
Chapter 4
Sparse Cholesky Solver: The Symbolic
Phase

The modern view of numerical linear algebra as being to a large
extent the study and systematic use of matrix decompositions
has certainly been influenced by Cholesky’s posthumously
published work – Benzi (2017).

This chapter focuses on the symbolic phase of a sparse Cholesky solver. The sparsity
pattern S{A} of the symmetric positive definite (SPD) matrixA is used to determine
the nonzero structure of the Cholesky factor L without computing the numerical
values of the nonzeros. The subsequent numerical factorization is discussed in the
next chapter. Because the symbolic phase works only with S{A} (the values of the
entries of A are not considered), it is also used for symmetric indefinite matrices
and sometimes within LU factorizations of symmetrically structured nonsymmetric
problems. It is implicitly assumed that all the diagonal entries of A are included in
S{A} (even if they are zero). During the factorization phase, it may be necessary to
amend the data structures to allow for indefiniteness. This makes the factorization of
indefinite matrices potentially more expensive and more complex; this is considered
further in Chapter 7.

A fundamental difference between dense and sparse Cholesky factorizations is
that, in the latter, each column of L depends on only a subset of the previous
columns. The elimination tree is a data structure that describes the dependencies
among the columns of A during its factorization. A key result that assists in
the understanding of sparse Cholesky factorizations is that the sparsity pattern of
column j of L is the union of the pattern of column j of the lower triangular part
of A and the patterns of the children of j in the elimination tree; this is shown in
Section 4.3. Furthermore, the fact that disjoint parts of the elimination tree can be
factored independently offers the potential for high-level tree-based parallelism that
does not exist for dense matrices.
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J. Scott, M. Tůma, Algorithms for Sparse Linear Systems, Nečas Center Series,
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4.1 Column Replication Principle

We begin by looking at how the sparsity pattern of a computed column of L

influences the patterns of subsequent Schur complements. From (3.2), the Schur
complement S(k) can be written as

S(k) = Ak:n,k:n −
k−1∑

j=1

⎛

⎜⎝
lkj
...

lnj

⎞

⎟⎠
(
lkj . . . lnj

)
. (4.1)

Consider column j of L (1 ≤ j ≤ k − 1), and let lij �= 0 for some i > j . The
involvement of lij in the outer product in (4.1) allows the following observation.

Observation 4.1 For any i > j ≥ 1 such that lij �= 0

S{Li:n,j } ⊆ S{Li:n,i}. (4.2)

This is called the column replication principle because the pattern of column j of
L (rows i to n) is replicated in the pattern of column i of L.

Denote the row index of the first subdiagonal nonzero entry in column j of L by
parent (j), that is,

parent (j) = min{i | i > j and lij �= 0}. (4.3)

If there is no such entry, set parent (j) = 0. The row index parent (parent (j)) is
denoted by parent2(j), and so on. Applying column replication recursively implies
the sparsity pattern of column j of L is replicated in that of column parent (j),
which in turn is replicated in the pattern of column parent2(j), and so on. This
is illustrated in Figure 4.1. Here j = 1, and because the first subdiagonal entry in
column 1 is in row 3, parent (1) = 3. Likewise, parent (3) = parent2(1) = 5.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ f ∗
7 ∗ f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4.1 An illustration of column replication. On the left are the entries in L before step 1 of a
Cholesky factorization (that is, the entries in the lower triangular part of A); in the centre, we show
the replication of the nonzeros from column 1 in the pattern of column parent (1) = 3 (red entries
f ); on the right, we show the subsequent replication in column parent2(1) = 5.
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The following result shows that, provided A is irreducible, the mapping
parent (j) has nonzero values given by (4.3) for all j < n.

Theorem 4.1 (Liu 1986) If A is SPD and irreducible, then in each column j (1 ≤
j < n) of its Cholesky factor L there exists an entry lij �= 0 with i > j .

Proof From Parter’s rule, each step of the Cholesky factorization corresponds to
adding new edges into the graph of the corresponding Schur complement. If A is
irreducible, then the graphs corresponding to the Schur complements are connected.
Consequently, for any vertex j (1 ≤ j < n) in any of these graphs, there is at least
one vertex i with i > j to which j is connected. This corresponds to the nonzero
entry in column j of L. ��

With the convention parent1(j) = parent (j), the next theorem shows that
if entry lij of L is nonzero, then parent t (j) = i for some t ≥ 1, and there
is an entry in row i of L in each of the columns in the replication sequence
j, parent1(j), parent2(j), . . . , parent t (j).

Theorem 4.2 (Liu 1990; George 1998) Let A be SPD, and let L be its Cholesky
factor. If lij �= 0 for some j < i ≤ n, then there exists t ≥ 1 such that parent t (j) =
i and lik �= 0 for k = j , parent1(j), parent2(j), . . . , parent t (j).

