
Chapter 3
Introduction to Matrix Factorizations

If numerical analysts understand anything, surely it must be
Gaussian elimination. This is the oldest and truest of numerical
algorithms . . . This algorithm has been so successful that to
many of us, Gaussian elimination and Ax = b are more or less
synonymous. – Trefethen (1985).

Gaussian elimination is the standard method for solving a
system of linear equations. As such, it is one of the most
ubiquitous numerical algorithms and plays a fundamental role
in scientific computation. – Higham (2011)

This chapter introduces the basic concepts of Gaussian elimination and its formula-
tion as a matrix factorization that can be expressed in a number of mathematically
equivalent but algorithmically different ways.

Using unweighted graphs to capture the sparsity structures of matrices during
Gaussian elimination is simplified by assuming that the result of adding, subtracting,
or multiplying two nonzeros is nonzero. It follows that if A = LU and EL denotes
the set of (directed) edges of the digraph G(L), then for i > j

aij �= 0 implies (i → j) ∈ EL.

This is the non-cancellation assumption. It allows the following observation.

Observation 3.1 The sparsity structures of the LU factors of A satisfy

S{A} ⊆ S{L + U}.

That is, the factors may contain entries that lie outside the sparsity structure of A.
Such entries are termed filled entries, and together the filled entries are called the
fill-in. The graph obtained from G(A) by adding the fill-in is called the filled graph.

Numerical cancellations in LU factorizations rarely happen, and in general,
they are difficult to predict, particularly in floating-point arithmetic. Thus, such
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32 3 Introduction to Matrix Factorizations

accidental zeros are not normally exploited in implementations, and we will ignore
the possibility of their occurrence.

3.1 Gaussian Elimination: An Overview

The traditional way of describing Gaussian elimination is based on the systematic
column-by-column annihilation of the entries in the lower triangular part of A.
Assuming A is factorizable, this can be written formally as sequential multiplica-
tions by column elimination matrices that yield the elimination sequence

A = A(1), A(2), . . . , A(n) (3.1)

of partially eliminated matrices as follows:

A(1) → A(2) = C1A
(1) → A(3) = C2C1A

(1) → . . . → A(n) = Cn−1 . . . C2C1A
(1).

The unit lower triangular matrices Ci (1 ≤ i ≤ n − 1) are the column elimination
matrices. Elementwise, assuming a11 = a
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and provided a
(2)
22 �= 0, the second step C2A

(2) = A(3) is
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The k-th partially eliminated matrix isA(k). The active entries inA(k) are denoted
by a

(k)
ij , 1 ≤ k ≤ i, j ≤ n (in the sparse case, many of the entries are zero), and

the (n − k + 1) × (n − k + 1) submatrix of A(k) containing the active entries is
termed its active submatrix. The graph associated with the active submatrix is the
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k-th elimination graph and is denoted by Gk . If S{A} is nonsymmetric, then Gk is
a digraph.

The inverse of each Ck is the unit lower triangular matrix that is obtained by
changing the sign of all the off-diagonal entries, and because the product of unit
lower triangular matrices is a unit lower triangular matrix, it is clear that provided
a

(k)
kk �= 0 (1 ≤ k < n)

A = A(1) = C−1
1 C−1

2 . . . C−1
n−1A

(n) = LU,

where the unit lower triangular matrix L is the product C−1
1 C−1

2 . . . C−1
n−1 and U =

A(n) is an upper triangular matrix. The subdiagonal entries of L are the negative of
the subdiagonal entries of the matrix C1 + C2 + . . . + Cn−1. If A is a symmetric
positive definite (SPD) matrix, then setting U = DLT , the LU factorization can be
written as

A = LDLT ,

which is the square root-free Cholesky factorization. Alternatively, it can be
expressed as the Cholesky factorization

A = (LD1/2)(LD1/2)T ,

where the lower triangular matrix LD1/2 has positive diagonal entries.
The process of performing an LU factorization can be rewritten in the generic

form given in Algorithm 3.1. Here each lik is called a multiplier, and the a
(k)
kk are

called pivots. The assumption that A is factorizable implies a
(k)
kk �= 0 for all k.

Algorithm 3.1 comprises three nested loops. There are six ways of assigning the
indices to the loops, with the loops having different ranges. The performance of the
variants can differ significantly depending on the computer architecture. The key
difference is the way the data are accessed from the factorized part of matrix and

ALGORITHM 3.1 Generic LU factorization
Input: Factorizable matrix A.
Output: LU factorization A = LU .

1: for ————– do
2: for ————– do
3: for ————– do
4: lik = a

(k)
ik /a

(k)
kk

5: a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

6: end for
7: end for
8: end for
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applied to the part that is not yet factorized. But in exact arithmetic, they result in
the same L and U , which allows any of them to be used to demonstrate theoretical
properties of LU factorizations. To identify the variants, names that derive from
the order in which the indices are assigned to the loops can be used. The kij and
kji variants are called submatrix LU factorizations. The schemes jik and jki

compute the factors by columns and are called column factorizations. The final
two are row factorizations because they proceed by rows. A row factorization can
be considered as a column LU factorization applied to AT .

