
Chapter 10
Incomplete Factorizations

They [incomplete factorizations] can be thought of as
approximating the exact LU factorization of a given matrix A

(e.g. computed via Gaussian elimination) by disallowing certain
fill-ins. As opposed to other PDE-based preconditioners such as
multigrid and domain decomposition, this class of
preconditioners are primarily algebraic in nature and can in
principle be applied to any sparse matrices. When applied to
PDE problems, they are usually not optimal ... On the other
hand, they are often quite robust. – Chan & van der Vorst
(1997).

Having introduced incomplete factorization preconditioners in the previous chapter,
the focus in this chapter is on different ways to compute such factorizations and their
relationship to the complete factorizations used in sparse direct methods. We denote
the incomplete factors by ˜L and ˜U ; in the SPD case, ˜U = ˜LT . We assume that the
sparsity patterns of A and its incomplete factors always include the positions of the
diagonal entries.

10.1 ILU(0) Factorization

The simplest sparsity pattern for an incomplete factorization is S{˜L + ˜U} = S{A},
that is, no entries in ˜L or ˜U are allowed outside the sparsity pattern of A and
only entries in positions (i, j) ∈ S{A} are retained in the (incomplete) elimination
matrices. The resulting incomplete factorization is called an ILU(0) factorization (or
an IC(0) factorization if A is SPD).

Motivation for considering a sparsity pattern that is a superset of S{A} is given
by the following straightforward but important result.

Theorem 10.1 (Chan & van der Vorst 1997; van der Vorst 2003) Consider the
incomplete LU factorization A + E = ˜L˜U with sparsity pattern S{˜L + ˜U}. The
entries of the error matrix E are zero at positions (i, j) ∈ S{˜L + ˜U}.

© The Author(s) 2023
J. Scott, M. Tůma, Algorithms for Sparse Linear Systems, Nečas Center Series,
https://doi.org/10.1007/978-3-031-25820-6_10

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-25820-6protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10
https://doi.org/10.1007/978-3-031-25820-6_10

186 10 Incomplete Factorizations

Proof The result clearly holds for j = 1. Let (i, j) ∈ S{˜L+˜U } and assume without
loss of generality that i > j > 1. The (i, j) entry of ˜L is computed as

l̃ij =
⎛

⎝aij −
j−1
∑

k=1

l̃ik ũkj

⎞

⎠ /ũjj

with the sums over k implying (i, k) ∈ S{˜L+ ˜U} and (k, j) ∈ S{˜L+ ˜U }. This gives

aij = ˜Li,1:j−1˜U1:j−1,j + l̃ij ũjj = ˜Li,1:j ˜U1:j,j = Li,1:jU1:j,j ,

and the corresponding entry of E is zero. ��
A consequence of Theorem 10.1 is that extending S{˜L + ˜U} gives a larger set of

entries of A for which the error is zero. This is attractive provided the incomplete
factorization can still be computed and employed cheaply and does not require
prohibitive amounts of memory. In some situations, there are straightforward ways
to extend S{˜L + ˜U}. For example, consider a simple discretization of a PDE on a
rectangular grid. The sparsity pattern of the corresponding SPD matrix A and its
graph G(A) together with the first three steps of the Cholesky factorization of A

(in which variables 1, 2, and 3 are eliminated in turn) are given in Figure 10.1. A

has entries on the diagonal and four of its subdiagonals and the fill-in lies within
band(A). A natural choice is to allow S{˜L + ˜U} to include fill-in along a few
additional diagonals within the band.

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 2 3 4

5 6 7 8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ f
∗ ∗ ∗ ∗

∗ ∗
∗ ∗∗ ∗

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ ∗

f f ∗ ∗
∗ f ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗

∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ f f f

f f f ∗ ∗ f
∗ f f ∗ ∗ ∗

∗ f f ∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 10.1 An 8 × 8 banded sparse SPD matrix A and its graph G(A). The first three steps of a
Cholesky factorization are shown. Filled entries are denoted by f .

10.2 Basic Incomplete Factorizations 187

10.2 Basic Incomplete Factorizations

We start with the two basic incomplete factorizations. Here and elsewhere, section
notation is used but operations are performed only on nonzero entries. The Crout
variant given in Algorithm 10.1 computes ˜U row-by-row and ˜L column-by-column
and sparsifies each row and column as soon as they are computed using a target
sparsity pattern S{˜L + ˜U}. The widely used variant outlined in Algorithm 10.2
constructs both ˜L and ˜U by rows. Prescribing an appropriate sparsity pattern in
advance can be difficult. If it is not supplied, sparsification can be applied inside
the k loops (for instance, entries with absolute value less than a chosen tolerance
may be dropped) and the sparsity patterns of the factors updated as the factorization
proceeds.

Algorithms 10.1 and 10.2 are straightforward to implement using sparse data
structures. At major step i, Algorithm 10.2 computes ˜Li,1:i−1 and ˜Ui,i+1:n; both
rows can be held using a single auxiliary vector. Note that, in Algorithm 10.1,
sparsification of the partially computed vectors is performed outside the k loops,
whereas in Algorithm 10.2 it is inside the k loop. In practice, either approach can be
used, leading to slightly different variants.

ALGORITHM 10.1 Crout incomplete LU factorization

Input: Matrix A and, optionally, a target sparsity pattern S{˜L + ˜U}.
Output: Incomplete LU factorization A ≈ ˜L˜U .

1: for j = 1 : n do

2: l̃jj = 1, ˜Lj+1:n,j = Aj+1:n,j

3: ˜Uj,j :n = Aj,j :n
4: for k = 1 : j − 1 such that (j, k) ∈ S{˜L} do
5: ˜Uj,j :n = ˜Uj,j :n − l̃jk

˜Uk,j :n � Sparse linear combination

6: end for

7: Sparsify ˜Uj,j+1:n � Drop entries from row j of ˜U

8: for k = 1 : j − 1 such that (k, j) ∈ S{˜U} do
9: ˜Lj+1:n,j = ˜Lj+1:n,j − ũkj

˜Lj+1:n,k � Sparse linear combination

10: end for

11: Sparsify ˜Lj+1:n,j � Drop entries from column j of ˜L

12: ˜Lj+1:n,j = ˜Lj+1:n,j /ũjj

13: end for

188 10 Incomplete Factorizations

ALGORITHM 10.2 Row incomplete LU factorization

Input: Matrix A and, optionally, a target sparsity pattern S{˜L + ˜U}.
Output: Incomplete LU factorization A ≈ ˜L˜U .

1: for i = 1 : n do

2: l̃ii = 1, ˜Li,1:i−1 = Ai,1:i−1

3: ˜Ui,i:n = Ai,i:n
4: Sparsify ˜L1,1:i−1 and ˜Ui,i+1:n
5: for k = 1 : i − 1 such that (i, k) ∈ S{˜L} do
6: l̃ik = l̃ik/ũkk

7: ˜Li,k+1:i−1 = ˜Li,k+1:i−1 − l̃ik ˜Uk,k+1:i−1

8: Sparsify ˜Li,k+1:i−1

9: ˜Ui,i:n = ˜Ui,i:n − l̃ik ˜Uk,i:n
10: Sparsify ˜Ui,i+1:n
11: end for

12: end for

10.3 Incomplete Factorizations Based on the Shortest
Fill-Paths

We next consider an incomplete LU factorization that uses a structure-based
dropping strategy. Entries of the factors that correspond to nonzero entries of A are
assigned the level 0, while each potential filled entry in position (i, j) is assigned a
level as follows:

level(i, j) = min
1≤k<min{i,j}(level(i, k) + level(k, j) + 1). (10.1)

Given � ≥ 0, during the factorization, a filled entry is permitted at position
(i, j) provided level(i, j) ≤ �. The resulting level-based incomplete factorization
is denoted by ILU(�) (or IC(�)); the basic row variant is given in Algorithm 10.3.

Figure 10.2 depicts S{˜L + ˜LT } for the IC(�) factorization of A from the
discretized Laplace equation on a square grid (see the smaller problem in (9.14))
and for a matrix with a more general symmetric sparsity structure. The fill-in is
typically generated irregularly throughout the factorization: initially few updates
are needed, but later steps involve many updates, leading to large amounts of
dropping. Furthermore, the amount of fill-in can grow quickly with increasing �

and, as a result, � is typically small and level-based dropping is often combined with
threshold-based dropping or with sparsifying A before the factorization commences
(for example, by discarding entries of A with small absolute values).

10.3 Incomplete Factorizations Based on the Shortest Fill-Paths 189

ALGORITHM 10.3 Level-based incomplete LU factorization
Input: Matrix A and the level parameter � ≥ 0.
Output: ILU(�) factorization A ≈ ˜L˜U .

1: Initialise level to 0 for nonzeros and diagonal entries ofA and to n+1 otherwise
2: for i = 1 : n do � Loop over rows
3: l̃ii = 1, ˜Li,1:i−1 = Ai,1:i−1 and ˜Ui,i:n = Ai,i:n � Initialise row i of ˜L and ˜U

4: for k = 1 : i − 1 such that level(i, k) ≤ � do
5: l̃ik = l̃ik/ũkk

6: for j = k + 1 : i − 1 do
7: l̃ij = l̃ij − l̃ik ũkj and update level(i, j)

8: end for
9: for j = i : n do

10: ũij = ũij − l̃ik ũkj and update level(i, j)

11: end for
12: end for
13: for k = 1 : i − 1 do � Drop entries in row i for which level is too high
14: if level(i, k) > � then l̃ik = 0
15: end for
16: for k = i : n do
17: if level(i, k) > � then ũik = 0
18: end for
19: end for

The level-based strategy comes from observing that in practical examples the
absolute values of the entries in the factors in positions for which level is large are
often small. This is the case for model problems arising from discretized PDEs. A
closer look shows a surprising connection between the level-based ILU factorization
and the complete factorization: entries with large values of level correspond to long
fill-paths. This is expressed in Theorem 10.2, which allows the sparsity patterns of
the incomplete factors to be determined a priori.

Theorem 10.2 (Hysom & Pothen 2002) Consider the ILU(�) factorization of A.
level(i, j) = k for some k ≤ � if and only if there is a shortest fill-path i 	⇒ j of
length k + 1 in the adjacency graph G(A).

Algorithm 10.4 outlines finding the pattern of row i of ˜U ; finding the pattern of
columns of ˜L is analogous. Only G(A) is required, and hence the sparsity pattern
of each row in the factor can be computed independently, in parallel. The algorithm
operates via a simple breadth-first search that finds a shortest path between vertex

190 10 Incomplete Factorizations

IC(0) IC(2) IC(4)

IC(0) IC(2) IC(4)

Figure 10.2 The sparsity patterns of the IC(�) factors of A from the discretized Laplace equation
on a square grid (top) and a more general symmetric sparse matrix (bottom).

i and vertices reachable from i via a graph traversal of l + 1 or fewer edges. The
correctness of the algorithm follows from Theorem 10.2.

10.4 Modifications Based on Maintaining Row Sums

We assume in this section that the target sparsity pattern S{˜L + ˜U} contains S{A}.
Modified incomplete factorizations (MILU or MIC in the SPD case) seek to
maintain equality between the row sums of A and ˜L˜U , that is, ˜L˜Ue = Ae (e is the
vector of all ones). Rather than discarding potential fill-in outside the target sparsity
pattern, the approach subtracts it from the diagonal entries of ˜U ; this is outlined
in Algorithm 10.5. Note that an MILU factorization may break down. If the target
sparsity pattern corresponds to that of an ILU(�) factorization, then an MILU(�)
factorization is computed.

Equality of the row sums of A and ˜L˜U can be seen as follows. If all the filled
entries are retained (that is, S{˜L + ˜U} = S{L + U}), then the claim holds trivially.
Now assume some filled entries are not kept. If an entry in column j of row i of A

belongs to the target sparsity pattern, then its value is modified in Step 8 if i ≤ j

or in Step 15 if i > j . Otherwise, the i-th diagonal entry of ˜U is modified (Step
10 or Step 17). In each case, l̃ik ũkj is subtracted from entries of the i-th row of the
incomplete factors. Consider row i of ˜L˜U . This product is given by

10.4 Modifications Based on Maintaining Row Sums 191

ALGORITHM 10.4 Find the sparsity pattern of row i of the ILU(�) factor ˜U

of A
Input: Graph G(A), the level parameter � ≥ 0 and row index i.
Output: Sparsity pattern S{˜Ui,i:n} of row i of the ILU(�) factorization A ≈ ˜L˜U .

1: S{˜Ui,i:n} = {i}, Q = {i} � Queue holds i initially
2: length(i) = 0
3: visited(i) = i

4: while Q is not empty do
5: pop(Q, k) � Take k from the queue
6: for j ∈ adjG(A)(k) with visited(j) �= i do
7: visited(j) = i

8: if j < i and length(k) < � then
9: append(Q, j) � Add j to the queue

10: length(j) = length(k) + 1
11: else if j > i then
12: S{˜Ui,i:n} = S{˜Ui,i:n} ∪ {j} � Add j to the sparsity pattern of row i

13: end if
14: end for
15: end while

i−1
∑

j=1

l̃ij

n
∑

k=j

ũjk =
i−1
∑

j=1

l̃ij ũjj +
i−1
∑

j=1

l̃ij

n
∑

k=j+1

ũjk +
n

∑

k=i

ũik =

=
i−1
∑

j=1

⎛

⎝aij −
j−1
∑

k=1

l̃ik ũkj

⎞

⎠ +
i−1
∑

j=1

l̃ij

n
∑

k=j+1

ũjk +
n

∑

k=i

⎛

⎝aik −
i−1
∑

j=1

l̃ij ũjk

⎞

⎠

=
n

∑

j=1

aij +
i−1
∑

j=1

l̃ij

n
∑

k=j+1

ũjk −
⎛

⎝

i−1
∑

j=1

j−1
∑

k=1

l̃ik ũkj +
n

∑

k=i

i−1
∑

j=1

l̃ij ũjk

⎞

⎠ .

Rearranging the indices in the double summations, the last three sums cancel out.
Moreover, the added double summation is the sum of all the modification terms
l̃ik ũkj in Algorithm 10.5, and the sum of the two subtracted double summations
also comprises all the modification terms. Consequently, the row sums of A are
preserved in the product of the incomplete factors.

Theorem 10.3 provides motivation for maintaining constant row sums in the case
of a model PDE problem. The result is also valid for Neumann or mixed boundary
conditions, and there are extensions to three-dimensional problems and MIC(�)

192 10 Incomplete Factorizations

ALGORITHM 10.5 Modified incomplete factorization (MILU)

Input:Matrix A = LA+DA+UA (see (9.6)) and a target sparsity pattern S{˜L+ ˜U}
containing S{A}.
Output: Incomplete LU factorization A ≈ ˜L˜U .

1: l̃ij = (I + LA)ij for all (i, j) ∈ S(˜L) � S(LA) ⊆ S(˜L)

2: ũij = (DA + UA)ij for all (i, j) ∈ S(˜U) � S(UA) ⊆ S(˜U)

3: for k = 1 : n − 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{˜L} do
5: l̃ik = l̃ik/ũkk � Check that ũkk is nonzero
6: for j = i : n such that (k, j) ∈ S{˜U} do
7: if (i, j) ∈ S{˜U} then
8: ũij = ũij − l̃ik ũkj

9: else
10: ũii = ũii − l̃ik ũkj � Modify diagonal instead of creating fill-in
11: end if
12: end for
13: for j = k + 1 : i − 1 such that (k, j) ∈ S{˜U} do
14: if (i, j) ∈ S{˜L} then
15: l̃ij = l̃ij − l̃ik ũkj

16: else
17: ũii = ũii − l̃ik ũkj � Modify diagonal instead of creating fill-in
18: end if
19: end for
20: end for
21: end for

with � > 0. However, although Theorem 10.1 holds for MILU factorizations, the
approach may not be useful for general A.

Theorem 10.3 (Gustafsson 1978; Bern et al. 2006) Let A come from a discretized
Poisson problem on a uniform two-dimensional rectangular grid with Dirichlet
boundary conditions and discretization parameter h. Then the condition number
κ((˜L˜U)−1A) for the level-based MIC(0) preconditioner is O(h−1).

Optionally, in Steps 10 and 17 of Algorithm 10.5, the update term l̃ik ũkj may be
multiplied by a parameter θ (0 < θ < 1) before it is subtracted from the diagonal
entry ũii . The introduction of θ was proposed as a practical way to extend MILU to
linear systems not coming from discretized PDEs. Clearly, using θ < 1 reduces the
amount by which the diagonal entries are modified.

10.5 Dynamic Compensation 193

10.5 Dynamic Compensation

As discussed in Section 9.4.1, dropping entries can lead to breakdown. One way to
avoid this (in exact arithmetic) is to dynamically modify the computed entries; this
is outlined as Algorithm 10.6. Instead of accepting a filled entry in position (i, j),
the idea is to add a (weighted) multiple of its absolute value to the corresponding
diagonal entries ũii and ũjj . Provided the number of modifications is small, this
can be useful if A is a diagonally dominant matrix and scaled so that its diagonal
entries are nonnegative. The parameter ω controls the amount by which the diagonal
entries of ˜U are modified, but if ω < 1, then breakdown can still occur. Dynamic
compensation can be successful when incorporated into an IC factorization of

ALGORITHM 10.6 ILU factorization with dynamic compensation

Input: Matrix A = LA + DA + UA (see (9.6)), a target sparsity pattern S{˜L + ˜U}
and parameter ω (0 ≤ ω ≤ 1).
Output: Incomplete LU factorization A ≈ ˜L˜U .

1: l̃ij = (I + LA)ij for all (i, j) ∈ S(˜L)

2: ũij = (DA + UA)ij for all (i, j) ∈ S(˜U)

3: for k = 1 : n − 1 do
4: for i = k + 1 : n such that (i, k) ∈ S{˜L} do
5: l̃ik = l̃ik/ũkk

6: for j = i : n such that (k, j) ∈ S{˜U} do
7: if (i, j) ∈ S{˜U} then
8: ũij = ũij − l̃ik ũkj

9: else
10: ρ = (ũii/ũjj)

1/2

11: ũii = ũii + ωρ |l̃ik ũkj |, ũjj = ũjj + ω|l̃ik ũkj | /ρ, ũij = 0.
12: end if
13: end for
14: for j = k + 1 : i − 1 such that (k, j) ∈ S{˜U} do
15: if (i, j) ∈ S{˜L} then
16: l̃ij = l̃ij − l̃ik ũkj

17: else
18: ρ = (ũii/ũjj)

1/2

19: ũii = ũii + ωρ |l̃ik ũkj |, ũjj = ũjj + ω|l̃ik ũkj | /ρ, l̃ij = 0.
20: end if
21: end for
22: end for
23: end for

194 10 Incomplete Factorizations

an SPD matrix A because the resulting local modifications correspond to adding
positive semidefinite matrices to A. In practice, the behaviour of the resulting
preconditioner can be very different from that computed using the MIC approach
of the previous section.

A related scheme, called diagonally compensated reduction, modifies A before
the factorization begins by adding the values of all of its positive off-diagonal entries
to the corresponding diagonal entries and then setting these off-diagonal entries
to zero. If A is SPD, then the resulting matrix is a symmetric M-matrix and the
incomplete factorization will not break down (Theorem 9.4). However, the modified
matrix may be too far from A for its incomplete factors to be useful.

10.6 Memory-Limited Incomplete Factorizations

We next consider a more sophisticated modification scheme that introduces the use
of intermediate memory that is employed during the construction of the incomplete
factors but is then discarded. The aim is to obtain a high quality preconditioner
while maintaining sparsity and allowing the user to control how much memory is
used (both in the construction of the preconditioner and in the incomplete factor ˜L).
Let the matrix A be SPD and consider the decomposition

A = (˜L + ˜R) (˜L + ˜R)T − E.

Here the incomplete factor ˜L is a lower triangular matrix with positive diagonal
entries, ˜R is a strictly lower triangular matrix with “small” entries, and the error
matrix is E = ˜R˜RT . At each step, the next column of ˜L is computed, and then the
remaining Schur complement is modified. On step j of the incomplete factorization,
the first column of the Schur complement S(j) is split into the sum

˜Lj :n,j + ˜Rj :n,j ,

where ˜Lj :n,j contains the entries that are retained in column j of the final incom-
plete factorization, (˜R)jj = 0 and ˜Rj+1:n,j contains the entries that are discarded.
If a complete factorization was being computed, then the Schur complement would
be updated by subtracting

(˜Lj+1:n,j + ˜Rj+1:n,j) (˜Lj+1:n,j + ˜Rj+1:n,j)
T .

However, the incomplete factorization discards the term

E(j) = ˜Rj+1:n,j
˜RT

j+1:n,j .

10.6 Memory-Limited Incomplete Factorizations 195

⎛
⎜⎜⎜⎝

∗ ∗ ∗ δ δ
∗ f f
∗ f f
δ
δ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∗ ∗ ∗ δ δ
∗ f f f f
∗ f f f f
δ f f
δ f f

⎞
⎟⎟⎟⎠

Figure 10.3 An illustration of the fill-in in a standard sparsification-based IC factorization (left)
and in the approach that uses intermediate memory (right) after one step of the factorization. Entries
with a small absolute value in row and column 1 are denoted by δ. The filled entries are denoted
by f .

⎛
⎜⎜⎜⎜⎜⎝

∗ ∗ δ
∗ ∗ ∗ ∗
δ ∗ ∗

∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∗
∗ ∗

∗
∗ ∗

∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∗
∗ ∗
δ f ∗

∗ ∗
∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 10.4 On the left is an SPD matrix with an entry of small absolute in positions (1, 3) and
(3, 1). In the centre is S{˜L} computed using a standard IC factorization that drops the small entry
δ at position (3, 1) (there are no filled entries in this case). On the right is the lower triangular
part of the elimination matrix after the first step of the incomplete factorization using intermediate
memory. The filled entry is denoted by f .

Thus, the matrix E(j) is implicitly added to A, and because E(j) is positive
semidefinite, the approach is naturally breakdown-free.

The obvious choice for ˜Rj+1:n,j is the smallest off-diagonal entries in the column
(those that are smaller in absolute value than a chosen tolerance). Then implicitly
adding E(j) is combined with the standard steps of an IC factorization, with entries
dropped from ˜L after the updates have been applied to the Schur complement.

Figure 10.3 depicts the first step of this approach. In the first row and column,
∗ and δ denote the entries of ˜L1:n,1 and ˜R1:n,1, respectively. Because a standard
sparsification scheme does not store the smallest entries, using such a scheme gives
no fill-in in the rows and columns corresponding to the discarded entries; this is
shown on the left. The fill-in in the factorization that uses intermediate memory is
depicted on the right. Clearly, more filled entries are used in constructing ˜L.

This strategy enables the structure of the complete factorization to be followed
more closely than is possible using a standard approach. This is illustrated in
Figure 10.4. If the small entries at positions (1, 3) and (3, 1) are not discarded, then
there is a filled entry in position (3, 2) and this allows the incomplete factorization
using intermediate memory to involve the (large) off-diagonal entries in positions
(5, 2) and (6, 2) in the second step of the IC factorization.

Unfortunately, because the column ˜Rj+1:n,j must be retained to perform the
updates on the next step, the total memory requirements are essentially as for a

196 10 Incomplete Factorizations

ALGORITHM 10.7 Crout memory-limited IC factorization
Input: SPD matrix A, memory control parameters lsize > 0 and rsize ≥ 0.
Output: Incomplete Cholesky factorization A ≈ ˜L˜LT .

1: wi = 0, 1 ≤ i ≤ n

2: for j = 1 : n do
3: for i = j : n such that aij �= 0 do
4: wi = aij

5: end for
6: for k < j such that l̃jk �= 0 do
7: for i = j : n such that l̃ik �= 0 do
8: wi = wi − l̃ik l̃jk

9: end for
10: for i = j : n such that r̃ik �= 0 do
11: wi = wi − r̃ik l̃jk

12: end for
13: end for
14: for k < j such that r̃jk �= 0 do
15: for i = j : n such that l̃ik �= 0 do
16: wi = wi − l̃ik r̃jk

17: end for
18: end for
19: Copy into ˜Lj :n,j the lsize+nz(Aj :n,j) entries of w of largest absolute value

20: Copy into ˜Rj+1:n,j the rsize entries ofw that are the next largest in absolute

value

21: Scale l̃jj = (wj)
1/2, ˜Lj+1:n,j = ˜Lj+1:n,j /l̃jj , ˜Rj+1:n,j = ˜Rj+1:n,j /l̃jj

22: Reset entries of w to zero.

23: end for
24: Optionally discard ˜R � ˜R is often only used in the construction of ˜L

complete factorization. However, the memory can be reduced by introducing two
drop tolerances so that only entries of absolute value at least τ1 are kept in ˜L

and entries smaller than τ2 are dropped from ˜R. The factorization is no longer
guaranteed to be breakdown-free. Furthermore, the numbers of entries in ˜L and
˜R are not known a priori.

An alternative idea that limits both the number of entries in the incomplete
factor and the intermediate memory is to fix the maximum number of entries in
each column of ˜L and ˜R. This is outlined in Algorithm 10.7. Here lsize ≥ 0 and
rsize ≥ 0 are the maximum number of filled entries in each column of ˜L and
the maximum number of entries in each column of ˜R, respectively, and nz(Aj :n,j)

10.7 Fixed-Point Iterations for Computing ILU Factorizations 197

denotes the number of entries in the lower triangular part of column j of A. The
number of entries in ˜L is less than nz(A)+(n−1)lsize (where nz(A) is the number
of entries in the lower triangular part of A) and ˜R has at most (n−1)rsize entries. If
the parameter rsize is set to 0, then no intermediate memory is used but in general
choosing rsize > 0 leads to the computed ˜L being a higher quality preconditioner.
In case of breakdown, the algorithm can incorporate the use of a global shift; see
Algorithm 9.1.

10.7 Fixed-Point Iterations for Computing ILU
Factorizations

The fixed-point ILU algorithm is fundamentally different from Gaussian
elimination-based approaches. Given the target sparsity pattern S{˜L + ˜U}, the
goal is to iteratively generate incomplete factors fulfilling the ILU property

(˜L˜U)ij = aij , (i, j) ∈ S{˜L + ˜U}

(see Theorem 10.1). The idea is appealing because the entries of ˜L and ˜U can be
computed iteratively in parallel using the constraints

min(i,j)
∑

k=1
(i,k),(k,j)∈S{˜L+˜U}

l̃ik ũkj = aij , (i, j) ∈ S{˜L + ˜U},

and the normalization l̃ii = 1. Using the relations

l̃ij =
⎛

⎝aij −
j−1
∑

k=1

l̃ik ũkj

⎞

⎠ / ũjj , i > j, (10.2)

ũij = aij −
i−1
∑

k=1

l̃ik ũkj , i ≤ j, (10.3)

the approach can be formulated as a fixed-point iteration method of the formwk+1 =
f (wk), k = 0, 1, . . ., where w is a vector containing the unknowns l̃ij and ũij . Each
fixed-point iteration is called a sweep. Algorithm 10.8 outlines the method.

An important question is how to choose initial values for the factor entries.
In some applications, a natural initial guess is available. For example, in time-
dependent problems, the ˜L and ˜U computed in the previous time step may provide
appropriate initial guesses for the current time step. In other cases, a possible
strategy is to symmetrically scaleA to have a unit diagonal and then take the initial˜L

198 10 Incomplete Factorizations

ALGORITHM 10.8 Fixed-point ILU factorization

Input:Matrix A, the target sparsity pattern S{˜L+ ˜U}, and initial incomplete factors
˜L and ˜U .
Output: Updated incomplete factors.

for (i, j) ∈ S{˜L + ˜U} do
Set l̃ij and ũij to the given initial values

end for
for sweep = 1, 2, . . . do

for (i, j) ∈ S{˜L + ˜U} do
if i > j then

Compute l̃ij using (10.2)
else

Compute ũij using (10.3)
end if

end for
end for

and ˜U to be the lower and upper parts of the scaled matrix, respectively. In practice,
a few sweeps may be sufficient to generate preconditioners that are competitive in
terms of quality to those generated via classical incomplete Gaussian elimination
algorithms.

The following features differentiate the fixed-point ILU algorithm from classical
methods and make it attractive for parallel computations on modern architectures.

• The algorithm is fine-grained, allowing for scaling to a very large number of
processors, limited only by the number of nonzero entries in the target sparsity
patterns.

• Preordering A is not needed to enhance parallelism, and thus orderings that
improve the accuracy of the incomplete factorization can be used.

• The algorithm can utilize an initial guess for the ILU factorization.

To enhance the preconditioner quality, it is possible to interleave employing
Algorithm 10.8 with a strategy that dynamically adapts S{˜L + ˜U} to the problem
characteristics. In an iterative process based on highly parallel building blocks,
this allows threshold-based ILU factorizations to be computed on parallel shared-
memory architectures and enables the efficient use of streaming-based architectures
such as GPUs.

10.8 Ordering in Incomplete Factorizations 199

10.8 Ordering in Incomplete Factorizations

Ordering algorithms designed for sparse direct solvers (see Chapter 8) can have
a positive effect on the robustness and performance of preconditioned Krylov sub-
space methods. However, the best choice of ordering for an incomplete factorization
preconditioner may not be the same as for a complete factorization, and although the
effects of orderings and how much fill-in is allowed have been widely demonstrated,
they are not yet fully understood.

When the natural (lexicographic) ordering is used, the incomplete triangular
factors resulting from a no-fill ILU factorization can be highly ill-conditioned, even
if the matrixA is well-conditioned. Allowing more fill-in in the factors, for example,
using ILU(1) instead of ILU(0), may solve the problem, but it is not guaranteed. In
some cases, preordering A can lead to more stable factors, and hence more effective
preconditioners, but, again, this is not understood.

Minimum degree orderings (Section 8.1.2) are popular for direct methods, but
for incomplete factorizations care is needed to ensure the dropping strategy is
compatible with the ordering. This is because the rows (and columns) of the
permuted matrix can have significantly different counts. In this situation, using
memory-based dropping in which the maximum allowable number of filled entries
in a row of ˜L is the same for all rows may not be a good approach. An alternative
strategy is to specify that the permitted fill-in is proportional to that of the complete
factorization (which can be computed using Algorithm 4.3).

A level set ordering that reduces the bandwidth or profile of a matrix can be
employed (Section 8.2). For complete factorizations, the fill-in in the factors can
be much greater than for nested dissection or minimum degree, but for incomplete
factorizations they can be highly effective. In particular, using an RCM ordering
(Algorithm 8.3) is often found to lead to a higher quality preconditioner than using
the natural ordering. RCM-based orderings are generally inexpensive to compute
and can provide good reuse of computer caches.

Global orderings based on a divide-and-conquer approach and, in particular,
nested dissection (Section 8.4) are important for complete factorizations. But such
orderings cut local connections within the graph of A and, when used with incom-
plete factorizations, can lead to poor quality preconditioners. A global ordering
that specifically targets incomplete factorizations is a red–black (or checker board)
ordering. Consider the graph G(A) of an SPD matrix A that arises from a simple
5-point discretization of a PDE on a regular two-dimensional grid and colour its
vertices using two colours so that no vertices of the same colour are incident to the
same edge (see Figure 10.5). Because no red vertex is adjacent to any other red
vertex, the red vertices are an independent set; similarly, the black vertices are an
independent set. The red vertices can be processed in any order, provided they are
all processed before any of the black vertices. This can make red–black orderings
convenient for parallel implementations and is the main reason that they are often
employed with stationary iterative methods.

200 10 Incomplete Factorizations

1 2 3

4 5 6

7 8 9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9

1 4 −1 −1
2 −1 4 −1 −1
3 −1 4 −1
4 −1 4 −1
5 −1 −1 4 −1 −1
6 −1 −1 4 −1
7 −1 4 −1
8 −1 −1 4 −1
9 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 5 7 9 2 4 6 8

1 4 −1−1
3 4 −1−1
5 4 −1−1−1−1
7 4 −1 −1

49 −1−1
2 −1−1−1 4

4 −1 −1−1 4

6 −1−1 −1 4

8 −1−1−1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 10.5 A model problem to illustrate a red–black ordering. The grid-based graph G(A) with
coloured vertices is given together with the matrix A (left) and the symmetrically permuted matrix
using the red–black ordering (right).

A bipartite graph is an undirected graph whose vertices can be partitioned into
two disjoint sets such that each set is an independent set (Section 6.3.1). It follows
that the red–black ordering exists if and only if G(A) is bipartite. The ordering is
often generalized as follows. Start by finding a set of mutually non-adjacent vertices
(that is, an independent set) and flag them as red vertices. After the elimination of the
variables corresponding to the red vertices and employing a sparsification strategy,
a Schur complement matrix is obtained. Proceed by finding a set of mutually non-
adjacent vertices in this matrix, flag them as red vertices and continue recursively.
This approach can lead to a significant decrease in the condition number of the
preconditioned matrix. Another generalization for arbitrary graphs is to employ
more colours (multicolouring). Again, the colouring can be exploited in parallel
computations. For efficiency, load balancing of the coloured vertices needs to be
considered. Because reordering the vertices can affect the convergence rate of an
iterative solver, the potential gain in parallel performance at each iteration may be
offset by a slower convergence rate.

10.9 Exploiting Block Structure

Blocking methods for complete factorizations can be adapted to incomplete factor-
izations. The aim is to speed up the computation of the factors and to obtain more
effective preconditioners. In a block factorization, scalar operations of the form

l̃ik = aik/ũkk

10.10 Notes and References 201

are replaced by matrix operations

˜Lib,kb = Aib,kb
˜U−1

kb,kb,

and scalar multiplications of entries of the factors are replaced by matrix–matrix
products. When dropping entries, instead of considering the absolute values, simple
norms of the block entries (such as the one norm, max norm, or Frobenius norm)
are used.

An incomplete factorization can start with the supernodal structure of the
complete factors. If dropping is applied to individual columns, this structure is
generally lost. To try and retain it, the dropping strategy can be modified either
to drop the set of nonzeros of a row in the current supernode or to keep it. To
obtain sufficiently sparse incomplete factors, it may be necessary to subdivide each
supernode, allowing greater flexibility on how many rows are dropped. It is also
possible to relax blocking operations in such a way that the supernodes are not
exact but are allowed to incur some fill-in.

10.10 Notes and References

Sparsity structure was the main ingredient of the first algebraic preconditioners that
were developed in the late 1950s. The nonzero structure represented the stencils
resulting from the discretization of PDEs on structured grids. The earliest contribu-
tion is Buleev (1959), and this was later generalized to three-dimensional problems.
An independent derivation and its interpretation as an incomplete factorization for a
sparse matrix coming from a simple 5-point stencil is given in Varga (1960); other
early work is by Baker & Oliphant (1960). For an overview of early contributions
and the motivations behind incomplete factorizations, see Il′in (1992); we also refer
to the survey of Chan & van der Vorst (1997).

Important breakthroughs in the use of preconditioning using incomplete factor-
izations for practical problems came in two key papers. The first by Meijerink &
van der Vorst (1977) recognized the importance of preconditioning for the conjugate
gradient method. In the second, Kershaw (1978) proposed locally replacing pivots
by a small positive number to prevent breakdown of the factorization. This paved
the way for incomplete factorizations in which dropping is based solely on the size
of the computed entries and which were introduced even earlier by Tuff & Jennings
(1973).

The Crout incomplete LU factorization outlined in Algorithm 10.1 was imple-
mented in a successful code for symmetric problems by Lin & Moré (1999),
building on earlier ideas of Jones & Plassmann (1995) and Eisenstat et al. (1982)
(see also Li et al., 2003 for later contributions to this approach). Algorithm 10.2

202 10 Incomplete Factorizations

with a sparsification strategy that uses both a drop tolerance and a limit on the
number of entries in each column of the incomplete factors was published in Saad
(1994a) as the dual threshold ILUT method. For general nonsymmetric matrices,
ILUT has proved very popular and has been developed further (see, for example,
MacLachlan et al., 2012). But because it is based on the row factorization, it
ignores symmetry in A and, if A is symmetric, the computed sparsity patterns of
L and UT are normally different. In this case, a Crout incomplete factorization
may be preferable. The hierarchy of sparsity structures based on the concept of
levels is introduced in Watts-III (1981). The initial work has since been significantly
improved, notably for parallel implementations by Hysom & Pothen (2002). The
Euclid library is a scalable implementation of a parallel level-based ILU algorithm
that is available as part of the hypre library of linear solvers (see Falgout et al.,
2006, 2021). Scalable means that the incomplete factorization and triangular solve
timings remain nearly constant when the problem size n is scaled in proportion to
the number of processors. Another parallel level-based ILU preconditioner that uses
an adaptive block implementation is proposed in Hénon et al. (2008).

The modified incomplete factorizations of Section 10.4 are described in Saad
(2003b). A proof of Theorem 10.3 can be found in Bern et al. (2006), but it is also
of interest to follow earlier work on asymptotic bounds for the condition number
of matrices preconditioned by modified incomplete factorizations given in Dupont
et al. (1968), Axelsson (1972), and Gustafsson (1978), while an elegant description
is in Meurant (1999).

Incomplete factorizations with dynamic compensation originally introduced by
Ajiz & Jennings (1984) have been routinely employed in practice. However,
memory-limited approaches based on relaxing the strategy of Tismenetsky (1991)
often lead to more efficient preconditioners; see Kaporin (1998) for a row-based
construction that has recently been used by Konshin et al. (2017, 2019) to solve
challenging practical problems. Scott & Tůma (2014b) present a Crout construction
of a sophisticated memory-limited incomplete factorization and provide a robust
implementation for SPD systems as the package HSL_MI28 within the HSL
mathematical software library (Scott & Tůma, 2014a); a variant for symmetric
saddle point systems is also included in HSL.

Using fixed-point iterations for the parallel computation of incomplete factor-
izations is a relatively new idea that was proposed and analysed by Chow & Patel
(2015). Interleaving a fixed-point iteration with a procedure that adjusts the sparsity
pattern is proposed by Anzt et al. (2018). Other attempts to compute and use ILU
preconditioners in parallel that build on the software package ILUPACK (Bollhöfer
et al., 2012) are presented in Aliaga et al. (2016, 2019). A different approach to
parallelize incomplete factorizations by relaxing supernodes is given by Gupta &
George (2010).

Significant attention has been devoted to using orderings of A to try and improve
the quality of incomplete factorization preconditioners. An early and often quoted
comparison of reorderings for SPD problems is by Duff & Meurant (1989). For
more general matrices, see Benzi et al. (1999), Oliker et al. (2002), or Osei-Kuffuor

10.10 Notes and References 203

et al. (2015). Saad (1996a) and Saad & Zhang (1999) generalize red–black orderings
and consider blocks and/or more colours; also of interest are the papers of Saad &
Suchomel (2002), Li et al. (2003), and Carpentieri et al. (2014)).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	10 Incomplete Factorizations
	10.1 ILU(0) Factorization
	10.2 Basic Incomplete Factorizations
	10.3 Incomplete Factorizations Based on the Shortest Fill-Paths
	10.4 Modifications Based on Maintaining Row Sums
	10.5 Dynamic Compensation
	10.6 Memory-Limited Incomplete Factorizations
	10.7 Fixed-Point Iterations for Computing ILU Factorizations
	10.8 Ordering in Incomplete Factorizations
	10.9 Exploiting Block Structure
	10.10 Notes and References

