
Nečas Center Series

Jennifer Scott, Miroslav Tůma

Algorithms 
for Sparse 
Linear Systems
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Preface

The solution of linear systems of equations .Ax = b is a cornerstone of computa-
tional science and engineering. Being able to solve linear systems in a reliable and
efficient way is of great importance and interest not only to scientists and engineers
but also to a huge and varied community of people who are unaware that at the heart
of the software they are using lies a linear equation solver and that this is key to
its feasibility and performance. In many applications, the linear systems that must
be solved are large and square and they are sparse (that is, many of the entries
in the system matrix A are zero). Direct methods for solving such systems are
characterized by computing a factorization (or decomposition) of A into a product
of much simpler matrices in such a way that solving systems of equations with
these matrices is easy and inexpensive. For example, A may be factorized into a
product of triangular matrices; in principle, solving a linear system in which the
system matrix is triangular is straightforward. Direct methods obtain the solution
to the linear system in a finite and fixed number of steps that is independent of A

and b. Because of rounding errors, the computed solution is generally not equal to
the exact one but, if a direct method is well implemented, the resulting software is
extremely robust and can be used as a “black box solver”, with the user not needing
any detailed knowledge or understanding of what is going on within the box.

By contrast, an iterative method (sometimes also called an indirect method)
generally involves an unknown number of steps and its performance is highly
problem dependent. In many cases, for the method to converge to the sought-after
solution of the linear system, it is necessary to use a preconditioner. This has to
be tailored to the system being solved. The aim is to transform the linear system
into one with more favourable numerical properties so that, when applied to the
transformed system, the iterative solver converges to a solution of the requested
accuracy in an acceptable number of steps. The major advantage of iterative solvers
over direct ones is that they require very little memory and, once the preconditioner
has been constructed, most of the computational work is in the application of the
preconditioner and matrix-vector products with A. For extremely large problems
(for example, systems coming from discretizations of real-world three- or four-

vii
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dimensional problems), memory requirements prohibit the use of direct methods,
and without suitable iterative methods the systems would be intractable.

This book presents classical techniques for matrix factorizations based on
variants of Gaussian elimination that are used in sparse direct methods and discusses
the construction of approximate direct and inverse factorizations that are key to
developing algebraic preconditioners for use with iterative solvers. While a number
of books on iterative solvers discuss the construction of simple incomplete matrix
factorizations for use as preconditioners, very few attempt to unite the fields of
complete and incomplete factorizations or cover contemporary approaches. To
achieve this broad view, we use a single framework that emphasizes the underlying
sparsity structures and highlights the importance of understanding sparse direct
techniques when building algebraic preconditioners.

The book is algorithmically oriented, presenting computational schemes that
are designed to provide both an understanding of sophisticated sparse factorization
techniques and how they can be implemented in practice. Throughout, we include
outline algorithmic descriptions and use pseudocode that is independent of any
programming language. However, limitations on space mean that it is beyond the
scope of the book to discuss the complex implementation details that are needed
in the development of high-quality sophisticated (parallel) production software for
efficiently solving sparse linear systems using modern computer architectures.

The book is aimed at students of applied mathematics and scientific computing as
well as at computational scientists and software developers interested in understand-
ing the theory and algorithms needed to tackle the challenge of solving large-scale
linear systems. The presented treatment is intended to be largely self-contained,
and we assume only that the reader has a basic knowledge of linear algebra and
numerical mathematics.

The organization of the book is as follows. Chapter 1 provides a general
introduction to sparse matrices and the challenges of solving large sparse linear
systems of equations. Concepts from graph theory that are used in the development
of sparse matrix algorithms are recalled in Chapter 2. The material in Chapters 1
and 2 is rather elementary, but it serves to remind the reader of important ideas and
to introduce the notation and terminology that is used throughout the rest of the
book. An introduction to sparse matrix factorizations, including the use of block
forms, is given in Chapter 3. Then, in Chapters 4 and 5, the symbolic and numerical
factorization phases of sparse Cholesky methods for solving the important class of
symmetric positive definite linear systems are discussed. Sparse LU factorizations
for general nonsymmetric sparse systems are described in Chapter 6. Chapter 7 is
devoted to stability and pivoting strategies and includes a discussion of factorizing
sparse symmetric indefinite systems. Sparse matrix ordering algorithms that are
essential for the efficiency of sparse solvers are presented in Chapter 8.

The final three chapters of the book switch attention from direct methods to
the study of algebraic preconditioners for use with iterative solvers. The emphasis
is on employing and adapting ideas and concepts used by direct solvers in the
development of effective general classes of preconditioners that can be used
for tackling a wide range of problems, without relying on detailed knowledge
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of the properties of the underlying application. Chapter 9 introduces algebraic
preconditioners and approximate factorizations. Chapters 10 and 11 then focus on
two key classes of algebraic preconditioners: incomplete factorizations and sparse
approximation inverse preconditioners.

We do not attempt to cite all the vast array of publications related to sparse
direct methods and algebraic preconditioners. Furthermore, we do not include
proofs for all the theoretical results that we present. Rather, for each theorem,
we provide one or more citations to where the reader can find a proof and/or
get a better understanding of the result. In general, we include citations to the
original paper/book/report (or a textbook for standard results) and, in some cases, an
additional citation that is either more accessible or presents an alternative proof. In
addition, at the end of each chapter, we have a short section of notes with references
to key publications that give a historical perspective and/or provide further reading.
It is interesting to note that a Google Scholar search in July 2022 for the term
“sparse matrix” lists more than 2.7 million results, while a search for “sparse matrix
decompositions” gives in excess of a million results. Although the majority may
not be relevant to our areas of interest, it does indicate the wealth of the available
literature as well as the importance of sparse matrix algorithms and their widespread
use.

This monograph and its study of sparse linear systems represents a natural
extension of our successful long-term research collaboration, combined with the
research and the software development projects that we have each worked on
with other researchers. Past and present colleagues at the Rutherford Appleton
Laboratory that Jennifer would particularly like to acknowledge and thank for many
years of collaborations and enjoyable coffee time chats are Iain Duff, Nick Gould,
Jonathan Hogg, Yifan Hu, Tyrone Rees, and John Reid. Miroslav would like to
express his thanks to his first major collaborator Michele Benzi, from whom he
learnt a lot, to Ivan Němec, who invited him to work on codes that are now in
the RFEM Structural Analysis and Engineering Software, and to his colleagues
and friends in Prague, especially Zdeněk Strakoš, Miro Rozložník, Josef Málek,
Petr Tichý, and Iveta Hnětynková, who created a kind and productive working
environment.

We are very grateful to Hussam Al Daas, Jonathan Hogg, and Gerard Meurant
for reading and commenting on all or part of a draft of the book. They spotted errors
and made suggestions that led to important improvements; we really appreciate the
time they spent doing this for us. We would also like to thank our institutions for
opportunities to spend time in Prague, the Rutherford Appleton Laboratory and
Reading working on our joint research projects. Jennifer would like to acknowledge
funding over the last 30 years from the Science and Technology Facilities Council
and the Engineering and Physical Sciences Research Council. And we are extremely
grateful to the University of Reading for providing the funding that allows this book
to be published as open access.

And, finally, we each owe a huge debt of gratitude to our families. Jennifer wishes
to dedicate the book to her close family, both those who are no longer with us and
those who continue to be an important part of her life, and most especially Stewart,
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Emma, Simon, Mark, and Rebecca for their constant encouragement. Miroslav
would like to dedicate the book to the memory of his ever-supportive parents and
to thank Anna, Markéta and Martin, who have always tolerated his passion for
research.

Harwell and Reading, UK Jennifer Scott
Prague, Czech Republic Miroslav Tůma
August 2022
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Notation: Quick Reference Summary

Notational Conventions Used for Matrices and Vectors

Capital italic letters, e.g. A,L, P Matrices
Uppercase calligraphic letters e.g. I, S Sets containing indices
Lower case non-integer italic letters, e.g. p, x, y Vectors (may also denote a

scalar or function but this
will be clear from the
context)

Lower case integer italic letters, e.g. i, j Integer scalars
Lower case Greek italic letters, e.g. α, β, μi Real scalars
Subscripted lower case non-integer italic Vector entries, e.g. entry i

letters, e.g. xi , xi:j and entries i to j of x

xi may also denote column i

of matrix X

Double subscripted lower case italic letters, e.g. aij Entry in row i, column j of
matrix A

Double subscripted bracketed upper case Entry in row i, column j of
matrix Aitalic letters, e.g. (A)ij
(alternative notation for aij )

Different forms of double subscripted upper case italic letters:

Aib,jb Sub-block of matrix A in position
(ib, jb)

Ai,: or Ai,1:n Row i of matrix A (with n columns)
A:,j or A1:n,j Column j of matrix A (with n rows)
Ai:j,k Submatrix comprising rows i to j ,

column k

Ai:j,k:l Submatrix comprising rows i to j ,
columns k to l

xv



xvi Notation: Quick Reference Summary

Aj = A1:j,1:j Principal leading submatrix of A of
order j

AI,J Submatrix of A with row and column
indices in sets I and J , respectively

Ai,J Entries in row i of A with column
indices in set J

AI,j Entries in column j of A with row
indices in set I

Lower case italic letters with superscript Value of x at iteration k

in brackets, e.g. x(k)

Upper case italic letters with superscript Matrix A at iteration k

in brackets, e.g. A(k)

Notational Conventions Used When Discussing Graphs

G = (V, E) Graph with vertices V and edges E
G(A) = (V(A), E(A)) Adjacency graph of matrix A

adjG{v} Adjacency set of vertex v

G−1(A) Skeleton graph of matrix A

Gk k-th elimination graph
G[k] k-th quotient graph
T (A) or T Elimination tree of matrix A

Tr (i) i-th row subtree of T
T (j) Subtree of T rooted at vertex j

Lower case italic letters, e.g. i, j, u, v Graph vertices

The following are for an undirected graph G:

i0 ←→ i1 ←→ . . . ←→ ip−1 ←→ ip Sequence of undirected edges in G
(i

G←−→ j) or (i ←→ j) or (i, j) Undirected edge between i and j in G
i

G⇐�⇒ j or i ⇐⇒ j Path from i to j in G
i

G⇐�⇒
min

j or i ⇐�⇒
min

j All intermediate vertices on the path are

less than min{i, j} (fill-path)

i
G⇐�⇒
Vs

j or i ⇐�⇒
Vs

j All intermediate vertices on the path

belong to Vs

The following are for a digraph (directed graph) G:

i0 −→ i1 −→ . . . −→ ip−1 −→ ip Sequence of directed edges in G
(i

G−−→ j) or (i −→ j) Directed edge from i to j in G
i

G���⇒ j or i �⇒ j Path between i and j in G
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i
G��⇒

min
j or i ��⇒

min
j All intermediate vertices on the path are less

than min{i, j} (fill-path)

i
G���⇒
Vs

j or i ��⇒
Vs

j All intermediate vertices on the path belong

to Vs

Specific Variables and Matrices That Are Used Throughout

A, x, b The system matrix, solution vector, and right-hand-side vector
(Ax = b)

AT The transpose of matrix A

D Diagonal matrix with 1× 1 (and possibly 2× 2) blocks on the
diagonal

DA,LA,UA Diagonal and strictly lower and upper triangular parts of A

I (or In) Identity matrix (of order n)
L,U Lower and upper triangular matrices; matrix factors
˜L, ˜U Approximate matrix factors
M Preconditioner
P,Q Row and column permutation matrices
Sr, Sc Row and column scaling matrices
S{A} (S{v}) Sparsity pattern of matrix A (vector v)
band(A) The band of a symmetrically structured matrix A

env(A) The envelope of a symmetrically structured matrix A

e Vector of all ones
ei i-th column of the identity matrix
f Filled entry in a matrix factor
n Order of A

nz(A) Number of nonzero entries in A

ib, jb, kb, lb Subscripts denoting blocks in (e.g.) A or L

nb Number of row (and column) blocks of A in block form
‖A‖F Frobenius norm of matrix A

〈x, y〉A A-inner product of vectors x and y, that is, xT Ay

‖x‖A Corresponding A-norm of vector x, that is, (xT Ax)1/2

‖x‖2 2-norm of vector x

κ(C) Condition number of a matrix C

ρ(C) Spectral radius of a matrix C

λmin(C), λmax(C) Eigenvalues of C of smallest and largest absolute value
ρgrowth Growth factor
ε Machine precision
∅ An empty set (one with no entries)



Abbreviations

AINV Factorized approximate inverse
DAG Directed acyclic graph
FSAI Factorized sparse approximate inverse
IC/ ILU Incomplete Cholesky/LU factorization
MIC/MILU Modified incomplete Cholesky/LU factorization
PDE Partial differential equation
SAINV Stabilized factorized approximate inverse
SPAI Sparse approximate inverse
SPD Symmetric positive definite
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Chapter 1
An Introduction to Sparse Matrices

Let us begin with a few words about the subject itself. What are
all these research workers trying to do? Mostly, they are trying
to solve .Ax = b . . . Amazing. Can people still find something
new to say on these corny old subjects? The answer is yes . . . It
is the pressure to solve bigger and more complex problems that
has led people to return again and again to look in
ever-increasing detail at such basic tools as a linear equations
solver – Parlett (1974).

We may therefore interpret the elimination method as . . . the
combination of two tricks: First, it decomposes A into a product
of two [triangular] matrices . . . [and second] it forms their
inverses by a simple, explicit, inductive process – Von Neumann
& Goldstine (1947)

1.1 Motivation

Consider the simple matrix A on the left in Figure 1.1. Many of its entries are zero
(and so are omitted). This is an example of a sparse matrix. The problem we are
interested in is that of solving linear systems of equations .Ax = b, where the square
sparse matrix A and the vector b are given and the solution vector x is required. Such
systems arise in a huge range of practical applications, including in areas as diverse
as quantum chemistry, computer graphics, computational fluid dynamics, power
networks, machine learning, and optimization. The list is endless and constantly
growing, together with the sizes of the systems. For efficiency and to enable large
systems to be solved, the sparsity of A must be exploited and operations with the
zero entries avoided. To achieve this, sophisticated algorithms are required.

The majority of algorithms fall into two main categories: direct methods and iter-
ative methods. Direct methods transform A using a finite sequence of elementary
transformations into a product of simpler sparse matrices in such a way that solving
linear systems of equations with these factor matrices is comparatively easy and
inexpensive. For example, if A is symmetric, consider the Cholesky factorization
.A = LLT , where the factor L is a lower triangular matrix (and the superscript
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2 1 An Introduction to Sparse Matrices

Figure 1.1 The locations of the nonzero entries in a sparse matrix from structural engineering
(left) and in .L+ LT (right), where L is its Cholesky factor.

Figure 1.2 The locations of the nonzero entries in a symmetric permutation of the matrix from
Figure 1.1 (left) and in .L̄+ L̄T (right), where .L̄ is the Cholesky factor of the permuted matrix.

.LT denotes the transpose of L). Solving linear systems with a triangular matrix
is generally cheaper and more straightforward than for a general matrix. For the
matrix in Figure 1.1, it is clear that L has filled in, that is, compared to A, it has
more nonzero entries. If the amount of fill-in is too high, then the advantages of
having a triangular matrix will be lost. An important question is: can we permute
the rows and columns of A so as to reduce the fill-in in its factor L? One possibility
is shown in Figure 1.2. Here A has been symmetrically permuted to give a matrix
that has a much sparser factorization .L̄L̄T .

Having fewer entries in .L̄ reduces both the required storage and the number of
operations that are needed to compute it and that must be performed when using
it. This simple example suggests other possible questions, such as: how can the
positions of the nonzero entries in A and in its factors be described? How can the
sparsity pattern of the factors be determined from that of A? What influences the
computational efficiency of matrix factorizations and other matrix transformations
on contemporary computers?

Direct methods built on matrix factorizations are designed to be robust so
that, properly implemented, they can be confidently used as black-box solvers for
computing solutions with predictable accuracy. However, they can be expensive,
requiring large amounts of memory, which increases with the size of A. By contrast,
iterative methods compute a sequence of approximations
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.x(0), x(1), x(2), . . .

that (hopefully) converge to the solution x of the linear system in an acceptable
number of iterations. The number of iterations depends on the initial guess .x(0), A

and b as well as the accuracy that is wanted in x. Iterative methods use the matrix
A only indirectly, through matrix–vector products, and their memory requirements
are limited to a (small) number of vectors of length the order of A, making them
attractive for very large problems and problems where A is not available explicitly.
They can be terminated as soon as the required accuracy in the computed solution is
achieved. Unfortunately, frequently convergence does not happen or the number of
iterations is unacceptably large; in such cases, preconditioning is needed. The aim of
preconditioning is to speed up convergence by transforming the given linear system
into an equivalent system (or one from which it is easy to recover the solution of the
original system) that has nicer numerical properties. For example, the transformed
system could be

.M−1Ax = M−1b,

where the matrix M is the preconditioner and .M−1 denotes its inverse. Knowledge
of the underlying problem, such as whether or not it arises from a partial differential
equation, can help in the construction of an effective preconditioner. Otherwise,
purely algebraic approaches that simply take the entries of A as input may be used.
The class of algebraic preconditioners includes those based on incomplete (or
approximate) factorizations of A. In this case, possible questions include: can some
of the factor entries be discarded to obtain a sparser but approximate factor that
is useful as a preconditioner? If so, which entries can be discarded? What are the
implications of this on the associated computational costs?

This book uses a unified framework to address such questions for direct methods
and algebraic preconditioners, examining both the theoretical and algorithmic
aspects of solving large-scale linear systems of equations.

1.2 Introductory Terminology and Concepts

Our interest is in solving linear systems of equations

.Ax = b, (1.1)

where the matrix .A ∈ R
n×n, 1 ≤ i ≤ n, is nonsingular and sparse, the right-

hand side vector .b ∈ R
n is given (it may be sparse or dense), and .x ∈ R

n is the
required solution vector. n is the order (or dimension) of A and the length of x

and b. Although we focus on real A, many of the results and algorithms we present
are valid for complex A.
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Entries of A are referred to using the notation

.A = (aij ), 1 ≤ i, j ≤ n.

An entry whose value is not zero (or is treated as not being equal to zero) is called a
nonzero. Column j of A is denoted by .A1:n,j (or .A:,j ) and row i by .Ai,1:n (or .Ai,:).
.Ai:j,k:l denotes the .(j − i + 1) × (l − k + 1) submatrix of A comprising rows i to
j , columns k to l. A is diagonal if for all .i = j , .aij = 0; it is lower triangular if
for all .i < j , .aij = 0; it is upper triangular if for all .i > j , .aij = 0. A is unit
triangular if it is triangular and all the entries on the diagonal are equal to unity.

The matrix A is structurally symmetric if for all i and j for which .aij is nonzero
the entry .aji is also nonzero. A is symmetric if

.aij = aji, for all i, j.

Otherwise, A is nonsymmetric. The symmetry index .s(A) of A is defined to be
the number of nonzeros .aij , .i = j , for which .aji is also nonzero divided by the total
number of off-diagonal nonzeros. Small values of .s(A) indicate the matrix is far
from symmetric, while values close to unity indicate an almost symmetric pattern.
A is symmetric positive definite (SPD) if it is symmetric and satisfies

.vT Av > 0 for all nonzero v ∈ R
n.

Otherwise, A is symmetric indefinite. An important class of symmetric indefinite
matrices are saddle point matrices of the form

.A =
(

G RT

R B

)

,

where .G ∈ R
n1×n1 , .B ∈ R

n2×n2 , .R ∈ R
n2×n1 with .n1 + n2 = n, G is an SPD

matrix, and B is a symmetric positive semidefinite matrix (that is .vT Bv ≥ 0 for all
nonzero .v ∈ R

n2 ). In some applications, .B = 0.
As we will see later, it can be useful to partition the general matrix A into blocks.

We formally express the partitioning as

.A = (Aib, jb), Aib, jb ∈ R
ni×nj , 1 ≤ ib, jb ≤ nb, (1.2)

that is,

.A =

⎛

⎜

⎜

⎜

⎝

A1,1 A1,2 · · · A1,nb

A2,1 A2,2 · · · A2,nb

...
...

. . .
...

Anb,1 Anb,2 · · · Anb,nb

⎞

⎟

⎟

⎟

⎠

.
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We assume the square blocks .Ajb, jb on the diagonal are nonsingular. We say that
A is block diagonal if .Aib, jb = 0 for all .ib = jb. A is block lower triangular if
.A1:jb−1, jb = 0, .2 ≤ jb ≤ nb, and it is block upper triangular if .Ajb+1:nb, jb = 0,
.1 ≤ jb ≤ nb − 1.

Direct methods factorize the sparse matrix A into a product of other sparse
matrices; what is an appropriate factorization depends on the properties of A. In
this book, the focus is on the following variants of Gaussian elimination.

• For symmetric positive definite A, the Cholesky factorization .A = LLT ,
where L is a lower triangular matrix with positive diagonal entries. Observe that
this can be rewritten as .A = ̂LD̂LT , where .̂L is a unit lower triangular matrix and
D is a diagonal matrix with positive diagonal entries. This is called the square
root-free Cholesky factorization. If the context is clear, we will simplify the
notation and use L (rather than .̂L) for the square root-free Cholesky factor.

• For symmetric indefinite A, the LDLT factorization .A = LDLT , where L is a
unit lower triangular matrix and D is a block diagonal matrix with blocks of size
1 or 2 on the diagonal.

• For nonsymmetric A, the LU factorization .A = LU , where L is a unit lower
triangular matrix and U is an upper triangular matrix. Gaussian elimination is
one process to put a matrix into LU form. The factorization can be rewritten as
.A = LD̂U , where .̂U is a unit upper triangular matrix and D is a diagonal matrix.
This is called the LDU factorization.

As already observed, A is sparse if many of its entries are zero. Frequently, large
matrices that arise in practical problems are sparse, and when solving large-scale
linear systems, taking advantage of the sparsity is essential; indeed, many problems
are intractable unless advantage is taken of sparsity to reduce the computational
costs in terms of storage and the number of operations that must be performed.
What proportion of the entries needs to be zero for the matrix to be considered as
sparse is not fixed and can depend on the pattern of the entries, the operations to be
performed, and the computer architecture. There have been attempts to formalize
matrix sparsity more precisely. For example, a matrix of order n may be said to be
sparse if it has .O(n) nonzeros. But here we choose not to employ a formal definition.
Instead, we say that A is sparse if it is advantageous to exploit its zero entries.
Otherwise, A is dense.

The sparsity pattern .S{A} of A is the set of nonzeros, that is,

.S{A} = {(i, j) | aij = 0, 1 ≤ i, j ≤ n}.

The number of nonzeros in A is denoted by .nz(A) (or .|S{A}|). A is structurally (or
symbolically) singular if there are no values of the .nz(A) entries of A whose row
and column indices belong to .S{A} for which A is nonsingular. .S{A} is symmetric
if for all i and j , .aij = 0 if and only if .aji = 0 (the values of the two entries need
not be the same). If .S{A} is symmetric, then A is structurally symmetric.
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In some situations, sparse vectors (vectors that contain many zero entries) are
considered. The sparsity pattern of a vector v of length n is given by

.S{v} = {i | vi = 0, 1 ≤ i ≤ n},

and .|S{v}| denotes the number of nonzeros in v. Note that here and elsewhere curly
brackets .{.} are used when working with sets to help distinguish sets from vectors.

We say that the matrix A is factorizable (or strongly regular) if its principal
leading minors (the determinants of its principal leading submatrices) are nonzero,
that is, if its LU factorization without row/column interchanges does not break
down. For example, SPD matrices are factorizable. For more general A, in exact
arithmetic, the following standard result holds.

Theorem 1.1 (Golub & Van Loan 1996)
If A is nonsingular, then the rows of A can be permuted so that the permuted matrix
is factorizable.

The row permutations do not need to be known in advance of the factorization;
rather they can be constructed as the factorization proceeds.

1.2.1 Phases of a Sparse Direct Solver

A direct method for solving the sparse system (1.1) comprises a number of
distinct phases. The matrix A is factorized, and then, given the right-hand side
b, the factors used to compute the solution x. There is no single direct method
that performs best on all problems and all computer architectures. Instead, many
different algorithms have been proposed and implemented, some focussing on
special classes of problems and/or particular architectures. However, in general,
most approaches split the factorization into a symbolic phase (also called the
analyse phase) and a numerical factorization phase that computes the factors.
The symbolic phase typically uses only the sparsity pattern .S{A} to compute the
nonzero structure of the factors of A without computing the numerical values of the
nonzeros. Following the numerical factorization, the solve phase uses the factors to
solve for a single b or for multiple right-hand sides or for a sequence of right-hand
sides one-by-one.

The fill-in in the matrix factors can render a direct method infeasible. Thus the
symbolic phase typically incorporates finding a permutation (ordering) of the rows
and columns of A to limit fill-in. There are many different ways to look for fill-
reducing orderings; this is discussed in Chapter 8. Once the permutation has been
selected, the symbolic phase determines the sparsity pattern of the factors of the
permuted matrix and other key properties such as the number of entries in each row
and column of the factors. This is achieved using the close relationships between
matrices and graphs, which we review in Chapter 2. A symbolic factorization can
also be used in algorithms that construct approximate factorizations by dropping
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nonzeros from A and factoring the resulting sparser matrix. These approximate
factors can be employed as preconditioners for an iterative method.

Historically, the symbolic phase was much faster than the factorization phase,
but considerable effort has gone into parallelizing the factorization so that the gap
between the times for the two phases has narrowed. Indeed, the ordering part of the
symbolic phase can dominate the total solution time. To prevent the symbolic phase
from becoming a computational bottleneck, it needs to use efficient implementations
of sophisticated algorithms. By setting up the data structures needed for computing
and holding the factors, the symbolic factorization contributes to the efficiency
of the subsequent numerical factorization in terms of time and memory. In many
applications (for instance, when solving nonlinear equations), it is necessary to solve
a series of problems in which the numerical values of the entries of A change but
.S{A} does not. In this case, the symbolic phase can generally be performed just
once and its cost amortized across the numerical factorizations.

1.2.2 Comments on the Computational Environment

The von Neumann architecture—the fundamental architecture upon which nearly
all digital computers have been based—involves the union of a central processing
unit (CPU) and the memory, interconnected via input/output (I/O) mechanisms,
as depicted in Figure 1.3. Despite being extremely simple, this sequential model
remains useful, although nowadays the role of the CPU is undertaken by a mixture of
powerful processors, co-processors, cores, GPUs, and so on, and current computer
architectures employ complex memory hierarchies. Performing arithmetic opera-
tions on the processing units is much faster than communication-based operations.
Moreover, improvements in the speed of the processing units outpace those in the
memory-based hardware. Moore’s law is an example of an experimentally derived
observation of this kind.

CPU

Memory

I/O

Figure 1.3 A simple uniprocessor von Neumann computer model.
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Two important milestones in processor development have been multiple func-
tional units that compute identical numerical operations in parallel and data
pipelining (also called vectorization) that enables the efficient processing of
vectors and matrices. Vectorization is often supported by additional hardware and
software tools (for instance, instruction pipelining) and by memory components
such as registers and by memory architectures with multiple layers, including
small but fast memories called caches. Superscalar processors that enable the
overlapping of identical (or different) arithmetic operations during runtime have
been a standard component of computers since the 1990s. The ever-increasing
heterogeneity of processing units and their hardware environment inside computers
has led to significant effort being invested to support code implementations. For
example, expressing the code via units of scheduling and execution called threads.

A key objective of many numerical linear algebra algorithms is reducing time to
solution. This is usually bound by one of the following.

• Compute throughput, that is, the number of arithmetic operations that can be
performed per cycle.

• Memory throughput, that is, the number of operands than can be fetched from
memory/cache and/or registers each cycle.

• Latency, which is the time from initiating a compute instruction or memory
request before it is completed and the result available for use in the next
computation.

Depending on which of these is the constraining factor, a given algorithm is said to
be compute-bound, memory-bound, or latency-bound. Latency can often be hidden
by performing non-dependent operations arising from a different part of a vector
or matrix while waiting for a result, and as such is most typically a constraining
factor for small problems or, more rarely, in the execution of complex algorithms
on less powerful processors where resource limitation (for example, the number of
registers) prevents such approaches.

On modern machines, the memory throughput is normally much lower than that
required to keep all functional units busy without significant reuse of operands,
and this is generally true at all levels of cache. It can be useful to consider an
algorithm’s compute intensity, that is, the ratio of the number of operations to
the number of operands read from memory. Most chips are designed such that
dense matrix–matrix multiply, which typically performs .n3 operations on .n2 data
(with ratio k for a blocked algorithm with block size k), can run at full compute
throughput, while matrix–vector multiply performs .n2 operations on .n2 data (ratio
1) and is limited by the memory throughput. The development of basic linear algebra
subroutines (BLAS) for performing common linear algebra operations on dense
matrices was partially motivated by obtaining a high ratio. In the late 1980s, matrix–
matrix operations (implemented by Level 3 BLAS) became a must once computers
were able to store matrix blocks with accompanying processor instructions inside
registers and fast caches. Matrix–matrix operations are able to take advantage of
the fact that data that are reused within a small amount of time or are stored in
close memory locations (temporal and spatial locality) are processed efficiently.
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Consequently, employing Level 3 BLAS when designing and implementing matrix
algorithms (for both sparse and dense matrices) can improve performance compared
to using Level 1 and Level 2 BLAS.

There are other important motivations behind using the BLAS. In particular, they
facilitate software development by providing standardized codes for performing
common vector and matrix operations that are robust, efficient, and portable.
Machine-specific optimized BLAS libraries are available for a wide variety of
computer architectures, and because of the importance and widespread use of the
BLAS, new implementations are provided by computer vendors as architectures
change.

In this book, we discuss the design of algorithms that aim to achieve compu-
tational efficiency through exploiting data locality and using established matrix
block and vector operations as fundamental building blocks. We assume an idealized
computer model, not a specific architecture or language.

1.2.3 Finite Precision Arithmetic

When designing numerical algorithms, it is important to consider how the numerical
operations are performed and the effects of computational errors. Finite precision
arithmetic underlies all computations that are performed numerically. Historically,
computer arithmetic varied greatly between different computer manufacturers, and
this was a source of many problems when attempting to write software that could be
easily ported between computers. Variations were reduced significantly in 1985 with
the development of the Institute for Electrical and Electronic Engineering (IEEE)
standard for computer floating-point arithmetic. The IEEE standard is now widely
used, and the majority of contemporary computers represent real numbers using
binary floating-point arithmetic that expresses real numbers as

.a = ±d1. d2 . . . dt × 2k,

where k is an integer and .di ∈ {0, 1}, 1 ≤ i ≤ t , with .d1 = 1 unless .d2 = d3 =
. . . = dt = 0. The number of digits t is 24 in single precision and 53 in double
precision. The exponent k lies in the range .−126 ≤ k ≤ 127 in single precision and
.−1022 ≤ k ≤ 1023 in double precision. Floating-point operations can be written as

.f l(a op b) = (a op b)(1+ δ), |δ| ≤ ε,

where op is a mathematical operation (such as .=,+,−,×, /,
√) and .(a op b) is the

exact result of the operation, and .ε is the machine precision (or unit roundoff). .2×ε

is the smallest floating-point number that when added to the floating-point number
1.0 produces a result that is different from 1.0. For IEEE single precision arithmetic,
.ε is .2−24 ≈ 10−7 and for double precision .ε = 2−53 ≈ 10−16. Any operation
on floating-point numbers should be thought of as introducing a relative error of
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absolute value at most .ε. When the results of such operations are fed into other
operations to form an algorithm, these errors propagate through the calculations.
The two main sources of computational errors that are consequences of floating-
point arithmetic are rounding errors and truncation errors. Certain operations can
amplify the errors and lead to catastrophic failure when algorithms that are exact in
conventional arithmetic are executed in floating-point arithmetic. Such algorithms
are said to be numerically unstable; for sparse linear systems, this is discussed in
Chapter 7.

1.2.4 Bit Compatibility

For sequential solvers, achieving bit compatibility (in the sense that two runs on
the same machine using the same binary and identical input data should produce
identical output) is not a problem. But enforcing bit compatibility can limit dynamic
parallelism, and when designing parallel sparse solvers, the objective of efficiency
potentially conflicts with that of bit compatibility. Bit compatibility is essential for
some users because of regulatory requirements (for example, within the nuclear or
financial industries) or to build trust in their software from nontechnical users (who
may find the non-reproducibility of results worrying or unacceptable). For others, it
is just a desirable feature for debugging purposes. Often linear solves occur at the
core of much more complicated codes that typically feature heuristics that can be
sensitive to very small changes in the linear solutions found.

The critical issue is the way in which N numbers (or, more generally, matrices)
are assembled, that is,

.sum =
N
∑

j=1

Cj ,

where the .Cj are computed using one or more processors. The assembly is
commutative but, because of the potential rounding of the intermediate results, is
not associative so that the result sum depends on the order in which the .Cj are
assembled. A straightforward approach to achieving bit compatibility is to enforce a
defined order on each assembly operation, independent of the number of processors,
but this may adversely limit the scope for parallelism.

1.2.5 Complexity of Algorithms

The computational complexity of a numerical algorithm is typically based on
estimating asymptotically the number of integer or floating-point operations or
the memory usage. Computational complexity is expressed as a function of the
algorithm’s input parameters (typically the problem size) and is concerned with
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how fast that function grows. Only the highest order terms are considered: scalar
factors and lower order terms are ignored. For simplicity, consider a single input
parameter. A real function .y(d) of a nonnegative real d satisfies .y = O(g) if there
exist positive constants c and .d0 such that

.|y(d)| ≤ cg(d) for all d ≥ d0.

.O(g) bounds y asymptotically from above. As a simple illustration, consider the
quadratic function in d

.y(d) = αd2 + βd − γ, α = 0.

In this case, .y(d) = O(d2), and the coefficient of the highest asymptotic term is .α.
In some cases, a function can also be asymptotically bounded from below. However,
we will only use the .O(.) notation because it is more important for sparse matrix
algorithms to specify upper bounds than to discuss special cases that may imply
lower bounds.

Computational complexity can estimate quantities related to the worst-case
behaviour of an algorithm or its average behaviour. When considering complexity
based on operation counts, as a result of using a unit-cost random-access computer
model, it is common to assume the operations have a unit cost. But in practice
there can be a significant difference between the cost of operations, such as addition
and subtraction, and operations with integer operands or operations using different
precisions. Division and square root operations can be significantly more expensive
than multiply/add operations; the difference is highly dependent on the computing
platform. Thus, unit cost can be a significant simplification, and counting floating-
point operations is arguably of limited value in assessing the performance of
different algorithms on modern computers. Nevertheless, sparse matrix algorithms
that are .O(n3) are considered to be computationally too expensive: the goal when
designing algorithms is that they should be of linear (or close to linear) in the input,
that is, linear in n or .nz(A). Linear complexity is often achieved in the symbolic
phase of a sparse direct solver, but the complexity of the numerical factorization
phase is typically higher and may determine the size of the linear systems that can be
solved using a sparse direct method. However, for modern computer architectures,
the number of floating-point operations is not necessarily a good indicator of
the time required to solve the linear system. Indeed, parallel implementations of
algorithms that perform more operations than the minimum needed can lead to
reductions in the runtime because costly data movements and synchronizations can
be limited by, for example, duplicating operations on multiple processors.

