
Variable-Relationship Guided LNS
for the Car Sequencing Problem

Filipe Souza1,2(B), Diarmuid Grimes2,3, and Barry O’Sullivan1,2

1 Insight SFI Research Centre for Data Analytics, University College Cork,
Cork, Ireland

f.desouza@cs.ucc.ie
2 SFI Centre for Research Training in Artificial Intelligence, Cork, Ireland

3 Munster Technological University, Cork, Ireland
http://www.ucc.ie/, http://www.crt-ai.cs.ucc.ie, http://www.mtu.ie/

Abstract. Large Neighbourhood Search (LNS) is a powerful technique
that applies the “divide and conquer” principle to boost the performance
of solvers on large scale Combinatorial Optimization Problems. In this
paper we consider one of the main hindrances to the LNS popularity,
namely the requirement of an expert to define a problem specific neigh-
borhood. We present an approach that learns from problem structure and
search performance in order to generate neighbourhoods that can match
the performance of domain specific heuristics developed by an expert.
Furthermore, we present a new objective function for the optimzation
version of the Car Sequencing Problem, that better distinguishes solu-
tion quality.

Empirical results on public instances demonstrate the effectiveness of
our approach against both a domain specific heuristic and state-of-the-
art generic approaches.

Keywords: LNS · Neighbourhood selection · Car sequencing problem

1 Introduction

Large Neighbourhood Search (LNS) [14] is a powerful technique to tackle Com-
binatorial Optimisations Problems, but its main drawback remains on the neces-
sity of an expert to refine the algorithm components for the specific behaviour
of each problem. One of the most crucial components is the neighbourhood
selection approach, which is highly sensitive to the characteristics of the given
problem. Thus, an important open research question concerns developing generic
neighborhood selection heuristics that can be efficient in a broad range of prob-
lems. Even though it is hard to imagine that a generic approach can overcome a
domain specific heuristic designed accurately by an expert, generic approaches

Supported by SFI Centre for Research Training in Artificial Intelligence under Grant
No. 18/CRT/6223 and SFI under Grant No. 12/RC/2289-P2, co-funded under the
European Regional Development Fund.

c© The Author(s) 2023
L. Longo and R. O’Reilly (Eds.): AICS 2022, CCIS 1662, pp. 437–449, 2023.
https://doi.org/10.1007/978-3-031-26438-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26438-2_34&domain=pdf
https://doi.org/10.1007/978-3-031-26438-2_34


438 F. Souza et al.

have an essential role to popularize LNS as one of the most powerful technique
to solve a broadly range of complex large-scale Combinatorial Optimisations
Problems (COP).

Freuder and O’Sullivan [3] proposed a number of grand challenges for Con-
straint Programming (CP). A common aspect amongst these challenges is the
requirement for approaches that can solve a range of different problems with-
out the need of a human expert to fine tune its parameters or design dedicated
algorithms. Following this line, in this paper we present a novel constraint-based
Large Neighbourhood Search that learns from problem structure and search
performance in order to create complex and diverse neighbourhoods without the
need of a domain specific algorithm. We hypothesise that good neighborhoods
can be identified through combining information regarding the problem structure
with information learnt during search.

2 Related Work

Large neighborhood search, Fig. 1, was first proposed by Shaw in 1998 [14] as
a means of applying CP techniques to large vehicle routing problems. In its
basic form, an initial solution is generated and then refined in successive iter-
ations. Each iteration involves firstly the selection of a subset of variables (the
neighborhood), whose assignment is relaxed while all other variables have their
assignment fixed to the value in the current solution. The neighborhood of unas-
signed variables can then be solved using a systematic approach, like CP or
MIP, to find the optimal solution to the neighborhood given the assignment of
the non-neighborhood variables. A key aspect, as highlighted in the figure, is
how the neighborhood is selected in each iteration.

