
Chapter 5
Sparse Cholesky Solver: The
Factorization Phase

The adoption of Cholesky’s method owes not a little to the
publicity given to it shortly after the end of World War II by
British mathematicians and computer pioneers, including Alan
Turing, Leslie Fox, Jim Wilkinson, and especially John Todd –
Benzi (2017).

Achieving high performance for sparse direct solvers in general,
and sparse Cholesky factorization, in particular, is a very well
researched topic – Rennich et al. (2016)

Having considered the symbolic phase of a sparse Cholesky solver in the previous
chapter, the focus of this chapter is the subsequent numerical factorization phase.
If A is a symmetric positive definite (SPD) matrix, then it is factorizable (strongly
regular) and (in exact arithmetic) its Cholesky factorization A = LLT exists. LDLT
factorizations of general symmetric indefinite matrices are considered in Chapter 7.

5.1 Dense Cholesky Factorizations

Because efficient implementations of sparse Cholesky factorizations rely heavily on
exploiting dense blocks, we first consider algorithms for the Cholesky factorization
of dense matrices that can be applied to such blocks. Algorithm 5.1 is a basic left-
looking algorithm. It is an in-place algorithm because L can overwrite the lower
triangular part ofA (thus reducing memory requirements ifA is no longer required).

Writing A in the block form (1.2), the computation can be reorganized to give
Algorithm 5.2. This allows the exploitation of Level 3 BLAS for the computa-
tionally intensive components (dense matrix-matrix multiplies and dense triangular
solves). Here A has nb block columns, which are referred to as panels. Step 6 can
be performed using Algorithm 5.1.

Algorithms 5.1 and 5.2 are left-looking. This means that the updates are not
applied immediately. Instead, all updates from previous (block) columns are applied
together to the current (block) column before it is factorized. In a right-looking
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ALGORITHM 5.1 In-place dense left-looking Cholesky factorization
Input: Dense SPD matrix A.
Output: Factor L such that A = LLT .

1: for j = 1 : n do
2: Lj :n,j = Aj :n,j � Only the lower triangular part of A is required
3: for k = 1 : j − 1 do
4: Lj :n,j = Lj :n,j −Lj :n,k ljk � Update column j using previous columns
5: end for
6: ljj = (ljj )

1/2 � Overwrite the diagonal entry with its square root
7: Lj+1:n,j = Lj+1:n,j / ljj � Scale off-diagonal entries in column j

8: end for

ALGORITHM 5.2 In-place dense left-looking panel Cholesky factorization
Input: Dense SPD matrix A in the form (1.2) with nb panels.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do

2: Ljb:nb,jb = Ajb:nb,jb
3: for kb = 1 : jb − 1 do

4: Ljb:nb,jb = Ljb:nb,jb − Ljb:nb,kb LT
jb,kb � Update block column jb

5: end for

6: Compute in-place factorization of Ljb,jb � Overwrite Ljb,jb with its

Cholesky factor

7: Ljb+1:nb,jb = Ljb+1:nb,jb L−T
jb,jb � Dense triangular solve

8: end for

approach (Algorithm 5.3), outer product updates are applied to the part of the matrix
that has not yet been factored as they are generated.

The large panel updates can be split into operations involving only blocks. This
is shown in Algorithm 5.4 for the right-looking approach.

The panel and block descriptions of the factorization enable efficient
parallelization. The three main block operations, which are called tasks, are
factorize(jb), solve(ib, jb), and update(ib, jb, kb). There are the following
dependencies between the tasks.

factorize(jb) depends on update(jb, kb, jb) for all kb=1, . . . , jb − 1.
solve(ib, jb) depends on update(ib, kb, jb) for all kb=1, . . . , jb − 1, and

factorize(jb).
update(ib, jb, kb) depends on solve(ib, kb), solve(jb, kb).
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ALGORITHM 5.3 In-place dense right-looking panel Cholesky factorization
Input: Dense SPD matrix A in the form (1.2) with nb panels.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do

