
Chapter 4
Pathways and Interfaces Under Stress
Redistribution

Markus Barsch, Thomas Nagel, Holger Steeb, Patrick Schmidt,
Dongwon Lee, Carlos Guevara Morel, and Jobst Maßmann

There are several finite element-based modeling approaches to deal with fissures,
fractures and discontinuities in rocks. A recent overview can found e.g in Mollaali
et al. (2022). As one of them, lower-dimensional interface elements (LIE) were
implemented in OpenGeoSys1 previously (Watanabe et al. 2012; Yoshioka et al.
2019) to map fractures and fissures discretely.

For example, in a 3D model consisting of a matrix and a fracture, the matrix
is represented by 3D elements and the fracture by 2D elements. Crack growth can
occur along pre-defined interfaces, i.e. the 2D elements, and therefore, the direction
of crack path is predefined in contrast to other approaches resting on phase fields,
extended finite elements or remeshing strategies.

1https://www.opengeosys.org.
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Further, lower-dimensional approaches taking into account the hydromechanics of
deformable fluid-saturated fractures in porousmedia have been implemented in open-
source software packages likeDUNE2 orFEniCS3 (Schmidt andSteeb2019; Schmidt
et al. 2021). Numerically efficient coupling approaches for fractures and the sur-
rounding porous rock allowing for HPC computations based on lower-dimensional
models have been successfully applied to complex 2D/3D problems (Schmidt et al.
2022b) using modern code-coupling tools like preCICE.4

This general framework can be applied to a range of problems aside from frac-
ture mechanics, including fracture slip problems and geotechnical problems with
frictional interfaces, such as soil-structure interaction. In the sequel, we briefly sum-
marize the theory and give a short insight into selected application examples from the
GeomInt2 project. In cooperation with researchers from STIMTEC (Renner 2020)
and others, those simulation tools have been used for the numerical interpretation
of pressure transients obtained from large-scale experiments in the field, like e.g.
harmonic pumping tests at the underground laboratory Reiche Zeche, Freiberg, Ger-
many (Schmidt et al. 2021) or at the Grimsel Test Site, Switzerland, (Schmidt et al.
2022a). Based on those numerical-experimental investigations it was shown that
fully-coupled hydromechanical approaches give amore physically sound insight into
pressure transients especially if results are compared to simpler and more “classical”
diffusion-based modeling approaches.

4.1 Hydro-Mechanics of Deformable High-Aspect Ratio
Fractures

Viscous fluid flow in fractured porous rocks is causing strongly coupled hydro-
mechanical interaction phenomena by local aperture, i.e. volume, changes of the
fractures and resulting variations of the fluid pressure state. These phenomena have
been investigated by various researchers over the last decades. For an overview we
refer to a recent PhD thesis written during the period of the GeomInt and GeomInt2
project (Schmidt 2022).

Modelling approaches of fractured reservoirs require an efficient description of the
hydro-mechanical processes. This includes on the one hand the accurate description
of the deformation of the fracture and on the other hand the dynamic exchange of
momentumbetween the fractures and the surrounding rockmatrix. Froma continuum
perspective, model assumptions have to be made for the geometry of the fracture,
and in a lower-dimensional setup, for the velocity profile within the fracture domain.
For low Reynolds-number flow (Re < 1), a hybrid-dimensional model approach is
obtained by an integration of the assumed parabolic flow velocity profile in normal
fracture direction ê3. This “a priori” integration is reducing the fracture flow domain

2 https://www.dune-project.org.
3 https://fenicsproject.org/.
4 https://precice.org.

https://www.dune-project.org
https://fenicsproject.org/
https://precice.org
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Fig. 4.1 Representation of a single fracture �Fr embedded in a poro-elastic material body BPe

with material surface �Pe. For the kinematical description of the fracture, a local basis system
êi is introduced. The basis vector ê3 is aligned with the fracture surface normal. The mechanical
deformation of the fracture, and therefore the local volume change, is depicted with the evolution
of the aperture δ, cf. Schmidt et al. (2022b), Schmidt (2022)

by one dimension, cf. Fig. 4.1. The resulting model is derived from 3D continuum
mechanics by a consistent evaluation of the conservation of mass and balance of
momentum under fully saturated conditions (Vinci et al. 2014; Schmidt 2022).

