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Abstract. Scientific datasets often have hierarchical structure: for
example, in surveys, individual participants (samples) might be grouped
at a higher level (units) such as their geographical region. In these set-
tings, the interest is often in exploring the structure on the unit level
rather than on the sample level. Units can be compared based on the
distance between their means, however this ignores the within-unit dis-
tribution of samples. Here we develop an approach for exploratory anal-
ysis of hierarchical datasets using the Wasserstein distance metric that
takes into account the shapes of within-unit distributions. We use t-
SNE to construct 2D embeddings of the units, based on the matrix of
pairwise Wasserstein distances between them. The distance matrix can
be efficiently computed by approximating each unit with a Gaussian
distribution, but we also provide a scalable method to compute exact
Wasserstein distances. We use synthetic data to demonstrate the effec-
tiveness of our Wasserstein t-SNE, and apply it to data from the 2017
German parliamentary election, considering polling stations as samples
and voting districts as units. The resulting embedding uncovers mean-
ingful structure in the data.

Keywords: Wasserstein metric · t-SNE · Dimensionality reduction ·
Election data · Hierarchical data · Optimal transport

1 Introduction

We consider dimensionality reduction for the purpose of data visualization, for
the situation in which each ‘data point’ is a probability distribution, or a set of
samples from it. This situation naturally arises when the data have hierarchical
structure, i.e. the individual samples can be grouped at a higher level. Through-
out this work we will use the word ‘unit’ to refer to this grouping level; for each
‘unit’ there is a number of ‘samples’ in the data (Fig. 1). For example, in a social
science survey, participants can be seen as samples and their countries of origin
can be seen as units. For exploratory analysis, the interest may often be in the
relationships between units (countries), rather than samples (participants).

A common approach for data exploration is to visualize the dataset as a 2D
embedding, using dimensionality reduction algorithms such as PCA, MDS, t-
SNE [14] or UMAP [15]. These algorithms are designed to get vectors as input,
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Fig. 1. Hierarchical data. Individual samples can be grouped into units. Each unit
forms a probability distribution over its samples. In our Wasserstein t-SNE approach,
units in the dataset are compared using the Wasserstein metric to construct a pairwise
distance matrix, which is then embedded in two dimensions using the t-SNE algorithm.
Units with similar probability distributions end up close together in the 2D embedding.

and compute pairwise distances (e.g. Euclidean) between the input vectors. How-
ever, when analyzing units in a hierarchical dataset, each single unit forms an
entire probability distribution over its samples, and cannot be represented by
one vector. A simple approach would be to collapse all within-unit distributions
to their means, and then apply any standard dimensionality reduction algo-
rithm. However, this procedure can loose important information, particularly
when some of the units share the same mean but have different shape.

Here we propose to use the Wasserstein metric [9] to compute pairwise dis-
tances between units. The Wasserstein distance has got recent attention in appli-
cations to Generative Adversarial Networks [1] or discriminant analysis [4] where
it was used to compare probability densities with different support. The Wasser-
stein metric is convenient because there exists a closed-form solution for Gaussian
distributions [2]. Using the Gaussian approximation, it is possible to efficiently
construct the pairwise distance matrix between units in a hierarchical dataset.
This distance matrix can then be used for downstream analysis, such as cluster-
ing or dimensionality reduction. Our focus here will be on t-SNE embeddings.

In the first part of this work we use simulated data to demonstrate the effec-
tiveness of our Wasserstein t-SNE. In the second part we apply the same method
to real-world data, in particular the data from the 2017 German parliamentary
election. Here, samples correspond to polling stations while the units correspond
to voting districts. We use the Gaussian approximation but also compute the
exact Wasserstein distances, using an efficient linear programming approach.

