
Chapter 6
Sparse LU Factorizations

The closer one looks, the more subtle and remarkable Gaussian
elimination appears – Trefethen (1985)

Gaussian elimination is living mathematics. It has mutated
successfully for the last two hundred years to meet changing
social needs – Grcar (2011)

This chapter considers the LU factorization of a general nonsymmetric nonsingular
sparse matrix A. In practice, numerical pivoting for stability and/or ordering of A to
limit fill-in in the factors is often needed and the computed factorization is then of a
permuted matrix PAQ. Pivoting is discussed in Chapter 7 and ordering algorithms
in Chapter 8.

6.1 Sparse LU Factorizations and Their Graph Models

In Chapter 4, graphs were used to describe structural changes during a sparse
Cholesky factorization. In particular, the elimination tree was shown to play a key
role and, in the previous chapter, the use of DAGs was discussed. For general
matrices, there are a number of ways that graphs can be employed.

6.1.1 Use of Elimination DAGs

The first graph model uses the elimination DAGs associated with L and U that were
defined in (2.1)–(2.2). The following observation, which is illustrated in Figure 6.1,
generalizes Observation 4.1 to nonsymmetric matrices.

Observation 6.1 If i > j and uji �= 0, then the column replication principle
states

© The Author(s) 2023
J. Scott, M. Tůma, Algorithms for Sparse Linear Systems, Nečas Center Series,
https://doi.org/10.1007/978-3-031-25820-6_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25820-6protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6
https://doi.org/10.1007/978-3-031-25820-6_6

90 6 Sparse LU Factorizations

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ ∗
4 ∗ f ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ f ∗ f
4 ∗ f f ∗ f
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f f f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 6.1 An illustration of the column and row replication principles of sparse LU factoriza-
tions. The matrix A is on the left. In the centre, we show in red the filled entries in L resulting
from the replication of the first column in the second column because u12 �= 0. On the right, we
show in blue the filled entries in U resulting from the replication of the second row in the third
row because l32 �= 0. Other filled entries resulting from subsequent steps of the factorization are
denoted in black.

S{Li:n,j } ⊆ S{Li:n,i},

that is, the pattern of column j of L (rows i to n) is replicated in the pattern of
column i of L. Analogously, if i > j and lij �= 0, then the row replication principle
states

S{Uj,i:n} ⊆ S{Ui,i:n},

that is, the pattern of row j of U (columns i to n) is replicated in the pattern of row
i of U .

Algorithm 6.1 outlines a basic sparse LU factorization. Here it is assumed that A
is factorizable so that pivoting is not needed. The remainder of this chapter looks at
techniques that can be used to develop the approach into an efficient one.

The following theorem formulates the recursive column replication and the
replication of nonzeros along rows of L using directed paths in G(U); an analogous
result holds for the rows of U and directed paths in G(LT).

Theorem 6.1 (Gilbert & Liu 1993) Assume that for some k < j there is a directed

path k
G(U)���⇒ j . Then

S{Lj :n,k} ⊆ S{Lj :n,j }. (6.1)

Moreover, if lik �= 0 for some i > j , then lis �= 0 for all vertices s on this path.

The next two theorems generalize Theorem 4.3 to A being a general nonsymmetric
matrix.

Theorem 6.2 (Gilbert & Liu 1993) If aij = 0 and i > j , then there is a filled
entry lij �= 0 if and only if there exists k < j such that aik �= 0 and there is a

directed path k
G(U)���⇒ j .

6.1 Sparse LU Factorizations and Their Graph Models 91

ALGORITHM 6.1 Basic sparse LU factorization
Input: Nonsymmetric and factorizable matrix A = LA + DA + UA.
Output: LU factorization A = LU .

1: L = I + LA � Identity plus strictly lower triangular part of A
2: U = DA + UA � Diagonal plus strictly upper triangular part of A
3: for k = 1 : n − 1 do
4: for i ∈ {i > k | lik �= 0} do
5: lik = lik/ukk

6: Ui,i:n = Ui,i:n − Uk,i:nlik � Update row i of U
7: end for
8: for j ∈ {j > k | ukj �= 0} do
9: Lj+1:n,j = Lj+1:n,j − Lj+1:n,kukj � Update column j of L

10: end for
11: end for

Theorem 6.3 (Gilbert & Liu 1993) If aij = 0 and i < j , then there is a filled
entry uij �= 0 if and only if there exists k < i such that akj �= 0 and there is a

directed path k
G(LT)���⇒ i.

Theorems 6.2 and 6.3 are demonstrated in Figure 6.2. Consider the directed path
1 → 3 → 5 → 6 in G(U). Existence of this path implies the fill-in in L, first in

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

7 1 21 2 3 4 5 6 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f
5 ∗ ∗ f f ∗ ∗ f
6 ∗ f ∗ ∗ f
7 ∗ f f f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 6.2 The sparsity patterns ofA (left) and L+U (right) together with the graphs G(A) (left),
G(LT) (centre) and G(U) (right). The filled entries are denoted by f and the corresponding edges
are the red dashed lines.

92 6 Sparse LU Factorizations

1

5

4

2 3

1

5

4

2 3

1

5

4

2 3

Figure 6.3 Example to show the transitive reduction of a DAG. G is on the left, its transitive
reduction G0 is in the centre, and one possible G′ that is equireachable with G is on the right.

column 3, then in columns 5 and 6. Similarly, the directed path 2 → 4 → 5 → 6 in
G(LT) implies fill-in at positions (4, 7), (5, 7) and (6, 7) in U .

