, or Excel for further analysis.
There are a few options to define where the exported data will be created. Gener-
ally speaking, saving the data to a Google Drive account provides an easy way to
access the data with another program. Here, we will use a dictionary, denoted by
the curly brackets {}, to define the parameters of the Export.table.toDrive
function.

We would have preferred to export to create a shapefile, but a shapefile can
contain only 255 columns. The samples variable has 1361 columns, so we will
export the data as a CSV file.

// Export value added data to your Google Drive.
Export.table.toDrive({

collection: samples,
description: 'cougarDaymetToDriveExample',
fileFormat: 'csv'

});

When you export something, the Tasks panel will light up. To run the task,
click the Run button (Fig. 51.6).

When you click the Run button, the pop-up shown in Fig. 51.7 will appear.
This allows you to edit the details of the export.

Exporting a Raster
While working with these spatial data, you may have realized that a raster showing
the median values over the time period when data were collected on the cougar
could be useful information to have. To do this, we will apply a median reducer
function to the Daymet ImageCollection to generate a median value for each
parameter in each cell. As with the tabular data, we will export this multiband
image to Google Drive. Once we convert the ImageCollection to an image
using the median function, we can clip it to the geometry feature object. This
feature will be exported as a multiband raster.

Fig. 51.6 Example of the Tasks bar once a script with an export function has been run

51 Working with GPS and Weather Data 1129

Fig. 51.7 Example of the user-defined parameters present when exporting a feature from Earth
Engine

// Apply a median reducer to the dataset.
var daymet1 = Daymet

.median()

.clip(geometry);

print(daymet1);

// Export the image to drive.
Export.image.toDrive({

image: daymet1,
description: 'MedianValueForStudyArea',
scale: 1000,
region: geometry,
maxPixels: 1e9

});

In Earth Engine, there are many options for exporting images. One of the most
important options when exporting data is the maxPixels parameter. Generally
speaking, Earth Engine will not allow you to export a raster with more than
109 pixels. With the maxPixels parameter, you can bump this up to around
1012 pixels per image. If you are exporting data for an area larger than 1012 pixels,
you will need to be creative about how to get the information out of Earth Engine.

1130 P. Engelstad et al.

Sometimes, this involves splitting the image into smaller pieces (as described in
Chap. 29) or even reevaluating the usefulness of such a large image outside of
Earth Engine.

Code Checkpoint A36b. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. With the maxPixels count set to 1e9, what square area would you
expect to be able to export for imagery with 1000, 250, 30, 10 m cell size? Deter-
mine how this area measure changes when using 1012 pixels for one of the cell
sizes to determine the percent increase.

Question 2. We selected all available variables from the Daymet collection. What
specific bands from Daymet might be most relevant to cougars? How would you
edit the code to select just one or a few bands?

Question 3. When we extracted the raster data, we set the scale parameter to
1000 to match the known spatial resolution of the Daymet dataset. Would it be
reasonable to change that scale parameter to 500 to get final resolution data? What
does Earth Engine tell you when you attempt to change the scale of an export?

51.3 Synthesis

Assignment 1. Utilize the chapter’s script with a different dataset to process track-
ing information from a different animal from Movebank or another occurrence
database of your choice (e.g., GBIF.org). Evaluate whether the temperature ranges
between the two animals are different and make a hypothesis about why this might
be.

51.4 Conclusion

While Google Earth Engine can be used for planetary-scale analyses, it is also an
effective resource for quickly accessing and analyzing large amounts of informa-
tion across time at a scale relative to your own data. The method presented in this
chapter is a great way to add value to your own research. Here, we worked with
weather data, but that is by no means the only option. You can connect your data
to many other datasets within Earth Engine. It is up to you to explore and find
what is relevant to your work.

Reference

Mahoney PJ, Young JK (2017) Uncovering behavioural states from animal activity and site fidelity
patterns. Methods Ecol Evol 8:174–183. https://doi.org/10.1111/2041-210X.12658

https://doi.org/10.1111/2041-210X.12658

51 Working with GPS and Weather Data 1131

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

52Creating Presence and Absence
Points

Peder Engelstad , Daniel Carver , and Nicholas E. Young

Overview
The purpose of this chapter is to demonstrate a method to generate your own presence
and absence data and distribute those samples using specific ecological character-
istics found in remotely sensed imagery. You will see that even when field data is
unavailable, you can still digitally sample a landscape and gather information on
current or past ecological conditions.

Learning Outcomes

• Generating presence and absence data manually using high-resolution imagery.
• Generating randomly distributed points automatically within a feature class layer

to use as field sampling locations.
• Filtering your points to refine your sampling locations.

P. Engelstad (B) · N. E. Young
Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1499,
USA
e-mail: peder.engelstad@colostate.edu

N. E. Young
e-mail: nicholas.young@colostate.edu

D. Carver
Geospatial Centroid, Colorado State University, Fort Collins, CO 80523-1499, USA
e-mail: carverd@colostate.edu

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_52

1133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_52&domain=pdf
http://orcid.org/0000-0002-3681-9216
http://orcid.org/0000-0002-1344-6357
http://orcid.org/0000-0002-3598-6186
mailto:peder.engelstad@colostate.edu
mailto:nicholas.young@colostate.edu
mailto:carverd@colostate.edu
https://doi.org/10.1007/978-3-031-26588-4_52

1134 P. Engelstad et al.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Visualize images with a variety of false color band combinations (Chap. 2).
• Perform basic image analysis: select bands, compute indices, create masks

(Part II).
• Use normalizedDifference to calculate vegetation indices (Chap. 5).
• Use drawing tools to create points, lines, and polygons (Chap. 6).
• Filter a FeatureCollection to obtain a subset (Chaps. 22, and 23).

52.1 Introduction to Theory

Herbivore grazing can have a negative effect on aspen regeneration in some areas,
as aspens tend to grow in large monotypic stands (Halofsky and Ripple 2008).
Excluding elk, deer, and cow grazing from an area has observable effects on aspen
regrowth. In a hypothetical study, we may be interested in understanding the effect
of herbivory from these species on various ecological aspects of aspen stands. But
how can we monitor aspen stands without setting foot in the field? In this chapter,
we will use multiple datasets and high-resolution resolution imagery (1 m2) to
generate sampling locations for this theoretical field survey. We will also build
a presence/absence dataset that could be used to train a spatial model of aspen
coverage.

52.2 Practicum

The National Land Cover Database (NLCD) is a Landsat-derived land cover
database with 30 m spatial resolution, available at multiple time periods. Data
from 1992 are primarily based on an unsupervised classification of Landsat data.
The other years rely on a decision tree classification to identify the land cover
classes.

The National Agriculture Imagery Program (NAIP) acquires aerial imagery dur-
ing the agricultural growing seasons across the continental United States. NAIP
projects are contracted each year based upon available funding and the Farm Ser-
vice Agency imagery acquisition cycle. NAIP imagery is acquired at a one-meter
ground sample distance with a horizontal accuracy that matches within six meters
of photo-identifiable ground control points. NAIP imagery is often collected in
four bands: blue, green, red, and near infrared. The near infrared band is helpful
in distinguishing between different types of vegetation.

The USGS National Elevation Dataset (NED) 1/3 arc-second is an elevation
dataset produced by the USGS. This coast-to-coast dataset is available at 0.33
arc-second spatial resolution (30 m) across the lower 48 states, parts of Alaska,
Hawaii, and US Territories.

52 Creating Presence and Absence Points 1135

Fig. 52.1 Example of the general region of interest to use for this module

52.2.1 Section 1: Developing Your Own Sampling Locations

We will start by developing potential field sampling locations based on the relative
physical and ecological conditions.

52.2.1.1 Section 1.1: Region of Interest
The geographic region for this chapter is the Grand Mesa in western Colorado.
Considered to be the largest mesa in the world by area, the Grand Mesa rises from
4000 feet near Grand Junction, Colorado, to over 10,000 feet at its highest point.
Historically, the Grand Mesa was glaciated, leaving its top flattened and spotted
with lakes. While heavily forested at higher elevation, there are distinct transitions
between shrubland, aspen, and conifer forest along the steep slopes. As one of the
westernmost extensions of the montane environment in Colorado, the Grand Mesa
represents important habitat for many ungulate species.

Our first step is to open a new script in Earth Engine. First, create a region of
interest that encompasses the Grand Mesa (you can search for it by name in the
search bar at the top). Do so using the geometry tool. Once you create the feature,
rename it roi (Fig. 52.1).

52.2.1.2 Section 1.2: Working with NAIP
We will rely on NAIP imagery for multiple steps in this process. NAIP imagery is
not collected every year, so it makes sense to load in multiple years to determine
what time frame is available. We will use a print statement to see what years are
available for our area from 2015 and 2017. Copy the following code to start your
script.

1136 P. Engelstad et al.

// Call in NAIP imagery as an image collection.
var naip = ee.ImageCollection('USDA/NAIP/DOQQ')

.filterBounds(roi)

.filterDate('2015-01-01', '2017-12-31');

Map.centerObject(naip);

print(naip);

When you run the script you will see a print statement similar to the one
shown in Fig. 52.2.

The print statement shows us that imagery is available for both 2015 and
2017, yet it is difficult to determine the extent of coverage present without visual-
izing the data. For now, we will add both collections to the map to see what the
image availability looks like. Add the following code to your existing script.

Fig. 52.2 Print statement identifying the years of available imagery for this region of interest

52 Creating Presence and Absence Points 1137

// Filter the data based on date.
var naip2017 = naip

.filterDate('2017-01-01', '2017-12-31');

var naip2015 = naip
.filterDate('2015-01-01', '2015-12-31');

// Define viewing parameters for multi band images.
var visParamsFalse = {

bands: ['N', 'R', 'G']
};
var visParamsTrue = {

bands: ['R', 'G', 'B']
};

// Add both sets of NAIP imagery to the map to compare
coverage.
Map.addLayer(naip2015, visParamsTrue, '2015_true', false);
Map.addLayer(naip2017, visParamsTrue, '2017_true', false);

Compared to the 2015 imagery (Fig. 52.3), the 2017 imagery (Fig. 52.4) has
been captured later in the season and we can start to see some yellow in the aspen.
A challenge with this image is that there were some distinct time lags between
neighboring flight paths during the initial image collection. Notice the vertical
band of green in the 2017 image. While it is usually best practice to use images
that closely match the time that you will be in the field, in this case, the consistency
of the 2015 imagery outweighs those temporal concerns.

We will also add a false color image to the 2015 data because this band com-
bination visualization is very helpful for distinguishing between deciduous and
coniferous forests. We do this by adding the naip2015 object with a different
set of visualization parameters to the map. Add the following code to your existing
script.

// Add 2015 false color imagery.
Map.addLayer(naip2015, visParamsFalse, '2015_false',
false);

52.2.1.3 Section 1.3: Aspen Exclosures
In our hypothetical study, let us imagine land managers have established some
aspen exclosures on the southern extent of the Grand Mesa. Let us also say that
the land managers did not have specific shapefiles of the exclosures but did have
GPS locations of the four corners. We will use these data to add the exclosures

1138 P. Engelstad et al.

Fig. 52.3 NAIP imagery from 2015 has captured the aspen forest across the extent of our study
area

Fig. 52.4 NAIP imagery from 2017 has captured the yellowing of the aspen forest but shows a
distinct difference in vegetation cover due to variability in the time at which the given images were
captured

52 Creating Presence and Absence Points 1139

to the map by creating a geometry feature within our script. In this case we are
creating an ee.Geometry.MultiPolygon feature. Add the following code to
your existing script. If your roi object does not encompass the exclosures, edit
its bounds or redraw it.

// Creating a geometry feature.
var exclosure = ee.Geometry.MultiPolygon([

[
[-107.91079184, 39.012553345],
[-107.90828129, 39.012553345],
[-107.90828129, 39.014070552],
[-107.91079184, 39.014070552],
[-107.91079184, 39.012553345]

],
[

[-107.9512176, 39.00870162],
[-107.9496834, 39.00870162],
[-107.9496834, 39.00950196],
[-107.95121765, 39.00950196],
[-107.95121765, 39.00870162]

]
]);

print(exclosure);

Map.addLayer(exclosure, {}, 'exclosures');

The structure of the ee.Geometry.MultiPolygon feature is a bit com-
plex, but it is effectively a set of nested lists. There are three tiers of lists
present:

// Nested list example.
['tier 1' ['tier 2' ['tier 3']]]

• Tier 1: A single list that holds all the data. The
ee.Geometry.MultiPolygon function requires the input to be a list.

• Tier 2: A list for each polygon, containing a unique set of coordinates.
• Tier 3: A list for each x,y coordinate pair. Each polygon is composed of a series

of x,y points with a point that overlaps exactly with the first coordinate pair.
This last coordinate pair is the same as the first and is essential to completing
the feature.

1140 P. Engelstad et al.

Fig. 52.5 View of the exclosure object coordinate details from the print statement

If you are trying to make a geometry feature and are having trouble, you can
always create one with the draw shape tool and look at the values in a print
statement as a template (Fig. 52.5).

52.2.1.4 Section 1.4: Determining Similar Areas for Sampling
Now that we have our aspen exclosures loaded, we are going to bring in some
additional layers to help quantify the landscape characteristics of the exclosures.
We will use those values to find similar areas nearby to use as sampling sites
outside of the exclosures. By keeping the environmental conditions similar, we
can make stronger statements about the comparative effects of herbivory on aspen
stands.

We will use three datasets to describe the conditions within the sampled areas:

1. NED: Select areas in a similar elevation range. Elevation is correlated with
many environmental conditions, so we are using it as a proxy for features such
as temperature, precipitation, and solar radiation.

2. NAIP: Calculate an NDVI index to get a measure of vegetation productivity.
3. NLCD: Select the deciduous forest class as a way to limit the location of

sampling sites.

52 Creating Presence and Absence Points 1141

52.2.1.5 Section 1.5: Loading in the Data
First, we will call the NED by its unique ID. We can gather these details by
searching for the feature and reading through the metadata. Add the following
code to your existing script.

// Load in elevation dataset; clip it to general area.
var elev = ee.Image('USGS/NED')

.clip(roi);

Map.addLayer(elev, {
min: 1500,
max: 3300

}, 'elevation', false);

We already have NAIP imagery loaded but we need to convert it to an image
and calculate NDVI. We have already filtered our NAIP imagery to a single year,
so there is only one image per area. We could apply a reducer to convert the
ImageCollection to an image, but a reducer is not necessary for a single
layer. A more logical option for this is to apply the mosaic function to convert
the ImageCollection to an image. Add the following code to your existing
script.

// Apply mosaic, clip, then calculate NDVI.
var ndvi = naip2015

.mosaic()

.clip(roi)

.normalizedDifference(['N', 'R'])

.rename('ndvi');

Map.addLayer(ndvi, {
min: -0.8,
max: 0.8

}, 'NDVI', false);

print(ndvi, 'ndvi');

The last dataset we are bringing in is the NLCD. Add the following code to
your existing script.

1142 P. Engelstad et al.

// Add National Land Cover Database (NLCD).
var dataset = ee.ImageCollection('USGS/NLCD');

print(dataset, 'NLCD');

From the print statement (Fig. 52.6), we can see that some of the images have
a band called ’landcover’. Rather than trying to pull it out from the feature
collection, we will call the 2016 NLCD image directly by its unique ID and select
the ’landcover’ band.

Fig. 52.6 Print statement showing the structure of the NLCD ImageCollection

52 Creating Presence and Absence Points 1143

// Load the selected NLCD image.
var landcover = ee.Image('USGS/NLCD/NLCD2016')

.select('landcover')

.clip(roi);

Map.addLayer(landcover, {}, 'Landcover', false);

Question 1. Investigate the other available years in the NLCD collection. What
parts of the study area have land cover classes that change? What might be driving
that change?

52.2.1.6 Section 1.6: Generating Random Points
With our three datasets loaded, we can now generate a series of potential survey
sites. We will do this by generating random points within a given area (Fig. 52.7).
We want these sites to be accessible, near the two exclosures, and within the public
land boundary. We will create another geometry feature that we will use to contain
the randomly generated points. Hover over the Geometry imports box and click
+ new layer. Be sure to name this second geometry feature sampleArea.

With the geometry feature in place, we can create points using the
randomPoints function. Add the following code to your existing script.

Fig. 52.7 An example of what your second sample area geometry feature might look like

1144 P. Engelstad et al.

// Generate random points within the sample area.
var points = ee.FeatureCollection.randomPoints({

region: sampleArea,
points: 1000,
seed: 1234

});

print(points, 'points');

Map.addLayer(points, {}, 'Points', false);

Here, we are using a dictionary to define the parameters of the function. The
region parameter is the area in which the points are created. In our case, we are
going to set this to sampleArea polygon. The points parameter specifies the
total number of points to generate. The seed parameter is used to indicate specific
random values. Think of this as a unique ID for a set of random values. The seed
number (1234 in this example) refers to an existing random list of values. Setting
the seed is very helpful because you are still using random values, but the code
will place the points in the same locations every time until the seed is changed.

52.2.1.7 Section 1.7: Extracting Values to Points
To associate the landscape characteristics with the point locations, we are going
to call the ee.Image.sampleRegions function. This function requires a sin-
gle image. Rather than calling three times on our three unique images (elevation,
NDVI, and NLCD), we are going to add all those images together to create a
multiband image so we can call this function a single time. Add the following
code to your existing script.

// Add bands of elevation and NAIP.
var ndviElev = ndvi

.addBands(elev)

.addBands(landcover);

print(ndviElev, 'Multi band image');

With the multiband image set, we will call the sampleRegions function.
Add the following code to your existing script.

52 Creating Presence and Absence Points 1145

// Extract values to points.
var samples = ndviElev.sampleRegions({

collection: points,
scale: 30,
geometries: true

});

print(samples, 'samples');

Map.addLayer(samples, {}, 'samples', false);

Within this function, the collection parameter is set to the feature collec-
tion where the extracted values will be added. In this example, it is a point dataset.
The scale parameter refers to the spatial resolution (pixel size) of the data. The
geometries parameter indicates whether or not you want to maintain the x,y
coordinate pairs for each element in the collection. The default is false, but we set
it to true here because we eventually want to show these points on the map, as
they will represent suitable sampling site locations.

Segue on Scale
The idea of scale is very important in remote sensing, but you will often encounter
multiple definitions of it. Map scale, the relationship between a measured distance
on a map and the actual distance on the landscape, is the most common in remote
sensing. The image extent can also be referred to as the scale of the image or the
spatial scale. Confusing, right?