Fig. 1. Large neighbourhood search



Variable-Relationship Guided LNS for the Car Sequencing Problem 439

2.1 LNS: Domain Independent Neighbourhood Heuristic

A large number of dedicated neighborhood operators have been proposed for
different problems. Our focus in this work concerns approaches which have tried
to create more generic LNS neighborhood selection methods. To date, much
of the literature in this area has focused on portfolio approaches to automati-
cally define the best neighbourhood selection heuristic from a predefined list. For
example Laborie and Godard [6] proposed to tackle 21 variations of Single-Mode
Scheduling Problems by applying a reinforcement learning method to select, in
each iteration, the most suitable neighbourhood selection heuristic for a given
instance from a predefined portfolio. The main drawback of this approach can
be observed when heuristics from the portfolio have different run-times. Under
these circumstances the heuristics with smaller run-time will be used more often
as the reward function is given by Δc/Δt i.e. the size of improvement in objec-
tive value divided by the run-time to achieve that improvement. Typically large
improvements can be made earlier on while as we approach the optimal solution
the improvements are smaller.

In order to address this drawback, Thomas and Schaus [16] proposed a new
weight-update mechanism for the portfolio approach. This mechanism works by
evaluating the neighborhood heuristic based on its performances obtained in an
evaluation window which starts on β iterations before last improvement until
the current iteration. That way the windows will always keep information from
a fixed part of the search before any stagnation. Even though this approach
proved its efficiency on a broad range of problems, we believe that there are
two points of further investigation. Firstly, in the results presented in [16], we
observe that the random neighbourhood selection performs well in a wide range
of problems, even when compared to more sophisticated approaches (we will
elaborate on this in the following section). Secondly, these approaches are highly
dependent on the list of neighbourhood selection heuristics in the portfolio, thus
they cannot be fully classified as domain independent approaches.

To the best of our knowledge the first effective domain independent approach
was the Propagation Guided Large Neighbourhood Search (PGLNS) [11]. Here
Perron et al. proposed choosing the neighborhood variables based on analysis
of the impact of each frozen variable in turn. They tested a number of configu-
rations, however the approach that performed better than the domain specific
neighbourhood selection heuristic Interval-Based [10] was a configuration that
alternated between three neighborhood selection methods. In one, neighbour-
hoods are created by starting from an empty solution and incrementally freezing
variables based on the propagation impact until achieving the desire neighbour-
hood size. The second neighbourhood method built by starting from a complete
solution and incrementally relaxing variables based on the propagation impact
until achieving the desire neighbourhood size. The final neighborhood was gener-
ated randomly. The first two approaches are highly efficient to learn from variable
relationships, but they do not use information about the variables behaviours
during the search process, which we believe to be highly beneficial to generate
better neighbourhoods. For instance, when a variable is already assigned to its



440 F. Souza et al.

optimal value, or already has been selected many times, there is no reason to
keep selecting this variable only because it has a strong relationship with other
variables.

On the other hand there are some domain independent approaches that focus
only on variables behaviours aspects, and do not consider the structural relation-
ship between variables. Carchrae and Beck in [2] proposed a Cost-based method
to select neighbourhoods, where the variable impact on the overall objective
function is the main component to select the variables that will compose the
neighbourhood. Their results demonstrated the importance of a stochastic ele-
ment to ensure a high variety of neighbourhoods, mainly when the instance
problem is not so large. Lombardi and Schaus [9] also proposed a heuristic that
relies on the cost impact capability of the variables. Their calculation of cost
impact is based on lower bound cost before and after assigning the variable its
value from the current best solution during a permutation of orderings of the
variables. These impacts are then used to weight a roulette wheel style selections
strategy for the neighborhood operator.

