Skip to main content

Pathogenesis of Atherosclerosis: A Multifactorial Process

  • Chapter
  • First Online:
Ischemic Heart Disease

Abstract

Atherosclerosis is an inflammatory and immunologically driven response of the vessel wall to chronic, multifactorial, repetitive injury. Endothelial cell dysfunction leads to increased oxidative stress, production of inflammatory cytokines, expression of adhesion molecules, and accumulation of oxidized LDL. Atherosclerotic plaques form as a consequence of endothelial damage, proliferation of modified smooth muscle cells, influx of monocytes and T lymphocytes, unregulated uptake of LDL cholesterol, foam cell formation, and connective tissue deposition. Inflammation is also important in the erosion or rupture of vulnerable plaques leading to clinical complications of atherosclerosis, including CAD or IHD. CAD is a genetically complex disease in which multiple genes influence the progression of atherosclerosis in populations, although CAD can develop due to single-gene mutations in lipid metabolism in some individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(hs)-cTn:

High-sensitivity cardiac troponin

ACS:

Acute coronary syndromes

AMI:

Acute myocardial infarction

CAD:

Coronary artery disease

CHIP:

Clonal hematopoiesis of indeterminate potential

CHIP:

Clonal hematopoiesis of indeterminate potential

CMV:

Cytomegalovirus

CRP:

C-reactive protein

cTn:

Cardiac troponin

DAMP:

Danger-associated molecular patterns

EDRF:

Endothelium-derived relaxing factor

FH:

Familiar hypercholesterolemia

ICAM-1:

Intercellular adhesion molecule

IHD:

Ischemic heart disease

IL-18:

Interleukin-18

IL-1β:

Interleukin-1β

LD:

Linkage disequilibrium

LDL:

Low-density lipoprotein

MR:

Mendelian randomization

NF-κB:

Nuclear factor-kappa B

NO:

Nitric oxide

PAMP:

Pathogen-associated molecular patterns

PDGF:

Platelet-derived growth factor

PRP:

Pattern recognition receptors

TNF:

Tissue necrosis factor

UDMI:

Universal definition of myocardial infarction

VCAM-1:

Vascular cell adhesion molecule 1

VSMC:

Vascular smooth muscle cell

References

  1. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis Nat Rev Dis Primers. 2019 Aug 16;5(1):56. https://doi.org/10.1038/s41572-019-0106-z.

    Article  PubMed  Google Scholar 

  2. Buja LM. Innovators in atherosclerosis research: A historical review. Int J Cardiol. 2020 May;15(307):8–14. https://doi.org/10.1016/j.ijcard.2020.02.016.

    Article  Google Scholar 

  3. Buja LM, McAllister HA Jr. Atherosclerosis: pathological anatomy and pathogenesis. In: Willerson JT, Cohn JN, Wellens HJJ, Homes Jr DR, editors. Cardiovascular Medicine, third edition. London: Springer-Verlag; 2005. p. 1581–91.

    Google Scholar 

  4. Xu S, Bendeck M, Gotlieb AI. Vascular pathobiology: atherosclerosis and large vessel disease. In: Buja LM, Butany J, editors. Cardiovascular Pathology, 4th edition. Amsterdam: Elsevier/Academic Press, 2016, pp. 85–124. Cardiovascular Pathology, 5th edition. Amsterdam: Elsevier/Academic Press, 2022., In press.

    Google Scholar 

  5. Buja LM, McAllister HA Jr. Coronary artery disease: pathological anatomy and pathogenesis. In: Willerson JT, Cohn JN, Wellens HJJ, Homes Jr DR, editors. Cardiovascular Medicine. 3rd ed. London: Springer-Verlag; 2005. p. 593–610.

    Google Scholar 

  6. Buja LM. Coronary artery disease: pathological anatomy and pathogenesis. In: Willerson JT, Holmes Jr DR, editors. Coronary Artery Disease, Cardiovascular Medicine. London: Springer-Verlag; 2015. p. 1–20.