The Python implementation of Wasserstein t-SNE is available on GitHub
at fsvbach/WassersteinTSNE and as a package on PyPi WasserteinTSNE. The
analysis code reproducing all figures in this paper can be found on GitHub
at fsvbach/wassersteinTSNE-paper together with the analyzed data.

https://github.com/fsvbach/WassersteinTSNE
https://pypi.org/project/WassersteinTSNE/
https://github.com/fsvbach/wassersteinTSNE-paper
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2 Methods

2.1 t-SNE

T-distributed stochastic neighbor embedding (t-SNE) [14] is a dimensionality
reduction algorithm used in many scientific fields to find structure in datasets.
The main idea of t-SNE is to arrange points in a low-dimensional space, such that
their pairwise similarities (affinities) are similar to those in the high-dimensional
space. In particular, if P and Q are the affinity matrices of the data and embed-
ding respectively, t-SNE minimizes their Kullback-Leibler divergence

KL(P‖Q) :=
∑

ij

Pij log
Pij

Qij
.

The affinity matrix P is constructed from the pairwise distances dij by Gaus-
sian kernels with bandwidth σi

Pj|i =
exp(−d2ij/2σ2

i )
∑

k �=i exp(−d2ik/2σ2
i )

such that all perplexities of the conditional distributions equal some predefined
value. In most t-SNE implementations this parameter defaults to 30 which we
leave untouched in our experiments. As a reminder, if p(x) is a discrete proba-
bility density function, the perplexity of p is given by

P(p) := 2H(p) =
∏

x

p(x)−p(x).

The affinity matrix P is then symmetrized by

Pij =
Pj|i + Pi|j

2n
.

In the low-dimensional space, the affinity matrix Q is based on the pairwise
distances between the embedding vectors yi, using the t-distribution kernel:

Qij =

(
1 + ‖yi − yj‖2

)−1

∑
k �=l

(
1 + ‖yk − yl‖2

)−1 .

The t-SNE algorithm minimizes the Kullback-Leibler divergence KL(P‖Q)
with respect to the coordinates yi. The embedding is initialized randomly, or
using another algorithm such as PCA [11]. The optimization is done with gra-
dient descent, i.e. the points move along the gradient until convergence. This
results in a local minimum where no point can be moved without yielding a
worse embedding.

When interpreting t-SNE embeddings it is important to keep in mind that the
algorithm puts emphasis on close points, i.e., similar data points are embedded
close to each other. The opposite does not hold: points that are embedded far
from each other are not necessarily far from each other in the original space.

In this work we use the implementation of openTSNE [17], and keep all
parameters at their default values.
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2.2 Wasserstein Metric

The Wasserstein metric [9] is a natural choice to compare probability distribu-
tions. It can be used to compare densities which do not have the same support,
as long as a distance measure of their support is given. The downside of the
Wasserstein distance is its computational complexity, which is linked to optimal
transport [16,20].

Definition 1. Let (M,d) be a metric space. The p-Wasserstein distance of two
distributions μ and ν is defined as

Wp(μ, ν) :=
(

inf
γ∈Γ (μ,ν)

∫

M×M

d(x, y)pdγ(x, y)
) 1

p

where Γ is the set of all couplings of μ and ν.

In computer science the 1-Wasserstein metric is also known as Earth Mover’s
Distance, because if one imagines the probability distributions as piles of earth,
then Wp(μ, ν) represents the minimal amount of work necessary to transfer this
mass from μ to ν. This intuition also explains why the probability distributions
must be defined on a metric space M , because we have to measure how far two
points are away from each other, i.e. how far the mass has to be transported.

In general, the p-Wasserstein distance for continuous distributions is hard to
compute [20]. But there exists a closed-form solution for the 2-Wasserstein met-
ric for multivariate Gaussian distributions [2] (also known as Fréchet Inception
Distance [8]). If μ, ν are two Gaussian distributions Ni(mi, Ci) with means mi

and covariance matrices Ci, the 2-Wasserstein distance between them is given
by

W2(μ, ν)2 = ‖m1 − m2‖22 + tr
(

C1 + C2 − 2
(
C

1/2
2 C1C

1/2
2

)1/2
)

= ‖m1 − m2‖22 + tr
(
C1 + C2 − 2 (C2C1)

1/2
)

.

