
Chapter 8
Sparse Matrix Ordering Algorithms

The computational complexity of obtaining optimal reorderings
for performing sparse Gaussian elimination justifies the
heuristic nature of all practical reordering algorithms. –
Erisman et al. (1987).

So far, our focus has been on the theoretical and algorithmic principles involved in
sparse Gaussian elimination-based factorizations. To limit the storage and the work
involved in the computation of the factors and in their use during the solve phase
it is generally necessary to reorder (permute) the matrix before the factorization
commences. The complexity of the most critical steps in the factorization is highly
dependent on the amount of fill-in, as can be seen from the following observation.

Observation 8.1 The operations to perform the sparse LU factorization A = LU

and the sparse Cholesky factorizationA = LLT areO(
∑n

j=1 | colL{j}| | rowU {j}| )
and O(

∑n
j=1 | colL{j}|2 ) respectively, where | rowU {j}| and | colL{j}| are the

number of off-diagonal entries in row j of U and column j of L, respectively.

The problem of finding a permutation to minimize fill-in is NP complete and thus
heuristics are used to determine orderings that limit the amount of fill-in; we refer
to these as fill-reducing orderings. Frequently, this is done using the sparsity pattern
S{A} alone, although sometimes for non-definite matrices, it is combined with the
numerical factorization because additional permutations of A may be needed to
make the matrix factorizable. Two main classes of methods that work with S{A}
are commonly used.

Local orderings attempt to limit fill-in by repeated local decisions based on G(A)

(or a relevant quotient graph).
Global orderings consider the whole sparsity pattern of A and seek to find a

permutation using a divide-and-conquer approach. Such methods are normally
used in conjunction with a local fill-reducing ordering, as the latter generally
works well for problems that are not really large.
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It is assumed throughout this chapter that A is irreducible. Otherwise, if S{A}
is symmetric, the algorithms are applied to each component of G(A) independently
and n is then the number of vertices in the component. If S{A} is nonsymmetric, we
assume that A is in block triangular form and the algorithms are used on the graph
of each block on the diagonal. We also assume that A has no rows or columns that
are (almost) dense. If it does, a simple strategy is to remove them before applying
the ordering algorithm to the remaining matrix; the variables corresponding to the
dense rows and columns can be appended to the end of the computed ordering to
give the final ordering.

Historically, ordering the matrix A before using a direct solver to factorize it was
generally cheap compared to the numerical factorization cost. However, in the last
couple of decades, the development of more sophisticated factorization algorithms
and their implementations in parallel on modern architectures has affected this
balance so that the ordering can be the most expensive step. If a sequence of
matrices having the same sparsity pattern is to be factorized, then the ordering
cost and the cost of the symbolic factorization can be amortized over the numerical
factorizations. If not, it is important to have available a range of ordering algorithms
because using a cheap but less effective algorithm may lead to faster complete
solution times compared to using an expensive approach that gives some savings in
the memory requirements and operation counts but not enough to offset the ordering
cost.

8.1 Local Fill-Reducing Orderings for Symmetric S{A}

In the symmetric case, the diagonal entries of A are required to be present in S{A}
(thus zeros on the diagonal are included in the sparsity structure). The aim is to
limit fill-in in the L factor of an LLT (or LDLT ) factorization of A. Two greedy
heuristics are the minimum degree (MD) criterion and the local minimum fill (MF)
criterion.

8.1.1 Minimum Fill-in (MF) Criterion

One way to reduce fill-in is to use a local minimum fill-in (MF) criterion that, at
each step, selects as the next variable in the ordering one that will introduce the least
fill-in in the factor at that step. This is sometimes called the minimum deficiency
approach. While MF can produce good orderings, its cost is often considered to be
prohibitive because it requires the updated sparsity pattern and the fill-in associated
with the possible candidates must be determined. The runtime can be reduced using
an approximate variant (AMF) but it is not widely implemented in modern sparse
direct solvers.
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8.1.2 Basic Minimum Degree (MD) Algorithm

The minimum degree (MD) algorithm is the best-known and most widely used
greedy heuristic for limiting fill-in. It seeks to find a permutation such that at each
step of the factorization the number of entries in the corresponding column of L is
minimized. This metric is easier and less expensive to compute compared to that
used by the minimum fill-in criterion. If G(A) is a tree, then the MD algorithm
results in no fill-in but, in most real applications, it does not minimize the amount
of fill-in exactly.

The MD algorithm can be implemented using G(A) and it can predict the
required factor storage without generating the structure of L. The basic approach
is given in Algorithm 8.1. At step k, the number of off-diagonal nonzeros in a row
or column of the active submatrix is the current degree of the corresponding vertex
in the elimination graph Gk . The algorithm selects a vertex of minimum current
degree in Gk and labels it vk , i.e. next for elimination. The set of vertices adjacent to
vk in G(A) isReach(vk,Vk), where Vk is the set of k − 1 vertices that have already
been eliminated. These are the only vertices whose degrees can change at step k. If
u ∈ Reach(vk,Vk), u �= vk , then its updated current degree is |Reach(u,Vk+1)|,
where Vk+1 = Vk ∪ vk .

At Step 4 of Algorithm 8.1, a tie-breaking strategy is needed when there is more
than one vertex of current minimum degree. A straightforward strategy is to select
the vertex that lies first in the original order. For the example in Figure 8.1, vertices
2, 3, and 6 are initially all of degree 2 and could be selected for elimination; as the
lowest-numbered vertex, 2 is chosen. After it has been eliminated, vertices 3, 5, and
6 have current degree 2 and so vertex 3 is next. As all the remaining vertices have
current degree 2, vertex 1 is eliminated, followed by 4, 5, and 6. It is possible to
construct artificial matrices showing that some systematic tie-breaking choices can
lead to a large amount of fill-in but such behaviour is not typical.

ALGORITHM 8.1 Basic minimum degree (MD) algorithm
Input: Graph G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of G.
1: Set G1 = G and compute the degree degG1(u) of all u ∈ V(G1)

2: for k = 1 : n − 1 do
3: Compute mdeg = min{degGk (u) | u ∈ V(Gk)} � mdeg is the current

minimum degree
4: Choose vk ∈ V(Gk) such that degGk (vk) = mdeg

5: p(k) = vk � vk is the next vertex in the elimination order
6: Construct Gk+1 and update the current degrees of its vertices
7: end for
8: p(n) = vn where vn is the only vertex in Gn
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Figure 8.1 An illustration of three steps of the MD algorithm. The original graph G and the
elimination graphs G2, G3 and G4 that result from eliminating vertex 2, then vertex 3 and then
vertex 1 are shown red dashed lines denote fill edges.

