
Chapter 3
Pathways Through Pressure-Driven
Percolation in Salt Rock

Markus Knauth

3.1 Hydro-Mechanical Properties of Salt Rocks and the
Concept of Pressure-Driven Percolation

Under undisturbed conditions and in the absence of significant impurities or inter-
calations (e.g. anhydrite) rock salts are considered to be tight against fluid or gas
pressures, which stems from their crystalline structure composed of strongly vis-
coplastic, impermeable salt grains grown together at their grain boundaries (Mink-
ley et al. 2013, 2015). Thus, its small natural porosity of 0.1–1% consists mainly
of isolated brine pockets as evidenced e.g. by microscopic investigations of thin salt
slivers. There are however stress- and pressure-conditions under which this hydrauli-
cally inactive flow network of connected grain boundaries can be opened. Then—and
only then—a significant increase in macroscopic permeability can be observed due
the creation of a connected flow path by opening the grain boundaries for permeation
(Fig. 3.1). The conditions for such an increase in permeability can be classified into
two principle mechanisms:

• damage induced creation of internal fractures by deviatoric loading
• pressure-driven opening of grain-boundaries by an applied fluid/gas pressure

The first item describes the creation of flow paths by damaging the salt due to loading
above its threshold for damage initiation (the so-called dilatancy boundary). The sec-
ond mechanism—which is the main focal point of this study—describes the ability
of fluids and gases to “open” the initially impermeable grain boundaries when the
applied pressure becomes higher than the normal stresses acting on them. The attack-
ing pressure thereby allows the medium to push its way into the grain boundaries
and creates a connected flow path structure. Since this formation of a flow network
occurs only after exceeding a certain threshold related to stress and pressure, this
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Fig. 3.1 Percolation of a colored solution on grain boundaries in hydro-mechanically coupled
triaxial compression tests on salt specimen

effect has been termed “pressure-driven-percolation” in the field of salt mechanics.
In the assessment of barrier integrity in salt mining—i.e. the preservation of afore-
mentioned sealing capacity of the salt units—these two mechanisms have lead to the
development of two associated criteria for their evaluation (Kock et al. 2012):

• Dilatancy criterion
• Minimum principle stress criterion (MPS)

The dilatancy criterion describes the amount of mechanical damage the salt material
has experienced, while the MSP compares the acting minimum principle stress with
a theoretically attacking fluid pressure, e.g. a column of groundwater above the
salt top or the gas pressure within a salt cavern. While the dilatancy criterion is
typically more relevant for the assessment of damage at the contour of underground
drifts and caverns (the excavation disturbed zone—EDZ), the MSP generally has
a more far-reaching impact since the large-scale stress redistributions around a salt
mine may reach far into the salt, potentially threatening its capacity as a hydraulic
protection layer. It is important to note, that the minimum principle stress criterion is
not the result of a hydro-mechanical modeling, but solely a stress- and pressure-based
assessment of a given stress-state from a geomechanical modeling. As such it must
be ensured, that it is applied at the most unfavorable state of the modeled system.

Additionally, the MSP is conservative in the sense that it only considers the
scalar quantity of the least compressive stress. In reality, numerous laboratory hydro-
mechanically coupled percolation studies have shown that the pressure-driven per-
colation is a highly oriented process, where the fluid generally percolates in a plane
perpendicular to the least compressive stress (Kamlot 2009) (Fig. 3.2). Therefore
it is possible that the MSP becomes too conservative, when the minimum principle
stress may be lower than the attacking fluid pressure, but the direction of the stress
field is such that this does not lead to a loss of the hydraulic protection capacity of
the salt layer.
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Fig. 3.2 Highly anisotropic percolation in salt rocks perpendicular to the least compressive stress
under true triaxial compression (Kamlot 2009)

Based on the previous considerations, the idea suggests itself to model the
pressure-driven percolation as a diffusion process using a dynamic, full permeability
tensor based on the fluid pressures and the stress tensor. However, this seemingly
simple idea of modeling highly anisotropic diffusion leads to a number of numerical
challenges in this and also in other scientific fields. The subsequent sectionwill there-
fore outline the principle idea and the arising problemsmore detailed, before propos-
ing a mesh-free numerical approach taken from the field of magneto-hydrodynamics
in astrophysics.

