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Abstract. Metaheuristics are problem-solving methods which try to
find near-optimal solutions to very hard optimization problems within an
acceptable computational timeframe, where classical approaches usually
fail, or cannot even been applied. Random mechanisms are an integral
part of metaheuristics, given randomness has a role in dealing with algo-
rithmic issues such as parameters tuning, adaptation, and combination
of existing optimization techniques. In this paper, it is explored whether
deterministic chaos can be suitably used instead of random processes
within Variable Neighbourhood Search (VNS), a popular metaheuristic
for combinatorial optimization. As a use case, in particular, the paper
focuses on labelling graph problems, where VNS has been already used
with success. These problems are formulated on an undirected labelled
graph and consist on selecting the subset of labels such that the subgraph
generated by these labels has, respectively, an optimal spanning tree or
forest. The effects of using chaotic sequences in the VNS metaheuristic
are investigated during several numerical tests. Different one-dimensional
chaotic maps are applied to VNS in order to compare the performance of
each map in finding the best solutions for this class of graph problems.

Keywords: Deterministic chaos · Metaheuristics · Variable
neighbourhood search · Labelling graph problems · Algorithm dynamics

1 Introduction

The term “chaos” covers a rather broad class of phenomena showing random-like
behaviors at a first glance, even if they are generated by deterministic systems.
This kind of processes is used to denote phenomena which are of a purely stochas-
tic nature, such as the behavior of a waft of smoke or ocean turbulence, or the
dynamic of molecules inside a vessel filled with gas, among many others [25].
However, chaotic system behaviors are easily mistaken for random noises given
they share the property of long term unpredictable irregular behavior and broad
band spectrum.
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A classical topic in studying real world phenomena is to distinguish then
between chaotic and random dynamics [18]. Deterministic chaotic systems are
necessarily nonlinear, and conventional statistical procedures are insufficient for
their analysis [39]. If the output of a deterministic chaotic system is analysed
with these approaches, it will be erroneously recognised as the result of a ran-
dom process. Therefore, characterizing the irregular behavior that can be caused
either by deterministic chaos or by randon processes is challenging because of
the surprising similarity that deterministic chaotic and random signals often
show. Thus, it is still an open problem to distinguish among these two types of
phenomena [25].

Deterministic chaos and its applications can be observed in control theory,
computer science, physics, biology, and many other fields [18]. The interest in
studying chaotic systems arises indeed when the theme of chaos reaches a high
interdisciplinary level involving not only mathematicians, physicians and engi-
neers but also biologists, economists and scientists from different areas. Several
research works have shown that order could arise from disorder in various fields,
from biological systems to condensed matter, from neuroscience to artificial neu-
ral networks [1]. In these cases, disorder often indicates both non-organized pat-
terns and irregular behavior, whereas order is the result of self-organization and
evolution, and often arises from a disorder condition or from the presence of dis-
symmetries. Gros [19] discusses the origin of self-organization where, leveraging
from various key points from evolutionary theory and biology, it emphasizes the
idea that life exists at the edge of chaos. Other examples in which the concept
of stochastic driven procedures leads to ordered results are, e.g., Monte Carlo
and evolutionary optimization [39], together with stochastic resonance in which
the presence of noise improves the transmission of information [14].