The first term here is the Euclidean distance between the means, while the second
term defines a metric on the space of covariance matrices [2]. By introducing a
hyperparameter λ ∈ [0, 1] we can put emphasis either on the means or on the
covariances. We therefore propose a convex generalization of the 2-Wasserstein
distance for Gaussians:

W̃ (μ, ν)2 = (1 − λ) · ‖m1 − m2‖22 + λ · tr
(
C1 + C2 − 2 (C2C1)

1/2
)

. (�)

This reduces to the Euclidean distance between the means for λ = 0 and to
the distance between covariance matrices for λ = 1. The 2-Wasserstein distance
corresponds to λ = 0.5 (up to a scaling factor).

In closed form, the 2-Wasserstein distance between two Gaussians can be
computed in polynomial time. The matrix multiplication and the eigenvalue
decomposition (for taking the square root) have O(d3) complexity, where d is
the number of features. If there are n units in the dataset, the n × n pairwise
distance matrix can be computed in O(n2d3) time.
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Fig. 2. Wasserstein distance as a linear program. (A) The optimal transport map γ of
two probability distributions ν (orange) and μ (blue) is shown. The heatmap represents
the cost matrix C. (B) The same distributions can be visualized as a collection of
samples, which have different support. The distance between samples νi and μj is
given in the cost matrix entry Cij . The size of the optimization variable γ is then
upper bounded by the product of the sample sizes (Color figure online).

2.3 Linear Programming

We are also interested in computing exact Wasserstein distances without relying
on the Gaussian approximation. Since real-life datasets contain discrete samples,
this is possible by discretizing Definition 1 to

Wp(μ, ν)p := min
γ∈Γ (μ,ν)

∑

M×M

d(mi,mj)p · γ(mi,mj),

which is equivalent to the following linear program [16]:

primal form : dual form :
minimize z = cTx,

so that Ax = b
and x ≥ 0

maximize z̃ = bTy,
so that ATy ≤ c. (��)

The vectorized matrix c defines the transport cost, i.e., cij = d(mi,mj)p

represents the Lp-distance of the points mi and mj , where M is the discrete
metric space on which the probability distributions are defined. The optimization
variable x represents the vectorized transport plan γ as in Fig. 2A. Each entry of
x must be non-negative. The constraint Ax = b is set up such that it is satisfied
if the marginals of γ equal the densities μ, ν. The primal form in (��) yields an
explicit transport plan while the dual form has less variables and is faster. Due
to the strong duality of a linear program the resulting solution z is the same. In
practice we therefore use the dual form to compute exact Wasserstein distances.

Simplex algorithms and interior-point methods can solve real-world linear
programs with a unique solution in polynomial time [7]. However, the exact
complexity depends on the constraint matrix in the problem formulation. In
general, the runtime of a linear program depends on the size of the optimization
variable. In our case this is given by the product of the support sizes of the two
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Fig. 3. Computation time and accuracy. (A) Two multivariate Gaussian distributions
with 50 samples each. (B) The Wasserstein distance between the two probability dis-
tributions is computed using a different number of samples. The ground-truth distance
is obtained by the closed-form solution and is shown with the dashed black line. The
Wasserstein distance estimates using our linear program approach are shown in green
(mean and standard deviation over 50 repetitions). The purple line shows the average
runtime. (Color figure online)

discrete probability distributions. Figure 2A provides an example of two one-
dimensional distributions, defined on the same support of size 10 (which could
e.g. be a ten-point rating scale from 1 to 10). Both probability mass functions
have 10 values so the resulting optimization variable γ has 10×10 = 100 entries.
While this linear program is easily solvable, the problem becomes computation-
ally hard if we add additional feature dimensions (for example, if we add another
ten-point feature, each probability density will become a two-dimensional mass
function over 100 values, so then γ has length 10,000). The number of variables
in the transport map therefore grows exponentially with the number of features,
thus this approach is intractable for datasets with many features.

Instead, we reduce the probability densities to the subspace where samples
have actually been observed, rather than comparing distributions on the com-
plete space M . That is, we consider both distributions uniformly distributed over
their samples (Fig. 2B). The marginal distributions μ and ν in Fig. 2B therefore
become uniform distributions with supports of size n and m respectively, where
n and m are the two sample sizes. The size of the optimization variable γ now
becomes upper bounded by nm regardless of the number of features. The cost
matrix is given by the pairwise Lp-distance between all samples, which can be
computed efficiently. We are not aware of a prior use of this shortcut, which
however is only applicable when the number of samples is not large.

