Skip to main content

Physiological and Metabolic Functions of the Intestinal Epithelium: From the Small to the Large Intestine

  • Chapter
  • First Online:
Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health
  • 257 Accesses

Abstract

The intestinal epithelium in both the small and the large intestine represents a selective barrier between the luminal fluid and the bloodstream. This structure is rapidly renewed from the division of stem cells in crypts followed by their migration and differentiation in specialized cells with specific functions including absorption of alimentary compounds, secretion of mucus and hormones, and immune homeostasis in a context of microbial loads. Fully mature epithelial cells are finally exfoliated in the luminal fluid allowing the maintenance of the epithelial structure. Absorptive intestinal epithelial cells are characterized by an intense energy metabolism that allows macromolecule synthesis and movement of nutrients in the small intestine, and water and electrolyte absorption in the large intestine. These cells which are polarized can receive their fuels from the luminal content and from the bloodstream. In the case of the large intestine, the colonocytes can absorb large amounts of numerous metabolites produced by the intestinal microbiota and metabolize a part of them during their transfer from the luminal fluid to the bloodstream. Metabolism in enterocytes of the small intestine and in the colonocytes is important not only for energy production but also for intracellular signaling and inter-organ relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Learhy F, Samman S. Vitamin B12 in health and disease. Nutrients. 2010;2(3):299–316.

    Article  Google Scholar 

  2. Schuchardt JP, Hahn A. Intestinal absorption and factors influencing bioavailability of magnesium. An update. Curr Nutr Food Sci. 2017;13(4):260–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal absorption of bile acids in health and disease. Compr Physiol. 2019;10(1):21–56.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Debongnie JC, Phillips SF. Capacity of the human colon to absorb fluid. Gastroenterology. 1978;74(4):698–703.

    Article  CAS  PubMed  Google Scholar 

  5. Hermansen K. Effects of cholecystokinin (CCK)-4, nonsulfated CCK-8, and sulfated CCK-8 on pancreatic somatostatin, insulin, and glucagon secretion in the dog: studies in vitro. Endocrinology. 1984;114(5):1770–5.

    Article  CAS  PubMed  Google Scholar 

  6. Liddle RA, Morita ET, Conrad CK, Williams JA. Regulation of gastric emptying in humans by cholecystokinin. J Clin Invest. 1986;77(3):992–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lo CC, Davidson WS, Hibbard SK, Georgievsky M, Lee A, Tso P, Woods SC. Intraperitoneal CCK and fourth-intraventricular Apo AIV require both peripheral and NTS CCK 1R to reduce food intake in male rats. Endocrinology. 2014;155(5):1700–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meyer BM, Werth BA, Beglinger C, Hildebrand P, Jansen JB, Zach D, Rovati LC, Stalder GA. Role of cholecystokinin in regulation of gastrointestinal motor functions. Lancet. 1989;2(8653):12–5.

    Article  CAS  PubMed  Google Scholar 

  9. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75–84.

    Article  CAS  PubMed  Google Scholar 

  10. Beaumont M, Blachier F. Amino acids in intestinal physiology and health. Adv Exp Med Biol. 2020;1265:1–20.

    Article  CAS  PubMed  Google Scholar 

  11. Wang G, Huang S, Wang Y, Cai S, Yu H, Liu H, Zeng X, Zhang G, Qiao S. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci. 2019;76(20):3917–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation. 2016;92(3):116–31.

    Article  CAS  PubMed  Google Scholar 

  13. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    Article  PubMed  Google Scholar 

  14. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil. 2012;24(6):503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol. 2011;73:283–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blander JM. On cell death in the intestinal epithelium and its impact on gut homeostasis. Curr Opin Gastroenterol. 2018;34(6):413–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Santos AJM, Lo YH, Mah AT, Kuo CJ. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol. 2018;28(12):1062–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22(1):39–53.

    Article  CAS  PubMed  Google Scholar 

  19. Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17(10):584–93.

    Article  CAS  PubMed  Google Scholar 

  20. Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos. 2014;42(12):2016–22.