Proof If i = parent1(j), the result is immediate. Otherwise, there exists an index
k, j < k < i of a subdiagonal entry in column j of L such that k = parent1(j).
Column replication implies lik �= 0. Applying an inductive argument to lik , the
result follows after a finite number of steps. ��

If there is a sequence of nonzeros in a row of L, it is natural to ask where the
sequence begins. It is straightforward to see if there is no k ≥ 1 such that aik �= 0,
no replication of nonzeros can start in row i. The main result on the replication of
nonzeros of A is summarized as Theorem 4.3.

Theorem 4.3 (Liu 1986) Let A be SPD, and let L be its Cholesky factor. If aij = 0
for some 1 ≤ j < i ≤ n, then there is a filled entry lij �= 0 if and only if there exist
k < j and t ≥ 1 such that aik �= 0 and parent t (k) = j .

4.2 Elimination Trees

The discussion of column replication is significantly simplified using elimination
trees. The elimination tree (or etree) T (A) (or simply T ) of an SPD matrix
has vertices 1, 2, . . . , n and an edge between each pair (j, parent (j)), where
parent (j) is given by (4.3); j is a root vertex of the tree if parent (j) = 0. The
edges of T are considered to be directed from a child to its parent, that is,

E(T ) = {(j −→ i) | i = parent (j)}.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

5

4

2 3

6 7

8

Figure 4.2 An illustration of a sparse matrix A with a symmetric sparsity pattern and its
elimination tree T (A). The root vertex is 8. The filled entries in S{L + LT } are denoted by f .

If T has a single component, then the root vertex is n. Despite the terminology, the
elimination tree need not be connected and in general is a forest. For simplicity,
in our discussions, we assume T has a single component, and we say that T is
described by the vector parent .

An example of a matrix and its elimination tree is given in Figure 4.2. Here and
elsewhere, following conventional notation, directional arrows are omitted from the
tree plot.

Concepts such as child, leaf, ancestor, and descendant vertices introduced in
Section 2.3 for directed rooted trees can be applied to T . Additionally, ancT {j}
and descT {j} are defined to be the sets of ancestors and descendants of vertex j in
T . We denote by T (j) the subtree of T induced by j and descT {j); j is the root
vertex of T (j). The size |T (j)| is the number of vertices in the subtree. A pruned
subtree of T (j) is the connected subgraph induced by j and a subset of descT {j).
That is, for any vertex i in a pruned subtree of T (j), all the ancestors of i belong to
the pruned subtree. A pruned subtree of T shares the mapping parent with T .

The following observation is straightforward.

Observation 4.2 If i ∈ ancT {j} for some j �= i, then i > j .

The connection between the mapping parent and the sets of ancestors and
descendants is emphasized by the next observation.

Observation 4.3 If i and j are vertices of the elimination tree T with j < i ≤ n,
then

i∈ ancT {j} if and only if j ∈ descT {i} if and only if parent t (j)= i for some t ≥1.

The results in Section 4.1 can be expressed using rooted trees. Consider, for
example, Theorem 4.2. Instead of stating that there exists t ≥ 1 such that
parent t (j) = i, we can write that i ∈ ancT {j}. Rewriting Theorem 4.3 as the
following corollary provides a clear characterization of the sparsity patterns of the
rows of L.
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Figure 4.3 The row subtree Tr (5) of the elimination tree T from Figure 4.2 (left). Vertex 3 has
been pruned because a35 = 0. The row subtree Tr (8) (right) differs from T = T (A) because
vertex 1 has been pruned (a18 = 0).

Corollary 4.4 (Liu 1986) Consider the elimination tree T and the Cholesky factor
L of A. If i and j are vertices of T with j < i ≤ n and aij = 0, then lij �= 0 if and
only if there exists k < j such that j ∈ ancT (k) and aik �= 0.

The subtree of T with vertices that correspond to the nonzeros of row i of L is
called the i-th row subtree and is denoted by Tr (i). Formally, it is a pruned subtree
of T induced by the union of the vertex set

{i} ∪ {k | aik �= 0 and k < i}

with all vertices on the directed paths in T from k to i, that is, with all their ancestors
from Tr (i). The root vertex is i, and the leaf vertices are a subset of the column
indices in the i-th row of the lower triangular part of A. Figure 4.3 illustrates row
subtrees for the matrix and elimination tree from Figure 4.2. Note that row subtrees
are connected subgraphs of T , even if T is not connected. If T can be found without
determining the pattern of L, then Tr (i) can be used to derive the sparsity pattern of
row i of L, without having to store each entry explicitly.

Theorem 4.5 characterizes the ancestors of a given vertex j using paths in G(A).
The proof helps clarify the relationship between T and paths in G(A).
Theorem 4.5 (Schreiber 1982; Liu 1986) If i and j are vertices in the elimination
tree T with j < i ≤ n, then i ∈ ancT {j} if and only if there exists a path

j
G(A)⇐��⇒{1,...,i} i. (4.4)

Proof Assume i ∈ ancT {j}. Then there is a path j
T��⇒ i of length l ≥ 1. Each

edge of this path belongs to G(L) and corresponds either to an edge in G(A) or to a
fill-path in G(A). Connecting these paths together gives (4.4).