As computers have become more powerful (in terms of both the computational
speed and the available memory), the size of the linear systems that can be solved
using a (parallel) dense method that ignores sparsity in A has steadily increased;
nowadays linear systems with n of the order .105 can potentially be tackled using
a dense solver (although if A is sparse, the operation count and solution time will
generally be greatly reduced by using algorithms that limit operations on zeros).
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Many practical applications lead to systems where A is sparse and n is significantly
larger than this. The size of systems that can be solved using a sparse direct method
has also steadily increased over the years, and the algorithms they use have become
ever more sophisticated so that it is commonplace to solve systems of order greater
than .107. But the complexity does limit the problem size, and for very large systems,
an iterative solver is often the only option.

In computer science, complexity theory introduces additional concepts and
distinguishes between problems for which algorithms of polynomial complexity
exist and those where a hypothesis is that only algorithms of super polynomial
complexity exist. Without going into detail, we refer to problems in this latter class
as being combinatorially hard.

1.3 Sparse Matrices and Their Representation in a
Computer

To implement sparse matrix algorithms on a computer requires special data
structures and storage schemes that allow matrices and vectors to be stored,
retrieved, manipulated, and updated. There are many ways to do this; key to them all
is that they must be compact and avoid storing and manipulating numerically zero
entries.

1.3.1 Sparse Vector Storage

A sparse vector can be stored using a real array for the nonzero values together
with an integer array containing the indices of these entries, as demonstrated by the
following example.

Example 1.1 Let v be the sparse row vector

.v = (1. −2. 0. −3. 0. 5. 3. 0.
)

. (1.3)

The real array valV that stores the nonzero values and corresponding integer array
of their indices indV is of length .|S{v}| = 5 and is as follows:

Subscripts 1 2 3 4 5

valV 1. .−2. .−3. 5. 3.

indV 1 2 4 6 7

Alternatively, a linked list can be used. While modern programming languages
often support linked lists directly as an abstract data structure, in sparse matrix
algorithms it is usual to implement them explicitly using arrays together with an
integer that points to the first entry (the header pointer). Each entry is associated
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with a link that points to the next entry or is null if the entry is the last in the list.
The links can be adjusted so that the values are scanned in a different order without
moving the physical locations. Storing the vector (1.3) as a linked list is illustrated
in Example 1.2. Here v is stored in two different ways, emphasizing that the order
of the entries is determined by the links, not by the physical locations of the entries.

Example 1.2 Two possible ways of storing the sparse vector (1.3) using linked lists.

Subscripts 1 2 3 4 5

Values 1. .−2. .−3. 5. 3.

Indices 1 2 4 6 7

Links 2 3 4 5 0

Header 1

Subscripts 1 2 3 4 5

Values 5. 3. 1. .−2. .−3.

Indices 6 7 1 2 4

Links 2 0 4 5 1

Header 3

There are two important reasons for using linked lists. Firstly, it is straightforward
to add extra entries, and secondly, entries can be removed without any data
movement. This is illustrated in Example 1.3. Linked lists are an example of a
dynamic structure.

Example 1.3 On the left, an entry .−4 has been added to the sparse vector (1.3) in
position 5, and, on the right, the entry .−2 in position 2 has been removed. .∗ indicates
the entry is not accessed. The links that have changed are in bold.

Subscripts 1 2 3 4 5 6

Values 1. .−2. .−3. 5. 3. .−4.

Indices 1 2 4 6 7 5

Links 2 3 4 5 6 0
Header 1

Subscripts 1 2 3 4 5

Values 1. .∗ .−3. 5. 3.

Indices 1 .∗ 4 6 7

Links 3 .∗ 4 5 0

Header 1

1.3.2 Sparse Matrix Storage

The vector data structures can be generalized to sparse matrices. The simplest way to
store a sparse matrix is using coordinate (or triplet) format. The individual entries
of A are held as triplets .(i, j, aij ), where i is the row index and j is the column index
of the entry .aij = 0. Three arrays (one real and two integer) each of length .nz(A)

are needed. Although this form is easy to create, it is not efficient for manipulating
sparse matrices (for example, just adding two sparse matrices with different sparsity
structures presents difficulties).

The CSR (Compressed Sparse Row) format is widely used. The column indices
of the entries of A are held by rows in an integer array (which we will call
.colindA) of length .nz(A), with those in row 1 followed by those in row 2, and
so on (with no space between rows). Often, within each row, the entries are held by
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increasing column index. A real array .valA of the same length holds the values of
the corresponding entries of A in the same order. A third array .rowptrA of length
.n+1 is such that its i-th entry points to the position of the start of row i (.1 ≤ i ≤ n)
of A within .colindA and .valA, and .rowptrA(n+ 1) is set to .nz(A)+ 1.

CSC (Compressed Sparse Columns) format is defined analogously by holding
the entries by columns, rather than by rows. If A is symmetric, only the lower (or
upper) triangular part is generally stored. If the matrix values are not stored, the
arrays .rowptrA and .colindA represent the graph .G(A), which we discuss in the
next chapter.

Example 1.4 Let A be the sparse matrix

A =

⎛

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5

1 3. −2.

2 1. 4.

3 −1. 3. 1.

4 1.

5 7. 6.

⎞

⎟

⎟

⎟

⎟

⎠

. (1.4)

Coordinate format represents A as follows. Note that the entries are in no
particular order.

Subscripts 1 2 3 4 5 6 7 8 9 10

.rowindA 3 2 3 4 1 1 2 5 3 5

.colindA 3 2 1 4 4 1 5 5 5 2

.valA 3. 1. .−1. 1. .−2. 3. 4. 6. 1. 7.

CSR format represents A as follows. Here the entries within each row are in order
of increasing column index. This additional condition is often but not always used.

Subscripts 1 2 3 4 5 6 7 8 9 10

.rowptrA 1 3 5 8 9 11

.colindA 1 4 2 5 1 3 5 4 2 5

.valA 3. .−2. 1. 4. .−1. 3. 1. 1. 7. 6.

The CSR and CSC formats are static data structures. While reading A is
straightforward, it can be difficult to make modifications, for instance, adding a
new entry at a specified location. Removing an entry is also problematic. The value
of the entry could be set to zero, but if a significant number of entries are set to
zero, this may not be efficient because, when A is used, operations are performed
on zeros and more memory than is necessary is used. Adding and deleting entries
are possible if the sparse rows or columns are stored using linked lists.

Example 1.5 The matrix in (1.4) can be held as a collection of columns, each in a
linked list, as follows. Here the array .colA_head holds header pointers, with the
i-th entry pointing to the location of the first entry in column i.
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Subscripts 1 2 3 4 5 6 7 8 9 10

.rowindA 3 2 3 4 1 1 2 5 3 5

.valA 3. 1. .−1. 1. .−2. 3. 4. 6. 1. 7.

.link 0 10 0 0 4 3 9 0 8 0

.colA_head 6 2 1 5 7

For column 4, .colA_head(4) = 5, .rowindA(5) = 1 and .valA(5) = −2, so the
first entry in column 4 is .a14 = −2. Next, .link(5) = 4, .rowindA(4) = 4, and
.valA(4) = 1, so the second entry in column 4 is .a44 = 1. Because .link(4) = 0,
there are no more entries in the column. If we want to add an entry to the .(3, 4)

position while retaining the order of the entries within column 4, then we do this by
setting .valA(11) to hold the new entry, and .rowindA(11) = 3, .link(5) = 11,
and .link(11) = 4 (the original value of .link(5)). The resulting .link array is
shown below, with the entries that have changed given in bold.

Subscripts 1 2 3 4 5 6 7 8 9 10 11

.link 0 10 0 0 11 3 9 0 8 0 4

A disadvantage of linked list storage is that it prohibits the fast access to rows
(or columns) of the matrix that is needed for efficient processing on contemporary
computers that use vectorization and/or work with matrix blocks. Consequently,
CSR or CSC formats are commonly used in sparse direct methods.

Static data structures are efficient for sparse matrix factorizations if the sparsity
structures of the factors are known before the factorization begins. However, it is
often the case that new nonzero entries need to be added and/or others need to be
removed, and it is not necessarily possible to predict the required space in advance.
A storage scheme that has some space to embed new nonzeros is the DS (Dynamic
Sparse) format. It stores the nonzeros of both the rows and columns of A in real
arrays .valAR and .valAC, with the corresponding row and column indices held
in integer arrays .rowindA and .colindA. Pointers to the start of each row and
column are stored in the integer arrays .rowptrA and .colptrA, as in the CSR and
CSC formats. In addition, the lengths of the compressed rows and columns (which
are called row and column segments) are stored separately. In some situations, it
can be sufficient to hold only the row (or the column) information (DSR and DSC
formats). The following example illustrates the DS format.

Example 1.6 Consider again the matrix given by (1.4). The DS format represents A

using two sets of arrays. The first four store the matrix by rows, and the second
four store it by columns. The entries are in no particular order in both sets of
arrays. The arrays .rlength and .clength hold the numbers of entries in the rows
and columns, respectively. Free space between segments can be used to store new
nonzero entries, and it is this that makes the storage scheme efficient, provided the
number of changes to the matrix structure during the factorization is limited.
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Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.rowptrA 1 5 8 12 14

.colindA 1 4 2 5 1 3 5 4 2 5

.valAR 3. .−2. 1. 4. .−1. 3. 1. 1. 7. 6.

.rlength 2 2 3 1 2

.colptrA 1 4 6 9 12

.rowindA 1 3 2 5 3 1 4 2 3 5

.valAC 3. .−1. 1. 7. 3. .−2. 1. 4. 1. 6.

.clength 2 2 1 2 3

Blocked formats may be used to accelerate multiplication between a sparse
matrix and a dense vector. Iterative methods typically require that the same sparse
matrix is multiplied by vectors many times before a solution is found. The matrix
can be put into a block storage format once, and then the cost of finding the blocks
and converting the matrix format can be offset by the savings that result from
repeatedly multiplying the matrix. The Variable Block Row (VBR) format groups
together similar adjacent rows and columns. The numbers of such rows and columns
can be different in each dimension, resulting in variable sized blocks. For a large
sparse block-structured matrix, using a VBR format potentially reduces the amount
of integer storage, and the block representation enables numerical algorithms to
perform the kernel matrix operations more efficiently on the block entries. However,
only heuristic algorithms are available for determining the groupings of the rows and
columns.

The data structure of the VBR format uses six arrays. Integer arrays rptr and
cptr hold the index of the first row in each block row and the index of the first
column in each block column, respectively. In many cases, the block row and
column partitionings are conformal, and only one of these arrays is needed. The
real array valA contains the entries of the matrix block-by-block in column-major
order. The integer array indx holds pointers to the beginning of each block entry
within valA. The index array bindx holds the block column indices of the block
entries of the matrix, and finally, the integer array bptr holds pointers to the start
of each row block in bindx.

Example 1.7 Let A be the sparse matrix

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5 6 7 8

1 1. 2. 3.

2 4. 5. 6.

3 7. 8. 9. 10.

4 11. 12. 15. 16.

5 13. 17.

6 14. 18.

7 19. 20.

8 21. 22.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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Here the row blocks comprise rows 1:2, 3, 4:6, and 7:8. The column blocks
comprise columns 1:2, 3:5, 6, 7:8. The VBR format stores A as follows.

Subscripts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

.rptr 1 3 4 7 9

.cptr 1 3 6 7 9

.valA 1. 4. 2. 5. 3. 6. 7. 8. 9. 10. 11. 14. 12. 13. 15. 17. 16. 18. 19. 21. 22. 20.

.indx 1 5 7 10 11 15 19

.bindx 1 3 2 3 1 4 2

.bptr 1 3 5 7

1.4 Notes and References

There are some excellent textbooks that provide in-depth coverage of numerical
linear algebra for dense matrices (such as Golub & Van Loan, 1996; Demmel, 1997;
Trefethen & Bau, 1997, and Strang, 2007). Although sparse direct methods have
been a constant subject for research since the 1960s and despite their importance and
widespread use, there has only ever been a handful of books focusing on them. The
most recent are Davis (2006) and Duff et al. (2017), but see also Tewarson (1973),
George & Liu (1981), Pissanetzky (1984), and Zlatev (1991). In addition, Meurant
(1999) covers both direct and iterative methods. The books by Björck (1996, 2015)
and Wendland (2017) are also relevant.

We focus on factorizations based on Gaussian elimination, but another important
class of direct methods are those based on orthogonal factorizations, most notably
QR factorizations of the form .A = QR, where Q is an orthogonal matrix and R is
an upper triangular matrix. These methods are generally more expensive than those
that use LU factorizations (in terms of operation counts, the density of the factors,
and the time required to solve the linear system), but they can offer advantages in
terms of numerical stability. We refer the reader to the book by Davis (2006) for a
study of such approaches.

Over the last fifty years, in addition to the huge quantity of journal articles
relating to specific aspects of sparse direct methods, a number of useful survey
and overview papers have been published. These not only summarize important
aspects of sparse direct methods but provide interesting historical perspectives on
the theoretical, algorithmic, and software developments in the field. Early surveys
include Tewarson (1970), Reid (1974), Duff (1977, 1981), while the comprehensive
survey of Demmel et al. (1993) sums up early developments in parallel sparse direct
solvers. Gould et al. (2007) look specifically at software that implements sparse
direct methods, while the excellent survey of Davis et al. (2016) includes many
further references to review papers and early conference proceedings where some of
the key ideas related to sparse direct methods were first introduced. A short overview
of modern sparse elimination methods is given by Bollhöfer et al. (2020).
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A wide range of books devoted to iterative methods for solving large-scale
linear systems have been written, for example, Axelsson (1994), Greenbaum (1997),
Saad (2003b), van der Vorst (2003), Olshanskii & Tyrtyshnikov (2014), Meurant &
Duintjer Tebbens (2020), Bai & Pan (2021), and Ciaramella & Gander (2022).

There are many references to contemporary computational environments. To
understand the basic principles and connection of computations with basic linear
algebra subroutines (BLAS), a good starting point is Dongarra et al. (1998), while
contributions in van der Vorst & Van Dooren (2015) provide a general resource on
parallel computation in numerical linear algebra. Specific features of finite precision
arithmetic in this field are clearly and thoroughly explained in Higham (2002).
For the complexity of algorithms as well as for much of the terminology related
to the sparse data structures used in this book, we refer to Tarjan (1983); we also
recommend Cormen et al. (2009) or Skiena (2020).

Texts providing details of the storage formats that are primarily for sparse
direct methods include Pissanetzky (1984), Østerby & Zlatev (1983) (this discusses,
in particular, dynamic data structures; see also the technical report of Duff,
1980). Storage schemes used in connection to preconditioned iterative methods are
considered in Saad (2003b). VBR and other sparse storage formats are described,
for example, in the SPARSKIT library documentation of Saad (1994b). Buluc̨ et al.
(2011) provide a good review and evaluation of storage formats for sparse matrices
and their impact on primitive operations.
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Chapter 2
Sparse Matrices and Their Graphs

The choice of data structure is one of the most important steps in
algorithm design and implementation. Sparse matrix algorithms
are no exception. The representation of a sparse matrix not only
determines the efficiency of the algorithm, but also influences
the algorithm design process –Buluc̨ et al. (2011).

Every sparse matrix problem is a graph problem and every
graph problem is a sparse matrix problem –Gilbert et al. (2006).

Many sparse matrix algorithms exploit the close relationship between matrices and
graphs. We make no assumption regarding the reader’s prior knowledge of graph
theory. The purpose of this chapter is to summarize basic concepts from graph
theory that will be exploited later and to establish the notation and terminology
that will be used throughout.

2.1 Introduction to Graphs

A graph .G = (V, E) is a finite set .V of vertices (or nodes), and a set .E of edges
defined as pairs of distinct vertices. When there is no distinction between the pairs
of vertices .(u, v) and .(v, u), the edges are represented by unordered pairs, and the
graph is undirected. If, however, the pairs are ordered, the graph is a directed
graph, or a digraph. Examples of simple graphs are given in Figures 2.1 and 2.2.

A labelling (or ordering) of a graph .G = (V, E) with n vertices is a bijection of
.{1, 2, . . . , n} onto .V . The integer i (.1 ≤ i ≤ n) assigned to a vertex in .V is called
the label (or simply the number) of that vertex. Our standard choice of vertices will
be .V = {1, . . . , n} so that the vertices are directly identified by their labels.

.Gs = (Vs , Es) is a subgraph of .G = (V, E) if and only if .Vs ⊆ V and .Es ⊆ E
and .(us, vs) ∈ Es implies .us, vs ∈ Vs . The subgraph is an induced subgraph if .Es

contains all the edges in .E that have both u and v in .Vs . Two graphs .G = (V, E)
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Figure 2.1 An example of an undirected graph.
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Figure 2.2 An example of a directed graph (digraph). The arrows indicate the direction of an
edge. There are an edge .(4 → 5) and an edge .(5 → 4).

and .Gs = (Vs , Es) are isomorphic if there is a bijection .g : V → Vs that preserves
adjacency, that is, .(u, v) ∈ E if and only if .(g(u), g(v)) ∈ Es .

In an undirected graph, two vertices u and v in .V are said to be adjacent (or
neighbours) if .e = (u, v) ∈ E ; the edge e is incident to the vertex u and to the

vertex v. We also use the notation .(u ←→ v) for an edge (or .(u
G←−→ v) to

emphasize the edge belongs to the graph .G). The degree .degG(u) of .u ∈ V is the
number of vertices in .V that are adjacent to u, and the adjacency set .adjG{u} is
the set of these adjacent vertices (thus .|adjG{u}| = degG(u)). If .Vs is a subset of
the vertices, then the adjacency set .adjG{Vs} is the set of vertices in .V \ Vs that
are adjacent to at least one vertex in .Vs . A subgraph is a clique when every pair
of vertices is adjacent. In the example in Figure 2.1, .degG(2) = 4 and .adjG{2} =
{1, 3, 4, 6}. The induced subgraph with vertices .Vs = {2, 4, 6} is a clique.

In a digraph, we use the notation .(u → v) or .(u
G−−→ v) for a directed edge.

There can be an edge .(u → v) but no edge .(v → u). The adjacency set of u can be
split into two parts

.adj+G {u} = {v | (u→ v) ∈ E} and adj−G {u} = {v | (v → u) ∈ E}.

In the example given in Figure 2.2, .adj+G {2} = {3, 4} and .adj−G {2} = 1.
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2.2 Walks, Paths, Cycles, and DAGs

A sequence of k edges in an undirected graph .G

.u0 ←→ u1 ←→ . . . ←→ uk−1 ←→ uk

is called a walk of length k. If .G is a digraph, then the sequence

.u0 −→ u1 −→ . . . −→ uk−1 −→ uk

is a directed walk. The vertices .u0 and .uk are connected by the walk, and for .k > 0,
.uk is said to be reachable from .u0; the set of vertices that are reachable from .u0
is denoted by .Reach(u0). The walk is closed if .u0 = uk; a closed walk is called a
cycle. Graphs that do not contain cycles are acyclic. A (directed) trail is a (directed)
walk in which all the edges are distinct and a (directed) path is a (directed) trail in
which all the vertices (and therefore also all the edges) are distinct. The distance
between two vertices is the number of edges in the shortest path connecting them
(this is also called the length of the path). In Figure 2.2, there is a path of length 4
from vertex 1 to vertex 7 but no path from vertex 7 to vertex 1.

In the undirected graph .G = (V, E), a path between a pair of its vertices with
labels i and j is denoted by

.i
G⇐�⇒ j

or, if it is clear which graph the path is in, by

.i ⇐⇒ j.

If all intermediate vertices on the path are less than .min{i, j}, then the path is called
a fill-path and is denoted by

.i
G⇐�⇒

min
j or i ⇐�⇒

min
j.

If all intermediate vertices on the path belong to a subset .Vs , then the path is denoted
by

.i
G⇐��⇒
Vs

j or i ⇐��⇒
Vs

j.

If .G is a digraph, the double-sided arrow symbols are replaced by one-sided ones
.�⇒ in the direction of the edges. For example,
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Figure 2.3 An example of a DAG with two different topological orderings (see Section 4.4).
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Figure 2.4 An example of an undirected graph to illustrate reachability. If .Vs = {4, 5}, then
.Reach(2,Vs ) = {1, 3, 6} and .Reach(6,Vs ) = {2, 3, 7}.

.i
G���⇒ j, i �⇒ j, i ��⇒

min
j and i ���⇒

Vs

j.

A very important special case of a digraph is one with no cycles. A directed
acyclic graph is called as DAG. In a DAG, if there is a path .u �⇒ v of nonzero
length, then u is called an ancestor of v and v is said to be a descendant of u.
Figure 2.3 depicts a DAG with two different orderings. For the labelling of the
vertices on the left, vertices 2, 3, 5, and 6 are descendants of vertex 1, but only
vertices 5 and 6 are descendants of vertex 4. Note that if the direction of each edge
in a DAG is reversed, the resulting graph is also a DAG.

The notion of a reachable set is useful for the study of Gaussian elimination.
Given a graph and a subset .Vs of its vertices, if u and v are two distinct vertices that
do not belong to .Vs , then v is reachable from u through .Vs if u and v are connected
by a path that is either of length 1 or is composed entirely of vertices that belong
to .Vs (except for the endpoints u and v). Given .Vs and .u /∈ Vs , the reachable set
.Reach(u,Vs) is the set of all vertices that are reachable from u through .Vs . Note
that if .Vs is empty or u does not belong to .adjG(Vs), then .Reach(u,Vs) = adjG(u).
A simple example is given in Figure 2.4.
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2.3 Trees, Components, and Connectivity

An undirected graph is connected if every pair of vertices is connected by a path.
A connected acyclic graph is called a tree, that is, a tree is an undirected graph in
which any two vertices are connected by exactly one path. Every tree has at least
two vertices of degree 1. Such vertices are called leaf vertices. A graph is a forest if
it consists of a disjoint union of trees. This is illustrated in Figure 2.5.

If .G is connected, then a spanning tree of .G is a subgraph of .G that is a tree
containing every vertex of .G. In general, a graph may have several spanning trees,
but a graph that is not connected does not contain a spanning tree.

The concept of connectivity can be extended to the general case. A digraph .G =
(V, E) is strongly connected if for every pair of vertices .u, v ∈ V there is a path
from u to v and a path from v to u.

An equivalence relation defined for a collection of pairs of members of a set is a
relation that satisfies three simple properties: reflexivity, symmetry, and transitivity.
A key property of an equivalence relation on a set is that it induces a partitioning of
the set. Strong connectivity is an equivalence relation on .V . It induces a partitioning
.V = V1 ∪ . . . ∪ Vs such that each .Vi (.1 ≤ i ≤ s) is strongly connected and
is maximal with this property: no additional vertices from .G can be included in
.Vi without breaking its strong connectivity. The .Vi are called strongly connected
components (or sometimes just strong components) of .G.

Any undirected tree .T = (V, E) can be converted into a directed rooted tree
.T ′ = (V, E ′) by specifying a root vertex r . Note that r can be chosen arbitrarily:
any choice gives a directed rooted tree. An edge .(u, v) ∈ E becomes a directed edge
.(u → v) ∈ E ′ if there is a path from u to r such that the first edge of this path is
from u to v. Given r , this directed path is unique. We illustrate this transformation
in Figure 2.6. v is called the parent of u if the directed edge .(u → v) ∈ E ′; u is
said to be a child of v (two or more child vertices are referred to as children). Two
vertices in a rooted tree are siblings if they have the same parent. Leaf vertices have
no children. A rooted tree is a special case of a DAG.

6

5

4
3

2
1

7

9

8

10 11

12

Figure 2.5 An example of an undirected graph with 12 vertices that is a forest (it consists of two
disjoint trees). Vertices 1, 2, 3, 6, 7, 8, and 11 are leaf vertices.



24 2 Sparse Matrices and Their Graphs

1

4

2

6 5

7

3

1 2

4

6

7

5

3

Figure 2.6 An example of an undirected tree .T (left) and the rooted tree .T ′ (right) obtained from
.T by choosing the root .r = 4. The arrows indicate the direction of the edges.

2.4 Adjacency Graphs

Adjacency graphs provide a link between sparse matrices and graphs. If A is a sparse
matrix of order n, then an adjacency graph .G(A) = (V(A), E(A)) (often written
simply as .G) with n vertices .V(A) = {1, . . . , n} can be associated with it. If A is
structurally symmetric, then the edge set is

.E(A) = {(i, j) | aij = 0, i = j
}

.

A digraph can be associated with a nonsymmetric A by setting

.E(A) = {(i → j) | aij = 0, i = j}.

Each diagonal nonzero .aii corresponds to a loop or self-edge. They are generally
omitted from .G, and many algorithms that use .G implicitly assume that the diagonal
entries of A are present. Figure 2.7 depicts the sparsity patterns of two simple sparse
matrices and their graphs. To capture not only the sparsity pattern of A but also the
values of the entries, .G can be transformed into a weighted graph using a mapping
.E(A) → R and/or .V(A) → R.

A special case is the directed graph associated with a triangular matrix. If L is a
lower triangular matrix and U is an upper triangular matrix, then the directed graphs
.G(L) and .G(U) have edge sets

.E(L) = {(i → j) | lij = 0, i > j} and E(U) = {(i → j) | uij = 0, i < j}.
(2.1)

It is sometimes convenient to use .G(LT ) in which the direction of the edges is
reversed
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⎛
⎜⎜⎜⎝

1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 2 3 4 5

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗

⎞
⎟⎟⎟⎠

3

5

4

2

1

3

5

4

2

1

Figure 2.7 An example of a structurally symmetric sparse matrix and its undirected graph (left)
and a nonsymmetric sparse matrix and its digraph (right). Arrows indicate the direction of the
edges in the digraph.

.E(LT ) = {(j → i) | lij = 0, i > j}. (2.2)

It is straightforward to see that .G(L), .G(LT ), and .G(U) are DAGs; they are
sometimes referred to as elimination DAGs.

2.5 Matrix Permutations and Orderings

In sparse matrix algorithms, permutations are important transformations. A per-
mutation matrix P is a square matrix that has exactly one entry equal to unity
in each row and column, and all remaining entries are zeros (that is, it is a
permutation of the identity matrix). Premultiplying a matrix by P reorders the rows
and postmultiplying by P reorders the columns. P can be represented by an integer-
valued permutation vector p, where .pi is the column index of the unity within the
i-th row of P . For example,

.P =
⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ and p =
⎛

⎝

2
3
1

⎞

⎠ .

The graph of a matrix A is unchanged if a symmetric permutation .A′ = PAP T

is performed, only the labelling (that is, the ordering) of the vertices changes, and
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⎛
⎜⎜⎜⎝

1 2 3 4 5 1 2 3 4 5
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⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 ∗ ∗
2 ∗ ∗
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Figure 2.8 An example of an arrowhead matrix and its undirected graph (left) and a symmetri-
cally permuted arrowhead matrix and its undirected graph (right).

thus relabelling .G(A) can be used to permute A. This invariance property is key in
sparse matrix algorithms. As an example, consider the arrowhead matrix A and its
graph .G(A) given in Figure 2.8. The symmetrically permuted matrix .A′ and .G(A′)
are also shown, with P chosen such that the first row and column of A are the last
row and column of .A′.

The digraph .G of a general matrix A is not invariant under nonsymmetric
permutations PAQ, with .Q = P T . A topological ordering of .G is a labelling of its
vertices such that for every edge .(i → j), vertex i precedes vertex j (i.e., .i < j ). It
can be shown that a topological ordering is possible if and only if .G has no directed
cycles, that is, it is a DAG. Any DAG has at least one topological ordering. The
non-uniqueness of topological orderings of a DAG is shown in Figure 2.3.

2.6 Lists, Stacks and Queues

Sparse matrix algorithms frequently require the storage and manipulation of lists. A
list is an ordered sequence of arbitrary elements

.(u0, u1, . . . , uk−1, uk), (2.3)

.u0 is the head of the list, and .uk is its tail. An empty list is denoted by .().
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A stack is a list in which elements can only be added to or removed from the
head. A pointer locates the head of the stack. Let .S = (u0, u1, . . . , uk−1, uk) be
a stack. .push(S, v) denotes adding v onto the stack by incrementing the pointer
by one, giving .(v, u0, . . . uk). .pop(S, u0) denotes the stack .(u1, . . . uk) that results
from decreasing the pointer by one (removing .u0 from the head). A queue is a list
in which elements can be added to the tail (appended) or removed (popped) from
the head. Consider the queue .Q = (u0, u1, . . . , uk−1, uk). The append operation
.append(Q, uk+1) results in the queue .(u0, . . . uk, uk+1), and the pop operation
.pop(Q, u0) results in the queue .(u1, . . . uk).

2.7 Graph Searches

Many sparse matrix reordering algorithms involve searching the adjacency graph
.G(A). The sequence in which the vertices are visited can be used, for example, to
reorder the graph and hence permute the matrix. Given a start vertex, a graph search
(also called a graph traversal) performs a step-by-step exploration of the vertices
and edges of .G(A), generating sets of visited vertices and explored edges. Let .Vv be
the set of visited vertices and .Vn be the set of vertices that have not yet been visited.
Following some chosen rule, the search step selects an unexplored edge such that
one of its vertices belongs to .Vv . If the other vertex belongs to .Vn, then this vertex
is moved into .Vv , and the edge is flagged as explored. The explored edge may be
directed or undirected; in an undirected graph, the edge .(u, v) formally corresponds
to the pair of edges .(u→ v) and .(v → u).

2.7.1 Breadth-First Search

Starting from a chosen start vertex s, a breadth-first search (BFS) explores all the
vertices adjacent to s. It then explores all the vertices whose distance from s is 2, and
then 3, and so on (that is, sibling vertices are visited before child vertices); a queue
is used in its implementation. The search terminates when there are no unexplored
edges .(u, v) with .u ∈ Vv and .v ∈ Vn that are reachable from s. A simple example
with .s = 1 is given in Figure 2.9. All the vertices that are at the same distance from
s are said to belong to the same level of the graph. At each level, the order in which
the vertices are visited is not fixed.

2.7.2 Depth-First Search

A depth-first search (DFS) of a graph .G visits child vertices before visiting sibling
vertices; that is, it traverses the depth of a path before exploring its breadth. Starting
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Figure 2.9 An illustration of a BFS of a connected undirected graph, with the labels indicating
the order in which the vertices are visited. Vertices .2, 3, 4, 5 are all at distance 1 from s and so
belong to the first level; vertices .6, 7, 8 belong to the second level.
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Figure 2.10 An illustration of a DFS of a connected directed graph. The labels indicate the order
in which the vertices are visited. The edges of the DFS spanning tree are in bold.

from a chosen vertex s, the set of vertices that are visited are those vertices u

for which a directed path from s to u exists in .G. This will give different results
depending on s and how ties are broken. In the example given in Figure 2.10, the
search works from left to right. Like the BFS, all vertices in .Reach(s) are visited.
The edges that are traversed form a DFS spanning tree. In general, visiting all the
edges of a graph results in a DFS forest that consists of exactly one DFS spanning
tree for each connected component of the original graph. Thus the DFS can be used
to compute connected components (see Algorithm 3.6).

There are a number of ways to construct the output vertex order for a DFS. In a
preorder list, the vertices are returned in the order in which they are added into .Vv ,
while in a postorder list, the vertices are in the order in which they are last visited
during the DFS algorithm (note that the reverse of a postordering is not the same as
preordering). For the example in Figure 2.10, the vertices are added into .Vv in the
order .1, 2, 3, 4, 5, 6, 7, and this is the preorder list. The sequence in which the DFS
visits the vertices is .1, 2, 3, 2, 4, 2, 1, 5, 6, 5, 1, 7, 1. In this sequence, vertex 3 is the
first vertex to appear for the last time so the postordering starts with vertex 3. The
next vertex to appear for the last time is vertex 4, followed by vertex 2, and so on,
resulting in the postorder list .3, 4, 2, 6, 5, 7, 1.

Algorithm 2.1 presents a DFS and outputs both the preorder and postorder lists.
The call dfs_step is made exactly once for each vertex v. Observe that if there is a
path from vertex v to vertex w in the search tree, then v is labelled ahead of w in
the preorder list and w is labelled ahead of v in postorder list.
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ALGORITHM 2.1 Find preorder and postorder lists using a DFS
Input: Directed graph .G = (V, E).
Output: Preorder list preorder and postorder list postorder .

1: Vv = ∅, preorder = () and postorder = ()

2: for all v ∈ V do
3: if v ∈ Vv then
4: push(preorder, v) � Add v onto the preorder stack
5: Vv = Vv ∪ {v} � Add v to the set of visited vertices
6: dfs_step(v)
7: end if
8: end for
9: recursive function (dfs_step(v))

10: for all (v → w) ∈ E do
11: if w ∈ Vv then
12: push(preorder,w) � Add w onto the preorder stack
13: Vv = Vv ∪ {w} � Add w to the set of visited vertices
14: dfs_step(w) � recursive search
15: end if
16: end for
17: push(postorder, v) � Add v onto the postorder stack
18: end recursive function

2.8 Notes and References

Graph theory has become an important mathematical tool in a wide variety of
subjects, as well as being a mathematical discipline in its own right. There are
many introductory textbooks. For example, the first four chapters of Wilson (1996)
provide a basic foundation course, including definitions and examples of graphs, and
the graduate-level textbook Bondy & Murty (2008) presents a coherent introduction
to graph theory. The introductions to graphs given in computer science monographs
such as Cormen et al. (2009) and Skiena (2020) are also ideal for our purposes.

Many papers that present sparse matrix algorithms employ graph concepts.
Significant contributions include Parter (1961), Rose (1973), Rose et al. (1976), and
Rose & Tarjan (1978). Important ideas first appeared in the published proceedings
of some of the early conferences that focussed on sparse matrix computations,
including Reid (1971), Rose & Willoughby (1972), Duff (1981), and Evans (1985).
Much of the fundamental work from the 1960s and 1970s is given in the book by
Tewarson (1973) and summarized later by Pissanetzky (1984). The general texts on
sparse factorizations by George & Liu (1981), Davis (2006), and Duff et al. (2017)
provide further sources of references and examples; see also Kepner & Gilbert
(2011).

Discussions of data structures and graph searches can be found in Aho et al.
(1983) and Tarjan (1983). The systematic analysis of the depth-first search algorithm
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is given in Tarjan (1972), but backtracking techniques on which this search is based
were used even earlier in artificial intelligence and combinatorial optimization.
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Chapter 3
Introduction to Matrix Factorizations

If numerical analysts understand anything, surely it must be
Gaussian elimination. This is the oldest and truest of numerical
algorithms . . . This algorithm has been so successful that to
many of us, Gaussian elimination and .Ax = b are more or less
synonymous. – Trefethen (1985).