In the case of the scale argument in the function above, it is referring to yet
another definition of that word—the pixel size of the image. In our example, the
multiband image has two bands with a pixel size of 30 m, and one with a pixel
size of 1 m. It is best practice to use the largest pixel size when working with data
having different spatial resolutions. Here, this means you are upscaling the 1 m
image to 30 m. This means a potential loss of precision in your data. However,
you can be confident that the number in that upscaled cell is representative of the
mean value across all the cells. If you go in the opposite direction and downscale
an image, you effectively make up the data to fill the gap. Because NAIP imagery
has a 1 m pixel size, it contains 30× 30 more pixels than a single 30 m pixel. Take
a look at the examples below to help visualize these processes.

Upscaling takes the available data and finds the mean value.
3	7	8
4	2	2
1	3	2

Question 2. Calculate the mean for the matrix above. How would this value change
your understanding of the pixel? Is it still representative of the overall “story” the
data is telling, or would a different reducer (i.e., median) be more appropriate?

1146 P. Engelstad et al.

Fig. 52.8 Result of our sampling function has given us 1000 potential sites to choose from. We
will limit this pool by comparing the measurable data we have at these sites to the mean values of
those data from our exclosures

Downscaling takes a single value and places the value for all locations in the grid.
7	7	7
7	7	7
7	7	7
From our print statement (Fig. 52.8), we can see that each of our 1000 point

locations has three properties: elevation, land cover, and NDVI. We want to use
these values to filter out sites that do not match the conditions of the exclosures.
The land cover data are categorical, so it is easy to filter. We know from the
metadata on NLCD that the land cover class for deciduous forest is a single value
(41).

We will use the filter function to select all sites that are within aspen forests.
Add the following code to your existing script.

// Filter metadata for sites in the NLCD deciduous forest
layer.
var aspenSites =
samples.filter(ee.Filter.equals('landcover', 41));

print(aspenSites, 'Sites');

From the print statement, we can see this reduces the total number of potential
sites (1000) by about 25%, depending on your study area shape. However, to get
down to roughly 10 potential new monitoring sites, there is still a lot of trimming
to do.

Filtering based on elevation and NDVI is a bit trickier because both of these
variables are continuous data. You want to find sites that have similar values to
those in the exclosures, but they do not need to be exactly the same. For this

52 Creating Presence and Absence Points 1147

example, we will say that if a value is within±10% of the mean value found
within the exclosure, we will group it as similar. There are a couple of things that
need to be calculated before we can filter our potential sampling sites:

1. Mean values within exclosures.
2. 10% above and below the mean.

Question 3. The above use of±10% is somewhat arbitrary. How might the range
change given the inclusion of additional exclosures in our study area? What other
methods could be used to generate this range?

We will work with the NDVI image first and then apply this process to the
elevation dataset.

• Step 1: To find the mean value, we are going to apply a mean reducer over the
area that is inside of the exclosure. Add the following code to your existing
script.

// Set the NDVI range.
var ndvi1 = ndvi

.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: exclosure,
scale: 1,
crs: 'EPSG:4326'

});

print(ndvi1, 'Mean NDVI');

The reduceRegion function takes in an image and returns a dictionary where
the key is the name of the band, and the value is the output of the reducer.

• Step 2: Determine the acceptable variability around the mean.

We are relying on simple mathematical functions to find the ± 10% values. Add
the following code to your existing script.

1148 P. Engelstad et al.

// Generate a range of acceptable NDVI values.
var ndviNumber = ee.Number(ndvi1.get('ndvi'));
var ndviBuffer = ndviNumber.multiply(0.1);
var ndviRange = [

ndviNumber.subtract(ndviBuffer),
ndviNumber.add(ndviBuffer)

];

print(ndviRange, 'NDVI Range');

The first step in this process is all about understanding data types. The ndvi1
object is a dictionary so we call the get function to pull a value based on a known
key. We then convert that value to an ee.Number type object so we can apply
the math functions. Our output is a list with the minimum and maximum values
(±10% of the mean NDVI values).

52.2.1.8 Section 1.8: Create Your Own Function
We now have our range for NDVI, but we also need to apply the same process
to elevation. In this case, we are only applying this process twice, but it seems
like a useful chunk of code that might be handy down the road. Rather than just
copying and pasting the code again and again, we are going to create a function
with flexible parameters so we can apply this useful bit of code efficiently.

A function has the following requirements: parameters, statements, and a return
value. Here is an example of the structure of a function from the official Earth
Engine documentation. The following pseudocode demonstrates the syntax and
structure of a function in JavaScript. Do not add this code to your script.

var myFunction = function(parameter1, parameter2,
parameter3) {

statement;
statement;
var value = statement;
return value;

};

If we apply this structure to our goal of reducing the elevation by area (like we
did for NDVI with the code we created above), we would need to consider the
following:

• Parameters: an image, a geometry object, and pixelSize.
• Statements: reduceRegion function.
• A return value: output of the reduceRegion function.

52 Creating Presence and Absence Points 1149

When using functions, it is important to use informative names within your param-
eters that give some indication of the data type that is required. If we want our
function to be reproducible, we can provide some more information as a longer
comment when we define the function. Add the following code to your existing
script.

/*
This function is used to determine the mean value of an
image within a given area.
image: an image with a single band of ordinal or interval
level data
geom: geometry feature that overlaps with the image
pixelSize: a number that defines the cell size of the image
Returns a dictionary with the median values of the band,
the key is the band name.
*/
var reduceRegionFunction = function(image, geom, pixelSize)
{

var dict = image.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: geom,
scale: pixelSize,
crs: 'EPSG:4326'

});
return (dict);

};

Let us check our function definition by verifying that it gives the same answer
for the NDVI range as when we did it step by step:

// Call function on the NDVI dataset to compare.
var ndvi_test = reduceRegionFunction(ndvi, exclosure, 1);

print(ndvi_test, 'ndvi_test');

This is a very clean method for coding when you need to apply a process
multiple times. The function has been defined and now we can call it on the
elevation dataset. Add the following code to your existing script.

1150 P. Engelstad et al.

// Call function on elevation dataset.
var elev1 = reduceRegionFunction(elev, exclosure, 30);

print(elev1, 'elev1');

We will define a second function to determine±10% around a mean value.

• Parameters: an image, band name, proportion.
• Statements: multiple steps.
• A return value: list.

Add the following code to your existing script.

/*
Generate a range of acceptable values.
dictionary: a dictionary object
key: key to the value of interest, must be a string
proportion: a percentile to define the range of the values
around the mean
Returns a list with a min and max value for the given
range.
*/
var effectiveRange = function(dictionary, key, proportion)
{

var number = ee.Number(dictionary.get(key));
var buffer = number.multiply(proportion);
var range = [

number.subtract(buffer),
number.add(buffer)

];
return (range);

};

We will call the effectiveRange function on the output of the
reduceRegionFunction function. Add the following code to your existing
script.

// Call function on elevation data.
var elevRange = effectiveRange(elev1, 'elevation', 0.1);

print(elevRange);

52 Creating Presence and Absence Points 1151

Now that we have an effective range for both our NDVI and elevation values,
we can apply an additional set of filters to thin the list of potential sample sites. We
can do this by chaining multiple ee.Filter calls together. Add the following
code to your existing script.

// Apply multiple filters to get at potential locations.
var combinedFilter = ee.Filter.and(

ee.Filter.greaterThan('ndvi', ndviRange[0]),
ee.Filter.lessThan('ndvi', ndviRange[1]),
ee.Filter.greaterThan('elevation', elevRange[0]),
ee.Filter.lessThan('elevation', elevRange[1])

);

var aspenSites2 = aspenSites.filter(combinedFilter);

print(aspenSites2, 'aspenSites2');

Map.addLayer(aspenSites2, {}, 'aspenSites2', false);

Depending on how you have drawn your study area, this filtering process should
reduce the 1000 original sites by about 90%. From the ~ 100 remaining sites, we
can manually select 10 either by something we already know about the landscape
features of our study area, or by using a more restrictive range in our function
(e.g.,±5%). This approach to site selection can be a good first step in ensuring
you are sampling similar conditions in the field.

Code Checkpoint A37a. The book’s repository contains a script that shows what
your code should look like at this point.

52.2.2 Section 2: Generating Your Own Training Dataset

As you have been examining this landscape, you may have noticed some misclas-
sifications within the NLCD land cover layer (e.g., forests in non-forested areas).
Some misclassifications are expected in any land cover dataset. While the NLCD
is trained to produce classifications of specific land cover assemblages across the
United States, the aspen forest class that we are examining is included within a
much larger grouping (“Deciduous forest”). Also, the particular NLCD image we
selected shows land cover as it was detected in 2011. While forests are fairly sta-
ble over time, we can expect that some level of change has occurred. This might
get you thinking about the possibility of generating your own aspen land cover
product based on a remote sensing model for this specific region. There is a lot
that goes into this process that we are not going to cover here. However, we are

1152 P. Engelstad et al.

going to take the first step, which is generating our own presence/absence training
dataset.

52.2.2.1 Section 2.1: Ocular Sampling
Generating your own training data relies on the assumption that you can con-
fidently identify your species of interest using high-resolution imagery. We are
using NAIP for this process because it is freely available and has a known col-
lection date, allowing us to mark areas of aspen forest as “presence” and areas
without aspens as “absence.” These data could then be used later to train a model
of aspen occurrence on the landscape.

52.2.2.2 Section 2.2: Adding Presence and Absence Points
First, we will need to create specific layers that will hold our new sampling points.
Adding in presence and absence layers is a straightforward process accomplished
by manually creating and placing geometry features on representative locations on
the map. Hover over the Geometry imports box and click + new layer (Fig. 52.9).
A geometry feature named “geometry” will be added. Select the gear icon next to
geometry and a pop-up will open. Change the Import as type to FeatureCollec-
tion, then press the + Add property button. Fill in the Properties values with
“presence” and “1” and press OK to save your feature.

Change the feature collection name to presence and select a color you enjoy.
Repeat this process to create an absence feature collection where the added
property values are presence and “0”. We will use the binary value in the presence

Fig. 52.9 Example of changing the parameters for the creation of the presence geometry feature

52 Creating Presence and Absence Points 1153

Fig. 52.10 Examples of presence and absence locations on the NAIP imagery created using the
marker tool. Do your best to select locations that look correct to you

column of both datasets to define what that location is referring to: 1 = Yes, this
is aspen; 0 = No, this is not aspen.

Once the feature collections are created, we select the specific feature collec-
tion (presence or absence) and use the marker tool to drop points on the
imagery. The sampling methodology you use will depend on your study. In this
example, green presence points represent aspen forest, and blue points are not
aspen (absence).

Use the 2015 false color imagery in combination with the NDVI or NLCD
to distinguish aspen from other land cover types. Aspen stands are brighter red
than most other vegetation types and tend to have a more complex texture than
herbaceous vegetation in the imagery. Drop some points in what you perceive to
be aspen forest (Fig. 52.10).

Feel free to sample as many locations as you would like. Again, the quality of
this data will depend on your ability to differentiate the multiple land cover classes
present.

52.2.2.3 Section 2.3: Exporting Points
Currently our point locations are stored in two different features classes. We will
merge these features into one feature class before exporting the data. We can merge
the layers straightforwardly because they share the same data type (point geometry
feature) and the same attribute data (“presence” with a numeric data value). Add
the following code to your existing script.

// Merge presence and absence datasets.
var samples = presence.merge(absence);

print(samples, 'Samples');

1154 P. Engelstad et al.

Now that the sampling features classes are merged, we will export the features
to our Google Drive. When you run the code below, the Tasks tab in the upper
right-hand panel will light up. Earth Engine does not run tasks without you direct-
ing it to execute the task from the Tasks tab. Add the following code to your
existing script and run it to export your completed dataset.

.Export ({table.toDrive
collection: samples,
description: ,'presenceAbsencePointsForForest'
fileFormat: 'csv'

});

Code Checkpoint A37b. The book’s repository contains a script that shows what
your code should look like at this point.

52.3 Synthesis

Assignment 1. Compare samples of NDVI ranges for aspen presence versus
absence. Are the ranges significantly different? Create samples using the code
presented here but for a coniferous tree of your choice. How different are these
values from the values of deciduous forest?

52.4 Conclusion

In this module, we identified aspen locations with similar environmental character-
istics and generated our own sampling data from those locations. Both processes
are simple in concept but can be somewhat complex to implement without access
to all your data in a single place. In both cases, we are generating value-added
products that are informed by remote sensing but are not inherently remote sens-
ing processes. This ability to be creative regarding how you use remotely sensed
data is part of the beauty of the Earth Engine platform.

Reference

Halofsky J, Ripple W (2008) Linkages between wolf presence and aspen recruitment in the Gallatin
elk winter range of southwestern Montana, USA. Forestry 81:195–207. https://doi.org/10.1093/
forestry/cpm044

https://doi.org/10.1093/forestry/cpm044
https://doi.org/10.1093/forestry/cpm044

52 Creating Presence and Absence Points 1155

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

53Detecting Land Cover Change
in Rangelands

Ginger Allington and Natalie Kreitzer

Overview
The purpose of this chapter is to familiarize you with the unique challenges of
detecting land cover change in arid rangeland systems, and to introduce you to an
approach for classifying such change that provides us with a better understanding
of these systems. You will learn how to extract meaningful data about changes in
vegetation cover from satellite imagery, and how to create a classification based on
trajectories over time.

Learning Outcomes

• Visualizing and explaining the challenges of utilizing established land cover data
products in arid rangelands.

• Applying a temporal segmentation algorithm to a time series of information about
vegetation productivity.

• Classifying pixels based on similarities in their temporal trajectories.
• Extracting and visualizing data on the new trajectory classes.
• Comparing trajectory classes to information from traditional land cover data.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform pixel-based supervised or unsupervised classification (Chap. 6).

G. Allington (B)
Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
e-mail: gra38@cornell.edu

N. Kreitzer
George Washington University, Washington, DC, USA

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_53

1157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_53&domain=pdf
http://orcid.org/0000-0003-0446-0576
mailto:gra38@cornell.edu
https://doi.org/10.1007/978-3-031-26588-4_53

1158 G. Allington and N. Kreitzer

• Use expressions to perform calculations on image bands (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Interpret the outputs from the LandTrendr algorithm implementation in Earth

Engine (Chap. 17).
• Write a function and map it over a FeatureCollection (Chaps. 23 and

24).
• Use the require function to load code from existing modules (Chap. 28).

53.1 Introduction to Theory

Arid and semi-arid rangelands cover approximately 41% of the global land sur-
face (Asner et al. 2004) and provide livelihoods for 38% of the human population
(Millennium Ecosystem Assessment 2005), and forage for three-quarters of the
world’s livestock (Derner et al. 2017). Rangelands are located in regions of the
world that are experiencing some of the most rapid changes in climate (Huang
et al. 2016, Melillo et al. 2014), which can affect ecosystem productivity and
resilience (Briske 2017). Land conversion to agriculture (Lambin and Meyfroidt
2011), urbanization and development (Fan et al. 2016; Sleeter et al. 2013), and
afforestation (Cao et al. 2011) are increasing in many rangeland regions globally.
Uncertainties about socioeconomic and sociopolitical forces such as land tenure
security (Campbell et al. 2005; Li et al. 2007; Liu et al. 2015; Reid et al. 2000),
rural out-migrations and urbanization (Lang et al. 2016), and changes in human
demography and dietary preferences (Alexandratos and Bruinsma 2012) limit our
ability to predict the future sustainability of rangeland systems. In order to under-
stand the causes and consequences of land cover change in rangelands, we must
first classify and quantify the change.

There are several readily available datasets commonly used to assess changes
in land cover over large regions. The three most prominent global inventories
are the annual MODIS 12Q land cover product (500 m) (Friedl et al. 2010), the
300 m GlobCover data from the European Space Agency (ESA) (Arino et al. 2008;
Bontemps et al. 2011), and the new 10 m WorldCover data, also from the ESA
(Zanaga et al. 2021), the latter two of which are available for single nominal dates.
National-level data products typically are available at finer spatial resolutions and
tend to use more categories to classify the surface (e.g., NLCD in the US, Homer
et al. 2015)—though they are not available for all countries. While these global
and national land cover data products have been useful for documenting a num-
ber of important surface phenomena such as forest loss, urbanization, and habitat
conversion in a variety of ecosystems (Schneider et al. 2015, Prestele et al. 2016),
they generally have poor accuracy in arid portions of the globe (Friedl et al. 2002;
Ganguly et al. 2010; García-Mora et al. 2012).

Additionally, traditional methods for change detection are derived from cate-
gorical land cover classifications, which can identify change only when a pixel

53 Detecting Land Cover Change in Rangelands 1159

Fig. 53.1 Time series of NDVI in Naiman Banner, Inner Mongolia. Line represents the median
value calculated over the region. Overlaid colored bars represent the corresponding land cover
classes for the years 2001–2016, according to the MODIS-derived MCD12Q1 data

crosses a threshold to a new state (e.g., from Grassland to Barren), and therefore
can identify change only after it has occurred, not when it begins. In systems with
long time lags in vegetation response (such as has been shown for recovery in arid
grasslands), this can create uncertainty about the efficacy of environmental policies
and the response of landscapes to large-scale management changes (Fig. 53.1).

As an alternative to classification-based change detection, new methods have
emerged that identify unique features in time series of remotely sensed data
to pinpoint disturbance events such as logging, wildfires, and flooding. These
time series-based methods, such as CCDC (see Chap. 19) and LandTrendr (see
Chap. 17), are typically calibrated and executed to detect abrupt changes in spectral
reflectance or derived index values associated with those disturbances (Kennedy
et al. 2010, 2014; Zhu and Woodcock 2014). This is extremely useful for detect-
ing change events like deforestation or the defoliation resulting from an insect
outbreak where the disturbance is punctuated in time and where the difference in
spectral index is significant, and regreening occurs on the order of years (Fig. 53.2,
forested pixel).

For these reasons, contemporary classification approaches are extremely lim-
ited in their ability to provide reliable information about landscape change and
dynamics in rangeland systems. Current pressures from climate change, land use
intensification, and urban expansion create an urgent need for methods to more
accurately map and track land cover status in a way that is useful for arid-
systems research, land use change detection, and the monitoring and management
of rangelands.

Forest land cover changes are stark in terms of the change in indices such as
NDVI and NBR (Kennedy et al. 2016). When a forest is disturbed, the NDVI
of a image pixel declines by a large magnitude nearly immediately (Fig. 53.2,
forest pixel). It is relatively straightforward to code a change-detection algorithm to

1160 G. Allington and N. Kreitzer

Fig. 53.2 Comparison of predicted NDVI for representative pixels from three regions: a forested
area in southern British Columbia and two regions in Naiman Banner, Inner Mongolia, one dom-
inated by woody shrubs and perennial forbs, the other by annual grasses and forbs

detect these large, abrupt transitions. Additionally, the visual change is stark, so a
visual interpreter can easily create a training dataset without ancillary information
to identify conversion from forest to burned, cleared, or developed.