    Article  PubMed  Google Scholar 

  21. Potten CS. Epithelial cell growth and differentiation. II. Intestinal apoptosis. Am J Physiol. 1997;273:G253–7.

    CAS  PubMed  Google Scholar 

  22. Gehart H, Clevers H. Tales from the crypt: new insights into stem cells. Nat Rev Gastroenterol Hepatol. 2019;16(1):19–34.

    Article  PubMed  Google Scholar 

  23. Hageman JH, Heinz MC, Kretzschmar K, van der Vaert J, Clevers H, Snippert HJG. Intestinal regeneration: regulation by the microenvironment. Dev Cell. 2020;54(4):435–46.

    Article  CAS  PubMed  Google Scholar 

  24. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15(1):19–33.

    Article  CAS  PubMed  Google Scholar 

  25. Dauça M, Bouziges F, Colin S, Kedinger M, Keller MK, Schilt J, Simon-Assmann P, Haffen K. Development of the vertebrate small intestine and mechanisms of cell differentiation. Int J Dev Biol. 1990;34(1):205–18.

    PubMed  Google Scholar 

  26. Bröer S. Amino acid transport across mammalian intestinal and renal epithelium. Physiol Rev. 2008;88(1):249–86.

    Article  PubMed  Google Scholar 

  27. Chen C, Yin Y, Tu Q, Yang H. Glucose and amino acid in enterocyte: absorption, metabolism and maturation. Front Biosci (Landmark Ed). 2008;23(9):1721–39.

    Google Scholar 

  28. Nishiyama K, Sugiyama M, Mukai T. Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms. 2016;4(3):34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wasielewski H, Alcock J, Aktipis A. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Ann N Y Acad Sci. 2016;1372(1):20–8.

    Article  PubMed  Google Scholar 

  30. McNurlan MA, Garlick PJ. Contribution of rat liver and gastrointestinal tract to whole-body protein synthesis in the rat. Biochem J. 1980;186(1):381–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Preedy VR, Peters T. Protein metabolism in the small intestine of the ethanol-fed rat. Cell Biochem Funct. 1989;7(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  32. Nakshabendi IM, Obeidat W, Russell RI, Downie S, Smith K, Rennie MJ. Gut mucosal protein synthesis measured using intravenous and intragastric delivery of stable tracer amino acids. Am J Phys. 1995;269:E996–9.

    CAS  Google Scholar 

  33. Pontes MH, Sevostyanova A, Groisman EA. When too much ATP is bad for protein synthesis. J Mol Biol. 2015;427(16):2586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blachier F, Boutry C, Bos C, Tomé D. Metabolism and functions of L-glutamate in the epithelium of the small and large intestines. Am J Clin Nutr. 2009;90(3):814S–21S.

    Article  CAS  PubMed  Google Scholar 

  35. Duée PH, Darcy-Vrillon B, Blachier F, Morel MT. Fuel selection in intestinal cells. Proc Nutr Soc. 1995;54(1):83–94.

    Article  PubMed  Google Scholar 

  36. Vaugelade P, Posho L, Darcy-Vrillon B, Bernard F, Morel MT, Duée PH. Intestinal oxygen uptake and glucose metabolism during nutrient absorption in the pig. Proc Soc Exp Biol Med. 1994;207(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  37. Yen JT, Nienaber JA, Hill DA, Pond WG. Oxygen consumption by portal vein-drained organs and by whole animal in conscious growing swine. Proc Soc Exp Biol Med. 1989;190(4):393–8.

    Article  CAS  PubMed  Google Scholar 

  38. Fouillet H, Mariotti F, Gaudichon C, Bos C, Tomé D. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2002;132(1):125–33.

    Article  CAS  PubMed  Google Scholar 

  39. Hoskins LC, Boulding ET. Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest. 1981;67(1):163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Layer P, Gröger G. Fate of pancreatic enzymes in the human intestinal lumen in health and pancreatic insufficiency. Digestion. 1993;54:10–4.

    Article  CAS  PubMed  Google Scholar 

  41. Windmueller HG, Spaeth AE. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys. 1975;171(2):662–72.

    Article  CAS  PubMed  Google Scholar 

  42. Kenny AJ, Maroux S. Topology of microvillar membrane hydrolazes of kidney and intestine. Physiol Rev. 1982;62(1):91–128.