Without going into details of the derivations of models, we recapitulate here only
the main governing equations. The bulk properties of the porous rock are described
with the quasi-static linear poro-elastic equations (Biot 1941; Steeb andRenner 2019)

− div σ = ρ b,

1

M

∂p

∂t
− k f

γ
f R
0

div gradp = −α div
∂us

∂t
.

(4.1)

In Eq. 4.1 we introduced the local storativity 1/M of the porous rock, Biot’s coupling
parameter α, the isotropic hydraulic conductivity k f , and the effective weight of the
fluid γ

f R
0 . The total stresses are given by σ , the pore pressure is denoted with p, body

forces are introduced as ρ b and the displacements of the solid skeleton are given by
us . The set of coupled equations are supplemented with boundary conditions (Steeb
and Renner 2019).

From first principles, a pressure diffusion equation could be derived for the evo-
lution of the pressure state within the fracture. For high aspect ratio fractures, cf.
Vinci et al. (2014), the final partial differential equation could be written in a simple
non-linear format taking into account the evolution of aperture δ as well as fluid leak-
off through an exchange term with the matrix q̂ (normal component of the seepage
velocity)

∂ p̂

∂t
− δ2

12 η f R β f
div grad p̂ + 1

δ β f

∂δ

∂t
= q̂

δ β f
. (4.2)
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In Eq. 4.2, we have introduced fluid properties like the effective dynamic viscosity
η f R , the inverse of the fluid’s bulk modulus β f and the fluid pressure in the fracture
p̂. Details concerning the derivation and the mentioned dimensional analysis of Eq.
4.2 could be obtained from the references mentioned e.g. in Schmidt (2022). The set
of coupled partial differential equations in weak form for the poro-elastic domain
and the embedded fractures could be implemented into a Finite Element framework,
e.g. within software packages mentioned in the introduction.

4.1.1 Stiffness of Fractures

The change of deformation of a fracture does not only depend on the fluid pressure
transients p̂(x̂, t). The local deformation of the fracture is also affected by local
contact forces between asperities of the solid surfaces. In case of natural fractures
which have always rough fracture surfaces, those contact forces could for instance
occur in the case of “mechanically closed” but still “hydraulically open” fractures.
In the present lower-dimensional modelling approach, the corresponding effective
fracture stiffness caused by local contact forces could be taken into account and
expressed with the contact related normal stresses (Bandis et al. 1983)

σ con
N = EFr 1

δc
max − δc

δc. (4.3)

Note, that in Eq. 4.3 we considered only normal stresses, i.e. stress components
normal to the fracture plane. Shear stresses within the fracture surface are neglected
a priori. In the most simple linear constitutive approach, the effective contact normal
stresses are proportional to the change of aperture described with the fracture closure
δc and the maximum fracture closure δc

max, cf. Gens et al. (1990) and results in Fig.
4.2 . In this linear constitutive relation we have introduced, as an inherent material
parameter of the contact law, an effective normal stiffness EFr.

On the laboratory scale, the introduced effective stiffness parameter could be
determined in well-defined experiments. Therefore, natural fractures, obtained from
mode 1 hydraulic fracture experiments, are mechanically tested, e.g. under harmonic
excitation, cf. Fig. 4.3.