3.1.1 Submatrix LU Factorizations

Each outermost step of the submatrix LU variants computes one row of U and one
column of L. The first step (k = 1) is

C1A =
(

1
−A2:n,1/a11 I

) (
a11 A1,2:n

A2:n,1 A2:n,2:n

)
=

(
a11 A1,2:n

S

)
,

where the (n − 1) × (n − 1) active submatrix

S = A2:n,2:n − A2:n,1A1,2:n/a11 = A2:n,2:n − L2:n,1U1,2:n

is the Schur complement of A with respect to a11. If A is factorizable, then so too
is S and the process can be repeated.

More generally, the operations performed at each step k correspond to a sequence
of rank-one updates. The resulting Schur complement can be written in terms of
entries of the matrices from the elimination sequence and entries of the computed
factors. After k−1 steps (1 < k ≤ n), the (n−k+1)×(n−k+1) Schur complement
of A with respect to its (k − 1) × (k − 1) principal leading submatrix is the active
submatrix of the partially eliminated matrix A(k) given by

S(k) =
⎛
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If A is SPD, then the Cholesky and LDLT factorizations that are special cases of
the submatrix approach are termed right-looking (fan-out) factorizations.

3.1.2 Column LU Factorizations

In the column LU factorization, the outermost index in Algorithm 3.1 is j . For j =
1, l11 = 1, and the off-diagonal entries in column 1 of L are obtained by dividing
the corresponding entries in column 1 of A by u11 = a11. Assume j − 1 columns
(1 < j ≤ n) of L and U have been computed. The partial column factorization can
be expressed as

(
L1:j−1,1:j−1

Lj :n,1:j−1

)
U1:j−1,1:j−1 =

(
A1:j−1,1:j−1

Aj :n,1:j−1

)
.

Column j of U and then column j of L are computed using the identities

U1:j−1,j = L−1
1:j−1,1:j−1A1:j−1,j , ujj = ajj − Lj,1:j−1U1:j−1,j ,

and

ljj = 1, Lj+1:n,j = (Aj+1:n,j − Lj+1:n,1:j−1U1:j−1,j )/ujj .

Thus the strictly upper triangular part of column j of U is determined by solving
the triangular system

L1:j−1,1:j−1U1:j−1,j = A1:j−1,j ,

and the strictly lower triangular part of column j of L is computed as a linear
combination of column Aj+1:n,j of A and previously computed columns of L.

If A is symmetric and the pivots can be used in the order 1, 2, . . . without
modification, then there is the following link between its column LU and LDLT
factorizations.

Observation 3.2 The j -th diagonal entry djj (1 ≤ j ≤ n) of the LDLT
factorization of the symmetric matrix A is

djj = ujj = ajj −
j−1∑
k=1

dkkl
2
jk.

The L factor is the same as is computed by the column LU factorization; its
computation can be written as
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ALGORITHM 3.2 Basic column LU factorization with partial pivoting
Input: Nonsingular nonsymmetric matrix A.
Output: LU factorization PA = LU , where P is a row permutation matrix.

1: Interchange rows of A so that |a11| = max{|ai1| | 1 ≤ i ≤ n}
2: l11 = 1, u11 = a11, L2:n,1 = A2:n,1/a11

3: for j = 2 : n do
4: Solve L1:j−1,1:j−1U1:j−1,j = A1:j−1,j

5: z1:n−j+1 = Aj :n,j − Lj :n,1:j−1U1:j−1,j

6: Apply row interchanges to z, A and L so that
|z1| = max{|zi | | 1 ≤ i ≤ n − j + 1}.

7: ljj = 1, ujj = z1 and Lj+1:n,j = z2:n−j+1/z1

8: end for

djjLj+1:n,j = Aj+1:n,j −
j−1∑
k=1

Lj+1:n,k dkk ljk.

The U factor is equal to DLT . Computing L and D in this way is called the left-
looking (fan-in) factorization.

So far, we have assumed that A is factorizable. If A is nonsingular, then there
exists a row permutation matrix P such that PA is factorizable (Theorem 1.1), and
if there are zeros on the diagonal, then the rows can always be permuted to achieve
a nonzero diagonal. Consider the simple 2 × 2 matrix A and its LU factorization

A =
(

δ 1
1 1

)
=

(
1

δ−1 1

) (
δ 1

1 − δ−1

)
.