2.2 Exploration vs Exploitation on Neighbourhood Selection

Many LNS approaches in the literature have reported impressive performance
of the simple random neighbourhood selection method, even when we compare
it with more sophisticated heuristics, [2,11,12,16]. A highly deterministic app-
roach may choose very similar neighborhoods multiples times resulting in a huge
computational time spent on neighbourhoods that do not have as much capacity
for improvement; while ignoring some parts of the search space. On the other
hand, a complete stochastic approach has a poor exploration of any knowledge
from the problem, variables and their connections, but if the neighbourhoods are
relatively large, the likelihood of selecting a small number of connected variables
where lies some improvement is considerable.

3 Problem Definition

The Car Sequencing problem was originally defined as a Constraint Satisfaction
Problem (CSP) [1,15] that aims to allocate a set of cars on a production line of
options’ installation over a fixed number of timeslots (e.g. one day of timeslots).
Each bay has its own capacity, i.e. the number of cars they can work on in a
segment of the production line. Furthermore each bay can install only one type
of option.

In order to transform this problem to a Constraint Optimisation Problem
(COP), we add a new class of car where no option is needed, similar to [10,11].
They used the concept of empty slots providing buffers which are then to be min-
imised, i.e. minimise the number of extra time slots needed to allocate all cars.
The novelty in our formulation is the use of the number of options not placed on
the original production line as objective function, with the logic that cars with
fewer option requirements would be easier to slot in on a subsequent day.



Variable-Relationship Guided LNS for the Car Sequencing Problem 441

This approach allows the search to distinguish between two partial solutions
even when both have the same number of original cars placed on the production
line by prioritising the solution where the placed cars have more options installed,
since the cars with less options installed are more likely to find a place in the
following iterations.

The problem can be more formally defined as follows:

Definition 1 (Option). An option o ∈ O is an extra item to be installed
on some specific configuration of a given car, e.g. Parking Assist, Speed Limit
Assist, Air Conditioning.
Option o is characterized by: the window size, WSo, on the production line; and
the maximum number of the option, MCo, that can be installed in the window.

Definition 2 (Configuration). A configuration c ∈ C is a version of a car
with a particular set of options. c is characterized by: the number of needed cars
carsc; and REQc,o∀o ∈ O that defines whether an option is required by the
configuration.

Definition 3 (Position). A position p ∈ P is a place in the queue of the car
production line.

Definition 4 (Solution). A solution S is an assignment of ∀c ∈ C to a posi-
tion p ∈ P . We will formally represent the assignment by PCp = c.

minimize (
∑

c∈C

∑

o∈O

(REQc,o) ∗ carsc) −
∑

p∈P

∑

o∈O

(REQPCp,o) (1)

subject to:
∑

p∈P

(PCp = c) <= carsc ∀c ∈ C

(2)
p+WSo∑

j=p

REQPCj ,o ≤ MCo ∀p ∈ P,∀o ∈ O

(3)

Constraint 2 guarantees that for each configuration c the maximum number
of produced car is carsc. While constraint 3 ensures that no bay is overloaded.
In other words, for an option o on any sequence of WSo cars, the maximum
number of these cars that requires option o is MCo.

4 Neighbourhood Selection Heuristic

The method of neighbourhood selection is a key component in any LNS tech-
nique. Using an efficient heuristic to select the next set of neighbours that have
high probability of being optimised can greatly increase performance. However,



442 F. Souza et al.

a deterministic approach can result in ignoring some parts of the search space
and end up with a relatively poor local minimum solution. On the other hand, a
completely stochastic approach may spend a huge computational time on neigh-
bourhoods that do not have scope for improvement.

Our proposed approach exploits the structural relationship between decision
variables to guide the search process towards connected neighbourhoods, and
information learnt during search to try to choose neighbourhoods with high
likelihood of improvement.