A way to see that both approaches are equivalent is to consider the constraints
x ≥ 0 and Ax = b. When the number of features is large while the sample size
is small, the sample density at most support values will have zero probability
mass, because no sample has been observed at that point. Since the rows and
the columns in the transport plan must sum to the marginal distributions, each
entry with zero probability mass forces the corresponding row or column to be
empty. Therefore these entries can be left out in the problem formulation and
the size of the optimization variable is upper bounded by nm.
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One consequence of this approach is that the samples no longer need to
come from a discrete distribution, and indeed we can use the same approach to
compute the exact Wasserstein distance between the samples coming from two
Gaussian distributions (Fig. 3). To demonstrate that, we chose a pair of two-
dimensional Gaussian distributions with Wasserstein distance dW = 11.7, where
the Euclidean distance between the means is dE = 10.0 and the distance between
the covariances is dC = 6.0 (Fig. 3A). As the sample size grows from 50 to
1000, the solution of the linear program converges to the ground truth (Fig. 3B,
green line), while the runtime increases approximately as O(m3) (purple line).
However, for larger sample sizes the complexity will likely grow faster, as it is
known that integer linear programs have exponential complexity [10]. Note that
the dimensionality of the feature space (in this example, it is two-dimensional)
does not strongly influence runtime.

2.4 Data

Simulated Data. To demonstrate and validate our method, we simu-
lated hierarchical datasets, i.e. we defined the hierarchical Gaussian mixture
model (HGMM). Similar to a Gaussian mixture model, a HGMM has multiple
classes from which units are drawn. But here, each unit defines a Gaussian dis-
tribution with a unit-specific mean and covariance matrix. In each class, the unit
means come from a class-specific Gaussian distribution, while the unit covariance
matrices come from a class-specific Wishart distribution.

Definition 2. Let N and W denote Gaussian and Wishart distributions respec-
tively. A hierarchical Gaussian mixture model is then defined by the number of
classes (K), the number of units per class (Ni for i = 1 . . . K), the number of
samples per unit (Mj for j = 1 . . .

∑K
i=1 Ni) and their feature dimensionality F ,

where

– each class i is characterized by a Gaussian distribution N (μi, Σi) with
μi ∈ R

F and Σi ∈ R
F×F and a Wishart distribution W(ni, Λi) with ni ≥ F

and Λi ∈ R
F×F ;

– each unit Xj belonging to a class i is characterized by a Gaussian distri-
bution N (νj , Γj). Unit means are samples from the class-specific Gaussian
νj ∼ N (μi, Σi) and unit covariance matrices are samples from the class-
specific Wishart distribution Γj ∼ W(ni, Λi);

– the samples Sk of each unit j are iid distributed as Sk ∼ N (νj , Γj).

A HGMM is specified by the set of class-specific parameters {μi, Σi, ni, Λi}.
For example, Fig. 4 shows a two-dimensional (F = 2) HGMM with K = 4
classes, N = 100 units in each class, and M = 15 samples in each unit. The
class-specific Gaussian distributions (dashed black lines) are far away from each
other because their means μi are chosen to be sufficiently different. The Within-
class similarity of the unit means can be adjusted by Σi (defining the shape of
the dashed contours). Each class has its own Wishart scale matrix Λi; in this
example, the peculiar Wishart scale of the green class makes green units easily
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Fig. 4. Hierarchical Gaussian mixture model (HGMM). This two-dimensional example
dataset has K = 4 classes with N = 100 units each. The gray points show the samples
from all units (M = 15 samples per unit). Note that some of the units in the red and
green classes have similar means, but their covariances are very different. (Color figure
online)

distinguishable from the red units even when their means come close to the red
class. Note, that the unit covariance matrices Γj in any given class are not all
the same. Their sampling process (from a Wishart distribution) is equivalent to
drawing ni samples from a zero-centered Gaussian distribution with the Wishart
scale as covariance matrix and estimating the sample covariance matrix. The
larger the ni, the closer all Γj are to the respective Λi. We used ni = 4 in Fig. 4.