If δ = 0, this factorization does not exist, and if δ is very small, then the entries in
the factors involving δ−1 are very large. But interchanging the rows of A, we have

PA =
(
1 1
δ 1

)
=

(
1
δ 1

)(
1 1

1 − δ

)
,

which is valid for all δ �= 1. Algorithm 3.2 presents a basic column LU factorization
scheme for nonsingular A. The interchanging of rows at each elimination step to
select the entry of largest absolute value in its column as the next pivot is called
partial pivoting. It avoids small pivots and results in an LU factorization of a row
permuted matrix PA in which the absolute value of each entry of L is at most 1. In
practice, partial pivoting (or another pivoting strategy) is incorporated into all LU
factorization variants. Pivoting strategies are discussed in Chapter 7.
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3.1.3 Factorizations by Bordering

The generic LU factorization scheme does not cover all possible approaches. An
alternative is factorization by bordering. Set all diagonal entries of L to 1, and
assume the first k −1 rows of L and first k −1 columns of U (1 < k ≤ n) have been
computed (that is, L1:k−1,1:k−1 and U1:k−1,1:k−1). At step k, the factors must satisfy

A1:k,1:k =
(

A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)
=

(
L1:k−1,1:k−1 0

Lk,1:k−1 1

)(
U1:k−1,1:k−1 U1:k−1,k

0 ukk

)
.

Equating terms, the lower triangular part of row k of L and the upper triangular part
of column k of U are obtained by solving

Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

The diagonal entry ukk is then given by

ukk = akk − Lk,1:k−1U1:k−1,k (with u11 = a11).

3.2 Fill-in in Sparse Gaussian Elimination

Here we give some simple results that describe fill-in in the matrix factors; strategies
to limit fill-in will be presented in Chapter 8. We start by looking at the rules that
establish the positions of the entries in the factors. Assume S{A} is symmetric,
and consider the elimination graph Gk at step k. Its vertices are the n − k + 1
uneliminated vertices. Its edge set contains the edges in G(A) connecting these
vertices and additional edges corresponding to filled entries produced during the
first k−1 elimination steps. The sequence of graphs G1 ≡ G(A),G2, . . . is generated
recursively using Parter’s rule:

To obtain the elimination graph Gk+1 from Gk , delete vertex k and add all
possible edges between vertices that are adjacent to vertex k in Gk .

Denoting Gk = (Vk, Ek) and Gk+1 = (Vk+1, Ek+1), this can be written as

Vk+1 = Vk \ {k}, Ek+1 = Ek ∪ {(i, j) | i, j ∈ adjGk {k}} \ {(i, k) | i ∈ adjGk {k}}.

If S{A} is nonsymmetric, then the elimination graphs are digraphs and Parter’s rule
generalizes as follows:

To obtain the elimination graph Gk+1 from Gk , delete vertex k and add all edges

(i
Gk+1−−−→ j) such that (i

Gk−→ k) and (k
Gk−→ j).
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Figure 3.1 Illustration of Parter’s rule. The original undirected graph G = G1 and the elimination
graph G2 that results from eliminating vertex 1 are shown on the left and right, respectively. The
red dashed lines denote fill edges. The vertices {2, 3, 4} become a clique.
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Figure 3.2 Illustration of Parter’s rule for a nonsymmetric S{A}. The original digraph G = G1

and the directed elimination graph G2 that results from eliminating vertex 1 are shown on the left
and right, respectively. The red dashed lines denote fill edges.

Simple examples are given in Figures 3.1 and 3.2.
In terms of graph theory, if S{A} is symmetric, then Parter’s rule says that the

adjacency set of vertex k becomes a clique when k is eliminated. Thus, Gaussian
elimination systematically generates cliques. As the elimination process progresses,
cliques grow or more than one clique join to form larger cliques, a process known
as clique amalgamation. A clique with m vertices has m(m−1)/2 edges, but it can
be represented by storing a list of its vertices, without any reference to edges. This
enables important savings in both storage and data movement to be achieved during
the symbolic phase of a direct solver.

The repeated application of Parter’s rule specifies all the edges in G(L + LT ):

(i, j) is an edge of G(L + LT ) if and only if (i, j) is an edge of G(A) or (i, k) and
(k, j) are edges of G(L + LT ) for some k < i, j .

This generalizes to a nonsymmetric matrix A and its LU factorization:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
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8 ∗ ∗ ∗ ∗

⎞
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2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 3.3 Example to illustrate fill-in during the factorization of a symmetric matrix, with the
eliminations performed in the natural order. S{A} and S{L + LT } are on the left and right,
respectively, with the corresponding undirected graphs G(A) and G(L + LT ). Filled entries in
L + LT are denoted by f . The red dashed lines in the filled graph G(L + LT ) correspond to filled
entries.

(i → j) is an edge of the digraph G(L+U) if and only if (i → j) is an edge of the
digraph G(A) or (i → k) and (k → j) are edges of G(L + U) for some k < i, j .

Parter’s rule is a local rule that uses the dependency on nonzeros obtained
in previous steps of the factorization. The following result, which uses the path
notation of Section 2.2, fully characterizes the nonzero entries in the factors using
only paths in G(A).

