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Abstract. Accurate, fast and simple quantitative analysis of solid
dosage forms is required for efficient pharmaceutical manufacturing.
A spectroscopic analysis in ATR-FTIR (Attenuated Total Reflection-
Fourier Transform Infrared) mode was developed for NaDCC (Sodium
dichloroisocyanurate) quantification. This fast and low-cost method can
be used to quantify NaDCC solid dosage forms using ATR-FTIR in
absorbance mode in conjunction with partial least squares. A simple
sampling procedure is included in the proposed experiment by just dis-
solving the samples in deionized water. An algorithm pipeline is also
included for data cleaning, such as outlier removal, scatter correction,
scaling, and mapping of the sample’s spectrum to a NaDCC concentra-
tion. In addition, a simple model based on Beer’s law was evaluated on
a sub-range of 1220−1830 cm−1. Furthermore, a variable selection algo-
rithm shows minimum excipient interference from the sample matrix in
addition to visual analysis. A statistical analysis of the proposed method
shows that it demonstrates a promising result with a regression coefficient
of 0.996 (R2 = 0.996) and recovery range of 95.5%–107%. As a result of
the positive correlation of ATR-FTIR with NaDCC concentration, and
in conjunction with the proposed method, this can serve as a clean, fast,
affordable and eco-friendly method for pharmaceutical analysis.
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1 Introduction

One third of people worldwide lack access to safe drinking water, with signif-
icant consequences for health [26]. Ensuring the availability of water is one of
the United Nations Sustainable Development Goals [25]. Beyond systemic prob-
lems of service provision, water may be contaminated or temporarily restricted
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during disasters, and providing emergency supplies and short-term purification
treatments are essential. Water treatment and disinfection can be accomplished
by methods including boiling, filtration, distillation and chlorination [24]. Chlo-
rination is fast and effective, and can be delivered as soluble tablets or chemicals.
Water disinfection tablets, with NaDCC (Sodium dichloroiso-cyanurate) as their
main chemical component, have been shown to outperform iodine tablets for bio-
cidal and cysticidal treatments [11,12].

Data-driven techniques for spectroscopy analysis are now common in chemo-
metrics, and classical machine learning approaches are competitive with data-
heavy neural network methods [19]. In this paper, we propose a new method
which exploits machine learning and data analytics methods to quantify NaDCC,
as a replacement for the slow and expensive laboratory techniques of titra-
tion [19]. Partial Least Squares regression (PLS) [10] is applied to the tablet
formula solution spectra. The method is fast enough to perform during process-
ing as part of a batch failure prevention test, and does not require significant
additional expertise on behalf of the operators. Further, we show that its accu-
racy is within the same 90% to 110% recovery rate as the current method.

1.1 Pharmaceutical Background

Tablets are the most common solid dosage form for pharmaceutical products
due to inexpensive manufacturing, packaging, transportation costs and popular-
ity [13]. Active pharmaceutical ingredient (API) quantification in quality control
is an integrated part of the tablet manufacturing life-cycle [6]. Aside from the
formula, the concentration of each component in a solid dosage form is deter-
mined by other process factors, including powder flow, particle size distribution,
dosing depth and turret speed. Blend uniformity is an important quality test
that checks for uniform distribution of content in the mixture which has a direct
impact on the average quantity of API per tablet [2].

HPLC and capillary electrophoresis [9] are extensively used and considered as
standard methods for quantitative testing of different pharmaceutical formulas.
These methods require significant amounts of sample preparation and analysis
time, in addition to the very high cost of these instruments. Therefore, the need
for quick, cost-effective, and easy-to-use technologies for quality control, such as
FTIR spectroscopy arises [15]. ATR-FTIR (Attenuated Total Reflection-Fourier
Transform Infrared) can be used instead of standard methods to assay API. Dif-
ferent materials absorb infrared light in different patterns depending on whether
they have a covalent bond that vibrates at a specific frequency [17]. This enables
it to detect molecular vibrations and identify specific chemicals [1]. Infrared
spectroscopy has been widely investigated for both qualitative and quantitative
analysis of pharmaceutical analysis [8,15].