The construction of each elimination graph Gk+1 is central to the implementation
of the MD algorithm. Because eliminating a vertex potentially creates fill-in,
an efficient representation of the resulting elimination graph that accommodates
this (either implicitly or explicitly) is needed. Moreover, recalculating the current
degrees is time consuming. Consequently, various approaches have been developed
to enhance performance; these are discussed in the following subsections.

8.1.3 Use of Indistinguishable Vertices

In Section 3.5.1, we introduced indistinguishable vertices and supervariables. The
importance of exploiting these in MD algorithms is emphasized by the next two
results. Here Gv denotes the elimination graph obtained from G when vertex v ∈
V(G) is eliminated.

Theorem 8.1 (George & Liu 1980b, 1989) Let u and w be indistinguishable
vertices in G. If v ∈ V(G) with v �= u,w, then u and w are indistinguishable in
Gv .

Proof Two cases must be considered. First, let u �∈ adjG{v}. Thenw �∈ adjG{v} and
if v is eliminated, the adjacency sets of u and w are unchanged and these vertices
remain indistinguishable in the resulting elimination graph Gv . Second, let u,w ∈
adjG{v}. When v is eliminated, because u and w are indistinguishable in G, their
adjacency sets in Gv will be modified in the same way, by adding the entries of
adjG{v} that are not already in adjG{u} and adjG{w}. Consequently, u and w are
indistinguishable in Gv . ��

Figure 8.2 demonstrates the two cases in the proof of Theorem 8.1. Here, u and
w are indistinguishable vertices in G. Setting v ≡ v′ illustrates u �∈ adjG{v}. If
v′ is eliminated, then the adjacency sets of u and w are clearly unchanged. Setting
v ≡ v′′ illustrates u,w ∈ adjG{v}. In this case, if v′′ is eliminated, then vertices s

and t are added to both adjG{u} and adjG{w}.



8.1 Local Fill-Reducing Orderings for Symmetric S{A} 139

u

w

v′′ r

s

t

v′

Figure 8.2 An example to illustrate Theorem 8.1. u and w are indistinguishable vertices in G;
adjG{u} = {r, w, v′′} and adjG{w} = {r, u, v′′}.
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Figure 8.3 An illustration of Theorem 8.2. Vertices u and w are of minimum degree (with degree
mdeg = 3) and are indistinguishable in G. After elimination of w, the current degree of u is
mdeg − 1 and the current degree of each of the other vertices is at most mdeg − 1. Therefore, u
is of current minimum degree in Gw . Note that vertices r and v are also of minimum degree and
indistinguishable in G; they are not neighbours of w and their degrees do not change when w is
eliminated.

Theorem 8.2 (George & Liu 1980b, 1989) Let u and w be indistinguishable
vertices in G. If w is of minimum degree in G, then u is of minimum degree in Gw.

Proof Let degG(w) = mdeg. Then degG(u) = mdeg. Indistinguishable vertices
are always neighbours. Eliminating w gives degGw

(u) = mdeg − 1 because w is
removed from the adjacency set of u and there is no neighbour of u in Gw that was
not its neighbour in G. If x �= w and x ∈ adjG{u}, then the number of neighbours
of x in Gw is at least mdeg − 1. Otherwise, if x �∈ adjG{u}, then its adjacency set in
Gw is the same as in G and is of the size at least mdeg. The result follows. ��

Theorem 8.2 is illustrated in Figure 8.3.
Theorems 8.1 and 8.2 can be extended to more than two indistinguishable

vertices, which allows indistinguishable vertices to be selected one after another in
the MD ordering. This is referred to asmass elimination. Treating indistinguishable
vertices as a single supervariable cuts the number of vertices and edges in the
elimination graphs, which reduces the work needed for degree updates.
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In the basic MD algorithm, the current degree of a vertex is the number of
adjacent vertices in the current elimination graph. The external degree of a vertex
is the number of vertices adjacent to it that are not indistinguishable from it. The
motivation comes from the underlying reason for the success of the minimum degree
ordering in terms of fill reduction. Eliminating a vertex of minimum degree implies
the formation of the smallest possible clique resulting from the elimination. If mass
elimination is used, then the size of the resulting clique is equal to the external
degree of the vertices eliminated by the mass elimination step. Using the external
degree can speed up the time for computing the ordering and give worthwhile
savings in the number of entries in the factors.

8.1.4 Degree Outmatching

A concept that is closely related to that of indistinguishable vertices is degree
outmatching. This avoids computing the degrees of vertices that are known not
to be of current minimum degree. Vertex w is said to be outmatched by vertex u if

adjG{u} ∪ {u} ⊆ adjG{w} ∪ {w}.

It follows that degG(u) ≤ degG(w). A simple example is given in Figure 8.4.
Importantly, degree outmatching is preserved when vertex v ∈ G of minimum
degree is eliminated, as stated in the following result.

Theorem 8.3 (George & Liu 1980b, 1989) In the graph G let vertex w be
outmatched by vertex u and vertex v (v �= u,w) be of minimum degree. Then w

is outmatched in Gv by u.

Proof Three cases must be considered. First, if u /∈ adjG{v} and w /∈ adjG{v}, then
the adjacency sets of u and w in Gv are the same as in G. Second, if v is a neighbour
of both u and w in G, then any neighbours of v that were not neighbours of u and

u

w

v′′ v′′′

v′

Figure 8.4 An example G in which vertex w is outmatched by vertex u. v′ is not a neighbour of
u or w; vertex v′′ is a neighbour of both u and w; v′′′ is a neighbour of w but not of u.
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w are added to their adjacency sets in Gv . Third, if u /∈ adjG{v} and w ∈ adjG{v},
then the adjacency set of u in Gv is the same as in G but any neighbours of v that
were not neighbours of w are added to the adjacency set of w in Gv . In all three
cases, w is still outmatched by u in Gv . ��

The three possible cases for v in the proof of Theorem 8.3 are illustrated in
Figure 8.4 by setting v ≡ v′, v′′ and v′′′, respectively. An important consequence of
Theorem 8.3 is that if w is outmatched by u, then it is not necessary to consider w

as a candidate for elimination and all updates to the data structures related to w can
be postponed until u has been eliminated.

8.1.5 Cliques and Quotient Graphs

From Parter’s rule, if vertex v is selected at step k, then the elimination matrix that
corresponds to Gk+1 contains a dense submatrix of size equal to the number of off-
diagonal entries in row and column v in the matrix that corresponds to Gk . For large
matrices, creating and explicitly storing the edges in the sequence of elimination
graphs is impractical and a more compact and efficient representation is needed.
Each elimination graph can be interpreted as a collection of cliques, including the
original graph G, which can be regarded as having |E | cliques, each consisting of
two vertices (or, equivalently, an edge). This gives a conceptually different view of
the elimination process and provides a compact scheme to represent the elimination
graphs. The advantage in terms of storage is based on the following.