6.1.2 Transitive Reduction and Equireachability

To employ G(LT) and G(U) in efficient algorithms, they need to be simplified. One
possibility is to use transitive reductions that are sparser and preserve reachability
within the graphs. A subgraph G0 = (V, E0) is a transitive reduction of G =
(V, E) if the following conditions hold:

(T 1) there is a path from vertex i to vertex j in G if and only if there is a path from
i to j in G0 (reachability condition), and

(T 2) there is no subgraph with vertex set V that satisfies (T 1) and has fewer edges
(minimality condition).

A transitive reduction is unique for a DAG, as shown in the following theorem and
illustrated in Figure 6.3.

Theorem 6.4 (Aho et al. 1972) Let G be a DAG. The transitive reduction G0 of G
is unique and is the subgraph that has an edge for every path in G and has no proper
subgraph with this property.

If S{A} is symmetric, then, as illustrated in Figure 6.4, the role of the transitive
reduction is played by the elimination tree.

Theorem 6.5 (Liu 1990; Eisenstat & Liu 2005a) If A is symmetrically structured,
then the transitive reduction of the DAG G(LT) (= G(U)) is the elimination tree
T (A).

Obtaining the exact transitive reduction of a DAG can be expensive. Instead,
approximate reductions that drop the minimality condition may be computed. A
directed graph G′ with the same vertex set as G that satisfies condition (T 1) is said

6.1 Sparse LU Factorizations and Their Graph Models 93

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ f
4 ∗ ∗ f ∗
5 ∗ ∗ ∗ f ∗ f
6 ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎠

1
23

45

6

1
23

45

6

Figure 6.4 The sparsity patterns of L+U of a symmetrically structured A together with the DAG
G(LT) (left) and the elimination tree T (A) (right). The filled entries are denoted by f and the
corresponding edges are the red dashed lines. It is straightforward to see that T (A) is obtained as
the transitive reduction of G(LT).

to be equireachable with G. The next result is a simplification of Theorem 6.1; an
analogous result holds for the sparsity patterns of the rows of U .

Theorem 6.6 (Gilbert & Liu 1993) Assume G′ is equireachable with G(U) and

for some k < j there is a directed path k
G′�⇒ j . Then (6.1) holds. Moreover, if

lik �= 0 for some i > j , then lis �= 0 for all vertices s on the directed path.

Equireachability enables sparse triangular linear systems to be solved more
efficiently. In Chapter 5, Theorem 5.2 describes how to obtain the sparsity pattern
J of the solution of a lower triangular system using paths in G(LT). This graph
can be replaced by any graph that is equireachable with G(LT). Equireachability
also allows Theorems 6.2 and 6.3 to be rewritten using paths in a graph G′ that is
equireachable with G.
Theorem 6.7 (Gilbert & Liu 1993) If aij = 0 and i > j , then there is a filled
entry lij �= 0 if and only if there exists k < j such that aik �= 0 and a directed path

k
G′(U)���⇒ j , where G′(U) is equireachable with G(U).

Theorem 6.8 (Gilbert & Liu 1993) If aij = 0 and i < j , then there is a filled
entry uij �= 0 if and only if there exists k < i such that akj �= 0 and a directed path

k
G′(LT)����⇒ i, where G′(LT) is equireachable with G(LT).

Figure 6.5 depicts G(U) and G′(U) for the matrix in Figure 6.2.
A description of the sparsity patterns of the columns of L can be obtained from

the Schur complement (3.2) as follows:

94 6 Sparse LU Factorizations

1 5

3

6 1 5

3

6

2 7

4

2 7

4

Figure 6.5 The DAG G(U) for the matrix from Figure 6.2 (left) and G′(U)which is equireachable
with G(U) (right).

S{Lj :n,j } = S{Aj :n,j }
⋃

k<j,ukj �=0

S{Lj :n,k}, 1 ≤ j ≤ n.

Theorem 6.7 implies that not all the terms in this union are needed to obtain
S{Lj :n,j }. This result is given in Theorem 6.9, which shows how S{L} can be
computed by columns if G′(U) that is equireachable with G(U) is known.

Theorem 6.9 (Gilbert & Liu 1993) If G′(U) is equireachable with G(U), then

S{Lj :n,j } = S{Aj :n,j }
⋃

(k→j)∈E(G′(U))

S{Lj :n,k}, 1 ≤ j ≤ n. (6.2)

Proof Consider an edge (k → j) in G(U) but not in G′(U). Repeatedly apply-

ing (6.1) along the directed path k
G′(U)���⇒ j , we see that Lj :n,k is contained in the

right-hand side of (6.2) and therefore S{Lj :n,j } is contained in the right-hand side
of (6.2). Because the right-hand side of (6.2) is trivially contained in the left-hand
side, the result follows. ��
An analogous result holds for the rows of U .

Theorem 6.10 (Gilbert & Liu 1993) If G′(L) is equireachable with G(L), then

S{Ui,i:n} = S{Ai,i:n}
⋃

(k→i)∈E(G′(LT))

S{Uk,i:n}, 1 ≤ i ≤ n.

As an example of Theorem 6.9, consider the matrix in Figure 6.2. Because
(3 → 5) is the only edge of G′(U) in the union on the right-hand side of (6.2),
S{L5:7,5} is given by

S{L5:7,5} = S{A5:7,5} ∪ S{L5:7,3}.

We can see this from the graph G′(U) in Figure 6.5 (top right).

6.1 Sparse LU Factorizations and Their Graph Models 95

6.1.3 Symbolic LU Factorizations Using DAGs

Factorization by bordering can be used to obtain S{L} by rows and S{U} by
columns. Assume the sparsity patterns of the first k − 1 rows of L and the first
k − 1 columns of U (1 < k ≤ n) have been computed. At step k, the factors satisfy

A1:k,1:k =
(
A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0
Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
.