    Article  CAS  PubMed  Google Scholar 

  43. Darcy-Vrillon B, Posho L, Morel MT, Bernard F, Blachier F, Meslin JC, Duée PH. Glucose, galactose, and glutamine metabolism in pig isolated enterocytes during development. Pediatr Res. 1994;36(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  44. Windmueller HG, Spaeth AE. Metabolism of aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys. 1976;175(2):670–6.

    Article  CAS  PubMed  Google Scholar 

  45. Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, Kempski O, Stehle P, Steinhart H, Walker R. Consensus meeting: monosodium glutamate. An update. Eur J Clin Nutr. 2007;61(3):304–13.

    Article  CAS  PubMed  Google Scholar 

  46. Reeds PJ, Burrin DG, Jahoor F, Wykes L, Henry J, Frazer EM. Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am J Phys. 1996;270:E413–8.

    CAS  Google Scholar 

  47. Reeds PJ, Burrin DG. Glutamine and the bowel. J Nutr. 2001;131:2505S–8S.

    Article  CAS  PubMed  Google Scholar 

  48. Madej M, Lundh T, Lindberg JE. Activity of enzymes involved in energy production in the small intestine during suckling-weaning transition of pigs. Biol Neonates. 2002;82(1):53–60.

    Article  CAS  Google Scholar 

  49. Cynober LA. Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002;18(9):761–6.

    Article  CAS  PubMed  Google Scholar 

  50. Häussinger D. Liver glutamine metabolism. J Parenter Enteral Nutr. 1990;14:56S–62S.

    Article  Google Scholar 

  51. Wu GY, Thompson JR, Baracos VE. Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J. 1991;274:769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cherbuy C, Guesnet P, Morel MT, Kohl C, Thomas M, Duée PH, Prip-Buus C. Oleate metabolism in pig enterocytes is characterized by an increased oxidation rate in the presence of a high esterification rate within two days after birth. J Nutr. 2012;142(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  53. Newsholme EA, Carrié AL. Quantitative aspects of glucose and glutamine metabolism by intestinal cells. Gut. 1994;35:S13–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Blachier F, M’Rabet-Touil H, Darcy-Vrillon B, Posho L, Duée PH. Stimulation by D-glucose of the direct conversion of arginine to citrulline in enterocytes isolated from pig jejunum. Biochem Biophys Res Commun. 1991;177(3):1171–7.

    Article  CAS  PubMed  Google Scholar 

  55. Palaniappan B, Arthur S, Sundaram VL, Butts M, Sundaram S, Mani K, Singh S, Nepal N, Sundaram U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension. FASEB J. 2019;33(8):9323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M’Rabet-Touil H, Blachier F, Morel MT, Darcy-Vrillon B, Duée PH. Characterization and ontogenesis of nitric oxide synthase activity in pig enterocytes. FEBS Lett. 1993;331(3):243–7.

    Article  PubMed  Google Scholar 

  57. MacKendrick W, Caplan M, Hsueh W. Endogenous nitric oxide protects against platelet-activating factor-induced bowel injury in the rat. Pediatr Res. 1993;34(2):222–8.

    Article  CAS  PubMed  Google Scholar 

  58. Miller MJ, Zhang XJ, Sadowska-Krowicka H, Chotinaruemol S, McIntyre JA, Clark JA, Bustamante SA. Nitric oxide release in response to gut injury. Scand J Gastroenterol. 1993;28(2):149–54.

    Article  CAS  PubMed  Google Scholar 

  59. Stark ME, Szurszewski JH. Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology. 1992;103(6):1928–49.

    Article  CAS  PubMed  Google Scholar 

  60. Calignano A, Whittle BJ, Di Rosa M, Moncada S. Involvement of endogenous nitric oxide in the regulation of rat intestinal motility in vivo. Eur J Pharmacol. 1992;229(2–3):273–6.