In contrast, vegetation degradation and recovery in rangelands are typically
characterized by more gradual changes over longer periods of time. Unlike with
forest change, a trained interpreter using only satellite imagery cannot visually
identify a rangeland land cover class transition until years after it has begun, if at
all.

However, there is potential to utilize the information generated from tempo-
ral segmentation to characterize other aspects of change. Here, we will employ
the LandTrendr time series segmentation algorithm (as described in Chap. 17)
to derive information about how pixels are changing over time, and use that to
generate a new land cover classification for a region of northern China.

To truly understand how rangelands are changing in space and time, and to pro-
vide adequate monitoring to support sustainable rangeland management, we need
tools to help us capture and quantify those changes at landscape scales. Further,
we need new ways of measuring changes within land cover types and interpreting
those changes in ways that reflect rangeland dynamics and ecological processes.
This necessitates rethinking the framework we use to categorize these lands in
the first place. Approaches making use of greater temporal information on forest
(Healey et al. 2018) and wetland systems (Dronova et al. 2015) show promise for
deployment on rangeland systems.

We present a hybrid approach to rangeland classification that categorizes
observable dynamic patterns in vegetation cover to classify pixels based on sim-
ilarities in trajectory history. These new classes reveal much more meaningful

53 Detecting Land Cover Change in Rangelands 1161

information about the current status of a given pixel than a class based on cover
type, and also yield information about the potential of a given pixel to respond to
stressors in the future.

53.2 Practicum

53.2.1 Section 1: Inspecting Information About the Study Area

In this section, we will load and explore data sets that illustrate the focal study area,
and form the basis for the analysis.

53.2.1.1 Section 1.1: Inspect the Study Area
Naiman Banner (Fig. 53.3) is located in the southeastern portion of the Inner
Mongolia Autonomous Region of northern China. Historically, this region was
occupied by ethnic Mongolian pastoralists, and the primary vegetation was
perennial grasses with some shrub cover. The region has undergone significant
intensification of land uses over the past 60 years (John et al. 2009). Heavy
grazing and conversion to crops have removed vegetation, exposing soils to ero-
sion and resulting in extensive desertification. Since the early 1990s, a series of
environmental policies and restoration programs, including grazing restriction and
afforestation, have been implemented to halt the spread of desertification and pro-
mote revegetation of the rangelands. At the same time, cropland has continued to
expand, and the use of irrigation has eliminated almost all of the surface water
sources and severely lowered the groundwater table.

In this exercise, we will focus on a portion of central Naiman Banner that spans
from the extensive Horqin Sandy Lands in the west to the dense agricultural area
in the east.

Our first step is to load a shapefile for our area of interest (AOI) and explore
the landscape using the default satellite basemap.

// Load the shapefile asset for the AOI as a Feature
Collection
var aoi = ee.FeatureCollection(

'projects/gee-book/assets/A3-8/GEE_Ch_AOI');
Map.centerObject(aoi, 11);
Map.addLayer(aoi, {}, 'Subset of Naiman Banner');

Switch the basemap to Satellite (Fig. 53.4). Turn the layer with the AOI bound-
ary on and off and pan around the study area. Inspect the difference in land uses
and cover types between the far western and eastern edges of the AOI. Mark them
with pointer markers so you can revisit them later.

1162 G. Allington and N. Kreitzer

Fig. 53.3 Location of the Horqin Sandy Lands within Naiman Banner, Inner Mongolia, People’s
Republic of China

Fig. 53.4 Location of the study region, within the Horqin Sandy Lands

53 Detecting Land Cover Change in Rangelands 1163

Question 1. List four potential land use or land cover classes that you observe in
the image.

53.2.1.2 Section 1.2: Inspect Existing Land Use Data
Next, we will explore two different sources of land cover data to get a sense of
how this landscape is typically categorized by these kinds of classified products.

First, we will explore the MODIS MCD12Q1 Land Cover Type dataset. These
global layers are available annually from 2001 to the present at a resolution of
500 m. We will filter and visualize data for 2001, 2009, and 2016 in order to
compare how MODIS captures change over this period.

Next, we will define and execute several different functions that we will need
to use in this lesson. These functions will help us to execute the same logic across
multiple images within different image collections.

// Filter the MODIS Collection
var MODIS_LC =
ee.ImageCollection('MODIS/006/MCD12Q1').select(

'LC_Type1');

// Function to clip an image from the collection and set
the year
var clipCol = function(img) {

var date = ee.String(img.get('system:index'));
date = date.slice(0, 4);
return img.select('LC_Type1').clip(aoi) // .clip(aoi)

.set('year', date);
};

// Generate images for diff years you want to compare
var modis01 = MODIS_LC.filterDate('2001-01-01', '2002-01-
01').map(

clipCol);
var modis09 = MODIS_LC.filterDate('2009-01-01', '2010-01-
01').map(

clipCol);
var modis16 = MODIS_LC.filterDate('2016-01-01', '2017-01-
01').map(

clipCol);
// Create an Image for each of the years
var modis01 = modis01.first();
var modis09 = modis09.first();
var modis16 = modis16.first();

1164 G. Allington and N. Kreitzer

Now that we have loaded all three datasets, let’s take a look at them and see
how they compare. The randomVisualizer code below assigns random colors
to each class in each layer.

Map.addLayer(modis01.randomVisualizer(), {}, 'modis 2001',
false);
Map.addLayer(modis09.randomVisualizer(), {}, 'modis 2009',
false);
Map.addLayer(modis16.randomVisualizer(), {}, 'modis 2016',
false);

You should end up with something that looks like Fig. 53.5. (The colors
assigned to classes in your map may differ.)

Use the slider bar in the Layer menu to turn the data on and off to compare
classifications across the three years. Use the Inspector tool to select a few pixels
around the AOI to pull information on the specific classes. We have provided an
information from an example pixel in Fig. 53.6. Compare the pixel values for
the band ‘LC_Type1’ reported in your Inspector to the land cover codes and
descriptions listed in Table 53.1.

Question 2. What are the land cover types identified in this region, as classified
by the MODIS data? Be sure to check all three time periods.

Fig. 53.5 Land cover classes identified in 2001 from MODIS MCD12Q1

53 Detecting Land Cover Change in Rangelands 1165

Table 53.1 Classes in the MODIS MCD12Q1 land cover dataset

Value Description

1 Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy >2 m).
Tree cover >60%

2 Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees
(canopy >2 m). Tree cover >60%

3 Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees
(canopy >2 m). Tree cover >60%

4 Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy >2 m)
Tree cover >60%

5 Mixed Forests: dominated by neither deciduous nor evergreen (40–60% of each) tree
type (canony >2 m) Tree

6 Closed Shrublands: dominated by woody perennials (1–2 m height) >60% cover

7 Open Shrublands: dominated by woody perennials (1–2 m height) 10–60% cover

8 Woody Savannas: tree cover 30–60% (canopy >2 m)

9 Savannas: tree cover 10–30% (canopy >2m)

10 Grasslands: dominated by herbaceous annuals (<2 m)

11 Permanent Wetlands: permanently inundated lands with 30–60% water cover and
>10% vegetated cover

12 Croplands: at least 60% of area is cultivated cropland

13 Urban and Built-up Lands: at least 30% impervious surface area including building
materials, asphalt and vehicles

14 Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40–60% with
natural tree, shrub, or herbaceous vegetation

15 Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least
10 months of the year

16 Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less
than 10% vegetation

17 Water Bodies: at least 60% of area is covered by permanent water bodies

Next, we will add the WorldCover dataset from the ESA. This dataset was
generated for 2020 only, and has a resolution of 10 m.

// Add and clip the WorldCover data
var wCov =
ee.ImageCollection('ESA/WorldCover/v100').first();
var landcover20 = wCov.clip(aoi);
Map.addLayer(landcover20, {}, 'Landcover 2020');

The WorldCover dataset includes palette information in the ‘Map’ band, so
you should end up with something that looks like Fig. 53.7 (Table 53.2). (The
colors assigned to classes in your map may differ.)

1166 G. Allington and N. Kreitzer

Fig. 53.6 Land cover classes
assigned to a single pixel in
the study area in 2001, 2009,
and 2016 from MODIS
MCD12Q1

Fig. 53.7 Land cover classes identified in 2020 in the ESA WorldCover dataset

53 Detecting Land Cover Change in Rangelands 1167

Table 53.2 Subset of the 11
land cover classes that appear
within the study area in the
ESA WorldCover dataset

Value Description

10 Trees

30 Grassland

40 Cropland

50 Built-up

60 Barren/sparse vegetation

Code Checkpoint A38a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 3. Spend a few minutes turning the different land cover layers on and
off and using the Inspector to identify the classes for different pixels. How do the
MODIS and WorldCover datasets differ? In what ways are they similar?

Question 4. Return to the points that you flagged in Sect. 53.2.1. Do your esti-
mations of land cover correspond to the classifications from the two different data
sources?

Question 5. Qualitatively compare change over time according to the MODIS data.
What do you observe from these data? Approximately how much of the AOI has
changed between 2001 and 2020, according to these data? Where are the regions
of changing classification located? What regions seem to be fairly stable?

53.2.2 Section 2: Compile the Time Series of Vegetation Cover

The normalized difference vegetation index (NDVI) is an index of vegetative pro-
ductivity derived from the relationship between the red (approx. 650 nm) spectra
and the near-infrared (750–2500 nm) spectra. NDVI is a consistently good proxy
for productivity in this region (de Beurs et al. 2015). It is also highly correlated
with precipitation (John et al. 2009). This relationship has the potential to intro-
duce short-term responses of increased vegetation productivity that could be falsely
identified as land cover change (Fig. 53. 8a, b). In order to account for this effect,
we need to remove the main effect of precipitation on NDVI for a given year so
that we can assess changes in greenness outside of that variability. To do this, we
will derive individual regression models for each pixel (as detailed in Chap. 18)
for the relationship between total annual water-year precipitation and maximum
greenness in each year. We will then predict greenness for each pixel in each year
based on observed precipitation, and use the residual values of greenness from
the predicted model as an input to LandTrendr. We can think of the residuals as
the remaining annual primary productivity, after we have removed the effect of
precipitation (Fig. 53. 8c).

1168 G. Allington and N. Kreitzer

Fig. 53.8 Comparison of the variation over time in, a mean annual precipitation; b maximum
NDVI for the AOI; c residual greenness from a regression of precipitation and NDVI

53 Detecting Land Cover Change in Rangelands 1169

Fig. 53.9 Properties of the pre-generated Image Collection of maximum annual greenness values,
generated from NDVI

Before we go any further, let’s add two pre-generated image collection assets for
greenness and precipitation (greennessColl and precipColl) and explore
them. Print each of them to the Console to inspect the contents (Fig. 53.9).

var greennessColl = ee.ImageCollection(
'projects/gee-book/assets/A3-

8/GreennessCollection_aoi');
var precipColl = ee.ImageCollection(

'projects/gee-book/assets/A3-8/PrecipCollection');
print(greennessColl, 'Greenness Image Collection');
print(precipColl, 'Precip Image Collection');

1170 G. Allington and N. Kreitzer

We saw in the plots above (Figs. 53.1 and 53.2) how NDVI can vary signifi-
cantly over time in this region. We can also select out a few years to visualize how
NDVI (“greenness”) varies spatially as well.

var greennessParams = {
bands: ['greenness'],
max: 0.5,
min: 0.06,
opacity: 1,
palette: ['e70808', 'ffffff', '1de22c']

};

var greenness1985 = greennessColl.filterDate('1985-01-01',
'1986-01-01').select('greenness');

var greenness1999 = greennessColl.filterDate('1999-01-01',
'2000-01-01').select('greenness');

print(greenness1999);
var greenness2019 = greennessColl.filterDate('2019-01-01',

'2020-01-01').select('greenness');

Map.addLayer(greenness1985, greennessParams, 'Greenness
1985', false);
Map.addLayer(greenness1999, greennessParams, 'Greenness
1999', false);
Map.addLayer(greenness2019, greennessParams, 'Greenness
2019', false);

Turn the layers for the different years on and off to compare the range and
spatial distribution of NDVI (Fig. 53.10).

Question 6. What do you observe about the similarities and differences in the
distribution of NDVI across the selected years?

Combining the greenness and precipitation collections and calculating the
model to generate residuals is a relatively long process. To speed things along,
we will employ a function that has been defined in a script module called
residFunctions.

53 Detecting Land Cover Change in Rangelands 1171

Fig. 53.10 Observed greenness (NDVI) in the study region in 2019. The values range from a
minimum of 0.07 to a maximum of 0.5

// Load a function that will combine the Precipitation and
Greenness collections, run a regression, then predict NDVI
and calculate the residuals.

// Load the module
var residFunctions = require(

'projects/gee-edu/book:Part A - Applications/A3 -
Terrestrial Applications/A3.8 Detecting Land Cover Change
in Rangelands/modules/calcResid'
);

// Call the function we want that is in that module
// It requires three input parameters:
// the greenness collection, the precipitation collection
and the aoi
var residualColl =
(residFunctions.createResidColl(greennessColl,

precipColl, aoi));

// Now inspect what you have generated:
print('Module output of residuals', residualColl);

Print the resulting ImageCollection and inspect the bands and properties
in the Console (Fig. 53.11).

1172 G. Allington and N. Kreitzer

Fig. 53.11 Each image in the residualColl image collection contains two bands, residual and
greenness. The residual band is what we will pass to LandTrendr

Next, you will filter the residualColl collection to map the same years we
explored for the observed NDVI (greenness). The code chunk below will pull the
image for 1985 (the first year). Use filterDate to select the other years you
want to view. Add each to the map as new layers.

var resids = residualColl.first();
var res1 = resids.select(['residual']);
print(res1.getInfo(), 'residual image');
Map.addLayer(res1, {

min: -0.2,
max: 0.2,
palette: ['red', 'white', 'green']

}, 'residuals 1985', false);

Map and compare the residual greenness for a few different years (Fig. 53.12).

Code Checkpoint A38b. The book’s repository contains a script that shows what
your code should look like at this point.

53 Detecting Land Cover Change in Rangelands 1173

Fig. 53.12 Residual greenness in 1985, after removing the effect of precipitation. Models were
fit on a per-pixel basis

Question 7. Compare the layers for residual greenness to the observed greenness
values from Question 6. Why are we passing residuals to LandTrendr rather than
the observed greenness (NDVI) values?

53.2.3 Section 3: Time Series Segmentation

Now you are ready to apply the LandTrendr time series segmentation algorithm
to your Image Collection of residual greeness for the years 1985–2019. This will
generate information for each pixel in the study area about how it has changed over
time. In order to execute the code, you need to first define pertinent parameters in
a dictionary, which you will provide to the LandTrendr algorithm along with your
data. Chap. 17 gives an explanation of the LandTrendr algorithm and its param-
eters. That chapter showed a graphical interface for interacting with LandTrendr;
below, we utilize JavaScript functions to execute LandTrendr directly in the code
editor.

1174 G. Allington and N. Kreitzer

//---- DEFINE RUN PARAMETERS---//
// LandTrendr run parameters
var runParams = {

maxSegments: 6,
spikeThreshold: 0.9, //
vertexCountOvershoot: 3,
preventOneYearRecovery: true,
recoveryThreshold: 0.25, //
pvalThreshold: 0.05, //
bestModelProportion: 0.75,
minObservationsNeeded: 10 //

};

Follow the next steps to combine the dictionary of parameter settings
with the image collection and apply LandTrendr with the API functional-
ity ee.Algorithms.TemporalSegmentation.LandTrendr. Then print
and explore the output.

// Append the image collection to the LandTrendr run
parameter dictionary
var srCollection = residualColl;
runParams.timeSeries = srCollection;

// Run LandTrendr
var lt =
ee.Algorithms.TemporalSegmentation.LandTrendr(runParams);
// Explore the output from running LT
var ltlt = lt.select('LandTrendr');
print(ltlt);

The implementation of the LandTrendr Algorithm in GEE generates a multidi-
mensional array containing subarrays for the observation year, observed residuals,
fitted residuals, and a Boolean vertex layer that tells the user if a change in pixel
trajectory occurred in a given observation year. In order to analyze the outputs
year over year, we first must slice out the subarrays of the output multidimen-
sional array, and transform them into image collections. We will not go into detail
about slicing arrays in this lesson. For your purposes here, you can just follow
along with the provided code. If you wish to learn more about array indexing and
slicing, you can refer back to Chap. 18).

53 Detecting Land Cover Change in Rangelands 1175

//---- SLICING OUT DATA -----------------//

// Select the LandTrendr band.
var ltlt = lt.select('LandTrendr');
// Observation Year.
var years = ltlt.arraySlice(0, 0, 1);
// Slice out observed Residual value.
var observed = ltlt.arraySlice(0, 1, 2);
// Slice out fitted Residual values (predicted residual
from final LT model).
var fitted = ltlt.arraySlice(0, 2, 3);
// Slice out the 'Is Vertex' row - yes(1)/no(0).
var vertexMask = ltlt.arraySlice(0, 3, 4);
// Use the 'Is Vertex' row as a mask for all rows.
var vertices = ltlt.arrayMask(vertexMask);

Next, we will extract fitted residual values for each pixel in each year from the
array slice and convert them to an image with one band per year. First, we need
to define a few parameters that we will need to call in future steps.

// Define a few params we'll need next:
var startYear_Num = 1985;
var endYear_Num = 2019;
var numYears = endYear_Num - startYear_Num;
var startMonth = '-01-01';
var endMonth = '-12-31';

And now we can use the following code block to create a multi-band Image of
the residual greeness predicted by LandTrendr for each pixel, with one band per
year.

// Extract fitted residual value per year, per pixel and
aggregate into an Image with one band per year
var years = [];
for (var i = startYear_Num; i <= endYear_Num; ++i)
years.push(i

.toString());
var fittedStack = fitted.arrayFlatten([

['fittedResidual'], years
]).toFloat();
print(fittedStack, 'fitted stack');

1176 G. Allington and N. Kreitzer

Fig. 53.13 Fitted values for residual greenness in 1985, as predicted by the model fit via
LandTrendr

Add the fitted residuals for 1985 as a layer and compare them to the observed
values you mapped previously. Notice how the range of values is more constrained
than the residuals of observed values shown in Fig. 53.12. This is because the
values are predicted from the best-fit model for the series, and thus do not contain
the outliers and extreme values we might capture in the observed data.

Map.addLayer(fittedStack, {
bands: ['fittedResidual_1985'],
min: -0.2,
max: 0.2,
palette: ['red', 'white', 'green']

}, 'Fitted Residuals 1985');

One of the very useful outputs from LandTrendr is information on whether the
algorithm assigned a vertex to a given pixel in a given year. We can generate a
raster with a band for each year, which indicates whether or not a pixel had a vertex
identified in that year with a Boolean no/yes (0/1). We can use that information to
assess how much of the AOI changed in a given year by assessing the prevalence
of pixels with a value of 1 (indicating that a vertex was identified). To do this,
we need to slice the Boolean information out of the LandTrendr output array, and
then assign a year to each band.