    Google Scholar 

  7. Fishbein GA, Fishbein MC, Wang JJ, Buja LM. Myocardial ischemia and its consequences. In: Buja LM, Butany J, editors. Cardiovascular Pathology, 4th edition. Amsterdam: Elsevier/Academic Press, 2016, pp. 239–270. Cardiovascular Pathology, 5th edition. Amsterdam: Elsevier/Academic Press, 2022., In press.

    Google Scholar 

  8. Buja LM, Vander Heide RS. Pathobiology of Ischemic Heart Disease: Past, Present and Future. Cardiovasc Pathol. 2016;May–Jun;25(3):214–20. https://doi.org/10.1016/j.carpath.2016.01.007.

    Article  Google Scholar 

  9. Buja LM, Ottaviani G, Mitchell RN. Pathobiology of cardiovascular diseases: an update. Cardiovasc Pathol. 2019;Sep–Oct;42:44–53. https://doi.org/10.1016/j.carpath.2019.06.002.

    Article  Google Scholar 

  10. Barquera S, Pedroza-Tobías A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, Moran AE. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res. 2015;Jul;46(5):328–38. https://doi.org/10.1016/j.arcmed.2015.06.006.

    Article  PubMed  Google Scholar 

  11. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016 Feb 19;118(4):535–46. https://doi.org/10.1161/CIRCRESAHA.115.307611.

    Article  CAS  PubMed  Google Scholar 

  12. Goldstein JL, Brown MS. Atherosclerosis: the low-density lipoprotein receptor hypothesis. Metabolism. 1977;26:1257–75. https://doi.org/10.1016/0026-0495(77)90119-6.

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009 Apr;29(4):431–8. https://doi.org/10.1161/ATVBAHA.108.179564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015 Mar 26;161(1):161–72. https://doi.org/10.1016/j.cell.2015.01.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Musunuru K, Kathiresan S. Surprises From Genetic Analyses of Lipid Risk Factors for Atherosclerosis. Circ Res. 2016 Feb 19;118(4):579–85. https://doi.org/10.1161/CIRCRESAHA.115.306398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016 Feb 19;118(4):547–63. https://doi.org/10.1161/CIRCRESAHA.115.306249.

    Article  CAS  PubMed  Google Scholar 

  17. Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med. 2016 Jul 1;8(7):688–701. https://doi.org/10.15252/emmm.201506174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;Jun;18(6):331–44. https://doi.org/10.1038/nrg.2016.160.

    Article  CAS  PubMed  Google Scholar 

  19. Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy, part V: the discovery of the statins and the end of the controversy. J Lipid Res. 2006;Jul;47(7):1339–51. https://doi.org/10.1194/jlr.R600009-JLR200.

    Article  CAS  PubMed  Google Scholar 

  20. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;May–Jun;2(5–6):231–7. https://doi.org/10.1242/dmm.001180.

    Article  CAS  Google Scholar 

  21. Brodsky SV, Barth RF, Mo X, Yildiz V, Allenby P, Ivanov I, Moore S, Hitchcock CL, Smith S, Sachak T, Yao K, Ball M, Rosborough K, Olson Z, Kiehl M, Muni N, Virmani R. An obesity paradox: an inverse correlation between body mass index and atherosclerosis of the aorta. Cardiovasc Pathol. 2016 Nov–Dec;25(6):515–20. https://doi.org/10.1016/j.carpath.2016.09.002.

    Article  PubMed  Google Scholar 

  22. Qaisar S, Brodsky LD, Barth RF, Leier C, Buja LM, Yildiz V, Mo X, Allenby P, Moore S, Ivanov I, Chen W, Thomas D, Rivera AC, Gamble D, Hartage R, Mao G, Sheldon J, Sinclair D, Vazzano J, Zehr B, Patton A, Brodsky SV. An unexpected paradox: wall shear stress in the aorta is less in patients with severe atherosclerosis regardless of obesity. Cardiovasc Pathol. 2021;Mar-Apr;51:107313. https://doi.org/10.1016/j.carpath.2020.107313.