Theorem 3.1 (Rose et al. 1976; Rose & Tarjan 1978)

(a) Let S{A} be symmetric and A = LLT . Then (L + LT )ij �= 0 if and only if

there is a fill-path i
G(A)⇐


⇒
min

j .

(b) Let S{A} be nonsymmetric and A = LU . Then (L + U)ij �= 0 if and only if

there is a fill-path i
G(A)




⇒
min

j .

The fill-paths may not be unique.

Figure 3.3 illustrates Theorem 3.1 for symmetric S{A}. There is a filled entry in

position (8, 6) of L because there is a fill-path 8
G(A)⇐


⇒
min

6 given by the sequence

of (undirected) edges 8 ←→ 2 ←→ 5 ←→ 1 ←→ 6.

Corollary 3.2 characterizes edges of Gk in terms of reachable sets in the original
graph G(A).
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4 1 5 2

6 7 3

8

Figure 3.4 An example to illustrate reachable sets in G(A). The grey vertices 1, 2, and 3 are
eliminated in the first three elimination steps (V4 = {1, 2, 3}).

Corollary 3.2 (Rose et al., 1976; George & Liu, 1980b)
Assume S{A} is symmetric. Let Vk be the set of k − 1 vertices of G(A) that have
already been eliminated, and let v be a vertex in the elimination graph Gk . Then the
set of vertices adjacent to v in Gk is the set Reach(v,Vk) of vertices reachable from
v through Vk in G(A).

Proof The proof is by induction on k. The result holds trivially for k = 1 because
Reach(v,V1) = adjG(A){v}. Assume the result holds for G1, . . . ,Gk with k ≥ 1,
and let v be a vertex in the graph Gk+1 that is obtained after eliminating vk from Gk .
If v is not adjacent to vk in Gk , then Reach(v,Vk+1) = Reach(v,Vk). Otherwise,
if v is adjacent to vk in Gk , then adjGk+1{v} = Reach(v,Vk) ∪ Reach(vk,Vk). In
both cases, Parter’s rule implies that the new adjacency set is exactly equal to the
vertices that are reachable from v through Vk+1, that is,Reach(v,Vk+1). ��

Figure 3.4 depicts a graph G(A). The adjacency sets of the vertices in G4 that
result from eliminating vertices V4 = {1, 2, 3} are adjG4{4} = Reach(4,V4) =
{5}, adjG4{5} = Reach(5,V4) = {4, 6, 7}, adjG4{6} = Reach(6,V4) = {5, 7},
adjG4{7} = Reach(7,V4) = {5, 6, 8}, and adjG4{8} = Reach(8,V4) = {7}.

We remark that neither the local characterization of filled entries using Parter’s
rule nor Theorem 3.1 provides a direct answer as to whether a certain edge belongs
to G(L+LT ) (or G(L+U)); without performing the eliminations, they do not tell us
whether a given entry of a factor of A is nonzero. Such questions are addressed by
deeper theoretical and algorithmic results that are presented in subsequent chapters.

3.3 Triangular Solves

Once an LU factorization has been computed, the solution x of the linear system
Ax = b is computed by solving the lower triangular system

Ly = b, (3.3)
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followed by the upper triangular system

Ux = y. (3.4)

Solving a system with a triangular matrix and dense right-hand side vector is
straightforward. The solution of (3.3) can be computed using forward substitution
in which the component y1 is determined from the first equation, substitute it into
the second equation to obtain y2, and so on. Once y is available, the solution of (3.4)
can be obtained by back substitution in which the last equation is used to obtain xn,
which is then substituted into equation n−1 to obtain xn−1, and so on. Algorithm 3.3
is a simple lower triangular solve for dense b. If L is unit lower triangular, step 3 is
not needed.

ALGORITHM 3.3 Forward substitution: lower triangular solve Ly = b with b

dense
Input: Lower triangular matrix L with nonzero diagonal entries and dense right-
hand side b.
Output: The dense solution vector y.

1: Initialise y = b

2: for j = 1 : n do
3: yj = yj / ljj

4: for i = j + 1 : n do
5: if lij �= 0 then
6: yi = yi − lij yj

7: end if
8: end for
9: end for

When b is sparse, the solution y is also sparse. In particular, if in Algorithm 3.3
yk = 0, then the outer loop with j = k can be skipped. Furthermore, if b1 = b2 =
. . . = bk = 0 and bk+1 �= 0, then y1 = y2 = . . . = yk = 0. Scanning y to check
for zeros adds O(n) to the complexity. But if the set of indices J = {j | yj �= 0} is
known beforehand, then Algorithm 3.3 can be replaced by Algorithm 3.4. A possible
way to determine J is discussed later (Theorem 5.2).

Note that the combined effect of forward substitution (3.3) followed by back
substitution (3.4) often results in the final solution vector x being dense. This is the
case if yn �= 0 and U has an entry in each off-diagonal row i (1 ≤ i < n).