58 4 Sparse Cholesky Solver: The Symbolic Phase

Conversely, if the path (4.4) exists, induction on its length can be used to prove
the result. If the path is of length 1, then the result holds because i and j are
connected in G(A) by an edge. Consequently, from Theorem 4.2, i is an ancestor
of j . Now assume that the result is true for all paths of length less than l (l > 1),
and consider a path of length l. Let m be the largest vertex on this path. If m < j ,
then (4.4) is a fill-path connecting i and j and, therefore, i ∈ ancT {j}. Otherwise,
form ≥ j , the assumption implies i ∈ ancT {m}∪ {m} andm ∈ ancT {j}∪ {j}, that
is, i ∈ ancT {j}. ��

Given a vertex j in T , the following corollary indicates how to find parent (j)

(if it exists). If the set of ancestors of j is non-empty, then the lowest numbered one
is its parent.

Corollary 4.6 (Liu 1986, 1990) Vertex i is the parent of vertex j in T if and only if
i is the lowest numbered vertex satisfying j < i ≤ n for which there is a path (4.4).

The existence of (4.4) is equivalent to requiring i and j belong to the same
component of the graph G(A1:i,1:i ) corresponding to the i × i principal leading
submatrixA1:i,1:i ofA. Figure 4.4 depicts G(A) for the matrixA given in Figure 4.2.
Consider vertex 4. Its set of ancestors for which paths from Theorem 4.5 exist
comprises vertices 5, 6, and 8. Vertex 7 is not an ancestor of 4 because there is
no path from 7 to 4 in the graph G(A1:7,1:7). Among the ancestors of 4, vertex 5
fulfils the condition from Corollary 4.6 and is thus the parent of 4.

T = T (A) can be constructed by stepwise extensions of the elimination trees
of the principal leading submatrices of A. Assume we have T (A1:i−1,1:i−1) and we
want to construct T (A1:i,1:i ). Initialize T (A1:i,1:i ) = T (A1:i−1,1:i−1). If there are
no entries in row i of A to the left of the diagonal, then there is nothing to do,
and only an isolated vertex i is added. Otherwise, i is the root of the row subtree
Tr (i) and an ancestor of some vertex j in T . The ancestors k of j with k < i are
in T (A1:i−1,1:i−1). Because row subtrees are connected subgraphs of T , a directed
path in T (A1:i,1:i ) with parent t (j) = i exists for some t ≥ 1. The search for
this path starts from jroot = j and continues, while parent (jroot) �= 0 and
parent (jroot) �= i, using a sequence of assignments jroot = parent (jroot). It
terminates once parent (jroot) = i or i is found to have already been added when

1

5

4

2 3

6

78

Figure 4.4 The graph G(A) of the matrix from Figure 4.2 illustrating Theorem 4.5 and Corol-
lary 4.6.
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tracing the path from another entry j ′ in row i. The construction of T is summarized
in Algorithm 4.1.

ALGORITHM 4.1 Construction of an elimination tree
Input: A with a symmetric sparsity pattern and its undirected graph G.
Output: Elimination tree T described by the vector parent .

1: for i = 1 : n do � Loop over the rows of A
2: parent (i) = 0 � Initialisation
3: for j ∈ adjG{i} and j < i do � Loop over the below diagonal entries in

row i

4: jroot = j

5: while parent (jroot) �= 0 and parent (jroot) �= i do � Find the
current root

6: jroot = parent (jroot)

7: end while
8: if parent (jroot) = 0 then
9: parent (jroot) = i � Make i the parent of jroot

10: end if
11: end for
12: end for

The most expensive part of Algorithm 4.1 is the while loop that searches for
subtree roots. Because the directed path from j to its root parent t (j) is unique,
shortcuts can be incorporated; this is called path compression. Having found
a directed path from j to k, subsequent searches can be made more efficient
by introducing a vector ancestor and setting ancestor(j) = k. The modified
algorithm is outlined in Algorithm 4.2. It maintains two structures using the current
values of parent and ancestor . The tree described by ancestor is termed the
virtual tree.

Figure 4.5 shows a matrix for which path compression makes constructing T
significantly more efficient. For this example, T is determined by the mapping
parent (6) = 0; parent (i) = i + 1 for i = 1, . . . , 5. The complexity of Algo-
rithm 4.1 is O(n2), but for this example the complexity of Algorithm 4.2 is O(n).
Formally, the complexity of Algorithm 4.2 isO(nz(A) log2(n)), where nz(A) is the
number of nonzeros of A, but the logarithmic factor is rarely reached. Additional
modifications can reduce the theoretical complexity to O(nz(A) g(nz(A), n)),
where g(nz(A), n) is a very slowly increasing function called the functional
inverse of Ackermann’s function. This means that, in practice, the complexity of
constructing T , and hence of obtaining an implicit representation of S{L}, is close
to linear in nz(A) (which in general is much smaller than nz(L)).
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ALGORITHM 4.2 Construction of an elimination tree using path compression
Input: A with a symmetric sparsity pattern and its undirected graph G.
Output: Elimination tree T described by the vector parent .