53 Detecting Land Cover Change in Rangelands 1177

// Extract Boolean 'Is Vertex?' value per year, per pixel
and aggregate into image w/ Boolean band per year
var years = [];
for (var i = startYear_Num; i <= endYear_Num; ++i)
years.push(i

.toString());

var vertexStack = vertexMask.arrayFlatten([
['bools'], years

]).toFloat();

print(vertexStack.getInfo(), 'vertex Stack');

If you print the resulting image, you should see something like Fig. 53.14 in
your Console. You’ll notice that again we have a band for each year, but this time
each band is a binary raster, where a value of one (1) indicates that the pixel had
a vertex in that year.

Fig. 53.14 This is how the Boolean value binary rasters should appear in your Console once they
are sliced out of the LandTrendr. Notice that the observation year has been appended to the name
of each raster

1178 G. Allington and N. Kreitzer

In this next step, we will inspect a plot of the mean value of the Boolean
(vertex) layers for each year in order to identify which years had the most change.
We will estimate the proportion of the AOI that has a vertex identified in each
year by mapping a Reducer over a collection to calculate the mean pixel values
for each year. A mean of zero would indicate that no vertices were identified in
that year, and a mean of one would indicate that all the pixels changed. Of course,
neither of these values are likely; most years will have a relatively small number
of pixels that change, and thus the value will be low, but not zero.

Charting functions in Earth Engine requires an ImageCollection. In the
interest of time, we will load this for you as a new asset. If you would like to see an
example script for transforming a multi-band image to an ImageCollection.

// Load an Asset that has the Booleans converted to
Collection
var booleanColl = ee.ImageCollection(

'projects/gee-book/assets/A3-8/BooleanCollection');

Now that we have our Boolean bands in an ImageCollection with one
image per year, we can run a Reducer over it and create a chart of our results.

var chartBooleanMean = ui.Chart.image
.series({

imageCollection: booleanColl.select('bools'),
region: aoi,
reducer: ee.Reducer.mean(),
scale: 60,
xProperty: 'system:time_start'

})
.setChartType('ScatterChart')
.setOptions({

title: 'Naiman Boolean Mean Per Year',
vAxis: {

title: 'Boolean Mean Per Year'
},
lineWidth: 1

});

print(chartBooleanMean);

You should end up with a plot in the Console that looks something like
Fig. 53.15. The largest amount of change in this landscape occurred in 1997, when
approximately 20% of the pixels changed trajectory in some way.

53 Detecting Land Cover Change in Rangelands 1179

Fig. 53.15 Average pixel value across the study area in each year. A value of one would indicate
that all pixels in the image had a vertex identified in that year

Question 9. Which years had the greatest number of pixels with a vertex (indi-
cating a change in the trajectory of the timeseries)? List the four years with the
highest proportion of change.

Now that you have identified those years, let’s inspect the spatial patterns and
locations of those pixels for the major change years. For this, we can use our
vertexStack image. Set the visualization parameters using the code provided
below, then edit the specific year in the bands setting to match the year you want
to visualize. Figure 53.16 displays the pixels that changed in 1997.

Fig. 53.16 Location of pixels with a vertex identified in 1997

1180 G. Allington and N. Kreitzer

// Plot individual years to see the spatial patterns in the
vertices.
var boolParams = {

// change this for the year you want to view
bands: 'bools_1997',
min: 0,
// no vertex
max: 1,
// vertex identified by LT for that year
palette: ['white', 'red']

};

Map.addLayer(vertexStack, boolParams, 'vertex 1997',
false);
// this visualizes all pixels with a vertex in that year.

Run the script several times, changing the year in the bands parameter to match
the top change years you identified in the previous step. Take a screenshot of each
one and store it so that you can compare them.

Question 10. Do you notice any differences in the spatial patterns of pixels across
the top four change years, either in where they are located or their relative patch
sizes or aggregation?

Code Checkpoint A38c. The book’s repository contains a script that shows what
your code should look like at this point.

53.2.4 Section 4: Classify Pixels Based on Similarities in Time
Series Trajectories

In the vertexStack object that we created, we have information about every
time there was a change in trajectory of the time series of residuals for every pixel
in the AOI. In this next step, we are going to look for patterns or similarities
in those trajectories to characterize different trajectory archetypes, representing
unique pixel histories, as the basis for a classification.

In the visualizations above, we focused on the timing and spatial patterns for
the top four years of change. If we extract the time series of residual greenness for
every pixel in Fig. 53.16, we get something like the plots shown in Fig. 53.17. If
we extract the time series of all pixels that changed in 1990, we get something like
Fig. 53.17a. If we compare these plots back to our screenshots of the locations of
the vertex pixels in those years, we can see that there are distinct patterns both in
the spatial location and the shape of the time series between pixels that had a vertex
in 1990 and those that changed in 1997 (Fig. 53.17b), or even 2012 (Fig. 53.17c).

53 Detecting Land Cover Change in Rangelands 1181

Notice the differences in the trajectory of greenness prior to the vertex across the
three plots, and that the scale of the y-axis varies across the plots as well.

The plots shown in Fig. 53.17 show the median value for each year across all
pixels that had a vertex in that year. But it is also possible that a single pixel has
more than one vertex in its history (i.e., that it changed trajectory more than once,
such as in Fig. 53.2), so there may be some overlap between pixels with a vertex
in 1990 and those with a vertex in 1997, or in other years. And it is possible that
groups of pixels are changing in similar ways, due to similarities in management,

Fig. 53.17 Median residual greenness values for all pixels in the AOI with a vertex identified by
LandTrendr in, a 1990; b 1997; and c 2012

1182 G. Allington and N. Kreitzer

soils or other factors. We are going to use all of the information on the changes
across all years to characterise the different types of change that have occurred in
our study area.

We are going to employ an unsupervised classification approach to clustering
these data, as we do not have ground truth or pre-classified training data that we are
trying to replicate. Rather, we are interested in finding out what kinds of inherent
patterns might exist across the pixels in our AOI, based on similarities in the shape
of their trajectories. Different trajectories in the time series of greenness might be
due to things like starting conditions, as well as different kinds of management or
environmental stress. If you need to review the basics of classification, you can
review Chap. 6.

We will start by creating some naive training data from our multiband image
of Boolean layers.

// Create training data.
var training = vertexStack.sample({

region: aoi,
scale: 60,
numPixels: 5000

});

Now, set the maximum number of allowable clusters to 10, train the clusterer,
and apply it to the vertex data.

var maxclus = 10;

// Instantiate the clusterer and train it.
var trained_clusterer =
ee.Clusterer.wekaKMeans(maxclus).train(

training);

// Cluster the input using the trained clusterer
var cluster_result =
vertexStack.cluster(trained_clusterer);

The default indexing in Java starts at zero, so the first class assigned by the
clusterer is labeled with the value 0. This can pose problems if you want to mask
out the results to view only one cluster at a time, so we will quickly remap the 0
value to be a 10. Then, we will add the results as a new layer to quickly visualize
the classified raster (Fig. 53.18).

53 Detecting Land Cover Change in Rangelands 1183

Fig. 53.18 Random-color visualization of unsupervised clusters

// Remap result_totalChange so that class 0 is class 10
cluster_result = cluster_result.remap(

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 1, 2, 3, 4, 5, 6, 7, 8, 9])

.toFloat()

.rename('cluster');
Map.addLayer(cluster_result.randomVisualizer(), {}, maxclus
.toString() + '_clusters');

Turn on the satellite basemap and move the opacity slider for the classified
raster layer 10_clusters. (The colors assigned to classes in your map may
differ.) Some classes seem to align somewhat with observable features in the land-
scape, but many of them do not. This indicates that there is some similarity in the
history of these pixels that is not immediately obvious from their current cover.

Code Checkpoint A38d. The book’s repository contains a script that shows what
your code should look like at this point.

1184 G. Allington and N. Kreitzer

53.2.5 Section 5: Explore the Characteristics of the New Classes

We have now generated a classified raster based on similarities in the trajectory
of the greenness in each pixel. In order to understand what these classes actu-
ally mean and what particular trajectories these classes represent, we will create
summaries of the median greenness of the pixels in each class and compare them.

We will use the ImageCollection of observed greenness that we used in
Sect. 53.2.2, and also a collection of the fitted residuals generated by LandTrendr
in Sect. 53.2.3. Our first step will be to add a band with the cluster number to
those collections.

// GOAL: Find Median Greenness for each cluster per year in
the image
// define a function to add the cluster number band to each
Image in the collection
var addClusters = function(img) {

return img.addBands(cluster_result);
};

// Add the cluster band
var ObvGreen_wClusters = greennessColl.map(addClusters);

Next, we need to select and mask out the class we are interested in exploring.
We’ll just start with the first class.

//---Select and mask pixels by cluster number
var cluster_num = 1; // change this to the class of
interest

// Mask all pixels but the selected cluster number
// Define a function so we can map it over the entire
collection
var maskSelCluster = function(img) {

var selCluster = img.select('cluster').eq(cluster_num);
return img.mask(selCluster);

};

53 Detecting Land Cover Change in Rangelands 1185

// map the function over the entire collection
var selClusterColl =
ObvGreen_wClusters.map(maskSelCluster);

// Use the following to visualize the location of the focal
class:
Map.addLayer(selClusterColl.select('cluster').first(), {

palette: 'green'
}, 'Cluster ' + cluster_num.toString());

Next, you will utilize the ui.Chart.image functionality, combined with a
Reducer, to plot the median value of observed greenness for each year for the focal
class (Fig. 53.19).

Fig. 53.19 Median value of the observed greenness value for all pixels in the AOI that are iden-
tified in Cluster 1

1186 G. Allington and N. Kreitzer

var chartClusterMedian = ui.Chart.image.seriesByRegion({
imageCollection: selClusterColl,
regions: aoi,
reducer: ee.Reducer.median(),
band: 'greenness',
scale: 90,
xProperty: 'system:time_start',
seriesProperty: 'label'

})
.setChartType('ScatterChart')
.setOptions({

title: 'Median Observed Greenness of Cluster ' +
cluster_num.toString(),

vAxis: {
title: 'Median Observed Greenness'

},
lineWidth: 1,
pointSize: 4,
series: {

0: {
color: 'green'

},
}

});

print(chartClusterMedian);

Now we will do the same, but for the fitted residual greenness values predicted
from LandTrendr.

53 Detecting Land Cover Change in Rangelands 1187

var fittedresidColl = ee.ImageCollection(
'projects/gee-book/assets/A3-8/FR_Collection');

// add the cluster number band to each (function defined
above, just use again here)
var fittedresid_wClusters =
fittedresidColl.map(addClusters);

//Mask all pixels but the selected cluster number
// again, function defined above, just call it here
var selFRClusterColl =
fittedresid_wClusters.map(maskSelCluster);

Map.addLayer(selFRClusterColl.select('cluster').first(), {
palette: ['white', 'blue']

}, 'Cluster ' + cluster_num.toString());

//Chart Median Fitted Residual Values by cluster

var chartClusterMedian = ui.Chart.image.seriesByRegion({
imageCollection: selFRClusterColl,
regions: aoi,
reducer: ee.Reducer.median(),
band: 'FR',
scale: 90,
xProperty: 'system:time_start',
seriesProperty: 'label'

}).setChartType('ScatterChart')
.setOptions({

title: 'Median Fitted Residual Greenness of Cluster
' +

cluster_num.toString(),
vAxis: {

title: 'Median Residual Greenness'
},
lineWidth: 1,
pointSize: 4,
series: {

0: {
color: 'red'

},
}

});

print(chartClusterMedian);

1188 G. Allington and N. Kreitzer

From the Console, expand each of the two plots to a new tab, then download
the data as a.csv file and rename it something like “observed_green_Class1.csv.”
Repeat the steps above for each of the classes.

Figure 53.20 provides an example of the outputs for a few of the classes that
you have generated. When viewed side by side, it is easier to see how pixels in
some parts of the AOI have experienced different trajectories of vegetation cover
over time and that the exact time and nature of the shifts in their trajectories are
also different. This may be due to differences in underlying vegetation, land use,
and management activity.

In a final step, we will compare the classes you generated by clustering the time
series data to how the same locations are classified over time by the MODIS land
cover data. We will do this by picking a few points within the AOI and plotting
the land cover type number for each year of the MODIS data (see Table 53.1 to
link the pixel value to the descriptions of the class types).

Use the Inspector tool to select a pixel in a region that interests you. Copy the
code chunk below to your script. In the Inspector window, expand the information
by clicking on the triangle next to Point and copy the longitude and latitude values,
and replace the values in the code chunk below with your values.

Fig. 53.20 Example outputs for three of the clusters identified in the data. The top row is the
median greenness value for all pixels in the cluster. The middle row is the residual greenness
value predicted by the fitted LandTrendr model. The bottom row is the location of all pixels in
the AOI within that class; cluster 1 is more common in the southeast, cluster 3 is aggregated in the
northwestern region, and cluster 4 has patches throughout the AOI

53 Detecting Land Cover Change in Rangelands 1189

// Generate a point geometry.
var expt = ee.Geometry.Point(

[120.52062120781073, 43.10938146169287]);
// Convert to a Feature.
var point = ee.Feature(expt, {});

The last line in the code chunk above converts the point to a feature. Now
you can run a Reducer over that point to extract values and plot them to a chart
(Fig. 53.21).

// Create a time series chart of MODIS Classification:
var chart_LC = ui.Chart.image.seriesByRegion(

MODIS_LC, point, ee.Reducer.mean(), 'LC_Type1', 30,
'system:time_start', 'label')

.setChartType('ScatterChart')

.setOptions({
title: 'LC of Selected Pixels',
vAxis: {

title: 'MODIS landcover'
},
lineWidth: 1,
pointSize: 4

});

print(chart_LC);

Repeat the steps above for a few points of interest to you and save screenshots
of the plots.

Fig. 53.21 Example output
of the MODIS MCD12Q1
landcover class values for a
single point in the AOI. Class
10 is “Grasslands: dominated
by herbaceous annuals (<
2 m)”

1190 G. Allington and N. Kreitzer

Code Checkpoint A38e. The book’s repository contains a script that shows what
your code should look like at this point.

53.3 Synthesis

Assignment 1. Combine all of your downloaded data files to create a single plot
(in Excel or Google Sheets, for example) of the trajectory of median observed
greenness for each of the classes. Compare each of these to the spatial patterns of
the different classes (as in Fig. 53.17 and in your Map view), and to the underlying
satellite image view. Pick three of the classes and describe the general trend in the
time series (how has greenness changed over time?) and the spatial distribution of
the pixels in that class.

We implemented this by specifying that the clusterer should look for 10 classes
in the data. In a true implementation, we would want to explore the outputs across
a range of cluster numbers. We may have forced the algorithm to split the data
into too many (or too few) groups. Based on your inspection of the timing of the
vertices and the spatial distribution of the final classes, are there any that you think
could be grouped together in a final classification? What would you estimate to be
the final number of classes in these data?

How much variation over time has there been for the different points accord-
ing to the MODIS data? How does this compare to the variation in greenness
represented in the final class that you generated?

53.4 Conclusion

In this module, you explored a new approach to classifying land cover that is based
on the temporal trajectory of individual pixels. Earth Engine is a valuable tool
for this analysis because you are able to access the historical archive of imagery
and climate data, as well as the computational tools needed to process, analyze,
and classify these data. You learned how to create new derived datasets to use
both as inputs to the analysis and as a final classified product. By comparing the
temporal trajectories of the new classes against traditional land cover data, you
learned how to distinguish the pros and cons of existing datasets for meeting land
cover mapping objectives. Now that you understand the basics of the challenges
of detecting land cover change in rangelands and have explored a new approach
to classifying different trajectories, you can apply this approach to your own areas
of interest to better understand the history of response.

53 Detecting Land Cover Change in Rangelands 1191

References

Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. In:
ESA Work Paper, vol 12, p 146. https://doi.org/10.22004/ag.econ.288998

Arino O, Bicheron P, Achard F et al (2008) GlobCover: The most detailed portrait of Earth. Eur
Space Agency Bull 2008:24–31

Asner GP, Elmore AJ, Olander LP et al (2004) Grazing systems, ecosystem responses, and global
change. Ann Rev Environ Resour 29:261–299. https://doi.org/10.1146/annurev.energy.29.062
403.102142

Bontemps S, Defourny P, Van Bogaert E et al (2011) GLOBCOVER 2009: Products description
and validation report. ESA Bull 136:53

Briske DD (2017) Rangeland systems: processes, management and challenges. Springer Nature
Campbell DJ, Lusch DP, Smucker TA, Wangui EE (2005) Multiple methods in the study of driving

forces of land use and land cover change: a case study of SE Kajiado District, Kenya. Hum Ecol
33:763–794. https://doi.org/10.1007/s10745-005-8210-y

Cao S, Sun G, Zhang Z et al (2011) Greening China naturally. Ambio 40:828–831. https://doi.org/
10.1007/s13280-011-0150-8

Derner JD, Hunt L, Ritten J et al (2017) Livestock production systems. Rangeland systems.
Springer, Cham, pp 347–372

Fan P, Chen J, John R (2016) Urbanization and environmental change during the economic transi-
tion on the Mongolian Plateau: Hohhot and Ulaanbaatar. Environ Res 144:96–112. https://doi.
org/10.1016/j.envres.2015.09.020

Friedl MA, McIver DK, Hodges JCF et al (2002) Global land cover mapping from MODIS: algo-
rithms and early results. Remote Sens Environ 83:287–302. https://doi.org/10.1016/S0034-425
7(02)00078-0

Friedl MA, Sulla-Menashe D, Tan B et al (2010) MODIS collection 5 global land cover: algorithm
refinements and characterization of new datasets. Remote Sens Environ 114:168–182. https://
doi.org/10.1016/j.rse.2009.08.016

Ganguly S, Friedl MA, Tan B et al (2010) Land surface phenology from MODIS: characterization
of the collection 5 global land cover dynamics product. Remote Sens Environ 114:1805–1816.
https://doi.org/10.1016/j.rse.2010.04.005

García-Mora TJ, Mas JF, Hinkley EA (2012) Land cover mapping applications with MODIS: a
literature review. Int J Digit Earth 5:63–87. https://doi.org/10.1080/17538947.2011.565080

Healey SP, Cohen WB, Yang Z et al (2018) Mapping forest change using stacked generalization:
an ensemble approach. Remote Sens Environ 204:717–728. https://doi.org/10.1016/j.rse.2017.
09.029

Homer C, Dewitz J, Yang L et al (2015) Completion of the 2011 national land cover database
for the conterminous United States—representing a decade of land cover change information.
Photogramm Eng Remote Sensing 81:345–354

Huang J, Yu H, Guan X et al (2016) Accelerated dryland expansion under climate change. Nat
Clim Chang 6:166–171. https://doi.org/10.1038/nclimate2837