    Article  Google Scholar 

  23. Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018 Oct 23;72(17):2071–81. https://doi.org/10.1016/j.jacc.2018.08.1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maleszewski JJ, Lai CK, Veinot JP. Anatomic considerations and examination of cardiovascular specimens (excluding devices). In: Buja LM, Butany J, editors. Cardiovascular Pathology, 4th edition. Amsterdam: Elsevier/Academic Press, 2016, pp.1–56. Cardiovascular Pathology, 5th edition. Amsterdam: Elsevier/Academic Press, 2022, In press.

    Google Scholar 

  25. Haust MD. The morphogenesis and fate of potential and early atherosclerotic lesions in man. Hum Pathol 1971 Mar;2(1):1–29. https://doi.org/10.1016/s0046-8177(71)80019-9. PMID: 4937772.

  26. Haust MD. The genesis of atherosclerosis in pediatric age-group. Pediatr Pathol. 1990;10(1–2):253–71. https://doi.org/10.3109/15513819009067112.

    Article  CAS  PubMed  Google Scholar 

  27. Haust MD. Atherosclerosis—lesions and sequelae. In: Silver MD, editor. Cardiovascular Pathology. 1st ed. New York; Churchill Livingstone; 1983. p. 191–315.

    Google Scholar 

  28. Buja LM, Kita T, Goldstein JL, Watanabe Y, Brown MS. Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia. Arteriosclerosis 1983 Jan–Feb;3(1):87–101. https://doi.org/10.1161/01.atv.3.1.87.

  29. Buja LM, Kovanen PT, Bilheimer DW. Cellular pathology of homozygous familial hypercholesterolemia. Am J Pathol. 1979;Nov;97(2):327–57.

    PubMed  Google Scholar 

  30. Buja LM, Clubb FJ Jr, Bilheimer DW, Willerson JT. Pathobiology of human familial hypercholesterolaemia and a related animal model, the Watanabe heritable hyperlipidaemic rabbit. Eur Heart J. 1990;Aug;11(Suppl E):41–52. https://doi.org/10.1093/eurheartj/11.suppl_e.41.

    Article  PubMed  Google Scholar 

  31. Lundberg B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis. 1985;Jul;56(1):93–110. https://doi.org/10.1016/0021-9150(85)90087-5.

    Article  PubMed  Google Scholar 

  32. Stegemann C, Drozdov I, Shalhoub J, Humphries J, Ladroue C, Didangelos A, Baumert M, Allen M, Davies AH, Monaco C, Smith A, Xu Q, Mayr M. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet. 2011;Jun;4(3):232–42. https://doi.org/10.1161/CIRCGENETICS.110.959098.

    Article  CAS  PubMed  Google Scholar 

  33. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75. https://doi.org/10.1161/01.atv.20.5.1262.

    Article  CAS  PubMed  Google Scholar 

  34. Yahagi K, Kolodgie FD, Otsuka F, Finn AV, Davis HR, Joner M, Virmani R. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol. 2016;Feb;13(2):79–98. https://doi.org/10.1038/nrcardio.2015.164.

    Article  CAS  PubMed  Google Scholar 

  35. Libby P, Schoen FJ. Vascular lesion formation. Cardiovasc Pathol. 1993;Sept; 2(3, Suppl):43–52. https://doi.org/10.1016/1054-8807(93)90046-5.

    Article  Google Scholar 

  36. Williams KJ, Tabas I. The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol. 1998;Oct;9(5):471–4. https://doi.org/10.1097/00041433-199810000-00012.

    Article  PubMed  Google Scholar 

  37. Williams KJ, Tabas I. Lipoprotein retention—and clues for atheroma regression. Arterioscler Thromb Vasc Biol. 2005;Aug;25(8):1536–40. https://doi.org/10.1161/01.ATV.0000174795.62387.d3.

    Article  CAS  PubMed  Google Scholar 

  38. Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vasc Pharmacol. 2019;Jan;112:54–71. https://doi.org/10.1016/j.vph.2018.08.002.