Algorithm 1: Neighbourhood Selection Heuristic
randomV ars ← selectNRandomV ars(NRandomV ars);
bestV ar ← selectBestV ar(randomV ars);
relaxV ar(bestV ar);
while checkSize() do

randomV ars ← selectNV arsRelatedTo(NRandomV ars, bestV ar);
bestV ar ← selectBestV ar(randomV ars);
relaxV ar(bestV ar);

end

Algorithm 1 describes our domain independent neighbourhood selection
heuristic. The heuristic works by incrementally relaxing variables selected
according to one of the criteria described in the next subsection. In order to
maintain a greater degree of diversification, we first select a random subset of
variables (selectNRandomVars), and then choose the best amongst this accord-
ing to the criteria (selectBestVar). After a variable is selected, the next selec-
tion is constrained to the variables that are involved in constraints with the
variables already selected (SelectNVarsRelatedTo), except for global constraints
that involve more than half of the decision variables. It should be noted that the
benefit of the selectNRandomVars function isn’t just an increase in diversifica-
tion, it also reduces the computational effort as we only need to find the best
amongst this subset as opposed to the best amongst all variables.

4.1 Neighborhood Heuristics

We investigated the performance of the following four heuristic criteria:

Weighted Variable Usage (V Usage): This heuristic prioritises diversifi-
cation. Each variable has a counter which is incremented when the variable is
chosen in the neighborhood of an iteration. The heuristic biases selection to
those that have been chosen the least. However, in order to not penalise centroid
variables that have to change their values in order to allow other variables to be
able to change to the optimal value, the usage score is divided by the number of
times that the variable changes its value after a sub-problem optimisation that
improves the whole solution. Therefore the criteria is choose the variable with
minimum value of usage/improvements.



Variable-Relationship Guided LNS for the Car Sequencing Problem 443

Weighted Variable Cost (V Cost): The criteria for this heuristic is the
impact of a variable on the cost (objective function). This cost is calculated by
measuring the impact of removing each variable from the current solution.

This heuristic considers the hypothesis that the best neighborhood should
involve variables with the higher cost associated with them. The fundamental
difference between our variable cost score and the variable cost score from Lom-
bardi and Schaus [9] is that while Lombardi’s approach is calculated based on
variation of lower bound cost during a range of re-application of the current best
solution on a sample of permutation ordering of the variables, our variable cost
is calculated based on the impact of unassigning the variable from a full solution.

Weighted Variable Conflicts (V Conflicts): The number of conflicts that
each variable was involved on previous iterations. The hypothesis on using this
weight is that variables involved in many constraint conflicts are the ones most
difficult to find their optimal values, so if we find the optimal values for these
variables the others will be easily optimised. We use the variable conflict score
implemented on Gecode solver, that is calculated based on the definitions of
Conflict history base for SAT problem [7,8]. For more detail of how the variable
conflict is calculated in Gecode, please see [5].

Weighted Variable Failures (V Fails): The number of leaf failures that each
variable was involved on previous iterations divided by the variable domain size
after being relaxed and propagating arc-consistency based on the fixed variables
on a given iteration. We hypothesise that variables with a high number of failures
are the ones most difficult to find their optimal values, so they need to be relaxed
more frequently. For more details of how the Failures criteria is calculated in
Gecode, please see [13].

For the latter three approaches, the scores were normalized by dividing it
by the number of times that the variable was relaxed in the previous iterations.
Therefore, impact of behavior in earlier iterations will not dominate.

5 Evaluation

5.1 Experimental Design

We implemented our proposed approach using Gecode 6.2 [4]. For comparison,
we have also tested 4 neighbourhood selection heuristics from the literature:
PGLNS1 [11], Interval-based [10], Cost-Impact (referred to as CGLNS in results)
[9], and Random which simply chooses the variables for the neighborhood ran-
domly.

It should be noted that we are using the best configuration presented in [11],
that iterates through the following three neighborhood operators: Propagation
Guided; Reverse Propagation Guided; and purely random selection. However,
we defined the neighbourhood size based on the number of relaxed variable

1 The description of the PGLNS approach from [11] miss some details, thus imple-
mentation differences may exist.



444 F. Souza et al.

Table 1. Configurations parameters for the benchmark experiment.