4.1.2 Strong Versus Weak Coupling

Implementation of the coupled set of partial differential equations introduced in
terms of the biphasic poro-elastic and hybrid-dimensional flow model (Eqs. 4.1
and 4.2) might be distinguished regarding the chosen coupling scheme. In terms
of the numerical strategy to reach equilibrium, chosen numerical coupling schemes
are distinguished, cf. Fig. 4.4. Here, we may distinguish between staggered and
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Fig. 4.2 Left: Relative normal stress changes as a function of the effective fracture aperture. Normal
stress changes are expressed relative to the acting normal equilibrium stress state which is equivalent
to the sum of induced contact forces and the constant equilibrium normal stress state. Effective
aperture fluctuations are induced by perturbations of the equilibrium state bymeans of fluid pressure
changes or vice versa. Right: Consideration of the fracture’s microstructure in terms of a contact
factor, respectively controlling the difference between initial hydraulic and mechanical opening

Fig. 4.3 Uniaxial setup for the determination of fracture stiffness EFr under harmonic excita-
tion at different amplitudes in combination with fracture roughness characterization through high-
resolution XRCT

monolithic approaches (Schmidt and Steeb 2019). Staggered numerical schemes
treat the fracture and the rock bulk domain individually choosing solvers for both
parts independently. Thus, highly efficient solvers for poro-elastic equations and
for pressure diffusion equations could be adopted. This is especially interesting if
large problems need to be solved, e.g. on HPC platforms (Schmidt et al. 2022b).
Communication between the fracture domain BFr and the the rock domain BPe

is conducted via boundary conditions, e.g. through special software packages like
preCICE. Constraints have to be introduced in order to guarantee numerical stability.
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Fig. 4.4 Comparison of the weak coupling approach using non-conformal meshes (a) and a strong
coupling approach with implemented interface elements (interface elements, and auxiliary nodes
are explicitly shown for presentation purposes only; in the final discretization, the fracture surfaces
align with d = 0) (b). Figure from Schmidt and Steeb (2019)

In contrast, monolithic coupling approaches build a single algebraic set of equations
which is solved for both domains simultaneously.

Monolithic coupling of the fracture and the poro-elastic domain requires a math-
ematical discussion of the balance equations introduced to govern hydro-mechanical
flow processes within the fracture, cf. Schmidt (2022), Schmidt and Steeb (2019).

4.2 Lower-Dimensional Representation of Frictional
Interfaces

For constructing the weak form of the quasi-static equilibrium conditions

div σ + �g = 0 (4.4)

in the presence of displacement jumps we introduce an enriched test function v
consisting of a continuous (standard) part vc and a Heaviside enrichment H(x)a� in
the form

v = vc + H(x)a� (4.5)

with

H(x) =
{

−0.5 ∀x ∈ �−

0.5 ∀x ∈ �+ (4.6)

Therefore, (v+ − v−)x�
= [[v]]� = a� represents the jump in the test function across

the embedded discontinuity surface �. Superscripts + and − denote the opposite
sides of the discontinuity surface. Then, we find the gradient of the test function as

grad v = grad vc + δ�(x)[[v]]� ⊗ n− (4.7)
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where the Dirac function is defined and normalized as

δ�(x) =
{
0 ∀x /∈ �

∞ ∀x ∈ �
with

∫
�

δ�(x) d� = 1 (4.8)

To construct the weak form of Eq. (4.4)

0 =
∫
�

v · [
div σ + �g

]
d� (4.9)

we perform partial integration of the stress divergence term by employing

div σ · v = div (σv) − σ : grad vc − σ : δ�(x)[[v]]� ⊗ n− (4.10)

which results in∫
�\�

[
σ : grad v − �b · v

]
d� +

∫
�

σn− · [[v]]� d� =
∫
∂�

t̄ · v d� (4.11)

With σn− = t− and t+ = t� = −t− we obtain∫
�\�

[
σ : grad v − �b · v

]
d� −

∫
�

t� · [[v]]� d� =
∫
∂�

t̄ · v d� (4.12)

Note that σ and t� are the total stresses in a HM formulation of a fluid-saturated
porous medium and thus couple into the following flow equations by means of the
effective stress principle:

σ = σ ′ − αB pI (4.13)

t� = t′
� − αf

B pn� (4.14)

Note also that the present work assumes continuity of the pressure between matrix
and fracture (pm ≡ pf ≡ p).