    Article  CAS  PubMed  Google Scholar 

  61. Kubes P. Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Phys. 1992;262:G1138–42.

    CAS  Google Scholar 

  62. Kubes P. Ischemia-reperfusion in feline small intestine: a role for nitric oxide. Am J Phys. 1993;264:G143–9.

    CAS  Google Scholar 

  63. Coloso RM, Stipanuk MH. Metabolism of cyst(e)ine in rat enterocytes. J Nutr. 1989;119(12):1914–24.

    Article  CAS  PubMed  Google Scholar 

  64. Shoveller AK, Stoll B, O’Ball R, Burrin DG. Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr. 2005;135(7):1609–12.

    Article  CAS  PubMed  Google Scholar 

  65. Chakravarthi S, Jessop CE, Bulleid NJ. The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep. 2006;7(3):271–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kemp M, Go YM, Jones DP. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox system biology. Free Radic Biol Med. 2008;44(6):921–37.

    Article  CAS  PubMed  Google Scholar 

  67. Martensson J, Jain A, Meister A. Glutathione is required for intestinal function. Proc Natl Acad Sci U S A. 1990;87(5):1715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uchiyama C, Mori M, Tatibana M. Subcellular localization and properties of N-acetylglutamate synthase in rat small intestinal mucosa. J Biochem. 1981;89(6):1777–86.

    Article  CAS  PubMed  Google Scholar 

  69. Blachier F, M’Rabet-Touil H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem. 1993;216(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  70. Guihot G, Blachier F, Colomb V, Morel MT, Raynal P, Corriol P, Ricour P, Duée PH. Effect of an elemental vs complex diet on citrulline production from L-arginine in rat isolated enterocytes. J Parenter Enter Nutr. 1997;21(6):316–23.

    Article  CAS  Google Scholar 

  71. Cynober L. Can arginine and ornithine support gut functions? Gut. 1994;35:S42–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME. Renal arginine synthesis: studies in vitro and in vivo. Am J Phys. 1990;259:E437–42.

    CAS  Google Scholar 

  73. Marini JC, Agarwal U, Robinson JL, Yuan Y, Didelija IC, Stoll B, Burrin DG. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig. Am J Phys. 2017;313(2):E233–42.

    Google Scholar 

  74. van de Poll MC, Siroen MP, van Leeuwen PA, Soeters PB, Melis GC, Boelens PG, Deutz NE, Dejong CH. Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr. 2007;85(1):167–72.

    Article  PubMed  Google Scholar 

  75. Blachier F, Darcy-Vrillon B, Sener A, Duée PH, Malaisse WJ. Arginine metabolism in rat enterocytes. Biochim Biophys Acta. 1991;1092(3):304–10.

    Article  CAS  PubMed  Google Scholar 

  76. Wu G. Urea synthesis in enterocytes of developing pigs. Biochem J. 1995;312:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lund P, Wiggins D. The ornithine requirement of urea synthesis. Formation of ornithine from glutamine in hepatocytes. Biochem J. 1986;329:773–6.

    Article  Google Scholar 

  78. O’Sullivan D, Brosnan JT, Brosnan ME. Catabolism of arginine and ornithine in the perfused rat liver. Am J Phys. 2000;278(3):E516–21.

    Google Scholar 

  79. Sepehrinezhad A, Zarifkar A, Namvar G, Shahbazi A, Williams R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab Brain Dis. 2020;35(4):559–78.

    Article  CAS  PubMed  Google Scholar 

  80. Johansson ME, Thomsson KA, Hansson GC. Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. J Proteome Res. 2009;8(7):3549–57.

    Article  CAS  PubMed  Google Scholar 

  81. Rodriguez-Pineiro AM, Bergström JH, Ermund A, Gustafsson JK, Schütte A, Johansson ME, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. Am J Phys. 2013;305(5):G348–56.

    CAS  Google Scholar 

  82. König J, Wells J, Cani PD, Garicia-Rodenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10):e196.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141–53.

    Article  CAS  PubMed  Google Scholar 

  84. Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, van der Post S, Svensson F, Rodriguez-Pineiro AM, Nyström EEL, Wising C, Johansson MEV, Hansson GC. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev. 2014;260(1):8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483(7389):345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Johansson MEV, Holmen-Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A. 2011;108:4659–65.