    Article  CAS  Google Scholar 

  39. Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med. 2014;46(e99) https://doi.org/10.1038/emm.2014.38.

  40. Mineo C. Lipoprotein receptor signaling in atherosclerosis. Cardiovasc Res. 2020;116:1254–74. https://doi.org/10.1093/cvr/cvz338.

    Article  CAS  PubMed  Google Scholar 

  41. Aikawa M, Libby P. The vulnerable plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol. 2004;May-Jun;13(3):125–38. https://doi.org/10.1016/S1054-8807(04)00004-3.

    Article  Google Scholar 

  42. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92. https://doi.org/10.1161/ATVBAHA.108.179739.

    Article  CAS  PubMed  Google Scholar 

  43. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014 Jun 6;114(12):1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721. PMID: 24902970.

  44. Ross R. The pathogenesis of atherosclerosis—an update. N Engl J Med. 1986;314:488–500.

    Article  CAS  PubMed  Google Scholar 

  45. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801809.

    Article  Google Scholar 

  46. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  47. Furie MB, Mitchell RN. Plaque attack: one hundred years of atherosclerosis in The American Journal of Pathology. Am J Pathol. 2012;Jun;180(6):2184–7. https://doi.org/10.1016/j.ajpath.2012.04.003.

    Article  PubMed  Google Scholar 

  48. Libby P, Hansson GK. From focal lipid storage to systemic inflammation: JACC review topic of the week. J Am Coll Cardiol. 2019 Sept 24;74(12):1594–607. https://doi.org/10.1016/j.jacc.2019.07.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hansson GK, Libby P, Schönbeck U, Yan Z-Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002;91:281–91. https://doi.org/10.1161/01.res.0000029784.15893.10.

    Article  CAS  PubMed  Google Scholar 

  50. Ketelhuth DF, Hansson GK. Adaptive Response of T and B Cells in Atherosclerosis. Circ Res. 2016 Feb 19;118(4):668–78. https://doi.org/10.1161/CIRCRESAHA.115.306427.

    Article  CAS  PubMed  Google Scholar 

  51. Wissler RW, Vesselinovitch D. Studies of regression of advanced atherosclerosis in experimental animals and man. Ann N Y Acad Sci. 1976;275:363–78. https://doi.org/10.1111/j.1749-6632.1976.tb43368.x.

    Article  CAS  PubMed  Google Scholar 

  52. Sdringola S, Loghin C, Boccalandro F, Gould KL. Mechanisms of progression and regression of coronary artery disease by PET related to treatment intensity and clinical events at long-term follow-up. J Nucl Med. 2006;Jan;47(1):59–67.

    PubMed  Google Scholar 

  53. Daida H, Dohi T, Fukushima Y, Ohmura H, Miyauchi K. The Goal of Achieving Atherosclerotic Plaque Regression with Lipid-Lowering Therapy: Insights from IVUS Trials. J Atheroscler Thromb. 2019 Jul 1;26(7):592–600. https://doi.org/10.5551/jat.48603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gimbrone MA Jr, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol. 2013;Jan-Feb;22(1):9–15. https://doi.org/10.1016/j.carpath.2012.06.006.

    Article  CAS  Google Scholar 

  55. Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016 Feb 19;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol. 2018 Mar 15;435(2):109–21. https://doi.org/10.1016/j.ydbio.2018.01.018.

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res. 2018 Dec 21;7:F1000 Faculty Rev-1969. https://doi.org/10.12688/f1000research.15994.1.

  58. Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, Kundu R, Nagao M, Coller J, Koyano TK, Fong R, Woo YJ, Liu B, Montgomery SB, Wu JC, Zhu K, Chang R, Alamprese M, Tallquist MD, Kim JB, Quertermous T. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019 Aug;25(8):1280–9. https://doi.org/10.1038/s41591-019-0512-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;Dec;16(12):727–44. https://doi.org/10.1038/s41569-019-0227-9.