(6.3)
Equating terms for the (2, 1) block, row k of L satisfies

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

or, equivalently, if y denotes the off-diagonal part of the column k of LT , then it is
the solution of the lower triangular system

UT
1:k−1,1:k−1y = AT

k,1:k−1.

From Theorem 5.2, the sparsity pattern of y is the set of all vertices reachable in the
DAG G(U 1:k−1,1:k−1) (or in a graph that is equireachable with it) from the nonzeros
in Ak,1:k−1. Similarly, equating terms in (6.3) for the (1, 2) block, column k of U
satisfies

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

Again, its sparsity pattern can be determined using Theorem 5.2 and the DAG
G(LT

1:k−1,1:k−1). The diagonal entry ukk is then computed as akk −Lk,1:k−1U1:k−1,k .
This shows that determining the sparsity patterns of L and U and computing
their numerical values is coupled: computation of the factors needs be mutually
interleaved because computing part of one requires information from a part of the
other.

6.1.4 Graph Pruning

Consider the matrices in Figure 6.6. The one in the centre is the same as the one
on the left except that the entries in positions (4, 6) and (6, 4) have been removed
(that is, pruned). Both matrices have the same sets of reachable vertices in G(LT)

and G(U). This suggests how to find G′(LT) and G′(U) that are equireachable with
G(LT) and G(U), respectively.

Theorem 6.11 (Eisenstat &Liu 1992) If for some j < s both lsj �= 0 and ujs �= 0,
then there are no edges (j → k) with k > s in the transitive reductions of G(U)

and G(LT).

96 6 Sparse LU Factorizations

⎛
⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

6 61 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 6.6 An example of symmetric pruning. On the left is S{L+U}. In the centre is the reduced
sparsity pattern obtained by symmetric pruning. On the right is the reduced sparsity pattern that
results from symmetric path pruning.

Proof Let (j → k) be an edge of G(U), that is, ujk �= 0. Because lsj �= 0 and
ujk �= 0 implies that usk �= 0, there is a path j → s → k in G(U) and the edge
(j → k) does not belong to the transitive reduction of G(U). The result for G(LT)

can be seen analogously. ��
This theorem implies that if for some s > 1 there are edges

j
G(LT)−−−→ s and j

G(U)−−−→ s,

then all edges (j → k) in G(U) and G(LT) with k > s can be pruned. The resulting
DAGs G′(U) and G′(LT) have fewer edges and are equireachable with G(U) and
G(LT), respectively. The removal of redundant edges based on Theorem 6.11 is
called symmetric pruning.

There are other ways to perform pruning. For example, if for some s > 1 there
are paths

j
G(LT)���⇒ s and j

G(U)���⇒ s,

then for all k > s symmetric path pruning removes the edges (j → k) from
G(U) and G(LT). Consider again Figure 6.6. In the centre is the sparsity pattern
after symmetric pruning and on the right is the reduced sparsity pattern that results
from symmetric path pruning. The edge (1 → 6) is not required in G′(LT) or G′(U)

because there are paths

1
G(LT)−−−→ 2

G(LT)−−−→ 4
G(LT)−−−→ 5

G(LT)−−−→ 6 and 1
G(U)−−−→ 3

G(U)−−−→ 6.

6.1 Sparse LU Factorizations and Their Graph Models 97

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗
9 ∗ ∗
10 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 9 10 1 27 8 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f
6 ∗ f f f ∗ f f f
7 ∗ ∗ f f
8 ∗ ∗ f f f f ∗ f f
9 ∗ ∗
10 ∗ f ∗ f f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

3

4

6

7 8

2 5

9

10

Figure 6.7 An example of the sparsity pattern of a nonsymmetric matrix A (left), S{L+U} with
filled entries denoted by f (right) and its elimination tree.

6.1.5 Elimination Trees for Nonsymmetric Matrices

The elimination DAGs G(L) and G(U) can be combined into a single structure
called the nonsymmetric elimination tree in which edges are replaced by paths.
This can be advantageous because it is more compact. From (4.3), if S{A} is
symmetric, then its elimination tree is defined in terms of the mapping

parent (j) = min{i | i > j and lij �= 0}.

The condition lij �= 0 is equivalent to i
G(L)−−−→ j

G(LT)−−−→ i. In the nonsymmetric case,
the definition can be generalized using directed paths

parent (j) = min{i | i > j and i
G(L)���⇒ j

G(U)���⇒ i}. (6.4)

This is illustrated in Figure 6.7. Vertices 6, 8, and 10 are the only ones with cycles
of the form

i
G(L)���⇒ 2

G(U)���⇒ i,

namely,

98 6 Sparse LU Factorizations

ALGORITHM 6.2 Basic computation of the elimination tree for nonsymmetricA
Input: Digraph G(A).
Output: The elimination tree given by the mapping parent .

1: parent (1 : n) = 0
2: for i = 1 : n do
3: Find the vertex set VC of the strong component of G(A1:i,1:i) that contains i
4: for j ∈ VC \ {i} do
5: if parent (j) = 0 then
6: parent (j) = i

7: end if
8: end for
9: parent (i) = 0

10: end for

6
G(L)−−−→ 2

G(U)−−−→ 5
G(U)−−−→ 6, 8

G(L)−−−→ 2
G(U)−−−→ 8 and 10

G(L)−−−→ 6
G(L)−−−→2

G(U)−−−→10.

In this example, parent (2) = 6.
Theorem 6.12, which can be regarded as a generalization of Corollary 4.6, shows

how the elimination tree for nonsymmetric A can be constructed.

Theorem 6.12 (Eisenstat & Liu 2005a) Let A be a nonsymmetric matrix. i =
parent (j) if and only if i > j and i is the smallest vertex that belongs to the same
strong component of G(A1:i,1:i) as vertex j .