1: for i = 1 : n do � Loop over the rows of A
2: parent (i) = 0, ancestor(i) = 0 � Initialisation
3: for j ∈ adjG{i} and j < i do � Loop over the below diagonal entries in

row i

4: jroot = j

5: while ancestor(jroot) �= 0 and ancestor(jroot) �= i do
6: l = ancestor(jroot)

7: ancestor(jroot) = i � Path compression to accelerate future
searches

8: jroot = l

9: end while
10: if ancestor(jroot) = 0 then
11: ancestor(jroot) = i and parent (jroot) = i

12: end if
13: end for
14: end for

⎛
⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

⎞
⎟⎟⎟⎠

Figure 4.5 A sparse matrix for which computing the elimination tree using Algorithm 4.2 is much
more efficient than using Algorithm 4.1.

The following simple theorem states that there is no edge in G(L+LT ) between
vertices belonging to subtrees of T with different vertex sets. If there was such an
edge (s, t), then from Theorem 4.2, one of the vertices s and t must be an ancestor
of the other, which is a contradiction. The importance of this result is that it implies
that for any such pairs of vertices the corresponding column sparsity patterns in L

can be computed in parallel.

Theorem 4.7 (Liu 1990) Consider the elimination tree T and the Cholesky factor
L of A. Let T (i) and T (j) be two vertex-disjoint subtrees of T . Then for all s ∈
T (i) and t ∈ T (j), the entry lst of L is zero.
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4.3 Sparsity Pattern of L

The explicit structure of L is not always required; sometimes only the numbers of
nonzeros in each row and column of L are needed. For example, when comparing
the amount of fill-in in the factors for different initial orderings of A, allocating
factor storage, finding relaxed supernodes (see Section 4.6), and determining load
balance and synchronization events in parallel factorizations.

Let rowL{i} denote the sparsity pattern of the off-diagonal part of row i of L,
that is,

rowL{i} = S{Li,1:i−1} = {j | j < i, lij �= 0}, 1 ≤ i ≤ n.

The number of entries in L is

nz(L) =
n∑

i=1

|rowL{i}| + n.

Corollary 4.4 implies rowL{i} is given by the vertices of the row subtree Tr (i).
This suggests Algorithm 4.3. Here the vector mark is used to flag vertices so as to
avoid including them more than once within a row subtree. The complexity of the
algorithm is O(nz(L)).

ALGORITHM 4.3 Computation of the row sparsity patterns of the Cholesky
factor L
Input: A with a symmetric sparsity pattern, its undirected graph G and elimination
tree T described by the vector parent .
Output: Row sparsity patterns rowL{i} of the Cholesky factor L of A (1 ≤ i ≤ n).

1: for i = 1 : n do � Loop over the rows of A
2: rowL{i} = ∅ � Initialisation
3: mark(i) = i

4: for k ∈ adjG{i} and k < i do � Loop over the below diagonal entries in
row i

5: j = k

6: while mark(j) �= i do � Column j not yet encountered in row i

7: mark(j) = i � Flag j as encountered in row i

8: rowL{i} = rowL{i} ∪ {j} � Add j to the sparsity pattern of row i

9: j = parent (j) � Move up the elimination tree
10: end while
11: end for
12: end for
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 2

3

4

5

6

7
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3

4

5

6

7

Figure 4.6 An illustration of the sparsity pattern of A and its graph G(A) (left) and the sparsity
pattern of the corresponding skeleton matrix A− and graph G(A−) (right). The entries in A and
edges of G(A) that do not belong to the skeleton matrix and graph are depicted in red.

Efficiency can be improved by employing the skeleton graph G(A−) that is
obtained from G(A) by removing every edge (i, j) for which j < i and j is not
a leaf vertex of Tr (i). G(A−) is the smallest subgraph of G(A) with the same filled
graph as G(A). The corresponding matrix is the skeleton matrix. An example is
given in Figure 4.6. The complexity of constructing the elimination tree using the
skeleton matrix and its graph G(A−) is O(nz(A−) g(nz(A−), n)), where nz(A−) is
the number of entries in the skeleton matrix. Because nz(A−) is often significantly
smaller than nz(A), an implementation that processes G(A−) rather than G(A) can
be substantially faster.

Analogously to the row sparsity patterns, let colL{j} denote the sparsity pattern
of the off-diagonal part of column j of L, that is,

colL{j} = S(Lj+1:n,j ) = {i | i > j, lij �= 0}, 1 ≤ j ≤ n.

The column replication principle can be written as

colL{j} ⊆ colL{parent (j)} ∪ parent (j).

Theorem 4.8 describes colL{j} using the vertices of the subtree T (j).