The discovery of the phenomenon of deterministic chaos has brought about
the need to identify manifestations of this phenomenon also in experimental data.
Research on this line has focused so far on exploring the properties of cause and
effect of chaotic phenomena, and also on using deterministic chaotic processes
as instruments to improve other systems. This article focuses on the latter, and
in particular on exploiting chaos for the improvement of heuristic optimization
[32]. The goal consists on evaluating to performance between chaotic and ran-
dom dynamics within a metaheuristic algorithm, showing the use of chaos in the
inner optimization process, and focussing the attention on how chaos supports
the birth of order from disorder also in this field [38]. This means to investi-
gate the effects of the introduction of either deterministic chaotic or random
sequences in a complex optimization routine. For this purpose, in particular, in
this work we focus on Variable Neighbourhood Search (VNS), a popular explo-
rative metaheuristic for combinatorial optimization problems based on dynamic
changes of the neighbourhood structure in the solution space during the search
process [21]. To compare the performance between a VNS procedure that runs
using chaotic signals and that of a traditional random-based VNS, we consider
as use case a set of labelling graph problems, i.e. the labelled spanning tree
and forest problems. These problems are formulated on an undirected labelled
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graph, and consist on selecting the subset of labels such that the subgraph gen-
erated by these labels has an optimal spanning tree or forest. This family of
problems has many real-world applications in different fields, such as in data
compression, telecommunications network design, and multimodal transporta-
tion systems [9,10,12,13]. For example, in multimodal transportation systems
there are often circumstances where it is needed to guarantee a complete service
between the terminal nodes of the network by using the minimum number of
provider companies. This situation can be modelled as a labelling graph prob-
lem, where each edge of the input graph is assigned a label, denoting a different
company managing that link, and one wants to obtain a spanning tree of the
network using the minimum number of labels. This spanning tree will reduce
the construction cost and the overall complexity of the network.

The effects of using chaos in VNS on this family of combinatiorial optimiza-
tion problems are evaluated, aiming at disentangling the improvement in the
optimization power due to the inclusion of a deterministic chaotic map within
the VNS approach, one of the most popular metaheuristic used for tackling
this class of problems. For the task, as it will be shown next, different popular
one-dimensional chaotic maps are considered. The rest of the paper is struc-
tured as follows. Section 2 provides an overview of the background literature,
while Sect. 3 presents the considered labelling graph problems used as test-
bench. Section 4 describes the VNS methodology implemented for this family
of problems. Section 5 describes how we used chaos in VNS and the determin-
istic chaotic maps considered in our experiments. Section 6 shows the obtained
empirical results and findings, while in Sect. 7 we provide our main conclusions.

2 Related Work

The active use of chaos has been recently widely investigated in the literature
[18,25]. The link between chaos and randomness has been largely investigated in
several works (see e.g. [20,26,31] among others). Particularly interesting results
have arisen in computer systems and algorithms, where chaos has been observed
in the dynamics of algorithmic routines [24] and evolutionary algorithms [38,39].
The latter is a topic of great interest, linked to the work presented in this paper.
Chaos indeed has been used to substitute pseudo-random number generators in
a variety of heuristic optimization procedures. The use of chaos inside evolution-
ary optimization is discussed in [27,38], where it is thoroughly evaluated whether
pure chaotic sequences improve the performance of evolutionary strategies. Dav-
endra et al. [15] use with success a chaos driven evolutionary algorithm for PID
control, while El-Shorbagy et al. [17] propose a chaos-based evolutionary algo-
rithm for nonlinear programming problems. Hong et al. [22] propose a chaotic
Genetic Algorithm for cyclic electric load forecasting; for the same problem,
Dong et al. [16] introduce a hybrid seasonal approach using a chaotic Cuckoo
Search algorithm together with a Support Vector Regression model. Another
example on the use of chaos in a Genetic Algorithm is present in [28], with an
application for the solution of a chip mapping problem. Senkerik et al. [33,34]
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discuss the impact of chaos on Differential Evolution, powering the algorithm
by a multi-chaotic framework used for parent selection and population diver-
sity. Pluhacek et al. [29,30] has widely explored the use of deterministic chaos
inside Particle Swarm Optimization. Hong et al. [23] introduce a novel chaotic
Bat Algorithm for forecasting complex motion of floating platforms. Chen et
al. [6] propose a Whale Optimization Algorithm with a chaos-based mechanism
relying on quasi-opposition for global optimization problems. In [40], instead,
an improved Artificial Fish Swarm Algorithm based on chaotic search and feed-
back strategy has been described. Wang et al. [36] recently present an improved
Grasshopper Optimization Algorithm using an adaptive chaotic strategy to fur-
ther improve the comprehensive ability of grasshopper swarms in the early explo-
ration and later development, and apply the algorithm to pattern synthesis of
linear array in RF antenna design.