In a batch manufacturing process, to evaluate the concentration of NaDCC
in a batch, a sample of tablets is normally taken during production and after it
is completed. In case the concentration is not within specification, three more
samples will be collected, and if the concentration is still out of specification,
the batch will be rejected. The time required to perform any of these assays
is around 30 min, which makes it impossible to use them for in-process quality
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control. Since the tablet formulation is the same for each product, and sometimes
batch failures occur, we should investigate the production process to determine
the root cause. The two main steps in the process are blending and compression,
and since the blending configuration does not change during a batch, compression
is the likely cause of any batch failure. The rotary tablet press machines used
for compression must be clean and undergo regular maintenance. There may
be times when a rotary tablet press is used for another product, in which case
the configuration will change according to the new product’s requirements. In
addition, depending on the product, there is also quality control during the
manufacturing process. A change of configuration will be made to the rotary
tablet press if the results of these quality tests fail to meet specifications. These
in-process quality checks are entangled with each other. Turret speed has a
positive association with weight variation and a negative correlation with die
filling, resulting in weight and hardness that are both out of specification. Also,
hardness has a negative correlation with paddle speed and positive correlation
with die depth [21]. In order to bring all of these in-process tests into specification
the operator might need to configure the rotary tablet press so that some of
these metrics are at their specification boundary. In addition, some of these
in-process quality checks directly influence the concentration of active biocides
such as NaDCC. Weight and NaDCC concentration are positively correlated, for
instance. For all of these reasons, it would be beneficial to find an alternative
approach to NaDCC quantification as part of the manufacturing process control.

The ATR-FTIR spectrum of solution of water purification tablets and chemo-
metrics techniques were used to explore NaDCC quantification in this work. In
simple terms, samples are prepared by dissolving solid dosage forms in deionized
water, spectrum recordings are made from that solution, and the concentration
is quantified based on the pipeline proposed for the prediction algorithm. The
proposed economical and quick approach has potential as an alternative to the
current techniques which are slow, require detailed method development and
tedious sample preparation techniques.

2 Experiment

Medentech, Wexford, Ireland, supplied three excipients and one API: sodium
bicarbonate, sodium carbonate and adipic acid as excipients, and NaDCC as an
active biocide. For a successful measurement, various factors such as humidity,
content distribution uniformity and temperature must be taken into account.
To circumvent the difficulties noted in Sect. 1.1, samples were dissolved in deion-
ized water obtained from an Elix R© Advantage 3 Water Purication System. The
deionized water used had a conductivity lower than 0.2µS/cm at 25 C, the resis-
tance was greater than 5 mOhm-cm, and the organic carbon content was less
than 30ppb. After each sample recording, ESEPT R© alcohol-based Isopropanol
70 v/v was used to clean the surface of the ATR accessory.

A basic sampling approach was employed to establish a quick and easy proce-
dure which can be used for in-process quality control. Samples were prepared in
disposable plastic containers. The scale was calibrated to zero while the sampling
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container was on the scale. Each component was removed from its bag and placed
in the container with a clean spatula until the needed amount was attained. All
of the components were weighed using the same approach. Samples were then
gently placed into a 500 ml beaker containing 200 ml of deionized water. The
samples were then dissolved thoroughly in deionized water in order to form a
homogeneous solution. This was achieved by sonicating them for 2 to 10 min,
depending on the sample. For both formulas, the above steps were followed to
prepare the sample. Samples begin with zero concentration of NaDCC, and the
quantity of excipients was decreased while gradually increasing the amount of
NaDCC, so that the overall amount of the blend (combination of excipients plus
NaDCC) remained constant. Following sonication and homogenization, one drop
of solution was taken with a pipette for examination. Next, the same sample was
diluted with 100 ml of deionized water and was processed as an independent sam-
ple. The dilution process was repeated three times, and each diluted sample was
considered as a separate sample. The beakers and tools were thoroughly cleaned
after each sample and re-used only after they were completely dry. Twenty sam-
ples, each diluted four times, were collected.