Theorem 4.8 (George & Liu 1980c, 1981) The column sparsity pattern colL{j}
of the Cholesky factor L of the matrix A is equal to the adjacency set of vertices of
the subtree T (j) in G(A), that is,
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Figure 4.7 Two topological orderings of an elimination tree.

colL{j} = adjG(A){T (j)}. (4.5)

Proof If i ∈ colL{j}, then j ∈ rowL{i}, and Theorem 4.3 implies j ∈ ancT {k} for
some k such that aik �= 0. That is, i ∈ adjG{T (j)}. Conversely, i ∈ adjG{T (j)}
implies that in row i the entry in column j of L is nonzero. Thus, j ∈ rowL{i}, and
hence, i ∈ colL{j}. ��

Algorithm 4.3 can be used to compute the column counts and the column sparsity
patterns because when j is added to rowL{i} at line 8, i can be added to colL{j}.
This does not generally obtain the column sparsity patterns sequentially. To derive
an approach that does compute them sequentially, rewrite (4.5) as follows:

colL{j} =
⎛

⎝adjG(A){j}
⋃

{k | k∈T (j)\{j}}
colL{k}

⎞

⎠ \ {1, . . . , j}.

Using the column replication, this can be significantly simplified

colL{j} =
⎛

⎝adjG(A){j}
⋃

{k | j=parent (k)}
colL{k}

⎞

⎠ \ {1, . . . , j}. (4.6)

This is used to obtain Algorithm 4.4, which constructs the sparsity pattern of each
column j ofL as the union of the sparsity pattern of column j ofA (adjG(A){j}) and
the patterns of the children of j in T (A). Here child{j} denotes the set of children
of j . Because any child k of j satisfies k < j , the j -th outer step has the information
needed to compute the sparsity pattern described by (4.6). Observe that T (A) does
not need to be input.
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ALGORITHM 4.4 Determining the sparsity patterns of each column of L
Input: A with symmetric sparsity pattern and its undirected graph G.
Output: Column sparsity patterns colL{j} of the Cholesky factor L of A (1 ≤ j ≤
n).

1: for j = 1 : n do � Loop over the columns of L
2: child{j} = ∅ � Initialisation
3: colL{j} = adjG{j} \ {1, . . . , j − 1}
4: for k ∈ child{j} do � Unifying child structures in (4.6)
5: colL{j} = colL{j} ∪ colL{k} \ {j}
6: end for
7: if colL{j} �= ∅ then
8: l = min{i | i ∈ colL{j}}
9: child{l} = child{l} ∪ {j} � Parent of j detected using Corollary 4.6

10: end if
11: end for

4.4 Topological Orderings

The outer loop in Algorithm 4.4 does not have to be performed in the strict order j =
1, . . . , n. What is necessary is that for each step j , the column sparsity pattern for
each child of j has already been computed. An ordering of the vertices in a tree (and,
more generally, in a DAG) is a topological ordering if, for all i and j , j ∈ descT {i}
implies j < i (Section 2.2). Observation 4.2 confirms that the ordering of vertices
in the elimination tree T is a topological ordering. A new topological ordering of T
defines a relabelling of its vertices corresponding to a symmetric permutation of A.
This is illustrated in Figure 4.7. The sparsity patterns of the Cholesky factors of A
and PAPT can be different, but the following result shows that the amount of fill-in
is the same.

Theorem 4.9 (Liu 1990) Let S{A} be symmetric. If P is the permutation matrix
corresponding to a topological ordering of the elimination tree T of A, then the
filled graphs of A and PAPT are isomorphic.

There are many topological orderings of T . One class is obtained using the depth-
first search given by Algorithm 2.1. This searches all the components of T starting
at their root vertices. In this case, once vertex i has been visited, all the vertices of
the subtree T (i) are visited immediately after i and i is labelled as the last vertex of
T (i). A topological ordering of T is a postordering if the vertex set of any subtree
T (i) (i = 1, . . . , n) is a contiguous sublist of 1, . . . , n. Unless additional rules on
how vertices are selected are imposed, a postordering is generally not unique, as
demonstrated in Figure 4.8. One possible postordering is defined in Algorithm 2.1.
In this case, there is some freedom in the depth-first search to choose from the
vertices that have not been visited, resulting in different postorderings.
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Figure 4.8 An example to illustrate the non-uniqueness of postorderings of an elimination tree.

4.5 Leaf Vertices of Row Subtrees

Leaf vertices of row subtrees play a key role in graph algorithms related to sparse
Cholesky factorizations. They can be used to find the skeleton matrix described in
Section 4.3, and they are important in parallel processing based on fundamental
supernodes (see Section 4.6.1). Theorem 4.10 describes the relation between
standard subtrees of T and row subtrees obtained by pruning (Section 4.2). This
pruning is determined by the leaf vertices of row subtrees.

Theorem 4.10 (Liu 1986) Let the elimination tree T of A be postordered. Let the
column indices of the nonzeros in the strictly lower triangular part of row i of A be
c1, . . . , cs with s ≥ 1 and 0 < c1 < . . . < cs < i. Then ct is a leaf vertex of the row
subtree Tr (i) if and only if

t = 1 or (1 < t ≤ s and ct−1 �∈ T (ct )).