This result is employed in Algorithm 6.2. The complexity of finding the strong
components of a digraph with m edges and n vertices is O(n + m). Hence, the
complexity of Algorithm 6.2 is O(nz(A) n). More sophisticated approaches with
complexity O(nz(A) log n) exist.

To illustrate Algorithm 6.2, consider the matrix and its elimination tree depicted
in Figure 6.7. The main loop sets the first nonzero value in the array parent when
i = 3 because this is the first i for which the set VC \ {i} is non empty; it is equal to
{1} and thus parent (1) = i = 3. For i = 4, the vertex set {1, 3, 4} forms a strong
component of G(A1:4,1:4) and so parent (3) = 4. For i = 5, the single vertex {5}
is a strong component of G(A1:5,1:5) and, therefore, 5 is not a parent of any other
vertex (it is a leaf vertex). G(A1:6,1:6) has two strong components with vertex sets
{1, 3, 4} and {2, 5, 6}. i = 6 belongs to the second of these and thus the algorithm
sets parent (j) = i = 6 for j = 2 and 5.

An attractive idea for constructing S{L + U} and subsequently computing the
LU factorization is based on using the column elimination tree T (AT A).

Theorem 6.13 (George & Ng 1985; Grigori et al. 2009) Assume all the diagonal
entries of A are nonzero and let L̂L̂T be the Cholesky factorization of ATA. Then
for any row permutation matrix P such that PA = LU the following holds:

6.1 Sparse LU Factorizations and Their Graph Models 99

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ f ∗
3 ∗ ∗
4 ∗ ∗ ∗ f ∗
5 ∗ ∗ f ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 2

34

5 6

7

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ f ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗ f ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

7

Figure 6.8 The sparsity patterns of A and L + U (top) and of AT A and L̂ + L̂T , where AT A =
L̂L̂T (bottom). Filled entries are denoted by f . The corresponding elimination trees are also given.

S{L + U} ⊆ S{L̂ + L̂T }.

An important feature of Theorem 6.13 is that it holds for any row permutation matrix
P applied toA. This allows partial pivoting (Section 3.1.2) to be used. The following
result states that T (AT A) represents the potential dependencies among the columns
in an LU factorization and that for strong Hall matrices no tighter prediction is
possible from the sparsity structure of A.

Theorem 6.14 (Gilbert & Ng 1993) If PA = LU is any factorization of A with
partial pivoting, then the following hold.

1. If vertex i is an ancestor of vertex j in T (AT A), then i > j .
2. If lij �= 0, i �= j , then vertex i is an ancestor of vertex j in T (AT A).
3. If uij �= 0, i �= j , then vertex j is an ancestor of vertex i in T (AT A).
4. Suppose in addition that A is a strong Hall matrix. If l = parent (k) in T (AT A),

then there are values of the nonzero entries of A for which ukl �= 0.

Figure 6.8 illustrates the differences in the sparsity patterns of A and ATA and
of their factors; the corresponding elimination trees are also given. This reveals a
potential problem with the column elimination tree: S{ATA} can have significantly
more entries than S{L+U}. An extreme example is when A has one or more dense
rows because ATA is then fully dense.

100 6 Sparse LU Factorizations

6.1.6 Supernodes in LU Factorizations

Supernodes group together columns of the factors with the same nonzero structure,
allowing them to be treated as a dense submatrix for storage and computation.
When solving SPD systems, supernodes can be determined during the symbolic
phase. For nonsymmetric matrices, supernodes are harder to characterize. The need
to incorporate pivoting means it may not be possible to predict the sparsity structures
of the factors before the numerical factorization and they must be identified on-the-
fly. While there are several possible ways to define supernodes, the simplest (which
is widely used in practice) follows the symmetric case and defines a supernode to
be a set of contiguously numbered columns of L with the triangular diagonal block
treated as dense and the columns as having the same structure below the diagonal
block.

In a Cholesky solver, fundamental supernodes (Section 4.6.1) are made con-
tiguous by symmetrically permuting the matrix according to a postordering of its
elimination tree; this does not change the sparsity of the Cholesky factor. For
nonsymmetric A, before the numerical factorization, T (AT A) can be constructed
and the columns of A then permuted according to its postordering to bring together
supernodes. The following result extends Theorem 4.9.

Theorem 6.15 (Li 1996) Let A have column elimination tree T (AT A). Let p be
a permutation vector such that if pi is an ancestor of pj in T (AT A), then i > j .
Let P be the permutation matrix corresponding to p and let Â = PAPT . Then
T (ÂT Â) is isomorphic to T (AT A); in particular, relabelling each vertex i of
T (ÂT Â) as pi yields T (AT A). If, in addition, Â = L̂Û is an LU factorization
without pivoting then PT L̂P and PT ÛP are lower triangular and upper triangular
matrices, respectively, so that A = (P T L̂P)(P T ÛP) is also an LU factorization.

In practice, for many matrices the average size of a supernode is only 2 or 3
columns and many comprise a single column. Larger artificial supernodes may be
created by merging vertex j with its parent vertex i in T (AT A) if the subtree rooted
at i has fewer than some chosen number of vertices.

6.2 LU Multifrontal Method

The multifrontal method (Section 5.4) can be generalized to nonsymmetric A

by modifying the definitions of the frontal matrices and generated elements to
conform to an LU factorization. But natural generalizations to rectangular frontal
and generated element matrices do not simultaneously satisfy the statements from
Observation 5.1. These statements can be rewritten for the LU factorization as
follows.

(a) Each generated element Vj is used only once to contribute to a frontal matrix.

6.2 LU Multifrontal Method 101

(b) The row and column index lists for the rectangular frontal matrix Fj correspond
to the nonzeros in column Lj :n,j and nonzeros in row Uj,j :n, respectively.