    Article  CAS  PubMed  Google Scholar 

  87. Kim HS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients. 2011;3(5):613–36.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fogg FJ, Hutton DA, Kumel K, Pearson JP, Harding SE, Allen A. Characterization of pig colonic mucins. Biochem J. 1996;316:937–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schaart MW, Schierbeek H, van der Schoor SR, Stoll B, Burrin DG, Reeds PJ, van Goudoever JB. Threonine utilization is high in the intestine of piglets. J Nutr. 2005;135(4):765–70.

    Article  CAS  PubMed  Google Scholar 

  91. Hamard A, Mazurais D, Boudry G, Le Huërou-Luron I, Sève B, Le Floc’h N. A moderate threonine deficiency affects gene expression profile, paracellular permeability and glucose absorption capacity in the ileum of piglets. J Nutr Biochem. 2010;21(10):914–21.

    Article  CAS  PubMed  Google Scholar 

  92. Janssen S, Depoortere I. Nutrient sensing in the gut: new roads to therapeutics? Nutrients. 2013;24(2):92–100.

    CAS  Google Scholar 

  93. Gribble FM, Reimann F. Enteroendocrine cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277–99.

    Article  CAS  PubMed  Google Scholar 

  94. Latorre R, Sternini C, De Giorgio R, Meerveld G-V. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28(5):620–30.

    Article  CAS  PubMed  Google Scholar 

  95. Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol. 2019;15(4):226–37.

    Article  CAS  PubMed  Google Scholar 

  96. Billing LJ, Larraufie P, Lewis J, Leiter A, Li J, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice. Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol Metab. 2019;29:158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10(12):729–40.

    Article  CAS  PubMed  Google Scholar 

  98. Martin AM, Sun EW, Keating DJ. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J Endocrinol. 2019;244(1):R1–R15.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bevins CL, Salzmann NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol. 2011;9(5):356–68.

    Article  CAS  PubMed  Google Scholar 

  100. Mei X, Gu M, Li M. Plasticity of Paneth cells and their ability to regulate intestinal stem cells. Stem Cell Res Ther. 2020;11(1):349.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Schneider C, O’Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol. 2019;19(9):584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kobayashi N, Takahashi D, Takano S, Kimura S, Hase K. The roles of Peyer’s patches and microfold cells in the gut immune system: relevance to autoimmune diseases. Front Immunol. 2019;10:2345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mabott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77.

    Article  Google Scholar 

  104. Rao MC. Physiology of electrolyte transport in the gut: implications for disease. Compr Physiol. 2019;9(3):947–1023.

    Article  PubMed  Google Scholar 

  105. Phillips SF. Functions of the large bowel: an overview. Scand J Gastroenterol. 1984;93:1–12.

    CAS  Google Scholar 

  106. Turnamian SG, Binder HJ. Electrolyte transport in distal colon of sodium-depleted rats: effect of sodium repletion. Am J Phys. 1988;255(3):G329–38.

    CAS  Google Scholar 

  107. van der Wielen N, Moughan PJ, Mensink M. Amino acid absorption in the large intestine of human and porcine models. J Nutr. 2017;147(8):1493–8.

    Article  PubMed  Google Scholar 

  108. Cherbuy C, Darcy-Vrillon B, Morel MT, Pégorier JP, Duée PH. Effect of germfree state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose and glutamine. Gastroenterology. 1995;109(6):1890–9.

    Article  CAS  PubMed  Google Scholar 

  109. Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362(6148):eaat9076.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nagy E, Boyanova L, Justesen US, ESCMID Study Group of Anaerobic Infections. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin Microbiol Infect. 2018;24(11):1139–48.

    Article  CAS  PubMed  Google Scholar 

  111. Butler RN, Arora KK, Collins JG, Flanigan I, Lawson MJ, Roberts-Thomson IC, Williams JF. Pentose phosphate pathway in rat colonic epithelium. Biochem Int. 1990;22(2):249–60.