3.2 Development of a Mesh-Free Percolation Model
Inspired by Magneto-Hydrodynamics

3.2.1 Numerical Challenges in Modeling Highly Anisotropic
Permeation

Most geomechanical codes capable of modeling a Darcy-type porous diffusion use
finite-volume techniques (Moukalled et al. 2016), where the fluid resides in control
volumes and each of these volumesmay exchange fluidwith its neighbors. By solving
a balance equation and, the flow rates between those elements are determined and
the corresponding changes in saturation and/or pressure are calculated. In order to
determine the pressure gradient between to connected volumes i and j, a so-called
two-point flux approximation (TPFA) is made (Aavatsmark 2002):

∇ pi j = p j − pi

di j
ei j
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This widely-used approximation is one of the main reason for excessive numer-
ical (i.e. false) diffusion when a highly anisotropic permeability tensor is used.
For anisotropic permeability tensors, this approximation only yields accurate results
when the directions of the element connectionvectors (ei j ) are alignedwith theEigen-
vectors of that particular permeability tensor, i.e. its principle directions. Assuming
that the permeability tensor is not constant andmay change its principle directions (as
it is proposed here by coupling it to the fluid pressure and stress tensor) this condition
will never be met in the simulations. The introduced numerical error is of order n(0),
meaning it is inherently tied to the model structure and does not converge away with
increasing mesh resolution. It leads to numerical instabilities and implausible results
including:

• violation of non-negativity (may yield negative temperatures in numerical model-
ings of anisotropic temperature distributions (Sharma and Hammett 2007))

• violation of the maximum principle (in a closed system, the method may yield e.g.
higher fluid pressures than the ones it started with) (Gao and Wu 2013)

Even though this numerical problem is known for decades and the literature shows
numerous correction approaches in a wide spectrum of applications from thermal
propagation to astrophysics, it is still the default approximation inmany—if not all—
established geomechanical codes. In the context of geomechanical barrier integrity
not correcting for this problem leads to uncontrolled numerical diffusion, since the
anisotropic fluid distribution will not stay stable and inevitably fill the whole model
domain, thus rendering the approach useless for the evaluation of a hydraulic barrier.

3.2.2 Basic Approach and Formulation

In order to discretize the problem, a choice has to be made on how to discretize the
model domain volume into a set of cells or particles i with coordinates xi . Instead
of using a typical mesh e.g. of interconnected hexahedra or Voronoi elements, the
approach formulated by Hopkins et al. (Hopkins 2015, 2016) considers a mesh-free
alternative. A differential volume d3x at coordinate x. This differential volume can
then be partitioned fractionally among its nearest particles by using a weighting
function W depending on the distance x − xi and a “kernel size” h(x), thereby
associating a fraction �i (x) of the volume d3x with particle i :

�i (x) = 1

ω(x)
W (x − xi , h(x))

ω(x) =
∑

j

(x − xi , h(x))

W (x − xi , h(x)) can be any continuous, symmetric and compactly supported func-
tion. Its absolute value is irrelevant due to the normalization. This type of model
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discretization therefore conceptually sits somewhere between a Voronoi tessellation
and smooth-particle hydrodynamics. Hopkins et al. (Hopkins 2015) show, that this
partition of unity discretization makes it possible to formulate the balance equation
of property U for a given particle i with associated volume Vi as a Godunov-type
finite-volume equation:

d

dt
(ViUi ) +

∑

j

Fi j · Ai j = 0

with the “fluxes” Fi j in or out of an effective face area Ai j .
Another crucial advantage of this method is the fact that that type of discretiza-

tion easily allows for a second-order accurate approximation of the gradient of any
property f as a least-squares fit over all points in the kernel region, which effectively
makes it a type of multi-point flux approximation method (MFPA):

(∇ f )αi =
∑

j

( f j − fi )(W
−1
i )αβ(x j − xi )

βω j (xi )