Gaussian elimination is the standard method for solving a
system of linear equations. As such, it is one of the most
ubiquitous numerical algorithms and plays a fundamental role
in scientific computation. – Higham (2011)

This chapter introduces the basic concepts of Gaussian elimination and its formula-
tion as a matrix factorization that can be expressed in a number of mathematically
equivalent but algorithmically different ways.

Using unweighted graphs to capture the sparsity structures of matrices during
Gaussian elimination is simplified by assuming that the result of adding, subtracting,
or multiplying two nonzeros is nonzero. It follows that if .A = LU and .EL denotes
the set of (directed) edges of the digraph .G(L), then for .i > j

.aij = 0 implies (i → j) ∈ EL.

This is the non-cancellation assumption. It allows the following observation.

Observation 3.1 The sparsity structures of the LU factors of A satisfy

.S{A} ⊆ S{L+ U}.

That is, the factors may contain entries that lie outside the sparsity structure of A.
Such entries are termed filled entries, and together the filled entries are called the
fill-in. The graph obtained from .G(A) by adding the fill-in is called the filled graph.

Numerical cancellations in LU factorizations rarely happen, and in general,
they are difficult to predict, particularly in floating-point arithmetic. Thus, such
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accidental zeros are not normally exploited in implementations, and we will ignore
the possibility of their occurrence.

3.1 Gaussian Elimination: An Overview

The traditional way of describing Gaussian elimination is based on the systematic
column-by-column annihilation of the entries in the lower triangular part of A.
Assuming A is factorizable, this can be written formally as sequential multiplica-
tions by column elimination matrices that yield the elimination sequence

.A = A(1), A(2), . . . , A(n) (3.1)

of partially eliminated matrices as follows:

.A(1) → A(2) = C1A
(1) → A(3) = C2C1A

(1) → . . . → A(n) = Cn−1 . . . C2C1A
(1).

The unit lower triangular matrices .Ci (.1 ≤ i ≤ n − 1) are the column elimination
matrices. Elementwise, assuming .a11 = a

(1)
11 = 0, the first step .C1A

(1) = A(2) is

.
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and provided .a
(2)
22 = 0, the second step .C2A

(2) = A(3) is

.
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The k-th partially eliminated matrix is .A(k). The active entries in .A(k) are denoted
by .a

(k)
ij , .1 ≤ k ≤ i, j ≤ n (in the sparse case, many of the entries are zero), and

the .(n − k + 1) × (n − k + 1) submatrix of .A(k) containing the active entries is
termed its active submatrix. The graph associated with the active submatrix is the
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k-th elimination graph and is denoted by .Gk . If .S{A} is nonsymmetric, then .Gk is
a digraph.

The inverse of each .Ck is the unit lower triangular matrix that is obtained by
changing the sign of all the off-diagonal entries, and because the product of unit
lower triangular matrices is a unit lower triangular matrix, it is clear that provided
.a

(k)
kk = 0 (.1 ≤ k < n)

.A = A(1) = C−1
1 C−1

2 . . . C−1
n−1A

(n) = LU,

where the unit lower triangular matrix L is the product .C−1
1 C−1

2 . . . C−1
n−1 and .U =

A(n) is an upper triangular matrix. The subdiagonal entries of L are the negative of
the subdiagonal entries of the matrix .C1 + C2 + . . . + Cn−1. If A is a symmetric
positive definite (SPD) matrix, then setting .U = DLT , the LU factorization can be
written as

.A = LDLT ,

which is the square root-free Cholesky factorization. Alternatively, it can be
expressed as the Cholesky factorization

.A = (LD1/2)(LD1/2)T ,

where the lower triangular matrix .LD1/2 has positive diagonal entries.
The process of performing an LU factorization can be rewritten in the generic

form given in Algorithm 3.1. Here each .lik is called a multiplier, and the .a
(k)
kk are

called pivots. The assumption that A is factorizable implies .a
(k)
kk = 0 for all k.

Algorithm 3.1 comprises three nested loops. There are six ways of assigning the
indices to the loops, with the loops having different ranges. The performance of the
variants can differ significantly depending on the computer architecture. The key
difference is the way the data are accessed from the factorized part of matrix and

ALGORITHM 3.1 Generic LU factorization
Input: Factorizable matrix A.
Output: LU factorization .A = LU .

1: for ————– do
2: for ————– do
3: for ————– do
4: .lik = a

(k)
ik /a

(k)
kk

5: .a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

6: end for
7: end for
8: end for
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applied to the part that is not yet factorized. But in exact arithmetic, they result in
the same L and U , which allows any of them to be used to demonstrate theoretical
properties of LU factorizations. To identify the variants, names that derive from
the order in which the indices are assigned to the loops can be used. The kij and
kji variants are called submatrix LU factorizations. The schemes jik and jki

compute the factors by columns and are called column factorizations. The final
two are row factorizations because they proceed by rows. A row factorization can
be considered as a column LU factorization applied to .AT .

3.1.1 Submatrix LU Factorizations

Each outermost step of the submatrix LU variants computes one row of U and one
column of L. The first step (.k = 1) is

.C1A =
(

1
−A2:n,1/a11 I

)(

a11 A1,2:n
A2:n,1 A2:n,2:n

)

=
(

a11 A1,2:n
S

)

,

where the .(n− 1)× (n− 1) active submatrix

.S = A2:n,2:n − A2:n,1A1,2:n/a11 = A2:n,2:n − L2:n,1U1,2:n

is the Schur complement of A with respect to .a11. If A is factorizable, then so too
is S and the process can be repeated.

More generally, the operations performed at each step k correspond to a sequence
of rank-one updates. The resulting Schur complement can be written in terms of
entries of the matrices from the elimination sequence and entries of the computed
factors. After .k−1 steps (.1 < k ≤ n), the .(n−k+1)×(n−k+1) Schur complement
of A with respect to its .(k − 1) × (k − 1) principal leading submatrix is the active
submatrix of the partially eliminated matrix .A(k) given by

.S(k) =
⎛

⎜

⎝

akk . . . akn

...
. . .

...

ank . . . ann

⎞

⎟

⎠
−

k−1
∑

j=1

⎛

⎜

⎝

lkj
...

lnj

⎞

⎟

⎠

(

ujk . . . ujn

)

= Ak:n,k:n −
k−1
∑

j=1

Lk:n,jUj,k:n

=
⎛

⎜

⎝

a
(k)
kk . . . a

(k)
kn

...
. . .

...

a
(k)
nk . . . a

(k)
nn

⎞

⎟

⎠
= A

(k)
k:n,k:n. (3.2)
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If A is SPD, then the Cholesky and LDLT factorizations that are special cases of
the submatrix approach are termed right-looking (fan-out) factorizations.

3.1.2 Column LU Factorizations

In the column LU factorization, the outermost index in Algorithm 3.1 is j . For .j =
1, .l11 = 1, and the off-diagonal entries in column 1 of L are obtained by dividing
the corresponding entries in column 1 of A by .u11 = a11. Assume .j − 1 columns
(.1 < j ≤ n) of L and U have been computed. The partial column factorization can
be expressed as

.

(

L1:j−1,1:j−1

Lj :n,1:j−1

)

U1:j−1,1:j−1 =
(

A1:j−1,1:j−1

Aj :n,1:j−1

)

.

Column j of U and then column j of L are computed using the identities

.U1:j−1,j = L−1
1:j−1,1:j−1A1:j−1,j , ujj = ajj − Lj,1:j−1U1:j−1,j ,

and

.ljj = 1, Lj+1:n,j = (Aj+1:n,j − Lj+1:n,1:j−1U1:j−1,j )/ujj .

Thus the strictly upper triangular part of column j of U is determined by solving
the triangular system

.L1:j−1,1:j−1U1:j−1,j = A1:j−1,j ,

and the strictly lower triangular part of column j of L is computed as a linear
combination of column .Aj+1:n,j of A and previously computed columns of L.

If A is symmetric and the pivots can be used in the order .1, 2, . . . without
modification, then there is the following link between its column LU and LDLT
factorizations.

Observation 3.2 The j -th diagonal entry .djj (.1 ≤ j ≤ n) of the LDLT
factorization of the symmetric matrix A is

.djj = ujj = ajj −
j−1
∑

k=1

dkkl
2
jk.

The L factor is the same as is computed by the column LU factorization; its
computation can be written as
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ALGORITHM 3.2 Basic column LU factorization with partial pivoting
Input: Nonsingular nonsymmetric matrix A.
Output: LU factorization .PA = LU , where P is a row permutation matrix.

1: Interchange rows of A so that .|a11| = max{|ai1| | 1 ≤ i ≤ n}
2: .l11 = 1, u11 = a11, L2:n,1 = A2:n,1/a11

3: for .j = 2 : n do
4: Solve .L1:j−1,1:j−1U1:j−1,j = A1:j−1,j

5: .z1:n−j+1 = Aj :n,j − Lj :n,1:j−1U1:j−1,j

6: Apply row interchanges to z, A and L so that
.|z1| = max{|zi | | 1 ≤ i ≤ n− j + 1}.

7: .ljj = 1, .ujj = z1 and .Lj+1:n,j = z2:n−j+1/z1

8: end for

.djjLj+1:n,j = Aj+1:n,j −
j−1
∑

k=1

Lj+1:n,k dkk ljk.

The U factor is equal to .DLT . Computing L and D in this way is called the left-
looking (fan-in) factorization.

So far, we have assumed that A is factorizable. If A is nonsingular, then there
exists a row permutation matrix P such that PA is factorizable (Theorem 1.1), and
if there are zeros on the diagonal, then the rows can always be permuted to achieve
a nonzero diagonal. Consider the simple .2× 2 matrix A and its LU factorization

.A =
(

δ 1
1 1

)

=
(

1
δ−1 1

)(

δ 1
1− δ−1

)

.

If .δ = 0, this factorization does not exist, and if .δ is very small, then the entries in
the factors involving .δ−1 are very large. But interchanging the rows of A, we have

.PA =
(

1 1
δ 1

)

=
(

1
δ 1

)(

1 1
1− δ

)

,

which is valid for all .δ = 1. Algorithm 3.2 presents a basic column LU factorization
scheme for nonsingular A. The interchanging of rows at each elimination step to
select the entry of largest absolute value in its column as the next pivot is called
partial pivoting. It avoids small pivots and results in an LU factorization of a row
permuted matrix PA in which the absolute value of each entry of L is at most 1. In
practice, partial pivoting (or another pivoting strategy) is incorporated into all LU
factorization variants. Pivoting strategies are discussed in Chapter 7.
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3.1.3 Factorizations by Bordering

The generic LU factorization scheme does not cover all possible approaches. An
alternative is factorization by bordering. Set all diagonal entries of L to 1, and
assume the first .k−1 rows of L and first .k−1 columns of U (.1 < k ≤ n) have been
computed (that is, .L1:k−1,1:k−1 and .U1:k−1,1:k−1). At step k, the factors must satisfy

.A1:k,1:k =
(

A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)

=
(

L1:k−1,1:k−1 0
Lk,1:k−1 1

)(

U1:k−1,1:k−1 U1:k−1,k

0 ukk

)

.

Equating terms, the lower triangular part of row k of L and the upper triangular part
of column k of U are obtained by solving

.Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

The diagonal entry .ukk is then given by

.ukk = akk − Lk,1:k−1U1:k−1,k (with u11 = a11).

3.2 Fill-in in Sparse Gaussian Elimination

Here we give some simple results that describe fill-in in the matrix factors; strategies
to limit fill-in will be presented in Chapter 8. We start by looking at the rules that
establish the positions of the entries in the factors. Assume .S{A} is symmetric,
and consider the elimination graph .Gk at step k. Its vertices are the .n − k + 1
uneliminated vertices. Its edge set contains the edges in .G(A) connecting these
vertices and additional edges corresponding to filled entries produced during the
first .k−1 elimination steps. The sequence of graphs .G1 ≡ G(A),G2, . . . is generated
recursively using Parter’s rule:

To obtain the elimination graph .Gk+1 from .Gk , delete vertex k and add all
possible edges between vertices that are adjacent to vertex k in .Gk .

Denoting .Gk = (Vk, Ek) and .Gk+1 = (Vk+1, Ek+1), this can be written as

.Vk+1 = Vk \ {k}, Ek+1 = Ek ∪ {(i, j) | i, j ∈ adjGk {k}} \ {(i, k) | i ∈ adjGk {k}}.

If .S{A} is nonsymmetric, then the elimination graphs are digraphs and Parter’s rule
generalizes as follows:

To obtain the elimination graph .Gk+1 from .Gk , delete vertex k and add all edges

.(i
Gk+1−−−→ j) such that .(i

Gk−→ k) and .(k
Gk−→ j).
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Figure 3.1 Illustration of Parter’s rule. The original undirected graph .G = G1 and the elimination
graph .G2 that results from eliminating vertex 1 are shown on the left and right, respectively. The
red dashed lines denote fill edges. The vertices .{2, 3, 4} become a clique.
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Figure 3.2 Illustration of Parter’s rule for a nonsymmetric .S{A}. The original digraph .G = G1

and the directed elimination graph .G2 that results from eliminating vertex 1 are shown on the left
and right, respectively. The red dashed lines denote fill edges.

Simple examples are given in Figures 3.1 and 3.2.
In terms of graph theory, if .S{A} is symmetric, then Parter’s rule says that the

adjacency set of vertex k becomes a clique when k is eliminated. Thus, Gaussian
elimination systematically generates cliques. As the elimination process progresses,
cliques grow or more than one clique join to form larger cliques, a process known
as clique amalgamation. A clique with m vertices has .m(m−1)/2 edges, but it can
be represented by storing a list of its vertices, without any reference to edges. This
enables important savings in both storage and data movement to be achieved during
the symbolic phase of a direct solver.

The repeated application of Parter’s rule specifies all the edges in .G(L+ LT ):

.(i, j) is an edge of .G(L+ LT ) if and only if .(i, j) is an edge of .G(A) or .(i, k) and

.(k, j) are edges of .G(L+ LT ) for some .k < i, j .

This generalizes to a nonsymmetric matrix A and its LU factorization:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

81 2 3 4 5 6 7 1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6

1

345
2

78 6

1

345
2

78

Figure 3.3 Example to illustrate fill-in during the factorization of a symmetric matrix, with the
eliminations performed in the natural order. .S{A} and .S{L + LT } are on the left and right,
respectively, with the corresponding undirected graphs .G(A) and .G(L + LT ). Filled entries in
.L+ LT are denoted by f . The red dashed lines in the filled graph .G(L+ LT ) correspond to filled
entries.

.(i → j) is an edge of the digraph .G(L+U) if and only if .(i → j) is an edge of the
digraph .G(A) or .(i → k) and .(k → j) are edges of .G(L+ U) for some .k < i, j .

Parter’s rule is a local rule that uses the dependency on nonzeros obtained
in previous steps of the factorization. The following result, which uses the path
notation of Section 2.2, fully characterizes the nonzero entries in the factors using
only paths in .G(A).

Theorem 3.1 (Rose et al. 1976; Rose & Tarjan 1978)

(a) Let .S{A} be symmetric and .A = LLT . Then .(L + LT )ij = 0 if and only if

there is a fill-path .i
G(A)⇐���⇒
min

j .

(b) Let .S{A} be nonsymmetric and .A = LU . Then .(L + U)ij = 0 if and only if

there is a fill-path .i
G(A)�����⇒
min

j .

The fill-paths may not be unique.

Figure 3.3 illustrates Theorem 3.1 for symmetric .S{A}. There is a filled entry in

position .(8, 6) of L because there is a fill-path .8
G(A)⇐���⇒
min

6 given by the sequence

of (undirected) edges .8 ←→ 2 ←→ 5 ←→ 1 ←→ 6.

Corollary 3.2 characterizes edges of .Gk in terms of reachable sets in the original
graph .G(A).
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4 1 5 2

6 7 3

8

Figure 3.4 An example to illustrate reachable sets in .G(A). The grey vertices 1, 2, and 3 are
eliminated in the first three elimination steps .(V4 = {1, 2, 3}).

Corollary 3.2 (Rose et al., 1976; George & Liu, 1980b)
Assume .S{A} is symmetric. Let .Vk be the set of .k − 1 vertices of .G(A) that have
already been eliminated, and let v be a vertex in the elimination graph .Gk . Then the
set of vertices adjacent to v in .Gk is the set .Reach(v,Vk) of vertices reachable from
v through .Vk in .G(A).

Proof The proof is by induction on k. The result holds trivially for .k = 1 because
.Reach(v,V1) = adjG(A){v}. Assume the result holds for .G1, . . . ,Gk with .k ≥ 1,
and let v be a vertex in the graph .Gk+1 that is obtained after eliminating .vk from .Gk .
If v is not adjacent to .vk in .Gk , then .Reach(v,Vk+1) = Reach(v,Vk). Otherwise,
if v is adjacent to .vk in .Gk , then .adjGk+1{v} = Reach(v,Vk) ∪Reach(vk,Vk). In
both cases, Parter’s rule implies that the new adjacency set is exactly equal to the
vertices that are reachable from v through .Vk+1, that is, .Reach(v,Vk+1). ��

Figure 3.4 depicts a graph .G(A). The adjacency sets of the vertices in .G4 that
result from eliminating vertices .V4 = {1, 2, 3} are .adjG4{4} = Reach(4,V4) =
{5}, .adjG4{5} = Reach(5,V4) = {4, 6, 7}, .adjG4{6} = Reach(6,V4) = {5, 7},
.adjG4{7} = Reach(7,V4) = {5, 6, 8}, and .adjG4{8} = Reach(8,V4) = {7}.

We remark that neither the local characterization of filled entries using Parter’s
rule nor Theorem 3.1 provides a direct answer as to whether a certain edge belongs
to .G(L+LT ) (or .G(L+U)); without performing the eliminations, they do not tell us
whether a given entry of a factor of A is nonzero. Such questions are addressed by
deeper theoretical and algorithmic results that are presented in subsequent chapters.

3.3 Triangular Solves

Once an LU factorization has been computed, the solution x of the linear system
.Ax = b is computed by solving the lower triangular system

.Ly = b, (3.3)
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followed by the upper triangular system

.Ux = y. (3.4)

Solving a system with a triangular matrix and dense right-hand side vector is
straightforward. The solution of (3.3) can be computed using forward substitution
in which the component .y1 is determined from the first equation, substitute it into
the second equation to obtain .y2, and so on. Once y is available, the solution of (3.4)
can be obtained by back substitution in which the last equation is used to obtain .xn,
which is then substituted into equation .n−1 to obtain .xn−1, and so on. Algorithm 3.3
is a simple lower triangular solve for dense b. If L is unit lower triangular, step 3 is
not needed.

ALGORITHM 3.3 Forward substitution: lower triangular solve .Ly = b with b

dense
Input: Lower triangular matrix L with nonzero diagonal entries and dense right-
hand side b.
Output: The dense solution vector y.

1: Initialise .y = b

2: for .j = 1 : n do
3: .yj = yj / ljj

4: for .i = j + 1 : n do
5: if .lij = 0 then
6: .yi = yi − lij yj

7: end if
8: end for
9: end for

When b is sparse, the solution y is also sparse. In particular, if in Algorithm 3.3
.yk = 0, then the outer loop with .j = k can be skipped. Furthermore, if .b1 = b2 =
. . . = bk = 0 and .bk+1 = 0, then .y1 = y2 = . . . = yk = 0. Scanning y to check
for zeros adds .O(n) to the complexity. But if the set of indices .J = {j | yj = 0} is
known beforehand, then Algorithm 3.3 can be replaced by Algorithm 3.4. A possible
way to determine .J is discussed later (Theorem 5.2).

Note that the combined effect of forward substitution (3.3) followed by back
substitution (3.4) often results in the final solution vector x being dense. This is the
case if .yn = 0 and U has an entry in each off-diagonal row i (.1 ≤ i < n).

3.4 Reducibility and Block Triangular Forms

The performance of algorithms for computing factorizations of sparse matrices can
frequently be significantly enhanced by first permuting A to have a block form or by
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ALGORITHM 3.4 Forward substitution: lower triangular solve .Ly = b with b

sparse
Input: Lower triangular matrix L with nonzero diagonal entries, sparse vector b and
the set .J of indices j such that .yj = 0.
Output: The sparse solution vector y.

1: Initialise .y = b

2: for .j ∈ J do � Take indices from .J in increasing order
3: .yj = yj / ljj

4: for .i = j + 1 : n do
5: if .lij = 0 then
6: .yi = yi − lij yj

7: end if
8: end for
9: end for

partitioning A into blocks. Permuting to block form is closely connected to matrix
reducibility. A is said to be reducible if there is a permutation matrix P such that

.PAP T =
(

Ap1,p1 Ap1,p2

0 Ap2,p2

)

,

where .Ap1,p1 and .Ap2,p2 are nontrivial square matrices (that is, they are of order at
least 1). If A is not reducible, it is irreducible. If A is structurally symmetric, then
.Ap1,p2 = 0 and .PAP T is block diagonal. The following example illustrates that a
one-sided permutation can transform an irreducible matrix A into a reducible matrix
AQ.

.A =
⎛

⎝

1 1 1
1 1
1

⎞

⎠ , Q =
⎛

⎝

1
1

1

⎞

⎠ , AQ =
⎛

⎝

1 1 1
1 1

1

⎞

⎠ .

A matrix A is said to be a Hall matrix (or has the Hall property) if every set of k

columns has nonzeros in at least k rows (.1 ≤ k ≤ n). A is a strong Hall matrix (or
has the strong Hall property) if every set of k columns (.1 ≤ k < n) has nonzeros
in at least .k + 1 rows. The strong Hall property trivially implies the Hall property.
The Hall property applies to rectangular .m× n matrices with .m ≥ n. If A is square,
then A has the strong Hall property if and only if the directed graph .G(A) is strongly
connected.

The following theorem is an important consequence of reducibility.

Theorem 3.3 (Brualdi & Ryser 1991)
Given a nonsingular nonsymmetric matrix A, there exists a permutation matrix P

such that
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⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

6 3 5 4 1 2

6 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
5 ∗ ∗
4 ∗ ∗
1 ∗ ∗ ∗ ∗
2 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 3.5 The sparsity patterns of A (left) and the upper block triangular form .PAP T with two
blocks .Aib,ib, .i = 1, 2, of orders 2 and 4 (right).

.PAP T =

⎛

⎜

⎜

⎜

⎝

A1,1 A1,2 · · · A1,nb

0 A2,2 · · · A2,nb

...
...

. . .
...

0 0 · · · Anb,nb

⎞

⎟

⎟

⎟

⎠

, (3.5)

where the square matrices .Aib,ib on the diagonal are irreducible. The set
.{Aib,ib | 1 ≤ ib ≤ nb} is uniquely determined (but the blocks may appear on
the diagonal in a different order). The order of the rows and columns within each
.Aib,ib may not be unique.

The upper block triangular form (3.5) is also known as the Frobenius normal
form. It is said to be nontrivial if .nb > 1, and this is the case if A does not have the
strong Hall property. An example of a matrix that can be symmetrically permuted
to block triangular form with .nb = 2 is given in Figure 3.5.

In practice, many of the blocks in (3.5) are either sparse or zero blocks. Assuming
the blocks .Aib,ib on the diagonal are all nonsingular, an LU factorization of each can
be computed independently. These can then be used to solve the permuted system
.PAP T y = c as a sequence of nb smaller problems, as outlined in Algorithm 3.5.
The solution of the original system .Ax = b follows by setting .c = Pb and .x =
P T y. Because the algorithms used to transform A into a block triangular form are
typically graph-based (and do not use the numerical values of the entries of A),
pivoting needs to be incorporated within the factorization of the diagonal blocks.
Algorithm 3.5 employs partial pivoting for this.

The transversal of a matrix A is the set of its nonzero diagonal elements. A

has a full or maximum transversal if all its diagonal entries are nonzero. There
exist permutation matrices P and Q such that PAQ has a full transversal matrix
if and only if A has the Hall property. Moreover, if A is nonsingular, then it can
be nonsymmetrically permuted to have a full transversal. However, the converse
is clearly not true (for example, a matrix with all its entries equal to one has a
full transversal, but it is singular). Permuting A to have a full transversal will be
discussed in Section 6.3.

If A has a full transversal, then there exists a permutation matrix .Ps such
that .PsAP T

s has the form (3.5). In other words, once A has a full transversal, a
symmetric permutation is sufficient to obtain the form (3.5). Finding .Ps is identical
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ALGORITHM 3.5 Solve a sparse linear system in upper block triangular form
Input: Upper block triangular matrix (3.5) and a conformally partitioned right-hand
side vector c.
Output: The conformally partitioned solution vector y.

1: for .ib = 1 : nb do � LU factorizations of the .Aib,ib blocks can be performed
in parallel

2: Compute .PibAib,ib = LibUib � Sparse LU factorization with partial
pivoting

3: end for
4: Solve .LnbUnb ynb = Pnbcnb � Perform forward and back substitutions
5: for .ib = nb − 1 : 1 do
6: for .jb = ib + 1 : nb do
7: .cib = cib − Aib,jbyjb � Sparse matrix-vector operation (skip if

.Aib,jb = 0)
8: end for
9: Solve .LibUib yib = Pibcib � Perform forward and back substitutions

10: end for

to finding the strongly connected components (SCCs) of the digraph .G(A) = (V, E)

(Section 2.3). To find the SCCs, .V is partitioned into non-empty subsets .Vi with
each vertex belonging to exactly one subset. Each vertex i in the quotient graph
corresponds to a subset .Vi , and there is an edge in the quotient graph with endpoints
i and j if .E contains at least one edge with one endpoint in .Vi and the other in .Vj .
The condensation (or component graph) of a digraph is a quotient graph in which
the SCCs form the subsets of the partition, that is, each SCC is contracted to a
single vertex. This reduction provides a simplified view of the connectivity between
components. An example is given in Figure 3.6. It has five SCCs: .{p, q, r}, .{s, t, u},
.{v}, .{w}, and .{x}.

The following result gives the relationship between SCCs and DAGs.

Theorem 3.4 (Sharir 1981; Cormen et al. 2009)
The condensation .GC of a digraph is a DAG (directed acyclic graph).

Because any DAG can be topologically ordered, .GC = (VC, EC) can be
topologically ordered, and if .Vi and .Vj are contracted to .si and .sj and .(si −→ sj )

.∈ EC , then .si < sj . It follows that to permute A to block triangular form it is
sufficient to find the SCCs of .G(A). That is, topologically ordering the vertices of
the condensation .GC induced by the SCCs is the quotient graph that implies the
block triangular form. There are many ways to find SCCs, one of which is Tarjan’s
algorithm (Algorithm 3.6). The key idea here is that vertices of an SCC form a
subtree in the DFS spanning tree of the graph. The algorithm performs depth-
first searches, keeping track of two properties for each vertex v: when v was first
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Figure 3.6 An illustration of the strong components of a digraph. On the left, the five SCCs are
denoted using different colours and on the right is the condensation DAG .GC formed by the SCCs.

encountered (held in .invorder(v)) and the lowest numbered vertex that is reachable
from v (called the low-link value and held in .lowlink(v)). It pushes vertices onto
a stack as it goes and outputs a SCC when it finds a vertex for which .invorder(v)

and .lowlink(v) are the same. The value .lowlink(v) is computed during the DFS
from v, as this finds the vertices that are reachable from v.

In Algorithm 3.6, the variable index is the DFS vertex number counter that
is incremented when an unvisited vertex is visited. S is the vertex stack. It is
initially empty and is used to store the history of visited vertices that are not yet
committed to an SCC. Vertices are added to the stack in the order in which they
are visited. The outermost loop of the algorithm visits each vertex that has not
yet been visited, ensuring vertices that are not reachable from the starting vertex
are eventually visited. The recursive function scomp_step performs a single DFS,
finding all descendants of vertex v, and reporting all SCCs for that subgraph. When
a vertex v finishes recursing, if .lowlink(v) = invorder(v), then it is the root vertex
of an SCC comprising all of the vertices above it on the stack. The algorithm pops
the stack up to and including v; these popped vertices form an SCC. The algorithm
is linear in the number of edges and vertices, that is, it is of complexity .O(|V|+|E |).

3.5 Block Partitioning

In this section, we assume that .S{A} is symmetric and .G = (V, E) is the adjacency
graph of A.
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ALGORITHM 3.6 Tarjan’s algorithm to find the strongly connected compo-
nents (SCCs) of a digraph
Input: Digraph .G = (V, E).
Output: Strongly connected components of .G, determined one-by-one.

1: .Vv = ∅, .S = (), .index = 0, � Each vertex is initially unvisited
2: for each .v ∈ V do
3: if .v ∈ Vv then
4: scomp_step(v)
5: end if
6: end for
7: recursive function (scomp_step(v))
8: .Vv = Vv ∪ {v} � Add v to the set of visited vertices
9: .index = index + 1 � Set the index for v to smallest unused index

10: .invorder(v) = index, .lowlink(v) = index

11: .push(S, v) � Put v on the stack
12: Set .v = head(S) � v is the current head of S.
13: for each .(v → w) ∈ E do � Look in the adjacency list of v

14: if .w ∈ Vv then � w not yet been visited; recurse on it
15: scomp_step(w)
16: .lowlink(v) = min(lowlink(v), lowlink(w))

17: else if .w ∈ S then � w is in the stack and hence in current SCC
18: .lowlink(v) = min(lowlink(v), invorder(w))

19: end if
20: end for
21: if .lowlink(v) = invorder(v) then
22: pop all vertices down to v from S to obtain a new SCC
23: end if
24: end recursive function

3.5.1 Block Structure Based on Supervariables

Sets of columns of A frequently have identical sparsity patterns. For instance, when
A arises from a finite element discretization, the columns corresponding to variables
that belong to the same set of finite elements have the same pattern, and this occurs
as a result of each node of the finite element mesh having multiple degrees of
freedom associated with it. This repetition of the sparsity patterns can be used to
substantially enhance performance.

Adjacent vertices u and v in an undirected graph .G = (V, E) are said to be
indistinguishable if they have the same neighbours, that is, .adjG{u} ∪ {u} =
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adjG{v} ∪ {v}. A set of mutually indistinguishable vertices is called an indistin-
guishable vertex set. If .U ⊆ V is an indistinguishable vertex set, then .U is maximal
if .U ∪ {w} is not indistinguishable for any .w ∈ V \ U .

Indistinguishability is an equivalence relation on .V , and maximal indistinguish-
able vertex sets represent its classes. This implies a partitioning of .V into .nsup ≥ 1
non-empty disjoint subsets

.V = V1 ∪ V2 ∪ . . . ∪ Vnsup. (3.6)

An indistinguishable vertex set can be represented by a single vertex, called a
supervariable.

If the vertices belonging to each subset .V1, . . . ,Vnsup are numbered consecu-
tively, with those in .Vi preceding those in .Vi+1 (.1 ≤ i < nsup), and if P is the
permutation matrix corresponding to this ordering, then the permuted matrix .PAP T

has a block structure in which the blocks are dense (with the possible exception of
the diagonal entries, which can be zero); the dimensions of the blocks are equal to
the sizes of the indistinguishable sets.

One approach for identifying supervariables is outlined in Algorithm 3.7.
Initially, all the vertices are placed in a single vertex set (that is, into a single
supervariable). This is split into two supervariables by taking the first vertex
.j = 1 and moving vertices in the adjacency set of j into a new vertex set (a
new supervariable). Each vertex j is considered in turn, and each vertex set .Vsv

that contains a vertex in .adjG{j} ∪ j is split into two by moving the vertices in
.adjG{j} ∪ j that belong to .Vsv into a new vertex set. Note that as a result of the
splitting and moving of vertices, a vertex set can become empty, in which case it
is discarded. Once the supervariables have been determined, the permuted matrix
.PAP T can be condensed to a matrix of order equal to nsup; the corresponding
graph is called the supervariable graph. If the average number of variables in each
supervariable is k, using the supervariable graph will reduce the amount of integer
data that is read during the symbolic phase by a factor of about .k2.

As an illustration, consider the following .5× 5 matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Initially, .1, 2, 3, 4, 5 are put into a single vertex set .V1. Consider .j = 1. Vertices
.i = 1, 2 and 5 belong to .adjG{1}∪{1}; they are moved from .V1 into a new vertex set.
There is no further splitting of the vertex sets for .j = 2. For .j = 3, .adjG{3}∪ {3} =
{3, 4, 5}. Vertices .i = 3 and 4 are moved from .V1 into a new vertex set. .V1 is now
empty and can be discarded. Vertex .i = 5 is moved from the vertex set that holds
vertices 1 and 2 into a new vertex set. For .j = 4 and 5, no additional splitting is
performed. Thus, three supervariables are found, namely .{1, 2}, .{3, 4}, and .{5}.
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ALGORITHM 3.7 Find the supervariables of an undirected graph
Input: Graph .G of a symmetrically structured matrix.
Output: Partitioning of .V into indistinguishable vertex sets.

1: .V1 = {1, 2, . . . , n}
2: for .j = 1 : n do
3: for .i ∈ adjG{j} ∪ j do
4: Find sv such that .i ∈ Vsv

5: if this is the first occurrence of sv for the current index j then
6: Establish a new vertex set .Vnsv and move i from .Vsv to .Vnsv

7: else
8: Move i from .Vsv to .Vnsv

9: end if
10: Discard .Vsv if it is empty
11: end for
12: end for

3.5.2 Block Structure Using Symbolic Dot Products

An alternative way to find a block structure uses symbolic dot products between the
rows of the matrix. While fully dense blocks can be found this way, it can also be
used to determine an approximate block structure in which blocks are classified as
dense or sparse based on a chosen threshold; this can be useful in preconditioning
iterative methods. Although we assume that .S{A} is symmetric, modifications can
extend the approach to general nonsymmetric A.

Rewrite A as row vectors

.A = (aT
1 , . . . , aT

n

)T
, where aT

i = Ai,1:n,

and consider .G(A) = (V, E). A partition .V = V1 ∪ . . . ∪ Vnb is constructed
using row products .aT

i ak between different rows of A. These express the level
of orthogonality between the rows; if .aT

i ak is small, then i and k are assigned to
different vertex sets. Algorithm 3.8 treats all entries of A as unity, and the symbolic
row products can be considered as a generalization of the angles between rows
expressed by their cosines, hence the notation cosine for the vector that stores
these products. The vertex sets are described using the vector adjmap. On output,
if .adjmap(i1) = adjmap(i2), then vertices .i1 and .i2 belong to the same vertex
set. Symmetry of .S{A} simplifies the computation of the symbolic row products
because for row i only .k > i is considered, that is, only the symbolic row products
that correspond to one triangle of .AT A are checked.

The procedure outlined in Algorithm 3.8 and illustrated in Figure 3.7 is con-
trolled by a threshold parameter .τ ∈ (0, 1]. j is added to the subset to which i



3.6 Notes and References 49

ALGORITHM 3.8 Find approximately indistinguishable vertex sets in an undi-
rected graph
Input: Graph .G = (V, E) of a symmetrically structured matrix A, the number .nzi

of entries in row i of A (.1 ≤ i ≤ n), and a threshold parameter .τ ∈ (0, 1].
Output: Partitioning of .V into nb disjoint approximately indistinguishable vertex
sets.