Let {V1,V2, . . . ,Vq} be the set of cliques for the current graph and let v

be a vertex of current minimum degree that is selected for elimination. Let
{Vs1 ,Vs2 , . . . ,Vst } be the subset of cliques to which v belongs. Two steps are then
required.

1. Remove the cliques {Vs1 ,Vs2 , . . . ,Vst } from {V1,V2, . . . ,Vq}.
2. Add the new clique Vv = {Vs1 ∪ . . . ∪ Vst } \ {v} into the set of cliques.
Hence

degG(v) = |Vv| <

t∑

i=1

|Vsi |,

and because {Vs1 ,Vs2 , . . . ,Vst } can now be discarded, the storage required for the
representation of the sequence of elimination graphs never exceeds that needed
for G(A). The storage to compute an MD ordering is therefore known beforehand
in spite of the rather dynamic nature of the elimination process. The index of
the eliminated vertex can be used as the index of the new clique. This is called
an element or enode (the terminology comes from finite-element methods), to
distinguish it from an uneliminated vertex, which is termed an snode.
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A sequence of special quotient graphs G[1] = G(A),G[2], . . . ,G[n] with the two
types of vertices is generated in place of the elimination graphs. Each G[k] has n

vertices that satisfy

V(G) = Vsnodes ∪ Venodes, Vsnodes ∩ Venodes = ∅,

where Vsnodes and Venodes are the sets of snodes and enodes, respectively. When v is
eliminated, any enodes adjacent to it are no longer required to represent the sparsity
pattern of the corresponding active submatrix and so they can be removed. This is
called element absorption.

Working with these graphs can be demonstrated by considering the computation
of the vertex degrees. To compute the degree of an uneliminated vertex, the set of
neighbouring snodes is counted. Then, if a neighbour of one of these snodes is an
enode, its neighbours are also counted (avoiding double counting). More formally,
if v ∈ Vsnodes , then the adjacency set of v is the union of its neighbours in Vsnodes

and the vertices reachable from v via its neighbours in Venodes . In this way, vertex
degrees are computed by considering fill-paths, avoiding storing the fill-in entries
explicitly. This reduces memory requirements and contributes to the computational
efficiency, which can be further improved by amalgamating sets of indistinguishable
enodes and snodes.

The sequences of elimination graphs and quotient graphs are illustrated in
Figure 8.5. The top line shows G together with G2 and G3 after the elimination
of vertices 1 and 2, respectively. When vertex 1 is eliminated, a new edge is
added to make its neighbours into a clique. The elimination of vertex 2 creates no
additional fill and the graph G3 with three nodes represents the sparsity structure of
the corresponding active submatrix A(3). The bottom line shows the corresponding
quotient graphs. After the first elimination, vertex 1 is an enode and the fill edge
is represented implicitly. After the second elimination, the enodes 1 and 2 can be
amalgamated and so too can the snodes 3 and 4 because they are indistinguishable.
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Figure 8.5 The top line shows G = G1, G2 and G3. The red dashed line denotes a fill edge. The
bottom line shows the quotient graphs G[2] and G[3] after the first and second elimination steps. A
circle represents a vertex in G (an snode), while a square represents an enode.
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ALGORITHM 8.2 Basic multiple minimum degree (MMD) algorithm
Input: Graph G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of G.
1: Set k = 1, G1 = G and compute the degree degG1(u) of all u ∈ V(G1)

2: while k ≤ n do
3: Compute mdeg = min{degGk (u) | u ∈ V(Gk)}
4: Find all mutually non-adjacent vj ∈ V(Gk), j = 1, . . . , t with degGk (vj ) =

mdeg

5: for j = 1 : t do
6: p(k) = vj � Vertex vj is the next vertex in the elimination order
7: k = k + 1
8: end for
9: if k < n then

10: Construct Gk+1 and update the current degrees of its vertices
11: end if
12: end while

8.1.6 Multiple Minimum Degree (MMD) Algorithm

The multiple minimum degree (MMD) algorithm aims to improve efficiency by
processing several independent vertices that are each of minimum current degree
together in the same step, before the degree updates are performed. The basic
approach is outlined as Algorithm 8.2. At each outer loop, t ≥ 1 denotes the number
of vertices of minimum current degree that are mutually non-adjacent and so can be
put into the elimination order one after another. An example in which the four corner
vertices have the same minimum degree is depicted in Figure 8.6. Here, on the first
step, mdeg = 2 and t = 4. Note that the MMD strategy is complementary to the
mass elimination approach in which the set S of indistinguishable vertices that can
be eliminated one after another is fully interconnected and all vertices of S have the
same set of neighbours outside S.

Figure 8.6 The red (corner) vertices of G are each of degree 2 and are ordered consecutively
during the first step of Algorithm 8.2.
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The complexity of the MD and MMD algorithms is O(nz(A)n2) but because for
MMD the outer loop of the algorithm update is performed fewer times, it can be
significantly faster than MD. MMD orderings can also lead to less fill-in, possibly a
consequence of introducing some kind of regularity into the ordering sequence.

8.1.7 Approximate Minimum Degree (AMD) Algorithm

The idea behind the widely used approximate minimum degree (AMD) algorithm
is to inexpensively compute an upper bound on a vertex degree in place of the
degree, and to use this bound as an approximation to the external degree when
selecting vertices within the MD algorithm. Even though vertex degrees are not
determined exactly, the quality of the orderings obtained using the AMD algorithm
are competitive with those computed using the MD algorithm and can surpass them.
The complexity of AMD is O(nz(A)n) and, in practice, its runtime is typically
significantly less than that of the MD and MMD approaches.

8.2 Minimizing the Bandwidth and Profile

An alternative way of reducing the fill-in locally is to add another criterion to the
relabelling of the vertices, such as restricting the nonzeros of the permuted matrix
to specific positions. The most popular approach is to force them to lie close to the
main diagonal. If Gaussian elimination is applied without further permutations, then
all fill-in takes place between the first entry of a row and the diagonal or between
the first entry of a column and the diagonal. It is therefore sufficient to store all the
entries in the lower triangular part from the first entry in each row to the diagonal and
all the entries in the upper triangular part from the first entry in each column to the
diagonal. This allows straightforward implementations of Gaussian elimination that
employ static data structures. Here we again consider symmetric and, for simplicity,
we assume that G(A) is connected; generalizations of the terminology and ideas to
nonsymmetric matrices are possible.