These conditions cannot both hold. An approach that satisfies (a) can be based on
the sparsity pattern of S{A + AT } and storing some explicit zeros if S{A} is not
symmetric. It is then analogous to the symmetric multifrontal method. In this case,
although the frontal and generated elements may be numerically nonsymmetric,
they are square and structurally symmetric. This approach performs well if S{A}
is close to symmetric, that is, the symmetry index of A is close to unity.

An approach that satisfies (b) and not necessarily (a) splits the generated elements
into smaller ones that are embedded into further rectangular frontal matrices. We
illustrate this using the example from Figure 6.7, that is,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f

6 ∗ f f f ∗ f f f

7 ∗ ∗ f f

8 ∗ ∗ f f f f ∗ f f

9 ∗ ∗
10 ∗ f ∗ f f ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ∗ are entries in A and filled entries in L + U are denoted by f . Taking the
entries in the first row and column, the sparsity patterns of the first frontal matrix
and the corresponding generated element are

F1 =

⎛

⎜⎜⎝

1 3

1 ∗ ∗
2 ∗
3 ∗
8 ∗

⎞

⎟⎟⎠, V1 =
⎛

⎝

3

2 f

3 ∗
8 f

⎞

⎠.

To construct F2 that satisfies (b) we can only use part of V1. From the row and
column replication principles, because a13 �= 0, the sparsity pattern of column 1
is replicated in that of column 3 of the factors. While the entry in position (2, 3)
belongs to F2, because of the row replication of the sparsity pattern of the first row
in that of the second row, the remaining entries contribute to F3 and so we split V1
into two as follows

V 2
1 = (3

2 f
)
, V 3

1 =
(3

3 ∗
8 f

)
, V1 = V 2

1 ←→�� V 3
1 ,

102 6 Sparse LU Factorizations

where ←→�� is the extend-add operator and V 2
1 and V 3

1 contribute to F2 and F3,
respectively. Then F2 and the corresponding generated element V2 are

F2 =
⎛

⎝

2 5 8 10

2 ∗ ∗ ∗ ∗
6 ∗
8 ∗

⎞

⎠ ←→�� V 2
1 =

⎛

⎝

2 3 5 8 10

2 ∗ f ∗ ∗ ∗
6 ∗
8 ∗

⎞

⎠, V2 =
(
3 5 8 10

6 f f f f

8 f f ∗ f

)
.

Consider the following splitting of V2

V2 =
(
3

6 f

8 f

)
←→��

(
5

6 f

8 f

)
←→��

(
8 10

6 f f

8 ∗ f

)
≡ V 3

2 ←→�� V 5
2 ←→�� V 6

2 .

The next frontal matrix is

F3 =
(
3 4

3 ∗ ∗
4 ∗ ∗

)
←→�� V 3

1 ←→�� V 3
2 =

⎛

⎜⎜⎝

3 4

3 ∗ ∗
4 ∗ ∗
6 f

8 f

⎞

⎟⎟⎠, V3 =
⎛

⎝

4

4 ∗
6 f

8 f

⎞

⎠.

The subsequent steps can be described in a similar way.
Theorem 6.16 expresses the nested relationship between the nonsymmetric

multifrontal method and the nonsymmetric elimination tree.

Theorem 6.16 (Eisenstat & Liu 2005b) Assume A is a general nonsymmetric
matrix and t = parent (k) in T (A). Then

S{Lt :n,k} ⊆ S{Lt :n,t } and S{Uk,t :n} ⊆ S{Ut,t :n}.

Proof Because t is the parent of k, by definition t
G(L)��⇒ k

G(U)���⇒ t . If uij �= 0,
then a multiple of column i is added to column j during the LU factorization.

Thus, by a simple induction argument, for each j on the path k
G(U)���⇒ t , we must

have S{Lj :n,k} ⊆ S{Lj :n,j }. In particular, this holds for column t . The second part

follows by a similar argument using the path t
G(L)��⇒ k. ��

This result shows that the parent relationship in the nonsymmetric elimination
tree guarantees that both row and column replications can be applied at the same
time. Hence all entries of the submatrices of the generated element Vk with indices
greater than or equal to parent (k) can be added to Vparent (k) using the operation
←→�� . To illustrate this, consider again the 10 × 10 example above for which
parent (1) = 3. Theorem 6.16 guarantees that V1 can be embedded into F3 because
S{L3:n,1} ⊆ S{L3:n,3} and S{U1,3:n} ⊆ S{U3,3:n}.

6.3 Preprocessing Sparse Matrices 103

6.3 Preprocessing Sparse Matrices

We now turn our attention to preprocessing techniques that can help in computing an
LU factorization. In particular, we consider when A does not have a full transversal
(that is, it has one or more zeros on the diagonal). For numerical stability and to
reduce the number of permutations required during the factorization, it can be useful
to permute A before the factorization begins to put large nonzero entries on the
diagonal. As an example, consider the matrix A in Figure 6.9. It has a22 = 0 and
we want to know whether it can be permuted so that all the diagonal entries are
nonzero. This question and its answer can be formulated in terms of matchings and
bipartite graphs.

6.3.1 Bipartite Graphs and Matchings

Given a graph G = (V, E), an edge subset M ⊆ E is called a matching (or
assignment) if no two edges inM are incident to the same vertex. In matrix terms, a
matching corresponds to a set of nonzero entries with no two belonging to the same
row or column. A vertex is matched if there is an edge in the matching incident
on the vertex, and is unmatched (or free) otherwise. The cardinality of a matching
is the number of edges in it. A maximum cardinality matching (or maximum
matching) is a matching of maximum cardinality. A matching is perfect if all the
vertices are matched.