3.4 Reducibility and Block Triangular Forms

The performance of algorithms for computing factorizations of sparse matrices can
frequently be significantly enhanced by first permuting A to have a block form or by
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ALGORITHM 3.4 Forward substitution: lower triangular solve Ly = b with b

sparse
Input: Lower triangular matrix Lwith nonzero diagonal entries, sparse vector b and
the set J of indices j such that yj �= 0.
Output: The sparse solution vector y.

1: Initialise y = b

2: for j ∈ J do � Take indices from J in increasing order
3: yj = yj / ljj

4: for i = j + 1 : n do
5: if lij �= 0 then
6: yi = yi − lij yj

7: end if
8: end for
9: end for

partitioning A into blocks. Permuting to block form is closely connected to matrix
reducibility. A is said to be reducible if there is a permutation matrix P such that

PAP T =
(

Ap1,p1 Ap1,p2

0 Ap2,p2

)
,

where Ap1,p1 and Ap2,p2 are nontrivial square matrices (that is, they are of order at
least 1). If A is not reducible, it is irreducible. If A is structurally symmetric, then
Ap1,p2 = 0 and PAP T is block diagonal. The following example illustrates that a
one-sided permutation can transform an irreducible matrix A into a reducible matrix
AQ.

A =
⎛
⎝
1 1 1
1 1
1

⎞
⎠ , Q =

⎛
⎝

1
1

1

⎞
⎠ , AQ =

⎛
⎝
1 1 1

1 1
1

⎞
⎠ .

Amatrix A is said to be a Hall matrix (or has the Hall property) if every set of k

columns has nonzeros in at least k rows (1 ≤ k ≤ n). A is a strong Hall matrix (or
has the strong Hall property) if every set of k columns (1 ≤ k < n) has nonzeros
in at least k + 1 rows. The strong Hall property trivially implies the Hall property.
The Hall property applies to rectangular m × n matrices with m ≥ n. If A is square,
then A has the strong Hall property if and only if the directed graph G(A) is strongly
connected.

The following theorem is an important consequence of reducibility.

Theorem 3.3 (Brualdi & Ryser 1991)
Given a nonsingular nonsymmetric matrix A, there exists a permutation matrix P

such that
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⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

6 3 5 4 1 2

6 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
5 ∗ ∗
4 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 3.5 The sparsity patterns of A (left) and the upper block triangular form PAP T with two
blocks Aib,ib, i = 1, 2, of orders 2 and 4 (right).

PAP T =

⎛
⎜⎜⎜⎝

A1,1 A1,2 · · · A1,nb

0 A2,2 · · · A2,nb

...
...

. . .
...

0 0 · · · Anb,nb

⎞
⎟⎟⎟⎠ , (3.5)

where the square matrices Aib,ib on the diagonal are irreducible. The set
{Aib,ib | 1 ≤ ib ≤ nb} is uniquely determined (but the blocks may appear on
the diagonal in a different order). The order of the rows and columns within each
Aib,ib may not be unique.

The upper block triangular form (3.5) is also known as the Frobenius normal
form. It is said to be nontrivial if nb > 1, and this is the case if A does not have the
strong Hall property. An example of a matrix that can be symmetrically permuted
to block triangular form with nb = 2 is given in Figure 3.5.

In practice, many of the blocks in (3.5) are either sparse or zero blocks. Assuming
the blocksAib,ib on the diagonal are all nonsingular, an LU factorization of each can
be computed independently. These can then be used to solve the permuted system
PAP T y = c as a sequence of nb smaller problems, as outlined in Algorithm 3.5.
The solution of the original system Ax = b follows by setting c = Pb and x =
P T y. Because the algorithms used to transform A into a block triangular form are
typically graph-based (and do not use the numerical values of the entries of A),
pivoting needs to be incorporated within the factorization of the diagonal blocks.
Algorithm 3.5 employs partial pivoting for this.

The transversal of a matrix A is the set of its nonzero diagonal elements. A

has a full or maximum transversal if all its diagonal entries are nonzero. There
exist permutation matrices P and Q such that PAQ has a full transversal matrix
if and only if A has the Hall property. Moreover, if A is nonsingular, then it can
be nonsymmetrically permuted to have a full transversal. However, the converse
is clearly not true (for example, a matrix with all its entries equal to one has a
full transversal, but it is singular). Permuting A to have a full transversal will be
discussed in Section 6.3.

If A has a full transversal, then there exists a permutation matrix Ps such
that PsAP T

s has the form (3.5). In other words, once A has a full transversal, a
symmetric permutation is sufficient to obtain the form (3.5). Finding Ps is identical
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ALGORITHM 3.5 Solve a sparse linear system in upper block triangular form
Input: Upper block triangular matrix (3.5) and a conformally partitioned right-hand
side vector c.
Output: The conformally partitioned solution vector y.