8.2.1 The Band and Envelope of a Matrix

To characterize the positions within S{A} that are close to the main diagonal, we
denote the leftmost entries in the lower triangular part of A using the mapping ηi as
follows:

ηi(A) = min{j | 1 ≤ j ≤ i with aij �= 0}, 1 ≤ i ≤ n, (8.1)
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that is, ηi(A) is the column index of the first entry in the i-th row of A.
Define

βi(A) = i − ηi(A), 1 ≤ i ≤ n.

The semibandwidth of A is

max{βi(A)| 1 ≤ i ≤ n},

and the bandwidth is

β(A) = 2 ∗ max{βi(A) | 1 ≤ i ≤ n} + 1.

The band of A is the following set of index pairs in A

band(A) = {(i, j) | 0 < i − j ≤ β(A)}.

The envelope is the set of index pairs that lie between the first entry in each row and
the diagonal

env(A) = {(i, j) | 0 < i − j ≤ βi(A)}.

Note that the band and envelope of a sparse symmetrically structured matrix A

include only entries of the strict lower triangular part of A. The envelope is easily
visualized: picture the lower triangular part of A, and remove the diagonal and the
leading zero entries in each row. The remaining entries (whether nonzero or zero)
comprise the envelope of A. The profile of A is defined to be the number of entries
in the envelope (the envelope size) plus n.1 An illustrative example is given in
Figure 8.7. Here η1(A) = 1, β1(A) = 0, η2(A) = 1, β2(A) = 1, η3(A) = 2,
β3(A) = 1, and so on.

⎛
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∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
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Figure 8.7 Illustration of the band and envelope of a matrix A whose sparsity pattern is on the
left. In the centre, the positions of band(A) are circled and on the right, the positions of env(A)

are circled. The bandwidth is 5 and the envelope size and the profile are 7 and 14, respectively.

1 Sometimes in the literature the profile is defined to be the envelope size.
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The next result shows that the static data structures determined for A are
sufficient for its Cholesky factors and by permuting A to minimize its band or
profile, the fill-in is also approximately minimized.

Theorem 8.4 (Liu & Sherman 1976; George & Liu 1981) If L is the Cholesky
factor of A, then

env(A) = env(L).

Proof The proof uses mathematical induction on the principal leading submatrices
of A of order k. The result is clearly true for k = 1 and k = 2. Assume it holds for
2 ≤ k < n and consider the block factorization

(
A1:k,1:k u1:k

uT
1:k α

)

=
(

L1:k,1:k 0
vT
1:k β

)(
LT
1:k,1:k v1:k
0 β

)

,

where α and β are scalars. Equating the left and right sides, L1:k,1:kv1:k = u1:k.
Because uj = 0 for j < ηk+1(A) and uηk+1 �= 0, it follows that vj = 0 for
j < ηk+1(A) and vηk+1 �= 0. This proves the induction step. ��
A straightforward corollary of Theorem 8.4 is that band(A) = band(L).

8.2.2 Level-Based Orderings

Finding a permutation P to minimize the band or profile of PAP T is combinato-
rially hard and again heuristics are used to efficiently find an acceptable P . The
popular Cuthill McKee (CM) approach chooses a suitable starting vertex s and
labels it 1. Then, for i = 1, 2, . . . , n − 1, all vertices adjacent to vertex i that are
still unlabelled are labelled successively in order of increasing degree, as described
in Algorithm 8.3. A very important variation is the Reverse Cuthill McKee (RCM)
algorithm, which incorporates a final step in which the CM ordering is reversed.
The CM- and RCM-permuted matrices have the same bandwidth but the latter can
decrease the envelope, as demonstrated in Figure 8.8.

The importance of the CM and RCM orderings is expressed in the following
theorem. The full envelope of the Cholesky factor of the permuted matrix implies
cache efficiency when performing the triangular solves once the factorization is
complete.

Theorem 8.5 (Liu & Sherman 1976; George & Liu 1981) Let A be symmetri-
cally structured and irreducible. If P corresponds to the CM labelling obtained
from Algorithm 8.3 and L is the Cholesky factor of P T AP , then env(L) is full, that
is, all entries of the envelope are nonzero.
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Figure 8.8 An example to illustrate Algorithm 8.3. The starting vertex is s = 3; it has degree 1.
The graph G(A) is given and the sparsity patterns of A (left), A symmetrically permuted by the
CM algorithm (centre) and A symmetrically permuted by the RCM algorithm (right). The profiles
of these matrices are 25, 17, and 16, respectively.

A crucial difference between profile reduction ordering algorithms and minimum
degree strategies is that the former is based solely on G: the costly construction of
quotient graphs is not needed. However, unless the profile after reordering is very
small, there can be significantly more fill-in in the factor.

Key to the success of Algorithm 8.3 is the choice of the starting vertex s: the
quality of the ordering is highly dependent on s. A good candidate is a vertex
for which the maximum distance between it and some other vertex in G is large.
Formally, the eccentricity ε(u) of the vertex u in the connected undirected graph G
is defined to be

ε(u) = max{d(u, v) | v ∈ V},

where d(u, v) is the distance between the vertices u and v (the length of the shortest
path between these vertices). The maximum eccentricity taken over all the vertices
is the diameter of G (that is, the maximum distance between any pair of vertices).
The endpoints of a diameter (also termed peripheral vertices) provide good starting
vertices. The complexity of finding a diameter is O(n3) because the shortest paths
amongst all the vertices have to be checked. Thus, a pseudo-diameter defined by
any pair of vertices for which d(u, v) is close to the diameter is used instead. The
vertices defining a pseudo-diameter are pseudo-peripheral vertices.



148 8 Sparse Matrix Ordering Algorithms

ALGORITHM 8.3 CM and RCM algorithms for band and profile reduction
Input: Graph G of a symmetrically structured irreducible matrix and a starting
vertex s.
Output: Permutation vectors pcm and prcm that define new labellings of the vertices
of G(A).

1: label(1 : n) = f alse

2: Compute adjG{u} and degG(u) for all u ∈ V(G)

3: k = 1, v1 = s, pcm(1) = v1, label(v1) = true

4: for i = 1 : n − 1 do
5: for w ∈ adjG{vi} with label(w) = f alse in order of increasing degree do
6: k = k + 1, vk = w, pcm(k) = vk , label(vk) = true

7: end for
8: end for
9: For the RCM ordering, prcm(i) = pcm(n − i + 1), i = 1, 2, . . . , n.

A heuristic algorithm is used to find pseudo-peripheral vertices. A commonly
used approach is based on level sets. A level structure rooted at a vertex r is defined
as the partitioning of V into disjoint levels L1(r),L2(r), . . . ,Lh(r) such that

(i) L1(r) = {r} and
(ii) for 1 < i ≤ h, Li (r) is the set of all vertices that are adjacent to vertices in

Li−1(r) but are not in L1(r),L2(r), . . . ,Li−1(r).