Parameter Value

Runtime 120 s

Neighbourhood size 10 slots

Failure threshold 200

NRandomVars 10

instead of the search space size, in order to compare all approach on the same
neighbourhood size.

The experiments were run on a Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-70-
generic) with 16 Core and 32 GB, with a runtime cutoff of 2 min per approach on
each instance. Furthermore, as all approaches have a strong stochastic element,
the presented results are the average of 5 runs with different seeds. Table 1
presents the parameter configurations that was used to run the experiments.

5.2 Instances

The experiments will use the three sets of hard instances available on the CSPLib
[15]. There are 10 instances in each set and the total number of cars per instance
is 200, 300 and 400 respectively. This allows us to also empirically analyse the
scalability performance and behaviour of each approach as problems grow in
size.

5.3 Results

The results are presented in Table 2 in terms of average cost across the five runs,
and the associated standard deviation of the cost. We further provide details on
the number of best solutions found for each approach per problem set.

We see that all approaches provide significant improvement over the initial
solution. Amongst the comparison approaches, PGLNS performs best with sig-
nificant improvements over the two other domain-independent heuristics (Ran-
dom and CGLNS), and was consistently better than the problem-specific heuris-
tic (Interval) on all problem sizes.

Amongst the approaches proposed in this work, we find that all perform
well. Although PGLNS outperforms them on the smallest instance size, as the
instance size increases, so does the improvement over PGLNS for each. This
can be seen more clearly in the number of total best solutions found. For the
smallest instances, PGLNS finds most, but can only find one for the largest
instances compared to six for V Usage.

The V Fails heuristic achieved the best results on the two largest set of
instances (300 and 400 cars), while on the set of instance with 200 cars, PGLNS
and Interval Based found better solutions on average. Interestingly we did not
find a large difference in behaviour of our four heuristics in terms of solution



Variable-Relationship Guided LNS for the Car Sequencing Problem 445

Table 2. Five runs on three problem sets of 10 instances with 120 s cutoff per instance
run. Results per problem set in terms of: average and standard deviation of cost; and
number of instances for which a method found best solution across methods tested.

Average cost
︷ ︸︸ ︷

Standard deviation cost
︷ ︸︸ ︷

Total best solution
︷ ︸︸ ︷

Approach Size200 Size300 Size400 Size200 Size300 Size400 Size200 Size300 Size400

Initial Sol 92.0 142.7 187.6 6.9 13.1 11.0 − − −
Random 19.6 33.9 45.2 4.6 8.5 6.8 0 0 0

Interval[10] 15.6 27.7 34.6 4.1 6.0 6.2 4 2 0

PGLNS[11] 15.4 27.1 33.9 3.9 6.3 5.9 4 3 1

CGLNS[9] 38.4 64.8 72.3 30.7 52.8 55.7 1 0 0

V Conflict 16.5 26.6 33.0 3.6 6.3 6.7 2 4 3

V Fails 16.6 26.5 33.0 3.5 6.3 6.6 3 3 2

V Cost 15.9 26.6 33.3 3.6 6.0 5.4 3 6 3

V Usage 16.5 26.7 33.1 3.5 6.2 6.7 3 3 6

quality. This suggests the importance of the concept of “variable relationship”
which underpins all our heuristics.

We also generated search statistics, Table 3, for the different approaches in
order to gain further insight and understanding into their behavior. These results
answer a number of questions. Firstly, we see that both Random and CGLNS
performed significantly more iterations than the other approaches, between 5
and 10 times as many. This explains the surprising result that CGLNS had
significantly worse performance than even the random neighborhood selector,
despite exploring approximately four times as many iterations as PGLNS or
Interval.

Table 3. Analysis of search behaviour for different methods averaged across runs and
instances.