Proof c1 is always a leaf vertex of Tr (i). If this is not the case, then there exists a
directed path from some vertex k, k �= c1 to i via c1 such that k ∈ Tr (i) and aik �= 0.
Postordering of T implies k < c1. This is a contradiction because c1 is the index of
the first nonzero in row i.

Consider now t > 1. Assume that ct−1 ∈ T (ct ) and that ct is a leaf vertex of
Tr (i). Row replication (Theorem 4.2) implies any k ∈ ancT {ct−1}∪{ct−1} such that
ct−1 ≤ k < i satisfies lik �= 0. Because T is postordered, ct−1 ≤ k ≤ ct , and there
is at least one k < ct satisfying this inequality. It follows that k = ct−1. Because k
belongs to Tr (i), ct cannot be a leaf vertex of Tr (i), which is a contradiction.

Conversely, assume for t > 1 that ct−1 �∈ T (ct ) and ct is not a leaf vertex of
Tr (i). From the second part of the assumption and the fact that ct ∈ Tr (i), it follows
that there is at least one leaf vertex k < i of Tr (i) from which there is a directed
path to i via ct . Thus k < ct . From the definition of the postordering of T , all
vertices l with k < l ≤ ct are vertices of T (ct ). Vertex ct−1 must be among them
and ct−1 ∈ T (ct ). This contradiction completes the proof. ��
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ALGORITHM 4.5 Find the sizes of subtrees T (i) of T
Input: Elimination tree T described by the vector parent .
Output: Subtree sizes |T (i)| (1 ≤ i ≤ n).

1: |T (1 : n)| = 1
2: for i = 1 : n − 1 do
3: k = parent (i)

4: |T (k)| = |T (k)| + |T (i)|
5: end for

Corollary 4.11 (Liu 1986) Under the assumptions of Theorem 4.10, ct is a leaf
vertex of Tr (i) if and only if

t = 1 or (1 < t ≤ s and ct−1 < ct − |T (ct )| + 1).

Subtree sizes can be computed using Algorithm 4.5. Correctness of Algo-
rithm 4.5 is guaranteed because parent defines a topological ordering of T .

Theorem 4.12 relaxes the condition that the entries in the rows of A are sorted
by increasing column indices. This allows the leaf vertices of the row subtrees to be
determined by columns.

Theorem 4.12 (Liu et al. 1993) Consider the elimination tree T of A. Vertex j is
a leaf vertex of some row subtree of T if and only if there exists i ∈ adjG(A){j},
j < i ≤ n, such that i �∈ adjG(A){k} for all k ∈ T (j) \ {j}.
Proof Assume that for some i ∈ ancT {j} vertex j is a leaf vertex of Tr (i). That is,
i ∈ adjG(A){j}, i > j . Suppose there exists k in T (j)\{j} such that i ∈ adjG(A){k}.
Then all the ancestors of k, k ≤ i, in particular j , belong to Tr (i) and j cannot be a
leaf vertex of Tr (i). This is a contradiction.

Conversely, assume that j is not a leaf vertex of any row subtree of T and that
there exists i ∈ adjG(A){j}, j < i ≤ n, such that i �∈ adjG(A){k} for all k ∈
T (j) \ {j}. Because j is not a leaf vertex of any such Tr (i), Theorem 4.3 implies
that there exists k ∈ T (j) \ {j} such that aik �= 0, which gives a contradiction and
completes the proof. ��

To find leaf vertices of row subtrees of T , Algorithm 4.6 uses a marking scheme
based on Theorem 4.12 and exploits the postordering of T . The auxiliary vector
prev_nonz stores the column indices of the most recently encountered entries in
the rows of the strictly lower triangular part of A.

4.6 Supernodes and the Assembly Tree

Because of column replication, the columns of L generally become denser as the
Cholesky factorization proceeds. Exploiting this density can significantly enhance
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ALGORITHM 4.6 Find leaf vertices of row subtrees of T
Input: A with a symmetric sparsity pattern and a corresponding postordered
elimination tree T .
Output: Logical vector isleaf with entries set to true for leaf vertices of row
subtrees.

1: isleaf (1 : n) = f alse, prev_nonz(1 : n) = 0
2: Compute |T (1 : n)| � Use Algorithm 4.5
3: for j = 1 : n do � Loop over the columns of A
4: for i such that i > j and aij �= 0 do � Row index in strictly lower

triangular part of A
5: k = prev_nonz(i)� Column index of most recently seen entry in row i

6: if k < j − |T (j)| + 1 then
7: isleaf (j) = true � j is a leaf vertex by Corollary 4.11
8: end if
9: prev_nonz(i) = j � Flag j as the most recently seen entry in row i

10: end for
11: end for

the performance of the numerical factorization in terms of both computation time
and memory requirements. For this, we require the concept of supernodes. The idea
is to group together columns with the same sparsity structure, so that they can be
treated as a dense matrix for storage and computation. Let 1 ≤ s, t ≤ n with
s + t − 1 ≤ n. A set of contiguously numbered columns of L with indices
S = {s, s + 1, . . . , s + t − 1} is a supernode of L if

colL{s} ∪ {s} = colL{s + t − 1} ∪ {s, . . . , s + t − 1}, (4.7)

and S cannot be extended for s > 1 by adding s − 1 or for s + t − 1 < n by adding
s + t . Because S cannot be extended, it is a maximal subset of column indices.
In graph terminology, a supernode is a maximal clique of contiguous vertices of
G(L + LT ). A supernode may contain a single vertex. Figure 4.9 illustrates the
supernodes in a Cholesky factor of order 8.