We do not attempt to hide the fact that, in certain ways, the field has been
progressing in a way that seems to us less useful, and sometimes even harmful,
to the development of the field in general. For example, many of the contribu-
tions that appear in the new literature, in our opinion do appear rather marginal
additions to a list of relevant and widely accepted metaheuristics [35]. Never-
theless, it can be stated that, based on the listed and further other research
papers in the literature, several contributions have shown the value that chaos
appears to provide as an additional tool for heuristic optimization routines. It is
evident the increasingly rising attention of the research community towards the
hybridization of modern optimization algorithms and chaotic dynamics.

To the best of our knowledge, however, no attempts have been made on the
use of chaos within the Variable Neighbourhood Search algorithm. We want to
fill this gap, and, therefore, in this paper we use chaos to try to improve the VNS
metaheuristic, testing it through different chaotic functions. As shown next, we
evaluate the performance of the impact of a chaotic version of VNS on a set
of labelling graph problems, used as testbench, to a non-chaotic version of the
same algorithm.

3 The Labelled Spanning Tree and Forest Problems

In this paper we scratch a chaotic version of VNS, aimed to achieve further
improvements to a classic, random-based VNS implementation tackling two clas-
sical labelling graph problems, namely the Minimum Labelling Spanning Tree
(MLST) [4] and the k-Labelled Spanning Forest (kLSF) [3] problems. Variants
exist (see e.g. [8,10]), but these two problems are maybe the most prominent and
general of this family. They are defined on a labelled graph, that is an undirected
graph, G = (V,E,L), where V is its set of nodes and E is the set of edges that
are labelled on the set L of labels.

The MLST problem [4] consists on, given a labelled input graph G =
(V,E,L), getting a spanning tree with the minimum number of labels; i.e., the
aim is to find the labelled spanning tree T ∗ = (V,E∗, L∗) of the input graph
that minimizes the size of label set |L∗|.
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Instead, the kLSF problem [3] is defined as follows. Given a labelled input
graph G = (V,E,L) and an integer positive value k̄, find a labelled spanning
forest F ∗ = (V,E∗, L∗) of the input graph having the minimum number of
connected components with the upper bound k̄ for the number of labels to use,
i.e. min|Comp(G∗)| with |L∗| ≤ k̄.

Therefore in both problems, the matter is to find an optimal set of labels
L∗. Since a solution to the MLST problem would be a solution also to the
kLSF problem if the obtained solution tree would not violate the limit k̄ on
the used number of labels, it is easily deductable that the two problems are
deeply correlated. Given the subset of labels L∗ ⊆ L, the labelled subgraph
G∗ = (V,E∗, L∗) may contain cycles, but each of them can be arbitrarily break
by eliminating edges in polynomial time until a forest, or a tree, is obtained.

The NP-hardness of the MLST and kLSF problems has been proved in [4]
and in [3], respectively. Therefore any practical solution approach to both prob-
lems requires heuristics. Several optimization algorithms to the MLST problem
have been approached in the literature [2,37], showing in several cases the par-
ticular suitability of the VNS heuristic [9,11,12]. For the kLSF problem, in [3] a
Genetic Algorithm and the Pilot Method metaheuristics have been proposed. In
particular, in [7,13], some metaheuristics based on Greedy Randomized Adap-
tive Search Procedure and Variable Neighbourhood Search have been designed,
obtaining high-quality results in most cases and showing the effectivenes of the
VNS approach [13]. Given VNS has demonstrated to be a promising strategy for
this class of problems, we have chosen it as a benchmark for testing the use of
chaos inside the VNS metaheuristic. Nevertheless, note that the approach can be
easily adapted and generalised to other optimization problems where the solu-
tion space consists of subsets of a reference set, such as feature subset selection
problems or a variety of location problems.