Iterations
︷ ︸︸ ︷

Nodes per iteration
︷ ︸︸ ︷

Approach Size200 Size300 Size400 Size200 Size300 Size400

Random 80, 422 53, 958 33, 155 13 8 11

Interval 12, 493 8, 687 5, 849 207 203 204

PGLNS 12, 086 9, 662 6, 051 195 193 199

CGLNS 57, 967 38, 818 25, 227 27 24 25

V Conflict 6, 664 4, 898 3581 376 374 372

V Cost 9, 185 5, 965 3782 298 312 328

V Fails 7, 285 4, 516 3589 376 374 373

V Usage 6, 501 4, 511 3897 376 374 374



446 F. Souza et al.

This may seem counter-intuitive, more iterations means more neighborhoods
explored which sounds in theory like it should be beneficial. The reason for this
not being the case for Random and CGLNS is that many of the neighborhoods
selected had scope for very few, if any, variable changes. This is evidenced by
the average nodes explored per iteration by these two approaches in compari-
son to the other approaches. Neither of these approaches take into account the
relationship between variables selected. In other words, they relax disconnected
variables, and propagating the assignment of the non-relaxed variables results
in the domains of most relaxed variables reducing to the previous value.

On the other hand, we see the opposite is the case for the approach we
propose, irrespective of the heuristic criteria. Comparing to PGLNS and Interval,
our approaches performed over 25% fewer iterations, but explored nearly twice
as many nodes per iteration on average. All our approaches use the concept of
“variable relationship” in order to build out a connected subset of variables from
the initial variable selection. We see a consistent trend whereby this resulted in
exploring more nodes per iteration, as more combinations could be tried since the
relaxed variables were connected and were not having their domains as restricted
by the non-frozen variables.

(a) 200 cars (b) 400 cars

Fig. 2. Evolution of solution quality across time for different instance sizes.

Figure 2 shows the evolution of average cost improvement over 10 instances
across 2 min of search for the different configurations described above. We note
that CGLNS and more so Random were able to make larger improvements in
the first second as they explore more neighborhoods and improvements over the
weak initial solution are easy to achieve. However, they quickly stagnate.

As we can see, and showed already in Table 2 PGLNS and Interval-Based have
better performance overall on the instances of smallest size (200 cars), whilst our
Variable-Relationship neighbourhood selection heuristics got better results on
the instances of largest size (400 cars) over 120 s. This behaviour was somewhat
expected, since on small size instances it is not essential to prioritise variables
with high probability of generated big improvement, as the 120 s search time can



Variable-Relationship Guided LNS for the Car Sequencing Problem 447

guarantee enough iterations to investigate many of the possible neighbourhoods.
However, as the instance size increases, the need to prioritise more promising
neighbourhoods in each step of the search process also increases, and the Variable
Relationship heuristics work better.

We can observe this behaviour in the first 40 s of Graph 2a where the V Cost
heuristic got the best performance as it prioritise neighbourhoods with variables
that have more impact on the objective function. Interestingly V Cost was signif-
icantly better than other approaches after 40 s for both instance sizes, and indeed
for size 300 (not shown). This may in part be the combination of searching more
neighborhoods than our other heuristics (as evidenced by greater number of
iterations in Table 3) while still keeping the Variable-Relationship. These results
suggest alternating between our different neighborhood operators may produce
better results.

6 Conclusion and Future Works

In this paper, we proposed an approach that combines knowledge extracted
from the problem structure and search state information to generate complex
and diversified neighbourhoods without the need of a domain specific algorithm.
Our heuristic works by incrementally relaxing variables based on its state, and
their relationship to other variables selected. In particular, after each variable is
selected by the heuristic, the next selection is constrained to the variables that
are involved in constraints with the variables already selected.

We empirically evaluated our approach using public instances of Car Sequenc-
ing Problem [15]. Comparing our results against domain specific heuristic, SOA
generic approaches, and pure random relaxation demonstrated the effectiveness
of Variable-Relationship Guided LNS mainly on large instances. Further analysis
of search behaviour, in terms of average nodes explored per iteration, provided
insight into why these approaches performed so well.