John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia:
1992–2004. Environ Res Lett 4:45010. https://doi.org/10.1088/1748-9326/4/4/045010

Kennedy RE, Yang Z, Cohen WB (2010) Detecting trends in forest disturbance and recovery using
yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens
Environ 114:2897–2910. https://doi.org/10.1016/j.rse.2010.07.008

Kennedy RE, Andréfouët S, Cohen WB et al (2014) Bringing an ecological view of change
to Landsat-based remote sensing. Front Ecol Environ 12:339–346. https://doi.org/10.1890/
130066

Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming
land scarcity. Proc Natl Acad Sci USA 108:3465–3472. https://doi.org/10.1073/pnas.110048
0108

https://doi.org/10.22004/ag.econ.288998
https://doi.org/10.1146/annurev.energy.29.062403.102142
https://doi.org/10.1146/annurev.energy.29.062403.102142
https://doi.org/10.1007/s10745-005-8210-y
https://doi.org/10.1007/s13280-011-0150-8
https://doi.org/10.1007/s13280-011-0150-8
https://doi.org/10.1016/j.envres.2015.09.020
https://doi.org/10.1016/j.envres.2015.09.020
https://doi.org/10.1016/S0034-4257(02)00078-0
https://doi.org/10.1016/S0034-4257(02)00078-0
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1016/j.rse.2010.04.005
https://doi.org/10.1080/17538947.2011.565080
https://doi.org/10.1016/j.rse.2017.09.029
https://doi.org/10.1016/j.rse.2017.09.029
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1088/1748-9326/4/4/045010
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1890/130066
https://doi.org/10.1890/130066
https://doi.org/10.1073/pnas.1100480108
https://doi.org/10.1073/pnas.1100480108

1192 G. Allington and N. Kreitzer

Lang W, Chen T, Li X (2016) A new style of urbanization in China: transformation of urban rural
communities. Habitat Int 55:1–9. https://doi.org/10.1016/j.habitatint.2015.10.009

Li WJ, Ali SH, Zhang Q (2007) Property rights and grassland degradation: a study of the Xilin-
gol Pasture, Inner Mongolia, China. J Environ Manag 85:461–470. https://doi.org/10.1016/j.jen
vman.2006.10.010

Liu M, Dries L, Heijman W et al (2015) Tragedy of the commons or tragedy of privatisation? The
impact of land tenure reform on grassland condition in Inner Mongolia, China. In: International
conference of agricultural economists, pp 9–14

Melillo JM, Richmond TT, Yohe G (2014) Climate change impacts in the United States. US Global
Change Research Program Washington, DC

Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: desertification syn-
thesis. Island Press Washington, DC

Prestele R, Alexander P, Rounsevell MDA et al (2016) Hotspots of uncertainty in land-use and
land-cover change projections: a global-scale model comparison. Glob Chang Biol 22:3967–
3983. https://doi.org/10.1111/gcb.13337

Reid RS, Kruska RL, Muthui N et al (2000) Land-use and land-cover dynamics in response to
changes in climatic, biological and socio-political forces: the case of Southwestern Ethiopia.
Landscape Ecol 15:339–355. https://doi.org/10.1023/A:1008177712995

Schneider A, Mertes CM, Tatem AJ et al (2015) A new urban landscape in East-Southeast Asia,
2000–2010. Environ Res Lett 10:34002. https://doi.org/10.1088/1748-9326/10/3/034002

Sleeter BM, Sohl TL, Loveland TR et al (2013) Land-cover change in the conterminous United
States from 1973 to 2000. Glob Environ Change 23:733–748. https://doi.org/10.1016/j.gloenv
cha.2013.03.006

Zanaga D, Van De Kerchove R, De Keersmaecker W et al. (2021) ESA WorldCover 10 m 2020
v100. Meteosat Second Generation Evapotranspiration, vol 1–27. https://doi.org/10.5281/zen
odo.5571936

Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using
all available Landsat data. Rem Sens Environ 144: 152–171

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.habitatint.2015.10.009
https://doi.org/10.1016/j.jenvman.2006.10.010
https://doi.org/10.1016/j.jenvman.2006.10.010
https://doi.org/10.1111/gcb.13337
https://doi.org/10.1023/A:1008177712995
https://doi.org/10.1088/1748-9326/10/3/034002
https://doi.org/10.1016/j.gloenvcha.2013.03.006
https://doi.org/10.1016/j.gloenvcha.2013.03.006
https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.5281/zenodo.5571936
http://creativecommons.org/licenses/by/4.0/

54Conservation I—Assessing
the Spatial Relationship Between
Burned Area and Precipitation

Harriet Branson and Chelsea Smith

Overview
The purpose of this chapter is to introduce the need for fire activity and rainfall trend
monitoring to inform conservation management practices.

Practical conservation requires an understanding of key environmental factors
such as fire and rainfall, which impact the amount of forage and habitat available
for a variety of species. This chapter will guide you through how to create fire and
rainfall time series and visualize this data. At the end of this chapter, you will be able to
present this information in an accessible way on a graph to help inform conservation
management practices such as early burning and supplementary feeding.

Learning Outcomes

• Understanding why fire and rainfall trends are useful in conservation management.
• Creating a time series of burned areas.
• Writing a function to map areal mean rainfall calculations over an
ImageCollection.

• Generating an interactive graph displaying fire and rainfall trends over a 10-year
period.

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).

H. Branson (B) · C. Smith
Fauna & Flora International, David Attenborough Building, Pembroke St., Cambridge CB2 3QZ,
UK
e-mail: Harriet.Branson@fauna-flora.org

C. Smith
e-mail: chelsea.v.smith@fauna-flora.org

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_54

1193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_54&domain=pdf
http://orcid.org/0000-0002-4553-7296
http://orcid.org/0000-0003-1178-5432
mailto:Harriet.Branson@fauna-flora.org
mailto:chelsea.v.smith@fauna-flora.org
https://doi.org/10.1007/978-3-031-26588-4_54

1194 H. Branson and C. Smith

• Create a graph using ui.Chart (Chap. 4).
• Summarize an image with reduceRegion (Chap. 9).
• Write a function and map it over an ImageCollection (Chap. 12).
• Work with CHIRPS rainfall data (Chap. 14).
• Mask cloud, cloud shadow, snow/ice, and other undesired pixels (Chap. 15).

54.1 Introduction to Theory

Globally, biodiversity is under threat from changing climates, habitat loss, and
fragmentation. Conservation work to protect, manage, and restore ecosystems is
vitally important to maintain global biodiversity, which supports climate regulation
and a host of other ecosystem services we depend upon (Reddy 2021).

Remote sensing offers a valuable tool to collect, analyze, and display data over
an entire ecosystem. Environmental variables such as fire and rainfall have direct
impacts on habitat and forage availability (Holden et al. 2018). Monitoring of these
variables can help inform conservation, such as fire management to reduce the
severity of fires and amount of habitat lost (Ribeiro et al. 2021). Monitoring rainfall
patterns can help conservationists understand which climate conditions species
prefer in their habitats and if the conditions are at risk of changing (Pinto-Ledezma
and Cavender-Bares 2021).

In this chapter, we will see how using the Earth Engine platform allows conser-
vationists to scope the fire and rainfall conditions for any site using global datasets.
The data we visualize is being directly used in real-world conservation by inform-
ing fire management, as well as indirectly through the identification of climate
conditions to which species are adapted.

54.2 Practicum

54.2.1 Section 1: Assess Area of Interest

The first step is to upload and explore the area of interest. Northern Mozambique’s
Niassa Reserve is home to 40% of the country’s entire elephant population, and
is a haven for two of Africa’s threatened carnivores: lion, and wild dog. Fire is
a key ecological process in forested savanna ecosystems that are prevalent in the
Niassa Reserve, and the knowledge of the fire regime is an important factor in
forest fire management (Nhongo et al. 2020). Our area of interest (AOI) has very
stark wet and dry seasons; take a look at the satellite imagery basemap that shows
the landscape in the wet season.

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1195

// ** Upload the area of interest ** //
var AOI = ee.Geometry.Polygon([

[
[37.72, -11.22],
[38.49, -11.22],
[38.49, -12.29],
[37.72, -12.29]

]
]);
Map.centerObject(AOI, 9);
Map.addLayer(AOI, {

color: 'white'
}, 'Area of interest');

54.2.2 Section 2: Load the MODIS Burned Area Dataset

Next, we will use the MCD64A1 dataset, which is a global layer representing
burned area at 500 m resolution from 2001 to the present. The layer is also accom-
panied by a band named ’BurnDate’, which enables you to disaggregate into
daily fire data.

First, we will filter the MODIS ImageCollection based on the times-
pan requirements. We are looking at fire patterns over the past 10 years.
The MCD64A1 dataset comes with three main bands, ’BurnDate’,
’Uncertainty’, and ’QA’ (quality assurance). In this case, we select only the
’BurnDate’ band, which associates each pixel of burned area with a day-of-year
value.

// ** MODIS Monthly Burn Area ** //

// Load in the MODIS Monthly Burned Area dataset.
var dataset = ee.ImageCollection('MODIS/006/MCD64A1')

// Filter based on the timespan requirements.
.filter(ee.Filter.date('2010-01-01', '2021-12-31'));

// Select the BurnDate band from the images in the
collection.
var MODIS_BurnDate = dataset.select('BurnDate');

Next, we can create the function that will calculate the area of pixels associated
with each day. The function is structured so that it will map over each image in
the MODIS_BurnDate ImageCollection. It begins by using the command

1196 H. Branson and C. Smith

pixelArea, which calculates the area of each pixel in square meters. To limit
the calculation to specifically burned areas, we need to use updateMask with
our input img as the variable. Because we want our final area calculation to be
in square kilometers instead of square meters, we divide the value by 1,000,000
(1e6).

The reduceRegion command gathers the sum of burned area within our
input area of interest at the correct scale of the input image (500 m for our
MODIS_BurnDate collection). After this, the getNumber command recalls the
area calculation per image per day of year and appends it as a new band area on
the ImageCollection.

Since the MODIS ImageCollection has a ’system:time_start’
embedded within each image, we can select the area band and continue without
the ’BurnDate’.

// A function that will calculate the area of pixels in
each image by date.
var addArea = function(img) {

var area = ee.Image.pixelArea()
.updateMask(

img
) // Limit area calculation to areas that have

burned data.
.divide(1e6) // Divide by 1,000,000 for square

kilometers.
.clip(AOI) // Clip to the input geometry.
.reduceRegion({

reducer: ee.Reducer.sum(),
geometry: AOI,
scale: 500,
bestEffort: true

}).getNumber(
'area'

); // Retrieve area from the reduce region
calculation.

// Add a new band to each image in the collection
named area.

return img.addBands(ee.Image(area).rename('area'));
};

// Apply function on image collection.
var burnDateArea = MODIS_BurnDate.map(addArea);

// Select only the area band as we are using system time
for date.
var burnedArea = burnDateArea.select('area');

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1197

To show the total amount of burned area over the past 10 years, we
can plot this on a time-series graph. By defining the xProperty with
’system:time_start’ for the date variable on this graph, we can plot the
total area burned with time.

// Create a chart that shows the total burned area over
time.
var burnedAreaChart =

ui.Chart.image
.series({

imageCollection: burnedArea, // Our image
collection.

region: AOI,
reducer: ee.Reducer.mean(),
scale: 500,
xProperty: 'system:time_start' // time

})
.setSeriesNames(['Area']) // Label for legend.
.setOptions({

title: 'Total monthly area burned in AOI',
hAxis: {

title: 'Date', // The x axis label.
format: 'YYYY', // Years only for date format.
gridlines: {

count: 12
},
titleTextStyle: {

italic: false,
bold: true

}
},
vAxis: {

title: 'Total burned area (km²)', // The y-axis
label

maxValue: 2250, // The bounds for y-axis
minValue: 0,
titleTextStyle: {

italic: false,
bold: true

}
},
lineWidth: 1.5,
colors: ['d74b46'], // The line color

});
print(burnedAreaChart);

1198 H. Branson and C. Smith

Code Checkpoint A39a. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. We have calculated the area burned in square kilometers; which line of
code would you have to change, and how, to calculate the area burned in hectares?

Question 2. By hovering your mouse over the graph, which month has the greatest
area burnt, and does this vary year on year?

Question 3. The most appropriate fire dataset and analysis to use for your study
will vary depending on location and scale of analysis. If you wanted to understand
the impact of fires on koala habitat in southern Australia, what would be the most
appropriate analysis? Hint: Consider the analysis run in Chap. 46 and the work by
Bonney et al. (2020).

54.2.3 Section 3: Areal Mean Rainfall Time Series

To inform habitat management and further understand fire patterns within northern
Mozambique, we have to also consider patterns in rainfall. To do this, we will use
the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Precipi-
tation dataset. This dataset measures precipitation levels every five days from 1981
to present day at 500 m resolution to make a long-term quasi-global dataset.

First, we will define our temporal range (matching our burned area data) from
2010 to 2021, and set the advancing dates from these years. After this, we create a
sequence of years and months that will be used to filter the dataset chronologically.

After setting these parameters, filter the CHIRPS dataset using the start
and end date, and sort chronologically in descending order using the same
’system:time_start’ property used in Sect. 54.2.1. Filter the bounds to
the AOI, and select the precipitation band from the ImageCollection.

// Load in the CHIRPS rainfall pentad dataset.
var chirps = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD');

// Define the temporal range
var startyear = 2010;
var endyear = 2021;

// Set the advancing dates from the temporal range.
var startdate = ee.Date.fromYMD(startyear, 1, 1);
var enddate = ee.Date.fromYMD(endyear, 12, 31);

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1199

// Create a list of years
var years = ee.List.sequence(startyear, endyear);
// Create a list of months
var months = ee.List.sequence(1, 12);

// Filter the dataset based on the temporal range.
var Pchirps = chirps.filterDate(startdate, enddate)

.sort('system:time_start',
false) // Sort chronologically in descending

order.
.filterBounds(AOI) // Filter to AOI
.select('precipitation'); // Select precipitation band

Once the dataset has been filtered, we can calculate the monthly precipitation
using a function. The function maps the input, y, over the list of years generated
above. The function then returns the total precipitation for the month, along-
side a date variable and the ’system:time_start’ property. The command
millis is used to keep the system number that refers to the date collected.

Print the ImageCollection for checking.

// Calculate the precipitation per month.
var MonthlyRainfall = ee.ImageCollection.fromImages(

years.map(function(
y

) { // Using the list of years based on temporal range.
return months.map(function(m) {

var w = Pchirps.filter(ee.Filter
.calendarRange(y, y, 'year'))

.filter(ee.Filter.calendarRange(m, m,
'month'))

.sum(); // Calculating the sum for the
month

return w.set('year', y)
.set('month', m)
.set('system:time_start', ee.Date

.fromYMD(y, m, 1).millis()
) // Use millis to keep the system time

number.
.set('date', ee.Date.fromYMD(y, m,

1));
});

}).flatten());
// Print the image collection.
print('Monthly Precipitation Image Collection',
MonthlyRainfall);

1200 H. Branson and C. Smith

Once the monthly precipitation levels have been calculated, we can use a
reducer to calculate the mean total rainfall across our AOI, also known as the
areal mean rainfall (AMR), and plot these on a time-series graph. This process is
very similar to the burned area chart in Sect. 54.2.2.

// ** Chart: CHIRPS Precipitation ** //

// Create a chart displaying monthly rainfall over a
temporal range.
var monthlyRainfallChart =

ui.Chart.image
.series({

imageCollection: MonthlyRainfall.select(
'precipitation'), // Select precipitation band

region: AOI,
reducer: ee.Reducer

.mean(), // Use mean reducer to calculate AMR
scale: 500,
xProperty: 'system:time_start' // Use system time

start for x-axis
})
.setSeriesNames(['Precipitation']) // /The label legend
.setOptions({

title: 'Total monthly precipitation in AOI', // Add
title

hAxis: {
title: 'Date',
format: 'YYYY', // Year only date format
gridlines: {

count: 12
},
titleTextStyle: {

italic: false,
bold: true

}
},

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1201

vAxis: {
title: 'Precipitation (mm)', // The y-axis

label
maxValue: 450, // The bounds for y-axis
minValue: 0,
titleTextStyle: {

italic: false,
bold: true

}
},
lineWidth: 1.5,
colors: ['4f5ebd'],

});
print(monthlyRainfallChart);

Print the monthly rainfall chart. Using the chart, we can see which months
receive rainfall, and can categorize these as the wet season. With data from the
chart, we will categorize any month that receives over 5 mm of rainfall as a wet
season month. We can then calculate total seasonal rainfall across our AOI by
aggregating wet season months together.

// 2010/2011 wet season total
var year = 2010; // Adjust year
var startDate = ee.Date.fromYMD(year, 11, 1); // Adjust
months/days
var endDate = ee.Date.fromYMD(year + 1, 5, 31); // Adjust
months/days
var filtered = chirps

.filter(ee.Filter.date(startDate, endDate));
var Rains10_11Total =
filtered.reduce(ee.Reducer.sum()).clip(AOI);

// 2011/2012 wet season total
var year = 2011; // Adjust year
var startDate = ee.Date.fromYMD(year, 11, 1); // Adjust
months/days
var endDate = ee.Date.fromYMD(year + 1, 5, 31); // Adjust
months/days
var filtered = chirps

.filter(ee.Filter.date(startDate, endDate));
var Rains11_12Total =
filtered.reduce(ee.Reducer.sum()).clip(AOI);

1202 H. Branson and C. Smith

Question 4. Classify the remaining wet seasons using the areal mean rainfall chart,
and calculate the total seasonal rainfall over the AOI using the code you have just
learned, to calculate wet seasons in 2010–2011 and 2011–2012.

Question 5. We have created a 10-year time series. Is this a long enough time
period to start to consider changes in rainfall patterns?

Code Checkpoint A39b. The book’s repository contains a script that shows what
your code should look like at this point.

54.2.4 Section 4: Visualizing Fire and Rainfall Time Series

Now that we have visualized patterns in both burned area and precipitation sep-
arately, it is important to assess these patterns together. To do this, we need to
combine the two image collections in order to plot them on the same graph.

Once they are combined, we can begin creating a multi-variable time-series
chart. By keeping the ’system:time_start’ property on both sets of image
collections, we are able to easily plot each variable temporally. Following this, we
set both series’ names and set interpolateNulls to true to provide contin-
uous precipitation data that can be plotted alongside the near daily burned area
data.

To enable two y-axes, we need to set some series parameters. By defining our
targetAxisIndex as 0 and 1, we can then set our vAxes to match, using
two sets of parameters with different labels and different bounds for ease of plot-
ting. This is useful since the burned area and precipitation datasets have different
minimum and maximum values, so it would be difficult to analyze on the same
axis.