The level structure rooted at r may be expressed as the set L(r) =
{L1(r),L2(r), . . . ,Lh(r)}, where h is the total number of levels and is termed
the depth. The level sets can be found using a breadth-first search that starts at the
root r . The Gibbs-Poole-Stockmeyer (GPS) algorithm presented as Algorithm 8.4
can be used to finding pseudo-peripheral vertices, one of which may then be used as
a starting vertex for the CM and RCM algorithms. Here the root vertex r is normally
taken to be an arbitrary vertex of minimum degree. L(r) is constructed and then
the level structures rooted at each of the vertices in the last level set Lh(r). If, for
some w ∈ Lh(r), the depth of Lw exceeds that of L(r), w replaces r as the root
vertex, and the procedure is repeated. If no such vertex is found, r is chosen as a
pseudo-peripheral vertex.

A simple example is given in Figure 8.9. Starting with r = 2, after two passes
through the while loop, the GPS algorithm returns s = 8 and t = 1 as pseudo-
peripheral vertices.

To obtain an efficient implementation of the GPS algorithm, it is necessary to
limit the number of level set structures that are fully constructed. For example, “short
circuiting” can be incorporated in which wide level structures are rejected as soon
as they are detected (wide levels will not lead to a deep level structure which is
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ALGORITHM 8.4 Basic GPS algorithm to find a pair of pseudo-peripheral
vertices
Input: Graph G of a symmetrically structured irreducible matrix and a root vertex
r .
Output: Pseudo-peripheral vertices s, t .

1: Construct L(r) and set f lag = f alse

2: while f lag = f alse do
3: f lag = true

4: for i = 1 : |L(r)| do
5: wi ∈ L(r) � Select vertex wi from last level set
6: if f lag = true then
7: Construct L(wi)

8: if depth(L(wi)) > depth(L(r)) then
9: f lag = f alse � Flag that wi will be used as new initial vertex

10: end if
11: end if
12: end for
13: if f lag = true then
14: s = r and t = wi � s is chosen; while loop will terminate algorithm
15: else
16: r = wi

17: end if
18: end while

1 2 3 4

5 6 7 8

Figure 8.9 An example to illustrate Algorithm 8.4 for finding pseudo-peripheral vertices. With
root vertex r = 2, the first level set structure is L(2) = {{2}, {1, 3}, {4, 5, 7}, {6, 8}}. Setting r = 8
at Step 16, the second level set structure is L(8) = {{8}, {4, 7}, {3, 6}, {2, 5}, {1}} and the algorithm
terminates with s = 8 and t = 1.

needed for a narrow band). Furthermore, to reduce the number of vertices in the
last level set Lh(r) for which it is necessary to generate the rooted level structures,
a “shrinking” strategy can be used. This typically involves considering the degrees
of the vertices in Lh(r) (for example, only those of smallest degree will be tried).
Such modifications can lead to significant time savings while still returning a good
starting vertex for the CM and RCM algorithms. As with the MD algorithm, tie-
breaking rules must be built into any implementation.
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8.2.3 Spectral Orderings

Spectral methods offer an alternative approach that does not use level structures.
The spectral algorithm associates a positive semidefinite Laplacian matrix Lp with
the symmetric matrix A as follows:

(Lp)ij =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if i �= j and aij �= 0,

degG(i) if i = j,

0 otherwise.

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian
matrix is called a Fiedler vector. If G is connected, Lp is irreducible and the second
smallest eigenvalue is positive. The vertices of G are ordered by sorting the entries
of the Fiedler vector into monotonic order. Applying the permutation symmetrically
to A yields the spectral ordering.

The use of the Fiedler vector for reordering A comes from considering the matrix
envelope. The size of the envelope can be written as

|env(A)| =
n∑

i=1

βi =
n∑

i=1

max
k<i

(k,i)∈G
(i − k).

Observation 8.1 implies that the asymptotic upper bound on the operation count for
the factorization based on env(A) is

workenv =
n∑

i=1

β2
i =

n∑

i=1

max
k<i

(k,i)∈G
(i − k)2.

Ordering the vertices using the Fiedler vector is closely related to minimizing
weightenv over all possible vertex reorderings, where

weightenv =
n∑

i=1

∑

k<i
(k,i)∈G

(i − k)2.

Thus, while minimizing the profile and envelope is related to the infinity norm,
minimizing weightenv is related to the Euclidean norm of the distance between
graph vertices.

Although computing the Fiedler vector can be computationally expensive it
does have the advantage of easy vectorization and parallelization and the resulting
ordering can give small profiles and low operation counts.
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8.3 Local fill-reducing orderings for nonsymmetric S{A}

If S{A} is nonsymmetric, then an often-used strategy is to apply the minimum
degree algorithm (or one of its variants) or a band or profile-reducing ordering to the
undirected graph G(A+AT ). This can work well if the symmetry index s(A) is close
to 1. But if A is highly nonsymmetric (typically, for values of s(A) less than 0.5,
A is considered to be highly nonsymmetric), then a different approach is required.
Markowitz pivoting generalizes the MD algorithm by choosing the pivot entry
based on vertex degrees computed directly from the nonsymmetric S{A}; the result
is a nonsymmetric permutation. It can be described using a sequence of bipartite
graphs of the active submatrices but here we use a matrix-based description that
permutes A on-the-fly. Note that Markowitz pivoting is generally incorporated into
the numerical factorization phase of an LU solver, rather than being used to derive
an initial reordering of A.

At step k of the LU factorization, consider the (n − k + 1) × (n − k + 1) active
submatrix, that is, the Schur complement S(k) given by (3.2). Let nz(rowi) and
nz(colj ) denote the number of entries in row i and column j of S(k) (1 ≤ i, j ≤ n−
k + 1). Markowitz pivoting selects as the k-th pivot the entry of S(k) that minimizes
the Markowitz count given by the product

(nz(rowi) − 1)(nz(colj ) − 1).

This strategy is summarized in Algorithm 8.5 and illustrated in Figure 8.10. Here
the first pivot is a24 with Markowitz count 1; it does not cause fill-in. The second
pivot has Markowitz count 2 in S(2); it results in one filled entry. Note that the
interchanges of rows and columns that are potentially performed at each of the first
n − 1 steps of the factorization give the row and column permutation matrices on
the output of Algorithm 8.5. Implementation of the algorithm requires access to the
rows and the columns of the matrix.

ALGORITHM 8.5 Markowitz pivoting
Input: Matrix A with a nonsymmetric sparsity pattern.
Output: A′ = PAQ, where P and Q are permutation matrices chosen to limit fill
in.