In this experiment, a Compact Alpha P FT-IR Spectrometer (Billerica, Mas-
sachusetts, United States), equipped with a diode laser with spectral stabil-
ity and high wavenumber accuracy was used. All measurements were taken by
a high-performance Platinum-ATR accessory featuring a monolithic trapezoid
shape diamond crystal. Three spectra were acquired for each sample, and each
spectrum was scanned 24 times. The spectral range was 4000−400 cm−1 and the
Spectral Resolution was 2 cm−1. Each spectrum gives 1776 data points on 2.04
wave-number intervals. Dissolution of the samples was performed using an ultra-
sonic bath, Decon FS200. Each sample is sonicated for 2–10 min to produce a
homogenous solution. A magnetic stirrer was used for between three and twelve
minutes, depending on adipic acid concentration.

Blends were created based on the formula for water purification tablets pro-
duced by Medentech. These blends were prepared on a small scale, so each sam-
ple weighed approximately 20 g. There are three excipients examined within each
blend (sodium bicarbonate, sodium carbonate, and adipic acid) and one active
pharmaceutical ingredient (NaDCC). Having performed this step, the concentra-
tion of NaDCC in each sample was established. The next step was to dissolve the
blends in deionized water. Each blend (20 g) was dissolved in 200 ml deionized
water in a 500 ml beaker. A homogeneous solution was obtained by sonicating
the samples for 2–10 min. Additionally, each sample was diluted three times
with 100 ml of deionized water each time in order to collect more data. The
spectrometer prism was cleaned with Isopropanol alcohol (IPA) after recording
each sample. The sampling surface of the spectrometer needs 15 s to completely
dry out. Before sampling, the spectrometer was set at a resolution of 4 cm−1

and a range between 4000 cm−1 and 400 cm−1. A disposable plastic pipette was
used to place one drop of solution on the prism of the spectrometer to record
sample spectra. Three scans were conducted on each sample. The recording of
any sample was preceded by a background scan. There were 24 scans each for
the background spectrum and the sample spectrum.
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3 Results and Discussions

Excipients are added to an active pharmaceutical component (NaDCC) in
Medentech’s water purification solid dosage forms for a variety of purposes.
The basic goal is to enhance the formulation’s volume, make packaging and
transportation easier, and impart desirable qualities [23]. The proportion of each
excipient varies depending on the product’s use case. In Fig. 1, four different sam-
ple spectra are shown: water, pure NaDCC, a normal sample based on Meden-
tech product formulation, and a sample containing only excipients. In the range
1000 cm−1 to 2000 cm−1, both NaDCC and the excipients show two additional
peaks. In particular, NaDCC shows a unique peak at approximately 1250 cm−1.
Therefore, the following methods focus on that 1000−2000 cm−1 range.

Fig. 1. Different concentrations of NaDCC and excipients in deionized water.

3.1 ATR FTIR Region Selection for Calibration Models

Figure 2 illustrates various sample solution spectra with different NaDCC con-
centrations. We see two peaks at approximately 1400 and 1550 where the
absorbance seems to be inversely proportional to the NaDCC concentration.
This is because the absorbance of the excipients at these wavenumbers is higher
than for NaDCC (as seen in Fig. 1). Peak intensity of the spectrum (A) depends
on molar absorptivity (ε), path length (b) and concentration (c) (A = εbc). If two
substances have absorption at the same wavenumber and they are both present
in a sample the response of the instrument depends on the concentration of each
substance and their molar absorptivity. Since the amount of powder dissolved in
the deionized water was held constant at 20g, when the concentration of NaDCC
is increased, the concentration of excipients was decreased, and so the overall
absorbance of the sample decreases at those wavenumbers. We therefore focus
on the outer two peaks, where the absorbance of NaDCC is higher than for the



Rapid Quantification of NaDCC 111

excipients, again as seen in Fig. 1. For these two peaks, absorbance is approxi-
mately linear with respect to concentration, and so Beer’s law [22] can be applied.
Figure 2 illustrates where the height fluctuates with NaDCC and there are four
bands evident. This is confirmed through formal analysis, both univariate, in the
spectrum range 1220–1830, and multivariate, in range 400–4000.

Fig. 2. ATR FT-IR spectrum of NaDCC concentrations in 200 ml of deionized water.