German Election Data. The German parliamentary election was held in
September 2017 with six major parties making it to the parliament. Germany is
divided into 299 voting districts (Wahlkreise). In each voting district, multiple
polling stations (Wahlbezirke) are set up. In our analysis we consider each voting
district to be a unit with its polling stations being its samples.

The election data were directly downloaded from the Bundeswahlleiter web-
site (https://tinyurl.com/mpevp355). We removed results of all minor parties
and normalized each polling station so that the percentages of the six major
parties — CDU (including the Bavarian-only CSU), SPD, AfD, FDP, Grüne
and Linke — sum to 1 (the feature dimension of each sample is therefore six).
Voting by mail was counted in separate mail-only polling stations of the respec-
tive voting district.

For this dataset, we a priori defined four classes: Cities (all voting districts
with population density of at least 1000 people per square kilometer; pop-
ulation densities (https://tinyurl.com/3262nf8b) also obtained from the Bun-
deswahlleiter website), Southern Germany (all districts in Bavaria and Baden-
Würtemberg, excluding previously defined cities), Eastern Germany (former
DDR, excluding cities) and Western Germany (the rest).

https://tinyurl.com/mpevp355
https://tinyurl.com/3262nf8b


112 F. Bachmann et al.

Fig. 5. Wasserstein t-SNE. (A) This two-dimensional (F = 2) HGMM was generated
using K = 4 classes with N = 100 units each (M = 30 samples per unit). Two pairs
of classes have the same distribution of unit means, while two other pairs of classes
have the same distribution of unit covariance matrices. (B) The mean-based embedding
(λ = 0) is not able to separate some of the classes. (C) The Wasserstein embedding
(λ = 0.5) separates all four classes. (D) The covariance-based embedding (λ = 1) is
not able to separate some of the classes. (E) The performance at different values of λ
was assessed using the kNN accuracy (k = 5) in the 2D embedding and the adjusted
Rand index (ARI) obtained from Leiden clustering of the original distance matrix (kNN
graph with k = 5, resolution parameter γ = 0.08).

3 Results

3.1 Wasserstein t-SNE on Simulated Data

To perform Wasserstein t-SNE, we first compute the pairwise distance matrix
between units in a dataset where each unit is considered to be a probability
distribution over its samples. We then embed these units in 2D using the t-SNE
algorithm.

Figure 5A shows a two-dimensional (F = 2) toy dataset that consists of
K = 4 classes, with N = 100 units per class, and M = 30 samples per unit. The
red and green classes have the same distribution of unit means; the same is true
for the blue and the orange classes. Likewise, the red and orange classes have
the same distribution of unit covariances; the same is true for the blue and the
green classes. For a more detailed description see Sect. 2.4.

Depending on the value of λ in (�), the resulting t-SNE embeddings show dif-
ferent structure. The mean-based embedding (λ = 0) only separates the dataset
into two clusters (Fig. 5B). Since it only takes the means into account, the orange
class cannot be separated from the blue one, and the red class cannot be sep-
arated from the green one. Similarly, the covariance-based embedding (λ = 1)
only finds two clusters as well, mixing up blue with green and orange with red
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Fig. 6. Example voting districts in the 2017 German parliamentary election. Four vot-
ing districts (units) are shown together with their respective polling stations (samples).
(A) Mittelems, which is located in the rural western Germany, exhibits positive corre-
lation between the votes for AfD and for Linke, whereas Mittelsachsen in eastern Ger-
many shows negative correlation. (B) The politically diverse district of Berlin-Neukölln
has bimodal structure in the within-unit distribution of AfD and Linke votes, whereas
Hamburg-Mitte does not show such bimodality.

(Fig. 5D). In contrast, the Wasserstein embedding (λ = 0.5) successfully sepa-
rates all four classes from each other (Fig. 5C).