1: .nb = 0, .adjmap(1 : n) = 0, .cosine(1 : n) = 0
2: for .i = 1 : n do
3: if .adjmap(i) = 0 then
4: .nb = nb + 1 � Start a new set
5: .adjmap(i) = ib

6: for .(i, j) ∈ E do � Corresponds to an entry in .Ai,1:n
7: for .(k, j) ∈ E with .k > i do � Both rows i and k have an entry in

column j

8: if .adjmap(k) = 0 then � k has not been yet added to some
partitioning set

9: .cosine(k) = cosine(k)+ 1 � Increase partial dot product
10: end if
11: end for
12: for k with .cosine(k) = 0 do
13: if .cosine(k)2 ≥ τ 2 ∗ nzi ∗ nzk then � Test similarity of row

patterns
14: .adjmap(k) = nb

15: end if
16: .cosine(k) = 0
17: end for
18: end for
19: end if
20: end for

belongs if the cosine of the angle between them exceeds .τ . If .τ < 1, the block
structure depends on the order in which the rows are processed, while .τ = 1 gives
the exact indistinguishable vertex sets because, in this case, the row patterns being
compared must be the identical for the rows to be assigned to the same set.

3.6 Notes and References

A standard description of LU factorizations based on the generic scheme given in
Algorithm 3.1 can be found in the classical book by Ortega (1988b); this includes the
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⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 3 2 6 4 5

1 ∗ ∗ ∗
3 ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗
5 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 3 5 2 6 4

1 ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
6 ∗ ∗ ∗
4 ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 3.7 An example to illustrate Algorithm 3.8. The original matrix is given (left) together
with the permuted matrix with indistinguishable vertex sets .V = {1, 3}∪{2, 6}∪{4}∪{5} obtained
using .τ = 1 (centre) and the permuted matrix with approximately indistinguishable vertex sets
.V = {1, 3, 5}∪ {2, 6}∪ {4} obtained using .τ = 0.5 (right). The threshold .τ = 0.5 results in putting
row 5 into the same set as row 1, making the vertex sets only approximately indistinguishable. The
permuted matrix on the right has an approximate block form.

symmetric case and discusses early parallelization issues (which are also considered
in the review of Dongarra et al. (1984)). A more algorithmically oriented approach is
given in Golub & Van Loan (1996). For the column variant with partial pivoting, we
recommend the detailed description of the sparse case in Gilbert & Peierls (1988).
Many results for sparse LU factorizations are surveyed by Gilbert & Ng (1993) and
Gilbert (1994). Pothen & Toledo (2004) consider both symmetric and nonsymmetric
matrices in their survey of graph models of sparse elimination. The review by Davis
et al. (2016) provides many further references.

Parter (1961) presents Parter’s rule, and its nonsymmetric version is given in
Haskins & Rose (1973). Building on the paper of Rose et al. (1976), Rose & Tarjan
(1978) were the first to methodically consider the symbolic structure of Gaussian
elimination for nonsymmetric matrices. Related work is included in the seminal
paper on Cholesky factorizations by Liu (1986). Fill-in rules in the general context
of Schur complements in LU factorizations can be found in Eisenstat & Liu (1993b).

Classical and detailed treatments of triangular solves that also cover sparse issues
are given in the papers Brayton et al. (1970), Gilbert & Peierls (1988), and Gilbert
(1994). For reducibility theory that is closely connected to the general theory of
matrices, see Brualdi & Ryser (1991), which includes, for example, a proof of
Theorem 3.4.

Algorithm 3.6 for computing strongly connected components of a digraph is
introduced in Tarjan (1972); see also Sharir (1981) and Duff & Reid (1978) for
an early implementation.

For identifying supervariables, Algorithm 3.7 follows Reid & Scott (1999), but
see also Ashcraft (1995) and Hogg & Scott (2013a) (the latter presents an efficient
variant that employs a stack). The approximate block partitioning of Section 3.5.2
is from the paper by Saad (2003a), which also describes some modifications of the
basic approach; more sophisticated schemes with overlapping blocks are given in
Fritzsche et al. (2013).



3.6 Notes and References 51

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 4
Sparse Cholesky Solver: The Symbolic
Phase

The modern view of numerical linear algebra as being to a large
extent the study and systematic use of matrix decompositions
has certainly been influenced by Cholesky’s posthumously
published work – Benzi (2017).

This chapter focuses on the symbolic phase of a sparse Cholesky solver. The sparsity
pattern .S{A} of the symmetric positive definite (SPD) matrix A is used to determine
the nonzero structure of the Cholesky factor L without computing the numerical
values of the nonzeros. The subsequent numerical factorization is discussed in the
next chapter. Because the symbolic phase works only with .S{A} (the values of the
entries of A are not considered), it is also used for symmetric indefinite matrices
and sometimes within LU factorizations of symmetrically structured nonsymmetric
problems. It is implicitly assumed that all the diagonal entries of A are included in
.S{A} (even if they are zero). During the factorization phase, it may be necessary to
amend the data structures to allow for indefiniteness. This makes the factorization of
indefinite matrices potentially more expensive and more complex; this is considered
further in Chapter 7.

A fundamental difference between dense and sparse Cholesky factorizations is
that, in the latter, each column of L depends on only a subset of the previous
columns. The elimination tree is a data structure that describes the dependencies
among the columns of A during its factorization. A key result that assists in
the understanding of sparse Cholesky factorizations is that the sparsity pattern of
column j of L is the union of the pattern of column j of the lower triangular part
of A and the patterns of the children of j in the elimination tree; this is shown in
Section 4.3. Furthermore, the fact that disjoint parts of the elimination tree can be
factored independently offers the potential for high-level tree-based parallelism that
does not exist for dense matrices.
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4.1 Column Replication Principle

We begin by looking at how the sparsity pattern of a computed column of L

influences the patterns of subsequent Schur complements. From (3.2), the Schur
complement .S(k) can be written as

.S(k) = Ak:n,k:n −
k−1
∑

j=1

⎛

⎜

⎝

lkj
...

lnj

⎞

⎟

⎠

(

lkj . . . lnj
)

. (4.1)

Consider column j of L (.1 ≤ j ≤ k − 1), and let .lij = 0 for some .i > j . The
involvement of .lij in the outer product in (4.1) allows the following observation.

Observation 4.1 For any .i > j ≥ 1 such that .lij = 0

.S{Li:n,j } ⊆ S{Li:n,i}. (4.2)

This is called the column replication principle because the pattern of column j of
L (rows i to n) is replicated in the pattern of column i of L.

Denote the row index of the first subdiagonal nonzero entry in column j of L by
.parent (j), that is,

.parent (j) = min{i | i > j and lij = 0}. (4.3)

If there is no such entry, set .parent (j) = 0. The row index .parent (parent (j)) is
denoted by .parent2(j), and so on. Applying column replication recursively implies
the sparsity pattern of column j of L is replicated in that of column .parent (j),
which in turn is replicated in the pattern of column .parent2(j), and so on. This
is illustrated in Figure 4.1. Here .j = 1, and because the first subdiagonal entry in
column 1 is in row 3, .parent (1) = 3. Likewise, .parent (3) = parent2(1) = 5.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗
2 ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ f ∗ f ∗
7 ∗ f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4.1 An illustration of column replication. On the left are the entries in L before step 1 of a
Cholesky factorization (that is, the entries in the lower triangular part of A); in the centre, we show
the replication of the nonzeros from column 1 in the pattern of column parent (1) = 3 (red entries
.f ); on the right, we show the subsequent replication in column parent2(1) = 5.
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The following result shows that, provided A is irreducible, the mapping
.parent (j) has nonzero values given by (4.3) for all .j < n.

Theorem 4.1 (Liu 1986) If A is SPD and irreducible, then in each column j (.1 ≤
j < n) of its Cholesky factor L there exists an entry .lij = 0 with .i > j .

Proof From Parter’s rule, each step of the Cholesky factorization corresponds to
adding new edges into the graph of the corresponding Schur complement. If A is
irreducible, then the graphs corresponding to the Schur complements are connected.
Consequently, for any vertex j (.1 ≤ j < n) in any of these graphs, there is at least
one vertex i with .i > j to which j is connected. This corresponds to the nonzero
entry in column j of L. ��

With the convention .parent1(j) = parent (j), the next theorem shows that
if entry .lij of L is nonzero, then .parent t (j) = i for some .t ≥ 1, and there
is an entry in row i of L in each of the columns in the replication sequence
.j, parent1(j), parent2(j), . . . , parent t (j).

Theorem 4.2 (Liu 1990; George 1998) Let A be SPD, and let L be its Cholesky
factor. If .lij = 0 for some .j < i ≤ n, then there exists .t ≥ 1 such that .parent t (j) =
i and .lik = 0 for .k = j , .parent1(j), .parent2(j), . . . , parent t (j).

Proof If .i = parent1(j), the result is immediate. Otherwise, there exists an index
k, .j < k < i of a subdiagonal entry in column j of L such that .k = parent1(j).
Column replication implies .lik = 0. Applying an inductive argument to .lik , the
result follows after a finite number of steps. ��

If there is a sequence of nonzeros in a row of L, it is natural to ask where the
sequence begins. It is straightforward to see if there is no .k ≥ 1 such that .aik = 0,
no replication of nonzeros can start in row i. The main result on the replication of
nonzeros of A is summarized as Theorem 4.3.

Theorem 4.3 (Liu 1986) Let A be SPD, and let L be its Cholesky factor. If .aij = 0
for some .1 ≤ j < i ≤ n, then there is a filled entry .lij = 0 if and only if there exist
.k < j and .t ≥ 1 such that .aik = 0 and .parent t (k) = j .

4.2 Elimination Trees

The discussion of column replication is significantly simplified using elimination
trees. The elimination tree (or etree) .T (A) (or simply .T ) of an SPD matrix
has vertices .1, 2, . . . , n and an edge between each pair .(j, parent (j)), where
.parent (j) is given by (4.3); j is a root vertex of the tree if .parent (j) = 0. The
edges of .T are considered to be directed from a child to its parent, that is,

.E(T ) = {(j −→ i) | i = parent (j)}.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1 ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ f f
5 ∗ ∗ f ∗ f f
6 ∗ f ∗ f
7 ∗ ∗
8 ∗ ∗ f f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

5

4

2 3

6 7

8

Figure 4.2 An illustration of a sparse matrix A with a symmetric sparsity pattern and its
elimination tree .T (A). The root vertex is 8. The filled entries in .S{L + LT } are denoted by f .

If .T has a single component, then the root vertex is n. Despite the terminology, the
elimination tree need not be connected and in general is a forest. For simplicity,
in our discussions, we assume .T has a single component, and we say that .T is
described by the vector parent .

An example of a matrix and its elimination tree is given in Figure 4.2. Here and
elsewhere, following conventional notation, directional arrows are omitted from the
tree plot.

Concepts such as child, leaf, ancestor, and descendant vertices introduced in
Section 2.3 for directed rooted trees can be applied to .T . Additionally, .ancT {j}
and .descT {j} are defined to be the sets of ancestors and descendants of vertex j in
.T . We denote by .T (j) the subtree of .T induced by j and .descT {j); j is the root
vertex of .T (j). The size .|T (j)| is the number of vertices in the subtree. A pruned
subtree of .T (j) is the connected subgraph induced by j and a subset of .descT {j).
That is, for any vertex i in a pruned subtree of .T (j), all the ancestors of i belong to
the pruned subtree. A pruned subtree of .T shares the mapping parent with .T .

The following observation is straightforward.

Observation 4.2 If .i ∈ ancT {j} for some .j = i, then .i > j .

The connection between the mapping parent and the sets of ancestors and
descendants is emphasized by the next observation.

Observation 4.3 If i and j are vertices of the elimination tree .T with .j < i ≤ n,
then

.i∈ ancT {j} if and only if j ∈ descT {i} if and only if parent t (j)= i for some t ≥1.

The results in Section 4.1 can be expressed using rooted trees. Consider, for
example, Theorem 4.2. Instead of stating that there exists .t ≥ 1 such that
.parent t (j) = i, we can write that .i ∈ ancT {j}. Rewriting Theorem 4.3 as the
following corollary provides a clear characterization of the sparsity patterns of the
rows of L.
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Figure 4.3 The row subtree .Tr (5) of the elimination tree .T from Figure 4.2 (left). Vertex 3 has
been pruned because .a35 = 0. The row subtree .Tr (8) (right) differs from .T = T (A) because
vertex 1 has been pruned (.a18 = 0).

Corollary 4.4 (Liu 1986) Consider the elimination tree .T and the Cholesky factor
L of A. If i and j are vertices of .T with .j < i ≤ n and .aij = 0, then .lij = 0 if and
only if there exists .k < j such that .j ∈ ancT (k) and .aik = 0.

The subtree of .T with vertices that correspond to the nonzeros of row i of L is
called the i-th row subtree and is denoted by .Tr (i). Formally, it is a pruned subtree
of .T induced by the union of the vertex set

.{i} ∪ {k | aik = 0 and k < i}

with all vertices on the directed paths in .T from k to i, that is, with all their ancestors
from .Tr (i). The root vertex is i, and the leaf vertices are a subset of the column
indices in the i-th row of the lower triangular part of A. Figure 4.3 illustrates row
subtrees for the matrix and elimination tree from Figure 4.2. Note that row subtrees
are connected subgraphs of .T , even if .T is not connected. If .T can be found without
determining the pattern of L, then .Tr (i) can be used to derive the sparsity pattern of
row i of L, without having to store each entry explicitly.

Theorem 4.5 characterizes the ancestors of a given vertex j using paths in .G(A).
The proof helps clarify the relationship between .T and paths in .G(A).

Theorem 4.5 (Schreiber 1982; Liu 1986) If i and j are vertices in the elimination
tree .T with .j < i ≤ n, then .i ∈ ancT {j} if and only if there exists a path

.j
G(A)⇐��⇒{1,...,i} i. (4.4)

Proof Assume .i ∈ ancT {j}. Then there is a path .j
T��⇒ i of length .l ≥ 1. Each

edge of this path belongs to .G(L) and corresponds either to an edge in .G(A) or to a
fill-path in .G(A). Connecting these paths together gives (4.4).
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Conversely, if the path (4.4) exists, induction on its length can be used to prove
the result. If the path is of length 1, then the result holds because i and j are
connected in .G(A) by an edge. Consequently, from Theorem 4.2, i is an ancestor
of j . Now assume that the result is true for all paths of length less than l (.l > 1),
and consider a path of length l. Let m be the largest vertex on this path. If .m < j ,
then (4.4) is a fill-path connecting i and j and, therefore, .i ∈ ancT {j}. Otherwise,
for .m ≥ j , the assumption implies .i ∈ ancT {m}∪ {m} and .m ∈ ancT {j}∪ {j}, that
is, .i ∈ ancT {j}. ��

Given a vertex j in .T , the following corollary indicates how to find .parent (j)

(if it exists). If the set of ancestors of j is non-empty, then the lowest numbered one
is its parent.

Corollary 4.6 (Liu 1986, 1990) Vertex i is the parent of vertex j in .T if and only if
i is the lowest numbered vertex satisfying .j < i ≤ n for which there is a path (4.4).

The existence of (4.4) is equivalent to requiring i and j belong to the same
component of the graph .G(A1:i,1:i ) corresponding to the .i × i principal leading
submatrix .A1:i,1:i of A. Figure 4.4 depicts .G(A) for the matrix A given in Figure 4.2.
Consider vertex 4. Its set of ancestors for which paths from Theorem 4.5 exist
comprises vertices 5, 6, and 8. Vertex 7 is not an ancestor of 4 because there is
no path from 7 to 4 in the graph .G(A1:7,1:7). Among the ancestors of 4, vertex 5
fulfils the condition from Corollary 4.6 and is thus the parent of 4.

.T = T (A) can be constructed by stepwise extensions of the elimination trees
of the principal leading submatrices of A. Assume we have .T (A1:i−1,1:i−1) and we
want to construct .T (A1:i,1:i ). Initialize .T (A1:i,1:i ) = T (A1:i−1,1:i−1). If there are
no entries in row i of A to the left of the diagonal, then there is nothing to do,
and only an isolated vertex i is added. Otherwise, i is the root of the row subtree
.Tr (i) and an ancestor of some vertex j in .T . The ancestors k of j with .k < i are
in .T (A1:i−1,1:i−1). Because row subtrees are connected subgraphs of .T , a directed
path in .T (A1:i,1:i ) with .parent t (j) = i exists for some .t ≥ 1. The search for
this path starts from .jroot = j and continues, while .parent (jroot) = 0 and
.parent (jroot) = i, using a sequence of assignments .jroot = parent (jroot). It
terminates once .parent (jroot) = i or i is found to have already been added when

1

5

4

2 3

6

78

Figure 4.4 The graph .G(A) of the matrix from Figure 4.2 illustrating Theorem 4.5 and Corol-
lary 4.6.
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tracing the path from another entry .j ′ in row i. The construction of .T is summarized
in Algorithm 4.1.

ALGORITHM 4.1 Construction of an elimination tree
Input: A with a symmetric sparsity pattern and its undirected graph .G.
Output: Elimination tree .T described by the vector parent .

1: for i = 1 : n do � Loop over the rows of A

2: parent (i) = 0 � Initialisation
3: for j ∈ adjG{i} and j < i do � Loop over the below diagonal entries in

row i

4: jroot = j

5: while parent (jroot) = 0 and parent (jroot) = i do � Find the
current root

6: jroot = parent (jroot)

7: end while
8: if parent (jroot) = 0 then
9: parent (jroot) = i �Make i the parent of jroot

10: end if
11: end for
12: end for

The most expensive part of Algorithm 4.1 is the while loop that searches for
subtree roots. Because the directed path from j to its root .parent t (j) is unique,
shortcuts can be incorporated; this is called path compression. Having found
a directed path from j to k, subsequent searches can be made more efficient
by introducing a vector ancestor and setting .ancestor(j) = k. The modified
algorithm is outlined in Algorithm 4.2. It maintains two structures using the current
values of parent and ancestor . The tree described by ancestor is termed the
virtual tree.

Figure 4.5 shows a matrix for which path compression makes constructing .T
significantly more efficient. For this example, .T is determined by the mapping
.parent (6) = 0; .parent (i) = i + 1 for .i = 1, . . . , 5. The complexity of Algo-
rithm 4.1 is .O(n2), but for this example the complexity of Algorithm 4.2 is .O(n).
Formally, the complexity of Algorithm 4.2 is .O(nz(A) log2(n)), where .nz(A) is the
number of nonzeros of A, but the logarithmic factor is rarely reached. Additional
modifications can reduce the theoretical complexity to .O(nz(A) g(nz(A), n)),
where .g(nz(A), n) is a very slowly increasing function called the functional
inverse of Ackermann’s function. This means that, in practice, the complexity of
constructing .T , and hence of obtaining an implicit representation of .S{L}, is close
to linear in .nz(A) (which in general is much smaller than .nz(L)).
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ALGORITHM 4.2 Construction of an elimination tree using path compression
Input: A with a symmetric sparsity pattern and its undirected graph .G.
Output: Elimination tree .T described by the vector parent .

1: for i = 1 : n do � Loop over the rows of A

2: parent (i) = 0, ancestor(i) = 0 � Initialisation
3: for j ∈ adjG{i} and j < i do � Loop over the below diagonal entries in

row i

4: jroot = j

5: while ancestor(jroot) = 0 and ancestor(jroot) = i do
6: l = ancestor(jroot)

7: ancestor(jroot) = i � Path compression to accelerate future
searches

8: jroot = l

9: end while
10: if ancestor(jroot) = 0 then
11: ancestor(jroot) = i and parent (jroot) = i

12: end if
13: end for
14: end for

⎛
⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

⎞
⎟⎟⎟⎠

Figure 4.5 A sparse matrix for which computing the elimination tree using Algorithm 4.2 is much
more efficient than using Algorithm 4.1.

The following simple theorem states that there is no edge in .G(L+LT ) between
vertices belonging to subtrees of .T with different vertex sets. If there was such an
edge .(s, t), then from Theorem 4.2, one of the vertices s and t must be an ancestor
of the other, which is a contradiction. The importance of this result is that it implies
that for any such pairs of vertices the corresponding column sparsity patterns in L

can be computed in parallel.

Theorem 4.7 (Liu 1990) Consider the elimination tree .T and the Cholesky factor
L of A. Let .T (i) and .T (j) be two vertex-disjoint subtrees of .T . Then for all .s ∈
T (i) and .t ∈ T (j), the entry .lst of L is zero.
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4.3 Sparsity Pattern of L

The explicit structure of L is not always required; sometimes only the numbers of
nonzeros in each row and column of L are needed. For example, when comparing
the amount of fill-in in the factors for different initial orderings of A, allocating
factor storage, finding relaxed supernodes (see Section 4.6), and determining load
balance and synchronization events in parallel factorizations.

Let .rowL{i} denote the sparsity pattern of the off-diagonal part of row i of L,
that is,

.rowL{i} = S{Li,1:i−1} = {j | j < i, lij = 0}, 1 ≤ i ≤ n.

The number of entries in L is

.nz(L) =
n
∑

i=1

|rowL{i}| + n.

Corollary 4.4 implies .rowL{i} is given by the vertices of the row subtree .Tr (i).
This suggests Algorithm 4.3. Here the vector mark is used to flag vertices so as to
avoid including them more than once within a row subtree. The complexity of the
algorithm is .O(nz(L)).

ALGORITHM 4.3 Computation of the row sparsity patterns of the Cholesky
factor L
Input: A with a symmetric sparsity pattern, its undirected graph .G and elimination
tree .T described by the vector parent .
Output: Row sparsity patterns .rowL{i} of the Cholesky factor L of A (.1 ≤ i ≤ n).

1: for i = 1 : n do � Loop over the rows of A

2: rowL{i} = ∅ � Initialisation
3: mark(i) = i

4: for k ∈ adjG{i} and k < i do � Loop over the below diagonal entries in
row i

5: j = k

6: while mark(j) = i do � Column j not yet encountered in row i

7: mark(j) = i � Flag j as encountered in row i

8: rowL{i} = rowL{i} ∪ {j} � Add j to the sparsity pattern of row i

9: j = parent (j) �Move up the elimination tree
10: end while
11: end for
12: end for
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗
7 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 4.6 An illustration of the sparsity pattern of A and its graph .G(A) (left) and the sparsity
pattern of the corresponding skeleton matrix .A− and graph .G(A−) (right). The entries in A and
edges of .G(A) that do not belong to the skeleton matrix and graph are depicted in red.

Efficiency can be improved by employing the skeleton graph .G(A−) that is
obtained from .G(A) by removing every edge .(i, j) for which .j < i and j is not
a leaf vertex of .Tr (i). .G(A−) is the smallest subgraph of .G(A) with the same filled
graph as .G(A). The corresponding matrix is the skeleton matrix. An example is
given in Figure 4.6. The complexity of constructing the elimination tree using the
skeleton matrix and its graph .G(A−) is .O(nz(A−) g(nz(A−), n)), where .nz(A−) is
the number of entries in the skeleton matrix. Because .nz(A−) is often significantly
smaller than .nz(A), an implementation that processes .G(A−) rather than .G(A) can
be substantially faster.

Analogously to the row sparsity patterns, let .colL{j} denote the sparsity pattern
of the off-diagonal part of column j of L, that is,

.colL{j} = S(Lj+1:n,j ) = {i | i > j, lij = 0}, 1 ≤ j ≤ n.

The column replication principle can be written as

.colL{j} ⊆ colL{parent (j)} ∪ parent (j).

Theorem 4.8 describes .colL{j} using the vertices of the subtree .T (j).

Theorem 4.8 (George & Liu 1980c, 1981) The column sparsity pattern .colL{j}
of the Cholesky factor L of the matrix A is equal to the adjacency set of vertices of
the subtree .T (j) in .G(A), that is,
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Figure 4.7 Two topological orderings of an elimination tree.

.colL{j} = adjG(A){T (j)}. (4.5)

Proof If .i ∈ colL{j}, then .j ∈ rowL{i}, and Theorem 4.3 implies .j ∈ ancT {k} for
some k such that .aik = 0. That is, .i ∈ adjG{T (j)}. Conversely, .i ∈ adjG{T (j)}
implies that in row i the entry in column j of L is nonzero. Thus, .j ∈ rowL{i}, and
hence, .i ∈ colL{j}. ��

Algorithm 4.3 can be used to compute the column counts and the column sparsity
patterns because when j is added to .rowL{i} at line 8, i can be added to .colL{j}.
This does not generally obtain the column sparsity patterns sequentially. To derive
an approach that does compute them sequentially, rewrite (4.5) as follows:

.colL{j} =
⎛

⎝adjG(A){j}
⋃

{k | k∈T (j)\{j}}
colL{k}

⎞

⎠ \ {1, . . . , j}.

Using the column replication, this can be significantly simplified

.colL{j} =
⎛

⎝adjG(A){j}
⋃

{k | j=parent (k)}
colL{k}

⎞

⎠ \ {1, . . . , j}. (4.6)

This is used to obtain Algorithm 4.4, which constructs the sparsity pattern of each
column j of L as the union of the sparsity pattern of column j of A (.adjG(A){j}) and
the patterns of the children of j in .T (A). Here .child{j} denotes the set of children
of j . Because any child k of j satisfies .k < j , the j -th outer step has the information
needed to compute the sparsity pattern described by (4.6). Observe that .T (A) does
not need to be input.
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ALGORITHM 4.4 Determining the sparsity patterns of each column of L

Input: A with symmetric sparsity pattern and its undirected graph .G.
Output: Column sparsity patterns .colL{j} of the Cholesky factor L of A (.1 ≤ j ≤
n).

1: for j = 1 : n do � Loop over the columns of L

2: child{j} = ∅ � Initialisation
3: colL{j} = adjG{j} \ {1, . . . , j − 1}
4: for k ∈ child{j} do � Unifying child structures in (4.6)
5: colL{j} = colL{j} ∪ colL{k} \ {j}
6: end for
7: if colL{j} = ∅ then
8: l = min{i | i ∈ colL{j}}
9: child{l} = child{l} ∪ {j} � Parent of j detected using Corollary 4.6

10: end if
11: end for

4.4 Topological Orderings

The outer loop in Algorithm 4.4 does not have to be performed in the strict order .j =
1, . . . , n. What is necessary is that for each step j , the column sparsity pattern for
each child of j has already been computed. An ordering of the vertices in a tree (and,
more generally, in a DAG) is a topological ordering if, for all i and j , .j ∈ descT {i}
implies .j < i (Section 2.2). Observation 4.2 confirms that the ordering of vertices
in the elimination tree .T is a topological ordering. A new topological ordering of .T
defines a relabelling of its vertices corresponding to a symmetric permutation of A.
This is illustrated in Figure 4.7. The sparsity patterns of the Cholesky factors of A

and .PAP T can be different, but the following result shows that the amount of fill-in
is the same.

Theorem 4.9 (Liu 1990) Let .S{A} be symmetric. If P is the permutation matrix
corresponding to a topological ordering of the elimination tree .T of A, then the
filled graphs of A and .PAP T are isomorphic.

There are many topological orderings of .T . One class is obtained using the depth-
first search given by Algorithm 2.1. This searches all the components of .T starting
at their root vertices. In this case, once vertex i has been visited, all the vertices of
the subtree .T (i) are visited immediately after i and i is labelled as the last vertex of
.T (i). A topological ordering of .T is a postordering if the vertex set of any subtree
.T (i) (.i = 1, . . . , n) is a contiguous sublist of .1, . . . , n. Unless additional rules on
how vertices are selected are imposed, a postordering is generally not unique, as
demonstrated in Figure 4.8. One possible postordering is defined in Algorithm 2.1.
In this case, there is some freedom in the depth-first search to choose from the
vertices that have not been visited, resulting in different postorderings.
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Figure 4.8 An example to illustrate the non-uniqueness of postorderings of an elimination tree.

4.5 Leaf Vertices of Row Subtrees

Leaf vertices of row subtrees play a key role in graph algorithms related to sparse
Cholesky factorizations. They can be used to find the skeleton matrix described in
Section 4.3, and they are important in parallel processing based on fundamental
supernodes (see Section 4.6.1). Theorem 4.10 describes the relation between
standard subtrees of .T and row subtrees obtained by pruning (Section 4.2). This
pruning is determined by the leaf vertices of row subtrees.

Theorem 4.10 (Liu 1986) Let the elimination tree .T of A be postordered. Let the
column indices of the nonzeros in the strictly lower triangular part of row i of A be
.c1, . . . , cs with .s ≥ 1 and .0 < c1 < . . . < cs < i. Then .ct is a leaf vertex of the row
subtree .Tr (i) if and only if

.t = 1 or (1 < t ≤ s and ct−1 ∈ T (ct )).

Proof .c1 is always a leaf vertex of .Tr (i). If this is not the case, then there exists a
directed path from some vertex .k, k = c1 to i via .c1 such that .k ∈ Tr (i) and .aik = 0.
Postordering of .T implies .k < c1. This is a contradiction because .c1 is the index of
the first nonzero in row i.

Consider now .t > 1. Assume that .ct−1 ∈ T (ct ) and that .ct is a leaf vertex of
.Tr (i). Row replication (Theorem 4.2) implies any .k ∈ ancT {ct−1}∪{ct−1} such that
.ct−1 ≤ k < i satisfies .lik = 0. Because .T is postordered, .ct−1 ≤ k ≤ ct , and there
is at least one .k < ct satisfying this inequality. It follows that .k = ct−1. Because k

belongs to .Tr (i), .ct cannot be a leaf vertex of .Tr (i), which is a contradiction.
Conversely, assume for .t > 1 that .ct−1 ∈ T (ct ) and .ct is not a leaf vertex of

.Tr (i). From the second part of the assumption and the fact that .ct ∈ Tr (i), it follows
that there is at least one leaf vertex .k < i of .Tr (i) from which there is a directed
path to i via .ct . Thus .k < ct . From the definition of the postordering of .T , all
vertices l with .k < l ≤ ct are vertices of .T (ct ). Vertex .ct−1 must be among them
and .ct−1 ∈ T (ct ). This contradiction completes the proof. ��
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ALGORITHM 4.5 Find the sizes of subtrees .T (i) of .T
Input: Elimination tree .T described by the vector parent .
Output: Subtree sizes .|T (i)| (.1 ≤ i ≤ n).

1: |T (1 : n)| = 1
2: for i = 1 : n− 1 do
3: k = parent (i)

4: |T (k)| = |T (k)| + |T (i)|
5: end for

Corollary 4.11 (Liu 1986) Under the assumptions of Theorem 4.10, .ct is a leaf
vertex of .Tr (i) if and only if

.t = 1 or (1 < t ≤ s and ct−1 < ct − |T (ct )| + 1).

Subtree sizes can be computed using Algorithm 4.5. Correctness of Algo-
rithm 4.5 is guaranteed because parent defines a topological ordering of .T .

Theorem 4.12 relaxes the condition that the entries in the rows of A are sorted
by increasing column indices. This allows the leaf vertices of the row subtrees to be
determined by columns.

Theorem 4.12 (Liu et al. 1993) Consider the elimination tree .T of A. Vertex j is
a leaf vertex of some row subtree of .T if and only if there exists .i ∈ adjG(A){j},
.j < i ≤ n, such that .i ∈ adjG(A){k} for all .k ∈ T (j) \ {j}.
Proof Assume that for some .i ∈ ancT {j} vertex j is a leaf vertex of .Tr (i). That is,
.i ∈ adjG(A){j}, .i > j . Suppose there exists k in .T (j)\{j} such that .i ∈ adjG(A){k}.
Then all the ancestors of .k, k ≤ i, in particular j , belong to .Tr (i) and j cannot be a
leaf vertex of .Tr (i). This is a contradiction.

Conversely, assume that j is not a leaf vertex of any row subtree of .T and that
there exists .i ∈ adjG(A){j}, .j < i ≤ n, such that .i ∈ adjG(A){k} for all .k ∈
T (j) \ {j}. Because j is not a leaf vertex of any such .Tr (i), Theorem 4.3 implies
that there exists .k ∈ T (j) \ {j} such that .aik = 0, which gives a contradiction and
completes the proof. ��

To find leaf vertices of row subtrees of .T , Algorithm 4.6 uses a marking scheme
based on Theorem 4.12 and exploits the postordering of .T . The auxiliary vector
.prev_nonz stores the column indices of the most recently encountered entries in
the rows of the strictly lower triangular part of A.

4.6 Supernodes and the Assembly Tree

Because of column replication, the columns of L generally become denser as the
Cholesky factorization proceeds. Exploiting this density can significantly enhance
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ALGORITHM 4.6 Find leaf vertices of row subtrees of .T
Input: A with a symmetric sparsity pattern and a corresponding postordered
elimination tree .T .
Output: Logical vector isleaf with entries set to true for leaf vertices of row
subtrees.

1: isleaf (1 : n) = f alse, prev_nonz(1 : n) = 0
2: Compute |T (1 : n)| � Use Algorithm 4.5
3: for j = 1 : n do � Loop over the columns of A

4: for i such that i > j and aij = 0 do � Row index in strictly lower
triangular part of A

5: k = prev_nonz(i)� Column index of most recently seen entry in row i

6: if k < j − |T (j)| + 1 then
7: isleaf (j) = true � j is a leaf vertex by Corollary 4.11
8: end if
9: prev_nonz(i) = j � Flag j as the most recently seen entry in row i

10: end for
11: end for

the performance of the numerical factorization in terms of both computation time
and memory requirements. For this, we require the concept of supernodes. The idea
is to group together columns with the same sparsity structure, so that they can be
treated as a dense matrix for storage and computation. Let .1 ≤ s, t ≤ n with
.s + t − 1 ≤ n. A set of contiguously numbered columns of L with indices
.S = {s, s + 1, . . . , s + t − 1} is a supernode of L if

.colL{s} ∪ {s} = colL{s + t − 1} ∪ {s, . . . , s + t − 1}, (4.7)

and S cannot be extended for .s > 1 by adding .s − 1 or for .s + t − 1 < n by adding
.s + t . Because S cannot be extended, it is a maximal subset of column indices.
In graph terminology, a supernode is a maximal clique of contiguous vertices of
.G(L + LT ). A supernode may contain a single vertex. Figure 4.9 illustrates the
supernodes in a Cholesky factor of order 8.

The supernodal elimination or assembly tree is defined to be the reduction of
the elimination tree that contains only supernodes. Each vertex of the elimination
tree is associated with one elimination, and a single integer (the index of its parent)
is needed. Associated with each vertex of the assembly tree is an index list of the
row indices of the nonzeros in the columns of the supernode. These implicitly define
the sparsity pattern of L. An example that demonstrates the difference between the
elimination and assembly trees is given in Figure 4.10. Here the elimination tree is
postordered, and there are 5 supernodes: .{1, 2}, 3, 4, 5, .{6, 7, 8, 9}. For supernode 1
that comprises columns 1 and 2, the row index list is .{1, 2, 8, 9}.