The supernodal elimination or assembly tree is defined to be the reduction of
the elimination tree that contains only supernodes. Each vertex of the elimination
tree is associated with one elimination, and a single integer (the index of its parent)
is needed. Associated with each vertex of the assembly tree is an index list of the
row indices of the nonzeros in the columns of the supernode. These implicitly define
the sparsity pattern of L. An example that demonstrates the difference between the
elimination and assembly trees is given in Figure 4.10. Here the elimination tree is
postordered, and there are 5 supernodes: {1, 2}, 3, 4, 5, {6, 7, 8, 9}. For supernode 1
that comprises columns 1 and 2, the row index list is {1, 2, 8, 9}.
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L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4.9 An example to illustrate supernodes in L. The first supernode comprises columns 1
and 2, the second columns 3 and 4, and the third columns 5–8.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ ∗ f ∗ f ∗
8 ∗ ∗ ∗ ∗ ∗ f ∗ f
9 ∗ ∗ ∗ ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3 5

4 6

7

8

9

4; {5, 7, 8}

2; {3, 4, 8}

1; {1, 2, 8, 9}

3; {4, 7, 8}

5; {6, 7, 8, 9}

Figure 4.10 A sparse matrix and its postordered elimination tree (left) and postordered assembly
tree (right). Filled entries in S{L + LT } are denoted by f . For the assembly tree, the vertices are
in red and the index lists associated with each vertex are given.

Supernodes can be characterized by the following result on the column counts
of L, from which we see that supernodes can be found using column counts rather
than the column sparsity patterns that appear in (4.7).

Theorem 4.13 (Liu et al. 1993) The set of columns of L with indices S = {s, s +
1, . . . , s + t − 1} is a supernode of L if and only if it is a maximal set of contiguous
columns such that s + i − 1 is a child of s + i for i = 1, . . . , t − 1 and

| colL{s} | = | colL{s + t − 1} | + t − 1. (4.8)
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Proof Let S be a supernode. For i, j ∈ S with i > j , we have i ∈ colL{j}. This
implies that in the postordered elimination tree the vertex i = j + 1 is the parent of
j for j = s, . . . , s + t − 2. Moreover, from Observation 4.2, for any i, j ∈ S with
i > j , i ∈ colL{j} implies colL{j} \ {1, . . . , i} ⊆ colL{i}. Therefore,

| colL{s + i} | ≥ | colL{s + i − 1} | − 1, i = 1, . . . , t − 1, (4.9)

with equality if and only if

colL{s + i} = colL{s + i − 1} \ {s + i},

that is, if S is a supernode.
Conversely, assume S is a maximal set of contiguous columns such that, for

i = 1, . . . , t − 1, s + i − 1 is a child of s + i and S satisfies (4.8). Because of
column replication, such a sequence of parent and child vertices must satisfy (4.9)
with equality if and only if (4.7) is satisfied. It follows that S is a supernode. ��

Supernodes enhance the efficiency of sparse factorizations and sparse triangular
solves because they enable floating-point operations to be performed on dense
submatrices rather than on individual nonzeros, thus improving memory hierarchy
utilization and allowing the use of highly efficient dense linear algebra kernels (such
as Level 3 BLAS kernels). Because the rows and columns of a supernode have
a common sparsity structure, this only needs to be stored once, reducing indirect
addressing. Supernodes help to increase the granularity of tasks, which is useful for
improving the computation to overhead ratio in a parallel implementation. Fill-in
results in supernodes near the root of the assembly tree often being much larger
than those close to the leaf vertices.

Observe that the columns within a supernode are numbered consecutively,
but they can be numbered within the supernode in any order without changing
the number of nonzeros in L (assuming the corresponding rows are permuted
symmetrically). On some architectures, particularly those using GPUs, this freedom
can be exploited to improve the factorization efficiency. Essentially, it is desirable
to order the columns within a supernode such that the entries of L form fewer but
less fragmented dense blocks.