The response of a calibrated univariate Beer’s law model in the spectra in
the range 1220–1830, according to peak height - with or without baseline modifi-
cations - is shown in the Table 1. The average recovery column of this summary
shows the average recovery of at least 5 samples with the same concentration
of NaDCC. In the table, we can see that the baseline correction [14] slightly
enhances the accuracy and precision of Beer’s law calibrated models. The results
confirmed the visualization assessment shown in Fig. 2, which shows a high cor-
relation between wavenumbers in the range 1220–1830 and the concentration
of the target analyte. Wavenumber 1281 has the highest correlation coefficient
(0.9971) and and an average recovery rate of 100.93.

3.2 PLS Calibration Model

Partial least squares regression plays an important role in chemistry [10] and
high-dimensional collinear data processing. This technique resolves the multi-
collinearity problem associated with most spectroscopy data sets by mapping
the acquired data into a set of latent variables [4] of much smaller size. A data
preprocessing step is typically incorporated into statistical analysis and model-
ing along with the main prediction model, so preprocessing steps are vital to
getting the most out of machine learning algorithms. Some algorithms might
require all of these preprocessing steps, while others might require only a subset.
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Table 1. The peak height selection of FTIR area and wavenumber.

Wavenumber Baseline criteria Regression Corr. coefficient Recovery Rate

1283 None 4.210x + −0.257 0.9959 100.67

1285 None 3.595x + −0.22 0.9962 100.93

1523 None −2.338x + 0.3 0.9964 99.58

1534 None −1.492x + 0.233 0.996 100.45

1536 None −1.403x + 0.226 0.9961 100.76

1279 400–4000 5.2352x + 0.1171 0.9967 101.34

1281 400–4000 4.4754x + 0.0998 0.9971 100.93

1283 400–4000 3.8356x + 0.0854 0.9965 100.82

1536 400–4000 −1.4613x + 0.1403 0.9967 100.62

1538 400–4000 −1.3854x + 0.1394 0.9963 100.97

We use an algorithm pipline of outlier detection, smoothing, scatter correc-
tion, variable selection, and PLS, to produce the NaDCC quantification from
the input spectrum. Standard procedures for developing algorithms in machine
learning and data analysis are used in the development of this pipeline. Three
main steps comprise the general pipeline: data collection, preprocessing, and
model prediction. An ATR-FTIR sample scan was done as a first step, based on
the prepared sampling method, to gather raw data. Following that, general and
specific data preprocessing steps are undertaken such as normalization, artifact
removal, smoothing, and variable selection. In this study, PLS was calibrated
using k-fold cross validation, and evaluated using R-square for unseen samples.

When a data point does not fit the general trend, it is usually considered
an outlier. A model is not able to explain outliers well because they are associ-
ated with large errors in the cost function. There are several causes of outliers,
including measurement error, sampling error, inaccurate recording, or incorrect
assumptions about the distribution. In the outlier identification approach, the
Q-residual, Hotelling T-Square, which is capable of reducing the computation
time without compromising accuracy [16], and a 95% confidence interval were
employed. According to Fig. 3, 19 cases were detected as outliers. Additionally,
an approach can be used for eliminating outliers simply by examining samples
visually. Figure 4 shows the effect of one poor quality scan (with three scans per
sample), where the curve can be seen to deviate significantly from the curves
for the other sample scans. Any given model will contain a data point that has
a high Q-residual in comparison to the corresponding residuals of other data
points, so there will always be some data points with a large residual error. In
this study, model calibration by removing outliers based on the output of Q-
residual and Hotelling T-Square approaches was applied to avoid the proposed
model under-performing.

Signal smoothing is just as critical to the pre-processing of spectral data as
removing outliers from the data points. The random noise in the data can be
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Fig. 3. Q-residual and Hotelling T-Square metrics Outlier Detection

reduced using a smoothing technique. Many methods can be employed to accom-
plish this task, such as Savitzky-Golay, and Fourier spectral smoothing [27]. In
this model, for each point in the sample, a neighbourhood of points were selected,
which is called the window size, and then a polynomial model is fitted to the
selected data points in the window. This data point is replaced with the corre-
sponding value of the fitted curve at that point in order to provide the smooth
version of the data point. The Savitzky-Golay results in the suggested pipeline
design were calculated using a window size of 11 and a polynomial degree of 3
(Fig. 5).