4 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is an explorative metaheuristic for combi-
natorial optimization problems based on dynamic changes of the neighbourhood
structure of the solution space during the search process [21]. The guiding prin-
ciple of VNS is that a local optimum with respect to a given neighbourhood
may not be locally optimal with respect to another neighbourhood. Therefore
VNS looks for new solutions in increasingly distant neighbourhoods of the cur-
rent solution, jumping only if a better solution than the current best solution
is found [21]. The process of changing neighbourhoods when no improvement
occurs is aimed at producing a progressive diversification.

Given a labelled graph G = (V,E,L) with n vertices, m edges, and � labels,
each solution is encoded by a binary string [9], i.e. C = (c1, c2, . . . , c�) where

ci =
{

1 if label i is in solution C
0 otherwise (∀i = 1, . . . , �). (1)
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Denote with Nk(C) the neighbourhood space of the solution C, and with
kmax the maximum size of the neighbourhood space. In order to impose a neigh-
bourhood structure on the solution space S, comprising all possible solutions, the
distance considered between any two such solutions C1, C2 ∈ S, is the Hamming
distance [9,12]:

ρ(C1, C2) = |C1 − C2| =
�∑

i=1

λi (2)

where λi = 1 if label i is included in one of the solutions but not in the other,
and 0 otherwise, ∀i = 1, ..., �. Then, given a solution C, its kth neighbourhood,
Nk(C), is considered as all the different sets having a Hamming distance from C
equal to k labels, where k = 1, 2, . . . , kmax, and kmax is the maximum dimension
of the shaking. In a more formal way, the kth neighbourhood of a solution C is
defined as Nk(C) = {S ⊂ L : ρ(C,S) = k}, where k = 1, ..., kmax.

Algorithm 1: Variable Neighbourhood Search for the MLST problem
Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices,

m edges, � labels;
Output: A spanning tree T ;
Initialisation:
- Let C ← ∅ be the global set of used labels;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels
in C, where E(C) = {e ∈ E : L(e) ∈ C};

- Let C′ be a set of labels;
- Let H ′ = (V, E(C′)) be the subgraph of G restricted to V and edges with
labels in C′, where E(C′) = {e ∈ E : L(e) ∈ C′};

- Let Comp(C′) be the number of connected components of H ′ = (V, E(C′));
begin

C ←Generate-Initial-Solution();
repeat

Set k ← 1 and kmax ← (|C| + |C|/3);
while k < kmax do

C′ ←Shaking phase(C, k);
Local search(C′);
if |C′| < |C| then

Move C ← C′;
Restart with the first neighbour: k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end

until termination conditions;
Update H = (V, E(C));
⇒ Take any arbitrary spanning tree T of H = (V, E(C)).

end
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Algorithm 2: Shaking phase procedure
Procedure Shaking phase(C, k):
Set C′ ← C;
for i ← 1 to k do

Select at random a number between 0 and 1: rnd ← random[0, 1];
if rnd ≤ 0.5 then

Delete at random a label c′ ∈ C′ from C′, i.e. C′ ← C′ − {c′} ;
else

Add at random a label c′ ∈ (L − C) to C′, i.e. C′ ← C′ ∪ {c′};
end
Update H ′ = (V, E(C′)) and Comp(C′);

end

For illustrative purpose and a better comprehension, in Algorithm 1 is
described the VNS implementation for the MLST problem [9,12]. The VNS
solution approach for the kLSF problem is very akin [7,13] and only differ from
the fact that an upper bound k̄ for the number of labels has to be imposed,
and that a forest instead of a spanning tree has to be considered for halting
the algorithm. Note that given a subset of labels L∗ ⊆ L, the labelled subgraph
G∗ = (V,E∗, L∗) may contain cycles, but they can arbitrarily break each of them
by eliminating edges in polynomial time until a forest or a tree is obtained.