    CAS  PubMed  Google Scholar 

  112. Batist G, Mekhail-Ishak K, Hudson N, DeMuys JM. Interindividual variation in phase II detoxification enzymes in normal human colon mucosa. Biochem Pharmacol. 1988;37(21):4242–3.

    Article  Google Scholar 

  113. Blachier F, Davila AM, Benamouzig R, Tome D. Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci. 2011;16(4):1331–43.

    Article  CAS  Google Scholar 

  114. Rolfe VE, Milla PJ. Nitric oxide stimulates cyclic guanosine monophosphate production and electrogenic secretion in Caco-2 colonocytes. Clin Sci (Lond). 1999;96(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  115. Roediger WE, Babidge W. Human colonocyte detoxification. Gut. 1997;41(6):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–43.

    Article  CAS  PubMed  Google Scholar 

  117. Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nadalian B, Yadegar A, Houri H, Olfatifar M, Shahrokh S, Aghdaei HA, Suzuki H, Zali MR. Prevalence of the pathobiont adherent-invasive Escherichia coli and inflammatory bowel disease: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2021;36(4):852–63.

    Article  PubMed  Google Scholar 

  119. Stevenson E, Minton NP, Kuehne SA. The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol. 2015;23(5):275–82.

    Article  CAS  PubMed  Google Scholar 

  120. Chen L, Wang J, Yi J, Liu Y, Yu Z, Chen S, Liu X. Increased mucin-degrading bacteria leads to thinner mucus layer and aggravates experimental colitis. J Gastroenterol Hepatol. 2021;36(10):2864–74.

    Article  CAS  PubMed  Google Scholar 

  121. Bergsrtom K, Shan X, Casero D, Batushanski A, Lagishetty V, Jacobs JP, Hoover C, Kondo Y, Shao B, Gao L, Zandberg W, Noyovitz B, McDaniel JM, Gibson DL, Pakpour S, Kazemian N, McGee S, Houchen SW, Rao CV, Griffin TM, Sonnenburg JL, McEver RP, Braun J, Xia L. Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota. Science. 2020;370(6515):467–72.

    Article  Google Scholar 

  122. Christansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenhilde MM, Holst JJ. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Phys. 2018;315(1):G53–65.

    Google Scholar 

  123. Lebrun LJ, Lenaerts K, Kiers D, Pais de Barros JP, Le Guern N, Plesnik J, Thomas C, Bourgeois T, Dejong CHC, Kox M, Hundscheid IHR, Khan NA, Mandard S, Deckert V, Pickkers P, Drucker DJ, Lagrost L, Grober J. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 2017;21(5):1160–8.

    Article  CAS  PubMed  Google Scholar 

  124. Lewis JE, Miedzybrodska EL, Foreman RE, Woodward ORM, Gay RG, Goldspink DA, Gribble FM, Reimann F. Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia. 2020;63(7):1396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Song Y, Koehler JA, Baggio LL, Powers AC, Sandoval DA, Drucker DJ. Gut-proglucagon-derived peptides are essential for releasing glucose homeostasis in mice. Cell Metab. 2019;30(5):976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arora T, Akrami R, Pais R, Bergqvist L, Johansson BR, Schwartz TW, Reimann F, Gribble FM, Bäcked F. Microbial regulation of the L-cell tanscriptome. Sci Rep. 2018;8(1):1207.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Larraufie P, Doré J, Lapaque N, Blottière HM. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways. Cell Microbiol. 2017;19(2)

    Google Scholar 

  128. Tolhurst G, Heffron H, Lam YS, Parker HE, Habid AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McKinley ET, Sui Y, Al-Kofahi Y, Millis BA, Tyska MT, Roland JT, Santamaria-Pang A, Ohland CL, Jobin C, Franklin JL, Lau KS, Gerdes MJ, Coffey RJ. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight. 2017;2(11):e93487.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gallo RL, Hopper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012;12(7):503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blachier, F. (2023). Physiological and Metabolic Functions of the Intestinal Epithelium: From the Small to the Large Intestine. In: Metabolism of Alimentary Compounds by the Intestinal Microbiota and Health. Springer, Cham. https://doi.org/10.1007/978-3-031-26322-4_1

Download citation

Publish with us

Policies and ethics