    Article  PubMed  Google Scholar 

  60. Chattopadhyay A, Kwartler CS, Kaw K, Li Y, Kaw A, Chen J, LeMaire SA, Shen YH, Milewicz DM. Cholesterol-Induced Phenotypic Modulation of Smooth Muscle Cells to Macrophage/Fibroblast-like Cells Is Driven by an Unfolded Protein Response. Arterioscler Thromb Vasc Biol. 2021;Jan;41(1):302–16. https://doi.org/10.1161/ATVBAHA.120.315164.

    Article  PubMed  Google Scholar 

  61. Chattopadhyay A, Guan P, Majumder S, Kaw K, Zhou Z, Prakash SK, Anita Kaw A, Buja LM, Kwartler CS, Milewicz DM. Perk-dependent signaling in vascular smooth muscle cells drives phenotypic modulation and atherosclerotic plaque formation. In submission.

    Google Scholar 

  62. Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol. 2021;May 26(9):674103. https://doi.org/10.3389/fcell.2021.674103.

    Article  Google Scholar 

  63. Vela D, Buja LM, Madjid M, Burke A, Naghavi M, Willerson JT, Casscells SW, Litovsky S. The role of periadventitial fat in atherosclerosis. Arch Pathol Lab Med. 2007;Mar;131(3):481–7. https://doi.org/10.5858/2007-131-481-TROPFI.

    Article  PubMed  Google Scholar 

  64. Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. Am J Pathol. 2020;Mar;190(3):520–34. https://doi.org/10.1016/j.ajpath.2019.10.021.

    Article  CAS  PubMed  Google Scholar 

  65. Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Insight and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 1988;112:1018–31.

    CAS  PubMed  Google Scholar 

  66. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12–22.

    Article  CAS  PubMed  Google Scholar 

  67. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Investig. 2005;Jan;85(1):9–23. https://doi.org/10.1038/labinvest.3700215.

    Article  CAS  PubMed  Google Scholar 

  68. Weavers H, Martin P. The cell biology of inflammation: From common traits to remarkable immunological adaptations. J Cell Biol. 2020 Jul 6;219(7):e202004003. https://doi.org/10.1083/jcb.202004003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buja LM. The cell theory and cellular pathology: Discovery, refinements and applications fundamental to advances in biology and medicine. Exp Mol Pathol. 2021 Jun;8(121):104660. https://doi.org/10.1016/j.yexmp.2021.104660.

    Article  CAS  Google Scholar 

  70. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. Annu Rev Pathol. 2020 Jan;24(15):493–518. https://doi.org/10.1146/annurev-pathmechdis-012419-032847.

    Article  CAS  Google Scholar 

  71. Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci. 2017 Dec 1;130(23):3955–63. https://doi.org/10.1242/jcs.207365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Poznyak AV, Melnichenko AA, Wetzker R, Gerasimova EV, Orekhov AN. NLPR3 Inflammasomes and Their Significance for Atherosclerosis. Biomedicine. 2020 Jul 10;8(7):205. https://doi.org/10.3390/biomedicines8070205.

    Article  CAS  Google Scholar 

  73. Karasawa T, Takahashi M. Role of NLRP3 Inflammasomes in Atherosclerosis. J Atheroscler Thromb. 2017 May 1;24(5):443–51. https://doi.org/10.5551/jat.RV17001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, McConkey M, Gupta N, Gabriel S, Ardissino D, Baber U, Mehran R, Fuster V, Danesh J, Frossard P, Saleheen D, Melander O, Sukhova GK, Neuberg D, Libby P, Kathiresan S, Ebert BL. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med 2017 Jul 13;377(2):111–121. https://doi.org/10.1056/NEJMoa1701719. Epub 2017 Jun 21.

  75. Libby P. Inflammation in Atherosclerosis-No Longer a Theory. Clin Chem. 2021 Jan 8;67(1):131–42. https://doi.org/10.1093/clinchem/hvaa275.

    Article  PubMed  Google Scholar 

  76. Crossman D. Acute coronary syndromes. Clin Med (Lond). 2001;May-Jun;1(3):206–13. https://doi.org/10.7861/clinmedicine.1-3-206.