To measure the performance of the different λ values, we used two different
metrics. One metric is the k-nearest-neighbor (kNN) classification accuracy that
measures the probability that a unit is labeled correctly by the majority vote of
its k = 5 nearest neighbors in the embedding (we used the sklearn implementa-
tion [5]). The second metric is the adjusted Rand index (ARI) [18] that evaluates
the agreement between the ground truth classes and the results of unsupervised
clustering. We used the Leiden clustering algorithm [19], applied to the Wasser-
stein distance matrix (here and below we used the leidenalg implementation [19]
with resolution parameter γ = 0.08 on the kNN graph built with k = 5). Note
that unlike the kNN accuracy, the ARI metric is independent of t-SNE.

Both metrics, kNN accuracy and ARI, peaked at λ ∈ [0.7, 0.8] and showed
markedly worse performance at both λ = 0 and λ = 1. Moreover, while the kNN
accuracy was close to the peak at already λ = 0.5, the ARI achieved higher
values only for λ > 0.7. The result indicates that putting more emphasis on the
covariance structure helps the algorithm to cluster the data correctly. This shows
the power of our generalized Wasserstein distance for Gaussian distributions, as
in this case it outperforms the exact Wasserstein distance (corresponding to
λ = 0.5).

3.2 German Parliamentary Election 2017

Gaussian Wasserstein t-SNE. The dataset of the 2017 German parliamen-
tary election dataset contains 299 voting districts (units), each having about
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Fig. 7. Wasserstein t-SNE of the 2017 German parliamentary election. For clustering,
we used the Leiden algorithm (on the original distance matrix) with k = 5 kNN graph
and resolution parameter γ = 0.08. Colors correspond to the Leiden clusters; marker
shape corresponds to the a priori classes. (A) The mean-based embedding with λ = 0
shows three clusters. (B) The Wasserstein embedding with λ = 0.75 shows four clusters.
(C) The covariance-based embedding with λ = 1 shows three clusters.

150–850 polling stations (samples). The samples are represented as a points in
six-dimensional space (corresponding to six political parties), as described in
Sect. 2.4. For most units, the data could be reasonably well described by a mul-
tivariate Gaussian distribution (Fig. 6). For example, the Gaussian Wasserstein
distance and the exact Wasserstein distance between Mittelsachsen and Mit-
telems districts, both equaled 0.290 (Fig. 6A). For some districts the approxima-
tion was less good: e.g. between Berlin-Neukölln and Hamburg-Mitte (Fig. 6B),
the Gaussian Wasserstein distance was 0.071 while the exact Wasserstein dis-
tance was 0.089. This can be explained by the polarization of Berlin-Neukölln,
which had a bimodal structure that could not be captured by a multivariate nor-
mal distribution. However, we found that most districts were well approximated
by a Gaussian.

We computed the pairwise Wasserstein distances between all pairs of units
for different values of λ, and embedded the resulting distance matrices with the
t-SNE algorithm (Fig. 7). In parallel, we clustered each distance matrix by the
Leiden algorithm (with resolution parameter γ = 0.08 and kNN graph with
k = 5) and used the cluster assignments to color the t-SNE embeddings. The
Wasserstein embedding with λ = 0.75 (Fig. 7B) outperformed the mean-based
(λ = 0 and the covariance-based (λ = 1) embeddings, and achieved a kNN accu-
racy of 0.90 and an ARI of 0.70. While the difference in the kNN accuracy was
not very different for other values of λ (0.90 for the mean-based and 0.82 for the
covariance-based embeddings), the difference in the ARI was very pronounced
(0.55 for the mean-based and 0.37 for the covariance-based embeddings).

The ARI is sensitive to the number of clusters, which is not pre-specified in
the Leiden algorithm. While it automatically found three clusters with λ = 0
(Fig. 7A) and λ = 1 (Fig. 7C), it found four clusters with λ = 0.75, and these
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Fig. 8. Variants of the covariance-based (λ = 1) embedding. (A) The full covariance
matrices were used to compute the pairwise distance matrix. The same embedding as
in Fig. 7C. (B) Only the diagonal entries of the covariance matrices were used, i.e. the
marginal variances. (C) Each covariance matrix was normalized to become a correlation
matrix.

clusters corresponded well to the four classes (Cities, Western Germany, East-
ern Germany, Southern Germany) that we defined a priori. In contrast, the
mean-based distance matrix merged Western Germany with the Cities, and the
covariance-based embedding merged Western Germany with Southern Germany.
This decreased the ARI for these embeddings, which is also visible in Fig. 10C.
While the exact ARI values depend on the choice of k and γ parameters, our
results show that the Wasserstein distances with 0 < λ < 1 can be an improve-
ment compared to ignoring either the information about the means or about the
covariance structure.