2: Ljb:nb,jb = Ajb:nb,jb
3: end for

4: for jb = 1 : nb do

5: Compute in-place factorization of Ljb,jb � Overwrite Ljb,jb with its

Cholesky factor

6: Ljb+1:nb,jb = Ljb+1:nb,jb L−T
jb,jb � Dense triangular solve

7: for kb = jb + 1 : nb do

8: Lkb:nb,kb = Lkb:nb,kb − Lkb:nb,jb LT
kb,jb

9: end for

10: end for

ALGORITHM 5.4 In-place dense right-looking block Cholesky factorization
Input: Dense SPD matrix A in the form (1.2) with nb × nb blocks.
Output: Factor L such that A = LLT .

1: for jb = 1 : nb do

2: Ljb:nb,jb = Ajb:nb,jb
3: end for

4: for jb = 1 : nb do

5: Compute in-place factorization of Ljb,jb � Task factorize(jb)

6: for ib = jb + 1 : nb do

7: Lib,jb = Lib,jb L
−T
jb,jb � Task solve(ib, jb)

8: for kb = jb + 1 : ib do

9: Lib,kb = Lib,kb − Lib,jb L
T
kb,jb � Task update(ib, jb, kb)

10: end for

11: end for

12: end for

A dependency graph can be used to schedule the tasks. Its vertices correspond to
tasks and dependencies between tasks are represented as directed edges. The result
is a directed acyclic graph (DAG). A task is ready for execution if and only if all
tasks with incoming edges to it have completed. DAG-driven linear algebra uses
either a static or dynamic schedule based on these graphs to implement the tasks
in a parallel environment. In practice, it is not necessary to explicitly compute the
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task DAG: it can be constructed on-the-fly taking into account the dependencies.
The task DAG allows a lot of flexibility in the order in which tasks are carried out:
the left- and right-looking approaches correspond to particular restricted orderings
of the tasks.

5.2 Introduction to Sparse Cholesky Factorizations

There are several classes of algorithms that implement sparse Cholesky factor-
izations. Their major differences relate to how they schedule the computations.
This affects the use of dense kernels, the amount of memory required during the
factorization as well as the potential for parallel implementations. As in the dense
case, the factorization is split into tasks that involve computations on and between
dense submatrices and the precedence relations among them can be captured by a
task graph.

We start by extending the dense Cholesky factorizations to the sparse case
in a straightforward way. In practice, it is essential for efficiency to exploit the
supervariables of A and the supernodes of L. Thus, while for simplicity of the
descriptions and notation, we refer to rows and columns of A and L, these typically
represent block rows and block columns and, as in the above discussion of the dense
block factorization algorithm, the entries of A and L are then submatrices.

The entries of L satisfy the relationship

Lj+1:n,j =
⎛
⎝Aj+1:n,j −

j−1∑
k=1

Lj+1:n,kljk

⎞
⎠ /ljj with ljj =

⎛
⎝ajj −

j−1∑
k=1

l2jk

⎞
⎠

1/2

,

and from this we deduce the following result.

Theorem 5.1 (Liu 1990) The numerical values of the entries in column j > k of
L depend on the numerical values in column k of L if and only if ljk �= 0.

The theoretical background of the previous chapter based on the elimination
tree T enables the dependencies in Theorem 5.1 to be searched for efficiently. In
particular, T allows the row (or column) counts of L to be computed and they can
be used to allocate storage for L. It can also be used to find supernodes and the
resulting (block) elimination tree can then be employed to determine the (block)
column structure of L. In practice, it can be beneficial to split large supernodes into
smaller panels to better conform to computer caches.

Algorithms 5.5 and 5.6 are simplified sparse left- and right-looking Cholesky
factorization algorithms that are straightforward sparse variants of Algorithms 5.1
and 5.4, respectively (the latter with nb = n, that is, without considering blocks).
Here, we assume that the sparsity pattern of L has already been determined in
the symbolic phase and static storage formats based, for example, on compressed
columns and/or rows are used.
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ALGORITHM 5.5 Simplified sparse left-looking Cholesky factorization
Input: SPD matrix A and sparsity pattern S{L}.
Output: Factor L such that A = LLT .