A bipartite graph is an undirected graph whose vertices can be partitioned into
two disjoint sets such that no two vertices within the same set are adjacent, that is,
each set is an independent set. Let the n×nmatrixA have entries {aij ′ }. Associated
with A is a bipartite graph defined as a triple Gb = (Vrow,Vcol, E), where the row
vertex set Vrow = {i |aij ′ �= 0} and the column vertex set Vcol = {j ′ |aij ′ �= 0}
correspond to the rows and columns of A and there is an (undirected) edge (i, j ′) ∈
E if and only if aij ′ �= 0. This is illustrated in Figure 6.9. We use prime to distinguish
between the independent set of row vertices and the independent set of column
vertices, that is, i denotes a row vertex and i′ denotes a column vertex.

IfA is structurally nonsingular, a matchingM in Gb is perfect if it has cardinality
n. A perfect matching defines an n× n permutation matrixQ with entries qij given
by

qij =
{
1, if (j, i′) ∈ M,

0, otherwise.

Both QA and AQ have the matching entries on the (zero-free) diagonal. Q and the
column permuted matrix AQ for the example in Figure 6.9 are given in Figure 6.10.

104 6 Sparse LU Factorizations

⎛
⎜⎜⎜⎜⎜⎝

1
′

2
′

3
′

4
′

5
′

6
′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure 6.9 A sparse matrix and its bipartite graph Gb (left). The matched matrix entries are in
blue and edges that belong to a perfect matching in Gb are given by the blue dashed lines (right).
Note that the perfect matching is not unique (an alternative is in Figure 6.11).

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6
1 1
2 1
3 1
4 1
5 1
6 1

⎞
⎟⎟⎟⎟⎟⎠

AQ =

⎛
⎜⎜⎜⎜⎜⎝

3
′

1
′

4
′

2
′

5
′

6
′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 6.10 The permutation matrix Q and the column permuted matrix AQ corresponding to
the matrix in Figure 6.9. The matched entries are on the diagonal of AQ.

6.3.2 Augmenting Paths

If a perfect matching exists, it can be found using augmenting paths. A path P in
a graph is an ordered set of edges in which successive edges are incident to the
same vertex. P is called an M-alternating path if the edges of P are alternately
in M and not in M. An M-alternating path is an M-augmenting path in Gb if it
connects an unmatched column vertex with an unmatched row vertex. Note that the
length of an M-augmenting path is an odd integer.

6.3 Preprocessing Sparse Matrices 105

ALGORITHM 6.3 Maximum matching algorithm
Input: An undirected graph.
Output: Output maximum matching.

1: Find an initial matching M � For example, M = ∅
2: while there exists aM-augmenting path P do
3: M = M ⊕ P � Augment the matching along P
4: end while

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure 6.11 An illustration of the search for a perfect matching using augmenting paths. On the
left, the dashed lines represent a matching with cardinality 5. In the centre, the blue line is an
augmenting path with end vertices 2 and 2′. On the right is the perfect matching with cardinality 6
that is obtained using the augmenting path.

Let M and P be subsets of E and define the symmetric difference

M ⊕ P := (M \ P) ∪ (P \ M),

that is, the set of edges that belongs to either M or P but not to both. If M is
a matching and P is an M-augmenting path, then M ⊕ P is a matching with
cardinality |M|+1. Growing the matching in this way is called augmenting along
P . The next result shows that augmenting paths can be used to find a maximum
matching (Algorithm 6.3).

Theorem 6.17 (Berge 1957) A matching M in an undirected graph is a maximum
matching if and only if there is no M-augmenting path

Figure 6.11 demonstrates the procedure. On the left is a bipartite graph with a
matching with cardinality 5. In the centre, an augmenting path 2 �⇒ 3′ �⇒ 3 �⇒
4′ �⇒ 4 �⇒ 2′ is shown. Augmenting the matching along this path, the cardinality
of the matching increases to 6 and M ⊕ P is a perfect matching.

106 6 Sparse LU Factorizations

6.3.3 Weighted Matchings

While the maximum matching algorithm finds a permutation of A such that
the permuted matrix has nonzero diagonal entries, there are more sophisticated
variations that aim to ensure the absolute values of the diagonal entries of the
permuted matrix (or their product) are in some sense large. This can increase the
likelihood that the permuted matrix is strongly regular and reduce the need for
partial pivoting during the LU factorization. The core problem is as follows: given
an n × n matrix A, find a matching of the rows to the columns such that the
product of the matched entries is maximized. That is, find a permutation vector
q that maximizes

n∏

i=1

|aiqi |. (6.5)

Define a matrix C corresponding to A with entries cij ′ ≥ 0 as follows:

cij ′ =
{
log(maxi |aij ′ |) − log |aij ′ |, if aij ′ �= 0

∞, otherwise.
(6.6)

It is straightforward to see that finding a q that solves (6.5) is equivalent to finding
a q that minimizes

n∑

i=1

|ciqi |, (6.7)

which is equivalent to finding a minimum weight perfect matching in an edge
weighted bipartite graph. This is a well-studied problem and is known as the
bipartite weighted matching or linear sum assignment problem.

If Gb = (Vrow,Vcol, E) is the bipartite graph associated with A then let Gb(C) =
(Vrow,Vcol, E) be the corresponding weighted bipartite graph in which each edge
(i, j ′) ∈ E has a weight cij ′ ≥ 0. The weight (or cost) of a matching M in Gb(C),
denoted by csum(M), is the sum of its edge weights; i.e.

csum(M) =
∑

(i,j ′)∈M
cij ′ .

A perfect matchingM in Gb(C) is said to be aminimum weight perfect matching
if it has smallest possible weight, i.e. csum(M) ≤ csum(M̂) for all possible perfect
matchings M̂.