Covariance and Correlation Structure. The covariance-based embedding
clearly showed three clusters (Fig. 7C), even though the means were completely
ignored in this analysis. Where did this structure emerge from? Covariance
is influenced by correlation and by marginal variances. To disentangle these
two aspects of the data, we constructed a covariance-based embedding after
zeroing out all off-diagonal values of all covariance matrices before computing
the pairwise distance matrix (Fig. 8B). We also constructed a covariance-based
embedding after normalizing all covariance matrices to be correlation matrices
(Fig. 8C). Both embeddings were similar to the original covariance-based embed-
ding (Fig. 8A), suggesting that there was meaningful information in marginal
variances as well as in pairwise correlations.

Figure 8C demonstrates that class information was present in the within-unit
correlations, and indeed we saw earlier that parties’ results can correlate differ-
ently in different voting districts (Fig. 6). To visualize this effect, we overlayed
pairwise correlation coefficients on the Gaussian Wasserstein embedding with
λ = 0.75 (Fig. 9A). For several pairs of parties, correlation strongly depended
on the class, e.g. AfD and SPD were positively correlated in the Cities, but
negatively correlated in Eastern Germany. This indicates that people who vote
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Fig. 9. Pairwise correlations between parties. Colors represent the Pearson correlation
coefficient of the respective parties in each voting district, from blue (−1) to red (1).
We chose five (out of 15) pairs of parties showing the most interesting patterns. (A)
Party correlations overlayed over the Gaussian Wasserstein embedding with λ = 0.75
(as in Fig. 7B). (B) Party correlations overlayed over the geographical map of Germany.
(Color figure online)

SPD in the cities tend to live in the same neighborhoods (i.e. same polling sta-
tions within a given district) as people who vote AfD, whereas in the rural east
they tend to live in different neighborhoods. This suggests that these parties
are perceived differently in different parts of the country, opposing each other in
some of the regions but sharing sympathizers in others. Previous research has
shown that many voters switched from SPD to AfD in the 2017 election [6]. Our
analysis indicates that this effect may have happened mostly in the east.

Exact Wasserstein Embedding. To verify that the Gaussian approximation
used above did not strongly distort the embedding, we also did an embedding
based on the exact Wasserstein distance. As explained in Sect. 2.3, we calculated
the exact Wasserstein distances using linear programming. While this approach is
more faithful to the data, it requires much longer computation time; calculating
all 299 · 298/2 = 44, 551 pairwise exact Wasserstein distances between units
took 43 h on a machine with 8 CPU cores at 3.0 GHz. The resulting embedding
(Fig. 10A) was very similar to the Gaussian embedding with λ = 0.5 (Fig. 10B).

The Gaussian approximation has one important benefit beyond the faster
runtime: namely, it allows to adjust the λ parameter. As a function of λ, the
kNN accuracy was nearly flat (Fig. 10C) but the ARI of the Leiden clustering
peaked for λ > 0.6, corresponding to the regime where the Leiden algorithm
identifies four clusters in the data instead of three. At the same time, the per-
formance of the exact Wasserstein embedding is similar to λ = 0.5 and hence
is worse (Fig. 10C, black dashed lines). This shows that, compared to the exact
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Fig. 10. Comparison of the Wasserstein t-SNE embeddings based on the Gaussian
approximation and based on the exact Wasserstein distances. (A) The exact Wasser-
stein t-SNE embedding separates the classes. (B) The Gaussian Wasserstein embedding
with λ = 0.5 shows similar structure. (C) The kNN classification accuracy (k = 5)
and the ARI based on the Leiden clustering (k = 5 kNN graph, resolution parameter
γ = 0.08) are shown for different values of λ. The black dashed lines show the kNN
accuracy and the ARI of the exact Wasserstein embedding. (Color figure online)

Wasserstein distances, the Gaussian approximation with the flexible λ parameter
can improve not only the runtime but also the final embedding.