1: lij = aij for all (i, j) ∈ S{L} � Filled entries in L are initialised to zero
2: for j = 1 : n do
3: for k ∈ {k < j | ljk �= 0} do
4: for i ∈ {i ≥ j | lik �= 0} do
5: lij = lij − likljk

6: end for
7: end for
8: ljj = (ljj )

1/2

9: for i ∈ {i > j | lij �= 0} do
10: lij = lij / ljj

11: end for
12: end for

ALGORITHM 5.6 Simplified sparse right-looking Cholesky factorization
Input: SPD matrix A and sparsity pattern S{L}.
Output: Factor L such that A = LLT .

1: lij = aij for all (i, j) ∈ S{L} � Filled entries in L are initialised to zero
2: for j = 1 : n do
3: ljj = (ljj )

1/2

4: for i ∈ {i > j | lij �= 0} do
5: lij = lij / ljj

6: end for
7: for k ∈ {k > j | lkj �= 0} do
8: for i ∈ {i ≥ k | lij �= 0} do
9: lik = lik − lij lkj

10: end for
11: end for
12: end for

An alternative for sparse matrices held in row-wise format is to compute L one
row at a time. This is sometimes called an up-looking factorization because rows
1 to i − 1 are employed to compute row i (i > 1). The approach is asymptotically
optimal in the work performed and for highly sparse matrices it is potentially
extremely efficient because the entries of A are used in the natural order in which
they are stored. However, it is difficult to incorporate high level BLAS.
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The following relation holds for the i-th row of L

LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i with l2ii = aii − Li,1:i−1L
T
i,1:i−1.

The application of L−1
1:i−1,1:i−1 can be implemented by solving the triangular system

L1:i−1,1:i−1y = A 1:i−1,i ,

and setting LT
i,1:i−1 = y. The following result can be used to determine the sparsity

pattern of y.

Theorem 5.2 (Gilbert 1994) Consider a sparse lower triangular matrix L and the
DAG G(LT ) with vertex set {1, 2, . . . , n} and edge set {(j −→ i) | lij �= 0}. The
sparsity pattern S{y} of the solution y of the system Ly = b is the set of all vertices
reachable in G(LT ) from S{b}.
Proof From Algorithm 3.4 and assuming the non-cancellation assumption, we see
that (a) if bi �= 0, then yi �= 0 and (b) if for some j < i, yj �= 0 and lij �= 0, then
yi �= 0. These two conditions can be expressed as a graph transversal problem in
G(LT ). (a) adds all vertices in S{b} to the set of visited vertices and (b) states that
if vertex j has been visited, then all its neighbours in G(LT ) are added to the set of
visited vertices. Thus S{y} = Reach(S{b}) ∪ S{b}. �	

Figure 5.1 illustrates the sparsity patterns of a lower triangular matrix L and
vector b together with G(LT ). The vertices that are reachable from S{b} = {2, 4}
are 5 and 6 and thus S{y} = {2, 4, 5, 6}.

Algorithm 5.7 outlines a sparse row Cholesky factorization that is based on the
repeated solution of triangular linear systems. Theorem 5.2 can be used to determine
the sparsity pattern of row i at Step 3, that is, by finding all the vertices that are
reachable in G(LT

1:j−1,1:j−1) from the set {i | aij �= 0, i < j}. A depth-first search

L =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

b =

⎛
⎜⎜⎜⎜⎜⎝

1

1

2 ∗
3

4 ∗
5

6

⎞
⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

Figure 5.1 An example to illustrate L, b and G(LT ).
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ALGORITHM 5.7 Sparse up-looking Cholesky factorization
Input: SPD matrix A.
Output: Factor L such that A = LLT .