You can print the chart to the Console for export if necessary, but for
interactivity, we will add it to the map later.

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1203

// ** Combine: CHIRPS Average Rainfall & MODIS Monthly Burn
** //

// Combine the two image collections for joint analysis
var bpMerged = burnedArea.merge(MonthlyRainfall);
print('Merged image collection', bpMerged);

// ** Chart: CHIRPS Average Rainfall & MODIS Monthly Burn
** //
// Plot the two time series on a graph
var bpChart =

ui.Chart.image.series({
imageCollection: bpMerged, // The merged image

collection
region: AOI,
reducer: ee.Reducer.mean(),
scale: 500,
xProperty: 'system:time_start' // Use system time

start for synchronous plotting
})
.setSeriesNames(['Burned Area', 'Precipitation']) //

Label series
.setChartType('LineChart') // Define chart type
.setOptions({

title: 'Relationship between burned area and
rainfall in Chuilexi',

interpolateNulls: true, // Interpolate nulls to
provide continuous data

series: { // Use two sets of series with a target
axis to create the two y-axes needed for plotting

0: { // 0 and 1 reference the vAxes settings
below

targetAxisIndex: 0,
type: 'line',
lineWidth: 1.5,
color: 'd74b46'

},
1: {

targetAxisIndex: 1,
type: 'line',
lineWidth: 1.5,
color: '4f5ebd'

},

1204 H. Branson and C. Smith

},
hAxis: {

title: 'Date',
format: 'YYYY',
gridlines: {

count: 12
},
titleTextStyle: {

italic: false,
bold: true

}
},
vAxes: {

0: {
title: 'Burned area (km²)', // Label left-

hand y-axis
baseline: 0,
viewWindow: {

min: 0
},
titleTextStyle: {

italic: false,
bold: true

}
},
1: {

title: 'Precipitation (mm)', // Label
right-hand y-axis

baseline: 0,
viewWindow: {

min: 0
},
titleTextStyle: {

italic: false,
bold: true

}
},

},
curveType: 'function' // For smoothing

});
bpChart.style().set({

position: 'bottom-right',
width: '492px',
height: '300px'

});

Once we have created our final chart that displays burned area and precipitation,
we can build some legends on the map for the spatial data. Using two different
functions, we can create a horizontal legend with a set gradient palette and custom
markers that correspond to the precipitation data.

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1205

The burned area legend is simpler in that we are creating a square of red to
indicate that any pixel marked red on the image was burned at that particular time
point.

// ** Legend: Rainfall ** //
var rain_palette = ['#ffffcc', '#a1dab4', '#41b6c4',
'#2c7fb8',

'#253494'
];

function ColorBar(rain_palette) {
return ui.Thumbnail({

image: ee.Image.pixelLonLat().select(0),
params: {

bbox: [0, 0, 1, 0.1],
dimensions: '300x15',
format: 'png',
min: 0,
max: 1,
palette: rain_palette,

},
style: {

stretch: 'horizontal',
margin: '0px 22px'

},
});

}

function makeRainLegend(lowLine, midLine, highLine,
lowText, midText,

highText, palette) {
var labelheader = ui.Label(

'Total precipitation in wet season (mm)', {
margin: '5px 17px',
textAlign: 'center',
stretch: 'horizontal',
fontWeight: 'bold'

});
var labelLines = ui.Panel(

[
ui.Label(lowLine, {

margin: '-4px 21px'
}),
ui.Label(midLine, {

margin: '-4px 0px',
textAlign: 'center',

1206 H. Branson and C. Smith

stretch: 'horizontal'
}),
ui.Label(highLine, {

margin: '-4px 21px'
})

],
ui.Panel.Layout.flow('horizontal'));

var labelPanel = ui.Panel(
[

ui.Label(lowText, {
margin: '0px 14.5px'

}),
ui.Label(midText, {

margin: '0px 0px',
textAlign: 'center',
stretch: 'horizontal'

}),
ui.Label(highText, {

margin: '0px 1px'
})

],
ui.Panel.Layout.flow('horizontal'));

return ui.Panel({
widgets: [labelheader, ColorBar(rain_palette),

labelLines, labelPanel
],
style: {

position: 'bottom-left'
}

});
}
Map.add(makeRainLegend('|', '|', '|', '0', '250', '500',
['#ffffcc',

'#a1dab4', '#41b6c4', '#2c7fb8', '#253494'
]));

// ** Legend: Burned area ** //
var burnLegend = ui.Panel({

style: {
position: 'top-left',
padding: '8px 15px'

}

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1207

});

var makeRow = function(color, name) {
var colorBox = ui.Label({

style: {
backgroundColor: '#' + color,
padding: '10px',
margin: '0 10px 0 0'

}
});
var description = ui.Label({

value: name,
style: {

margin: 'o o 6px 6px'
}

});
return ui.Panel({

widgets: [colorBox, description],
layout: ui.Panel.Layout.Flow('horizontal')

});
};

var burnPalette = ['FF0000'];
var names = ['Burned area'];
for (var i = 0; i < 1; i++) {

burnLegend.add(makeRow(burnPalette[i], names[i]));
}
Map.add(burnLegend);

Now that we have our legends complete, we can add our double variable time-
series chart to the map, and center the map on our area of interest.

Map.centerObject(AOI, 9); // Centre the map on the AOI
Map.add(

bpChart
); // Add the merged burned area & precipitation chart to
the map

1208 H. Branson and C. Smith

While visualizing the data on a static chart is useful for further analysis and
identifying patterns, it is also useful to see the spatial data corresponding to a
particular date or fire. To do this, we can add an interactive element to the chart.
If you click a particular point on the chart, it will reveal the corresponding image
for burned area and precipitation on the map.

To do this, we need to create a function that uses the burned area and precipita-
tion chart (bpChart) and executes onClick, displaying the relevant data based
on the input values. By utilizing the ’system:time_start’ property, we can
query the date, which will then be used to identify the first image (first) that
appears within the list of images, within the area of interest. We can then format
the legend box within the map so that it shows the date and time of the layer
selected.

Following this, we can set the symbology of each layer (burned area in red, and
the precipitation color gradient indicated in the legend settings), and display the
relevant layer with the date text string on the map (Fig. 54.1).

Fig. 54.1 Final result of the code once you have clicked on the chart to select a month to display,
here showing the burned area and total precipitation at the beginning of the dry season in May 2021

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1209

// ** Chart: Adding an interactive query ** //

// Add a function where if you click on a point in the map
it displays the burned area and rainfall for that date
bpChart.onClick(function(xValue, yValue, seriesName) {

if (!xValue) return;
// Show layer for date selected on the chart
var equalDate = ee.Filter.equals('system:time_start',

xValue);
// Search for the layer in the image collection that

links to the selected date
var classificationB = ee.Image(MODIS_BurnDate.filter(

equalDate).first()).clip(AOI).select('BurnDate');
var classificationR = ee.Image(MonthlyRainfall.filter(

equalDate).first()).clip(AOI).select(
'precipitation');

var burnImage =
ee.Image(MODIS_BurnDate.filter(equalDate)

.first());
var date_string = new Date(xValue).toLocaleString(

'en-EN', {
dateStyle: 'full'

});
var rainImage =

ee.Image(MonthlyRainfall.filter(equalDate)
.first());

var date_stringR = new Date(xValue).toLocaleString(
'en-EN', {

dateStyle: 'full'
});

// Reset the map layers each time a new date is clicked
Map.layers().reset([classificationB]);
Map.layers().reset([classificationR]);
var visParamsBurnLayer = { // Visualisation for burned

area
min: 0,
max: 365,
palette: ['red']

};

1210 H. Branson and C. Smith

var visParamsRainLayer = { // Visualisation for rain
min: 0,
max: 450,
palette: ['#ffffcc', '#a1dab4', '#41b6c4',

'#2c7fb8', '#253494'
]

};
// Add the layers to the map
Map.addLayer(classificationR, visParamsRainLayer,

'Total monthly rainfall on [' + date_string + ']');
Map.addLayer(classificationB, visParamsBurnLayer,

'Burned area on [' + date_string + ']');
});

Code Checkpoint A39c. The book’s repository contains a script that shows what
your code should look like at this point.

Question 6. Considering the importance of environmental variables in conservation
work, what other datasets and common earth observation analysis could provide
data to inform conservation management?

54.3 Synthesis

In this chapter, you have learned how to create a time series of burned area, using
the global MODIS burned area product. You also calculated areal mean rainfall
using the CHIRPS dataset, and graphed total seasonal rainfall using your time-
series chart. Additionally, you can now merge two image collections to show two
variables on one interactive chart in the Earth Engine map.

With the code you have learned in this chapter, you can now create area burned
and areal mean rainfall time series for your own region of interest anywhere in the
world. Recreate the analysis in a different environment, and consider extending
the time series over a longer period; can you detect any trends?

Monitoring vegetation is also important in conservation and can be significantly
impacted by fire and rainfall trends. Try to modify the code you have learned to
calculate areal mean NDVI from the NOAA CDR AVHRR daily NDVI dataset.
Can you add this as another variable in the interactive chart?

54.4 Conclusion

In this chapter, we understand and map the dynamic relationship between fire
and rainfall, and how this can influence conservation action and land management
needs. We began by mapping burned areas using MODIS Burned Area Monthly
Global 500 m to understand how much of, and where, the landscape is affected by

54 Conservation I—Assessing the Spatial Relationship Between Burned Area … 1211

burning. Following this, we understood how to access rainfall data and calculate
areal mean rainfall, plotting this on a graph to understand changes and patterns
over time. By combining the burned area and rainfall data, we can see how rain-
fall (or lack thereof) can exacerbate burning, and begin to spot patterns in the
landscape. This analysis, which would often be undertaken in the field or by hand
using satellite imagery, is made accessible via Earth Engine—not only because we
can perform this on a workstation that only requires an internet connection rather
than computing power, but also because Earth Engine generates quick, consistent
results that can inform conservation management practices.

References

Bonney MT, He Y, Myint SW (2020) Contextualizing the 2019–20 kangaroo island bushfires:
quantifying landscape-level influences on past severity and recovery with Landsat and Google
Earth Engine. Remote Sens 12:1–32. https://doi.org/10.3390/rs12233942

Holden ZA, Swanson A, Luce CH et al (2018) Decreasing fire season precipitation increased recent
Western US forest wildfire activity. Proc Natl Acad Sci USA 115:E8349–E8357. https://doi.
org/10.1073/pnas.1802316115

Nhongo E, Fontana D, Guasselli L (2020) Spatio-temporal patterns of wildfires in the Niassa
Reserve–Mozambique, using remote sensing data. bioRxiv, 1–7. https://doi.org/10.1101/2020.
01.16.908780

Pinto-Ledezma JN, Cavender-Bares J (2021) Predicting species distributions and community com-
position using satellite remote sensing predictors. Sci Rep 11:1–12. https://doi.org/10.1038/s41
598-021-96047-7

Reddy CS (2021) Remote sensing of biodiversity: what to measure and monitor from space to
species? Biodivers Conserv 30:2617–2631. https://doi.org/10.1007/s10531-021-02216-5

Ribeiro NS, Armstrong AH, Fischer R et al (2021) Prediction of forest parameters and carbon
accounting under different fire regimes in Miombo woodlands, Niassa Special Reserve. North-
ern Mozambique. for Policy Econ 133:102625. https://doi.org/10.1016/j.forpol.2021.102625

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.3390/rs12233942
https://doi.org/10.1073/pnas.1802316115
https://doi.org/10.1073/pnas.1802316115
https://doi.org/10.1101/2020.01.16.908780
https://doi.org/10.1101/2020.01.16.908780
https://doi.org/10.1038/s41598-021-96047-7
https://doi.org/10.1038/s41598-021-96047-7
https://doi.org/10.1007/s10531-021-02216-5
https://doi.org/10.1016/j.forpol.2021.102625
http://creativecommons.org/licenses/by/4.0/

55Conservation II—Assessing
Agricultural Intensification Near
Protected Areas

Pradeep Koulgi and M. D. Madhusudan

Overview
Protected Areas (PAs) in many densely populated tropical regions are often small
in area, and are enormously influenced by the broader production landscapes in
which they are found. Changes in the agricultural matrix surrounding a PA can
have a profound impact on the PA’s wildlife and on neighboring resident human
communities. In this chapter, we will examine greening trend changes in the exteriors
of 186 PAs in Western India from 2000 to 2021 using MODIS Terra vegetation
indices, a Sen’s slope linear trend estimator, and other summary techniques available
in Earth Engine. We will use these techniques to investigate how these greening trends
are distributed in relation to the precipitation regimes of a given PA site.

Learning Outcomes

• Computing a metric of a monotonic trend (Sen’s slope) in dry-season pixel
greenness for each pixel.

• Inferring the nature and intensity of change in agricultural practice based on the
trend metric.

• Exploring the relationship between changes in vegetation greenness and ecosys-
tem type as determined by average annual precipitation.

P. Koulgi (B) · M. D. Madhusudan
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road,
Bangalore, Karnataka 560065, India
e-mail: pradeep.koulgi@gmail.com

© The Author(s) 2024
J. A. Cardille et al. (eds.), Cloud-Based Remote Sensing with Google Earth Engine,
https://doi.org/10.1007/978-3-031-26588-4_55

1213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26588-4_55&domain=pdf
http://orcid.org/0000-0002-2722-5539
http://orcid.org/0000-0003-1652-5242
mailto:pradeep.koulgi@gmail.com
https://doi.org/10.1007/978-3-031-26588-4_55

1214 P. Koulgi and M. D. Madhusudan

Helps if you know how to

• Import images and image collections, filter, and visualize (Part I).
• Perform basic image analysis: select bands, compute indices, create masks (Part

II).
• Calculate and interpret vegetation indices (Chap. 5)
• Use reducers to implement linear regression between image bands (Chap. 8).
• Write a function and map it over an ImageCollection (Chap. 12).
• Map an annual reducer across multiple years (Chaps. 12, and 13).
• Write a function and map it over a collection (Chap. 12).
• Conduct basic vector analyses: vectorizing and buffering (Part V).
• Write a function and map it over a FeatureCollection (Chaps. 23, and

24).

55.1 Introduction to Theory

In many regions of the densely populated tropics, Protected Areas (PAs) are often
small, and their interfaces with production landscapes are sharp. As a result,
changes in the agriculture surrounding a PA can have a profound impact on the
PA’s wildlife, as well as on their interactions with local human communities. For
example, across India’s Gangetic Plains, increased crop irrigation via groundwater
exploitation has enabled its traditional rainfed agriculture with long fallow periods
and annual crops (cereals, legumes, and oilseeds) to be to be replaced by year-
round agriculture (Chen et al 2019; Maina et al 2022). This intensification can
have subtle yet significant changes in the landscape in terms of spatial regimes of
primary productivity, and to wildlife in terms of both dietary and habitat resources.
These changes, in turn, can influence wildlife interactions with people (Kumar
et al. 2018).

In this chapter, we describe greening trends in vegetation in the exteriors of
PAs in Western India, and ask how these greening trends are distributed in relation
to the precipitation regimes of a given PA site. Based on our experience and our
reading of literature pertaining to wildlife in India, we hypothesize that as crop
irrigation via groundwater extraction increases, farming in the moisture-limited
semi-arid tracts of India becomes more independent of seasonal differences, and
their constituent habitats become structurally more complex. These changes could
help create novel anthropogenic habitats that can be accessed by adaptable wildlife
species living in PAs, such as leopards and elephants (Lenin 2010; Odden et al.
2014). While such changes to habitat structure and resource availability could
improve functional connectivity between PAs (e.g., Rodrigues et al. 2022), inten-
sification can also lead to a greater overlap between humans and wildlife, possibly
leading to greater conflict over crops and livestock (Kumar et al. 2018). The poten-
tial trade-offs involved between conservation and conflict imply that it is crucial
to assess and map land use changes around PAs over time, and eventually to

55 Conservation II—Assessing Agricultural Intensification Near Protected Areas 1215

relate this to changes in wildlife distribution and behavior, for which this chapter
provides a framework.

55.2 Practicum

55.2.1 Section 1: Initializing Parameters

The Normalized Difference Vegetation Index (NDVI) estimates vegetation green-
ness; the MODIS Terra vegetation indices products, MOD13Q1.006, provides
historical 16-day composites of it at a global span and 250 m per pixel resolu-
tion. This dataset is used here to estimate a monotonic trend in annual changes of
dry-season vegetation greenness around a set of PAs in India. Various parameters
used in the script are initialized first.

55.2.1.1 Section 1.1: Annual Dry-Season Maximum NDVI Calculation
The MODIS vegetation indices dataset MOD13Q1.006 is initialized, along with
the NDVI band name and relevant scale values. The dataset starts from the year
2000 and extends to the present. For this analysis, we use data from 2000 to 2021
as the sequence of full years the data are available for. The annual dry season in
much of India occurs over three to five months, starting roughly in January. Here,
a period of 90 days (spanning January through March) starting on the first day of
each year is taken to be the dry season. Convenient names are chosen for bands
holding NDVI and time values for regression analysis.

var modis_veg = ee.ImageCollection('MODIS/006/MOD13Q1');
var ndviBandName = 'NDVI';
var ndviValuesScaling = 0.0001;
var modisVegScale = 250; // meters
var maxNDVIBandname = 'max_dryseason_ndvi';
var yearTimestampBandname = 'year';
var years = ee.List.sequence(2000, 2021, 1);
var drySeasonStart_doy = 1;
var drySeasonEnd_doy = 90;

55.2.1.2 Section 1.2: Boundaries of PAs of Interest
In the code below, a set of PAs in the western part of India is identified for study.
This collection of PAs in the western belt of India spans a wide range of rain-
fall regimes, from very moist areas in the southern Western Ghats to very arid
regions in the Thar Desert of Rajasthan in the north, with diverse rainfall regimes
in between. This belt is home to a diverse array of forests and savanna ecosystems,
ranging from moist ecosystems to semi-arid and arid ecosystems. The landscapes

1216 P. Koulgi and M. D. Madhusudan

in this belt also have a complex, diverse intervening matrix of natural and inten-
sively human-utilized lands making up wildlife corridors. The size of the buffer
area around each PA is also defined.

var paBoundaries = ee.FeatureCollection(
'projects/gee-book/assets/A3-10/IndiaMainlandPAs');

var boundaryBufferWidth = 5000; // meters
var bufferingMaxError = 30; // meters
// Choose PAs in only the western states
var western_states = [

'Rajasthan', 'Gujarat', 'Madhya Pradesh',
'Maharashtra', 'Goa', 'Karnataka', 'Kerala'

];
var western_pas = paBoundaries

.filter(ee.Filter.inList('STATE', western_states));

55.2.1.3 Section 1.3: Regression Analysis
The Sen’s slope linear trend estimator (Sen 1968) is a non-parametric estimator
useful for monotonic trend estimation applications using remotely sensed indices.
Its suitability for applications with remotely sensed indices comes from a key dif-
ference when compared to linear regression using the least squares estimator: while
linear regression assumes that the regression residuals are normally distributed,
Sen’s slope estimator makes no such assumptions about the statistical structure
of the data it is being applied on. The reducer for this Sen’s slope regression is
built into the Earth Engine API, and in the code below, its x and y variables are
initialized.

var regressionReducer = ee.Reducer.sensSlope();
var regressionX = yearTimestampBandname;
var regressionY = maxNDVIBandname;

55.2.1.4 Section 1.4: Surface Water Layer to Mask Water Pixels
from Assessment

NDVI values of pixels spanning water bodies tend to be highly noisy and can
mislead trend analyses. Masking out all pixels that were ever water during the
period of interest can mitigate this problem. The European Union’s Joint Research
Centre mapped monthly surface water from 1984 to 2021, including the maximum
water extent detected during the period.