Some applications, such as power grid analysis, in which the basis of the linear
system is not a finite element or finite difference discretization of a physical domain,
can lead to sparse matrices that incur very little fill-in during factorization. The
supernodes can then be very small, and the costs associated with identifying them
may not be offset by the increase in performance resulting from the potential for
block operations. However, as supernodes can offer such significant performance
gains, it can be advantageous to merge (small) supernodes that have similar (but
not exactly the same) nonzero patterns, despite this increasing the overall fill-in and
operation count. This process is termed supernode amalgamation, and the resultant
nodes are often referred to as relaxed supernode.
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4.6.1 Fundamental Supernodes

In practice, fundamental supernodes are easier to work with in the numerical
factorization. Let 1 ≤ s, t ≤ n with s + t − 1 ≤ n. A maximal set of contiguously
numbered columns of L with indices S = {s, s+1, . . . , s+ t−1} is a fundamental
supernode if for any successive pair i−1 and i in the list, i−1 is the only child of i
in T and colL{i} ∪ {i} = colL{i − 1}. s is termed the starting vertex. An example is
given in Figure 4.11. The difference between the sets of supernodes and fundamental
supernodes is normally not large, with the latter having (slightly) more blocks in the
resulting partitioning ofL. Note that fundamental supernodes are independent of the
choice of the postordering of T . Theorem 4.14 describes the relationship between
fundamental supernodes and the leaf vertices of row subtrees of T . In particular, it
characterizes starting vertices of the fundamental supernodes. The leaf vertices of T
are trivially starting vertices of fundamental supernodes. But, possibly surprisingly,
so too are the leaf vertices of row subtrees.

Theorem 4.14 (Liu et al. 1993) Assume T is postordered. Vertex s is the starting
vertex of a fundamental supernode if and only if it has at least two child vertices in
T or it is a leaf vertex of a row subtree of T .

Proof If s has at least two child vertices then, from the definition of a fundamental
supernode, it must be the starting vertex of a fundamental supernode. Assume that,
for some i > s, s is a leaf vertex of Tr (i). If s is also a leaf vertex of T , then s

is a starting vertex of a supernode. The remaining case is s having only one child.
Because T is postordered, this child must be s − 1. Theorem 4.3 then implies ais �=
0 and ai,s−1 = 0, that is, i ∈ colL{s} and i /∈ colL{s − 1}. It follows that

S{Ls−1:n,s−1} � S{Ls:n,s} ∪ {s − 1},

and vertices s and s − 1 cannot belong to the same supernode. Hence, s is the
starting vertex of a new fundamental supernode.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ f f
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f f
5 ∗ f ∗ f ∗ ∗
6 ∗ f ∗ f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

Figure 4.11 A matrix A and its postordered elimination tree T for which the set of supernodes
{1, 2} and {3, 4, 5, 6} and the set of fundamental supernodes {1, 2}, {3, 4} and {5, 6} are different.
The filled entries in S{L + LT } are denoted by f .
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Conversely, assume that s is the starting vertex of a fundamental supernode S. If s
has no child vertices or at least two child vertices, the result follows. If s has exactly
one child vertex, postordering implies this child is s − 1. Because S is maximal,
there exists i such that i �∈ colL{s − 1} and i ∈ colL{s} (otherwise S could be
extended by adding s − 1). Hence, s is a leaf vertex of Tr (i). ��

Because fundamental supernodes are characterized by their starting vertices, they
can be found by modifying Algorithm 4.6 to incorporate marking leaf vertices of the
row subtrees and vertices with at least two child vertices. Once the elimination tree
has been computed, the complexity isO(n+nz(A)). The computation can be made
even more efficient by using the skeleton graph G(A−).

4.7 Notes and References

The excellent monographs by Tewarson (1973), George & Liu (1981), and Davis
(2006) represent milestones in the development of contemporary symbolic factor-
ization algorithms and their implementation. A complementary way to follow many
of the developments is by looking at the early software (and accompanying user
documentation), such as YSMP (Eisenstat et al., 1982) and SPARSPAK (George
& Ng, 1984). In addition, there are several influential survey articles focusing on
sparse Cholesky algorithms and emphasizing the crucial role of the elimination tree,
for example, Liu (1990), George (1998); see also Bollhöfer & Schenk (2006), Hogg
& Scott (2013a) and the more recent comprehensive survey of Davis et al. (2016).
The latter provides a general overview of much of the research related to sparse
direct methods and includes pointers to many specialized references.

There are a large number of journal articles that provide a fuller understanding
of the theory and algorithms employed in symbolic factorizations. Schreiber (1982)
defines the elimination tree of a sparse symmetric matrix. The seminal paper of Liu
(1986) describes elimination tree construction, while for an extensive overview of
the roles of elimination trees and topological orderings as well as the determination
of the column sparsity patterns of the factor L, we refer to Liu (1990). If only row
and column counts of L are needed, the fastest known algorithms are described in
Gilbert et al. (1994). This paper also refers to another admirable paper of Liu et al.
(1993) that describes the efficient computation of fundamental supernodes based on
the leaf vertices of row subtrees of the elimination tree.

A key driver behind research into efficient (in terms of time and memory)
sparse Cholesky algorithms has always been the development of computational
codes. Many currently available packages implement not only sparse Cholesky
factorizations but also more general LDLT factorizations of sparse symmetric
indefinite matrices. The software is necessarily highly sophisticated and is therefore
generally accompanied by technical reports and/or journal publications that explain
the data structures and choices that were made in the algorithm and software design
as well as providing details of the different options that are offered (examples
include Duff (2004), Reid & Scott (2009), Hogg et al. (2010)).
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