1: l11 = (a11)
1/2

2: for i = 2 : n do

3: Find S{Li,1:i−1} � Sparsity pattern of row i

4: LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i � Sparse triangular solve

5: lii = aii − Li,1:i−1L
T
i,1:i−1

6: lii = (lii )
1/2

7: end for

of G(LT
1:j−1,1:j−1) determines the vertices in the row sparsity patterns in topological

order, and performing the numerical solves in that order correctly preserves the
numerical dependencies. Alternatively, because nonzeros of Li,1:i−1 correspond to
the vertices in the i-th row subtree Tr (i) that are not equal to i, another option is to
find the row subtrees using T (A).

5.3 Supernodal Sparse Cholesky Factorizations

The simplified schemes form the basis of sophisticated supernodal algorithms that
are designed to be efficient in parallel computational environments. Consider the
right-looking variant and recall that a supernode consists of one or more consecutive
columns of L with the same sparsity pattern. These nonzeros are stored as a dense
trapezoidal matrix (only the lower triangular part of the block on the diagonal needs
to be stored and the rows of zeros in the columns of the supernode are not held).
This is termed a nodal matrix (see Figure 5.2).

Once a supernode is ready to be factorized, a dense Cholesky factorization of the
block on the diagonal of the nodal matrix is performed (one of the approaches of
Section 5.1 can be used). Then a triangular solve is performed with the computed
factor and the rectangular part of the nodal matrix. The next step is to iterate over
ancestors of the supernode in the assembly tree. For each parent, the rows of the
current supernode corresponding to the parent’s columns are identified, and then
the outer product of those rows and the part of the supernode below those columns
formed (update operations). The resulting matrix can be held in a temporary buffer.
The rows and columns of this buffer are matched against indices of the ancestors
and are added to them in a sparse scatter operation. For efficiency, the updates may
use panels so that the temporary buffer remains in cache.



80 5 Sparse Cholesky Solver: The Factorization Phase

Figure 5.2 An illustration of a supernode (left), the corresponding nodal matrix (centre), and the
nodal matrix with two panels (right). The shaded lower triangular part of the block on the diagonal
and the shaded block rows are treated as dense.

5.3.1 DAG-Based Approach

The DAG-based approach can also be extended to the sparse case. Each nodal matrix
is subdivided into blocks. The factorization is split into tasks in which a single block
is revised. The key difference compared to the dense case is that it is necessary to
distinguish between two types of update operations: update_internal performs the
update between blocks in the same nodal matrix and update_between performs
the update when the blocks belong to different nodal matrices. Thus the sparse
Cholesky factorization is split into the following tasks; the first two are illustrated
in Figure 5.3. In this example, the nodal matrix has two block columns that do not
contain the same number of columns.

factorize_block(Ldiag) Computes the dense Cholesky factor Ldiag of the block
on the diagonal (leftmost plot). If the block is trapezoidal, the factorization is
followed by a triangular solve of its rectangular part Lrect = LrectL

−T
diag (centre

plot).
solve_block(Ldest ) Performs a triangular solve of an off-diagonal block Ldest of

the form Ldest = LdestL
−T
diag (rightmost plot).

update_internal(Ldest , Lr , Lc) Performs the update Ldest = Ldest − LrL
T
c ,

where Ldest , Lr and Lc belong to the same nodal matrix.
update_between(Ldest , Lr , Lc) Performs the update Ldest = Ldest − LrL

T
c ,

whereLr andLc belong to the same nodal matrix andLdest belongs to a different
nodal matrix.

Again, the tasks are partially ordered and a task DAG is used to capture the
dependencies. For example, the updating of a block of a nodal matrix from a block
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Ldiag

Ldiag

Lrect

Ldiag

Ldest

Figure 5.3 An illustration of a blocked nodal matrix with two block columns. The first block on
the diagonal is triangular and the second one is trapezoidal. The task factorize_block is illustrated
on the left and in the centre; the task solve_block is illustrated on the right.

column of L that is associated with a descendant of the supernode has to wait
until all the relevant rows of the block column are available. At each stage of the
factorization, tasks will be executing (in parallel) while others are held (in a stack
or pool of tasks) ready for execution.