In the aboveσ ′ is the effective stress tensor in thematrix,αB andαf
B are coefficients

weighting the pore-pressure contribution in the matrix and fracture to be defined
suitably, p is the fluid pressure, I is the identity tensor, � = φ�FR + (1 − φ)�SR is
the bulk density of the porous medium comprising the densities of the liquid and the
solid, �LR and �SR respectively, of porosity φ and g is the gravitational acceleration.
In the fracture with local unit normal n� , t′

� represents the effective stress vector.
The effective quantities have to be supplied by constitutive equations. For the

matrix, they are here given in incremental form

dσ ′ = CCCm : dεe , (4.15)
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where CCCm is the material stiffness tensor, ε = 1
2

(
grad u + grad Tu

)
is the linear

strain tensor, εe its elastic part and u is the solid displacement vector.
For the fracture effective stress, a connection is made constitutively to the dis-

placement jump. Similar to the test function we specify u = uc + H(x)w(x�) such
that (u+ − u−)x�

= [[u]]� = w. Then, in analogy to the incremental relationship for
the matrix effective stress tensor, the fracture effective traction vector follows incre-
mentally from elastic increments in the fracture face relative displacement vector

dt′
� = Kfdwe (4.16)

where dwe is the elastic part of the fracture relative displacement increment and
Kf is the second-order stiffness tensor of the fracture comprising normal and shear
components.

For the following examples, the interface failure behaviour is of particular interest.
Here, a Coulomb-type frictional interface was chosen

dt′ = Kd[[u]] = [Kn(n� ⊗ n�) + Ks(I − n� ⊗ n�)] dwe (4.17)

with a split of the displacement jump analogous to the strain split used in elasto-
plasticity w = we + wp.

Based on thework byCoulomb in 1773 (Davis and Selvadurai 2002), the frictional
failure criterion can be written as

τf = c − σ ′
n tan ϕ (4.18)

and describes a linear relationship between the limiting shear stress τf in a plane and
the normal effective stress σ ′

n (tension positive) acting on that plane based on the
cohesion c and friction angle ϕ of the fracture. The plane is in our case given by the
fracture plane and a yield function fy describing the failure surface can be defined
as follows

fy = τ − c + σ ′
n tan ϕ. (4.19)

where τ is the acting shear stress in the fracture plane. For all states of stresses, which
are within this envelope, i.e. fy < 0, no failure is predicted. This region grows as
the fracture normal stress increases. Once fy = 0 is reached the fracture deformes
plastically according to the flow rule

dwp = dλ
∂gy
∂t′ (4.20)

where the plastic potential is formulated to allow for non-associated flow:

gy = τ + σ ′
n tanψ. (4.21)
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Fig. 4.5 Flow through discrete fracture network, where fractures are represented as 2D elements
in a 3D setting (Lee 2022). Barsch & Nagel. Technische Universtität Bergakademie Freiberg. CC
BY SA

where ψ is the dilatancy angle. Furthermore, the Kuhn-Tucker complementary con-
ditions hold

fyλ = 0 λ ≥ 0 fy ≤ 0 (4.22)

From the implicit integration of the material model the consistent stiffness matrix is
passed back to the finite element assembly routines.

4.3 Verification and Application Examples

The lower-dimensional interface approach can be used to simulate flow in fracture
networks. An example from OGS simulations is shown in Fig. 4.5.

In this chapter, however, examples for mechanical and hydromechanical effects
will be described briefly.

4.3.1 Coulomb Model Verification

To test the functionality of the Coulomb implementation, a compressive stress is
created by compressing an element assembly separated by an interface vertically
by a tenth of the initial fracture aperture, i.e. by 1µm, in a displacement-controlled
manner. The top element is then sheared horizontally into the positive x direction by
10µm, followed by shear unloading and reloading into the negative x direction by
10µm,while the vertical displacement is held constant. The latter boundary condition
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togetherwith a positive dilatancy angle has the effect of increasing the fracture normal
stress (accumulation of plastic normal fracture opening). Note that during this test
the bottom boundary is fixed by a zero-displacement boundary condition whereas
the boundaries at the left and right are freely movable.