The key concept for finding a minimum weight perfect matching is that of a
shortest augmenting path. An M-augmenting path P starting at an unmatched
column vertex is called shortest if

6.3 Preprocessing Sparse Matrices 107

csum(M ⊕ P) ≤ csum(M ⊕ P̂)

for all other possible M-augmenting paths P̂ starting at the same column vertex.
A matching Me is extreme if and only if there exist ui and vj ′ (which are termed
dual variables) satisfying

{
cij ′ = ui + vj ′, if (i, j ′) ∈ Me,

cij ′ ≥ ui + vj ′, otherwise.
(6.8)

This is employed by the MC64 algorithm. The dual variables will be important
when we discuss scaling sparse matrices in Section 7.4.2. The MC64 algorithm is
outlined here as Algorithm 6.4. It starts with a feasible solution and corresponding
extreme matching and then proceeds to iteratively increase its cardinality by one
by constructing a sequence of shortest augmenting paths until a perfect extreme
matching is found. The algorithm can be made more efficient if a large initial
extreme matching can be found. For example, Step 3 can be replaced by setting
ui = min{cij ′ | j ′ ∈ S{Ai,1:n}} for i ∈ Vrow and vj ′ = min{cij ′ − ui | i ∈ S{A1:n,j ′ }}
for j ′ ∈ Vcol . In Step 4, an initial extreme matching can be determined from the
edges for which cij ′ − ui − vj ′ = 0.

There are a number of potential problems with the MC64 algorithm. First, the
runtime is hard to predict and depends on the initial ordering of A. Second, it
is a serial algorithm and as such it can represent a significant fraction of the
total factorization time of a direct solver. Because the complexity of Step 6 of
Algorithm 6.4 isO((n+nz(A)) log n) and the complexity of Step 7 isO(n) and of
Step 8 isO(n+nz(A), MC64 has a worst-case complexity ofO(n(n+nz(A)) log n).
In practice, this bound is not achieved and the algorithm is widely used.

ALGORITHM 6.4 Outline of the MC64 algorithm
Input: Matrix A.
Output: A matching M and dual variables ui , vj ′ .

1: Define the weights cij ′ using (6.6)
2: Construct the weighted bipartite graph Gb(C) = (Vrow,Vcol, E)
3: Set ui = 0 for i ∈ Vrow and vj ′ = min{cij ′ : (i, j ′) ∈ E} for j ′ ∈ Vcol � Initial

solution
4: Set M = {(i, j ′)| ui + vj ′ } � Initial extreme matching
5: whileM is not perfect do
6: Find the shortest augmenting path P with respect toM
7: Augment the matching M = M ⊕ P
8: Update ui , vj ′ so that (6.8) is satisfied for new M � Make M extreme
9: end while

108 6 Sparse LU Factorizations

6.3.4 Dulmage-Mendelsohn Decompositions

The importance of preordering A to block triangular form was discussed in
Section 3.4. The Dulmage-Mendelsohn decomposition is based on matchings and
is a generalization of the block triangular form. It provides a precise characterization
of structurally rank deficient matrices and it can be used to reduce the work required
for an LU factorization. It comprises row and column permutations P and Q such
that

PAQ =
⎛

⎝

C1 C2 C3
R1 A1 A4 A6
R2 0 A2 A5
R3 0 0 A3

⎞

⎠. (6.9)

Here A1 is an m1 × n1 underdetermined matrix (m1 < n1 or m1 = n1 = 0), A2 is
an m2 × m2 square matrix and A3 is an m3 × n3 overdetermined matrix (m3 > n3
or m3 = n3 = 0). It can be shown that AT

1 and A3 are strong Hall matrices but A2
need not be a strong Hall matrix, in which case it can be permuted to block upper
triangular form.

If row and column setsR and C form a maximummatching ofA, thenR1 andR2
are subsets ofR and |R3 ∩R| = n3, and C2 and C3 are subsets of C and |C1 ∩ C| =
m1. An example decomposition for a 10 × 10 matrix is given in Figure 6.12. Here
R = {1, 2, . . . , 9} and C = {2, 3, . . . , 10}.

The coarse Dulmage-Mendelsohn decomposition orders the unmatched
columns as the first columns in PAQ and orders the unmatched rows as the
last rows in PAQ. If A is square and has a perfect matching then its coarse
decomposition has only the matrix A2; otherwise, both A1 and A3 are present.
The coarse decomposition is computed by first finding a maximum matching.
Assuming it is not a perfect matching, the rows in A1 are determined by performing
depth-first searches from the unmatched columns to find all of the row vertices that

PAQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 6.12 An example of a coarse Dulmage-Mendelsohn decomposition. The blue entries
belong to the maximum matching. m1 = 3, m2 = 4, m3 = 3, n1 = 4, n2 = 4, n3 = 2. Column 1
and row 10 are unmatched.

6.4 Notes and References 109

are reachable from the unmatched columns via alternating augmenting paths. The
columns in A1 are defined to be the union of the set of unmatched columns and
the set of columns matched with the rows in A1. Similarly, the columns in A3 are
determined by performing depth-first searches from the unmatched rows to find all
of the column vertices that are reachable from the unmatched rows via alternating
augmenting paths. The rows in A3 are defined to be the union of the set of rows
matched to the columns in A3 and the set of unmatched rows.

It may be possible to further permute the matrix to obtain the fine Dulmage-
Mendelsohn decomposition. The fine Dulmage-Mendelsohn decomposition com-
putes P and Q such that A1 and A3 are block diagonal matrices in which each
diagonal block is irreducible, and A2 is block upper triangular with strongly con-
nected (square) diagonal blocks. Once the coarse decomposition has been computed,
A1 and A3 are searched to find any irreducible blocks and the permutations required
to place these on the diagonals of A1 and A3 are computed. Finally, following
Section 3.4, strongly connected components in A2 are found and a permutation is
formed to reduce A2 to block upper triangular form (with the strongly connected
components lying on the diagonal). If A is reducible and nonsingular, the fine
Dulmage-Mendelsohn decomposition can be used to solve the linear systemAx = b

using block back-substitution.