5.4 Multifrontal Method

The multifrontal method is an alternative way to compute a sparse Cholesky
factorization. To discuss this popular approach, we use the following result that
determines which rows and columns influence particular Schur complements using
the terminology of the elimination tree.

Theorem 5.3 (Liu 1990) Let A be SPD and let T be its elimination tree. The
numerical values of entries in column k of the Cholesky factor L of A only affect the
numerical values of entries in column i of L for i ∈ ancT {k} (1 ≤ k < i ≤ n − 1).

Proof From (4.1), setting S(1) = A, for k ≥ 2 the (n− k + 1)× (n− k + 1) Schur
complement S(k) can be expressed as

S(k) = S
(k−1)
k:n,k:n −

⎛
⎜⎝
lk,k−1

...

ln,k−1

⎞
⎟⎠ (

lk,k−1 . . . ln,k−1
) = S

(k−1)
k:n,k:n − Lk:n,k−1L

T
k:n,k−1.

(5.1)
Theorem 4.2 implies that all nonzero off-diagonal entries lik in column k of L
explicitly used in the update (5.1) are such that i ∈ ancT {k}. Considering the
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Cholesky factorization as a sequence of Schur complement updates, only columns i
with i ∈ ancT {k} can be influenced numerically by the Schur complement update
in the k-th step of the factorization, and the result follows. �	

The computation of subsequent Schur complements by adding individual updates
as in (5.1) is straightforward; the multifrontal method employs further modifications
and enhancements of this basic concept. First, because the vertices of T are
topologically ordered, the order in which the updates are applied progresses up the
tree from the leaf vertices to the root vertex. This allows the computation of S(k) to
be rewritten as

S(k) = Ak:n,k:n −
∑

j∈T (k)\{k}
Lk:n,jLT

k:n,j ,

emphasizing the role of T . In place of Schur complements, the multifrontal method
uses frontal matrices connected to subtrees of T . Assume k, k1, . . . , kr are the row
indices of the nonzeros in column k of L. The frontal matrix Fk of the k-th subtree
T (k) of T is the dense (r + 1) × (r + 1) matrix defined by

Fk =

⎛
⎜⎜⎜⎝

akk akk1 . . . akkr
ak1k 0 . . . 0
...

...
. . .

...

akr k 0 . . . 0

⎞
⎟⎟⎟⎠ −

∑
j∈T (k)\{k}

⎛
⎜⎜⎜⎝

lkj

lk1j
...

lkr j

⎞
⎟⎟⎟⎠

(
lkj lk1j . . . lkr j

)
. (5.2)

One step of the Cholesky factorization of Fk can be written as

Fk =

⎛
⎜⎜⎜⎝

lkk 0 . . . 0
lk1k
... I

lkr k

⎞
⎟⎟⎟⎠

⎛
⎝
1

Vk

⎞
⎠

⎛
⎜⎜⎜⎝

lkk lk1k . . . lkr k

0
... I

0

⎞
⎟⎟⎟⎠ (5.3)

=

⎛
⎜⎜⎜⎝

lkk

lk1k
...

lkr k

⎞
⎟⎟⎟⎠

(
lkk lk1k . . . lkr k

) +
⎛
⎝
0

Vk

⎞
⎠ , (5.4)

where Vk is termed a generated element (it is also sometimes called an update
matrix or a contribution block). The name “generated element” is because the
multifrontal method has its origins in the simpler frontal method, which uses a
single frontal matrix. The frontal method was originally proposed for problems
arising in finite element problems to avoid the need to explicitly construct the system
matrix A; it was later generalized to non-element problems. It works with a single
frontal matrix and has less scope for parallelisation compared to the multifrontal
method; it is no longer widely used.
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Equating the last r rows and columns in (5.2) and (5.4) yields

Vk = −
∑

j∈T (k)

⎛
⎜⎝
lk1j
...

lkr j

⎞
⎟⎠ (

lk1j . . . lkr j
)
. (5.5)

Assume that cj (j = 1, . . . , s) are the children of k in T . The set T (k) \ {k} is
the union of disjoint sets of vertices in the subtrees T (cj ). Each of these subtrees
is represented in the overall update by the generated element (5.5). Thus, Fk can
be written in an recursive form using the generated elements of the children of k as
follows

Fk =

⎛
⎜⎜⎜⎝

akk akk1 . . . akkr
ak1k 0 . . . 0
...