Algorithm 1 starts from an initial feasible solution C generated at random
and lets parameter k vary during the execution. In the successive shaking phase
(Shaking phase(Nk(C)) procedure, see Algorithm 2) a random solution C ′ is
selected within the neighbourhood Nk(C) of the current solution C. This is
done by randomly adding further labels to C, or removing labels from C, until
the resulting solution has a Hamming distance equal to k with respect to C [9].
Addition and deletion of labels at this stage have the same probability of being
chosen. For this purpose, a random number is selected between 0 and 1 (rnd ←
random[0, 1]). If this number is smaller than 0.5, the algorithm proceeds with
the deletion of a label from C. Otherwise, an additional label is included at
random in C from the set of unused labels (L − C). The procedure is iterated
until the number of addition/deletion operations is exactly equal to k [12].

The successive local search (Local search(C ′) procedure, see Algorithm 3)
consists of two steps [9]. In the first step, since deletion of labels often gives an
infeasible incomplete solution, additional labels may be added in order to restore
feasibility. In this case, addition of labels follows the criterion of adding the label
with the minimum number of connected components. Note that in case of ties
in the minimum number of connected components, a label not yet included in
the partial solution is chosen at random within the set of labels producing the
minimum number of components (i.e. u ∈ S where S = {� ∈ (L − C ′) : min
Comp(C ′ ∪{�})}). Then, the second step of the local search tries to delete labels
one by one from the specific solution, whilst maintaining feasibility [9,12].
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Algorithm 3: Local search procedure
Procedure Local search(C′):
while Comp(C′) > 1 do

Let S be the set of unused labels which minimize the number of connected
components, i.e. S = {� ∈ (L − C′) : min Comp(C′ ∪ {�})};

Select at random a label u ∈ S;
Add label u to the set of used labels: C′ ← C′ ∪ {u};
Update H ′ = (V, E(C′)) and Comp(C′);

end
for i ← 1 to |C′| do

Delete label i from the set C′, i.e. C′ ← C′ − {i};
Update H ′ = (V, E(C′)) and Comp(C′);
if Comp(C′) > 1 then

Add label i to the set C′, i.e. C′ ← C′ ∪ {i};
end
Update H ′ = (V, E(C′)) and Comp(C′);

end

After the local search phase, if no improvements are obtained (|C ′| ≥ |C|),
the neighbourhood structure is increased (k ← k +1) giving a progressive diver-
sification (|N1(C)| < |N2(C)| < ... < |Nkmax(C)|), where kmax ← (|C| + |C|/3)
from [9,12]. Otherwise, the algorithm moves to the improved solution (C ← C ′)
and sets the first neighbourhood structure (k ← 1). Then the procedure restarts
with the shaking and local search phases, continuing iteratively until the user
termination conditions are met.

5 Using Chaos in VNS

Chaos is a non-periodic, long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions, and is a common nonlinear
phenomenon in our lives [25]. The dynamic properties of chaos can be sum-
marised as following [40]:

1. “Sensitive dependence to Initial Conditions (SIC)”: Chaos is highly sensitive
to the initial value.

2. “Certainty”: Chaos is produced by a certain iterative formula.
3. “Ergodicity”: Chaos can go through all states in certain ranges without rep-

etition.

In general, the most important defining property of chaotic variables is the first
one, which requires that trajectories originating from very nearly identical initial
conditions diverge at an exponential rate [28]. Pseudorandomness and ergodicity
are other important dynamic characteristics of a chaotic structure, which ensure
that the track of a chaotic variable can travel ergodically over the whole space
of interest.
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Chaos is similar to randomness. The variation of the chaotic variable has
indeed an inherent property in spite of the fact that it looks like a disorder.
Edward Lorenz irregularity in a toy model of the weather displayed first chaotic
or strange attractor in 1963. It was mathematically defined as randomness gen-
erated by simple deterministic systems. A deterministic structure can have no
stochastic (probabilistic) parameters. Therefore chaotic systems are not at all
equal to noisy systems driven by random processes. The irregular behavior of
the chaotic systems arises from intrinsic nonlinearities rather than noise [25].