6.4 Notes and References

Early theoretical results related to sparse LU factorizations can be found in Rose
& Tarjan (1978), which extends the systematic understanding of the symbolic
elimination introduced in Rose et al. (1976). A key paper that influenced the
discussion and development of both the theory and algorithms for predicting
sparsity structures in LU factorizations is Gilbert (1994) (first available in 1986
as a Cornell technical report). As the primary and still very useful resource on
transitive reduction, we refer to Aho et al. (1972); Gilbert & Liu (1993) extend the
concept of an elimination tree to study sparse LU factorizations of nonsymmetric
matrices and present theoretical concepts based on DAGs; see also the parallel
counterpart in Grigori et al. (2007). Ways to simplify symbolic factorizations and
prune DAGs are discussed in Eisenstat & Liu (1992, 1993a). An elegant treatment
of both the theoretical and practical aspects of LU factorizations based on DAGs
and the nonsymmetric elimination tree (including pruning and pivoting) is given in
a series of three papers by Eisenstat & Liu (2005a,b, 2007).

Partial pivoting within the sparse column LU factorization is introduced in
Gilbert & Peierls (1988). This paper influenced not only further developments in
sparse LU factorizations but also the development of incomplete factorizations.
Partial pivoting based on the column elimination tree is first discussed in George
& Ng (1985); see also Gilbert & Ng (1993) and Li (1996) for further use of column
elimination trees. Further research on exactness of structural predictions is presented
by Grigori et al. (2009).

110 6 Sparse LU Factorizations

The proof of Theorem 6.17 is given by Berge (1957) but the result was observed
earlier (for example, König (1931)). Preordering nonsymmetric matrices using
matching algorithms is explained in Duff & Koster (1999, 2001). It is based on
the Hungarian algorithm of Kuhn (1955) and a sparse variant of the shortest path
algorithm of Dijkstra (1959). Duff and Koster implemented their algorithm in the
widely used software package MC64. Because MC64 can be expensive to run, there
has been interest in developing efficient parallel algorithms for finding a perfect
matching in a weighted bipartite graph (Azad et al., 2020) and also in relaxing the
optimality requirement to allow the development of cheaper algorithms that can be
parallelised; see, for example, Hogg & Scott (2015). A classical paper that describes
the Dulmage-Mendelsohn decomposition is Pothen & Fan (1990).

The development of supernodal LU factorizations is closely connected with that
of column LU factorizations. A key paper is by Demmel et al. (1999), in which
different types of supernodes for nonsymmetric matrices are considered.

Duff & Reid (1984) describe a symmetric-pattern multifrontal algorithm for non-
symmetric matrices that generates an assembly tree based on the structure ofA+AT .
This employs square frontal matrices and can incur a substantial overhead for highly
nonsymmetric matrices because of unnecessary data dependencies in the assembly
tree and extra explicit zeros in the artificially symmetrized frontal matrices. Davis
& Duff (1997) introduce an nonsymmetric-pattern multifrontal algorithm that seeks
to overcome these deficiencies by using rectangular frontal matrices. This work
later developed into the package UMFPACK of Davis (2004), while Amestoy &
Puglisi (2002) propose an nonsymmetric version of the multifrontal method that
can be regarded as being intermediate between the nonsymmetric-pattern variant
of UMFPACK and the symmetric-pattern multifrontal method. The Watson Sparse
Matrix Package (WSMP, 2020) also uses a nonsymmetric multifrontal algorithm.

Notable early sparse LU solvers were the Yale Sparse Matrix Package (YSMP)
of Eisenstat et al. (1977) and the Harwell Subroutine Library code MA28 written by
Duff (1980), followed later by MA48 of Duff & Reid (1996). These codes address
important practical considerations (for serial computations). Furthermore, the right-
looking Markowitz packages MA28 and MA48, which are designed particularly for
highly nonsymmetric matrices, combine the symbolic and numerical factorization
phases into a single analyse-factorize phase. Contemporary software packages such
as PARDISO (2022), SuperLU (Li et al., 1999), UMFPACK and WSMP have
been developed over many years. They provide one of the best ways of under-
standing the practical value of the ideas presented in research papers and technical
reports. PARDISO combines left and right-looking updates in a parallel shared-
memory code that assumes a symmetric nonzero sparsity pattern. SuperLU offers a
left-looking supernodal variant for sequential machines, SuperLU_MT for shared-
memory parallel machines, and the right-looking supernodal SuperLU_DIST (Li
& Demmel, 2003) for highly parallel distributed memory hybrid systems. Demmel
et al. (1999) and Li (2008) describe the algorithms and performance on various
machines. The WSMP software is split into a serial and multithreaded single-
process library for use on a single core or multiple cores on a shared-memory
machine, and a separate library for distributed memory environments.

6.4 Notes and References 111

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	6 Sparse LU Factorizations
	6.1 Sparse LU Factorizations and Their Graph Models
	6.1.1 Use of Elimination DAGs
	6.1.2 Transitive Reduction and Equireachability
	6.1.3 Symbolic LU Factorizations Using DAGs
	6.1.4 Graph Pruning
	6.1.5 Elimination Trees for Nonsymmetric Matrices
	6.1.6 Supernodes in LU Factorizations

	6.2 LU Multifrontal Method
	6.3 Preprocessing Sparse Matrices
	6.3.1 Bipartite Graphs and Matchings
	6.3.2 Augmenting Paths
	6.3.3 Weighted Matchings
	6.3.4 Dulmage-Mendelsohn Decompositions

	6.4 Notes and References