1: Set S(1) = A and A′ = A

2: for k = 1 : n − 1 do
3: Compute nz(rowi) and nz(colj ) (1 ≤ i, j ≤ n − k + 1)
4: Find an entry s

(k)
ij of S(k) that minimizes (nz(rowi) − 1)(nz(colj ) − 1)

5: Permute the rows and columns so that s(k)
ij is the (1, 1) entry of the permuted

S(k)

6: Compute Schur complement S(k+1) of the permuted S(k) with respect to its
(1, 1) entry

7: end for
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⎛
⎜⎜⎜⎝

1 ∗ ∗ ∗ ∗
2 ∗ �
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2 ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ � ∗
5 ∗ ∗ ∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

5 41 2 3 4 1 2 3 5 4 2 1 3 5

2 ∗ ∗
4 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ f ∗

⎞
⎟⎟⎟⎠

Figure 8.10 Illustration of Markowitz pivoting. The first and second pivots are circled. The
sparsity pattern of A = S(1) is on the left. In the centre is the sparsity pattern after permuting the
pivot in position (2, 4) to the (1, 1) position of S(1). There is no fill-in after the first factorization
step. On the right is the sparsity pattern after selecting the second pivot that has the original position
(4, 2) and permuting it to the (1, 1) position of S(2). The resulting filled entry is denoted by f . Note
that the nonsymmetric permutations transform the originally irreducible matrix into a reducible
one.

Markowitz pivoting as described here only considers the sparsity of A and the
subsequent Schur complements. In practice, the pivoting strategy also needs to avoid
small pivots because, as discussed in the last chapter, they can lead to numerical
instability. A simple improvement is to break ties in Step 4 by choosing from the
entries with the minimum Markowitz count the one of largest absolute value.

Because computing row and column counts is expensive, practical implemen-
tations may restrict computing them to a limited number of rows and columns.
Alternatively, the search may be restricted to a predetermined number of rows
of lowest row count (typically two or three rows), choosing entries with best
Markowitz count and breaking ties on numerical grounds. Another option is
to restrict the pivot choice to diagonal entries, in which case A is permuted
symmetrically.

Algorithm 8.5 needs storage formats that can accommodate dynamic changes
to the Schur complements. For example, the DS format described in Section 1.3.2,
which allows access to both the rows and the columns. However, this format is only
feasible if the amount of fill-in during the factorization is not large.

8.4 Global Nested Dissection Orderings

Nested dissection is the most important and widely used global ordering strategy
for direct methods when S{A} is symmetric; it is particularly effective for ordering
very large matrices. It proceeds by identifying a small set of vertices VS (known as
a vertex separator) that if removed separates the graph into two disjoint subgraphs
described by the vertex subsets B and W (commonly called “black” and “white”,
respectively). The rows and columns belonging to B are labelled first, then those
belonging toW and finally those in VS . The reordered matrix has the form

⎛

⎜
⎝

AB,B 0 AB,VS
0 AW,W AW,VS

AT
B,VS AT

W,VS AVS ,VS

⎞

⎟
⎠ . (8.2)
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.11 A simple example to illustrate nested dissection. The pattern of the original
matrix (top), the partitioned graph (centre), and the corresponding symmetrically permuted matrix
(bottom) are given.

This is shown for a 13 × 13 example in Figure 8.11. Provided the variables
are eliminated in the permuted order, no fill occurs within the zero off-diagonal
blocks. If |VS | is small and |B| and |W| are similar, these zero blocks account
for approximately half the possible entries in the matrix. The reordering can be
applied recursively to the submatrices AB,B and AW,W until the vertex subsets
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ALGORITHM 8.6 Nested dissection algorithm
Input: Graph G of a symmetrically structured matrix A and a partitioning algorithm
PartitionAlg.
Output: A permutation vector p that defines a new labelling of the vertices of G.
1: recursive function (p = nested_dissection(A, PartitionAlg))
2: if dissection has terminated then � Vertex subsets are smaller than some

threshold
3: p = AMD(V, E) � Compute an AMD ordering
4: else
5: Use PartitionAlg(V, E) to obtain the vertex partitioning (B,W,VS)

6: pB = nested_dissection(AB,B, PartitionAlg)
7: pW = nested_dissection(AW,W , PartitionAlg)
8: pVS is an ordering of VS

9: Set p =
⎛

⎜
⎝

pB
pW
pVS

⎞

⎟
⎠

10: end if
11: end recursive function

are of size less than some prescribed threshold. At this stage, a local ordering
technique (such as AMD) is normally more effective than nested dissection, and so a
switch is made. The general form of the nested dissection algorithm is summarized
in Algorithm 8.6. The parameter PartitionAlg specifies the algorithm used in
determining the partitioning of the vertices. The performance and efficacy is highly
dependent on the choice of PartitionAlg. Originally, level set based methods were
used but most current approaches use multilevel techniques that create a hierarchy
of graphs, each representing the original graph, but with a smaller dimension. The
smallest (that is, the coarsest) graph in the sequence is partitioned. This partition
is propagated back through the sequence of graphs, while being periodically
refined.

8.5 Bordered Forms

Another possibility to exploit the global matrix structure is to use bordered block
forms. These forms can arise naturally in some practical applications.
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8.5.1 Doubly Bordered Form

The matrix (8.2) is an example of a doubly bordered block diagonal (DBBD)
form. More generally, a matrix is said in DBBD form if it has the block structure

ADB =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A1,1 C1

A2,2 C2

. . . .

ANb,Nb CNb

R1 R2 . . . RNb B

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8.3)

where Nb > 1, the blocks Alb,lb on the diagonal are square nlb × nlb matrices
and the border blocks Clb and Rlb are nlb × nS and nS × nlb matrices, respectively,
with nS � nlb (1 ≤ lb ≤ Nb). B is an nS × nS matrix. The blocks can have very
different sizes. A nested dissection ordering can be used to permute a symmetrically
structured matrix A to a symmetrically structured DBBD form (S{Ri} = S{CT

i }).
If S{A} is close to symmetric, then nested dissection can be applied to S{A + AT }.
In finite-element applications, the DBBD form corresponds to partitioning the
underlying finite-element domain into non-overlapping subdomains; each Alb,lb

represents the interior of a subdomain and the variables in the borders are those
that lie on an interface between two or more subdomains.

Coarse-grained parallel approaches aim to factorize the Alb,lb blocks in parallel
before solving the interface problem that connects the blocks. The block factoriza-
tion of ADB is

ADB =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

L1

L2

. . .