68 4 Sparse Cholesky Solver: The Symbolic Phase

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 4.9 An example to illustrate supernodes in L. The first supernode comprises columns 1
and 2, the second columns 3 and 4, and the third columns 5–8.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗
7 ∗ ∗ f ∗ f ∗
8 ∗ ∗ ∗ ∗ ∗ f ∗ f
9 ∗ ∗ ∗ ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3 5

4 6

7

8

9

4; {5, 7, 8}

2; {3, 4, 8}

1; {1, 2, 8, 9}

3; {4, 7, 8}

5; {6, 7, 8, 9}

Figure 4.10 A sparse matrix and its postordered elimination tree (left) and postordered assembly
tree (right). Filled entries in .S{L + LT } are denoted by f . For the assembly tree, the vertices are
in red and the index lists associated with each vertex are given.

Supernodes can be characterized by the following result on the column counts
of L, from which we see that supernodes can be found using column counts rather
than the column sparsity patterns that appear in (4.7).

Theorem 4.13 (Liu et al. 1993) The set of columns of L with indices .S = {s, s +
1, . . . , s + t − 1} is a supernode of L if and only if it is a maximal set of contiguous
columns such that .s + i − 1 is a child of .s + i for .i = 1, . . . , t − 1 and

.| colL{s} | = | colL{s + t − 1} | + t − 1. (4.8)
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Proof Let S be a supernode. For .i, j ∈ S with .i > j , we have .i ∈ colL{j}. This
implies that in the postordered elimination tree the vertex .i = j + 1 is the parent of
j for .j = s, . . . , s + t − 2. Moreover, from Observation 4.2, for any .i, j ∈ S with
.i > j , .i ∈ colL{j} implies colL{j} \ {1, . . . , i} ⊆ colL{i}. Therefore,

.| colL{s + i} | ≥ | colL{s + i − 1} | − 1, i = 1, . . . , t − 1, (4.9)

with equality if and only if

.colL{s + i} = colL{s + i − 1} \ {s + i},

that is, if S is a supernode.
Conversely, assume S is a maximal set of contiguous columns such that, for

.i = 1, . . . , t − 1, .s + i − 1 is a child of .s + i and S satisfies (4.8). Because of
column replication, such a sequence of parent and child vertices must satisfy (4.9)
with equality if and only if (4.7) is satisfied. It follows that S is a supernode. ��

Supernodes enhance the efficiency of sparse factorizations and sparse triangular
solves because they enable floating-point operations to be performed on dense
submatrices rather than on individual nonzeros, thus improving memory hierarchy
utilization and allowing the use of highly efficient dense linear algebra kernels (such
as Level 3 BLAS kernels). Because the rows and columns of a supernode have
a common sparsity structure, this only needs to be stored once, reducing indirect
addressing. Supernodes help to increase the granularity of tasks, which is useful for
improving the computation to overhead ratio in a parallel implementation. Fill-in
results in supernodes near the root of the assembly tree often being much larger
than those close to the leaf vertices.

Observe that the columns within a supernode are numbered consecutively,
but they can be numbered within the supernode in any order without changing
the number of nonzeros in L (assuming the corresponding rows are permuted
symmetrically). On some architectures, particularly those using GPUs, this freedom
can be exploited to improve the factorization efficiency. Essentially, it is desirable
to order the columns within a supernode such that the entries of L form fewer but
less fragmented dense blocks.

Some applications, such as power grid analysis, in which the basis of the linear
system is not a finite element or finite difference discretization of a physical domain,
can lead to sparse matrices that incur very little fill-in during factorization. The
supernodes can then be very small, and the costs associated with identifying them
may not be offset by the increase in performance resulting from the potential for
block operations. However, as supernodes can offer such significant performance
gains, it can be advantageous to merge (small) supernodes that have similar (but
not exactly the same) nonzero patterns, despite this increasing the overall fill-in and
operation count. This process is termed supernode amalgamation, and the resultant
nodes are often referred to as relaxed supernode.
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4.6.1 Fundamental Supernodes

In practice, fundamental supernodes are easier to work with in the numerical
factorization. Let .1 ≤ s, t ≤ n with .s + t − 1 ≤ n. A maximal set of contiguously
numbered columns of L with indices .S = {s, s+1, . . . , s+ t−1} is a fundamental
supernode if for any successive pair .i−1 and i in the list, .i−1 is the only child of i

in .T and .colL{i} ∪ {i} = colL{i − 1}. s is termed the starting vertex. An example is
given in Figure 4.11. The difference between the sets of supernodes and fundamental
supernodes is normally not large, with the latter having (slightly) more blocks in the
resulting partitioning of L. Note that fundamental supernodes are independent of the
choice of the postordering of .T . Theorem 4.14 describes the relationship between
fundamental supernodes and the leaf vertices of row subtrees of .T . In particular, it
characterizes starting vertices of the fundamental supernodes. The leaf vertices of .T
are trivially starting vertices of fundamental supernodes. But, possibly surprisingly,
so too are the leaf vertices of row subtrees.

Theorem 4.14 (Liu et al. 1993) Assume .T is postordered. Vertex s is the starting
vertex of a fundamental supernode if and only if it has at least two child vertices in
.T or it is a leaf vertex of a row subtree of .T .

Proof If s has at least two child vertices then, from the definition of a fundamental
supernode, it must be the starting vertex of a fundamental supernode. Assume that,
for some .i > s, s is a leaf vertex of .Tr (i). If s is also a leaf vertex of .T , then s

is a starting vertex of a supernode. The remaining case is s having only one child.
Because .T is postordered, this child must be .s − 1. Theorem 4.3 then implies .ais =
0 and ai,s−1 = 0, that is, .i ∈ colL{s} and .i /∈ colL{s − 1}. It follows that

.S{Ls−1:n,s−1} � S{Ls:n,s} ∪ {s − 1},

and vertices s and .s − 1 cannot belong to the same supernode. Hence, s is the
starting vertex of a new fundamental supernode.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ f f
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f f
5 ∗ f ∗ f ∗ ∗
6 ∗ f ∗ f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

Figure 4.11 A matrix A and its postordered elimination tree .T for which the set of supernodes
.{1, 2} and .{3, 4, 5, 6} and the set of fundamental supernodes .{1, 2}, {3, 4} and .{5, 6} are different.
The filled entries in .S{L+ LT } are denoted by f .
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Conversely, assume that s is the starting vertex of a fundamental supernode S. If s

has no child vertices or at least two child vertices, the result follows. If s has exactly
one child vertex, postordering implies this child is .s − 1. Because S is maximal,
there exists i such that .i ∈ colL{s − 1} and i ∈ colL{s} (otherwise S could be
extended by adding .s − 1). Hence, s is a leaf vertex of .Tr (i). ��

Because fundamental supernodes are characterized by their starting vertices, they
can be found by modifying Algorithm 4.6 to incorporate marking leaf vertices of the
row subtrees and vertices with at least two child vertices. Once the elimination tree
has been computed, the complexity is .O(n+nz(A)). The computation can be made
even more efficient by using the skeleton graph .G(A−).

4.7 Notes and References

The excellent monographs by Tewarson (1973), George & Liu (1981), and Davis
(2006) represent milestones in the development of contemporary symbolic factor-
ization algorithms and their implementation. A complementary way to follow many
of the developments is by looking at the early software (and accompanying user
documentation), such as YSMP (Eisenstat et al., 1982) and SPARSPAK (George
& Ng, 1984). In addition, there are several influential survey articles focusing on
sparse Cholesky algorithms and emphasizing the crucial role of the elimination tree,
for example, Liu (1990), George (1998); see also Bollhöfer & Schenk (2006), Hogg
& Scott (2013a) and the more recent comprehensive survey of Davis et al. (2016).
The latter provides a general overview of much of the research related to sparse
direct methods and includes pointers to many specialized references.

There are a large number of journal articles that provide a fuller understanding
of the theory and algorithms employed in symbolic factorizations. Schreiber (1982)
defines the elimination tree of a sparse symmetric matrix. The seminal paper of Liu
(1986) describes elimination tree construction, while for an extensive overview of
the roles of elimination trees and topological orderings as well as the determination
of the column sparsity patterns of the factor L, we refer to Liu (1990). If only row
and column counts of L are needed, the fastest known algorithms are described in
Gilbert et al. (1994). This paper also refers to another admirable paper of Liu et al.
(1993) that describes the efficient computation of fundamental supernodes based on
the leaf vertices of row subtrees of the elimination tree.

A key driver behind research into efficient (in terms of time and memory)
sparse Cholesky algorithms has always been the development of computational
codes. Many currently available packages implement not only sparse Cholesky
factorizations but also more general LDLT factorizations of sparse symmetric
indefinite matrices. The software is necessarily highly sophisticated and is therefore
generally accompanied by technical reports and/or journal publications that explain
the data structures and choices that were made in the algorithm and software design
as well as providing details of the different options that are offered (examples
include Duff (2004), Reid & Scott (2009), Hogg et al. (2010)).
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Chapter 5
Sparse Cholesky Solver: The
Factorization Phase

The adoption of Cholesky’s method owes not a little to the
publicity given to it shortly after the end of World War II by
British mathematicians and computer pioneers, including Alan
Turing, Leslie Fox, Jim Wilkinson, and especially John Todd –
Benzi (2017).

Achieving high performance for sparse direct solvers in general,
and sparse Cholesky factorization, in particular, is a very well
researched topic – Rennich et al. (2016)

Having considered the symbolic phase of a sparse Cholesky solver in the previous
chapter, the focus of this chapter is the subsequent numerical factorization phase.
If A is a symmetric positive definite (SPD) matrix, then it is factorizable (strongly
regular) and (in exact arithmetic) its Cholesky factorization .A = LLT exists. LDLT
factorizations of general symmetric indefinite matrices are considered in Chapter 7.

5.1 Dense Cholesky Factorizations

Because efficient implementations of sparse Cholesky factorizations rely heavily on
exploiting dense blocks, we first consider algorithms for the Cholesky factorization
of dense matrices that can be applied to such blocks. Algorithm 5.1 is a basic left-
looking algorithm. It is an in-place algorithm because L can overwrite the lower
triangular part of A (thus reducing memory requirements if A is no longer required).

Writing A in the block form (1.2), the computation can be reorganized to give
Algorithm 5.2. This allows the exploitation of Level 3 BLAS for the computa-
tionally intensive components (dense matrix-matrix multiplies and dense triangular
solves). Here A has nb block columns, which are referred to as panels. Step 6 can
be performed using Algorithm 5.1.

Algorithms 5.1 and 5.2 are left-looking. This means that the updates are not
applied immediately. Instead, all updates from previous (block) columns are applied
together to the current (block) column before it is factorized. In a right-looking
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ALGORITHM 5.1 In-place dense left-looking Cholesky factorization
Input: Dense SPD matrix A.
Output: Factor L such that .A = LLT .

1: for j = 1 : n do
2: Lj :n,j = Aj :n,j � Only the lower triangular part of A is required
3: for k = 1 : j − 1 do
4: Lj :n,j = Lj :n,j −Lj :n,k ljk � Update column j using previous columns
5: end for
6: ljj = (ljj )

1/2 � Overwrite the diagonal entry with its square root
7: Lj+1:n,j = Lj+1:n,j / ljj � Scale off-diagonal entries in column j

8: end for

ALGORITHM 5.2 In-place dense left-looking panel Cholesky factorization
Input: Dense SPD matrix A in the form (1.2) with nb panels.
Output: Factor L such that .A = LLT .

1: for jb = 1 : nb do

2: Ljb:nb,jb = Ajb:nb,jb

3: for kb = 1 : jb − 1 do

4: Ljb:nb,jb = Ljb:nb,jb − Ljb:nb,kb LT
jb,kb � Update block column jb

5: end for

6: Compute in-place factorization of Ljb,jb � Overwrite Ljb,jb with its

Cholesky factor

7: Ljb+1:nb,jb = Ljb+1:nb,jb L−T
jb,jb � Dense triangular solve

8: end for

approach (Algorithm 5.3), outer product updates are applied to the part of the matrix
that has not yet been factored as they are generated.

The large panel updates can be split into operations involving only blocks. This
is shown in Algorithm 5.4 for the right-looking approach.

The panel and block descriptions of the factorization enable efficient
parallelization. The three main block operations, which are called tasks, are
factorize.(jb), solve.(ib, jb), and update.(ib, jb, kb). There are the following
dependencies between the tasks.

factorize.(jb) depends on update.(jb, kb, jb) for all. kb=1, . . . , jb − 1.
solve.(ib, jb) depends on update.(ib, kb, jb) for all . kb=1, . . . , jb − 1, and

factorize.(jb).
update.(ib, jb, kb) depends on solve.(ib, kb), solve.(jb, kb).
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ALGORITHM 5.3 In-place dense right-looking panel Cholesky factorization
Input: Dense SPD matrix A in the form (1.2) with nb panels.
Output: Factor L such that .A = LLT .

1: for jb = 1 : nb do

2: Ljb:nb,jb = Ajb:nb,jb

3: end for

4: for jb = 1 : nb do

5: Compute in-place factorization of Ljb,jb � Overwrite Ljb,jb with its

Cholesky factor

6: Ljb+1:nb,jb = Ljb+1:nb,jb L−T
jb,jb � Dense triangular solve

7: for kb = jb + 1 : nb do

8: Lkb:nb,kb = Lkb:nb,kb − Lkb:nb,jb LT
kb,jb

9: end for

10: end for

ALGORITHM 5.4 In-place dense right-looking block Cholesky factorization
Input: Dense SPD matrix A in the form (1.2) with .nb × nb blocks.
Output: Factor L such that .A = LLT .

1: for jb = 1 : nb do

2: Ljb:nb,jb = Ajb:nb,jb

3: end for

4: for jb = 1 : nb do

5: Compute in-place factorization of Ljb,jb � Task factorize(jb)

6: for ib = jb + 1 : nb do

7: Lib,jb = Lib,jb L−T
jb,jb � Task solve(ib, jb)

8: for kb = jb + 1 : ib do

9: Lib,kb = Lib,kb − Lib,jb LT
kb,jb � Task update(ib, jb, kb)

10: end for

11: end for

12: end for

A dependency graph can be used to schedule the tasks. Its vertices correspond to
tasks and dependencies between tasks are represented as directed edges. The result
is a directed acyclic graph (DAG). A task is ready for execution if and only if all
tasks with incoming edges to it have completed. DAG-driven linear algebra uses
either a static or dynamic schedule based on these graphs to implement the tasks
in a parallel environment. In practice, it is not necessary to explicitly compute the
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task DAG: it can be constructed on-the-fly taking into account the dependencies.
The task DAG allows a lot of flexibility in the order in which tasks are carried out:
the left- and right-looking approaches correspond to particular restricted orderings
of the tasks.

5.2 Introduction to Sparse Cholesky Factorizations

There are several classes of algorithms that implement sparse Cholesky factor-
izations. Their major differences relate to how they schedule the computations.
This affects the use of dense kernels, the amount of memory required during the
factorization as well as the potential for parallel implementations. As in the dense
case, the factorization is split into tasks that involve computations on and between
dense submatrices and the precedence relations among them can be captured by a
task graph.

We start by extending the dense Cholesky factorizations to the sparse case
in a straightforward way. In practice, it is essential for efficiency to exploit the
supervariables of A and the supernodes of L. Thus, while for simplicity of the
descriptions and notation, we refer to rows and columns of A and L, these typically
represent block rows and block columns and, as in the above discussion of the dense
block factorization algorithm, the entries of A and L are then submatrices.

The entries of L satisfy the relationship

.Lj+1:n,j =
⎛

⎝Aj+1:n,j −
j−1
∑

k=1

Lj+1:n,kljk

⎞

⎠ /ljj with ljj =
⎛

⎝ajj −
j−1
∑

k=1

l2
jk

⎞

⎠

1/2

,

and from this we deduce the following result.

Theorem 5.1 (Liu 1990) The numerical values of the entries in column .j > k of
L depend on the numerical values in column k of L if and only if .ljk = 0.

The theoretical background of the previous chapter based on the elimination
tree .T enables the dependencies in Theorem 5.1 to be searched for efficiently. In
particular, .T allows the row (or column) counts of L to be computed and they can
be used to allocate storage for L. It can also be used to find supernodes and the
resulting (block) elimination tree can then be employed to determine the (block)
column structure of L. In practice, it can be beneficial to split large supernodes into
smaller panels to better conform to computer caches.

Algorithms 5.5 and 5.6 are simplified sparse left- and right-looking Cholesky
factorization algorithms that are straightforward sparse variants of Algorithms 5.1
and 5.4, respectively (the latter with .nb = n, that is, without considering blocks).
Here, we assume that the sparsity pattern of L has already been determined in
the symbolic phase and static storage formats based, for example, on compressed
columns and/or rows are used.



5.2 Introduction to Sparse Cholesky Factorizations 77

ALGORITHM 5.5 Simplified sparse left-looking Cholesky factorization
Input: SPD matrix A and sparsity pattern .S{L}.
Output: Factor L such that .A = LLT .

1: lij = aij for all (i, j) ∈ S{L} � Filled entries in L are initialised to zero
2: for j = 1 : n do
3: for k ∈ {k < j | ljk = 0} do
4: for i ∈ {i ≥ j | lik = 0} do
5: lij = lij − likljk

6: end for
7: end for
8: ljj = (ljj )

1/2

9: for i ∈ {i > j | lij = 0} do
10: lij = lij / ljj

11: end for
12: end for

ALGORITHM 5.6 Simplified sparse right-looking Cholesky factorization
Input: SPD matrix A and sparsity pattern .S{L}.
Output: Factor L such that .A = LLT .

1: lij = aij for all (i, j) ∈ S{L} � Filled entries in L are initialised to zero
2: for j = 1 : n do
3: ljj = (ljj )

1/2

4: for i ∈ {i > j | lij = 0} do
5: lij = lij / ljj

6: end for
7: for k ∈ {k > j | lkj = 0} do
8: for i ∈ {i ≥ k | lij = 0} do
9: lik = lik − lij lkj

10: end for
11: end for
12: end for

An alternative for sparse matrices held in row-wise format is to compute L one
row at a time. This is sometimes called an up-looking factorization because rows
1 to .i − 1 are employed to compute row i (.i > 1). The approach is asymptotically
optimal in the work performed and for highly sparse matrices it is potentially
extremely efficient because the entries of A are used in the natural order in which
they are stored. However, it is difficult to incorporate high level BLAS.
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The following relation holds for the i-th row of L

.LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i with l2
ii = aii − Li,1:i−1L

T
i,1:i−1.

The application of .L−1
1:i−1,1:i−1 can be implemented by solving the triangular system

.L1:i−1,1:i−1y = A 1:i−1,i ,

and setting .LT
i,1:i−1 = y. The following result can be used to determine the sparsity

pattern of y.

Theorem 5.2 (Gilbert 1994) Consider a sparse lower triangular matrix L and the
DAG .G(LT ) with vertex set .{1, 2, . . . , n} and edge set .{(j −→ i) | lij = 0}. The
sparsity pattern .S{y} of the solution y of the system .Ly = b is the set of all vertices
reachable in .G(LT ) from .S{b}.
Proof From Algorithm 3.4 and assuming the non-cancellation assumption, we see
that (a) if .bi = 0, then .yi = 0 and (b) if for some .j < i, .yj = 0 and .lij = 0, then
.yi = 0. These two conditions can be expressed as a graph transversal problem in
.G(LT ). (a) adds all vertices in .S{b} to the set of visited vertices and (b) states that
if vertex j has been visited, then all its neighbours in .G(LT ) are added to the set of
visited vertices. Thus .S{y} = Reach(S{b}) ∪ S{b}. ��

Figure 5.1 illustrates the sparsity patterns of a lower triangular matrix L and
vector b together with .G(LT ). The vertices that are reachable from .S{b} = {2, 4}
are 5 and 6 and thus .S{y} = {2, 4, 5, 6}.

Algorithm 5.7 outlines a sparse row Cholesky factorization that is based on the
repeated solution of triangular linear systems. Theorem 5.2 can be used to determine
the sparsity pattern of row i at Step 3, that is, by finding all the vertices that are
reachable in .G(LT

1:j−1,1:j−1) from the set .{i | aij = 0, i < j}. A depth-first search

L =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗
2 ∗ ∗
3 ∗
4 ∗ ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

b =

⎛
⎜⎜⎜⎜⎜⎝

1

1

2 ∗
3

4 ∗
5

6

⎞
⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

Figure 5.1 An example to illustrate L, b and .G(LT ).



5.3 Supernodal Sparse Cholesky Factorizations 79

ALGORITHM 5.7 Sparse up-looking Cholesky factorization
Input: SPD matrix A.
Output: Factor L such that .A = LLT .

1: l11 = (a11)
1/2

2: for i = 2 : n do

3: Find S{Li,1:i−1} � Sparsity pattern of row i

4: LT
i,1:i−1 = L−1

1:i−1,1:i−1A 1:i−1,i � Sparse triangular solve

5: lii = aii − Li,1:i−1L
T
i,1:i−1

6: lii = (lii )
1/2

7: end for

of .G(LT
1:j−1,1:j−1) determines the vertices in the row sparsity patterns in topological

order, and performing the numerical solves in that order correctly preserves the
numerical dependencies. Alternatively, because nonzeros of .Li,1:i−1 correspond to
the vertices in the i-th row subtree .Tr (i) that are not equal to i, another option is to
find the row subtrees using .T (A).

5.3 Supernodal Sparse Cholesky Factorizations

The simplified schemes form the basis of sophisticated supernodal algorithms that
are designed to be efficient in parallel computational environments. Consider the
right-looking variant and recall that a supernode consists of one or more consecutive
columns of L with the same sparsity pattern. These nonzeros are stored as a dense
trapezoidal matrix (only the lower triangular part of the block on the diagonal needs
to be stored and the rows of zeros in the columns of the supernode are not held).
This is termed a nodal matrix (see Figure 5.2).

Once a supernode is ready to be factorized, a dense Cholesky factorization of the
block on the diagonal of the nodal matrix is performed (one of the approaches of
Section 5.1 can be used). Then a triangular solve is performed with the computed
factor and the rectangular part of the nodal matrix. The next step is to iterate over
ancestors of the supernode in the assembly tree. For each parent, the rows of the
current supernode corresponding to the parent’s columns are identified, and then
the outer product of those rows and the part of the supernode below those columns
formed (update operations). The resulting matrix can be held in a temporary buffer.
The rows and columns of this buffer are matched against indices of the ancestors
and are added to them in a sparse scatter operation. For efficiency, the updates may
use panels so that the temporary buffer remains in cache.
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Figure 5.2 An illustration of a supernode (left), the corresponding nodal matrix (centre), and the
nodal matrix with two panels (right). The shaded lower triangular part of the block on the diagonal
and the shaded block rows are treated as dense.

5.3.1 DAG-Based Approach

The DAG-based approach can also be extended to the sparse case. Each nodal matrix
is subdivided into blocks. The factorization is split into tasks in which a single block
is revised. The key difference compared to the dense case is that it is necessary to
distinguish between two types of update operations: update_internal performs the
update between blocks in the same nodal matrix and update_between performs
the update when the blocks belong to different nodal matrices. Thus the sparse
Cholesky factorization is split into the following tasks; the first two are illustrated
in Figure 5.3. In this example, the nodal matrix has two block columns that do not
contain the same number of columns.

factorize_block(.Ldiag) Computes the dense Cholesky factor .Ldiag of the block
on the diagonal (leftmost plot). If the block is trapezoidal, the factorization is
followed by a triangular solve of its rectangular part .Lrect = LrectL

−T
diag (centre

plot).
solve_block(.Ldest ) Performs a triangular solve of an off-diagonal block .Ldest of

the form .Ldest = LdestL
−T
diag (rightmost plot).

update_internal(.Ldest , .Lr , .Lc) Performs the update .Ldest = Ldest − LrL
T
c ,

where .Ldest , .Lr and .Lc belong to the same nodal matrix.
update_between(.Ldest , .Lr , .Lc) Performs the update .Ldest = Ldest − LrL

T
c ,

where .Lr and .Lc belong to the same nodal matrix and .Ldest belongs to a different
nodal matrix.

Again, the tasks are partially ordered and a task DAG is used to capture the
dependencies. For example, the updating of a block of a nodal matrix from a block
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Ldiag

Ldiag

Lrect

Ldiag

Ldest

Figure 5.3 An illustration of a blocked nodal matrix with two block columns. The first block on
the diagonal is triangular and the second one is trapezoidal. The task factorize_block is illustrated
on the left and in the centre; the task solve_block is illustrated on the right.

column of L that is associated with a descendant of the supernode has to wait
until all the relevant rows of the block column are available. At each stage of the
factorization, tasks will be executing (in parallel) while others are held (in a stack
or pool of tasks) ready for execution.

5.4 Multifrontal Method

The multifrontal method is an alternative way to compute a sparse Cholesky
factorization. To discuss this popular approach, we use the following result that
determines which rows and columns influence particular Schur complements using
the terminology of the elimination tree.

Theorem 5.3 (Liu 1990) Let A be SPD and let .T be its elimination tree. The
numerical values of entries in column k of the Cholesky factor L of A only affect the
numerical values of entries in column i of L for .i ∈ ancT {k} (.1 ≤ k < i ≤ n− 1).

Proof From (4.1), setting .S(1) = A, for .k ≥ 2 the .(n− k + 1)× (n− k + 1) Schur
complement .S(k) can be expressed as

.S(k) = S
(k−1)
k:n,k:n −

⎛

⎜

⎝

lk,k−1
...

ln,k−1

⎞

⎟

⎠

(

lk,k−1 . . . ln,k−1
) = S

(k−1)
k:n,k:n − Lk:n,k−1L

T
k:n,k−1.

(5.1)
Theorem 4.2 implies that all nonzero off-diagonal entries .lik in column k of L

explicitly used in the update (5.1) are such that .i ∈ ancT {k}. Considering the
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Cholesky factorization as a sequence of Schur complement updates, only columns i

with .i ∈ ancT {k} can be influenced numerically by the Schur complement update
in the k-th step of the factorization, and the result follows. ��

The computation of subsequent Schur complements by adding individual updates
as in (5.1) is straightforward; the multifrontal method employs further modifications
and enhancements of this basic concept. First, because the vertices of .T are
topologically ordered, the order in which the updates are applied progresses up the
tree from the leaf vertices to the root vertex. This allows the computation of .S(k) to
be rewritten as

.S(k) = Ak:n,k:n −
∑

j∈T (k)\{k}
Lk:n,jL

T
k:n,j ,

emphasizing the role of .T . In place of Schur complements, the multifrontal method
uses frontal matrices connected to subtrees of .T . Assume .k, k1, . . . , kr are the row
indices of the nonzeros in column k of L. The frontal matrix .Fk of the k-th subtree
.T (k) of .T is the dense .(r + 1)× (r + 1) matrix defined by

.Fk =

⎛

⎜

⎜

⎜

⎝

akk akk1 . . . akkr

ak1k 0 . . . 0
...

...
. . .

...

akr k 0 . . . 0

⎞

⎟

⎟

⎟

⎠

−
∑

j∈T (k)\{k}

⎛

⎜

⎜

⎜

⎝

lkj

lk1j

...

lkr j

⎞

⎟

⎟

⎟

⎠

(

lkj lk1j . . . lkr j

)

. (5.2)

One step of the Cholesky factorization of .Fk can be written as

.Fk =

⎛

⎜

⎜

⎜

⎝

lkk 0 . . . 0
lk1k

... I

lkr k

⎞

⎟

⎟

⎟

⎠

⎛

⎝

1

Vk

⎞

⎠

⎛

⎜

⎜

⎜

⎝

lkk lk1k . . . lkr k

0
... I

0

⎞

⎟

⎟

⎟

⎠

. (5.3)

=

⎛

⎜

⎜

⎜

⎝

lkk

lk1k

...

lkr k

⎞

⎟

⎟

⎟

⎠

(

lkk lk1k . . . lkr k

)+
⎛

⎝

0

Vk

⎞

⎠ , (5.4)

where .Vk is termed a generated element (it is also sometimes called an update
matrix or a contribution block). The name “generated element” is because the
multifrontal method has its origins in the simpler frontal method, which uses a
single frontal matrix. The frontal method was originally proposed for problems
arising in finite element problems to avoid the need to explicitly construct the system
matrix A; it was later generalized to non-element problems. It works with a single
frontal matrix and has less scope for parallelisation compared to the multifrontal
method; it is no longer widely used.
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Equating the last r rows and columns in (5.2) and (5.4) yields

.Vk = −
∑

j∈T (k)

⎛

⎜

⎝

lk1j

...

lkr j

⎞

⎟

⎠

(

lk1j . . . lkr j

)

. (5.5)

Assume that .cj (.j = 1, . . . , s) are the children of k in .T . The set .T (k) \ {k} is
the union of disjoint sets of vertices in the subtrees .T (cj ). Each of these subtrees
is represented in the overall update by the generated element (5.5). Thus, .Fk can
be written in an recursive form using the generated elements of the children of k as
follows

.Fk =

⎛

⎜

⎜

⎜

⎝

akk akk1 . . . akkr

ak1k 0 . . . 0
...

...
. . .

...

akrk 0 . . . 0

⎞

⎟

⎟

⎟

⎠

←→�� Vc1 ←→
�

� . . .←→�� Vcs . (5.6)

Here, the operation .←→�� denotes the addition of matrices that have row and column
indices belonging to subsets of the same set of indices (in this case, .k, k1, . . . , kr );
entries that have the same row and column indices are summed. This is referred to
as the extend-add operator.

Adding a row and column of A and the generated elements into a frontal matrix
is called the assembly. A variable is fully summed if it is not involved in any rows
and columns of A that have still to be assembled or in a generated element. Once
a variable is fully summed, it can be eliminated. A key feature of the multifrontal
method is that the frontal matrices and the generated elements are compressed and
stored without zero rows and columns as small dense matrices. Integer arrays are
used to maintain a mapping of the local contiguous indices of the frontal matrices
to the global indices of A and its factors. Symmetry allows only the lower triangular
part of these matrices to be held. Algorithm 5.8 outlines the basic multifrontal
method.

ALGORITHM 5.8 Basic multifrontal Cholesky factorization
Input: SPD matrix A and its elimination tree.
Output: Factor L such that .A = LLT .

1: for k = 1 : n do
2: Assemble the frontal matrix Fk using (5.6) � Only the lower triangle is

needed
3: Perform a partial Cholesky factorization of Fk using (5.3) to obtain column

k of L and the generated element Vk

4: end for
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ALGORITHM 5.9 Multifrontal Cholesky factorization using the assembly tree
Input: SPD matrix A and its assembly tree.
Output: Factor L such that .A = LLT .

1: nelim = 0 � nelim is the number of eliminations performed
2: for kb = 1 : nsup do � nsup is the number of supernodes
3: Assemble the frontal matrix Fkb; let l be the number of fully summed

variables in Fkb

4: Perform a block partial Cholesky factorization of Fkb to obtain columns
nelim+ 1 to nelim+ l of L and the generated element Vkb

5: nelim = nelim+ l

6: end for

We have the following observation.

Observation 5.1 Each generated element .Vk is used only once to contribute to a
frontal matrix .Fparent (k). Furthermore, the index list for the frontal matrix .Fk is the
set of row indices of the nonzeros in column k of the Cholesky factor L.

In practical implementations, efficiency is improved by using the assembly tree
(Section 4.6) because it allows more than one elimination to be performed at once.
This is outlined in Algorithm 5.9. Here kb is used to index the frontal matrix on the
kb-th step (.1 ≤ kb ≤ nsup).

As an example, consider the matrix and its assembly tree given in Figure 4.10.
The .nsup = 5 supernodes are .{1, 2}, 3, 4, 5, {6, 7, 8, 9} and so variables 1 and 2 can
be eliminated together on the first step. Assembling rows/columns 1 and 2 of the
original matrix, the frontal matrix .F1 and generated element .V1 have the structure

F1 =

⎛

⎜

⎜

⎝

1 2 8 9

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗
8 ∗ ∗
9 ∗ ∗

⎞

⎟

⎟

⎠

, V1 =
(

8 9

8 f f

9 f f

)

,

where f denotes fill-in entries (only the lower triangular entries are stored in
practice). Similarly,

F2 =
⎛

⎝

3 4 8

3 ∗ ∗ ∗
4 ∗ ∗ ∗
8 ∗ ∗ ∗

⎞

⎠, V2 =
(

4 8

4 ∗ ∗
8 ∗ ∗

)

.

The frontal matrix .F3 and generated element .V3 are given by
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F3 =
⎛

⎝

4 7 8

4 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

⎞

⎠←→�� V2, V3 =
(

7 8

7 ∗ f

8 f ∗
)

.

Then

F4 =
⎛

⎝

5 7 8

5 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗

⎞

⎠, V4 =
(

7 8

7 ∗ f

8 f ∗
)

,

and, finally, with .kb = 5 we have

F5 =

⎛

⎜

⎜

⎝

6 7 8 9

6 ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗
9 ∗ ∗ ∗

⎞

⎟

⎟

⎠

←→�� V4 ←→
�

� V3 ←→
�

� V1.

An important implementation detail is how and where to store the generated
elements. The partial factorization of .Fkb at supernode kb can be performed once
the partial factorizations at all the vertices belonging to the subtree of the assembly
tree with root vertex kb are complete. If the vertices of the assembly tree are ordered
using a depth-first search, the generated elements required at each stage are the
most recently computed ones amongst those that have not yet been assembled. This
makes it convenient to use a stack. This affects the order in which the variables are
eliminated but in exact arithmetic, the results are identical.

Nevertheless, the memory demands of the multifrontal method can be very large.
Not only is it dependent on the initial ordering of A but the ordering of the children
of a vertex in the assembly tree can significantly affect the required stack size. Some
implementations target limiting stack storage requirements. An attractive feature of
the multifrontal method is that the generated elements can be held using auxiliary
storage (in files on disk) to restrict the in-core memory requirements, allowing larger
problems to be solved than would otherwise be possible.

5.5 Parallelism Within Sparse Cholesky Factorizations

Sparse Cholesky factorizations use supernodes and task graphs (the assembly tree
for the multifrontal method) to control the computation. The number of rows and
columns in a supernode typically increases away from the leaf vertices and towards
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the root of the task graph because a supernode accumulates fill-in from its ancestors
in the task graph. As a result, tasks that are relatively close to the root tend to
have more work associated with them. On the other hand, the width of the task
graph shrinks close to the root. In other words, a typical task graph for sparse
matrix factorization tends to have a large number of small independent tasks close
to the leaf vertices, but a small number of large tasks close to the root. An ideal
parallelization strategy that would match the characteristics of the problem is as
follows. Initially, assign the relatively plentiful independent tasks at or near the leaf
vertices to parallel threads or processes. This is called task or tree level parallelism;
it is influenced by the ordering of A. As tasks complete, other tasks become available
and are scheduled similarly. This continues while there are enough independent
tasks to keep all the threads or processes busy. When the number of available parallel
tasks becomes too small, the only way to keep the latter busy is to assign more
than one to a task. This is termed node level parallelism. The number of threads
or processes working on individual tasks should increase as the number of parallel
tasks decreases. Eventually, all threads or processes are available to work on the
root task. The computation corresponding to the root task is equivalent to factoring
a dense matrix of the size of the root supernode.