1: for ib = 1 : nb do � LU factorizations of the Aib,ib blocks can be performed
in parallel

2: Compute PibAib,ib = LibUib � Sparse LU factorization with partial
pivoting

3: end for
4: Solve LnbUnb ynb = Pnbcnb � Perform forward and back substitutions
5: for ib = nb − 1 : 1 do
6: for jb = ib + 1 : nb do
7: cib = cib − Aib,jbyjb � Sparse matrix-vector operation (skip if

Aib,jb = 0)
8: end for
9: Solve LibUib yib = Pibcib � Perform forward and back substitutions

10: end for

to finding the strongly connected components (SCCs) of the digraph G(A) = (V, E)

(Section 2.3). To find the SCCs, V is partitioned into non-empty subsets Vi with
each vertex belonging to exactly one subset. Each vertex i in the quotient graph
corresponds to a subset Vi , and there is an edge in the quotient graph with endpoints
i and j if E contains at least one edge with one endpoint in Vi and the other in Vj .
The condensation (or component graph) of a digraph is a quotient graph in which
the SCCs form the subsets of the partition, that is, each SCC is contracted to a
single vertex. This reduction provides a simplified view of the connectivity between
components. An example is given in Figure 3.6. It has five SCCs: {p, q, r}, {s, t, u},
{v}, {w}, and {x}.

The following result gives the relationship between SCCs and DAGs.

Theorem 3.4 (Sharir 1981; Cormen et al. 2009)
The condensation GC of a digraph is a DAG (directed acyclic graph).

Because any DAG can be topologically ordered, GC = (VC, EC) can be
topologically ordered, and if Vi and Vj are contracted to si and sj and (si −→ sj )

∈ EC , then si < sj . It follows that to permute A to block triangular form it is
sufficient to find the SCCs of G(A). That is, topologically ordering the vertices of
the condensation GC induced by the SCCs is the quotient graph that implies the
block triangular form. There are many ways to find SCCs, one of which is Tarjan’s
algorithm (Algorithm 3.6). The key idea here is that vertices of an SCC form a
subtree in the DFS spanning tree of the graph. The algorithm performs depth-
first searches, keeping track of two properties for each vertex v: when v was first
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s3

s1

s2

Figure 3.6 An illustration of the strong components of a digraph. On the left, the five SCCs are
denoted using different colours and on the right is the condensation DAG GC formed by the SCCs.

encountered (held in invorder(v)) and the lowest numbered vertex that is reachable
from v (called the low-link value and held in lowlink(v)). It pushes vertices onto
a stack as it goes and outputs a SCC when it finds a vertex for which invorder(v)

and lowlink(v) are the same. The value lowlink(v) is computed during the DFS
from v, as this finds the vertices that are reachable from v.

In Algorithm 3.6, the variable index is the DFS vertex number counter that
is incremented when an unvisited vertex is visited. S is the vertex stack. It is
initially empty and is used to store the history of visited vertices that are not yet
committed to an SCC. Vertices are added to the stack in the order in which they
are visited. The outermost loop of the algorithm visits each vertex that has not
yet been visited, ensuring vertices that are not reachable from the starting vertex
are eventually visited. The recursive function scomp_step performs a single DFS,
finding all descendants of vertex v, and reporting all SCCs for that subgraph. When
a vertex v finishes recursing, if lowlink(v) = invorder(v), then it is the root vertex
of an SCC comprising all of the vertices above it on the stack. The algorithm pops
the stack up to and including v; these popped vertices form an SCC. The algorithm
is linear in the number of edges and vertices, that is, it is of complexity O(|V|+|E |).

3.5 Block Partitioning

In this section, we assume that S{A} is symmetric and G = (V, E) is the adjacency
graph of A.
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ALGORITHM 3.6 Tarjan’s algorithm to find the strongly connected compo-
nents (SCCs) of a digraph
Input: Digraph G = (V, E).
Output: Strongly connected components of G, determined one-by-one.

1: Vv = ∅, S = (), index = 0, � Each vertex is initially unvisited
2: for each v ∈ V do
3: if v �∈ Vv then
4: scomp_step(v)
5: end if
6: end for
7: recursive function (scomp_step(v))
8: Vv = Vv ∪ {v} � Add v to the set of visited vertices
9: index = index + 1 � Set the index for v to smallest unused index

10: invorder(v) = index, lowlink(v) = index

11: push(S, v) � Put v on the stack
12: Set v = head(S) � v is the current head of S.
13: for each (v → w) ∈ E do � Look in the adjacency list of v

14: if w �∈ Vv then � w not yet been visited; recurse on it
15: scomp_step(w)
16: lowlink(v) = min(lowlink(v), lowlink(w))

17: else if w ∈ S then � w is in the stack and hence in current SCC
18: lowlink(v) = min(lowlink(v), invorder(w))

19: end if
20: end for
21: if lowlink(v) = invorder(v) then
22: pop all vertices down to v from S to obtain a new SCC
23: end if
24: end recursive function

3.5.1 Block Structure Based on Supervariables

Sets of columns of A frequently have identical sparsity patterns. For instance, when
A arises from a finite element discretization, the columns corresponding to variables
that belong to the same set of finite elements have the same pattern, and this occurs
as a result of each node of the finite element mesh having multiple degrees of
freedom associated with it. This repetition of the sparsity patterns can be used to
substantially enhance performance.