Several experimental studies have shown already the benefits of using chaotic
signals rather than random signals [18], although a general rule can not be drawn
yet [32]. Chaos has been used as a novel addition to optimization techniques to
help escaping from local optima, and chaos-based searching algorithms have
aroused intense interests [32,39].

As from the second property of chaos just listed above, one-dimensional non-
invertible maps are the simplest systems with capability of generating chaotic
dynamics. They are capable of providing simple deterministic chaotic signals,
that we can use inside our VNS procedure (Algorithm 1) in place of the pseudo-
random number generation occurring in the shaking phase (Algorithm 2). Here
the chaotic mapping of a shaking Nk(·) to an incumbent solution, C, includes
the following major steps:

1. Variable C in the solution space is mapped to the chaotic space, by using a
deterministic chaotic map chosen by the user.

2. Using the selected chaotic dynamics, select the kth chaotic variable from the
generating map.

3. The chaotic variable is then mapped back to the solution space, producing
the next solution C ′.

Please note that after this step, in case of an infeasible incomplete solution
is obtained, additional labels may be added in order to restore feasibility, fol-
lowing the criterion of adding the label with the minimum number of connected
components with respect to the incumber solution C ′.

In the following we briefly depict some well-known one-dimensional chaotic
maps that we employ in our experiments. For more in-depth descriptions, the
reader in referred to [5,32].

Logistic map

The logistic map is a chaotic polynomial map. It is often cited as an exam-
ple of how complex behavior can arise from a very simple nonlinear dynamical
equation. This map is defined by:

xn+1 = f(μ, xn) = μxn(1 − xn), 0 < μ ≤ 4 (3)

in which μ is a control parameter, and x is the variable. Since Eq. (3) represents
a deterministic dynamic system, it seems that its long-term behavior can be
predicted.
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Tent Map

In mathematics, the tent map is an iterated function, in the shape of a tent,
forming a discrete-time dynamical system. It takes a point xn on the real line
and maps it to another point, according to:

xn+1 =

{
μxn if xn < 1/2
μ(1 − xn) otherwise,

(4)

where μ is a positive real constant. The tent map and the logistic map are
topologically conjugate, and thus the behavior of the two maps is in this sense
identical under iteration.

Bernoulli Shift Map

The Bernoulli shift (Bshift) map belongs to class of piecewise linear maps which
consist of a number of piecewise linear segments. This map is a particularly
simple example, consisting of two linear segments to model the active and passive
states of the source. It is defined as follows:

xn+1 =

⎧⎨
⎩

xn

1 − λ
if 0 < xn < (1 − λ)

xn − (1 − λ)
λ

otherwise.
(5)

Sine Map

The sine map is described by the following equation:

xn+1 =
α

4
sin (πxn), (6)

where 0 < α ≤ 4. This map has qualitatively the same shape as the logistic map.
Such maps are also called unimodal chaotic maps.

Circle map

The circle map [22] is represented by

xn+1 = xn + b − a

2π
sin (2πxn), (7)

where a can be interpreted as a strength of nonlinearity, and b as an externally
applied frequency. The circle map exhibits very unexpected behavior as a func-
tion of these parameters; with a = 0.5 and b = 0.2, it generates chaotic sequences
in (0, 1).