The multifrontal method is often the formulation of choice for highly parallel
implementations of sparse matrix factorizations. This is because of its natural data
locality (most of the work of the factorization is performed in the dense frontal
matrices) and the ease of synchronization that it permits. In general, each supernode
is updated by multiple other supernodes and it can potentially update many other
supernodes during the course of the factorization. If implemented naively, all these
updates may require excessive locking and synchronization in a shared-memory
environment or generate excessive message-traffic in a distributed environment. In
the multifrontal method, the updates are accumulated and channelled along the paths
from the leaf vertices of the assembly tree to its root vertex. This gives a manageable
structure to the potentially haphazard interaction among the tasks.

In Section 1.2.4, bit compatibility was discussed. While different orderings of the
children of a vertex in the assembly tree do not affect the total number of floating-
point operations that are performed in the multifrontal method, in finite-precision
arithmetic changing the order of the assemblies into the frontal matrices can lead to
slightly different results. Given that the number of children is typically small and
that large matrices can be partitioned such that summations can be safely performed
in parallel, the overhead in the multifrontal method of enforcing a defined order of
the summation is relatively small. By contrast, in the supernodal approach, for each
data block a number of matrices equal to the block dependencies are summed. Given
the relatively large numbers (several thousand) for many nodes, an enforced order
may be detrimental to efficiency.
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5.6 Notes and References

Exploiting panels and blocks in both left- and right-looking Cholesky factorization
algorithms is extremely important. The development of sparse supernodal factor-
izations for uniprocessors and multiprocessors in the 1990s is discussed by Ng
& Peyton (1993a,b); Rothberg & Gupta (1993) presents an early comparison of
various types of block Cholesky factorizations. PaStiX of Hénon et al. (2002) is a
parallel left-looking supernodal solver that is primarily designed for positive definite
systems. Rotkin & Toledo (2004) introduce a hybrid left-looking/right-looking
algorithm and Rozin & Toledo (2005) show that no sparse numerical factorization is
uniformly better than the others. An up-looking approach, which is fast in practice
for very sparse matrices, is employed in the widely used CHOLMOD solver of Chen
et al. (2008). The package HSL_MA87 implements a sparse DAG-based Cholesky
factorization for shared-memory architectures; further details of the approach can
be found in Hogg et al. (2010).

The multifrontal algorithm has its origins in the simpler frontal method of Irons
(1970), which was developed by the civil engineering community from the 1960s
onwards to solve the linear systems that arise within finite element methods. At a
time when the main memory of even the most powerful computers was extremely
limited, the frontal method was heavily influenced by the need to minimize the
memory requirements of the linear solver. It was initially designed for SPD banded
linear systems and was subsequently extended to nonsymmetric problems by Hood
(1976) and to the symmetric indefinite case by Reid (1981); Duff (1984) generalizes
the approach to non-element problems. The frontal method proceeds by alternating
the assembly of the finite elements into a single dense frontal matrix with the
elimination and update of variables. Once variables have been eliminated they are
no longer needed during the factorization and so they are removed from the frontal
matrix and stored elsewhere (for example, not in main memory but on an external
disk) until needed during the solve phase. This frees up space to accommodate the
next element to be assembled. Because the frontal method does not use the assembly
tree, the frontal matrix can be much larger than those in the multifrontal method,
leading to higher operation counts but also allowing the use of BLAS with larger
block sizes. Efficient implementations were developed up until the late 1990s. For
example, by Duff & Scott (1996, 1999), who provide a package MA62 for SPD
problems in element form that employs a single array of length n, exploits Level 3
BLAS, and holds the computed factors on disk; a coarse-grained parallel version is
also available, see Duff & Scott (1994) and Scott (2001).

The frontal method and the work of Speelpenning (1978) on the so-called
generalized element method led to the development by Duff & Reid (1983) of the
multifrontal method for solving general symmetric systems (including systems in
element form). A detailed matrix-based explanation is given in Liu (1992). The
method is implemented in some of the most important sparse direct solvers. The
MUMPS (2022) package, which has been actively developed over many years,
provides a state-of-the-art distributed memory general-purpose multifrontal solver
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that uses shared-memory parallelism within each MPI process. Other important
parallel multifrontal solvers are HSL_MA97 (Hogg & Scott, 2013b) and WSMP
(2020), while the serial package MA57 of Duff (2004) (which superseded the
original and perhaps most well-known multifrontal solver MA27 of Duff & Reid,
(1983)) remains very popular. An attractive feature of HSL_MA97 is that it
computes bit-compatible solutions. HSL_MA77 of Reid & Scott (2009) is designed
to minimize memory requirements by allowing the factors and the multifrontal stack
to be efficiently held outside of main memory (an option that is also offered by
MUMPS). In common with earlier frontal solvers, HSL_MA77 allows the user to
input the system matrix in element form (that is, A is not explicitly assembled
for problems coming from finite element applications but is input one element at
a time).

The use of GPUs is well-suited to a multifrontal or supernodal factorization
because these approaches rely on regular block computations within dense subma-
trices. Implementing the multifrontal method (including for symmetric indefinite
matrices) on GPU architectures is discussed in Hogg et al. (2016), while Lacoste
et al. (2012) and Rennich et al. (2016) present GPU-accelerated supernodal
factorizations. Discussion of the use of GPUs within direct solvers is included in
the comprehensive survey of Davis et al. (2016).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 6
Sparse LU Factorizations

The closer one looks, the more subtle and remarkable Gaussian
elimination appears – Trefethen (1985)

Gaussian elimination is living mathematics. It has mutated
successfully for the last two hundred years to meet changing
social needs – Grcar (2011)

This chapter considers the LU factorization of a general nonsymmetric nonsingular
sparse matrix A. In practice, numerical pivoting for stability and/or ordering of A to
limit fill-in in the factors is often needed and the computed factorization is then of a
permuted matrix PAQ. Pivoting is discussed in Chapter 7 and ordering algorithms
in Chapter 8.

6.1 Sparse LU Factorizations and Their Graph Models

In Chapter 4, graphs were used to describe structural changes during a sparse
Cholesky factorization. In particular, the elimination tree was shown to play a key
role and, in the previous chapter, the use of DAGs was discussed. For general
matrices, there are a number of ways that graphs can be employed.

6.1.1 Use of Elimination DAGs

The first graph model uses the elimination DAGs associated with L and U that were
defined in (2.1)–(2.2). The following observation, which is illustrated in Figure 6.1,
generalizes Observation 4.1 to nonsymmetric matrices.

Observation 6.1 If i > j and uji = 0, then the column replication principle
states
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ ∗
4 ∗ f ∗
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ ∗ ∗
3 ∗ f ∗ f ∗ f
4 ∗ f f ∗ f
5 ∗ ∗
6 ∗ ∗ ∗ ∗
7 ∗ f f f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 6.1 An illustration of the column and row replication principles of sparse LU factoriza-
tions. The matrix A is on the left. In the centre, we show in red the filled entries in L resulting
from the replication of the first column in the second column because u12 = 0. On the right, we
show in blue the filled entries in U resulting from the replication of the second row in the third
row because l32 = 0. Other filled entries resulting from subsequent steps of the factorization are
denoted in black.

.S{Li:n,j } ⊆ S{Li:n,i},

that is, the pattern of column j of L (rows i to n) is replicated in the pattern of
column i of L. Analogously, if i > j and lij = 0, then the row replication principle
states

.S{Uj,i:n} ⊆ S{Ui,i:n},

that is, the pattern of row j of U (columns i to n) is replicated in the pattern of row
i of U .

Algorithm 6.1 outlines a basic sparse LU factorization. Here it is assumed that A

is factorizable so that pivoting is not needed. The remainder of this chapter looks at
techniques that can be used to develop the approach into an efficient one.

The following theorem formulates the recursive column replication and the
replication of nonzeros along rows of L using directed paths in G(U); an analogous
result holds for the rows of U and directed paths in G(LT ).

Theorem 6.1 (Gilbert & Liu 1993) Assume that for some k < j there is a directed

path k
G(U)���⇒ j . Then

.S{Lj :n,k} ⊆ S{Lj :n,j }. (6.1)

Moreover, if lik = 0 for some i > j , then lis = 0 for all vertices s on this path.

The next two theorems generalize Theorem 4.3 to A being a general nonsymmetric
matrix.

Theorem 6.2 (Gilbert & Liu 1993) If aij = 0 and i > j , then there is a filled
entry lij = 0 if and only if there exists k < j such that aik = 0 and there is a

directed path k
G(U)���⇒ j .
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ALGORITHM 6.1 Basic sparse LU factorization
Input: Nonsymmetric and factorizable matrix A = LA +DA + UA.
Output: LU factorization A = LU .

1: L = I + LA � Identity plus strictly lower triangular part of A

2: U = DA + UA � Diagonal plus strictly upper triangular part of A

3: for k = 1 : n− 1 do
4: for i ∈ {i > k | lik = 0} do
5: lik = lik/ukk

6: Ui,i:n = Ui,i:n − Uk,i:nlik � Update row i of U

7: end for
8: for j ∈ {j > k | ukj = 0} do
9: Lj+1:n,j = Lj+1:n,j − Lj+1:n,kukj � Update column j of L

10: end for
11: end for

Theorem 6.3 (Gilbert & Liu 1993) If aij = 0 and i < j , then there is a filled
entry uij = 0 if and only if there exists k < i such that akj = 0 and there is a

directed path k
G(LT )���⇒ i.

Theorems 6.2 and 6.3 are demonstrated in Figure 6.2. Consider the directed path
1 → 3 → 5 → 6 in G(U). Existence of this path implies the fill-in in L, first in

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗
7 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

7 1 21 2 3 4 5 6 3 4 5 6 7

1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ f
5 ∗ ∗ f f ∗ ∗ f
6 ∗ f ∗ ∗ f
7 ∗ f f f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

7

1
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3

4
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6
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7

Figure 6.2 The sparsity patterns of A (left) and L+U (right) together with the graphs G(A) (left),
G(LT ) (centre) and G(U) (right). The filled entries are denoted by f and the corresponding edges
are the red dashed lines.
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1
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4

2 3
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4

2 3

1

5

4

2 3

Figure 6.3 Example to show the transitive reduction of a DAG. G is on the left, its transitive
reduction G0 is in the centre, and one possible G′ that is equireachable with G is on the right.

column 3, then in columns 5 and 6. Similarly, the directed path 2 → 4 → 5 → 6 in
G(LT ) implies fill-in at positions (4, 7), (5, 7) and (6, 7) in U .

6.1.2 Transitive Reduction and Equireachability

To employ G(LT ) and G(U) in efficient algorithms, they need to be simplified. One
possibility is to use transitive reductions that are sparser and preserve reachability
within the graphs. A subgraph G0 = (V, E0) is a transitive reduction of G =
(V, E) if the following conditions hold:

(T 1) there is a path from vertex i to vertex j in G if and only if there is a path from
i to j in G0 (reachability condition), and

(T 2) there is no subgraph with vertex set V that satisfies (T 1) and has fewer edges
(minimality condition).

A transitive reduction is unique for a DAG, as shown in the following theorem and
illustrated in Figure 6.3.

Theorem 6.4 (Aho et al. 1972) Let G be a DAG. The transitive reduction G0 of G
is unique and is the subgraph that has an edge for every path in G and has no proper
subgraph with this property.

If S{A} is symmetric, then, as illustrated in Figure 6.4, the role of the transitive
reduction is played by the elimination tree.

Theorem 6.5 (Liu 1990; Eisenstat & Liu 2005a) IfA is symmetrically structured,
then the transitive reduction of the DAG G(LT ) (= G(U)) is the elimination tree
T (A).

Obtaining the exact transitive reduction of a DAG can be expensive. Instead,
approximate reductions that drop the minimality condition may be computed. A
directed graph G′ with the same vertex set as G that satisfies condition (T 1) is said
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⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ f
4 ∗ ∗ f ∗
5 ∗ ∗ ∗ f ∗ f
6 ∗ f ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎠

1
23

45

6

1
23

45

6

Figure 6.4 The sparsity patterns of L+U of a symmetrically structured A together with the DAG
G(LT ) (left) and the elimination tree T (A) (right). The filled entries are denoted by f and the
corresponding edges are the red dashed lines. It is straightforward to see that T (A) is obtained as
the transitive reduction of G(LT ).

to be equireachable with G. The next result is a simplification of Theorem 6.1; an
analogous result holds for the sparsity patterns of the rows of U .

Theorem 6.6 (Gilbert & Liu 1993) Assume G′ is equireachable with G(U) and

for some k < j there is a directed path k
G′�⇒ j . Then (6.1) holds. Moreover, if

lik = 0 for some i > j , then lis = 0 for all vertices s on the directed path.

Equireachability enables sparse triangular linear systems to be solved more
efficiently. In Chapter 5, Theorem 5.2 describes how to obtain the sparsity pattern
J of the solution of a lower triangular system using paths in G(LT ). This graph
can be replaced by any graph that is equireachable with G(LT ). Equireachability
also allows Theorems 6.2 and 6.3 to be rewritten using paths in a graph G′ that is
equireachable with G.

Theorem 6.7 (Gilbert & Liu 1993) If aij = 0 and i > j , then there is a filled
entry lij = 0 if and only if there exists k < j such that aik = 0 and a directed path

k
G′(U)���⇒ j , where G′(U) is equireachable with G(U).

Theorem 6.8 (Gilbert & Liu 1993) If aij = 0 and i < j , then there is a filled
entry uij = 0 if and only if there exists k < i such that akj = 0 and a directed path

k
G′(LT )����⇒ i, where G′(LT ) is equireachable with G(LT ).

Figure 6.5 depicts G(U) and G′(U) for the matrix in Figure 6.2.
A description of the sparsity patterns of the columns of L can be obtained from

the Schur complement (3.2) as follows:



94 6 Sparse LU Factorizations

1 5
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6 1 5
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2 7

4

2 7

4

Figure 6.5 The DAG G(U) for the matrix from Figure 6.2 (left) and G′(U) which is equireachable
with G(U) (right).

.S{Lj :n,j } = S{Aj :n,j }
⋃

k<j,ukj =0

S{Lj :n,k}, 1 ≤ j ≤ n.

Theorem 6.7 implies that not all the terms in this union are needed to obtain
S{Lj :n,j }. This result is given in Theorem 6.9, which shows how S{L} can be
computed by columns if G′(U) that is equireachable with G(U) is known.

Theorem 6.9 (Gilbert & Liu 1993) If G′(U) is equireachable with G(U), then

.S{Lj :n,j } = S{Aj :n,j }
⋃

(k→j)∈E(G′(U))

S{Lj :n,k}, 1 ≤ j ≤ n. (6.2)

Proof Consider an edge (k → j) in G(U) but not in G′(U). Repeatedly apply-

ing (6.1) along the directed path k
G′(U)���⇒ j , we see that Lj :n,k is contained in the

right-hand side of (6.2) and therefore S{Lj :n,j } is contained in the right-hand side
of (6.2). Because the right-hand side of (6.2) is trivially contained in the left-hand
side, the result follows. ��
An analogous result holds for the rows of U .

Theorem 6.10 (Gilbert & Liu 1993) If G′(L) is equireachable with G(L), then

.S{Ui,i:n} = S{Ai,i:n}
⋃

(k→i)∈E(G′(LT ))

S{Uk,i:n}, 1 ≤ i ≤ n.

As an example of Theorem 6.9, consider the matrix in Figure 6.2. Because
(3 → 5) is the only edge of G′(U) in the union on the right-hand side of (6.2),
S{L5:7,5} is given by

.S{L5:7,5} = S{A5:7,5} ∪ S{L5:7,3}.

We can see this from the graph G′(U) in Figure 6.5 (top right).
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6.1.3 Symbolic LU Factorizations Using DAGs

Factorization by bordering can be used to obtain S{L} by rows and S{U} by
columns. Assume the sparsity patterns of the first k − 1 rows of L and the first
k − 1 columns of U (1 < k ≤ n) have been computed. At step k, the factors satisfy

.A1:k,1:k =
(

A1:k−1,1:k−1 A1:k−1,k

Ak,1:k−1 akk

)

=
(

L1:k−1,1:k−1 0
Lk,1:k−1 1

)(

U1:k−1,1:k−1 U1:k−1,k

0 ukk

)

.

(6.3)
Equating terms for the (2, 1) block, row k of L satisfies

.Lk,1:k−1U1:k−1,1:k−1 = Ak,1:k−1,

or, equivalently, if y denotes the off-diagonal part of the column k of LT , then it is
the solution of the lower triangular system

.UT
1:k−1,1:k−1y = AT

k,1:k−1.

From Theorem 5.2, the sparsity pattern of y is the set of all vertices reachable in the
DAG G(U 1:k−1,1:k−1) (or in a graph that is equireachable with it) from the nonzeros
in Ak,1:k−1. Similarly, equating terms in (6.3) for the (1, 2) block, column k of U

satisfies

.L1:k−1,1:k−1U1:k−1,k = A1:k−1,k.

Again, its sparsity pattern can be determined using Theorem 5.2 and the DAG
G(LT

1:k−1,1:k−1). The diagonal entry ukk is then computed as akk−Lk,1:k−1U1:k−1,k .
This shows that determining the sparsity patterns of L and U and computing
their numerical values is coupled: computation of the factors needs be mutually
interleaved because computing part of one requires information from a part of the
other.

6.1.4 Graph Pruning

Consider the matrices in Figure 6.6. The one in the centre is the same as the one
on the left except that the entries in positions (4, 6) and (6, 4) have been removed
(that is, pruned). Both matrices have the same sets of reachable vertices in G(LT )

and G(U). This suggests how to find G′(LT ) and G′(U) that are equireachable with
G(LT ) and G(U), respectively.

Theorem 6.11 (Eisenstat &Liu 1992) If for some j < s both lsj = 0 and ujs = 0,
then there are no edges (j → k) with k > s in the transitive reductions of G(U)

and G(LT ).
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⎛
⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

6 61 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6

1 ∗ ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 6.6 An example of symmetric pruning. On the left is S{L+U}. In the centre is the reduced
sparsity pattern obtained by symmetric pruning. On the right is the reduced sparsity pattern that
results from symmetric path pruning.

Proof Let (j → k) be an edge of G(U), that is, ujk = 0. Because lsj = 0 and
ujk = 0 implies that usk = 0, there is a path j → s → k in G(U) and the edge
(j → k) does not belong to the transitive reduction of G(U). The result for G(LT )

can be seen analogously. ��
This theorem implies that if for some s > 1 there are edges

.j
G(LT )−−−→ s and j

G(U)−−−→ s,

then all edges (j → k) in G(U) and G(LT ) with k > s can be pruned. The resulting
DAGs G′(U) and G′(LT ) have fewer edges and are equireachable with G(U) and
G(LT ), respectively. The removal of redundant edges based on Theorem 6.11 is
called symmetric pruning.

There are other ways to perform pruning. For example, if for some s > 1 there
are paths

.j
G(LT )���⇒ s and j

G(U)���⇒ s,

then for all k > s symmetric path pruning removes the edges (j → k) from
G(U) and G(LT ). Consider again Figure 6.6. In the centre is the sparsity pattern
after symmetric pruning and on the right is the reduced sparsity pattern that results
from symmetric path pruning. The edge (1 → 6) is not required in G′(LT ) or G′(U)

because there are paths

.1
G(LT )−−−→ 2

G(LT )−−−→ 4
G(LT )−−−→ 5

G(LT )−−−→ 6 and 1
G(U)−−−→ 3

G(U)−−−→ 6.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗
2 ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗
9 ∗ ∗
10 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 9 10 1 27 8 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f
6 ∗ f f f ∗ f f f
7 ∗ ∗ f f
8 ∗ ∗ f f f f ∗ f f
9 ∗ ∗
10 ∗ f ∗ f f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

3

4

6

7 8

2 5

9

10

Figure 6.7 An example of the sparsity pattern of a nonsymmetric matrix A (left), S{L+U} with
filled entries denoted by f (right) and its elimination tree.

6.1.5 Elimination Trees for Nonsymmetric Matrices

The elimination DAGs G(L) and G(U) can be combined into a single structure
called the nonsymmetric elimination tree in which edges are replaced by paths.
This can be advantageous because it is more compact. From (4.3), if S{A} is
symmetric, then its elimination tree is defined in terms of the mapping

.parent (j) = min{i | i > j and lij = 0}.

The condition lij = 0 is equivalent to i
G(L)−−−→ j

G(LT )−−−→ i. In the nonsymmetric case,
the definition can be generalized using directed paths

.parent (j) = min{i | i > j and i
G(L)���⇒ j

G(U)���⇒ i}. (6.4)

This is illustrated in Figure 6.7. Vertices 6, 8, and 10 are the only ones with cycles
of the form

.i
G(L)���⇒ 2

G(U)���⇒ i,

namely,
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ALGORITHM 6.2 Basic computation of the elimination tree for nonsymmetricA

Input: Digraph G(A).
Output: The elimination tree given by the mapping parent .

1: parent (1 : n) = 0
2: for i = 1 : n do
3: Find the vertex set VC of the strong component of G(A1:i,1:i ) that contains i

4: for j ∈ VC \ {i} do
5: if parent (j) = 0 then
6: parent (j) = i

7: end if
8: end for
9: parent (i) = 0

10: end for

.6
G(L)−−−→ 2

G(U)−−−→ 5
G(U)−−−→ 6, 8

G(L)−−−→ 2
G(U)−−−→ 8 and 10

G(L)−−−→ 6
G(L)−−−→2

G(U)−−−→10.

In this example, parent (2) = 6.
Theorem 6.12, which can be regarded as a generalization of Corollary 4.6, shows

how the elimination tree for nonsymmetric A can be constructed.

Theorem 6.12 (Eisenstat & Liu 2005a) Let A be a nonsymmetric matrix. i =
parent (j) if and only if i > j and i is the smallest vertex that belongs to the same
strong component of G(A1:i,1:i ) as vertex j .

This result is employed in Algorithm 6.2. The complexity of finding the strong
components of a digraph with m edges and n vertices is O(n + m). Hence, the
complexity of Algorithm 6.2 is O(nz(A) n). More sophisticated approaches with
complexity O(nz(A) log n) exist.

To illustrate Algorithm 6.2, consider the matrix and its elimination tree depicted
in Figure 6.7. The main loop sets the first nonzero value in the array parent when
i = 3 because this is the first i for which the set VC \ {i} is non empty; it is equal to
{1} and thus parent (1) = i = 3. For i = 4, the vertex set {1, 3, 4} forms a strong
component of G(A1:4,1:4) and so parent (3) = 4. For i = 5, the single vertex {5}
is a strong component of G(A1:5,1:5) and, therefore, 5 is not a parent of any other
vertex (it is a leaf vertex). G(A1:6,1:6) has two strong components with vertex sets
{1, 3, 4} and {2, 5, 6}. i = 6 belongs to the second of these and thus the algorithm
sets parent (j) = i = 6 for j = 2 and 5.

An attractive idea for constructing S{L + U} and subsequently computing the
LU factorization is based on using the column elimination tree T (AT A).

Theorem 6.13 (George & Ng 1985; Grigori et al. 2009) Assume all the diagonal
entries of A are nonzero and let ̂L̂LT be the Cholesky factorization of AT A. Then
for any row permutation matrix P such that PA = LU the following holds:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗
2 ∗ ∗ f ∗
3 ∗ ∗
4 ∗ ∗ ∗ f ∗
5 ∗ ∗ f ∗ ∗ ∗
6 ∗ ∗
7 ∗ ∗ ∗ f ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 2

34

5 6

7

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

1 ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ f ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗ f ∗
5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ f ∗ ∗ ∗
7 ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

2

3

4

5

6

7

Figure 6.8 The sparsity patterns of A and L+ U (top) and of AT A and ̂L+ ̂LT , where AT A =
̂L̂LT (bottom). Filled entries are denoted by f . The corresponding elimination trees are also given.

.S{L+ U} ⊆ S{̂L+ ̂LT }.

An important feature of Theorem 6.13 is that it holds for any row permutation matrix
P applied to A. This allows partial pivoting (Section 3.1.2) to be used. The following
result states that T (AT A) represents the potential dependencies among the columns
in an LU factorization and that for strong Hall matrices no tighter prediction is
possible from the sparsity structure of A.

Theorem 6.14 (Gilbert & Ng 1993) If PA = LU is any factorization of A with
partial pivoting, then the following hold.

1. If vertex i is an ancestor of vertex j in T (AT A), then i > j .
2. If lij = 0, i = j , then vertex i is an ancestor of vertex j in T (AT A).
3. If uij = 0, i = j , then vertex j is an ancestor of vertex i in T (AT A).
4. Suppose in addition thatA is a strong Hall matrix. If l = parent (k) in T (AT A),

then there are values of the nonzero entries of A for which ukl = 0.

Figure 6.8 illustrates the differences in the sparsity patterns of A and AT A and
of their factors; the corresponding elimination trees are also given. This reveals a
potential problem with the column elimination tree: S{AT A} can have significantly
more entries than S{L+U}. An extreme example is when A has one or more dense
rows because AT A is then fully dense.
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6.1.6 Supernodes in LU Factorizations

Supernodes group together columns of the factors with the same nonzero structure,
allowing them to be treated as a dense submatrix for storage and computation.
When solving SPD systems, supernodes can be determined during the symbolic
phase. For nonsymmetric matrices, supernodes are harder to characterize. The need
to incorporate pivoting means it may not be possible to predict the sparsity structures
of the factors before the numerical factorization and they must be identified on-the-
fly. While there are several possible ways to define supernodes, the simplest (which
is widely used in practice) follows the symmetric case and defines a supernode to
be a set of contiguously numbered columns of L with the triangular diagonal block
treated as dense and the columns as having the same structure below the diagonal
block.

In a Cholesky solver, fundamental supernodes (Section 4.6.1) are made con-
tiguous by symmetrically permuting the matrix according to a postordering of its
elimination tree; this does not change the sparsity of the Cholesky factor. For
nonsymmetric A, before the numerical factorization, T (AT A) can be constructed
and the columns of A then permuted according to its postordering to bring together
supernodes. The following result extends Theorem 4.9.

Theorem 6.15 (Li 1996) Let A have column elimination tree T (AT A). Let p be
a permutation vector such that if pi is an ancestor of pj in T (AT A), then i > j .
Let P be the permutation matrix corresponding to p and let ̂A = PAP T . Then
T (̂AT

̂A) is isomorphic to T (AT A); in particular, relabelling each vertex i of
T (̂AT

̂A) as pi yields T (AT A). If, in addition, ̂A = ̂L̂U is an LU factorization
without pivoting then P T

̂LP and P T
̂UP are lower triangular and upper triangular

matrices, respectively, so that A = (P T
̂LP)(P T

̂UP) is also an LU factorization.

In practice, for many matrices the average size of a supernode is only 2 or 3
columns and many comprise a single column. Larger artificial supernodes may be
created by merging vertex j with its parent vertex i in T (AT A) if the subtree rooted
at i has fewer than some chosen number of vertices.

6.2 LU Multifrontal Method

The multifrontal method (Section 5.4) can be generalized to nonsymmetric A

by modifying the definitions of the frontal matrices and generated elements to
conform to an LU factorization. But natural generalizations to rectangular frontal
and generated element matrices do not simultaneously satisfy the statements from
Observation 5.1. These statements can be rewritten for the LU factorization as
follows.

(a) Each generated element Vj is used only once to contribute to a frontal matrix.
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(b) The row and column index lists for the rectangular frontal matrix Fj correspond
to the nonzeros in column Lj :n,j and nonzeros in row Uj,j :n, respectively.

These conditions cannot both hold. An approach that satisfies (a) can be based on
the sparsity pattern of S{A + AT } and storing some explicit zeros if S{A} is not
symmetric. It is then analogous to the symmetric multifrontal method. In this case,
although the frontal and generated elements may be numerically nonsymmetric,
they are square and structurally symmetric. This approach performs well if S{A}
is close to symmetric, that is, the symmetry index of A is close to unity.

An approach that satisfies (b) and not necessarily (a) splits the generated elements
into smaller ones that are embedded into further rectangular frontal matrices. We
illustrate this using the example from Figure 6.7, that is,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 2 3 4 5 6 7 8 9 10

1 ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ f f

6 ∗ f f f ∗ f f f

7 ∗ ∗ f f

8 ∗ ∗ f f f f ∗ f f

9 ∗ ∗
10 ∗ f ∗ f f ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where ∗ are entries in A and filled entries in L + U are denoted by f . Taking the
entries in the first row and column, the sparsity patterns of the first frontal matrix
and the corresponding generated element are

F1 =

⎛

⎜

⎜

⎝

1 3

1 ∗ ∗
2 ∗
3 ∗
8 ∗

⎞

⎟

⎟

⎠

, V1 =
⎛

⎝

3

2 f

3 ∗
8 f

⎞

⎠.

To construct F2 that satisfies (b) we can only use part of V1. From the row and
column replication principles, because a13 = 0, the sparsity pattern of column 1
is replicated in that of column 3 of the factors. While the entry in position (2, 3)

belongs to F2, because of the row replication of the sparsity pattern of the first row
in that of the second row, the remaining entries contribute to F3 and so we split V1
into two as follows

V 2
1 =

(

3

2 f
)

, V 3
1 =

(

3

3 ∗
8 f

)

, V1 = V 2
1 ←→
�

� V 3
1 ,
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where ←→�� is the extend-add operator and V 2
1 and V 3

1 contribute to F2 and F3,
respectively. Then F2 and the corresponding generated element V2 are

F2 =
⎛

⎝

2 5 8 10

2 ∗ ∗ ∗ ∗
6 ∗
8 ∗

⎞

⎠←→�� V 2
1 =

⎛

⎝

2 3 5 8 10

2 ∗ f ∗ ∗ ∗
6 ∗
8 ∗

⎞

⎠, V2 =
(

3 5 8 10

6 f f f f

8 f f ∗ f

)

.

Consider the following splitting of V2

V2 =
(

3

6 f

8 f

)

←→��
(

5

6 f

8 f

)

←→��
(

8 10

6 f f

8 ∗ f

)

≡ V 3
2 ←→
�

� V 5
2 ←→
�

� V 6
2 .

The next frontal matrix is

F3 =
(

3 4

3 ∗ ∗
4 ∗ ∗

)

←→�� V 3
1 ←→
�

� V 3
2 =

⎛

⎜

⎜

⎝

3 4

3 ∗ ∗
4 ∗ ∗
6 f

8 f

⎞

⎟

⎟

⎠

, V3 =
⎛

⎝

4

4 ∗
6 f

8 f

⎞

⎠.

The subsequent steps can be described in a similar way.
Theorem 6.16 expresses the nested relationship between the nonsymmetric

multifrontal method and the nonsymmetric elimination tree.

Theorem 6.16 (Eisenstat & Liu 2005b) Assume A is a general nonsymmetric
matrix and t = parent (k) in T (A). Then

.S{Lt :n,k} ⊆ S{Lt :n,t } and S{Uk,t :n} ⊆ S{Ut,t :n}.

Proof Because t is the parent of k, by definition t
G(L)��⇒ k

G(U)���⇒ t . If uij = 0,
then a multiple of column i is added to column j during the LU factorization.

Thus, by a simple induction argument, for each j on the path k
G(U)���⇒ t , we must

have S{Lj :n,k} ⊆ S{Lj :n,j }. In particular, this holds for column t . The second part

follows by a similar argument using the path t
G(L)��⇒ k. ��

This result shows that the parent relationship in the nonsymmetric elimination
tree guarantees that both row and column replications can be applied at the same
time. Hence all entries of the submatrices of the generated element Vk with indices
greater than or equal to parent (k) can be added to Vparent (k) using the operation
←→�� . To illustrate this, consider again the 10 × 10 example above for which
parent (1) = 3. Theorem 6.16 guarantees that V1 can be embedded into F3 because
S{L3:n,1} ⊆ S{L3:n,3} and S{U1,3:n} ⊆ S{U3,3:n}.
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6.3 Preprocessing Sparse Matrices

We now turn our attention to preprocessing techniques that can help in computing an
LU factorization. In particular, we consider when A does not have a full transversal
(that is, it has one or more zeros on the diagonal). For numerical stability and to
reduce the number of permutations required during the factorization, it can be useful
to permute A before the factorization begins to put large nonzero entries on the
diagonal. As an example, consider the matrix A in Figure 6.9. It has a22 = 0 and
we want to know whether it can be permuted so that all the diagonal entries are
nonzero. This question and its answer can be formulated in terms of matchings and
bipartite graphs.

6.3.1 Bipartite Graphs and Matchings

Given a graph G = (V, E), an edge subset M ⊆ E is called a matching (or
assignment) if no two edges in M are incident to the same vertex. In matrix terms, a
matching corresponds to a set of nonzero entries with no two belonging to the same
row or column. A vertex is matched if there is an edge in the matching incident
on the vertex, and is unmatched (or free) otherwise. The cardinality of a matching
is the number of edges in it. A maximum cardinality matching (or maximum
matching) is a matching of maximum cardinality. A matching is perfect if all the
vertices are matched.

A bipartite graph is an undirected graph whose vertices can be partitioned into
two disjoint sets such that no two vertices within the same set are adjacent, that is,
each set is an independent set. Let the n×n matrix A have entries {aij ′ }. Associated
with A is a bipartite graph defined as a triple Gb = (Vrow,Vcol, E), where the row
vertex set Vrow = {i |aij ′ = 0} and the column vertex set Vcol = {j ′ |aij ′ = 0}
correspond to the rows and columns of A and there is an (undirected) edge (i, j ′) ∈
E if and only if aij ′ = 0. This is illustrated in Figure 6.9. We use prime to distinguish
between the independent set of row vertices and the independent set of column
vertices, that is, i denotes a row vertex and i′ denotes a column vertex.

If A is structurally nonsingular, a matching M in Gb is perfect if it has cardinality
n. A perfect matching defines an n× n permutation matrix Q with entries qij given
by

.qij =
{

1, if (j, i′) ∈M,

0, otherwise.

Both QA and AQ have the matching entries on the (zero-free) diagonal. Q and the
column permuted matrix AQ for the example in Figure 6.9 are given in Figure 6.10.
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⎛
⎜⎜⎜⎜⎜⎝

1′ 2′ 3′ 4′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure 6.9 A sparse matrix and its bipartite graph Gb (left). The matched matrix entries are in
blue and edges that belong to a perfect matching in Gb are given by the blue dashed lines (right).
Note that the perfect matching is not unique (an alternative is in Figure 6.11).

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6
1 1
2 1
3 1
4 1
5 1
6 1

⎞
⎟⎟⎟⎟⎟⎠

AQ =

⎛
⎜⎜⎜⎜⎜⎝

3′ 1′ 4′ 2′ 5′ 6′

1 ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗
4 ∗ ∗
5 ∗ ∗
6 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 6.10 The permutation matrix Q and the column permuted matrix AQ corresponding to
the matrix in Figure 6.9. The matched entries are on the diagonal of AQ.

6.3.2 Augmenting Paths

If a perfect matching exists, it can be found using augmenting paths. A path P in
a graph is an ordered set of edges in which successive edges are incident to the
same vertex. P is called an M-alternating path if the edges of P are alternately
in M and not in M. An M-alternating path is an M-augmenting path in Gb if it
connects an unmatched column vertex with an unmatched row vertex. Note that the
length of an M-augmenting path is an odd integer.
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ALGORITHM 6.3 Maximum matching algorithm
Input: An undirected graph.
Output: Output maximum matching.

1: Find an initial matching M � For example, M = ∅
2: while there exists a M-augmenting path P do
3: M =M⊕ P � Augment the matching along P
4: end while

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

6

5

4

3

2

1

6′

5′

4′

3′

2′

1′

Figure 6.11 An illustration of the search for a perfect matching using augmenting paths. On the
left, the dashed lines represent a matching with cardinality 5. In the centre, the blue line is an
augmenting path with end vertices 2 and 2′. On the right is the perfect matching with cardinality 6
that is obtained using the augmenting path.

Let M and P be subsets of E and define the symmetric difference

.M⊕ P := (M \ P) ∪ (P \M),

that is, the set of edges that belongs to either M or P but not to both. If M is
a matching and P is an M-augmenting path, then M ⊕ P is a matching with
cardinality |M|+1. Growing the matching in this way is called augmenting along
P . The next result shows that augmenting paths can be used to find a maximum
matching (Algorithm 6.3).

Theorem 6.17 (Berge 1957) A matchingM in an undirected graph is a maximum
matching if and only if there is noM-augmenting path

Figure 6.11 demonstrates the procedure. On the left is a bipartite graph with a
matching with cardinality 5. In the centre, an augmenting path 2 �⇒ 3′ �⇒ 3 �⇒
4′ �⇒ 4 �⇒ 2′ is shown. Augmenting the matching along this path, the cardinality
of the matching increases to 6 and M⊕ P is a perfect matching.
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6.3.3 Weighted Matchings

While the maximum matching algorithm finds a permutation of A such that
the permuted matrix has nonzero diagonal entries, there are more sophisticated
variations that aim to ensure the absolute values of the diagonal entries of the
permuted matrix (or their product) are in some sense large. This can increase the
likelihood that the permuted matrix is strongly regular and reduce the need for
partial pivoting during the LU factorization. The core problem is as follows: given
an n × n matrix A, find a matching of the rows to the columns such that the
product of the matched entries is maximized. That is, find a permutation vector
q that maximizes

.

n
∏

i=1

|aiqi
|. (6.5)

Define a matrix C corresponding to A with entries cij ′ ≥ 0 as follows:

.cij ′ =
{

log(maxi |aij ′ |)− log |aij ′ |, if aij ′ = 0

∞, otherwise.
(6.6)

It is straightforward to see that finding a q that solves (6.5) is equivalent to finding
a q that minimizes

.

n
∑

i=1

|ciqi
|, (6.7)

which is equivalent to finding a minimum weight perfect matching in an edge
weighted bipartite graph. This is a well-studied problem and is known as the
bipartite weighted matching or linear sum assignment problem.

If Gb = (Vrow,Vcol, E) is the bipartite graph associated with A then let Gb(C) =
(Vrow,Vcol, E) be the corresponding weighted bipartite graph in which each edge
(i, j ′) ∈ E has a weight cij ′ ≥ 0. The weight (or cost) of a matching M in Gb(C),
denoted by csum(M), is the sum of its edge weights; i.e.

.csum(M) =
∑

(i,j ′)∈M
cij ′ .

A perfect matching M in Gb(C) is said to be a minimum weight perfect matching
if it has smallest possible weight, i.e. csum(M) ≤ csum(̂M) for all possible perfect
matchings ̂M.

The key concept for finding a minimum weight perfect matching is that of a
shortest augmenting path. An M-augmenting path P starting at an unmatched
column vertex is called shortest if
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.csum(M⊕ P) ≤ csum(M⊕ ̂P)

for all other possible M-augmenting paths ̂P starting at the same column vertex.
A matching Me is extreme if and only if there exist ui and vj ′ (which are termed
dual variables) satisfying

.

{

cij ′ = ui + vj ′, if (i, j ′) ∈Me,

cij ′ ≥ ui + vj ′, otherwise.
(6.8)

This is employed by the MC64 algorithm. The dual variables will be important
when we discuss scaling sparse matrices in Section 7.4.2. The MC64 algorithm is
outlined here as Algorithm 6.4. It starts with a feasible solution and corresponding
extreme matching and then proceeds to iteratively increase its cardinality by one
by constructing a sequence of shortest augmenting paths until a perfect extreme
matching is found. The algorithm can be made more efficient if a large initial
extreme matching can be found. For example, Step 3 can be replaced by setting
ui = min{cij ′ | j ′ ∈ S{Ai,1:n}} for i ∈ Vrow and vj ′ = min{cij ′ − ui | i ∈ S{A1:n,j ′ }}
for j ′ ∈ Vcol . In Step 4, an initial extreme matching can be determined from the
edges for which cij ′ − ui − vj ′ = 0.

There are a number of potential problems with the MC64 algorithm. First, the
runtime is hard to predict and depends on the initial ordering of A. Second, it
is a serial algorithm and as such it can represent a significant fraction of the
total factorization time of a direct solver. Because the complexity of Step 6 of
Algorithm 6.4 is O((n+nz(A)) log n) and the complexity of Step 7 is O(n) and of
Step 8 is O(n+nz(A), MC64 has a worst-case complexity of O(n(n+nz(A)) log n).
In practice, this bound is not achieved and the algorithm is widely used.

ALGORITHM 6.4 Outline of the MC64 algorithm
Input: Matrix A.
Output: A matching M and dual variables ui , vj ′ .

1: Define the weights cij ′ using (6.6)
2: Construct the weighted bipartite graph Gb(C) = (Vrow,Vcol, E)

3: Set ui = 0 for i ∈ Vrow and vj ′ = min{cij ′ : (i, j ′) ∈ E} for j ′ ∈ Vcol � Initial
solution

4: Set M = {(i, j ′)| ui + vj ′ } � Initial extreme matching
5: whileM is not perfect do
6: Find the shortest augmenting path P with respect to M
7: Augment the matching M =M⊕ P
8: Update ui , vj ′ so that (6.8) is satisfied for new M �Make M extreme
9: end while
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6.3.4 Dulmage-Mendelsohn Decompositions

The importance of preordering A to block triangular form was discussed in
Section 3.4. The Dulmage-Mendelsohn decomposition is based on matchings and
is a generalization of the block triangular form. It provides a precise characterization
of structurally rank deficient matrices and it can be used to reduce the work required
for an LU factorization. It comprises row and column permutations P and Q such
that

PAQ =
⎛

⎝

C1 C2 C3

R1 A1 A4 A6
R2 0 A2 A5
R3 0 0 A3

⎞

⎠. (6.9)

Here A1 is an m1 × n1 underdetermined matrix (m1 < n1 or m1 = n1 = 0), A2 is
an m2 × m2 square matrix and A3 is an m3 × n3 overdetermined matrix (m3 > n3
or m3 = n3 = 0). It can be shown that AT

1 and A3 are strong Hall matrices but A2
need not be a strong Hall matrix, in which case it can be permuted to block upper
triangular form.

If row and column sets R and C form a maximum matching of A, then R1 and R2
are subsets of R and |R3 ∩R| = n3, and C2 and C3 are subsets of C and |C1 ∩ C| =
m1. An example decomposition for a 10 × 10 matrix is given in Figure 6.12. Here
R = {1, 2, . . . , 9} and C = {2, 3, . . . , 10}.

The coarse Dulmage-Mendelsohn decomposition orders the unmatched
columns as the first columns in PAQ and orders the unmatched rows as the
last rows in PAQ. If A is square and has a perfect matching then its coarse
decomposition has only the matrix A2; otherwise, both A1 and A3 are present.
The coarse decomposition is computed by first finding a maximum matching.
Assuming it is not a perfect matching, the rows in A1 are determined by performing
depth-first searches from the unmatched columns to find all of the row vertices that

PAQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗
∗

∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 6.12 An example of a coarse Dulmage-Mendelsohn decomposition. The blue entries
belong to the maximum matching. m1 = 3, m2 = 4, m3 = 3, n1 = 4, n2 = 4, n3 = 2. Column 1
and row 10 are unmatched.
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are reachable from the unmatched columns via alternating augmenting paths. The
columns in A1 are defined to be the union of the set of unmatched columns and
the set of columns matched with the rows in A1. Similarly, the columns in A3 are
determined by performing depth-first searches from the unmatched rows to find all
of the column vertices that are reachable from the unmatched rows via alternating
augmenting paths. The rows in A3 are defined to be the union of the set of rows
matched to the columns in A3 and the set of unmatched rows.

It may be possible to further permute the matrix to obtain the fine Dulmage-
Mendelsohn decomposition. The fine Dulmage-Mendelsohn decomposition com-
putes P and Q such that A1 and A3 are block diagonal matrices in which each
diagonal block is irreducible, and A2 is block upper triangular with strongly con-
nected (square) diagonal blocks. Once the coarse decomposition has been computed,
A1 and A3 are searched to find any irreducible blocks and the permutations required
to place these on the diagonals of A1 and A3 are computed. Finally, following
Section 3.4, strongly connected components in A2 are found and a permutation is
formed to reduce A2 to block upper triangular form (with the strongly connected
components lying on the diagonal). If A is reducible and nonsingular, the fine
Dulmage-Mendelsohn decomposition can be used to solve the linear system Ax = b

using block back-substitution.

6.4 Notes and References

Early theoretical results related to sparse LU factorizations can be found in Rose
& Tarjan (1978), which extends the systematic understanding of the symbolic
elimination introduced in Rose et al. (1976). A key paper that influenced the
discussion and development of both the theory and algorithms for predicting
sparsity structures in LU factorizations is Gilbert (1994) (first available in 1986
as a Cornell technical report). As the primary and still very useful resource on
transitive reduction, we refer to Aho et al. (1972); Gilbert & Liu (1993) extend the
concept of an elimination tree to study sparse LU factorizations of nonsymmetric
matrices and present theoretical concepts based on DAGs; see also the parallel
counterpart in Grigori et al. (2007). Ways to simplify symbolic factorizations and
prune DAGs are discussed in Eisenstat & Liu (1992, 1993a). An elegant treatment
of both the theoretical and practical aspects of LU factorizations based on DAGs
and the nonsymmetric elimination tree (including pruning and pivoting) is given in
a series of three papers by Eisenstat & Liu (2005a,b, 2007).

Partial pivoting within the sparse column LU factorization is introduced in
Gilbert & Peierls (1988). This paper influenced not only further developments in
sparse LU factorizations but also the development of incomplete factorizations.
Partial pivoting based on the column elimination tree is first discussed in George
& Ng (1985); see also Gilbert & Ng (1993) and Li (1996) for further use of column
elimination trees. Further research on exactness of structural predictions is presented
by Grigori et al. (2009).
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The proof of Theorem 6.17 is given by Berge (1957) but the result was observed
earlier (for example, König (1931)). Preordering nonsymmetric matrices using
matching algorithms is explained in Duff & Koster (1999, 2001). It is based on
the Hungarian algorithm of Kuhn (1955) and a sparse variant of the shortest path
algorithm of Dijkstra (1959). Duff and Koster implemented their algorithm in the
widely used software package MC64. Because MC64 can be expensive to run, there
has been interest in developing efficient parallel algorithms for finding a perfect
matching in a weighted bipartite graph (Azad et al., 2020) and also in relaxing the
optimality requirement to allow the development of cheaper algorithms that can be
parallelised; see, for example, Hogg & Scott (2015). A classical paper that describes
the Dulmage-Mendelsohn decomposition is Pothen & Fan (1990).

The development of supernodal LU factorizations is closely connected with that
of column LU factorizations. A key paper is by Demmel et al. (1999), in which
different types of supernodes for nonsymmetric matrices are considered.

Duff & Reid (1984) describe a symmetric-pattern multifrontal algorithm for non-
symmetric matrices that generates an assembly tree based on the structure of A+AT .
This employs square frontal matrices and can incur a substantial overhead for highly
nonsymmetric matrices because of unnecessary data dependencies in the assembly
tree and extra explicit zeros in the artificially symmetrized frontal matrices. Davis
& Duff (1997) introduce an nonsymmetric-pattern multifrontal algorithm that seeks
to overcome these deficiencies by using rectangular frontal matrices. This work
later developed into the package UMFPACK of Davis (2004), while Amestoy &
Puglisi (2002) propose an nonsymmetric version of the multifrontal method that
can be regarded as being intermediate between the nonsymmetric-pattern variant
of UMFPACK and the symmetric-pattern multifrontal method. The Watson Sparse
Matrix Package (WSMP, 2020) also uses a nonsymmetric multifrontal algorithm.

Notable early sparse LU solvers were the Yale Sparse Matrix Package (YSMP)
of Eisenstat et al. (1977) and the Harwell Subroutine Library code MA28 written by
Duff (1980), followed later by MA48 of Duff & Reid (1996). These codes address
important practical considerations (for serial computations). Furthermore, the right-
looking Markowitz packages MA28 and MA48, which are designed particularly for
highly nonsymmetric matrices, combine the symbolic and numerical factorization
phases into a single analyse-factorize phase. Contemporary software packages such
as PARDISO (2022), SuperLU (Li et al., 1999), UMFPACK and WSMP have
been developed over many years. They provide one of the best ways of under-
standing the practical value of the ideas presented in research papers and technical
reports. PARDISO combines left and right-looking updates in a parallel shared-
memory code that assumes a symmetric nonzero sparsity pattern. SuperLU offers a
left-looking supernodal variant for sequential machines, SuperLU_MT for shared-
memory parallel machines, and the right-looking supernodal SuperLU_DIST (Li
& Demmel, 2003) for highly parallel distributed memory hybrid systems. Demmel
et al. (1999) and Li (2008) describe the algorithms and performance on various
machines. The WSMP software is split into a serial and multithreaded single-
process library for use on a single core or multiple cores on a shared-memory
machine, and a separate library for distributed memory environments.
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Chapter 7
Stability, Ill-Conditioning, and
Symmetric Indefinite Factorizations

Solving sparse symmetric indefinite systems is more
problematic. – Ashcraft et al. (1998).

The factorization of sparse symmetric indefinite systems is
particularly challenging since pivoting is required to maintain
stability of the factorization. Pivoting techniques generally offer
limited parallelism and are associated with significant data
movement hindering the scalability of these methods – Duff
et al. (2018).

Practical computations are invariably based on finite precision arithmetic. Describ-
ing the accuracy of such computations often uses the concept of stability. Consider a
computational algorithm .z = g(d) for computing z as a function g of given data d.
The algorithm is said to be backward stable if the computed solution .ẑ is the exact
solution of .ẑ = g(d + �d), where the perturbation .�d is “small” for all possible
inputs d. What is meant by small depends on the context. For example, if d is based
on physical measurements that are necessarily inaccurate, .�d is small if it is of the
same or smaller absolute value as the inaccuracies in determining d. The minimum
absolute value .|�d| among such perturbations is called the (absolute) backward
error (or, if divided by .|d|, the relative backward error). To distinguish them from
backward errors, the absolute and relative errors of .ẑ are called forward errors.
Backward stability is a property of the computational algorithm and to compute
solutions with a small backward error we need to consider stable algorithms.

A related concept that influences the quality of the computed solution is ill-
conditioning. The problem .z = g(d) is said to be ill-conditioned if small
perturbations in the data d can lead to large changes in the computed .ẑ. The
condition number measures how sensitive the output of a function is to its input. Ill-
conditioning, which is measured in terms of the condition number, is a property of
the problem. Provided the backward error, forward error, and the condition number
are defined in a consistent manner, the following approximate inequality holds:

.forward error � condition number× backward error.
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This says that the computed solution to an ill-conditioned problem can have a large
forward error because even if the computed solution has a small backward error, this
error can be amplified by a large condition number. By preprocessing the problem
it may be possible to improve its conditioning. In this chapter, we discuss both
the stability of numerical factorizations and preprocessing of the linear system to
improve conditioning.

7.1 Backward Stability

We start with a simple backward error result. Here .ε denotes the machine precision.

Theorem 7.1 (Demmel 1997; Watkins 2002) Let the computed LU factorization
of a matrix A be .A+�A = ̂L ̂U. The perturbation .�A that results from using finite
precision arithmetic satisfies

.||�A||∞ ≤ nO(ε) ||̂L||∞||̂U ||∞ +O(ε2). (7.1)

Moreover, the computed solution .x̂ of the linear system .Ax = b satisfies
.(A+�′A) .x̂ = b with

.||�′A||∞ ≤ nO(ε) ||̂L||∞||̂U ||∞ +O(ε2). (7.2)

At stage k of Gaussian elimination, the computed diagonal entry .a
(k)
kk is termed

the pivot (.1 ≤ k < n). Gaussian elimination breaks down if a zero pivot is
encountered. Provided A is nonsingular, row interchanges can be incorporated to
prevent this happening (Theorem 1.1). The systematic use of row permutations is
called partial pivoting and was introduced in Section 3.1.2. If .|a(k)

kk | is very small
(compared to other entries in the active submatrix), then it can cause difficulties in
finite precision arithmetic because the absolute value of the corresponding computed
multiplier .lik = a

(k)
ik /a

(k)
kk can then be very large. Partial pivoting can be used to

ensure .|lik| ≤ 1, that is, the rows of A that have not yet been pivoted on can be
permuted so that the new pivot satisfies

. max
i>k

|a(k)
ik | ≤ |a(k)

kk |.

If .Pk is the row permutation at stage k and .P = Pn−1Pn−2 . . . P1, then the computed
factors of PA satisfy

.||̂L||∞ ≤ n and ||̂U ||∞ ≤ n ρgrowth||A||∞,

where the growth factor .ρgrowth is defined to be

.ρgrowth = max
i,j,k

( |a(k)
ij | / |aij | ). (7.3)
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The bounds (7.1) and (7.2) can be rewritten as

.||�A||∞ ≤ n3 ρgrowth O(ε) ||A||∞, ||�′A||∞ ≤ n3 ρgrowth O(ε) ||A||∞.

In practice, these bounds are pessimistic and the actual errors are typically much
smaller. Because backward stability of an LU factorization is influenced both by
the initial ordering of A and the pivoting strategy, it is said to be conditionally
backward stable.

For a symmetric positive definite (SPD) matrix A, pivoting for stability is not
needed. The following states that the Cholesky factorization of A is unconditionally
backward stable, allowing the stable computation of the solution of the correspond-
ing linear system.

Theorem 7.2 (Demmel 1997; Watkins 2002) Let the computed Cholesky factor-
ization of an SPD matrix A be .A +�A = ̂L̂LT . The perturbation .�A that results
from using finite precision arithmetic satisfies

.||�A||∞ ≤ n2 O(ε) ||A||∞.

Moreover, the computed solution .x̂ of the linear system .Ax = b satisfies .(A +
�′A)x̂ = b with

.||�′A||∞ ≤ n2 O(ε) ||A||∞.

Both the unconditional backward stability of a Cholesky factorization of an
SPD matrix and the conditional backward stability of an LU factorization of a
general A make algorithms for solving linear systems that are based on factorizing
A preferable to computing and applying .A−1. The computed inverse is typically
not the exact inverse of a nearby matrix .A + �A for any small perturbation .�A.
Furthermore, the following pessimistic result shows it is impractical to compute and
store .A−1, regardless of how sparse A is.

Theorem 7.3 (Duff et al. 1988) If A is irreducible, then the sparsity pattern
.S{A−1} of its inverse is fully dense.
Proof Without loss of generality, assume A is factorizable. For if not, there is a
permutation matrix P such that the LU factorization of the row permuted matrix
PA is factorizable (Theorem 1.1). In this case, consider PA instead of A because
for any permutation matrix P the inverse .(PA)−1 is fully dense if and only if A is
fully dense. Let K be the matrix of order 2n given by

.K =
(

A In

In 0

)

.

After applying n elimination steps to .K = K(1), the order n active submatrix of
.K(n+1) is .−A−1. Consider entry .(A−1)ij (.1 ≤ i, j ≤ n). Because A is irreducible
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and the off-diagonal .(1, 2) and .(2, 1) blocks of K are equal to the identity matrix,
there is a directed path .i �⇒ j in .G(K) such that the indices of all the intermediate
vertices on the path are less than or equal to n. Theorem 3.1 and the non-cancellation
assumption imply .(A−1)ij = 0. It follows that .A−1 is fully dense. ��

The above proof implies that entries of .A−1 correspond to paths in .G(A) when
A is not irreducible. This result is given in the following corollary.

Corollary 7.4 (Rose & Tarjan 1978; Duff et al. 1988) If A is factorizable, then

.(A−1)ij = 0 (.1 ≤ i, j ≤ n) if and only if there exists a path .i
G(A)��⇒ j .

7.2 Pivoting Strategies for Dense Matrices

This section briefly describes the pivoting strategies that are used in LU factor-
izations of general dense matrices and, in the symmetric indefinite case, in LDLT
factorizations. Here and in the following sections, all the quantities (such as .a

(k)
ij )

are the computed quantities.

7.2.1 Partial Pivoting

Partial pivoting interchanges rows at each stage of the factorization to select the
entry of largest absolute value in its column as the next pivot (Section 3.1.2). If
partial pivoting is used, it is straightforward to show that the growth factor (7.3)
satisfies

.ρgrowth ≤ 2n−1.

Although the bound can be achieved in nontrivial cases, it is generally extremely
pessimistic, particularly when n is very large. In practice, Gaussian elimination with
partial pivoting is often regarded as being a stable algorithm and is the pivoting
strategy of choice for dense matrices.

7.2.2 Complete Pivoting

A much smaller bound can be obtained if complete (or full) pivoting is used. It
chooses the pivot to be the largest entry (in absolute value) in the active submatrix,
that is, at stage k the pivot .a

(k)
kk is chosen so that

. max
i≥k,j≥k

|a(k)
ij | ≤ |a(k)

kk |.
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In this case,

.ρgrowth ≤ n1/2(2. 31/2. 41/3 . . . n1/(n−1))1/2. (7.4)

The disadvantages of complete pivoting are that it is expensive (the whole active
submatrix must be searched for a pivot), and because the test is tougher than for
partial pivoting, it is more likely that permutations (and hence more data movement)
will be required.

7.2.3 Rook Pivoting

A pivoting strategy that is more restrictive than partial pivoting but cheaper than
complete pivoting is rook pivoting. Here the pivot is chosen to be the largest entry
in its row and its column, that is,

. max
i>k

( |a(k)
ik |, |a(k)

ki | ) ≤ |a(k)
kk |.

The strategy takes its name from the fact that the search for a pivot corresponds to
the moves of a rook in the game of chess. Clearly, the search for a pivot in rook
pivoting involves at least twice as many comparisons as for partial pivoting and if
the whole active submatrix has to be searched, then the number of comparisons is
the same as for complete pivoting. However, in practice, the cost is usually a small
multiple of the cost of partial pivoting and significantly less than that of complete
pivoting. The growth factor for rook pivoting satisfies

.ρgrowth ≤ 1.5 n(3/4) log n .

7.2.4 2 × 2 Pivoting

When the matrix A is symmetric but indefinite, it may not be possible to select
pivots from the diagonal (for example, if all the diagonal entries of A are zero). If
rows of A are permuted (so that off-diagonal entries are selected as pivots), then
symmetry is destroyed, which means an LU factorization must be performed and
this essentially doubles the cost of the factorization in terms of both storage and
operation counts. Symmetry can be preserved by extending the notion of a pivot to
.2× 2 blocks.

Consider the symmetric indefinite A given by

.A =
(

δ 1
1 0

)

.
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If .δ = 0, an LDLT factorization in which D is a diagonal matrix does not exist.
Furthermore, if .δ � 1, then an LDLT factorization with D diagonal is not stable
because .ρgrowth = 1/δ. However, if the LDLT factorization is generalized to allow
D to be a block diagonal matrix with .1 × 1 and .2 × 2 blocks, then a factorization
is obtained that preserves symmetry and is nearly as stable as an LU factorization.
This is illustrated by the factorization of the following .3 × 3 symmetric indefinite
matrix

.A =
⎛

⎝

1 1 0
1 1 1
0 1 0

⎞

⎠ =
⎛

⎝

1 0 0
1 1 0
0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠

⎛

⎝

1 1 0
0 1 1
0 0 1

⎞

⎠ = LDLT .

Here D has one .1× 1 block and one .2× 2 block.
Rook pivoting can be extended to include .2 × 2 pivots. An iterative procedure

searches for an entry that is simultaneously the largest in absolute value in row i and
column j of the active submatrix .A(k). This entry is used to build a symmetric .2× 2
pivot; the search terminates prematurely if a suitable .1× 1 pivot is found, that is, a
pivot that satisfies a threshold test. The standard choice for the threshold comes from
requiring the same potential maximal growth in the absolute values of the entries of
the partially eliminated matrix that results from either two consecutive .1× 1 pivots
or one .2 × 2 pivot. It can be shown that the appropriate choice is .(1 + √17)/8. In
this case, the growth factor satisfies

.ρgrowth < 3n
√

2 31/241/3 . . . n1/(n−1),

which is only slightly worse than the bound (7.4) for an LU factorization with
complete pivoting. Note that the number of partially eliminated matrices depends
on the number of .2 × 2 pivots. If a .2 × 2 pivot is selected at stage k, then the next
partially eliminated matrix is .A(k+2).

7.3 Pivoting Strategies for Sparse Matrices

7.3.1 Threshold Partial Pivoting

While the growth factor is important, for sparse matrices the pivoting strategies
discussed so far lack the scope to preserve sparsity. In the sparse case, it is necessary
to balance pivoting for stability with limiting the amount of fill-in in the factors. The
compromise strategy that seeks to achieve this is called threshold partial pivoting,
which is a generalization of partial pivoting. At stage k of the numerical factorization
phase of a sparse LU solver, the pivot is selected so that after permuting it to the first
entry of the active submatrix .A(k) it satisfies

. max
i>k

|a(k)
ik | ≤ γ−1|a(k)

kk |, (7.5)
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where .γ ∈ (0, 1] is a chosen threshold parameter. It is straightforward to see that

. max
i
|a(k)

ij | ≤ (1+ γ−1) max
i
|a(k−1)

ij | ≤ (1+ γ−1)nzj max
i
|aij |,

where .nzj is the number of off-diagonal entries in the j -th column of the U factor.
Furthermore,

.ρgrowth ≤ (1+ γ−1)nzcmax ,

where .nzcmax = maxj nzj ≤ n − 1. Choosing .γ = 1 reduces to partial pivoting;
using a smaller value potentially leads to greater growth in the size of the entries
in the factors but allows pivots to be chosen that are better able to preserve
sparsity. The default choice for .γ is typically between 0.1 and 0.01 but in some
practical applications much smaller values are sometimes employed to speed up the
factorization (at the possible cost of less accurate factors).

A threshold can also be incorporated into rook pivoting. The pivot must then
be at least .γ times the absolute value of any other entry in its row and column
of the active submatrix. Threshold rook pivoting has the potential to limit growth
more successfully than threshold partial pivoting. In the symmetric case, if pivots
are selected from the diagonal (to preserve symmetry), threshold partial pivoting is
the same as threshold rook pivoting.

7.3.2 Threshold 2 × 2 Pivoting

If A is a symmetric matrix, then standard fill-reducing ordering algorithms (which
will be discussed in the next chapter) and the symbolic factorization phase employ
only the sparsity pattern of A. In general, if A is indefinite, during the numerical
factorization it is necessary to modify the chosen elimination order to maintain
stability. As already observed, if symmetry is to be preserved, .1×1 and .2×2 pivots
are needed, resulting in an LDLT factorization in which D is a block diagonal matrix
with .1× 1 and .2× 2 blocks. Limiting the size of the entries of L so that

.|lij | ≤ γ−1 (7.6)

for all .i, j , together with a backward stable scheme for solving .2×2 linear systems,
suffices to show backward stability for the entire solution process.

In the sparse symmetric indefinite case, the stability test for a .1 × 1 pivot in
column t of the active submatrix at stage k is the standard threshold test

. max
i =t, i≥k

|a(k)
it | ≤ γ−1|a(k)

tt |. (7.7)
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For a .2× 2 pivot in rows and columns s and t the corresponding test is

.

∣

∣

∣

∣

∣

∣

∣

⎛

⎝

a
(k)
ss a

(k)
st

a
(k)
st a

(k)
tt

⎞

⎠

−1
∣

∣

∣

∣

∣

∣

∣

⎛

⎝

maxi =s,t;i≥k |a(k)
is |

maxi =s,t;i≥k |a(k)
it |

⎞

⎠ ≤ γ−1
(

1
1

)

, (7.8)

where the absolute value of the matrix is interpreted element-wise. If .a
(k)
tt is accepted

as a .1× 1 pivot, it becomes the next diagonal entry of D and row and column t are
permuted (if necessary) to the pivotal position k. The corresponding diagonal entry
of L is 1 and from the inequality (7.7), the off-diagonal entries of column k of L are

bounded in absolute value by .γ−1. If .

(

a
(k)
ss a

(k)
st

a
(k)
st a

(k)
tt

)

is accepted as a .2 × 2 pivot, it

becomes the next diagonal block of D and rows and columns s and t are permuted
(if necessary) to the next two pivotal positions, k and .k + 1. The corresponding
diagonal block of L is the identity matrix of order 2 and inequality (7.8) ensures
that the off-diagonal entries of these columns of L are bounded in absolute value by
.γ−1.

In addition to bounding the size of the entries in L, the ability to stably apply the
inverse of D to a vector is required. This is trivially the case for .1 × 1 pivots, but
for .2 × 2 pivots it is necessary to check that the determinant .|a(k)

ss a
(k)
tt − a

(k)
st a

(k)
st |

is sufficiently large and cancellation does not occur during the application of the
inverse.

A major difficulty when stability tests are incorporated into sparse factorizations
is that a pivot satisfying the stability criteria may not exist. We discuss this for
symmetric indefinite A but the same problem occurs for general A. Consider the
supernodal approach of Section 5.3 and the nodal matrix shown in Figure 7.1.
Pivots can only be chosen from the block .Ldiag on the diagonal (the block is square
and symmetric and only its lower triangular part is held) but the entries in the off-
diagonal block .Lrect are involved in the stability tests: large entries in .Lrect can
cause pivot candidates to fail the threshold tests (7.7), (7.8). If .Ldiag is of order p

and only .q < p pivots can be found that satisfy the tests, then .p − q pivots must
be delayed. That is, the variables that have not been pivoted on are passed up the
assembly tree to the parent and the columns of the block column corresponding to
these variables are appended to those of the nodal matrix at the parent. The delayed
columns are retested at the parent and, if the stability test is still not satisfied, they
are passed further up the assembly tree (at the root a full set of p pivots can be
chosen provided the matrix is non-singular and .γ ≤ 0.5).

Observe that to be able to test for large entries, all the off-diagonal entries in a
block column must be fully updated before the block on the diagonal is factorized.
This means that the factorize_block task and all the solve_block tasks for a block
column that are used in the SPD case (Section 5.3) are combined into a single
factorize_column task. Thus there are fewer but larger tasks and this reduces the
scope for parallelism.
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Ldiag

Lrect

Figure 7.1 An illustration of a simple nodal matrix. Pivot candidates are restricted to the square
block .Ldiag on the diagonal.

The problem of delayed pivots arises also in the multifrontal method. At each
stage of the computation there is a dense symmetric indefinite frontal matrix F of
order .nF of the form

.F =
(

F11 FT
21

F21 F22

)

, (7.9)

where .F11 is a .p × p matrix corresponding to the fully summed variables. Pivots
can only be selected from .F11 but the numerical values of the entries in .F21 must
be taken into account when testing for stability. If .q < p pivots are found, then

the partial factorization of F is .PF FP T
F = LF DF LT

F , where .PF =
(

P11

I

)

is

a permutation matrix with .P11 of order p, .LF =
(

L11

L21 I

)

with .L11 a unit lower

triangular matrix of order q, and .DF =
(

D1

S

)

, with .D1 a block diagonal matrix of

order q and S a dense matrix of order .nF −q. A basic procedure for selecting pivots
and partially factorizing F is summarized in Algorithms 7.1 and 7.2. Here updating
means applying the elimination operations. Observe that candidate pivots are only
permuted to the start of the frontal matrix once they have been accepted (passed
the stability test). Algorithm 7.2 can be modified for a supernodal factorization,
replacing the frontal matrix by a supernodal matrix.

So far, we have assumed that A is nonsingular, but consistent systems of linear
equations with a (nearly) singular matrix can occur in practice and only minor
modifications are needed to handle this. When a column is searched, if its largest
entry is found to have absolute value less than a chosen threshold .δ, the column
(and, by symmetry, the row) is set to zero, the diagonal entry is accepted as a zero
.1×1 pivot, and no update pivotal operations are applied to the remaining columns of
F . This is equivalent to perturbing the entries of A in the pivotal column by at most
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ALGORITHM 7.1 Simple partial sparse indefinite factorization
Input: Symmetric indefinite matrix F of order .nF of the form (7.9) with .F11 of
order p; threshold .γ ∈ (0, 0.5].
Output: Updated F ; partial factors .LF and .DF and permutation .PF .

1: .q = 0, .t = 0 � q holds the sum of the sizes (1 or 2) of the pivots chosen so far
2: while .q < p do
3: find_pivot (.piv_size) � See Algorithm 7.2
4: if .(piv_size = 0) exit while loop � Failed to find a pivot
5: .q = q + piv_size

6: Update columns .q + 1 to p of F � Right-looking
7: end while
8: Apply updates to columns .p + 1 to .nF of F � Left-looking

ALGORITHM 7.2 Find a pivot in F using threshold partial pivoting
Input: F , .LF , .DF , .PF , p, q, t , .γ are accessed from the environment of the call.
Output: Selected pivot of size .piv_size; computed columns .q + 1 : .q + piv_size

of .LF and .DF , updated .PF and t .

1: subroutine find_pivot (.piv_size)
2: .piv_size = 0
3: for .test = 1 : p − q do
4: .t = t + 1; if (.t > p) set .t = q + 1 � Column t is searched for a pivot

5: if (there is s such that .q + 1 ≤ s ≤ t − 1 and .

(

fss fst

fst ftt

)

passes .2× 2 pivot

test) then
6: .piv_size = 2
7: Symmetrically permute rows/columns .q + 1 and s of F � Update .PF

8: Symmetrically permute rows/columns .q + 2 and t of F � Update .PF

9: Compute columns .q + 1 and .q + 2 of .DF and .LF

10: return
11: else if (.ftt passes .1× 1 pivot test) then
12: .piv_size = 1
13: Symmetrically permute rows/columns .q + 1 and t of F � Update .PF

14: Compute column .q + 1 of .DF and .LF

15: return
16: end if
17: end for
18: end subroutine find_pivot
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.δ and the computed factorization is of a nearby singular matrix. It is convenient for
the subsequent solve phase to store .D−1

F in place of .DF , with entries on the diagonal
corresponding to zero pivots set to zero.