LNb

R̂1 R̂2 . . . R̂Nb LS

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

U1 Ĉ1

U2 Ĉ2

. . . .

UNb ĈNb

US

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where

R̂lb = RlbU
−1
lb , Ĉlb = L−1

lb Clb (1 ≤ lb ≤ Nb), LSUS = B −
Nb∑

lb=1

R̂lbĈlb.

The process is summarized in Algorithm 8.7. Here, for simplicity of notation, the
permutation matrices for the block factorizations are set to the identity; in practice,
Alb,lb = PlbLlbUlbQlb for some permutation matrices Plb and Qlb (1 ≤ lb ≤ Nb)
and S = PSLSUSQS for some permutation matrices Ps and QS .

There are several opportunities to incorporate parallelism. First, the factoriza-
tions of the blocks Alb,lb on the diagonal are completely independent. In addition,
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ALGORITHM 8.7 Coarse-grained parallel LU factorization using DBBD form
Input: Matrix ADB in DBBD form (8.3).
Output: Block LU factorization.

1: Initialise S = B

2: for lb = 1 : Nb do
3: Alb,lb = LlbUlb � LU factorization of square block on diagonal
4: R̂lb = RlbU

−1
lb � Triangular solve for bottom-border blocks

5: Ĉlb = L−1
lb Clb � Triangular solve for right-border blocks

6: end for
7: S = S − ∑Nb

lb=1 R̂lbĈlb � Assemble updates to interface block
8: S = LSUS � Factorize updated interface block (Schur complement)

the factorization of each individual Alb,lb can be parallelized. The same is true
for the triangular solves that update the border blocks. Second, the assembly of
the interface block S can be partially parallelized (it can be started as soon as the
first updated border blocks are available). Third, the LU factorization of S can be
parallelized.

Observe that S is generally significantly denser than the other blocks and can
present a computational bottleneck. In fact, not only is factorizing S expensive in
terms of the memory and operations required, assembly updates to it can be time
consuming. This is because multiple submatrices may contribute to the same entry
of S, and these cannot be performed at the same time. Furthermore, for an efficient
parallel implementation, load balance must be considered. If the work required for
factorizing each of the blocks on the diagonal is not similar, then the time will be
dominated by the most expensive block. One possible solution is to choose Nb to be
greater than the number of processors and use dynamic scheduling to achieve good
load balance. Unfortunately, if the number of blocks increases, so too does the size
of S.

If A is not SPD, then factorizing the Alb,lb blocks without considering the entries
in the border can potentially lead to stability problems. Consider the first step in
factorizing Alb,lb and the threshold pivoting test (7.5) for a sparse LU factorization.
The pivot candidate (Alb,lb)11 must satisfy

max{max
i>1

|(Alb,lb)i1|,max
k

|(Rlb)k1|} ≤ γ −1|(Alb,lb)11|,

where γ ∈ (0, 1] is the threshold parameter. Large entries in the row border matrix
Rlb can prevent pivots being selected within Alb,lb. Stability can be maintained by
moving rows and columns that cannot be eliminated to the borders. This increases
the border size and may adversely affect the a priori sparse data structures for
holding the factors, increase the work required to perform the factorization, and
reduce the potential for parallelism within the factorization of the block.
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8.5.2 Singly Bordered Form

An alternative strategy is to permute A to singly bordered block diagonal (SBBD)
form

ASB =

⎛

⎜
⎜
⎝

A1,1 C1

A2,2 C2

. . . .

ANb,Nb CNb

⎞

⎟
⎟
⎠ ,

where the blocks Alb,lb are rectangular mlb × nlb matrices with mlb ≥ nlb and
∑Nb

lb=1 ml = n, and the border blocks Clb are of order mlb × nI (nI � nlb), where
nI = ∑Nb

bl=1 (mlb − nlb). The linear system becomes

⎛

⎜
⎜
⎝

A1,1 C1

A2,2 C2

. . . .

ANb,Nb CNb

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1
...

xNb

xI

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

b1

b2
...

bNb

⎞

⎟
⎟
⎟
⎠

, (8.4)

where xlb is of length nlb, xI is a vector of length nI of interface variables, and the
right-hand side vectors blb are of length mlb, such that

(
Alb,lb Clb

)
(

xlb

xI

)

= blb, 1 ≤ lb ≤ Nb.

A partial factorization of each block matrix is performed, that is,

(
Alb,lb Clb

) = Plb

(
Llb

L̄lb I

)(
Ulb Ūlb

Slb

)

Qlb, (8.5)

where Plb and Qlb are permutation matrices, Llb and Ulb are nlb × nlb lower and
upper triangular matrices, respectively, and if qlb is the number of columns in Clb

with at least one entry, Slb is a (mlb − nlb) × qlb local Schur complement matrix.
Pivots can only be chosen from the columns of Alb,lb because the columns of Clb

have entries in at least one other border block Cjb (jb �= lb). The pivot candidate
(Alb,lb)11 at the first elimination step must satisfy

max
i>1

|(Alb,lb)i1| ≤ γ −1|(Alb,lb)11|,

and provided A is nonsingular, there will always be a numerically satisfactory
pivot in column 1 of Alb,lb. The same is true at each elimination step so that nlb

pivots can be chosen. An nI × nI matrix S is obtained by assembling the Nb local
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ALGORITHM 8.8 Coarse-grained parallel LU factorization and solve using
SBBD form
Input: Linear system in SBBD form (8.4).
Output: Block LU factorization and computed solution x.

1: S = 0 and zI = 0
2: for lb = 1 : Nb do
3: Perform a partial LU factorization (8.5) of (Alb,lb, Clb).

4: Solve Plb

(
Llb

L̄lb I

)(
ylb

ȳlb

)

= blb

5: S = S + Slb and zI = zI + ȳlb � Assemble S and zI

6: end for
7: S = PsLsUsQs � Ps and Qs are permutation matrices
8: Solve PsLs yI = zI and then UsQs xI = yI � Forward then back substitution
9: for lb = 1 : Nb do

10: Solve Ulb Qlb xlb = ylb − Ūlb Qlb xI

11: end for

Schur complement matrices Slb. The approach is summarized as Algorithm 8.8. The
operations on the submatrices can be performed in parallel.