Adjacent vertices u and v in an undirected graph G = (V, E) are said to be
indistinguishable if they have the same neighbours, that is, adjG{u} ∪ {u} =
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adjG{v} ∪ {v}. A set of mutually indistinguishable vertices is called an indistin-
guishable vertex set. If U ⊆ V is an indistinguishable vertex set, then U is maximal
if U ∪ {w} is not indistinguishable for any w ∈ V \ U .

Indistinguishability is an equivalence relation on V , and maximal indistinguish-
able vertex sets represent its classes. This implies a partitioning of V into nsup ≥ 1
non-empty disjoint subsets

V = V1 ∪ V2 ∪ . . . ∪ Vnsup. (3.6)

An indistinguishable vertex set can be represented by a single vertex, called a
supervariable.

If the vertices belonging to each subset V1, . . . ,Vnsup are numbered consecu-
tively, with those in Vi preceding those in Vi+1 (1 ≤ i < nsup), and if P is the
permutation matrix corresponding to this ordering, then the permuted matrix PAP T

has a block structure in which the blocks are dense (with the possible exception of
the diagonal entries, which can be zero); the dimensions of the blocks are equal to
the sizes of the indistinguishable sets.

One approach for identifying supervariables is outlined in Algorithm 3.7.
Initially, all the vertices are placed in a single vertex set (that is, into a single
supervariable). This is split into two supervariables by taking the first vertex
j = 1 and moving vertices in the adjacency set of j into a new vertex set (a
new supervariable). Each vertex j is considered in turn, and each vertex set Vsv

that contains a vertex in adjG{j} ∪ j is split into two by moving the vertices in
adjG{j} ∪ j that belong to Vsv into a new vertex set. Note that as a result of the
splitting and moving of vertices, a vertex set can become empty, in which case it
is discarded. Once the supervariables have been determined, the permuted matrix
PAP T can be condensed to a matrix of order equal to nsup; the corresponding
graph is called the supervariable graph. If the average number of variables in each
supervariable is k, using the supervariable graph will reduce the amount of integer
data that is read during the symbolic phase by a factor of about k2.

As an illustration, consider the following 5 × 5 matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Initially, 1, 2, 3, 4, 5 are put into a single vertex set V1. Consider j = 1. Vertices
i = 1, 2 and 5 belong to adjG{1}∪{1}; they are moved from V1 into a new vertex set.
There is no further splitting of the vertex sets for j = 2. For j = 3, adjG{3}∪ {3} =
{3, 4, 5}. Vertices i = 3 and 4 are moved from V1 into a new vertex set. V1 is now
empty and can be discarded. Vertex i = 5 is moved from the vertex set that holds
vertices 1 and 2 into a new vertex set. For j = 4 and 5, no additional splitting is
performed. Thus, three supervariables are found, namely {1, 2}, {3, 4}, and {5}.
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ALGORITHM 3.7 Find the supervariables of an undirected graph
Input: Graph G of a symmetrically structured matrix.
Output: Partitioning of V into indistinguishable vertex sets.

1: V1 = {1, 2, . . . , n}
2: for j = 1 : n do
3: for i ∈ adjG{j} ∪ j do
4: Find sv such that i ∈ Vsv

5: if this is the first occurrence of sv for the current index j then
6: Establish a new vertex set Vnsv and move i from Vsv to Vnsv

7: else
8: Move i from Vsv to Vnsv

9: end if
10: Discard Vsv if it is empty
11: end for
12: end for

3.5.2 Block Structure Using Symbolic Dot Products

An alternative way to find a block structure uses symbolic dot products between the
rows of the matrix. While fully dense blocks can be found this way, it can also be
used to determine an approximate block structure in which blocks are classified as
dense or sparse based on a chosen threshold; this can be useful in preconditioning
iterative methods. Although we assume that S{A} is symmetric, modifications can
extend the approach to general nonsymmetric A.

Rewrite A as row vectors

A = (
aT
1 , . . . , aT

n

)T
,where aT

i = Ai,1:n,

and consider G(A) = (V, E). A partition V = V1 ∪ . . . ∪ Vnb is constructed
using row products aT

i ak between different rows of A. These express the level
of orthogonality between the rows; if aT

i ak is small, then i and k are assigned to
different vertex sets. Algorithm 3.8 treats all entries of A as unity, and the symbolic
row products can be considered as a generalization of the angles between rows
expressed by their cosines, hence the notation cosine for the vector that stores
these products. The vertex sets are described using the vector adjmap. On output,
if adjmap(i1) = adjmap(i2), then vertices i1 and i2 belong to the same vertex
set. Symmetry of S{A} simplifies the computation of the symbolic row products
because for row i only k > i is considered, that is, only the symbolic row products
that correspond to one triangle of AT A are checked.