Shearing causes a linear deformation in the horizontal direction until the applied
shear exceeds the yield strength of the material. After this point, the shear stress
increases at a lower rate until ux |y=2m reaches its maximum at maximum displace-
ment, which illustrates the apparent hardening during the elasto-plastic deformation
process under increasing confinement associated with the dilatant material response.
Note that the material itself is not hardening but ideally plastic. Afterwards, the
unloading /reloading due to shear reduces the shear stress in the same linear fashion
observed in the initial stage of shearing (elastic unloading). After exceeding the yield
strength, the material follows the dilatancy-induced apparent hardening again until
maximum load reversal. The transition from linear deformation tomaterial hardening
after exceeding the yield strength clearly illustrates the effect of the Coulomb model
on the overall deformation process. Also, the correct loading-unloading behaviour
could be shown.

4.3.2 Soil-Structure Interfaces

Soil structure interactions play an important role in geotechnics. They include earth
pressure development behind rough retainingwalls, foundation tractions, interactions
between tunnel liners and rock masses, driven piles, and many others.

Here, a simple laboratory test is chosen for illustrative purposes. Oedometer tests
are a fundamental means of material characterization in geotechnical engineering. If
the oedometer ring is compliant enough, radial stresses can be inferred in addition
to the axial load in what is often called a soft oedometer. This example illustrates
how the LIE model can be used to allow for relative displacement between the soil
sample and the deformable walls of the soft oedometer.

The soft oedometer setup consists of two domains. The larger one represents the
soil sample and the smaller one the compliant metal ring of the oedometer. The
top boundary is assigned a constant normal traction representing the applied load.
The bottom of the oedometer is fixed in the vertical direction and free to move in
horizontal direction. The top and the right side of themetal ring are defined as traction
free.

Due the Coulomb criterion, the soil can slide along themetal ring of the oedometer
with a constant friction angle. Here, however, a frictionless interface was modelled.
As illustration of the displacement discontinuity is the objective, the geomaterial is
represented crudely oversimplified by a linear elastic model. The material properties
of the benchmark are listed in the following table (Table 4.1):

Under the action of the top load, the soil gets compacted vertically (Fig. 4.6).
The metal ring on the other hand experiences nearly no vertical displacements. The
displacement jump in the solution is clearly visible by the transition from the smooth
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Table 4.1 Material properties

Young’s modulus of soil E1 150 MPa

Young’s modulus of metal ring E2 210 GPa

Poisson’s ratio of soil ν1 0.2

Poisson’s ratio of metal ring ν2 0.3

normal stiffness of the fissure Kn 1×1015 Pa/m

shear stiffness of the fissure Ks 0 Pa/m

Top load p 1 MPa

Fig. 4.6 Vertical displacements in the soft oedometer (OGS simulation). The use of frictional lower-
dimensional elements allows for the establishment of a vertical displacement jump between the soil
(smooth color gradient, left) and the oedometer ring (red zone with zero vertical displacements,
right) in the solution on a single domain

color gradient to the red outer part of the domain. This jump is inherent in the finite
elements pace due to the Heaviside enrichment described above.

For the chosen parameters and numerical settings, the radial displacements caus-
ing the expansion of the ring used for radial stress measurements reach about 5.5µm
at the circumference and cause radial stresses of around 0.229MPa. This value is
slightly lower than the 0.25MPa that would be expected for a rigid ring. Likewise,
the axial compaction of the sample itself is somewhat larger than in the case of a
rigid ring. The exact values can be confirmed analytically by solving the linear elastic
equilibrium problem for the sample subject to the top load boundary condition in
conjunction with the pressure vessel equation, where both domains are connected
via radial stress and displacement continuity.

4.3.3 Fault Slip Experiment (Mont Terri)

Simulations related to the FS experiment in Mont Terri (Guglielmi et al. 2017)
are described elsewhere (Rutqvist et al. 2020). Here, we show more recent results
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Fig. 4.7 3D model geometry
for calculation of injection
induced fault activation

using the LIE implementation described above. This example also links methods and
application settings of WPs 2 and 3.