8.5.3 Ordering to Singly Bordered Form

The objective is to permute A to an SBBD form with a narrow column border. One
way to do this is to choose the number Nb > 1 of required blocks and use nested
dissection to compute a vertex separator VS of G(A + AT ) such that removing VS
and its incident edges splits G(A + AT ) into Nb components. Then initialize the
set SC of border columns to VS and let V1b,V2b, . . . ,VNb be the subsets of column
indices of A that correspond to the Nb components and let ni,kb be the number of
column indices in row i that belong to Vkb. If lb = argmax1≤kb≤Nb |ni,kb|, then
row i is assigned to partition lb. All column indices in row i that do not belong to
Vlb are moved into SC . Once all the rows have been considered, the only rows that
remain unassigned are those that have all their nonzero entries in VS . Such rows can
be assigned equally to the Nb partitions. If j ∈ SC is such that column j of A has
nonzero entries only in rows belonging to partition kb, then j can be removed from
SC and added to Vkb. The procedure is outlined as Algorithm 8.9. The computed
vector block and set SC can be used to define permutation matrices P and Q such
that PAQ = ASB . In practice, it may be necessary to modify the algorithm to
ensure a good row balance between the number of rows in the blocks; this may lead
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ALGORITHM 8.9 SBBD ordering of a general matrix
Input:Matrix A, the number Nb > 1 of blocks and corresponding vertex separator
VS of G(A + AT ).
Output: Vector block such that block(i) denotes the partition in the SBBD form to
which row i is assigned (1 ≤ i ≤ n) and SC is the set of border columns.

1: Initialise SC = VS and block(1 : n) = 0
2: Initialise Vkb to hold the column indices of A that correspond to component kb

of G(A + AT ) after the removal of VS , 1 ≤ kb ≤ Nb

3: for each row i do
4: Add up the number ni,kb of column indices belonging to Vkb, 1 ≤ kb ≤ Nb

5: Find lb = argmax1≤kb≤Nb ni,kb

6: block(i) = lb

7: for each column index j in row i do
8: if j ∈ Vkb and kb �= lb then
9: Remove j from Vkb and add to SC

10: end if
11: end for
12: end for
13: Assign the rows i for which block(i) = 0 equally between the Nb partitions.
14: If some column j ∈ SC has nonzero entries only in rows belonging to partition

kb then remove j from SC and add to Vkb

to a larger SC . It is also necessary to avoid adding in duplicate column indices into
SC (alternatively, a final step can be added that removes duplicates).

The matching-based orderings discussed in Section 6.3 that permute off-diagonal
entries onto the diagonal can increase the symmetry index of the resulting reordered
matrix, particularly in cases where A is very sparse with a large number of zeros
on the diagonal. Frequently, applying a matching ordering before ordering to SBBD
form reduces the number of columns in SC .

8.6 Notes and References

The most influential early paper on orderings for sparse symmetric matrices is
that of Tinney & Walker (1967). It first proposed the minimum degree algorithm
(referred to as scheme 2) and the minimum fill-in algorithm (referred to as scheme
3). The fast implementation of the minimum degree algorithm using quotient
graphs is summarized by George & Liu (1980a). Further developments were
made throughout the 1980s, including the multiple minimum degree variant, mass
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elimination and external degree; key references are Liu (1985) and George & Liu
(1989). An important development in the 1990s was the approximate minimum
degree algorithm of Amestoy et al. (1996). Modifying the AMD algorithm for
matrices with some dense rows is discussed in Dollar & Scott (2010). For a
careful description of different variants of the minimum degree strategy and their
complexity we recommend Heggernes et al. (2001). Rothberg & Eisenstat (1998)
consider both minimum degree and minimum fill strategies and (Erisman et al.,
1987) provide an early evaluation of different strategies for nonsymmetric matrices.

Jennings (1966) presents the first envelope method for sparse Cholesky factor-
izations. The Cuthill-McKee algorithm comes from the paper by Cuthill & McKee
(1969). The GPS algorithm was originally introduced in Gibbs et al. (1976). The
book by George & Liu (1981) gives a detailed description of the algorithm while
Meurant (1999) includes an enlightening discussion of the relation between the CM
and RCM algorithms. A quick search of the literature shows that a large number of
bandwidth and profile reduction algorithms have been (and continue to be) reported.
Many have their origins in the Cuthill-McKee and GPS algorithms. A widely used
two-stage variant that employs level sets is the so-called Sloan algorithm (Sloan,
1986); see also Reid & Scott (1999) for details of an efficient implementation. The
use of the Fiedler vector to obtain spectral orderings is introduced in Barnard et al.
(1995), with analysis given in George & Pothen (1997). A hybrid algorithm that
combines the spectral method with the second stage of Sloan’s algorithm to further
reduce the profile is proposed in Kumfert & Pothen (1997) and a multilevel variant
is given by Hu & Scott (2001). de Oliveira et al. (2018) provide a recent comparison
of many bandwidth and profile reduction algorithms.

Reducing the bandwidth when A is nonsymmetric is discussed by Reid &
Scott (2006). For highly nonsymmetric A, Scott (1999) applies a modified Sloan
algorithm applied to the row graph (that is, G(AAT )) to derive an effective ordering
of the rows of A for use with a frontal solver. The approach originally proposed
by Markowitz (1957) for finding pivots during an LU factorization is incorporated
(in modified form) in a number of serial LU factorization codes, including the
early solvers MA28 and Y12M (Duff, 1980 and Zlatev, 1991, respectively) as well
as MA48 (Duff & Reid, 1996). The book of Duff et al. (2017) includes detailed
discussions. To limit permutations to being symmetric, Amestoy et al. (2007)
propose minimizing the Markowitz count among the diagonal entries.

A seminal paper on global orderings is George (1973), but a real revolution in
the field followed the theoretical analysis of the application of nested dissection for
general symmetrically structured sparse matrices given in Lipton et al. (1979). For
subsequent extensions discussing separator sizes we suggest Agrawal et al. (1993),
Teng (1997), and Spielman & Teng (2007).

From the early 1990s onwards, there have been numerous contributions to graph
partitioning algorithms. Significant developments, including multilevel algorithms,
have been driven in part by the design and development of mathematical software,
notably the well-established packages METIS (2022) and Scotch (2022); both
offer versions for sequential and parallel graph partitioning (see also the papers
by Karypis & Kumar, 1998a,b and Chevalier & Pellegrini, 2008). The book by
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Bichot & Siarry (2013) discusses a number of contributions, including hypergraph
partitioning, which is well suited to parallel computational models (see, for example,
Uçar & Aykanat, 2007 and references to the use of hypergraphs given in the survey
article of Davis et al., 2016; they can also be used for profile reduction Acer et al.,
2019).

Hu et al. (2000) present a serial algorithm for ordering nonsymmetric A to SBBD
form; an implementation is available as HSL_MC66 within the HSL mathematical
software library. Algorithm 8.9 is from Hu & Scott (2005) (see also Duff & Scott,
2005). Alternatively, hypergraphs can be used for SBBD orderings. The best-known
packages are the serial code PaToH of Aykanat et al. (2004) and the parallel code
PHG from Zoltan (2022).
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