Iterative Chaotic Map with Infinite Collapses

The iterative chaotic map with infinite collapses (ICMIC) is defined by:

xn+1 = sin(α/xn), (8)

where α ∈ (0,∞) is an adjustable parameter.
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6 Experimental Results

We show here our computational experience on the use of chaos within the VNS
methodology for the considered labelling graph problems. We examine the VNS
implementation using pseudo-random number generation in the shaking phase
(Rand), and the same VNS model including the different deterministic chaotic
maps in the shaking step, denoted respectively with: Logistic, Tent, Bshift, Sine,
Circle, and ICMIC. To test the performance and the efficiency of the algorithms,
we run an experimental evaluation on a set of labelled graphs having numbers
of vertices |V | = 100, 200, 300, 400, 500, 1000, labels |L| = 0.25V |, 0.5V |, |V |,
1.25V |, and edges |E| = (|V | − 1)/|V |. These are the well-known benchmark
instances in the literature taken from [9,11,12] for the MLST literature, and
from [7,13] for the kLSF problem. All the considered instances are available
upon request from the authors. For each combination of |V | and |L|, ten different
problem instances are generated; the parameter k̄ for the kLSF is determined
experimentally as �|V |/2j�, where j is the smallest value such that the generated
instances do not report a single connected solution when solved with maximum
vertex covering [3]. The algorithms have been implemented in C++ under the
Microsoft Visual Studio 2015 framework, and all the computations run on an
Intel Quad-Core i7 64-bit microprocessor at 2.30 GHz with 32 GB RAM.

For each dataset, solution quality is evaluated as the average objective func-
tion value (i.e. the number of labels of the solution for the MLST problem, or the
number of connected components for the kLSF problem) among the 10 problem
instances. As in [9,12,13], a maximum allowed CPU time of 1 hour has been
chosen as stopping condition for all the VNS algorithms. Selection of the maxi-
mum allowed CPU time as the stopping criterion is made in order to have a fair
and direct comparison between the different VNS implementations with respect
to the quality of their solutions. All the algorithms run until the maximum CPU
time is reached and, in each case, the best solution is recorded, along with the
total number of iterations required to obtain such best solution.

We show in Fig. 1 the bar chart of the sum of the objective function values
obtained by the different VNS variants for the MLST problem instances (left)
and for the kLSF problem instances (right). The results show that the determin-
istic chaotic maps perform well in the considered instances for both problems,
with the exception of Sine and Circle that appear to not bring a real improve-
ment over that classical VNS with pseudo-random number generation. The best
results are obtained when using the ICMIC map, reaching the best solutions in
both problems. Fine results are also reached, respectively, by the Tent, Logistic,
and Bshift maps, which follow immediately after ICMIC and clearly outperform
Rand.

We also compare the total number of iterations at which the best solutions
are obtained when executing VNS with each of the discussed chaotic maps, and
show the relative bar chart in Fig. 2. We see a consistent drop with respect to the
number of iterations required by all the VNS variants using the chaotic maps,
meaning that they are able to converge earlier with respect to Rand. Looking
at the figure, the best performance in terms of total number of iterations is
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Fig. 1. Bar chart of the objective function values obtained by the different VNS variants
for solving the MLST problem instances (left) and the kLSF problem instances (right).

Fig. 2. Bar chart of the total number of iterations required by the different VNS
variants for solving the MLST problem instances (left) and the kLSF problem instances
(right).

obtained by Sine for both problems, immediately followed by the ICMIC map,
and by the Logistic and Tent maps, afterwards. However, although Sine is faster
than the other chaotic maps, it does not show top performance with respect to
the objective function values (Fig. 1), meaning it is more prone to get stuck into
local optima. Instead, looking at Bshift and Circle, they appear to be sometimes
slower than the other employed maps. Nevertheless, summarizing, as seen already
with respect to solution quality, it is again evident the value of using the chaotic
maps in VNS, given all the chaotic VNS variants always outperform Rand with
respect to the required number of iterations.