Specular reflections and diffuse reflections constitute a spectrum. Due to
the sample’s chemical composition, different wavelengths of incident light are
absorbed differently by the sample, resulting in different spectral shapes. Addi-
tionally, particle sizes and path lengths also affect spectra. Scattering can be
used to eliminate errors caused by sample geometry and morphology which have
no connection to chemical composition. In essence, removing all these undesir-
able effects before computing the quantity of interest produces a better model.
There are two tools that can be used in spectroscopy to correct scatter data-
the standard normal variations (SNVs) and the multiplicative scatter correction
(MSCs) [7]. The particle size and path length effects are expected to have a zero
mean normal distribution in each sample, and these scatters should be reduced
significantly by averaging all samples. An average spectrum is calculated from all
the samples and a linear regression model is fitted to the calculated spectrum as
an independent variable and to each sample as a dependent variable. Equation 1
illustrates the general procedure for the MSC.

Xm =
1
N

N∑

i=1

Xi Xi = bi + mi × Xm ⇒ Xmsc
i =

Xi − bi

mi
(1)

In the SNV method, used in this study (Fig. 5), there is no reference to regress
the input spectrum against. We use Xsnv

i = Xi−X̂i

σi
.
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Fig. 4. Examples of a misaligned sample

Pharmaceutical laboratories heavily rely on instruments that generate large
amounts of data. It is fairly common for a laboratory instrument to generate
data that has thousands of variables; for example a typical FTIR instrument
records absorbance at more than 10000 frequencies. However the full amount of
this data is not useful in many of scenarios and normally there is considerable
redundancy and correlation among these variables. Since high dimensional data
leads to problems related to the curse of dimensionality in machine learning,
extracting and compressing these variables in such a way that keeps essential
information is vital. This compression or extraction may be achieved by com-
bining different variables to get a more informative variable (such as Principal
component analysis-PCA) or by selecting a variable from a set of variables that
provide more information for the task in hand.

Due to the simplicity of the forward variable selection algorithm, it is applied
to this problem in order to ensure that important wavelengths are separated from
less informative wavelengths within spectral measurements [18]. The wavelength
bands containing most of the signal related to the analyte can often be hard to
predict in advance, especially in visible and infrared spectroscopy. A measure-
ment of all bands that the instrument is capable of will be made in the first
step, followed by a determination of vital bands. In other words, the wavelength
bands will make better-quality models stand out.

Preprocessing discards one wavelength at a time. An entire spectrum calibra-
tion model will be created, then the wavelength associated with the regression
coefficient with the smallest absolute value will be eliminated. By calculating
the model’s mean square error in each iteration, the performance will be evalu-
ated. A given number of wavelengths will be discarded in conjunction with the
minimum model mean square error. A total of 1292 wavelengths were discarded
and the optimised MSE was 0.006929.
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Fig. 5. Spectrum smoothing and scatter correction. The top graph displays raw spec-
trum in absorbance mode with no processing; the middle graph is obtained by applying
a savitzky golay filter with window size 11 and degree 3; the bottom graph illustrates
the spectrum after applying the standard normal variations scatter correction.

The estimation part of the pipeline consists of partial least square regression
(PLSR) as its core algorithm. The concentration is predicted by this algorithm
after the preprocessing stage, where the spectrum is mapped to concentration.
In partial least square regression, multiple linear regression is performed, which
builds a linear model, Y = XB + E, which maps latent variables (LV) onto
dependent variables. The method is designed to maximize correlation between
the selected LVs and the target variable. The reason that PLSR is superior to
PCR (principal component regression) is that it simultaneously extracts vari-
ability from input data (X) and correlates it with target data (Y). In PCR, the
LVs of PCA are used to account for variation in independent variables, but they
may not affect the dependent variable directly.