...
. . .

...

akrk 0 . . . 0

⎞
⎟⎟⎟⎠ ←→�� Vc1 ←→�� . . . ←→�� Vcs . (5.6)

Here, the operation←→�� denotes the addition of matrices that have row and column
indices belonging to subsets of the same set of indices (in this case, k, k1, . . . , kr );
entries that have the same row and column indices are summed. This is referred to
as the extend-add operator.

Adding a row and column of A and the generated elements into a frontal matrix
is called the assembly. A variable is fully summed if it is not involved in any rows
and columns of A that have still to be assembled or in a generated element. Once
a variable is fully summed, it can be eliminated. A key feature of the multifrontal
method is that the frontal matrices and the generated elements are compressed and
stored without zero rows and columns as small dense matrices. Integer arrays are
used to maintain a mapping of the local contiguous indices of the frontal matrices
to the global indices of A and its factors. Symmetry allows only the lower triangular
part of these matrices to be held. Algorithm 5.8 outlines the basic multifrontal
method.

ALGORITHM 5.8 Basic multifrontal Cholesky factorization
Input: SPD matrix A and its elimination tree.
Output: Factor L such that A = LLT .

1: for k = 1 : n do
2: Assemble the frontal matrix Fk using (5.6) � Only the lower triangle is

needed
3: Perform a partial Cholesky factorization of Fk using (5.3) to obtain column

k of L and the generated element Vk

4: end for
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ALGORITHM 5.9 Multifrontal Cholesky factorization using the assembly tree
Input: SPD matrix A and its assembly tree.
Output: Factor L such that A = LLT .

1: nelim = 0 � nelim is the number of eliminations performed
2: for kb = 1 : nsup do � nsup is the number of supernodes
3: Assemble the frontal matrix Fkb; let l be the number of fully summed

variables in Fkb

4: Perform a block partial Cholesky factorization of Fkb to obtain columns
nelim + 1 to nelim + l of L and the generated element Vkb

5: nelim = nelim + l

6: end for

We have the following observation.

Observation 5.1 Each generated element Vk is used only once to contribute to a
frontal matrix Fparent (k). Furthermore, the index list for the frontal matrix Fk is the
set of row indices of the nonzeros in column k of the Cholesky factor L.

In practical implementations, efficiency is improved by using the assembly tree
(Section 4.6) because it allows more than one elimination to be performed at once.
This is outlined in Algorithm 5.9. Here kb is used to index the frontal matrix on the
kb-th step (1 ≤ kb ≤ nsup).

As an example, consider the matrix and its assembly tree given in Figure 4.10.
The nsup = 5 supernodes are {1, 2}, 3, 4, 5, {6, 7, 8, 9} and so variables 1 and 2 can
be eliminated together on the first step. Assembling rows/columns 1 and 2 of the
original matrix, the frontal matrix F1 and generated element V1 have the structure

F1 =

⎛
⎜⎜⎝

1 2 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
8 ∗ ∗
9 ∗ ∗

⎞
⎟⎟⎠, V1 =

( 8 9

8 f f

9 f f

)
,

where f denotes fill-in entries (only the lower triangular entries are stored in
practice). Similarly,

F2 =
⎛
⎝

3 4 8

3 ∗ ∗ ∗
4 ∗ ∗ ∗
8 ∗ ∗ ∗

⎞
⎠, V2 =

( 4 8

4 ∗ ∗
8 ∗ ∗

)
.

The frontal matrix F3 and generated element V3 are given by



5.5 Parallelism Within Sparse Cholesky Factorizations 85

F3 =
⎛
⎝

4 7 8

4 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

⎞
⎠ ←→�� V2, V3 =

( 7 8

7 ∗ f

8 f ∗
)
.