    Article  Google Scholar 

  77. Kotecha T, Rakhit RD. Acute coronary syndromes. Clin Med (Lond). 2016 Dec;16(Suppl 6):s43–8. https://doi.org/10.7861/clinmedicine.16-6-s43.

    Article  PubMed  Google Scholar 

  78. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987 May 28;316(22):1371–5.

    Article  CAS  PubMed  Google Scholar 

  79. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13. https://doi.org/10.1056/NEJMra1216063.

    Article  CAS  PubMed  Google Scholar 

  80. Libby P, Pasterkamp G, Crea F, Jang IK. Reassessing the Mechanisms of Acute Coronary Syndromes. Circ Res. 2019;124(1):150–60. https://doi.org/10.1161/CIRCRESAHA.118.311098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Elgendy IY, Conti CR, Bavry AA. Fractional flow reserve: an updated review. Clin Cardiol. 2014 Jun;37(6):371–80. https://doi.org/10.1002/clc.22273.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Buja LM, Zehr B, Lelenwa L, Ogechukwu E, Zhao B, Dasgupta A, Barth RF. Clinicopathological complexity in the application of the universal definition of myocardial infarction. Cardiovasc Pathol. 2020;Jan-Feb;44:107153. https://doi.org/10.1016/j.carpath.2019.107153.

    Article  Google Scholar 

  83. Michaud K, Basso C, d’Amati G, Giordano C, Kholová I, Preston SD, Rizzo S, Sabatasso S, Sheppard MN, Vink A, van der Wal AC; Association for European Cardiovascular Pathology (AECVP). Diagnosis of myocardial infarction at autopsy: AECVP reappraisal in the light of the current clinical classification. Virchows Arch 2020 Feb;476(2):179–194. https://doi.org/10.1007/s00428-019-02662-1.

  84. Lehrman M, Schneider W, Sudhof T, Brown M, Goldstein J, Russell D. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science (80–) 1985;227:140–6. https://doi.org/10.1126/science.3155573.

  85. Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci. 1989;86:587–91. https://doi.org/10.1073/pnas.86.2.587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6. https://doi.org/10.1038/ng1161.

    Article  CAS  PubMed  Google Scholar 

  87. Garcia CK. Autosomal Recessive Hypercholesterolemia Caused by Mutations in a Putative LDL Receptor Adaptor Protein. Science (80–) 2001;292:1394–8. https://doi.org/10.1126/science.1060458.

  88. Berge KE. Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters. Science (80–) 2000;290:1771–5. https://doi.org/10.1126/science.290.5497.1771.

  89. Lloyd-Jones DM, Nam B-H, D’Agostino RB Sr, Levy D, Murabito JM, Wang TJ, et al. Parental Cardiovascular Disease as a Risk Factor for Cardiovascular Disease in Middle-aged Adults. JAMA. 2004;291:2204. https://doi.org/10.1001/jama.291.18.2204.

    Article  CAS  PubMed  Google Scholar 

  90. Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, Yashin AI, De Faire U. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med. 2002;252:247–54. https://doi.org/10.1046/j.1365-2796.2002.01029.x.

    Article  CAS  PubMed  Google Scholar 

  91. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A Common Allele on Chromosome 9 Associated with Coronary Heart Disease. Science (80–) 2007;316:1488–91. https://doi.org/10.1126/science.1142447.

  92. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction. Science (80–) 2007;316:1491–3. https://doi.org/10.1126/science.1142842.

  93. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide Association Analysis of Coronary Artery Disease. N Engl J Med. 2007;357:443–53. https://doi.org/10.1056/NEJMoa072366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease. N Engl J Med 2009;361:2518–2528. https://doi.org/10.1056/NEJMoa0902604, https://doi.org/10.1016/j.jacc.2012.09.017.

  95. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35. https://doi.org/10.1016/S0140-6736(14)61177-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Maximilian Buja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buja, L.M. (2023). Pathogenesis of Atherosclerosis: A Multifactorial Process. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics