
Chapter 1
An Introduction to Sparse Matrices

Let us begin with a few words about the subject itself. What are
all these research workers trying to do? Mostly, they are trying
to solve Ax = b . . . Amazing. Can people still find something
new to say on these corny old subjects? The answer is yes . . . It
is the pressure to solve bigger and more complex problems that
has led people to return again and again to look in
ever-increasing detail at such basic tools as a linear equations
solver – Parlett (1974).

We may therefore interpret the elimination method as . . . the
combination of two tricks: First, it decomposes A into a product
of two [triangular] matrices . . . [and second] it forms their
inverses by a simple, explicit, inductive process – Von Neumann
& Goldstine (1947)

1.1 Motivation

Consider the simple matrix A on the left in Figure 1.1. Many of its entries are zero
(and so are omitted). This is an example of a sparse matrix. The problem we are
interested in is that of solving linear systems of equations Ax = b, where the square
sparse matrixA and the vector b are given and the solution vector x is required. Such
systems arise in a huge range of practical applications, including in areas as diverse
as quantum chemistry, computer graphics, computational fluid dynamics, power
networks, machine learning, and optimization. The list is endless and constantly
growing, together with the sizes of the systems. For efficiency and to enable large
systems to be solved, the sparsity of A must be exploited and operations with the
zero entries avoided. To achieve this, sophisticated algorithms are required.

The majority of algorithms fall into two main categories: direct methods and iter-
ative methods. Direct methods transform A using a finite sequence of elementary
transformations into a product of simpler sparse matrices in such a way that solving
linear systems of equations with these factor matrices is comparatively easy and
inexpensive. For example, if A is symmetric, consider the Cholesky factorization
A = LLT , where the factor L is a lower triangular matrix (and the superscript

© The Author(s) 2023
J. Scott, M. Tůma, Algorithms for Sparse Linear Systems, Nečas Center Series,
https://doi.org/10.1007/978-3-031-25820-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25820-6protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1
https://doi.org/10.1007/978-3-031-25820-6_1

2 1 An Introduction to Sparse Matrices

Figure 1.1 The locations of the nonzero entries in a sparse matrix from structural engineering
(left) and in L + LT (right), where L is its Cholesky factor.

Figure 1.2 The locations of the nonzero entries in a symmetric permutation of the matrix from
Figure 1.1 (left) and in L̄ + L̄T (right), where L̄ is the Cholesky factor of the permuted matrix.

LT denotes the transpose of L). Solving linear systems with a triangular matrix
is generally cheaper and more straightforward than for a general matrix. For the
matrix in Figure 1.1, it is clear that L has filled in, that is, compared to A, it has
more nonzero entries. If the amount of fill-in is too high, then the advantages of
having a triangular matrix will be lost. An important question is: can we permute
the rows and columns of A so as to reduce the fill-in in its factor L? One possibility
is shown in Figure 1.2. Here A has been symmetrically permuted to give a matrix
that has a much sparser factorization L̄L̄T .

Having fewer entries in L̄ reduces both the required storage and the number of
operations that are needed to compute it and that must be performed when using
it. This simple example suggests other possible questions, such as: how can the
positions of the nonzero entries in A and in its factors be described? How can the
sparsity pattern of the factors be determined from that of A? What influences the
computational efficiency of matrix factorizations and other matrix transformations
on contemporary computers?

Direct methods built on matrix factorizations are designed to be robust so
that, properly implemented, they can be confidently used as black-box solvers for
computing solutions with predictable accuracy. However, they can be expensive,
requiring large amounts of memory, which increases with the size of A. By contrast,
iterative methods compute a sequence of approximations

1.2 Introductory Terminology and Concepts 3

x(0), x(1), x(2), . . .

that (hopefully) converge to the solution x of the linear system in an acceptable
number of iterations. The number of iterations depends on the initial guess x(0), A
and b as well as the accuracy that is wanted in x. Iterative methods use the matrix
A only indirectly, through matrix–vector products, and their memory requirements
are limited to a (small) number of vectors of length the order of A, making them
attractive for very large problems and problems where A is not available explicitly.
They can be terminated as soon as the required accuracy in the computed solution is
achieved. Unfortunately, frequently convergence does not happen or the number of
iterations is unacceptably large; in such cases, preconditioning is needed. The aim of
preconditioning is to speed up convergence by transforming the given linear system
into an equivalent system (or one from which it is easy to recover the solution of the
original system) that has nicer numerical properties. For example, the transformed
system could be

M−1Ax = M−1b,

where the matrix M is the preconditioner and M−1 denotes its inverse. Knowledge
of the underlying problem, such as whether or not it arises from a partial differential
equation, can help in the construction of an effective preconditioner. Otherwise,
purely algebraic approaches that simply take the entries of A as input may be used.
The class of algebraic preconditioners includes those based on incomplete (or
approximate) factorizations of A. In this case, possible questions include: can some
of the factor entries be discarded to obtain a sparser but approximate factor that
is useful as a preconditioner? If so, which entries can be discarded? What are the
implications of this on the associated computational costs?

This book uses a unified framework to address such questions for direct methods
and algebraic preconditioners, examining both the theoretical and algorithmic
aspects of solving large-scale linear systems of equations.

1.2 Introductory Terminology and Concepts

Our interest is in solving linear systems of equations

Ax = b, (1.1)

where the matrix A ∈ R
n×n, 1 ≤ i ≤ n, is nonsingular and sparse, the right-

hand side vector b ∈ R
n is given (it may be sparse or dense), and x ∈ R

n is the
required solution vector. n is the order (or dimension) of A and the length of x

and b. Although we focus on real A, many of the results and algorithms we present
are valid for complex A.

4 1 An Introduction to Sparse Matrices

Entries of A are referred to using the notation

A = (aij), 1 ≤ i, j ≤ n.

An entry whose value is not zero (or is treated as not being equal to zero) is called a
nonzero. Column j of A is denoted by A1:n,j (or A:,j) and row i by Ai,1:n (or Ai,:).
Ai:j,k:l denotes the (j − i + 1) × (l − k + 1) submatrix of A comprising rows i to
j , columns k to l. A is diagonal if for all i �= j , aij = 0; it is lower triangular if
for all i < j , aij = 0; it is upper triangular if for all i > j , aij = 0. A is unit
triangular if it is triangular and all the entries on the diagonal are equal to unity.

The matrixA is structurally symmetric if for all i and j for which aij is nonzero
the entry aji is also nonzero. A is symmetric if

aij = aji, for all i, j.

Otherwise, A is nonsymmetric. The symmetry index s(A) of A is defined to be
the number of nonzeros aij , i �= j , for which aji is also nonzero divided by the total
number of off-diagonal nonzeros. Small values of s(A) indicate the matrix is far
from symmetric, while values close to unity indicate an almost symmetric pattern.
A is symmetric positive definite (SPD) if it is symmetric and satisfies

vT Av > 0 for all nonzero v ∈ R
n.

Otherwise, A is symmetric indefinite. An important class of symmetric indefinite
matrices are saddle point matrices of the form

A =
(

G RT

R B

)
,

where G ∈ R
n1×n1 , B ∈ R

n2×n2 , R ∈ R
n2×n1 with n1 + n2 = n, G is an SPD

matrix, and B is a symmetric positive semidefinite matrix (that is vT Bv ≥ 0 for all
nonzero v ∈ R

n2). In some applications, B = 0.
As we will see later, it can be useful to partition the general matrix A into blocks.

We formally express the partitioning as

A = (Aib, jb), Aib, jb ∈ R
ni×nj , 1 ≤ ib, jb ≤ nb, (1.2)

that is,

A =

⎛
⎜⎜⎜⎝

A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb

...
...

. . .
...

Anb,1 Anb,2 · · · Anb,nb

⎞
⎟⎟⎟⎠ .

1.2 Introductory Terminology and Concepts 5

We assume the square blocks Ajb, jb on the diagonal are nonsingular. We say that
A is block diagonal if Aib, jb = 0 for all ib �= jb. A is block lower triangular if
A1:jb−1, jb = 0, 2 ≤ jb ≤ nb, and it is block upper triangular if Ajb+1:nb, jb = 0,
1 ≤ jb ≤ nb − 1.

Direct methods factorize the sparse matrix A into a product of other sparse
matrices; what is an appropriate factorization depends on the properties of A. In
this book, the focus is on the following variants of Gaussian elimination.

• For symmetric positive definite A, the Cholesky factorization A = LLT ,
where L is a lower triangular matrix with positive diagonal entries. Observe that
this can be rewritten asA = L̂DL̂T , where L̂ is a unit lower triangular matrix and
D is a diagonal matrix with positive diagonal entries. This is called the square
root-free Cholesky factorization. If the context is clear, we will simplify the
notation and use L (rather than L̂) for the square root-free Cholesky factor.

• For symmetric indefinite A, the LDLT factorization A = LDLT , where L is a
unit lower triangular matrix and D is a block diagonal matrix with blocks of size
1 or 2 on the diagonal.

• For nonsymmetric A, the LU factorization A = LU , where L is a unit lower
triangular matrix and U is an upper triangular matrix. Gaussian elimination is
one process to put a matrix into LU form. The factorization can be rewritten as
A = LDÛ , where Û is a unit upper triangular matrix and D is a diagonal matrix.
This is called the LDU factorization.

As already observed, A is sparse if many of its entries are zero. Frequently, large
matrices that arise in practical problems are sparse, and when solving large-scale
linear systems, taking advantage of the sparsity is essential; indeed, many problems
are intractable unless advantage is taken of sparsity to reduce the computational
costs in terms of storage and the number of operations that must be performed.
What proportion of the entries needs to be zero for the matrix to be considered as
sparse is not fixed and can depend on the pattern of the entries, the operations to be
performed, and the computer architecture. There have been attempts to formalize
matrix sparsity more precisely. For example, a matrix of order n may be said to be
sparse if it hasO(n) nonzeros. But here we choose not to employ a formal definition.
Instead, we say that A is sparse if it is advantageous to exploit its zero entries.
Otherwise, A is dense.

The sparsity pattern S{A} of A is the set of nonzeros, that is,

S{A} = {(i, j) | aij �= 0, 1 ≤ i, j ≤ n}.

The number of nonzeros in A is denoted by nz(A) (or |S{A}|). A is structurally (or
symbolically) singular if there are no values of the nz(A) entries of A whose row
and column indices belong to S{A} for which A is nonsingular. S{A} is symmetric
if for all i and j , aij �= 0 if and only if aji �= 0 (the values of the two entries need
not be the same). If S{A} is symmetric, then A is structurally symmetric.

6 1 An Introduction to Sparse Matrices

In some situations, sparse vectors (vectors that contain many zero entries) are
considered. The sparsity pattern of a vector v of length n is given by

S{v} = {i | vi �= 0, 1 ≤ i ≤ n},

and |S{v}| denotes the number of nonzeros in v. Note that here and elsewhere curly
brackets {.} are used when working with sets to help distinguish sets from vectors.

We say that the matrix A is factorizable (or strongly regular) if its principal
leading minors (the determinants of its principal leading submatrices) are nonzero,
that is, if its LU factorization without row/column interchanges does not break
down. For example, SPD matrices are factorizable. For more general A, in exact
arithmetic, the following standard result holds.

Theorem 1.1 (Golub & Van Loan 1996)
If A is nonsingular, then the rows of A can be permuted so that the permuted matrix
is factorizable.

The row permutations do not need to be known in advance of the factorization;
rather they can be constructed as the factorization proceeds.

1.2.1 Phases of a Sparse Direct Solver

A direct method for solving the sparse system (1.1) comprises a number of
distinct phases. The matrix A is factorized, and then, given the right-hand side
b, the factors used to compute the solution x. There is no single direct method
that performs best on all problems and all computer architectures. Instead, many
different algorithms have been proposed and implemented, some focussing on
special classes of problems and/or particular architectures. However, in general,
most approaches split the factorization into a symbolic phase (also called the
analyse phase) and a numerical factorization phase that computes the factors.
The symbolic phase typically uses only the sparsity pattern S{A} to compute the
nonzero structure of the factors of A without computing the numerical values of the
nonzeros. Following the numerical factorization, the solve phase uses the factors to
solve for a single b or for multiple right-hand sides or for a sequence of right-hand
sides one-by-one.

The fill-in in the matrix factors can render a direct method infeasible. Thus the
symbolic phase typically incorporates finding a permutation (ordering) of the rows
and columns of A to limit fill-in. There are many different ways to look for fill-
reducing orderings; this is discussed in Chapter 8. Once the permutation has been
selected, the symbolic phase determines the sparsity pattern of the factors of the
permuted matrix and other key properties such as the number of entries in each row
and column of the factors. This is achieved using the close relationships between
matrices and graphs, which we review in Chapter 2. A symbolic factorization can
also be used in algorithms that construct approximate factorizations by dropping

1.2 Introductory Terminology and Concepts 7

nonzeros from A and factoring the resulting sparser matrix. These approximate
factors can be employed as preconditioners for an iterative method.

Historically, the symbolic phase was much faster than the factorization phase,
but considerable effort has gone into parallelizing the factorization so that the gap
between the times for the two phases has narrowed. Indeed, the ordering part of the
symbolic phase can dominate the total solution time. To prevent the symbolic phase
from becoming a computational bottleneck, it needs to use efficient implementations
of sophisticated algorithms. By setting up the data structures needed for computing
and holding the factors, the symbolic factorization contributes to the efficiency
of the subsequent numerical factorization in terms of time and memory. In many
applications (for instance, when solving nonlinear equations), it is necessary to solve
a series of problems in which the numerical values of the entries of A change but
S{A} does not. In this case, the symbolic phase can generally be performed just
once and its cost amortized across the numerical factorizations.

1.2.2 Comments on the Computational Environment

The von Neumann architecture—the fundamental architecture upon which nearly
all digital computers have been based—involves the union of a central processing
unit (CPU) and the memory, interconnected via input/output (I/O) mechanisms,
as depicted in Figure 1.3. Despite being extremely simple, this sequential model
remains useful, although nowadays the role of the CPU is undertaken by a mixture of
powerful processors, co-processors, cores, GPUs, and so on, and current computer
architectures employ complex memory hierarchies. Performing arithmetic opera-
tions on the processing units is much faster than communication-based operations.
Moreover, improvements in the speed of the processing units outpace those in the
memory-based hardware. Moore’s law is an example of an experimentally derived
observation of this kind.

CPU

Memory

I/O

Figure 1.3 A simple uniprocessor von Neumann computer model.

8 1 An Introduction to Sparse Matrices

Two important milestones in processor development have been multiple func-
tional units that compute identical numerical operations in parallel and data
pipelining (also called vectorization) that enables the efficient processing of
vectors and matrices. Vectorization is often supported by additional hardware and
software tools (for instance, instruction pipelining) and by memory components
such as registers and by memory architectures with multiple layers, including
small but fast memories called caches. Superscalar processors that enable the
overlapping of identical (or different) arithmetic operations during runtime have
been a standard component of computers since the 1990s. The ever-increasing
heterogeneity of processing units and their hardware environment inside computers
has led to significant effort being invested to support code implementations. For
example, expressing the code via units of scheduling and execution called threads.

A key objective of many numerical linear algebra algorithms is reducing time to
solution. This is usually bound by one of the following.

• Compute throughput, that is, the number of arithmetic operations that can be
performed per cycle.

• Memory throughput, that is, the number of operands than can be fetched from
memory/cache and/or registers each cycle.

• Latency, which is the time from initiating a compute instruction or memory
request before it is completed and the result available for use in the next
computation.

Depending on which of these is the constraining factor, a given algorithm is said to
be compute-bound, memory-bound, or latency-bound. Latency can often be hidden
by performing non-dependent operations arising from a different part of a vector
or matrix while waiting for a result, and as such is most typically a constraining
factor for small problems or, more rarely, in the execution of complex algorithms
on less powerful processors where resource limitation (for example, the number of
registers) prevents such approaches.

On modern machines, the memory throughput is normally much lower than that
required to keep all functional units busy without significant reuse of operands,
and this is generally true at all levels of cache. It can be useful to consider an
algorithm’s compute intensity, that is, the ratio of the number of operations to
the number of operands read from memory. Most chips are designed such that
dense matrix–matrix multiply, which typically performs n3 operations on n2 data
(with ratio k for a blocked algorithm with block size k), can run at full compute
throughput, while matrix–vector multiply performs n2 operations on n2 data (ratio
1) and is limited by the memory throughput. The development of basic linear algebra
subroutines (BLAS) for performing common linear algebra operations on dense
matrices was partially motivated by obtaining a high ratio. In the late 1980s, matrix–
matrix operations (implemented by Level 3 BLAS) became a must once computers
were able to store matrix blocks with accompanying processor instructions inside
registers and fast caches. Matrix–matrix operations are able to take advantage of
the fact that data that are reused within a small amount of time or are stored in
close memory locations (temporal and spatial locality) are processed efficiently.

1.2 Introductory Terminology and Concepts 9

Consequently, employing Level 3 BLAS when designing and implementing matrix
algorithms (for both sparse and dense matrices) can improve performance compared
to using Level 1 and Level 2 BLAS.

There are other important motivations behind using the BLAS. In particular, they
facilitate software development by providing standardized codes for performing
common vector and matrix operations that are robust, efficient, and portable.
Machine-specific optimized BLAS libraries are available for a wide variety of
computer architectures, and because of the importance and widespread use of the
BLAS, new implementations are provided by computer vendors as architectures
change.

In this book, we discuss the design of algorithms that aim to achieve compu-
tational efficiency through exploiting data locality and using established matrix
block and vector operations as fundamental building blocks. We assume an idealized
computer model, not a specific architecture or language.

1.2.3 Finite Precision Arithmetic

When designing numerical algorithms, it is important to consider how the numerical
operations are performed and the effects of computational errors. Finite precision
arithmetic underlies all computations that are performed numerically. Historically,
computer arithmetic varied greatly between different computer manufacturers, and
this was a source of many problems when attempting to write software that could be
easily ported between computers. Variations were reduced significantly in 1985 with
the development of the Institute for Electrical and Electronic Engineering (IEEE)
standard for computer floating-point arithmetic. The IEEE standard is now widely
used, and the majority of contemporary computers represent real numbers using
binary floating-point arithmetic that expresses real numbers as

a = ±d1. d2 . . . dt × 2k,

where k is an integer and di ∈ {0, 1}, 1 ≤ i ≤ t , with d1 = 1 unless d2 = d3 =
. . . = dt = 0. The number of digits t is 24 in single precision and 53 in double
precision. The exponent k lies in the range −126 ≤ k ≤ 127 in single precision and
−1022 ≤ k ≤ 1023 in double precision. Floating-point operations can be written as

f l(a op b) = (a op b)(1 + δ), |δ| ≤ ε,

where op is a mathematical operation (such as =,+,−,×, /,
√) and (a op b) is the

exact result of the operation, and ε is themachine precision (or unit roundoff). 2×ε

is the smallest floating-point number that when added to the floating-point number
1.0 produces a result that is different from 1.0. For IEEE single precision arithmetic,
ε is 2−24 ≈ 10−7 and for double precision ε = 2−53 ≈ 10−16. Any operation
on floating-point numbers should be thought of as introducing a relative error of

10 1 An Introduction to Sparse Matrices

absolute value at most ε. When the results of such operations are fed into other
operations to form an algorithm, these errors propagate through the calculations.
The two main sources of computational errors that are consequences of floating-
point arithmetic are rounding errors and truncation errors. Certain operations can
amplify the errors and lead to catastrophic failure when algorithms that are exact in
conventional arithmetic are executed in floating-point arithmetic. Such algorithms
are said to be numerically unstable; for sparse linear systems, this is discussed in
Chapter 7.

1.2.4 Bit Compatibility

For sequential solvers, achieving bit compatibility (in the sense that two runs on
the same machine using the same binary and identical input data should produce
identical output) is not a problem. But enforcing bit compatibility can limit dynamic
parallelism, and when designing parallel sparse solvers, the objective of efficiency
potentially conflicts with that of bit compatibility. Bit compatibility is essential for
some users because of regulatory requirements (for example, within the nuclear or
financial industries) or to build trust in their software from nontechnical users (who
may find the non-reproducibility of results worrying or unacceptable). For others, it
is just a desirable feature for debugging purposes. Often linear solves occur at the
core of much more complicated codes that typically feature heuristics that can be
sensitive to very small changes in the linear solutions found.

The critical issue is the way in which N numbers (or, more generally, matrices)
are assembled, that is,

sum =
N∑

j=1

Cj ,

where the Cj are computed using one or more processors. The assembly is
commutative but, because of the potential rounding of the intermediate results, is
not associative so that the result sum depends on the order in which the Cj are
assembled. A straightforward approach to achieving bit compatibility is to enforce a
defined order on each assembly operation, independent of the number of processors,
but this may adversely limit the scope for parallelism.

1.2.5 Complexity of Algorithms

The computational complexity of a numerical algorithm is typically based on
estimating asymptotically the number of integer or floating-point operations or
the memory usage. Computational complexity is expressed as a function of the
algorithm’s input parameters (typically the problem size) and is concerned with

1.2 Introductory Terminology and Concepts 11

how fast that function grows. Only the highest order terms are considered: scalar
factors and lower order terms are ignored. For simplicity, consider a single input
parameter. A real function y(d) of a nonnegative real d satisfies y = O(g) if there
exist positive constants c and d0 such that

|y(d)| ≤ cg(d) for all d ≥ d0.

O(g) bounds y asymptotically from above. As a simple illustration, consider the
quadratic function in d

y(d) = αd2 + βd − γ, α �= 0.

In this case, y(d) = O(d2), and the coefficient of the highest asymptotic term is α.
In some cases, a function can also be asymptotically bounded from below. However,
we will only use the O(.) notation because it is more important for sparse matrix
algorithms to specify upper bounds than to discuss special cases that may imply
lower bounds.

Computational complexity can estimate quantities related to the worst-case
behaviour of an algorithm or its average behaviour. When considering complexity
based on operation counts, as a result of using a unit-cost random-access computer
model, it is common to assume the operations have a unit cost. But in practice
there can be a significant difference between the cost of operations, such as addition
and subtraction, and operations with integer operands or operations using different
precisions. Division and square root operations can be significantly more expensive
than multiply/add operations; the difference is highly dependent on the computing
platform. Thus, unit cost can be a significant simplification, and counting floating-
point operations is arguably of limited value in assessing the performance of
different algorithms on modern computers. Nevertheless, sparse matrix algorithms
that are O(n3) are considered to be computationally too expensive: the goal when
designing algorithms is that they should be of linear (or close to linear) in the input,
that is, linear in n or nz(A). Linear complexity is often achieved in the symbolic
phase of a sparse direct solver, but the complexity of the numerical factorization
phase is typically higher and may determine the size of the linear systems that can be
solved using a sparse direct method. However, for modern computer architectures,
the number of floating-point operations is not necessarily a good indicator of
the time required to solve the linear system. Indeed, parallel implementations of
algorithms that perform more operations than the minimum needed can lead to
reductions in the runtime because costly data movements and synchronizations can
be limited by, for example, duplicating operations on multiple processors.

As computers have become more powerful (in terms of both the computational
speed and the available memory), the size of the linear systems that can be solved
using a (parallel) dense method that ignores sparsity in A has steadily increased;
nowadays linear systems with n of the order 105 can potentially be tackled using
a dense solver (although if A is sparse, the operation count and solution time will
generally be greatly reduced by using algorithms that limit operations on zeros).

12 1 An Introduction to Sparse Matrices

Many practical applications lead to systems where A is sparse and n is significantly
larger than this. The size of systems that can be solved using a sparse direct method
has also steadily increased over the years, and the algorithms they use have become
ever more sophisticated so that it is commonplace to solve systems of order greater
than 107. But the complexity does limit the problem size, and for very large systems,
an iterative solver is often the only option.

In computer science, complexity theory introduces additional concepts and
distinguishes between problems for which algorithms of polynomial complexity
exist and those where a hypothesis is that only algorithms of super polynomial
complexity exist. Without going into detail, we refer to problems in this latter class
as being combinatorially hard.

1.3 Sparse Matrices and Their Representation in a
Computer

To implement sparse matrix algorithms on a computer requires special data
structures and storage schemes that allow matrices and vectors to be stored,
retrieved, manipulated, and updated. There are many ways to do this; key to them all
is that they must be compact and avoid storing and manipulating numerically zero
entries.

1.3.1 Sparse Vector Storage

A sparse vector can be stored using a real array for the nonzero values together
with an integer array containing the indices of these entries, as demonstrated by the
following example.

Example 1.1 Let v be the sparse row vector

v = (
1. −2. 0. −3. 0. 5. 3. 0.

)
. (1.3)

The real array valV that stores the nonzero values and corresponding integer array
of their indices indV is of length |S{v}| = 5 and is as follows:

Subscripts 1 2 3 4 5

valV 1. −2. −3. 5. 3.

indV 1 2 4 6 7

Alternatively, a linked list can be used. While modern programming languages
often support linked lists directly as an abstract data structure, in sparse matrix
algorithms it is usual to implement them explicitly using arrays together with an
integer that points to the first entry (the header pointer). Each entry is associated

1.3 Sparse Matrices and Their Representation in a Computer 13

with a link that points to the next entry or is null if the entry is the last in the list.
The links can be adjusted so that the values are scanned in a different order without
moving the physical locations. Storing the vector (1.3) as a linked list is illustrated
in Example 1.2. Here v is stored in two different ways, emphasizing that the order
of the entries is determined by the links, not by the physical locations of the entries.

Example 1.2 Two possible ways of storing the sparse vector (1.3) using linked lists.

Subscripts 1 2 3 4 5

Values 1. −2. −3. 5. 3.

Indices 1 2 4 6 7

Links 2 3 4 5 0

Header 1

Subscripts 1 2 3 4 5

Values 5. 3. 1. −2. −3.

Indices 6 7 1 2 4

Links 2 0 4 5 1

Header 3

There are two important reasons for using linked lists. Firstly, it is straightforward
to add extra entries, and secondly, entries can be removed without any data
movement. This is illustrated in Example 1.3. Linked lists are an example of a
dynamic structure.

Example 1.3 On the left, an entry −4 has been added to the sparse vector (1.3) in
position 5, and, on the right, the entry−2 in position 2 has been removed. ∗ indicates
the entry is not accessed. The links that have changed are in bold.

Subscripts 1 2 3 4 5 6

Values 1. −2. −3. 5. 3. −4.

Indices 1 2 4 6 7 5

Links 2 3 4 5 6 0
Header 1

Subscripts 1 2 3 4 5

Values 1. ∗ −3. 5. 3.

Indices 1 ∗ 4 6 7

Links 3 ∗ 4 5 0

Header 1

1.3.2 Sparse Matrix Storage

The vector data structures can be generalized to sparse matrices. The simplest way to
store a sparse matrix is using coordinate (or triplet) format. The individual entries
ofA are held as triplets (i, j, aij), where i is the row index and j is the column index
of the entry aij �= 0. Three arrays (one real and two integer) each of length nz(A)

are needed. Although this form is easy to create, it is not efficient for manipulating
sparse matrices (for example, just adding two sparse matrices with different sparsity
structures presents difficulties).

TheCSR (Compressed Sparse Row) format is widely used. The column indices
of the entries of A are held by rows in an integer array (which we will call
colindA) of length nz(A), with those in row 1 followed by those in row 2, and
so on (with no space between rows). Often, within each row, the entries are held by

14 1 An Introduction to Sparse Matrices

increasing column index. A real array valA of the same length holds the values of
the corresponding entries of A in the same order. A third array rowptrA of length
n+1 is such that its i-th entry points to the position of the start of row i (1 ≤ i ≤ n)
of A within colindA and valA, and rowptrA(n + 1) is set to nz(A) + 1.

CSC (Compressed Sparse Columns) format is defined analogously by holding
the entries by columns, rather than by rows. If A is symmetric, only the lower (or
upper) triangular part is generally stored. If the matrix values are not stored, the
arrays rowptrA and colindA represent the graph G(A), which we discuss in the
next chapter.

Example 1.4 Let A be the sparse matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5

1 3. −2.
2 1. 4.
3 −1. 3. 1.
4 1.
5 7. 6.

⎞
⎟⎟⎟⎟⎠. (1.4)

Coordinate format represents A as follows. Note that the entries are in no
particular order.

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5

colindA 3 2 1 4 4 1 5 5 5 2

valA 3. 1. −1. 1. −2. 3. 4. 6. 1. 7.

CSR format representsA as follows. Here the entries within each row are in order
of increasing column index. This additional condition is often but not always used.

Subscripts 1 2 3 4 5 6 7 8 9 10

rowptrA 1 3 5 8 9 11

colindA 1 4 2 5 1 3 5 4 2 5

valA 3. −2. 1. 4. −1. 3. 1. 1. 7. 6.

The CSR and CSC formats are static data structures. While reading A is
straightforward, it can be difficult to make modifications, for instance, adding a
new entry at a specified location. Removing an entry is also problematic. The value
of the entry could be set to zero, but if a significant number of entries are set to
zero, this may not be efficient because, when A is used, operations are performed
on zeros and more memory than is necessary is used. Adding and deleting entries
are possible if the sparse rows or columns are stored using linked lists.

Example 1.5 The matrix in (1.4) can be held as a collection of columns, each in a
linked list, as follows. Here the array colA_head holds header pointers, with the
i-th entry pointing to the location of the first entry in column i.

1.3 Sparse Matrices and Their Representation in a Computer 15

Subscripts 1 2 3 4 5 6 7 8 9 10

rowindA 3 2 3 4 1 1 2 5 3 5

valA 3. 1. −1. 1. −2. 3. 4. 6. 1. 7.

link 0 10 0 0 4 3 9 0 8 0

colA_head 6 2 1 5 7

For column 4, colA_head(4) = 5, rowindA(5) = 1 and valA(5) = −2, so the
first entry in column 4 is a14 = −2. Next, link(5) = 4, rowindA(4) = 4, and
valA(4) = 1, so the second entry in column 4 is a44 = 1. Because link(4) = 0,
there are no more entries in the column. If we want to add an entry to the (3, 4)
position while retaining the order of the entries within column 4, then we do this by
setting valA(11) to hold the new entry, and rowindA(11) = 3, link(5) = 11,
and link(11) = 4 (the original value of link(5)). The resulting link array is
shown below, with the entries that have changed given in bold.

Subscripts 1 2 3 4 5 6 7 8 9 10 11

link 0 10 0 0 11 3 9 0 8 0 4

A disadvantage of linked list storage is that it prohibits the fast access to rows
(or columns) of the matrix that is needed for efficient processing on contemporary
computers that use vectorization and/or work with matrix blocks. Consequently,
CSR or CSC formats are commonly used in sparse direct methods.

Static data structures are efficient for sparse matrix factorizations if the sparsity
structures of the factors are known before the factorization begins. However, it is
often the case that new nonzero entries need to be added and/or others need to be
removed, and it is not necessarily possible to predict the required space in advance.
A storage scheme that has some space to embed new nonzeros is the DS (Dynamic
Sparse) format. It stores the nonzeros of both the rows and columns of A in real
arrays valAR and valAC, with the corresponding row and column indices held
in integer arrays rowindA and colindA. Pointers to the start of each row and
column are stored in the integer arrays rowptrA and colptrA, as in the CSR and
CSC formats. In addition, the lengths of the compressed rows and columns (which
are called row and column segments) are stored separately. In some situations, it
can be sufficient to hold only the row (or the column) information (DSR and DSC
formats). The following example illustrates the DS format.

Example 1.6 Consider again the matrix given by (1.4). The DS format represents A

using two sets of arrays. The first four store the matrix by rows, and the second
four store it by columns. The entries are in no particular order in both sets of
arrays. The arrays rlength and clength hold the numbers of entries in the rows
and columns, respectively. Free space between segments can be used to store new
nonzero entries, and it is this that makes the storage scheme efficient, provided the
number of changes to the matrix structure during the factorization is limited.

16 1 An Introduction to Sparse Matrices

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rowptrA 1 5 8 12 14

colindA 1 4 2 5 1 3 5 4 2 5

valAR 3. −2. 1. 4. −1. 3. 1. 1. 7. 6.

rlength 2 2 3 1 2

colptrA 1 4 6 9 12

rowindA 1 3 2 5 3 1 4 2 3 5

valAC 3. −1. 1. 7. 3. −2. 1. 4. 1. 6.

clength 2 2 1 2 3

Blocked formats may be used to accelerate multiplication between a sparse
matrix and a dense vector. Iterative methods typically require that the same sparse
matrix is multiplied by vectors many times before a solution is found. The matrix
can be put into a block storage format once, and then the cost of finding the blocks
and converting the matrix format can be offset by the savings that result from
repeatedly multiplying the matrix. The Variable Block Row (VBR) format groups
together similar adjacent rows and columns. The numbers of such rows and columns
can be different in each dimension, resulting in variable sized blocks. For a large
sparse block-structured matrix, using a VBR format potentially reduces the amount
of integer storage, and the block representation enables numerical algorithms to
perform the kernel matrix operations more efficiently on the block entries. However,
only heuristic algorithms are available for determining the groupings of the rows and
columns.

The data structure of the VBR format uses six arrays. Integer arrays rptr and
cptr hold the index of the first row in each block row and the index of the first
column in each block column, respectively. In many cases, the block row and
column partitionings are conformal, and only one of these arrays is needed. The
real array valA contains the entries of the matrix block-by-block in column-major
order. The integer array indx holds pointers to the beginning of each block entry
within valA. The index array bindx holds the block column indices of the block
entries of the matrix, and finally, the integer array bptr holds pointers to the start
of each row block in bindx.

Example 1.7 Let A be the sparse matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1 1. 2. 3.
2 4. 5. 6.
3 7. 8. 9. 10.
4 11. 12. 15. 16.
5 13. 17.
6 14. 18.
7 19. 20.
8 21. 22.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

1.4 Notes and References 17

Here the row blocks comprise rows 1:2, 3, 4:6, and 7:8. The column blocks
comprise columns 1:2, 3:5, 6, 7:8. The VBR format stores A as follows.

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

rptr 1 3 4 7 9

cptr 1 3 6 7 9

valA 1. 4. 2. 5. 3. 6. 7. 8. 9. 10. 11. 14. 12. 13. 15. 17. 16. 18. 19. 21. 22. 20.

indx 1 5 7 10 11 15 19

bindx 1 3 2 3 1 4 2

bptr 1 3 5 7

1.4 Notes and References

There are some excellent textbooks that provide in-depth coverage of numerical
linear algebra for dense matrices (such as Golub & Van Loan, 1996; Demmel, 1997;
Trefethen & Bau, 1997, and Strang, 2007). Although sparse direct methods have
been a constant subject for research since the 1960s and despite their importance and
widespread use, there has only ever been a handful of books focusing on them. The
most recent are Davis (2006) and Duff et al. (2017), but see also Tewarson (1973),
George & Liu (1981), Pissanetzky (1984), and Zlatev (1991). In addition, Meurant
(1999) covers both direct and iterative methods. The books by Björck (1996, 2015)
and Wendland (2017) are also relevant.

We focus on factorizations based on Gaussian elimination, but another important
class of direct methods are those based on orthogonal factorizations, most notably
QR factorizations of the form A = QR, where Q is an orthogonal matrix and R is
an upper triangular matrix. These methods are generally more expensive than those
that use LU factorizations (in terms of operation counts, the density of the factors,
and the time required to solve the linear system), but they can offer advantages in
terms of numerical stability. We refer the reader to the book by Davis (2006) for a
study of such approaches.

Over the last fifty years, in addition to the huge quantity of journal articles
relating to specific aspects of sparse direct methods, a number of useful survey
and overview papers have been published. These not only summarize important
aspects of sparse direct methods but provide interesting historical perspectives on
the theoretical, algorithmic, and software developments in the field. Early surveys
include Tewarson (1970), Reid (1974), Duff (1977, 1981), while the comprehensive
survey of Demmel et al. (1993) sums up early developments in parallel sparse direct
solvers. Gould et al. (2007) look specifically at software that implements sparse
direct methods, while the excellent survey of Davis et al. (2016) includes many
further references to review papers and early conference proceedings where some of
the key ideas related to sparse direct methods were first introduced. A short overview
of modern sparse elimination methods is given by Bollhöfer et al. (2020).

18 1 An Introduction to Sparse Matrices

A wide range of books devoted to iterative methods for solving large-scale
linear systems have been written, for example, Axelsson (1994), Greenbaum (1997),
Saad (2003b), van der Vorst (2003), Olshanskii & Tyrtyshnikov (2014), Meurant &
Duintjer Tebbens (2020), Bai & Pan (2021), and Ciaramella & Gander (2022).

There are many references to contemporary computational environments. To
understand the basic principles and connection of computations with basic linear
algebra subroutines (BLAS), a good starting point is Dongarra et al. (1998), while
contributions in van der Vorst & Van Dooren (2015) provide a general resource on
parallel computation in numerical linear algebra. Specific features of finite precision
arithmetic in this field are clearly and thoroughly explained in Higham (2002).
For the complexity of algorithms as well as for much of the terminology related
to the sparse data structures used in this book, we refer to Tarjan (1983); we also
recommend Cormen et al. (2009) or Skiena (2020).

Texts providing details of the storage formats that are primarily for sparse
direct methods include Pissanetzky (1984), Østerby & Zlatev (1983) (this discusses,
in particular, dynamic data structures; see also the technical report of Duff,
1980). Storage schemes used in connection to preconditioned iterative methods are
considered in Saad (2003b). VBR and other sparse storage formats are described,
for example, in the SPARSKIT library documentation of Saad (1994b). Buluc̨ et al.
(2011) provide a good review and evaluation of storage formats for sparse matrices
and their impact on primitive operations.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 An Introduction to Sparse Matrices
	1.1 Motivation
	1.2 Introductory Terminology and Concepts
	1.2.1 Phases of a Sparse Direct Solver
	1.2.2 Comments on the Computational Environment
	1.2.3 Finite Precision Arithmetic
	1.2.4 Bit Compatibility
	1.2.5 Complexity of Algorithms

	1.3 Sparse Matrices and Their Representation in a Computer
	1.3.1 Sparse Vector Storage
	1.3.2 Sparse Matrix Storage

	1.4 Notes and References