Wαβ

i =
∑

j

(x j − xi )
α(x j − xi )

βω j (xi )

Is it important to note, that this gradient estimator is second-order accurate for an
arbitrary particle configuration and therefore particularly suited for the mesh-free
method.While themethodproposed inHopkins (2015) is constructed for very general
hydrodynamics applications and leads to solving the associated Riemann problem,
we now differ from the original formulation by transferring the general notion to
the field of diffusion in porous media. In a simple explicit time-stepping scheme,
we calculate the fluxes Fi j between each particle and its associated “neighbors” by
evaluating the approximated gradient at the midway point between each particle and
summing these contributions.

Fi j = 1

μ
(K · ∇ pi j ) · Ai j

In order to stabilize the anisotropic diffusion equation, this flux is compared to the
direct two-point flux

Fdirect
i j = 1

μ

[
K ·

(
p j − pi

di j
ei j

)
Ai j

]

Using this direct flux, the final flux F̃i j is given by

F̃i j =
{
0 if sgn(Fdirect

i j · Fi j ) and |Fdirect
i j | > 2 · |Fi j |

Fi j otherwise
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Additionally, a basic saturation concept is introduced, giving each particle a porosity
value and ensuring, that no flow can occur out of an unsaturated zone by multiplying
the calculated flow rate with an empirical saturation function as si j used in the
geomechanical modeling codes of Itasca (Itasca 2022a, b):

si j = s2 · (3 − 2s)

where s is the saturation of the zonewhere the fluid is coming from (upwind scheme).
Using this approach the volumetric flow rate Q̇i for particle i is

Q̇i =
∑

j

F̃i j · si j

If the saturation at particle i is less than 1, this flow rate is used to update the saturation
by

si (t + �t) = si (t) + ·Qi

ni · Vi
· �t

with porosity ni and associated volume Vi . If the particle is already fully saturated,
the associated pressure pi is updated instead using the fluid bulk modulus B f luid :

pi (t + �t) = pi (t) + B f luid · Qi

ni · Vi
· �t

This algorithm was implemented as a Python module in FLAC3D, since this is the
framework exposing the relevant internal variables of the corresponding numerical
FLAC3D model in order to have access to the corresponding stresses and strains
from the mechanical calculations of the salt behavior. In a staggered approach, the
time-dependent mechanical problem is solved iteratively by FLAC3D for a given
amount of time before the new stress tensor field is then given to the newly devel-
oped Python module for the anisotropic fluid flow calculation for the same timespan
(albeit obviously using a different timestep for the fluid flow calculations). Although
it is has experienced some optimizations, the Python implementation is—by nature
of the interpreted programming language—much slower than a comparable C++
implementation using HPC-ready sparse matrix library would be. This would how-
ever need to be encapsulated again as a Python module in order to continue to work
in conjunction with the FLAC3D software. Such efforts were tested in principle with
the framework of this project and are (in addition to optimizations of the numerical
structure itself) a potential field of improvement for future work. Together with the
dynamic calculation of the local permeability tensor based on the stress tensor and
the fluid pressure (see Sect. 3.3.3), we will subsequently refer to the newMesh-Free
Percolation technique as the MFP-approach.
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3.3 Validation in Analytical Test Cases and Idealized
Percolation Situations

In order to demonstrate the capabilities of the newmethod and also show the unphys-
ical numerical problems arising in standard implementations, a number of test cases
have been assembled as a benchmark for the modeling of highly anisotropic porous
flow. These examples and their comparative results are discussed hereafter and may
aid in validation and verification for similar methods in the context of geomechanical
percolation processes.