Then

F4 =
⎛
⎝

5 7 8

5 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

⎞
⎠, V4 =

( 7 8

7 ∗ f

8 f ∗
)
,

and, finally, with kb = 5 we have

F5 =

⎛
⎜⎜⎝

6 7 8 9

6 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗ ∗

⎞
⎟⎟⎠ ←→�� V4 ←→�� V3 ←→�� V1.

An important implementation detail is how and where to store the generated
elements. The partial factorization of Fkb at supernode kb can be performed once
the partial factorizations at all the vertices belonging to the subtree of the assembly
tree with root vertex kb are complete. If the vertices of the assembly tree are ordered
using a depth-first search, the generated elements required at each stage are the
most recently computed ones amongst those that have not yet been assembled. This
makes it convenient to use a stack. This affects the order in which the variables are
eliminated but in exact arithmetic, the results are identical.

Nevertheless, the memory demands of the multifrontal method can be very large.
Not only is it dependent on the initial ordering of A but the ordering of the children
of a vertex in the assembly tree can significantly affect the required stack size. Some
implementations target limiting stack storage requirements. An attractive feature of
the multifrontal method is that the generated elements can be held using auxiliary
storage (in files on disk) to restrict the in-core memory requirements, allowing larger
problems to be solved than would otherwise be possible.

5.5 Parallelism Within Sparse Cholesky Factorizations

Sparse Cholesky factorizations use supernodes and task graphs (the assembly tree
for the multifrontal method) to control the computation. The number of rows and
columns in a supernode typically increases away from the leaf vertices and towards
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the root of the task graph because a supernode accumulates fill-in from its ancestors
in the task graph. As a result, tasks that are relatively close to the root tend to
have more work associated with them. On the other hand, the width of the task
graph shrinks close to the root. In other words, a typical task graph for sparse
matrix factorization tends to have a large number of small independent tasks close
to the leaf vertices, but a small number of large tasks close to the root. An ideal
parallelization strategy that would match the characteristics of the problem is as
follows. Initially, assign the relatively plentiful independent tasks at or near the leaf
vertices to parallel threads or processes. This is called task or tree level parallelism;
it is influenced by the ordering ofA. As tasks complete, other tasks become available
and are scheduled similarly. This continues while there are enough independent
tasks to keep all the threads or processes busy. When the number of available parallel
tasks becomes too small, the only way to keep the latter busy is to assign more
than one to a task. This is termed node level parallelism. The number of threads
or processes working on individual tasks should increase as the number of parallel
tasks decreases. Eventually, all threads or processes are available to work on the
root task. The computation corresponding to the root task is equivalent to factoring
a dense matrix of the size of the root supernode.

The multifrontal method is often the formulation of choice for highly parallel
implementations of sparse matrix factorizations. This is because of its natural data
locality (most of the work of the factorization is performed in the dense frontal
matrices) and the ease of synchronization that it permits. In general, each supernode
is updated by multiple other supernodes and it can potentially update many other
supernodes during the course of the factorization. If implemented naively, all these
updates may require excessive locking and synchronization in a shared-memory
environment or generate excessive message-traffic in a distributed environment. In
the multifrontal method, the updates are accumulated and channelled along the paths
from the leaf vertices of the assembly tree to its root vertex. This gives a manageable
structure to the potentially haphazard interaction among the tasks.

In Section 1.2.4, bit compatibility was discussed. While different orderings of the
children of a vertex in the assembly tree do not affect the total number of floating-
point operations that are performed in the multifrontal method, in finite-precision
arithmetic changing the order of the assemblies into the frontal matrices can lead to
slightly different results. Given that the number of children is typically small and
that large matrices can be partitioned such that summations can be safely performed
in parallel, the overhead in the multifrontal method of enforcing a defined order of
the summation is relatively small. By contrast, in the supernodal approach, for each
data block a number of matrices equal to the block dependencies are summed. Given
the relatively large numbers (several thousand) for many nodes, an enforced order
may be detrimental to efficiency.
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5.6 Notes and References