In spectroscopy analyses, three variables are involved: X, Y, and E. X repre-
sents spectra, Y represents quantities or quantity sets, and E represents errors.
In mathematical terms, PLSR can be considered as an optimization problem
with the objective: arg maxwi

cov(XW,Y ) i = 1, · · · , A. The analysis of the
collected data was based on the PLSR model. Since 80 samples were gathered
and each sample was scanned three times, a total of 240 samples were collected.
Data was split as a typical procedure in machine learning and chemometric
analysis, ten percent for testing, and ninety percent for calibration. During vari-
able selection 1776 variables were reduced to 484, which were used as input for
model calibration, reserving 24 samples as the test set. Variables were selected
based on the magnitude of mean square error produced by the PLSR model
on the calibrated dataset. The optimal number of variables was associated with
the minimum error of the model. The model was calibrated based on 10-fold
cross-validation in the selection of variables as well as in the training process for
predicting the interest target. In addition, the optimal number of PLS compo-
nents for the PLS model had to be estimated. The search for a model includes
all potential component combinations between 1 and 30. On the other hand,
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according to Fig. 6, PLS models with 15 components produce the smallest aver-
age square error, which aligns with the optimal number of components in the
variable selection stage.

Fig. 6. Optimal number of component for PLSR

The minimum error of the calibration model, illustrated in Fig. 6, is responsible
for the good dispersion of predicted values of NaDCC concentration around the
regression line. In addition to determining how well the calibration model fits,
a second factor to consider is the square of correlation coefficient (R2). This is
a measure of how well the independent variables can explain the variation in
dependent variables. The R2 value, 0.9961, is shown in Fig. 7. The value is over
0.99, which is representative of a high degree of linear correlation between the
predicted and the ground truth values.

NaDCC Quantification Result. This is the last step of the algorithm
pipeline, which evaluates the algorithm’s performance capabilities and statistical
analysis. Seven test groups are used to perform this evaluation. Each group con-
sists of several samples with the same NaDCC concentrations, but each group’s
number of samples varies. Occasionally, after dilution of a sample, the concen-
tration of API in two different samples was equal. The purpose of the diluting
procedure was to create additional data. A summary of the results of our model
is presented in Table 2. Within the 7 test groups, the recovery average ranged
from 95.46% to 107%, which is in complete agreement with the baseline (titra-
tion) that we are comparing to which has a target recovery range of 90% to
110%. Another important evaluation metric in chemometric analysis is the limit
of detection (LoD) and limit of quantification (LoQ). LoD is the least quantity of
analyte that can be consistently distinguished from zero concentration, whereas
LoQ is the smallest value of analyte that can be quantified [5,20].

The LoD in relation to partial least square regression has been calculated
using equation 3 from Franco et al [3]. In their proposed LoD formula, excipient-
containing samples will be treated as samples with zero concentration. We will
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Fig. 7. Test Coefficient of determination (R2 − Score)

calculate LoD using LoD = (tα,ν + tβ,ν) × √
var(y0), in which y0 represents a

sample with a concentration of zero, and tα,ν and tβ,ν represent the parameters
of a t distribution that has ν degrees of freedom. The limit of detection has been
calculated at 0.0849 mg/ml, while the limit of quantification (LoQ) has been
calculated at 0.283 mg/ml.

Table 2. Samples

Sample NaDCC measured NaDCC predicted Recovery average Standard deviation

1 1.000 0.955 95.462% 0.006

2 1.500 1.616 107% 0.068

3 1.600 1.536 96% 0.095

4 2.000 1.985 99.237% 0.015

5 3.200 3.360 105.012% 0.066

6 5.000 4.909 98.188% 0.057

7 6.000 6.245 104.076% 0.028

4 Conclusion

This study proposes applying data analysis techniques directly to the FTIR
spectrum of chemical compounds (ATR-FTIR) to quantify APIs of interest.
The method is to eliminate the complicated traditional, time-consuming titra-
tion methods, simplify sampling procedures, and expedite result extraction for
in-process quality control. The method’s low cost and the elimination of toxic
chemicals from titration methods makes it environmentally friendly. By simply
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dissolving NaDCC tablets in deionized water and using it as an ATR-FTIR sam-
ple, the proposed method successfully quantifies NaDCC concentrations. Accord-
ing to an evaluation of the proposed pipeline with R2 = 0.996 and recovery range
of 95.5%–107%, which completely aligned with the recovery range required in
the case study. Additionally, the process can be completed in less than 3 min,
making it suitable for use as an in-process quality control method. The tech-
nique could potentially replace the existing labor-intensive and time-consuming
titration technique for analysis of NaDCC concentrations.
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