3.3.1 Diffusion of a 1D-Step Function in Different Constant
Permeability Fields

In order to validate the basic diffusion capabilities, a 1D-step function is initialized
in a constant isotropic permeability field (3.3) with a pressure p = 1 MPa on the left
half and zero pressure on the right half of themodel. Themesh has been created delib-
erately in a tilted fashion (with respect to the orientation of the quadratic elements)
in order to create the most unfavorable condition for the subsequent analysis with an
anisotropic permeability. For the isotropic permeability k in the first modeling, the
pressure step will diffuse and soften the transition with time given by the analytical
solution for the pressure profile px,t for a given time t:

p(x, t > 0) = p

2
+ p

2
Erf

[
x − x0
4κt

]

with

κ = B f luid · K

nμ

where n is the rock porosity and μ the viscosity of the flowing medium. Figure 3.3
shows the pressure profile for a time of t = 600 s using the new MFP-approach in
comparison with the native FLAC3D fluid logic. As to be expected, both codes are
in good agreement with the analytical solution for the isotropic case.

In the second step, we now assign a anisotropic permeability, which is only
nonzero in the vertical direction (kx = 0m2). Therefore, the numerical simulation
should keep the initial step function perfectly intact, since there should be no flow
into the x-direction. Again we examine the pressure profiles for both codes in Fig. 3.4
for a time of t = 12000 s. It can be clearly seen, that the MFP-approach coincides
with the analytical (=initial) pressure profile, while the FLAC3D model exhibits the
numerical errors discussed in the previous sections: The fluid front does not stay
stable and move into the x-direction while also showing higher pressures than the
initial condition on the left side and negative pressures on the right hand side. This
is a clear example of the undesired effects using lower-order flow approximations
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Fig. 3.3 Model setup and mesh for the 1D isotropic diffusing step validation example (top) and the
modeling results of the resulting pressure profile for different approaches (bottom) showing good
agreement with the analytical solution

in highly anisotropic settings and is therefore proposed as a first and simple validity
check for anisotropic approaches on porous flow.

3.3.2 The Diffusing Ring Problem

Another numerically challenging example for highly anisotropic flow is the so-called
diffusing ring. Following the description in Hopkins et al., we initialize a purely



3 Pathways Through Pressure-Driven Percolation in Salt Rock 55

Fig. 3.4 Resulting pressure profiles for the 1D anisotropic diffusing step function, which should
stay perfectly immobile. The MHD approach successfully captures this, while the standard two-
point flux-approximation implemented in FLAC3D fails to keep the fluid front stable and also
exhibits numerical problems

azimuthal pressure field in a 2D cubic box. With cylindrical coordinates centered on
the origin we initialize p(t = 0) = p0(exp−(1/2)[(r − r0)2/δr20 + φ2/δφ2

0 ]) with
p0 =,r0 = and φ0 =. Since the permeability field is purely azimuthal, the pressure
should then only diffuse along a ring-shape around the center. For short times, this
problem has an exact solution:

p(t > 0) = p0(exp−(1/2)[(r − r0)
2/δr20 + φ2/δφ2])

with
δφ2(r, t) = δφ2

0 + 2Kr−2t

At later times, the diffusion from both sides of the ring intersects and there is no
longer an exact solution. Again we test this problem setup using the MFP-approach
and the native FLAC3D implementation. As an example of the modeling results,
Fig. 3.5 shows the pressure distribution along the annulus after a short time (t =
60 s) in comparison to the original distribution. Even for this very short time, it
can be seen that the MFP-results are again in good agreement with the analytical
solution, while the FLAC3D results is already starting to deviate noticeably. For
longer times, the pressure distribution wraps around as to be expected and stays fairly
stable in the MFP modeling, while it again exhibits strong numerical diffusion in the
FLAC3D implementation, eventually filling and equalizing the pressure in the whole
domain. Therefore, this second—more elaborate—numerical example has confirmed
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Fig. 3.5 Resulting pressure profiles for the 1D anisotropic diffusing step function, which should
stay perfectly immobile. The MHD approach successfully captures this, while the standard two-
point flux-approximation implemented in FLAC3D fails to keep the fluid front stable and also
exhibits numerical problems

the shortcomings of the default methods and the capabilities of the MFP-approach
to accurately model this challenging setup.

3.3.3 Inclusion of Pressure- and Stress-Dependent
Anisotropic Diffusion

So far, the presented results were carried out for constant permeability problems
with different boundary conditions and setups with the intent to verify the basic
capabilities of the proposed method to accurately model anisotropic fluid flow. At
this point we now include the mechanisms described in the introductory section in
order to model the pressure-driven percolation in salt rocks.