To the best of our knowledge the Variable-Relationship Guided LNS is the
first domain independent neighbourhood selection heuristic to combine informa-
tion from problem structure and that learnt through search performance. Even
though the empirical results prove that good neighborhoods can be identified
through combining information regarding the problem structure with informa-
tion collected during search on an optimisation version of the Car Sequencing
Problem, there are some promising avenues for future work such as:

– The combination of different types of search state information in the same
search process. The main challenge here is to define the relative importance
of each information in the construction of the neighbourhood. We believe
that Machine Learning/Deep Learning are key to address this challenge in a
generic and adaptive way.

– Identifying more complex variable relationships (i.e. for variables not directly
connected by a constraint). Graph Convolution Networks could be beneficial
to learn more robust relationships of variables based on the graph represen-
tation of the constraint relationship between decision variables.



448 F. Souza et al.

References

1. Artigues, C., Hebrard, E., Mayer-Eichberger, V., Siala, M., Walsh, T.: SAT and
hybrid models of the car sequencing problem. In: Simonis, H. (ed.) CPAIOR 2014.
LNCS, vol. 8451, pp. 268–283. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07046-9 19

2. Carchrae, T., Beck, J.C.: Cost-based large neighborhood search. In: Workshop on
the Combination of Metaheuristic and Local Search with Constraint Programming
Techniques (2005)

3. Freuder, E.C., O’Sullivan, B.: Grand challenges for constraint programming. In:
Constraints, pp. 1–13 (2014). https://doi.org/10.1007/s10601-013-9155-1

4. Gecode Team: Gecode: Generic constraint development environment (2006).
http://www.gecode.org

5. Habet, D., Terrioux, C.: Conflict history based heuristic for constraint satisfac-
tion problem solving. J. Heuristics 27(6), 951–990 (2021). https://doi.org/10.1007/
s10732-021-09475-z

6. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. In: Proceedings MISTA-07, Paris 8 (2007)

7. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted
average branching heuristic for sat solvers. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 30, no. 1 (2016)

8. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 9

9. Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CPAIOR
2014. LNCS, vol. 8451, pp. 293–300. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07046-9 21

10. Perron, L., Shaw, P.: Combining forces to solve the car sequencing problem. In:
Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 225–239.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24664-0 16

11. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8 35

12. Pisinger, D., Ropke, S.: Large neighborhood search. In: Handbook of Metaheuris-
tics, pp. 399–419. Springer, Heidelberg (2010)

13. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with gecode.
Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, vol. 1 (2010)

14. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

15. Smith, B.: CSPLib problem 001: Car sequencing. http://www.csplib.org/
Problems/prob001

16. Thomas, C., Schaus, P.: Revisiting the self-adaptive large neighborhood search. In:
van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 557–566. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 40

https://doi.org/10.1007/978-3-319-07046-9_19
https://doi.org/10.1007/978-3-319-07046-9_19
https://doi.org/10.1007/s10601-013-9155-1
http://www.gecode.org
https://doi.org/10.1007/s10732-021-09475-z
https://doi.org/10.1007/s10732-021-09475-z
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-540-24664-0_16
https://doi.org/10.1007/978-3-540-30201-8_35
https://doi.org/10.1007/3-540-49481-2_30
http://www.csplib.org/Problems/prob001
http://www.csplib.org/Problems/prob001
https://doi.org/10.1007/978-3-319-93031-2_40


Variable-Relationship Guided LNS for the Car Sequencing Problem 449

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Variable-Relationship Guided LNS for the Car Sequencing Problem
	1 Introduction
	2 Related Work
	2.1 LNS: Domain Independent Neighbourhood Heuristic
	2.2 Exploration vs Exploitation on Neighbourhood Selection

	3 Problem Definition
	4 Neighbourhood Selection Heuristic
	4.1 Neighborhood Heuristics

	5 Evaluation
	5.1 Experimental Design
	5.2 Instances
	5.3 Results

	6 Conclusion and Future Works
	References