The procedure outlined in Algorithm 3.8 and illustrated in Figure 3.7 is con-
trolled by a threshold parameter τ ∈ (0, 1]. j is added to the subset to which i
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ALGORITHM 3.8 Find approximately indistinguishable vertex sets in an undi-
rected graph
Input: Graph G = (V, E) of a symmetrically structured matrix A, the number nzi

of entries in row i of A (1 ≤ i ≤ n), and a threshold parameter τ ∈ (0, 1].
Output: Partitioning of V into nb disjoint approximately indistinguishable vertex
sets.

1: nb = 0, adjmap(1 : n) = 0, cosine(1 : n) = 0
2: for i = 1 : n do
3: if adjmap(i) = 0 then
4: nb = nb + 1 � Start a new set
5: adjmap(i) = ib

6: for (i, j) ∈ E do � Corresponds to an entry in Ai,1:n
7: for (k, j) ∈ E with k > i do � Both rows i and k have an entry in

column j

8: if adjmap(k) = 0 then � k has not been yet added to some
partitioning set

9: cosine(k) = cosine(k) + 1 � Increase partial dot product
10: end if
11: end for
12: for k with cosine(k) �= 0 do
13: if cosine(k)2 ≥ τ 2 ∗ nzi ∗ nzk then � Test similarity of row

patterns
14: adjmap(k) = nb

15: end if
16: cosine(k) = 0
17: end for
18: end for
19: end if
20: end for

belongs if the cosine of the angle between them exceeds τ . If τ < 1, the block
structure depends on the order in which the rows are processed, while τ = 1 gives
the exact indistinguishable vertex sets because, in this case, the row patterns being
compared must be the identical for the rows to be assigned to the same set.

3.6 Notes and References

A standard description of LU factorizations based on the generic scheme given in
Algorithm 3.1 can be found in the classical book by Ortega (1988b); this includes the
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⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 3 2 6 4 5

1 ∗ ∗ ∗
3 ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 3 5 2 6 4

1 ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 3.7 An example to illustrate Algorithm 3.8. The original matrix is given (left) together
with the permuted matrix with indistinguishable vertex sets V = {1, 3}∪{2, 6}∪{4}∪{5} obtained
using τ = 1 (centre) and the permuted matrix with approximately indistinguishable vertex sets
V = {1, 3, 5}∪ {2, 6}∪ {4} obtained using τ = 0.5 (right). The threshold τ = 0.5 results in putting
row 5 into the same set as row 1, making the vertex sets only approximately indistinguishable. The
permuted matrix on the right has an approximate block form.

symmetric case and discusses early parallelization issues (which are also considered
in the review of Dongarra et al. (1984)). A more algorithmically oriented approach is
given in Golub & Van Loan (1996). For the column variant with partial pivoting, we
recommend the detailed description of the sparse case in Gilbert & Peierls (1988).
Many results for sparse LU factorizations are surveyed by Gilbert & Ng (1993) and
Gilbert (1994). Pothen & Toledo (2004) consider both symmetric and nonsymmetric
matrices in their survey of graph models of sparse elimination. The review by Davis
et al. (2016) provides many further references.

Parter (1961) presents Parter’s rule, and its nonsymmetric version is given in
Haskins & Rose (1973). Building on the paper of Rose et al. (1976), Rose & Tarjan
(1978) were the first to methodically consider the symbolic structure of Gaussian
elimination for nonsymmetric matrices. Related work is included in the seminal
paper on Cholesky factorizations by Liu (1986). Fill-in rules in the general context
of Schur complements in LU factorizations can be found in Eisenstat & Liu (1993b).

Classical and detailed treatments of triangular solves that also cover sparse issues
are given in the papers Brayton et al. (1970), Gilbert & Peierls (1988), and Gilbert
(1994). For reducibility theory that is closely connected to the general theory of
matrices, see Brualdi & Ryser (1991), which includes, for example, a proof of
Theorem 3.4.

Algorithm 3.6 for computing strongly connected components of a digraph is
introduced in Tarjan (1972); see also Sharir (1981) and Duff & Reid (1978) for
an early implementation.

For identifying supervariables, Algorithm 3.7 follows Reid & Scott (1999), but
see also Ashcraft (1995) and Hogg & Scott (2013a) (the latter presents an efficient
variant that employs a stack). The approximate block partitioning of Section 3.5.2
is from the paper by Saad (2003a), which also describes some modifications of the
basic approach; more sophisticated schemes with overlapping blocks are given in
Fritzsche et al. (2013).
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
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The images or other third party material in this chapter are included in the chapter’s Creative
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