In its principle axes, we formulate the anisotropic diffusivity tensor K in the
following way:

K =
⎡

⎣
k2 + k3 0 0

0 k1 + k3 0
0 0 k1 + k2

⎤

⎦

with

ki =
{

A(p + σi ) for p > σi

0 otherwise

where σi are the principle stresses and p is the fluid pressure. By this construction,
e.g. a pressure p exceeding the minimum principle stress σ3 will lead to an increase
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Fig. 3.6 45◦ degrees inclined pressure-driven percolationmodelingwith strong numerical diffusion
and invalid pressures (holes) in the default FLAC3D implementation and stable percolation in the
novel MHD approach

in permeability in the directions of σ1 and σ2, i.e. the fluid may move in a plane
perpendicular to the principle stress σ3.

Using this straightforward approachwe can then test its functionality bymodeling
fluid injection tests in a cubic sample subjected to different stress conditions similar
to the ones described in Kamlot (2009). On the purely cartesian mesh (20 × 20 × 20
elements), we initialize a fluid pressure of p in the center of the model, whose stress
state is given by σ1 = σ2 = 11 MPa and σ3 = 9MPa. The given stress field was again
deliberately chosen to lead to an unfavorably inclined fluid flow forming an angle of
45◦ against the principle axes of the mesh. Since the initial fluid pressure is below
the minimum principle stress in the sample, there should be no flow occurring until
the fluid pressure—which is increased stepwise—reaches and exceeds that mininum
principle stress.

As expected, the initialized fluid stays stable until it exceeds the minimum prin-
ciple stress. Upon exceeding the percolation front develops in the expected inclined
orientation and is—most importantly—stable with respect to potential erroneous
numerical diffusion in the direction of σ3 (Fig. 3.6). Therefore, the proposed method
is capable of both modeling both constant anisotropies as well as with the additional
interaction of a spatially varying stress- and pressure-dependent permeability tensor.

3.3.4 Application on a Large-Scale in Situ Borehole
Pressurization Test in a Salt Mine

A numerical recalculation of a large-scale in situ test was to be performed in order
to demonstrate the capabilities and accuracy of the new approach. In this in-situ
test, a 60 m long borehole with a diameter of 1,35 m was drilled between to mining
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Fig. 3.7 Location of the test site in the mining field Springen (left) and construction of the large-
scale 60 m borehole with 1.35 m diameter between mining levels (right)

levels of a salt mine and additionally monitored by a seismic array (Fig. 3.7). The
borehole was cemented in the lower part, leaving a 40 m high cylindrical cavity
which was then pressurized with gas. In accordance with the expected stress field,
the salt borehole was gas-tight until the gas pressures reached a level above the
minimum principle stress at the lower end of the borehole. The thereby created
percolation front started in the bottom part of the borehole (at the cement plug) and
progressed in a nearly horizontal plane above the underground mine drifts (Fig. 3.8),
which was to be replicated by the newly developed method. The hydro-mechanically
coupled calculations of the percolation reaction in response to the stepwise increase
of borehole pressure successfully confirm the in situ observations. Using the novel
MHD-approach, themodeled borehole is tight against the attacking gas pressure until
theminimumprinciple stress is exceeded, which happens first in the lowest part of the
borehole (Fig. 3.9). The direction of the percolation plane is oriented perpendicular
to the smallest compressive stress and therefore initially nearly horizontally aligned.
The percolation front in the in situ—test eventually hit a almost perfectly horizontal
weakness plane and is therefore slightly more localized, which is not included in
this modeling. However, the new method has shown to be well suited to model the
pressure- and stress-tensor-dependent salt percolation process both in laboratory and
in situ scale remarkably well.
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Fig. 3.8 Pressure steps of the in situ—test (top left) and AE-measurement (setup top right) of the
percolation front after the 68 bar pressure step in side (bottom left) and top view (bottom right)

Fig. 3.9 Modeled percolation front starting to develop only after exceeding the necessary perco-
lation pressure and permeating perpendicular to the least compressive stress
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