7 Conclusions

This paper introduces the novel idea of combining the two concepts of chaotic
sequences and Variable Neighbourhood Search (VNS). Different popular one-
dimensional chaotic maps have been considered, and they have been injected
into the shaking phase of the VNS algorithm in place of classical pseudo-random
number generation. The chaotic VNS variants have been tested on a family
of labelling graph problems, namely the Minimum Labelling Spanning Tree
(MLST) problem and the k-Labelled Spanning Forest (kLSF) problem. In order
to evaluate the effectiveness of the chaotic maps in reaching the best solution for
the considered problems, objective function values and total number of iterations
required by the different VNS implementations have been computed upon a set of
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problem instances commonly used in the literature. Simulation results on this set
of benchmarks indicate that searching efficiency of the VNS algorithm improves
when using the one-dimensional chaotic maps within the shaking phase. The
proposed chaotic variants work quite better than the classical VNS algorithms
using randomness for the two problems introduced in previous works.

Summarizing, although preliminary, the obtained results look encouraging,
showing an overall validity of the employed methodology. The achieved VNS opti-
mization strategy using chaos seems to be highly promising for both labelling
graph problems. The experiments carried out confirm the efficiency, lower num-
ber of iterations, and scalability of the chaotic VNS implementations. Ongoing
investigation will consist in performing a thorough statistical analysis of the
resulting chaotic VNS strategies against the best algorithms in the literature
for these problems, in order to better quantify and qualify the improvements
obtained. Further investigation will deal also with the application of chaotic
variants of VNS to other optimization problems.
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particle swarm optimization for the minimum labelling Steiner tree problem. In:
Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooper-
ative Strategies for Optimization. Studies in Computational Intelligence, vol. 129,
pp. 313–322. Springer-Verlag, New York (2008). https://doi.org/10.1007/s11047-
009-9137-9

9. Consoli, S., Darby-Dowman, K., Mladenović, N., Moreno-Pérez, J.A.: Greedy ran-
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21. Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search:
methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010). https://doi.
org/10.1007/s10479-009-0657-6

22. Hong, W.-C., Dong, Y., Zhang, W., Chen, L.-Y., Panigrahi, B.K.: Cyclic electric
load forecasting by seasonal SVR with chaotic genetic algorithm. Int. J. Electr.
Power Energy Syst. 44(1), 604–614 (2013)

23. Hong, W.-C., Li, M.-W., Geng, J., Zhang, Y.: Novel chaotic bat algorithm for
forecasting complex motion of floating platforms. Appl. Math. Model. 72, 425–443
(2019)

24. Hoyle, A., Bowers, R., White, A.: Evolutionary behaviour, trade-offs and cyclic and
chaotic population dynamics. Bull. Math. Biol. 73(5), 1154–1169 (2011). https://
doi.org/10.1007/s11538-010-9567-7

25. Jørgensen, S.: Chaos. In: Jørgensen, S.E., Fath, B.D. (eds.) Encyclopedia of Ecol-
ogy, pp. 550–551. Academic Press, Oxford (2008)

26. Lozi, R.: Emergence of randomness from chaos. Int. J. Bifurcat. Chaos 22(2),
1250021 (2012)

27. Lu, Y., Zhoun, J., Qin, H., Wang, Y., Zhang, Y.: Chaotic differential evolution
methods for dynamic economic dispatch with valve-point effects. Eng. Appl. Artif.
Intell. 24(2), 378–387 (2011)

28. Moein-darbari, F., Khademzadeh, A., Gharooni-fard, G.: Evaluating the perfor-
mance of a chaos genetic algorithm for solving the network on chip mapping prob-
lem. In: Proceedings - 12th IEEE International Conference on Computational Sci-
ence and Engineering, CSE 2009, vol. 2, pp. 366–373 (2009)

29. Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm
driven by multichaotic number generator. Soft. Comput. 18(4), 631–639 (2014).
https://doi.org/10.1007/s00500-014-1222-z

https://doi.org/10.1007/978-3-642-04706-0
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s11538-010-9567-7
https://doi.org/10.1007/s11538-010-9567-7
https://doi.org/10.1007/s00500-014-1222-z


214 S. Consoli and J. A. M. Pérez
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