4 Discussion

In this work we introduced Wasserstein t-SNE as a method to visualize hier-
archical datasets. The main idea is to compute the pairwise distance matrix
between the units of interest, using the Wasserstein metric to compare the dis-
tribution of their samples; then we use t-SNE to make a 2D embedding of the
resulting distance matrix (Fig. 1). Using a simulated and a real-life dataset, we
showed that our approach can outperform standard t-SNE based on unit aver-
ages (Figs. 5, 7).

There are two different ways to use Wasserstein t-SNE. One way is to approx-
imate each unit by a multivariate Gaussian distribution which is fast but not
scalable to high feature dimensionality. The second way is to compute the exact
Wasserstein distances which is more accurate but substantially slower if there
are many samples. Both ways require to compute and store the pairwise dis-
tance matrix which gets unfeasible for very large datasets. A benefit of using the
Gaussian approximation is that it allows to put emphasis on either the means or
the covariances of the units by adjusting the λ parameter in the distance defini-
tion (�). We suggested this definition as a novel generalization of the closed-form
solution for the 2-Wasserstein distance between Gaussian distributions. To com-
pute the exact Wasserstein distances, we solve a linear program for each distance
calculation. We developed an approach that scales with the number of samples
and allows to compute Wasserstein distances between samples from continuous
distributions. Using this approach, it took us ∼0.1 s to compute the Wasserstein
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distance between two Gaussian samples of size n = 100 on a standard desktop
computer, and ∼100 s for n = 1000 (Fig. 3). The feature dimensionality of the
Gaussians does not play a role here.

Electoral data provide ample opportunities for statistical analysis, such as
e.g. statistical fraud detection [12,13]. Here we used the publicly available data
from the 2017 German parliamentary election to demonstrate that Wasserstein
t-SNE can be useful for analysis of real-life datasets. Our method produced a
2D visualization (‘map’) of the 299 German voting districts (Fig. 7B). This visu-
alization exhibited four clusters, that were in good agreement with the known
sociopolitical division of Germany that we defined a priori. Moreover, the cor-
relation coefficient between political parties varied smoothly over the embed-
ding (Fig. 9), and in some cases even changed the sign. This showed that the
information about within-unit distributions can be valuable to provide concise
visualizations of political landscape in an unsupervised way.

We are not aware of other methods specifically designed to visualize hierar-
chical data. The naive approach is to collapse units to their means. However,
we showed that this can be suboptimal whenever there is meaningful informa-
tion in the unit covariances (e.g. Fig. 7). An alternative is to append some of the
covariance-based features to the unit means. This approach was, e.g., used in the
Wisconsin Breast Cancer dataset [21] (popularized by its role as a UCI bench-
mark) where samples are cells and units are the respective patients. Here the
variance of each feature (such as cell radius or cell smoothness) was appended
to the dataset as an additional separate feature. While this allows to use some
of the covariance information, it removes all information about feature correla-
tion. Finally, it is possible to base all the analysis on the sample level, instead of
the unit level. Such a ‘sample-based’ t-SNE embedding would show many more
points than a ‘unit-based’ t-SNE embedding. However, for datasets like the one
shown in Fig. 5 this would not result in a useful visualization, as it would yield
only two clusters and not four (as there are two pairs of classes with strongly
overlapping distribution of samples within the units).

In summary, we believe that Wasserstein t-SNE is a promising method to
visualize hierarchical datasets. Our results on synthetic data and on the 2017
German election data demonstrate that Wasserstein t-SNE can outperform stan-
dard alternatives and uncover meaningful structure in the data. We hope that
our method can be useful in various domains. For example, social science often
deals with hierarchical datasets, such as the European Values Study [3] where
geographical regions can be seen as units while individual participants of the
survey can be seen as samples. We believe that Wasserstein t-SNE can also be
useful beyond the social and political science, e.g. for biomedical data.
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