55 Conservation II—Assessing Agricultural Intensification Near Protected Areas 1217

// Selects pixels where water has ever been detected
between 1984 and 2021
var surfaceWaterExtent =
ee.Image('JRC/GSW1_3/GlobalSurfaceWater')

.select('max_extent');

55.2.1.5 Section 1.5: Average Annual Precipitation Layer
To relate the estimated trends in vegetation greenness to rainfall regime, we use
WorldClim’s estimated long-term average annual precipitation data.

var rainfall =
ee.Image('WORLDCLIM/V1/BIO').select('bio12');

55.2.1.6 Section 1.6: Visualization and Saving Parameters
The estimated metric of change in vegetation greenness can be visualized as a
raster on the map. Additionally, the relationship between changes in vegetation
greenness and precipitation around each PA can be charted using a scatter plot.
The visualization parameters for these are defined.

var regressionResultVisParams = {
min: -3,
max: 3,
palette: ['ff8202', 'ffffff', '356e02']

};
var regressionSummaryChartingOptions = {

title: 'Yearly change in dry-season vegetation
greenness ' +

'in PA buffers in relation to average annual
rainfall',

hAxis: {
title: 'Annual Precipitation'

},

1218 P. Koulgi and M. D. Madhusudan

vAxis: {
title: 'Median % yearly change in vegetation

greenness ' +
'in 5 km buffer'

},
series: {

0: {
visibleInLegend: false

}
},

};

Code Checkpoint A310a. The book’s repository contains a script that shows what
your code should look like at this point.

55.2.2 Section 2: Raster Processing for Change Analysis

The 16-day composite NDVI rasters are filtered, processed, and reduced accord-
ing to parameters appropriately defined and initialized above to generate a raster
of percentage annual change in greenness as a metric for vegetation change. A
summary of this for each PA buffer is also calculated. Finally, these results are
visualized.

55.2.2.1 Section 2.1: Annual Dry-Season Maxima of NDVI
The source MODIS vegetation indices dataset is first filtered to the dry-season
days for all years and the NDVI band selected. From this ImageCollection
containing only dry-season observations for each year, maximum dry-season
NDVI is calculated. This represents the vegetation at its greenest condition
within the dry season each year. The maximum NDVI is the least likely to
be influenced by episodic changes, such as fires that occur during this dry
period. An image band containing the year value is also created and com-
bined with the maximum NDVI, in preparation for time versus NDVI regression
analysis in the next step. This is accomplished through defining a function
annualDrySeasonMaximumNDVIAndTime to do this for each year, and then
mapping that function over all the years in our period of interest.

55 Conservation II—Assessing Agricultural Intensification Near Protected Areas 1219

function annualDrySeasonMaximumNDVIAndTime(y) {
// Convert year y to a date object
var yDate = ee.Date.fromYMD(y, 1, 1);
// Calculate max NDVI for year y
var yMaxNdvi = drySeasonNdviColl

// Filter to year y
.filter(ee.Filter.date(yDate, yDate.advance(1,

'year')))
// Compute max value
.max()
// Apply appropriate scale, as per the dataset's
// technical description for NDVI band.
.multiply(ndviValuesScaling)
// rename the band to be more comprehensible
.rename(maxNDVIBandname);

// Create an image with constant value y, to be used in
regression. Name it something comprehensible.

// Name it something comprehensible.
var yTime = ee.Image.constant(y).int().rename(

yearTimestampBandname);
// Combine the two images into a single 2-band image,

and return
return ee.Image.cat([yMaxNdvi, yTime]).set('year', y);

}

// Create a collection of annual dry season maxima
// for the years of interest. Select the NDVI band and
// filter to the collection of dry season observations.
var drySeasonNdviColl = modis_veg.select([ndviBandName])

.filter(ee.Filter.calendarRange(drySeasonStart_doy,
drySeasonEnd_doy, 'day_of_year'));

// For each year of interest, calculate the NDVI maxima and
create a corresponding time band
var dryseason_coll = ee.ImageCollection.fromImages(

years.map(annualDrySeasonMaximumNDVIAndTime)
);

1220 P. Koulgi and M. D. Madhusudan

55.2.2.2 Section 2.2: Annual Regression to Estimate Average Yearly
Change in Greenness

The dry-season maximum NDVI collection with time band is reduced with a Sen’s
slope regression reducer to estimate the linear rate of change of dry-season max-
imum greenness for the years from 2000 to 2021. Be sure to use the select
operation to select the x and y variables for regression, in that order, as expected
by the ee.Reducer.sensSlope. The resulting image will have a slope and
an offset band, which are the slope and y-intercept of the trend estimation,
respectively.

The values in the slope band are the pixel-wise annual rate of change in
maximum dry-season NDVI values. The magnitude of these values signifies
the intensity of change over the years, and their sign indicates whether the
change manifested as greening (positive sign) or browning (negative sign) of the
vegetation.

var ss = dryseason_coll.select([regressionX,
regressionY]).reduce(

regressionReducer);

// Mask surface water from vegetation change image
var ss = ss.updateMask(surfaceWaterExtent.eq(0));

55.2.2.3 Section 2.3: Summarize Estimates of Change in Buffer
Regions of PAs of Interest

In order to investigate the vegetation greening and browning changes within the
buffer areas of our PAs of interest, buffer regions have to be defined. This can
be done by computing the geometry “difference” between the buffered version of
each PA and the PA itself. A function extractBufferRegion is defined to
perform this for each PA feature, and that function is mapped over the feature
collection with boundaries of all the PAs of interest.

55 Conservation II—Assessing Agricultural Intensification Near Protected Areas 1221

function extractBufferRegion(pa) {
//reduce vertices in PA boundary
pa = pa.simplify({

maxError: 100
});
// Extend boundary into its buffer
var withBuffer = pa.buffer(boundaryBufferWidth,

bufferingMaxError);
// Compute the buffer-only region by "subtracting"

boundary with buffer from boundary
// Subtracting the whole set of boundaries eliminates

inclusion of forests from adjacent PAs into buffers.
var bufferOnly =

withBuffer.difference(paBoundaries.geometry());

return bufferOnly;
}

// Create buffer regions of PAs
var pa_buff = western_pas.map(extractBufferRegion);

The greenness condition of vegetation in the dry season is inherently variable
in large diverse landscapes like around the PAs of choice here, and it depends
strongly on the type of vegetation itself, such as deciduous or evergreen tree cover,
grasslands, shrublands, and croplands. In order to take this inherent variability
into account, the raw rate of change value can be converted into a percent rate
of change by normalizing the change value against a baseline value. Here, the
maximum year 2000 dry-season NDVI is used as the baseline in each pixel. The
slope values are normalized using this baseline and converted to percent values.
This can be visualized on the map.

In order to understand the overall picture at a PA buffer-region level, the median
of percent rate of vegetation change is calculated for every PA buffer. And to relate
this to the amount of rainfall in a buffer region, the corresponding median of
average annual rainfall over the region is also calculated. These can be visualized
in a chart.

1222 P. Koulgi and M. D. Madhusudan

// Normalize the metric of NDVI change to a baseline (dry-
season max NDVI in the very first year)
var baselineNdvi =
dryseason_coll.select([maxNDVIBandname]).filter(ee

.Filter.eq('year', years.getNumber(0))).first();
var stats =
ss.select('slope').divide(baselineNdvi).multiply(100)

.rename('vegchange');

// Combine it with average annual rainfall data
stats = stats.addBands(rainfall.rename('rainfall'));

// Calculate mean of change metric over buffer regions of
each PA of interest
var paBufferwiseMedianChange = stats.reduceRegions({

collection: pa_buff,
reducer: ee.Reducer.median(),
scale: 1000,
tileScale: 16

});

Code Checkpoint A310b. The book’s repository contains a script that shows what
your code should look like at this point.

55.2.3 Section 3: Visualizing Results

The degree of vegetation change, with a chosen palette, is visualized as a map
(Fig. 55.1), and the PA buffer-wise median value is charted as a scatter plot
(Fig. 55.2). In the map, green color suggests significant vegetation greening,
brown color suggests significant vegetation browning, and white color suggests
no detectable change, as chosen in the palette. The vegetation in large areas in the
surroundings of Nauradehi Wildlife Sanctuary, as highlighted by Fig. 55.1, appears
to have experienced greening or no detectable change. PA buffer-wise summaries
showing moderate to high positive values indicate that, across the buffers of the
PAs, there appears to have been a greater extent of greening, rather than browning,
of vegetation cover.

The degree of vegetation change is also arranged by amount of rainfall in a
chart, to visualize how buffer regions of PAs in moist regions fare relative to those
in arid regions.

55 Conservation II—Assessing Agricultural Intensification Near Protected Areas 1223

Fig. 55.1 Map of percent vegetation greenness change for 2000–2021 in a 5 km buffer area
around Nauradehi Wildlife Sanctuary (polygon in black shade), India. Note the relative absence
of vegetation browning

var medianChangeChart = ui.Chart.feature.byFeature({
features: paBufferwiseMedianChange,
xProperty: 'rainfall',
yProperties: ['vegchange']

}).setOptions(regressionSummaryChartingOptions).setChartTyp
e(

'ScatterChart');
print(medianChangeChart);

Map.centerObject(western_pas, 9);
Map.setCenter(79.2205, 23.3991, 9);
Map.setOptions('SATELLITE');
Map.addLayer(stats.select('vegchange').clipToCollection(pa_
buff),

regressionResultVisParams, 'yearly % change');
Map.addLayer(western_pas, {}, 'Western PAs');

1224 P. Koulgi and M. D. Madhusudan

Fig. 55.2 Median yearly percent change in vegetation greenness observed in 5 km exterior buffers
of PAs in India (N = 186), arranged along a precipitation gradient. Greening is denoted by a
positive percent change in Sen’s slope of dry-season maximum NDVI between 2000 and 2021.
The greatest greening extent (> 2%) is observed in PAs that fall in the semi-arid zone (annual
precipitation≤1000 mm)

Code Checkpoint A310c. The book’s repository contains a script that shows what
your code should look like at this point.

Question 1. Create a map of percent vegetation greenness change for a different
PA than the one shown in Fig. 55.1. How does it compare with the map made for
Nauradehi Wildlife Sanctuary?

Question 2. We used MODIS Terra vegetation indices for our greening trend anal-
ysis in the previous example. Can you alter the analysis to calculate an NDVI time
series from Landsat imagery for one PA? How do you think the results would
change with Landsat’s 30 m spatial resolution instead of 250 m from MODIS?

Question 3. Can you repeat this analysis, dividing the time period of 21 years
into two approximate halves, and try to determine whether the slope of vegetation
greening observed has been similar across the two periods, or whether greening
has accelerated or decelerated between the two time periods?

55 Conservation II—Assessing Agricultural Intensification Near Protected Areas 1225

55.3 Synthesis

Assignment 1. In this chapter, you learned how to estimate greening trends sur-
rounding PAs in Western India, a densely populated tropical region. In your
opinion, how generalizable are these observed patterns across space and time?

Assignment 2. Perform this same PA analysis in another region in India. Then,
perform the same analysis in a tropical region in another part of the world. How
do the results compare with ours from Western India?

55.4 Conclusion

In this chapter, we estimated greening trends in Western India PAs using MODIS
Terra vegetation indices, Sen’s slope, and reducer functions. We demonstrated that
the immediate exterior buffers of most PAs (184 out of 186) show a positive—
i.e., greening—trend in their vegetation cover over the two-decade time frame
between 2000 and 2021. Note, however, that in this example, we do not estimate
the significance level of the greening trend values modeled in our analyses. While
there is considerable variation in the greening extent seen across these PA buffers,
we do see clearly that PAs that fall within the semi-arid zone (annual precipita-
tion≤ 1000 mm) seem to show the greatest extent of greening (Fig. 55.2). Such a
change in the land cover characteristics of the matrix surrounding PAs in the semi-
arid zone suggests that they are more likely to be sites where the distribution of
wildlife, especially of more adaptable species, could show expansion into the agri-
cultural landscape beyond PA boundaries, as well as greater rates of conflict with
humans over crops and livestock. Corroborating this, of course, requires ground
survey data on wildlife, which were unavailable in this example.

References

Chen C, Park T, Wang X et al (2019) China and India lead in greening of the world through land-
use management. Nat Sustain 2:122–129. https://doi.org/10.1038/s41893-019-0220-7

Kumar MA, Vijayakrishnan S, Singh M (2018) Whose habitat is it anyway? Role of natu-
ral and anthropogenic habitats in conservation of charismatic species. Trop Conserv Sci
11:1940082918788451. https://doi.org/10.1177/1940082918788451

Lenin J (2010) Sugarcane leopards. In: Current conservation, special: wildlife-human conflict.
https://www.currentconservation.org/sugarcane-leopards/

https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.1177/1940082918788451
https://www.currentconservation.org/sugarcane-leopards/

1226 P. Koulgi and M. D. Madhusudan

Maina FZ, Kumar SV, Albergel C, Mahanama SP (2022) Warming, increase in precipitation, and
irrigation enhance greening in High Mountain Asia. Commun Earth Environ 3:1–8. https://doi.
org/10.1038/s43247-022-00374-0

Odden M, Athreya V, Rattan S, Linnell JDC (2014) Adaptable neighbours: movement patterns of
GPS-collared leopards in human dominated landscapes in India. PLoS ONE 9:e112044. https://
doi.org/10.1371/journal.pone.0112044

Rodrigues RG, Srivathsa A, Vasudev D (2022) Dog in the matrix: envisioning countrywide con-
nectivity conservation for an endangered carnivore. J Appl Ecol 59:223–237. https://doi.org/
10.1111/1365-2664.14048

Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc
63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1038/s43247-022-00374-0
https://doi.org/10.1038/s43247-022-00374-0
https://doi.org/10.1371/journal.pone.0112044
https://doi.org/10.1371/journal.pone.0112044
https://doi.org/10.1111/1365-2664.14048
https://doi.org/10.1111/1365-2664.14048
https://doi.org/10.1080/01621459.1968.10480934
http://creativecommons.org/licenses/by/4.0/

	 Foreword
	 Introduction
	Fundamentals
	Part I: Programming and Remote Sensing Basics
	Part II: Interpreting Images
	Part III: Advanced Image Processing
	Part IV: Interpreting Image Series
	Part V: Vectors and Tables
	Part VI: Advanced Topics
	Applications
	Part VII: Human Applications
	Part VIII: Aquatic and Hydrological Applications
	Part IX: Terrestrial Applications
	Uses of This Book
	We Want Your Feedback
	Acknowledgements
	Other Sources

	 Contents
	Part IProgramming and Remote Sensing Basics
	1 JavaScript and the Earth Engine API
	1.1 Introduction to Theory
	1.2 Practicum
	1.2.1 Section 1: Getting Started in the Code Editor
	1.2.2 Section 2: JavaScript Basics
	1.2.3 Section 3: Earth Engine API Basics

	1.3 Synthesis
	1.4 Conclusion

	2 Exploring Images
	2.1 Practicum
	2.1.1 Section 1: Accessing an Image
	2.1.2 Section 2: Visualizing an Image
	2.1.3 Section 3: True-Color Composites
	2.1.4 Section 4: False-Color Composites
	2.1.5 Section 5: Additive Color System
	2.1.6 Section 6: Attributes of Locations
	2.1.7 Section 7: Abstract RGB Composites

	2.2 Synthesis
	2.3 Conclusion

	3 Survey of Raster Datasets
	3.1 Introduction to Theory
	3.2 Practicum
	3.2.1 Section 1: Image Collections: An Organized Set of Images
	3.2.2 Section 2: Collections of Single Images
	3.2.3 Section 3: Pre-made Composites
	3.2.4 Section 4: Other Satellite Products
	3.2.5 Section 5: Pre-classified Land Use and Land Cover
	3.2.6 Section 6: Other Datasets

	3.3 Synthesis
	3.4 Conclusion
	References

	4 The Remote Sensing Vocabulary
	4.1 Introduction to Theory
	4.2 Practicum
	4.2.1 Section 1: Searching for and Viewing Image Collection Information
	4.2.2 Section 2: Spatial Resolution
	4.2.3 Section 3: Temporal Resolution
	4.2.4 Section 4: Spectral Resolution
	4.2.5 Section 5: Per-Pixel Quality
	4.2.6 Section 6: Metadata

	4.3 Synthesis
	4.4 Conclusion
	Reference

	Part IIInterpreting Images
	5 Image Manipulation: Bands, Arithmetic, Thresholds, and Masks
	5.1 Introduction to Theory
	5.2 Practicum
	5.2.1 Section 1: Band Arithmetic in Earth Engine
	5.2.2 Section 2: Thresholding, Masking, and Remapping Images

	5.3 Synthesis
	5.4 Conclusion
	References

	6 Interpreting an Image: Classification
	6.1 Introduction to Theory
	6.2 Practicum
	6.2.1 Section 1: Supervised Classification
	6.2.2 Section 2: Unsupervised Classification

	6.3 Synthesis
	6.4 Conclusion
	References

	7 Accuracy Assessment: Quantifying Classification Quality
	7.1 Introduction to Theory
	7.2 Practicum
	7.2.1 Quantifying Classification Accuracy Through a Confusion Matrix
	7.2.2 Hyperparameter Tuning
	7.2.3 Spatial Autocorrelation

	7.3 Synthesis
	7.4 Conclusion
	References

	Part IIIAdvanced Image Processing
	8 Interpreting an Image: Regression
	8.1 Introduction to Theory
	8.2 Practicum
	8.2.1 Reducers

	8.3 Section 1: Linear Fit
	8.3.1 Section 2: Linear Regression
	8.3.2 Section 3: Nonlinear Regression
	8.3.3 Section 4: Assessing Regression Performance Through RMSE