Exploiting panels and blocks in both left- and right-looking Cholesky factorization
algorithms is extremely important. The development of sparse supernodal factor-
izations for uniprocessors and multiprocessors in the 1990s is discussed by Ng
& Peyton (1993a,b); Rothberg & Gupta (1993) presents an early comparison of
various types of block Cholesky factorizations. PaStiX of Hénon et al. (2002) is a
parallel left-looking supernodal solver that is primarily designed for positive definite
systems. Rotkin & Toledo (2004) introduce a hybrid left-looking/right-looking
algorithm and Rozin & Toledo (2005) show that no sparse numerical factorization is
uniformly better than the others. An up-looking approach, which is fast in practice
for very sparse matrices, is employed in the widely used CHOLMOD solver of Chen
et al. (2008). The package HSL_MA87 implements a sparse DAG-based Cholesky
factorization for shared-memory architectures; further details of the approach can
be found in Hogg et al. (2010).

The multifrontal algorithm has its origins in the simpler frontal method of Irons
(1970), which was developed by the civil engineering community from the 1960s
onwards to solve the linear systems that arise within finite element methods. At a
time when the main memory of even the most powerful computers was extremely
limited, the frontal method was heavily influenced by the need to minimize the
memory requirements of the linear solver. It was initially designed for SPD banded
linear systems and was subsequently extended to nonsymmetric problems by Hood
(1976) and to the symmetric indefinite case by Reid (1981); Duff (1984) generalizes
the approach to non-element problems. The frontal method proceeds by alternating
the assembly of the finite elements into a single dense frontal matrix with the
elimination and update of variables. Once variables have been eliminated they are
no longer needed during the factorization and so they are removed from the frontal
matrix and stored elsewhere (for example, not in main memory but on an external
disk) until needed during the solve phase. This frees up space to accommodate the
next element to be assembled. Because the frontal method does not use the assembly
tree, the frontal matrix can be much larger than those in the multifrontal method,
leading to higher operation counts but also allowing the use of BLAS with larger
block sizes. Efficient implementations were developed up until the late 1990s. For
example, by Duff & Scott (1996, 1999), who provide a package MA62 for SPD
problems in element form that employs a single array of length n, exploits Level 3
BLAS, and holds the computed factors on disk; a coarse-grained parallel version is
also available, see Duff & Scott (1994) and Scott (2001).

The frontal method and the work of Speelpenning (1978) on the so-called
generalized element method led to the development by Duff & Reid (1983) of the
multifrontal method for solving general symmetric systems (including systems in
element form). A detailed matrix-based explanation is given in Liu (1992). The
method is implemented in some of the most important sparse direct solvers. The
MUMPS (2022) package, which has been actively developed over many years,
provides a state-of-the-art distributed memory general-purpose multifrontal solver
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that uses shared-memory parallelism within each MPI process. Other important
parallel multifrontal solvers are HSL_MA97 (Hogg & Scott, 2013b) and WSMP
(2020), while the serial package MA57 of Duff (2004) (which superseded the
original and perhaps most well-known multifrontal solver MA27 of Duff & Reid,
(1983)) remains very popular. An attractive feature of HSL_MA97 is that it
computes bit-compatible solutions. HSL_MA77 of Reid & Scott (2009) is designed
to minimize memory requirements by allowing the factors and the multifrontal stack
to be efficiently held outside of main memory (an option that is also offered by
MUMPS). In common with earlier frontal solvers, HSL_MA77 allows the user to
input the system matrix in element form (that is, A is not explicitly assembled
for problems coming from finite element applications but is input one element at
a time).

The use of GPUs is well-suited to a multifrontal or supernodal factorization
because these approaches rely on regular block computations within dense subma-
trices. Implementing the multifrontal method (including for symmetric indefinite
matrices) on GPU architectures is discussed in Hogg et al. (2016), while Lacoste
et al. (2012) and Rennich et al. (2016) present GPU-accelerated supernodal
factorizations. Discussion of the use of GPUs within direct solvers is included in
the comprehensive survey of Davis et al. (2016).
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