To simulate the fault slip displacement induced by fluid injection-induced over-
pressures, we define a 3D model domain (Fig. 4.7), which broadly represents the
minor fault geometry embedded in the rock matrix (Rutqvist et al. 2020). The model
domain has edge lengths of 20m and contains the fault dipping at 65◦. Symmetry in
the x direction is assumed and used to reduce the computational effort, therefore the
side-length in the x direction reduces to 10m.

The host rock matrix is modelled using linear elasticity assuming an isotropic
material behavior with a bulk modulus of 5.9GPa and a shear modulus of 2.3GPa,
based on the average values derived from experiments on Opalinus Clay at Mont
Terri. For all outer boundaries of the matrix we assume roller boundary conditions.
Based on a simplified experimental data set, the in-situ stress field is characterized
by σzz = −7MPa ,σyy = −6MPa σxx = −3.3MPa, where negative values indicate
compression. Hydraulically, the host rock is considered impermeable because of the
very low permeability of Opalinus Clay and the relatively short time-frame of these
experiments. Fracture flow with various permeability models (constant, cubic law,
cubic law only after shear slip, etc.) is applied while the fracture is assigned Coulomb
behaviour. In this hydraulic-mechanical approach, a sudden increase in hydraulic
aperture by a pre-set factor is modelled once shear failure occurs (Rutqvist et al.
2020). After fault activation, further aperture changes due to hydraulic-mechanical
coupling are calculated by the cubic law. To parameterize the fluid phase and the
porous medium we use standard values, see Table 4.2.

The initial fluid pressure estimated from site measurements was set to 0.5MPa
while the effective fracture traction is calculated from the stress field in the matrix
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Table 4.2 Material properties for the modelling scenarios of the fault-slip experiment, scenario 1

Material Parameter Value

Scenario Nr.

Fault Normal stiffness Kn [GPa/m] 20

Shear stiffness Ks [GPa/m] 20

Static friction angle [◦] 22

Tensile strength [MPa] 0

Permeability model Cubic law after slip

Host rock matrix Bulk modulus K [GPa] 5.9

Shear modulus G [GPa] 2.3

Bulk density � [kg/m3] 2450

Permeability [m2] 0

Fluid Density � [kg/m3] 1000

Compressibility [Pa−1] 4.4e-9

Dynamic viscosity μ [Pa s ] 1.0e-3

Fig. 4.8 Injection volume and fracture aperture change (numerical and experimental) using fully-
coupled LIE models driven by step-wise injection pressure increases

by appropriate tensor rotation operations. The pressure and stress fields are assumed
to be uniform and we neglect gravity in this case.

An initial comparison between the results of the numerical calculation and the
laboratory data still shows an offset in the results (Fig. 4.8). Currently, parameter
studies on the initial stress field, the hydraulic and mechanical fault properties, the
activation mechanism and the injection control are undertaken to improve the results.
Other modelling approaches were published in an overview paper (Rutqvist et al.
2020). Another modelling approach implemented in OGS was published in Urpi
et al. (2020). These references contain details on the hydraulic models and the inter-
pretation of the experimental data. A publication based on the approach presented
here is currently under preparation.



74 M. Barsch et al.

Fig. 4.9 Area of fault affected by shear slip

The area affected by shear slip, in which the fault transmissibility is drastically
changed due to fault activation, is highlighted in Fig. 4.9. The area is centered around
the injection point and is roughly circular in shape. This is inlinewith othermodelling
studies (Rutqvist et al. 2020).

4.4 Concluding Remarks

Lower-dimensional continua are mechanically and numerically intricate ways of
representing interfaces of various kinds, including contact zones, fractures, faults,
etc. Conceptually, the co-dimensional entities are generated by integration in their
normal direction while making specific assumptions on the distribution of certain
field quantities in this direction. Numerically, they can be represented by enrichment
of finite element spaces and interface elements, for example. This kind of represen-
tation comes with both advantages and disadvantages compared to other methods.
While this chapter showed examples on hydraulic, mechanical and hydromechani-
cal behaviour of elastic and frictional interfaces, further aspects related to fracture
mechanics and hydraulic fracturing are discussed in Yoshioka et al. (2019), Mollaali
et al. (2022).
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