	8.4 Synthesis
	8.5 Conclusion
	References

	9 Advanced Pixel-Based Image Transformations
	9.1 Introduction to Theory
	9.2 Practicum
	9.2.1 Section 1: Manipulating Images with Expressions
	9.2.2 Section 2: Manipulating Images with Matrix Algebra
	9.2.3 Section 3: Spectral Unmixing
	9.2.4 Section 4: The Hue, Saturation, Value Transform

	9.3 Synthesis
	9.4 Conclusion
	References

	10 Neighborhood-Based Image Transformation
	10.1 Introduction to Theory
	10.2 Practicum
	10.2.1 Section 1: Linear Convolution
	10.2.2 Section 2: Nonlinear Convolution
	10.2.3 Section 3: Morphological Processing
	10.2.4 Section 4: Texture

	10.3 Synthesis
	10.4 Conclusion
	References

	11 Object-Based Image Analysis
	11.1 Introduction to Theory
	11.2 Practicum
	11.2.1 Section 1: Unsupervised Classification
	11.2.2 Section 2: Detecting Objects in Imagery with the SNIC Algorithm
	11.2.3 Section 3: Object-Based Unsupervised Classification
	11.2.4 Section 4: Classifications with More or Less Categorical Detail
	11.2.5 Section 5: Effects of SNIC Parameters

	11.3 Synthesis
	11.4 Conclusion
	References

	Part IVInterpreting Image Series
	12 Filter, Map, Reduce
	12.1 Introduction to Theory
	12.2 Practicum
	12.2.1 Section 1: Filtering Image Collections in Earth Engine
	12.2.2 Section 2: Mapping over Image Collections in Earth Engine
	12.2.3 Section 3: Reducing an Image Collection

	12.3 Synthesis
	12.4 Conclusion

	13 Exploring Image Collections
	13.1 Practicum
	13.1.1 Section 1: Filtering and Inspecting an Image Collection
	13.1.2 Section 2: How Many Images Are There, Everywhere on Earth?
	13.1.3 Section 3: Reducing Image Collections to Understand Band Values
	13.1.4 Section 4: Compute Multiple Percentile Images for an Image Collection

	13.2 Synthesis
	13.3 Conclusion
	Reference

	14 Aggregating Images for Time Series
	14.1 Introduction to Theory
	14.2 Practicum
	14.2.1 Section 1: Filtering an Image Collection
	14.2.2 Section 2: Working with Dates
	14.2.3 Section 3: Aggregating Images
	14.2.4 Section 4: Plotting Time Series

	14.3 Synthesis
	14.4 Conclusion
	References

	15 Clouds and Image Compositing
	15.1 Introduction to Theory
	15.2 Practicum
	15.2.1 Section 1: Cloud Filter and Cloud Mask
	15.2.2 Section 2: Incorporating Data from Other Satellites
	15.2.3 Section 3: Best-Available-Pixel Compositing Earth Engine Application

	15.3 Synthesis
	15.4 Conclusion
	References

	16 Change Detection
	16.1 Introduction to Theory
	16.2 Practicum
	16.2.1 Section 1: Preparing Imagery
	16.2.2 Section 2: Creating False-Color Composites
	16.2.3 Section 3: Calculating NBR
	16.2.4 Section 4: Single Date Transformation
	16.2.5 Section 5: Classifying Change

	16.3 Synthesis
	16.4 Conclusion
	References

	17 Interpreting Annual Time Series with LandTrendr
	17.1 Introduction to Theory
	17.2 Practicum
	17.2.1 Section 1: Pixel Time Series
	17.2.2 Section 2: Translating Pixels to Maps

	17.3 Synthesis
	17.4 Conclusion
	References

	18 Fitting Functions to Time Series
	18.1 Introduction to Theory
	18.2 Practicum
	18.2.1 Section 1: Multi-temporal Data in Earth Engine
	18.2.2 Section 2: Data Preparation and Preprocessing
	18.2.3 Section 3: Estimating Linear Trend Over Time
	18.2.4 Section 4: Estimating Seasonality with a Harmonic Model
	18.2.5 Section 5: An Application of Curve Fitting
	18.2.6 Section 6: Higher-Order Harmonic Models

	18.3 Synthesis
	18.4 Conclusion
	References

	19 Interpreting Time Series with CCDC
	19.1 Introduction to Theory
	19.2 Practicum
	19.2.1 Section 1: Understanding Temporal Segmentation with CCDC
	19.2.2 Section 2: Running CCDC
	19.2.3 Section 3: Extracting Break Information
	19.2.4 Section 4: Extracting Coefficients Manually
	19.2.5 Section 5: Extracting Coefficients Using External Functions

	19.3 Synthesis
	19.4 Conclusion
	References

	20 Data Fusion: Merging Classification Streams
	20.1 Introduction to Theory
	20.2 Practicum
	20.2.1 Section 1: Imagery and Classifications of the Roosevelt River
	20.2.2 Section 2: Basics of the BULC Interface
	20.2.3 Section 3: Detailed LULC Inspection with BULC
	20.2.4 Section 4: Change Detection with BULC-D
	20.2.5 Section 5: Change Detection with BULC and Dynamic World

	20.3 Synthesis
	20.4 Conclusion
	References

	21 Exploring Lagged Effects in Time Series
	21.1 Introduction to Theory
	21.2 Practicum
	21.2.1 Section 1: Autocovariance and Autocorrelation
	21.2.2 Section 2: Cross-Covariance and Cross-Correlation
	21.2.3 Section 3: Auto-Regressive Models

	21.3 Synthesis
	21.4 Conclusion
	References

	Part VVectors and Tables
	22 Exploring Vectors
	22.1 Introduction to Theory
	22.2 Practicum
	22.2.1 Section 1: Using Geometry Tools to Create Features in Earth Engine
	22.2.2 Section 2: Loading Existing Features and Feature Collections in Earth Engine
	22.2.3 Section 3: Importing Features into Earth Engine
	22.2.4 Section 4: Filtering Feature Collections by Attributes
	22.2.5 Section 5: Reducing Images Using Feature Geometry
	22.2.6 Section 6: Identifying the Block in the Neighborhood Surrounding USF with the Highest NDVI

	22.3 Synthesis
	22.4 Conclusion

	23 Raster/Vector Conversions
	23.1 Introduction to Theory
	23.2 Practicum
	23.2.1 Section 1: Raster to Vector Conversion
	23.2.2 Section 2: Vector-To-Raster Conversion

	23.3 Synthesis
	23.4 Conclusion

	24 Zonal Statistics
	24.1 Introduction to Theory
	24.2 Practicum
	24.2.1 Section 1: Functions
	24.2.2 Section 2: Point Collection Creation
	24.2.3 Section 3: Neighborhood Statistic Examples
	24.2.4 Section 4: Additional Notes

	24.3 Synthesis
	24.4 Conclusion
	References

	25 Advanced Vector Operations
	25.1 Practicum
	25.1.1 Section 1: Visualizing Feature Collections
	25.1.2 Section 2: Joins with Feature Collections

	25.2 Synthesis
	25.3 Conclusion

	26 GEEDiT—Digitizing from Satellite Imagery
	26.1 Introduction to Theory
	26.2 Practicum
	26.2.1 Section 1: Loading GEEDiT and Selecting Imagery Options and a Location
	26.2.2 Section 2: GEEDiT Digitisation Interface
	26.2.3 Section 3: Making GEEDiT Fit Your Own Purposes (Advanced)

	26.3 Synthesis
	26.4 Conclusion
	References

	Part VIAdvanced Topics
	27 Advanced Raster Visualization
	27.1 Introduction to Theory
	27.2 Practicum
	27.2.1 Section 1: Palettes
	27.2.2 Section 2: Remapping and Palettes
	27.2.3 Section 3: Annotations
	27.2.4 Section 4: Animations
	27.2.5 Section 5: Terrain Visualization

	27.3 Synthesis
	27.4 Conclusion
	References

	28 Collaborating in Earth Engine with Scripts and Assets
	28.1 Introduction to Theory
	28.2 Practicum
	28.2.1 Section 1: Using Get Link to Share a Script
	28.2.2 Section 2: Sharing Assets from Your Asset Manager
	28.2.3 Section 3: Working with Shared Repositories
	28.2.4 Section 4: Using the Require Function to Load a Module

	28.3 Synthesis
	28.4 Conclusion
	References

	29 Scaling up in Earth Engine
	29.1 Introduction to Theory
	29.2 Practicum
	29.2.1 Topic 1: Scaling Across Time
	29.2.2 Topic 2: Scaling Across Space via Spatial Tiling
	29.2.3 Topic 3: Multistep Workflows and Intermediate Assets

	29.3 Synthesis and Conclusion
	References

	30 Sharing Work in Earth Engine: Basic UI and Apps
	30.1 Introduction to Theory
	30.2 Practicum
	30.2.1 Section 1. Building an Earth Engine App Using JavaScript
	30.2.2 Section 2. Publishing an Earth Engine App from the Code Editor
	30.2.3 Section 3. Developing an Earth Engine App Using geemap
	30.2.4 Section 4. Publishing an Earth Engine App Using a Local Web Server
	30.2.5 Section 5. Publish an Earth Engine App Using Cloud Platforms

	30.3 Synthesis
	30.4 Conclusion
	References

	31 Combining R and Earth Engine
	31.1 Introduction to Theory
	31.2 Practicum
	31.2.1 Section 1. Installing rgee
	31.2.2 Section 2. Creating a 3D Population Density Map with rgee and rayshader
	31.2.3 Section 3. Displaying Maps Interactively
	31.2.4 Section 4. Integrating rgee with Other Python Packages
	31.2.5 Section 5. Converting JavaScript Modules to R

	31.3 Synthesis
	31.4 Conclusion
	References

	Part VIIHuman Applications
	32 Agricultural Environments
	32.1 Introduction to Theory
	32.2 Practicum
	32.2.1 Section 1. Pull All Landsat Imagery for the Study Area
	32.2.2 Section 2. Add Bands to Landsat Images for Harmonic Regression
	32.2.3 Section 3. Fit a Harmonic Regression at Each Landsat Pixel
	32.2.4 Section 4. Train and Evaluate a Random Forest Classifier

	32.3 Synthesis
	32.4 Conclusion
	References

	33 Urban Environments
	33.1 Introduction to Theory
	33.2 Practicum
	33.2.1 Section 1. Time Series Animation
	33.2.2 Section 2. Pre-existing Urban Classifications
	33.2.3 Section 3. Classifying Urban Areas

	33.3 Synthesis
	33.4 Conclusion
	References

	34 Built Environments
	34.1 Introduction to Theory
	34.2 Practicum
	34.2.1 Section 1. Road Characteristics
	34.2.2 Section 2. Road and Transmission Line Comparison
	34.2.3 Section 3. Impervious Surfaces and Flooding

	34.3 Synthesis
	34.4 Conclusion
	References

	35 Air Pollution and Population Exposure
	35.1 Introduction to Theory
	35.2 Practicum
	35.2.1 Section 1: Data Importing and Cleaning
	35.2.2 Section 2: Quantifying and Visualizing Changes
	35.2.3 Section 3: Calculating Population-Weighted Concentrations

	35.3 Synthesis
	35.4 Conclusion
	References

	36 Heat Islands
	36.1 Introduction to Theory
	36.2 Practicum
	36.2.1 Deriving Land Surface Temperature
	36.2.2 Deriving Land Surface Temperature from MODIS

	36.3 Synthesis
	36.4 Conclusion
	References

	37 Health Applications
	37.1 Introduction to Theory
	37.2 Practicum
	37.2.1 Section 1: Data Import
	37.2.2 Section 2: Date Preparation
	37.2.3 Section 3: Precipitation
	37.2.4 Section 4: Land Surface Temperature
	37.2.5 Section 5: Spectral Index: NDWI
	37.2.6 Section 6: Map Display
	37.2.7 Section 7: Exporting
	37.2.8 Section 8: Importing and Viewing External Analysis Results

	37.3 Synthesis
	37.4 Conclusion
	References

	38 Humanitarian Applications
	38.1 Introduction to Theory
	38.2 Practicum
	38.2.1 Section 1: Seeing Refugee Settlements from Above
	38.2.2 Section 2: Mapping Features Within the Refugee Settlement
	38.2.3 Section 3: Delineating Refugee Settlement Boundaries
	38.2.4 Section 4: Estimating Refugee Population Within the Settlement

	38.3 Synthesis
	38.4 Conclusion
	References

	39 Monitoring Gold Mining Activity Using SAR
	39.1 Introduction to Theory
	39.2 Practicum
	39.2.1 Section 1: Creating a Single SAR Mosaic
	39.2.2 Section 2: Creating a SAR Mosaic Time Series
	39.2.3 Section 3: Generate SAR Change Detection
	39.2.4 Section 4: Filtering and Post-processing Alerts

	39.3 Synthesis
	39.4 Conclusion
	References

	Part VIIIAquatic and Hydrological Applications
	40 Groundwater Monitoring with GRACE
	40.1 Introduction to Theory
	40.2 Practicum
	40.2.1 Section 1: Exploring the Study Area
	40.2.2 Section 2: Tracking Total Water Storage Changes in California with GRACE
	40.2.3 Section 3: Tracking Changes in Soil Water Storage and Snow Water Equivalent in California
	40.2.4 Section 4: Importing a Table of Surface Water Storage
	40.2.5 Section 5: Combining Image Collections

	40.3 Synthesis
	40.4 Conclusion
	References

	41 Benthic Habitats
	41.1 Introduction to Theory
	41.2 Practicum
	41.2.1 Section 1: Inputting Data
	41.2.2 Section 2: Preprocessing Functions
	41.2.3 Section 3: Supervised Classification
	41.2.4 Section 4: Bathymetry by Random Forests Regression

	41.3 Synthesis
	41.4 Conclusion
	References

	42 Surface Water Mapping
	42.1 Introduction to Theory
	42.2 Practicum
	42.2.1 Otsu Thresholding
	42.2.2 Adaptive Thresholding
	42.2.3 Extracting Flood Areas

	42.3 Synthesis
	42.4 Conclusion
	References

	43 River Morphology
	43.1 Introduction to Theory
	43.2 Practicum
	43.2.1 Creating and Analyzing a Single River Mask
	43.2.2 Multitemporal River Width
	43.2.3 Riverbank Erosion

	43.3 Synthesis
	43.4 Conclusion
	References

	44 Water Balance and Drought
	44.1 Introduction to Theory
	44.2 Practicum
	44.2.1 Section 1: Calculating Monthly Precipitation
	44.2.2 Section 2: Calculating Monthly Evapotranspiration
	44.2.3 Section 3: Monthly Water Balance
	44.2.4 Section 4: Vegetation and Drought Indices
	44.2.5 Section 5: Partitioning Water Resources and Mapping Drought Impacts

	44.3 Synthesis
	44.4 Conclusion
	References

	45 Defining Seasonality: First Date of No Snow
	45.1 Introduction to Theory
	45.2 Practicum
	45.2.1 Section 1: Identifying the First Day of 0% Snow Cover
	45.2.2 Section 2: Data Summary and Visualization

	45.3 Synthesis
	45.4 Conclusion
	References

	Part IXTerrestrial Applications
	46 Active Fire Monitoring
	46.1 Introduction to Theory
	46.2 Practicum
	46.2.1 Section 1: Fire Datasets in Google Earth Engine
	46.2.2 Section 2: In-Depth Visualization and Analysis of Fires in Earth Engine Apps

	46.3 Synthesis
	46.4 Conclusion
	References

	47 Mangroves
	47.1 Introduction to Theory
	47.2 Practicum
	47.2.1 Section 1: Deriving Additional Indices
	47.2.2 Section 2: Automatic Water Masking and Buffering
	47.2.3 Section 3: Creating Training Data and Running and Evaluating a Random Forest Classification

	47.3 Synthesis
	47.4 Conclusion
	References

	48 Mangroves II—Change Mapping
	48.1 Introduction to Theory
	48.2 Practicum
	48.2.1 Section 1: Map-To-Map Change Detection
	48.2.2 Section 2: Map-To-Image Change Detection

	48.3 Synthesis
	48.4 Conclusion
	References

	49 Forest Degradation and Deforestation
	49.1 Introduction to Theory
	49.2 Practicum
	49.2.1 Section 1: Spectral Mixture Analysis Model
	49.2.2 Section 2: Deforestation and Forest Degradation Change Detection
	49.2.3 Section 3: Deforestation and Forest Degradation Time Series Analysis

	49.3 Synthesis
	49.4 Conclusion
	References

	50 Deforestation Viewed from Multiple Sensors
	50.1 Introduction to Theory
	50.2 Practicum
	50.2.1 Section 1: Understand How FNRT Works
	50.2.2 Section 2: Define Study Area and Model Parameters
	50.2.3 Section 3: Import and Preprocess Data
	50.2.4 Section 4: Establish Baseline Time-Series Model
	50.2.5 Section 5: Create Predicted Values for the Monitoring Period
	50.2.6 Section 6: Calculate Change Scores
	50.2.7 Section 7: Multisensor Data Fusion and Change Detection

	50.3 Synthesis
	50.4 Conclusion
	References

	51 Working with GPS and Weather Data
	51.1 Introduction to Theory
	51.2 Practicum
	51.2.1 Section 1: GPS Location Data
	51.2.2 Section 2: Bringing Data into Earth Engine

	51.3 Synthesis
	51.4 Conclusion
	Reference

	52 Creating Presence and Absence Points
	52.1 Introduction to Theory
	52.2 Practicum
	52.2.1 Section 1: Developing Your Own Sampling Locations
	52.2.2 Section 2: Generating Your Own Training Dataset

	52.3 Synthesis
	52.4 Conclusion
	Reference

	53 Detecting Land Cover Change in Rangelands
	53.1 Introduction to Theory
	53.2 Practicum
	53.2.1 Section 1: Inspecting Information About the Study Area
	53.2.2 Section 2: Compile the Time Series of Vegetation Cover
	53.2.3 Section 3: Time Series Segmentation
	53.2.4 Section 4: Classify Pixels Based on Similarities in Time Series Trajectories
	53.2.5 Section 5: Explore the Characteristics of the New Classes

	53.3 Synthesis
	53.4 Conclusion
	References

	54 Conservation I—Assessing the Spatial Relationship Between Burned Area and Precipitation
	54.1 Introduction to Theory
	54.2 Practicum
	54.2.1 Section 1: Assess Area of Interest
	54.2.2 Section 2: Load the MODIS Burned Area Dataset
	54.2.3 Section 3: Areal Mean Rainfall Time Series
	54.2.4 Section 4: Visualizing Fire and Rainfall Time Series

	54.3 Synthesis
	54.4 Conclusion
	References

	55 Conservation II—Assessing Agricultural Intensification Near Protected Areas
	55.1 Introduction to Theory
	55.2 Practicum
	55.2.1 Section 1: Initializing Parameters
	55.2.2 Section 2: Raster Processing for Change Analysis
	55.2.3 Section 3: Visualizing Results

	55.3 Synthesis
	55.4 Conclusion
	References