7.3.3 Relaxed and Static Pivoting

If pivots are delayed during the numerical factorization, then the data structures
that were set up during the symbolic phase must be modified. This significantly
complicates the development of general and symmetric indefinite sparse direct
solvers compared to sparse Cholesky solvers. Furthermore, it increases the operation
count and memory required to perform the factorization and, more importantly, it
can severely limit the scope for parallelism. Maintaining stability and using static
data structures are conflicting objectives.

If no candidate pivot satisfies the threshold test but the pivot that is nearest to
satisfying it would satisfy it with a threshold .γ1 < γ , then provided .γ1 is at least
some chosen minimum value, relaxed pivoting accepts this pivot and reduces .γ

to .γ1. The new value .γ1 is employed thereafter. This means that the factorization
is potentially less stable but, with fewer delayed pivots, the factors may be sparser
than if the original .γ was used throughout.

With relaxed pivoting, delayed pivots can still occur and it may not be possible
to use static data structures. Static pivoting allows static data structures because it
permits no delayed pivots. When a candidate pivot is found to be too small (and no
other eligible candidate passes the stability test), static pivoting replaces it by a user
defined value. A small value may make the factorization more accurate but can lead
to large growth in the size of the entries in the factors, while a large value controls
this growth but reduces the accuracy of the factorization. As well as allowing the use
of a static task graph and the structures predicted by the symbolic factorization, other
benefits of static pivoting are improved use of BLAS 3 operations and parallelism
and, because there is no additional fill-in, load imbalance in a parallel environment
is less likely to be a problem. However, the factorization need not be stable and
the factors are of a shifted matrix .A + Dδ where .Dδ is a diagonal matrix, and it
may be necessary to seek to improve the accuracy of the solution using a refinement
method (see Section 7.4.1). It is also possible that by the time a very small pivot is
found it is too late to save the stability of the factorization and perturbing the pivot
effectively just amplifies numerical noise. It is thus essential that static pivoting is
used with care; it makes an LDLT or LU direct solver less of a “black box solver”
because the guarantees are much weaker than when threshold partial pivoting is
used. A more robust approach can be to incorporate the use of shifts into the
algorithm that calls the linear system solver. For example, a standard technique in
some optimization algorithms that involve symmetric linear systems is to employ
regularization. This can avoid the need for an LDLT factorization in favour of a
stable Cholesky factorization.



124 7 Stability, Ill-Conditioning, and Symmetric Indefinite Factorizations

Observe that if an LDLT factorization of a symmetric indefinite matrix A is
computed, then the inertia (that is, the number of positive eigenvalues, negative
eigenvalues and eigenvalues equal to zero) of A can be found by computing the
eigenvalues of the block diagonal factor D. In some applications, computing the
inertia may be desired. For example, in interior point methods for minimizing a
nonlinear objective function subject to constraints, each iteration involves solving
a sparse symmetric indefinite linear system and it is important that the solution
method for this system accurately reports the inertia to allow parameters within the
interior point method to be chosen. One consequence of static pivoting or using a
small threshold .γ is that the computed inertia of A is less likely to be accurate.

7.3.4 Special Indefinite Matrices that Avoid Pivoting

Symmetric saddle point matrices are indefinite matrices of the form

.A =
(

G RT

R −B

)

, (7.10)

where .G ∈ R
n1×n1 is an SPD matrix, .B ∈ R

n2×n2 is a positive semidefinite matrix
(including .B = 0), and .R ∈ R

n2×n1 with .n1 + n2 = n. Such systems include the
class of .F matrices, where .B = 0 and each column of R has at most two entries, and
if there are two entries, they sum to zero. It is of interest to try and symmetrically
permute A in such a way that the LDLT factorization of the permuted matrix .PAP T

exists without the use of threshold pivoting. This is attractive because it then makes
the factorization as efficient as for an SPD matrix.

Define the permutation matrix P to be

.P = [e1, en1+1, e2, en1+2, . . . en1 , en, en2+1, . . . , en1

]T
.

Then the permuted matrix .PAP T has a block form in which each entry .Ai,j is a
.2× 2 or .2× 1 or .1× 2 or .1× 1 block. In particular, the diagonal blocks are

.Ai,i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

gii rii

rii −bii

)

, 1 ≤ i ≤ n2

bii , n2 + 1 ≤ i ≤ n1.

The following theorem shows that a .2×2 pivot updated by the Schur complement
of a .1× 1 pivot is nonsingular and vice versa.

Theorem 7.5 (Lungten et al. 2018) Let A be the symmetric saddle point
matrix (7.10). Assume .R = (R1 R2) is of full rank with .R1 ∈ R

n2×n2 nonsingular.
Let .G ∈ R

n1×n1 be SPD and partitioned conformally and let .B ∈ R
n2×n2 be
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positive semidefinite. If A is permuted to the form

.

⎛

⎝

G11 RT
1 G12

R1 −B R2

GT
12 RT

2 G22

⎞

⎠ ,

then the Schur complement of the symmetric indefinite matrix .

(

G11 RT
1

R1 −B

)

and the

Schur complement of the SPD matrix .G22 are nonsingular.

A consequence of Theorem 7.5 is that provided R is of full rank and .R1 is
nonsingular then the LDLT factorization of .PAP T exists, with .2×2 pivots and .1×1
pivots chosen from the diagonal blocks of .PAP T in any order. Assume all the .2×2
pivots are selected ahead of the .1 × 1 pivots. If .B = 0 and .|rii | ≥ maxi≤j≤n1 |rij |
(.1 ≤ i ≤ n2), then the growth factor is bounded by .22n2 .

A potential difficulty is that permutation matrices .Pr and .Pc are needed such that
.PrRPc = [R1 R2] with .R1 nonsingular. If .Pr and .Pc can be constructed so that

.PrRPc =
(

R11 R12

R22

)

, (7.11)

where .R11 is upper triangular with nonzero diagonal entries then the permuted R is
said to have a trapezoidal form. A simple case where R can be permuted to this
form is if it satisfies the following one-degree principle. Let R be of full rank and
let .Gb(R) = (Vrow,Vcol, E) be the bipartite graph of R (Section 6.3.1). R can be
permuted to trapezoidal form if, for .k = 1, 2, . . . , n1 − 1, the bipartite graph of
.R(k) has at least one vertex .j ′k ∈ Vcol of degree one, where .R(1) = R and .R(k+1) is
obtained by removing from .R(k) the column vertex .j ′k and its matched row index .ik
together with all edges involving .j ′k or .ik .

To illustrate this, consider the .6 × 8 matrix R in Figure 7.2 and its
associated bipartite graph .Gb(R). The first column vertex with degree one is
.2′; it is matched with the row vertex 4. Deleting .2′ and 4 removes edges
.
{

(4, 2′), (4, 3′), (4, 5′), (4, 6′), (4, 8′)
}

. Column vertex .3′ now has degree one;
it is matched with row vertex 6. Repeating the process gives a perfect matching
.M = {(4, 2′), (6, 3′), (1, 4′), (5, 5′), (2, 1′), (3, 6′)} together with row and column
matched vertex sets .{4, 6, 1, 5, 2, 3} and .

{

2′, 3′, 4′, 5′, 1′, 6′
}

, respectively, and
permutation matrices .Pr and .Pc of order 6 and 8 can be defined to obtain the
trapezoidal form in Figure 7.2.

If after .k ≥ 1 steps all columns of the reduced matrix .R(k) have degree greater
than 1, the permuted matrix has the form (7.11) where .R11 is .k× k upper triangular,
.R12 is .k × (n1 − k) and the .(n2 − k) × (n1 − k) block .R22 has columns of degree
greater than one. .n1− k steps of Gaussian elimination (with partial pivoting) can be
applied to .R22 to complete the transformation of R to trapezoidal form.
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R =

⎛
⎜⎜⎜⎜⎜⎝

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′

1 ∗
2 ∗ ∗
3 ∗ ∗
4 ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

PrRPc =

⎛
⎜⎜⎜⎜⎜⎝

2′ 3′ 4′ 5′ 1′ 6′ 7′ 8′

4 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗
1 ∗
5 ∗ ∗ ∗
2 ∗ ∗
3 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

6

5

4

3

2

1

8′

7′

6′

5′

4′

3′

2′

1′

Figure 7.2 Illustration of permuting a full rank matrix to trapezoidal form using the one-degree
principle. The matrix R and its bipartite graph .GB(R) are given. The edges that belong to the
perfect matching in .Gb(R) found using the one-degree principle are given by the dashed blue
lines; the corresponding matrix entries are in blue. The trapezoidal form comprises a .6 × 6 upper
triangular matrix .R1 and a .6× 2 rectangular matrix .R2, where .Pr = [e4, e6, e1, e5, e2, e3]T and
.Pc = [e2, e3, e4, e5, e1, e6, e7, e8] are the row and column permutation matrices.

7.4 Solving Ill-Conditioned Problems

Ill-conditioning is connected to the input data: a problem is ill-conditioned if small
changes in the data can lead to large changes in the solution. Assume for the general
linear system .Ax = b that A and b are perturbed by .�A and .�b, respectively,
and the corresponding perturbation of the solution x is .�x, so that the perturbed
problem

.(A+�A)(x +�x) = b +�b (7.12)

has been solved. The perturbations in A and b may include both data uncertainty
and algorithmic errors. Rearranging (7.12), we obtain
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.A�x = �b −�A−�A�x.

Premultiplying by .A−1 and considering any norm .‖.‖ and the corresponding
subordinate matrix norm yields

.‖�x‖ ≤ ‖A−1‖ (‖�b‖ + ‖�A‖ ‖x‖ + ‖�A‖ ‖�x‖).

It follows that

.(1− ‖A−1‖ ‖�A‖)‖�x‖ ≤ ‖A−1‖ (‖�b‖ + ‖�A‖ ‖x‖)

and, provided .‖A−1‖ ‖�A‖ < 1, this gives the following bound on the absolute
error

.‖�x‖ ≤ ‖A−1‖
‖A−1‖ ‖�A‖ (‖�b‖ + ‖�A‖ ‖x‖).

Dividing by .‖x‖ and using .‖b‖ ≤ ‖A‖ ‖x‖, yields the relative error bound

.‖�x‖/‖x‖ ≤ κ(A)

1− κ(A)‖�A‖/‖A‖ (‖�A‖/‖A‖ + ‖�b‖/‖b‖) , (7.13)

where

.κ(A) = ‖A‖ ‖A−1‖ (7.14)

is the condition number of the matrix A. The inequality (7.13) shows that the
condition number is a relative error magnification factor. If we have a stable
algorithm, then a neighbouring problem has been solved, that is,

.‖�A‖/‖A‖ + ‖�b‖/‖b‖

is small. This ensures an accurate solution if .κ(A) is small. A large condition
number means that A is close to being singular (.κ(A) tends to infinity as A tends to
singularity).

Observe that the condition number is very dependent on the scaling of A.
Furthermore, .κ(A) takes no account of the right-hand side vector b or the fact that
small entries of A (including zeros) may be known within much smaller tolerances
than larger entries.

If the matrix norm is that induced by the Euclidean norm (that is, the 2-norm
.‖.‖2) and A is symmetric, then (7.14) becomes

.κ(A) = |λmax(A)|/|λmin(A)|, (7.15)
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ALGORITHM 7.3 Iterative refinement of the computed solution of .Ax = b

Input: The vector b and matrix A.
Output: A sequence of approximate solutions .x(0), x(1), . . ..

1: Solve .Ax(0) = b � .x(0) is the initial computed solution
2: for .k = 0, 1, . . . do
3: Compute .r(k) = b − Ax(k) � Residual on iteration k

4: Solve .Aδx(k) = r(k) � Solve correction equation
5: .x(k+1) = x(k) + δx(k)

6: end for

where .λmax(A) and .λmin(A) are eigenvalues of A of largest and smallest absolute
values, respectively. This is called the spectral condition number of A. It is
important when considering convergence of iterative solvers (Section 9.1.2).

7.4.1 Iterative Refinement

Iterative refinement can be used to overcome matrix ill-conditioning and improve
the accuracy of the computed solution. It may also be used after relaxed or static
pivoting. The basic method is outlined as Algorithm 7.3. Note that the solvers in
Steps 1 and 4 do not have to be the same. The traditional and most common approach
is to use the computed factors of A in both steps. Alternatively, the factors can
be employed as a preconditioner for an iterative solver in Step 4 (preconditioning
and iterative solvers are discussed in Chapter 9). Iterative refinement terminates
when either the norm of the residual vector .r(k) is sufficiently close to zero that
the corresponding correction .δx(k) is very small or the chosen maximum number of
iterations is reached. If there were no roundoff errors in any of the refinement steps,
the process would converge to the correct solution in a single iteration. In practice,
the residual generally decreases significantly over the first few iterations before
stagnating (i.e. reaching a point after which little further accuracy is achieved). If
the required accuracy has not been achieved, then a possible approach is to switch
to using the computed factors as a preconditioner for a Krylov subspace solver (see
Chapter 9).

Observe that computing .r(k) in Step 3 uses the original matrix A and if the
residual is small, a nearby problem will have been solved. This is particularly
useful when there is uncertainty in the accuracy of the computed factors as an
approximation to A (for instance, if threshold pivoting or static pivoting has been
employed).

There are a number of variants of iterative refinement that involve using different
precisions for all or part of the process. In traditional iterative refinement, the
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residuals are computed at twice the working precision (the precision at which
the data A, b and the solution x are stored). In fixed precision refinement, all
computations use the same precision. In mixed precision iterative refinement, the
most expensive parts of the computation (the LU factorization of A and solving the
correction equation) are performed in single precision and the residual computation
in double precision. This is attractive because on modern computer architectures
single precision arithmetic is usually significantly faster than double precision.
Moreover, holding the factors in single precision substantially reduces the memory
required and the amount of data movement. The use of half precision (16-bit)
arithmetic is also a possibility, assuming it is considerably faster than single
precision, with a proportional saving in energy consumption.

7.4.2 Scaling to Reduce Ill-Conditioning

We have discussed the importance of the condition number .κ(A). If it is large, then
we would like to reduce it by transforming A. An important way of doing this is by
scaling A before the numerical factorization begins.

Consider two nonsingular .n × n diagonal matrices .Sr and .Sc. Diagonal scaling
of the system .Ax = b transforms it to

.Sr ASc y = Sr b, y = S−1
c x. (7.16)

If A is symmetric, then selecting .Sr = Sc retains symmetry. For a general A, scaling
and permuting to bring large entries onto the diagonal can reduce the need for
numerical pivoting, resulting in fewer delayed pivots, less fill-in, faster factorization
and solve times, and a reduction in the storage requirements. But finding a good
scaling can represent a significant overhead (especially within a parallel solver)
and there are limits on the reduction in .κ(A) that can be achieved by scaling, as
illustrated by the following result.

Theorem 7.6 (van der Sluis 1969) Let the matrix A be SPD and let .DA be the
diagonal matrix with entries .aii (.1 ≤ i ≤ n). Then for all diagonal matrices D with
positive entries

.κ(D
−1/2
A AD

−1/2
A ) ≤ nzrmax κ(D−1/2 AD−1/2),

where .nzrmax is the maximum number of entries in a row of A.

We remark that the original (unscaled) matrix A should be retained for iterative
refinement of the computed solution. Using the scaled matrix generally results in
a larger residual for the original system because, in effect, a perturbed system is
solved.
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Equilibration Scaling

How to find an appropriate scaling is an open question, but a number of heuristics
have been proposed. An obvious choice is to seek to balance entries of the
scaled matrix .SrASc to have approximately equal absolute values. This is called
(approximate) equilibration scaling. It is a natural scaling if the numerical values of
the entries of A correspond to physical quantities that are measured using different
scales.

One approach to equilibration scaling that is relatively cheap as well as easy
to implement is to select the diagonal scaling matrices so that the infinity norm
of each row and column of the scaled matrix is approximately equal to unity.
Algorithm 7.4 presents an iterative procedure for computing such a scaling. Observe
that this preserves symmetry. In the nonsymmetric case, Algorithm 7.4 yields the
same results when applied to A and .AT in the sense that the scaled matrix obtained
for .AT is the transpose of that for A.

The infinity norm in Algorithm 7.4 may be replaced by the 1-norm, resulting in
a matrix whose row and column sums are exactly one (this is sometimes called
a doubly stochastic matrix). It can be advantageous to combine the use of the
infinity and one norms. For example, by performing one step of infinity norm scaling
followed by one or more steps of one norm scaling.

ALGORITHM 7.4 Equilibration scaling in the infinity norm
Input: The matrix A and convergence tolerance .δ > 0.
Output: Diagonal scaling matrices .Sr and .Sc.

1: .B(1) = A, .D(1) = I , .E(1) = I

2: for .k = 1, 2, . . . do

3: Compute .‖B(k)
i,1:n‖∞ and .‖B(k)

1:n,i‖∞, .1 ≤ i ≤ n � i-th row and column of

.B(k)

4: if .maxi

{

|1− ‖B(k)
i,1:n‖∞|

}

≤ δ and . maxi

{

|1− ‖B(k)
1:n,i‖∞|

}

≤ δ then

exit for loop

5: .R = diag

(

√

‖B(k)
i,1:n‖∞

)

and . C = diag

(

√

‖B(k)
1:n,i‖∞

)

6: .B(k+1) = R−1B(k) C−1, .D(k+1) = D(k) R−1, .E(k+1) = E(k) C−1

7: end for

8: .Sr = D(k+1) and .Sc = E(k+1)

Matching-Based Scalings

In Section 6.3.3, we discussed weighted matchings. In particular, the problem of
finding a permutation vector q that maximizes the product
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.

n
∏

i=1

|aiqi
|.

The entries .aiqi
corresponding to the solution q are the matched entries. The dual

variables .ui and .vj computed by the MC64 algorithm (Algorithm 6.4) that seeks to
compute q can be used to calculate a scaling as follows. Define the diagonal scaling
matrices .Sr and .Sc to have entries

.(Sr)ii = exp(ui) and (Sc)jj = exp(vj − log(max
i
|aij |)), 1 ≤ i, j ≤ n.

The entries of the scaled matrix .SrASc satisfy

.|(SrASc)ij |
{

= 1, if (i, j) ∈M,

≤ 1, otherwise,

where .M is the maximum weighted matching computed by the MC64 algorithm. If
A is symmetric, let S be the diagonal matrix with entries

.(S)ii =
√

(Sr)ii(Sc)ii .

Then the symmetric matrix SAS has the same property.

Combining Matching-Based Scalings and Orderings

The matching-based ordering and scaling can be used independently but they can
also be combined. After scaling, if the matched entries are non-symmetrically
permuted onto the diagonal, then because they are large, they provide good pivot
candidates for an LU factorization. This approach is commonly used alongside
static pivoting to obtain a factorization of a perturbed matrix, followed by iterative
refinement to recover the solution to the original system.

In the symmetric indefinite case, symmetry needs to maintained and so the
objective is to symmetrically permute a large off-diagonal entry .aij onto the

subdiagonal to give a .2×2 block .

(

aii aij

aij ajj

)

that is potentially a good .2×2 candidate

pivot. Assume that a matching .M has been computed using the MC64 algorithm
and let q be the corresponding permutation vector. Any diagonal entries that are
in the matching are immediately considered as potential .1 × 1 pivots and are held
in a set .M1. A set .M2 of potential .2 × 2 pivots is then built by expressing q in
terms of its component cycles. A cycle of length 1 corresponds to an entry .aii in
the matching. A cycle of length 2 corresponds to two vertices i and j , where .aij

and .aji are both in the matching. k potential .2 × 2 pivots can be extracted from
even cycles of length 2k or from odd cycles of length .2k + 1. A straightforward
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⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎝∗ ∗ ∗

∗ ∗
∗ ∗

⎞
⎠

Figure 7.3 An illustration of a symmetric matching for a symmetric indefinite matrix. On the left
is the matching .M returned by the MC64 algorithm and in the centre is a symmetric matching
.Ms obtained from .M. Entries in the matching are in blue. The pairs .(i, j) = (1, 2) and .(3, 5) are
possible .2× 2 pivot candidates. On the right is the compressed matrix that results from combining
rows and columns 1 and 2 and rows and columns 3 and 5.

way to do this is to take the first two entries as the first .2 × 2 pivot, the next two
as the next .2 × 2 pivot, and so on, until if the cycle is of odd length, a single entry
remains, which is added to the set .M1. In practice, most cycles in q are of length
1 or 2. A simple example is given in Figure 7.3. Here the matching from MC64 is
.M = {(1, 2), (2, 5), (3, 1), (4, 4), (5, 3)}, which is nonsymmetric. q has one cycle
of length 4 (.1 → 2 → 5 → 3 → 1) and one of length 1, giving .M1 = {(4, 4)} and
.M2 = {(1, 2), (2, 1), (3, 5), (5, 3)}.

Let .Ms =M1∪M2 be the resulting symmetric matching obtained from .M and
let .Qs be the corresponding permutation matrix. To combine .Qs with a fill-reducing
ordering (such as nested dissection or minimum degree), .QsAQT

s is compressed.
The union of the sparsity structure of the two rows and columns belonging to a
potential .2 × 2 pivot is built and used as the structure of a single row and column
in the compressed matrix. A fill-reducing ordering algorithm is then applied to
the (weighted) compressed graph, and the computed permutation is expanded to
a permutation .Qf for .QsAQT

s . The final permutation matrix is the product .Qf Qs .
The rows/columns of a potential .2× 2 pivot are ordered consecutively.

This approach can reduce the overall computational cost when solving tough
indefinite systems for which non-matching based orderings require substantial
modifications to the pivot sequence during the numerical factorization to maintain
stability. Unfortunately, although after applying the matching-based scaling and
ordering there are pivot candidates with large entries, there is still no guarantee
that the computed pivot sequence will not need modifying during the factorization.
An important disadvantage of using matchings are that the numerical values of the
entries of A are used so that, if a series of matrices with the same sparsity pattern but
different numerical values need to be factorized (such as occurs when an iterative
method is used to solve a nonlinear system), the whole symbolic factorization phase
may have to be rerun for each matrix, potentially adding significantly to the total
solution time.
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7.5 Notes and References

There are many related but different results on the stability of matrix factorizations.
While the seminal book of Higham (2002) includes component-wise accuracy and
stability analysis (see also the classical text (Wilkinson, 1961), which introduced
the terms partial pivoting and complete pivoting), the norm-wise results given in
Section 7.1 are based on Demmel (1997); see also Watkins (2002).

Rook pivoting is introduced in Neal & Poole (1992) and analysed in Foster
(1997). Early pivoting strategies for dense symmetric indefinite systems are pre-
sented in Bunch & Parlett (1971), Bunch (1971), and Bunch & Kaufman (1977).
Static pivoting in sparse LU factorizations was first proposed by Li & Demmel
(1998). A comprehensive overview of threshold-based pivoting strategies for dense
and sparse symmetric indefinite problems is given in Ashcraft et al. (1998). This
includes symmetric rook pivoting for dense problems and a discussion of the
sparse .2 × 2 threshold partial pivoting strategy of Duff & Reid (1983), which was
subsequently modified in Duff et al. (1991), and forms the basis of the approach
of Section 7.3.2. Further implementation details (including incorporating working
with blocks) are found in Reid & Scott (2011) (see also Hogg & Scott, 2013c). More
recently, there has been work on new strategies that seek to offer greater potential
for exploiting parallelism without sacrificing numerical robustness, including Hogg
& Scott (2014), Hogg et al. (2016), and Duff et al. (2018).

Avoiding the need to pivot for special classes of indefinite matrices is from
Lungten et al. (2018) (but see also Tůma, 2002 and de Niet & Wubs, 2009).
Duff & Pralet (2005) and Schenk & Gärtner (2006) use weighted matchings
for preprocessing, the latter implementing their strategy within the initial version
of the solver PARDISO. The HSL mathematical software library (HSL, 2022)
includes a number of packages that are designed for symmetric indefinite systems,
most notably the multifrontal codes MA57 (Duff, 2004) and HSL_MA97, and the
supernodal DAG-based code HSL_MA86 (Hogg & Scott, 2013b). In these solvers,
the default setting for the threshold pivoting parameter .γ is 0.01, although when
used within the well-known interior point solver (IPOPT, 2022), a value of .10−8 is
recommended (see also Saunders, 1996). Other well-known sparse direct solvers
that handle symmetric indefinite systems include MUMPS (2022) and WSMP
(2020).

The technique of iterative refinement was introduced by Doolittle (1878). It was
probably first used in a computer program for improving the computed solution to
a linear system by Wilkinson (1948), during the design and building of the ACE
computer at the National Physical Laboratory; see also Wilkinson (1963) and Moler
(1967). The book by Higham (2002) is an essential reference. For sparse systems,
the paper by Arioli et al. (1989) is of interest. Hogg & Scott (2010) employ iterative
refinement within a sparse mixed precision multifrontal solver. More recently, with
a focus on dense systems, Carson & Higham (2017, 2018) and Carson et al. (2020)
propose an alternative form of mixed precision iterative refinement that is able
to handle highly ill-conditioned problems by solving for the correction using the
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GMRES iterative method preconditioned by the computed LU factors. The survey
by Abdelfattah et al. (2021) provides a comprehensive review of work on the use of
mixed precision in numerical linear algebra.

For Theorem 7.6, we refer to van der Sluis (1969). The equilibration scaling in
the infinite norm that is outlined in Algorithm 7.4 is given by Ruiz (2001) (see also
Liu, 2015). Matching-based scalings are presented in Duff & Koster (1999, 2001),
but see also Neumaier & Olschowka (1996) as well as the origins of the scaling
factors in Edmonds (1965).
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Chapter 8
Sparse Matrix Ordering Algorithms

The computational complexity of obtaining optimal reorderings
for performing sparse Gaussian elimination justifies the
heuristic nature of all practical reordering algorithms. –
Erisman et al. (1987).

So far, our focus has been on the theoretical and algorithmic principles involved in
sparse Gaussian elimination-based factorizations. To limit the storage and the work
involved in the computation of the factors and in their use during the solve phase
it is generally necessary to reorder (permute) the matrix before the factorization
commences. The complexity of the most critical steps in the factorization is highly
dependent on the amount of fill-in, as can be seen from the following observation.

Observation 8.1 The operations to perform the sparse LU factorization .A = LU

and the sparse Cholesky factorization .A = LLT are .O(
∑n

j=1 | colL{j}| | rowU {j}| )
and .O(

∑n
j=1 | colL{j}|2 ) respectively, where .| rowU {j}| and .| colL{j}| are the

number of off-diagonal entries in row j of U and column j of L, respectively.

The problem of finding a permutation to minimize fill-in is NP complete and thus
heuristics are used to determine orderings that limit the amount of fill-in; we refer
to these as fill-reducing orderings. Frequently, this is done using the sparsity pattern
.S{A} alone, although sometimes for non-definite matrices, it is combined with the
numerical factorization because additional permutations of A may be needed to
make the matrix factorizable. Two main classes of methods that work with .S{A}
are commonly used.

Local orderings attempt to limit fill-in by repeated local decisions based on .G(A)

(or a relevant quotient graph).
Global orderings consider the whole sparsity pattern of A and seek to find a

permutation using a divide-and-conquer approach. Such methods are normally
used in conjunction with a local fill-reducing ordering, as the latter generally
works well for problems that are not really large.
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It is assumed throughout this chapter that A is irreducible. Otherwise, if .S{A}
is symmetric, the algorithms are applied to each component of .G(A) independently
and n is then the number of vertices in the component. If .S{A} is nonsymmetric, we
assume that A is in block triangular form and the algorithms are used on the graph
of each block on the diagonal. We also assume that A has no rows or columns that
are (almost) dense. If it does, a simple strategy is to remove them before applying
the ordering algorithm to the remaining matrix; the variables corresponding to the
dense rows and columns can be appended to the end of the computed ordering to
give the final ordering.

Historically, ordering the matrix A before using a direct solver to factorize it was
generally cheap compared to the numerical factorization cost. However, in the last
couple of decades, the development of more sophisticated factorization algorithms
and their implementations in parallel on modern architectures has affected this
balance so that the ordering can be the most expensive step. If a sequence of
matrices having the same sparsity pattern is to be factorized, then the ordering
cost and the cost of the symbolic factorization can be amortized over the numerical
factorizations. If not, it is important to have available a range of ordering algorithms
because using a cheap but less effective algorithm may lead to faster complete
solution times compared to using an expensive approach that gives some savings in
the memory requirements and operation counts but not enough to offset the ordering
cost.

8.1 Local Fill-Reducing Orderings for Symmetric S{A}

In the symmetric case, the diagonal entries of A are required to be present in .S{A}
(thus zeros on the diagonal are included in the sparsity structure). The aim is to
limit fill-in in the L factor of an .LLT (or .LDLT ) factorization of A. Two greedy
heuristics are the minimum degree (MD) criterion and the local minimum fill (MF)
criterion.

8.1.1 Minimum Fill-in (MF) Criterion

One way to reduce fill-in is to use a local minimum fill-in (MF) criterion that, at
each step, selects as the next variable in the ordering one that will introduce the least
fill-in in the factor at that step. This is sometimes called the minimum deficiency
approach. While MF can produce good orderings, its cost is often considered to be
prohibitive because it requires the updated sparsity pattern and the fill-in associated
with the possible candidates must be determined. The runtime can be reduced using
an approximate variant (AMF) but it is not widely implemented in modern sparse
direct solvers.



8.1 Local Fill-Reducing Orderings for Symmetric S{A} 137

8.1.2 Basic Minimum Degree (MD) Algorithm

The minimum degree (MD) algorithm is the best-known and most widely used
greedy heuristic for limiting fill-in. It seeks to find a permutation such that at each
step of the factorization the number of entries in the corresponding column of L is
minimized. This metric is easier and less expensive to compute compared to that
used by the minimum fill-in criterion. If .G(A) is a tree, then the MD algorithm
results in no fill-in but, in most real applications, it does not minimize the amount
of fill-in exactly.

The MD algorithm can be implemented using .G(A) and it can predict the
required factor storage without generating the structure of L. The basic approach
is given in Algorithm 8.1. At step k, the number of off-diagonal nonzeros in a row
or column of the active submatrix is the current degree of the corresponding vertex
in the elimination graph .Gk . The algorithm selects a vertex of minimum current
degree in .Gk and labels it .vk , i.e. next for elimination. The set of vertices adjacent to
.vk in .G(A) is .Reach(vk,Vk), where .Vk is the set of .k− 1 vertices that have already
been eliminated. These are the only vertices whose degrees can change at step k. If
.u ∈ Reach(vk,Vk), .u = vk , then its updated current degree is .|Reach(u,Vk+1)|,
where .Vk+1 = Vk ∪ vk .

At Step 4 of Algorithm 8.1, a tie-breaking strategy is needed when there is more
than one vertex of current minimum degree. A straightforward strategy is to select
the vertex that lies first in the original order. For the example in Figure 8.1, vertices
2, 3, and 6 are initially all of degree 2 and could be selected for elimination; as the
lowest-numbered vertex, 2 is chosen. After it has been eliminated, vertices 3, 5, and
6 have current degree 2 and so vertex 3 is next. As all the remaining vertices have
current degree 2, vertex 1 is eliminated, followed by 4, 5, and 6. It is possible to
construct artificial matrices showing that some systematic tie-breaking choices can
lead to a large amount of fill-in but such behaviour is not typical.

ALGORITHM 8.1 Basic minimum degree (MD) algorithm
Input: Graph .G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of .G.

1: Set .G1 = G and compute the degree .degG1(u) of all .u ∈ V(G1)

2: for .k = 1 : n− 1 do
3: Compute .mdeg = min{degGk (u) | u ∈ V(Gk)} � mdeg is the current

minimum degree
4: Choose .vk ∈ V(Gk) such that .degGk (vk) = mdeg

5: .p(k) = vk � .vk is the next vertex in the elimination order
6: Construct .Gk+1 and update the current degrees of its vertices
7: end for
8: .p(n) = vn where .vn is the only vertex in .Gn
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Figure 8.1 An illustration of three steps of the MD algorithm. The original graph .G and the
elimination graphs .G2, .G3 and .G4 that result from eliminating vertex 2, then vertex 3 and then
vertex 1 are shown red dashed lines denote fill edges.

The construction of each elimination graph .Gk+1 is central to the implementation
of the MD algorithm. Because eliminating a vertex potentially creates fill-in,
an efficient representation of the resulting elimination graph that accommodates
this (either implicitly or explicitly) is needed. Moreover, recalculating the current
degrees is time consuming. Consequently, various approaches have been developed
to enhance performance; these are discussed in the following subsections.

8.1.3 Use of Indistinguishable Vertices

In Section 3.5.1, we introduced indistinguishable vertices and supervariables. The
importance of exploiting these in MD algorithms is emphasized by the next two
results. Here .Gv denotes the elimination graph obtained from .G when vertex .v ∈
V(G) is eliminated.

Theorem 8.1 (George & Liu 1980b, 1989) Let u and w be indistinguishable
vertices in .G. If .v ∈ V(G) with .v = u,w, then u and w are indistinguishable in
.Gv .

Proof Two cases must be considered. First, let .u ∈ adjG{v}. Then .w ∈ adjG{v} and
if v is eliminated, the adjacency sets of u and w are unchanged and these vertices
remain indistinguishable in the resulting elimination graph .Gv . Second, let .u,w ∈
adjG{v}. When v is eliminated, because u and w are indistinguishable in .G, their
adjacency sets in .Gv will be modified in the same way, by adding the entries of
.adjG{v} that are not already in .adjG{u} and .adjG{w}. Consequently, u and w are
indistinguishable in .Gv . ��

Figure 8.2 demonstrates the two cases in the proof of Theorem 8.1. Here, u and
w are indistinguishable vertices in .G. Setting .v ≡ v′ illustrates .u ∈ adjG{v}. If
.v′ is eliminated, then the adjacency sets of u and w are clearly unchanged. Setting
.v ≡ v′′ illustrates .u,w ∈ adjG{v}. In this case, if .v′′ is eliminated, then vertices s

and t are added to both .adjG{u} and .adjG{w}.
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u
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v′′ r

s

t

v′

Figure 8.2 An example to illustrate Theorem 8.1. u and w are indistinguishable vertices in .G;
.adjG{u} = {r, w, v′′} and .adjG{w} = {r, u, v′′}.

u w

s t

r v

Figure 8.3 An illustration of Theorem 8.2. Vertices u and w are of minimum degree (with degree
.mdeg = 3) and are indistinguishable in .G. After elimination of w, the current degree of u is
.mdeg − 1 and the current degree of each of the other vertices is at most .mdeg − 1. Therefore, u

is of current minimum degree in .Gw . Note that vertices r and v are also of minimum degree and
indistinguishable in .G; they are not neighbours of w and their degrees do not change when w is
eliminated.

Theorem 8.2 (George & Liu 1980b, 1989) Let u and w be indistinguishable
vertices in .G. If w is of minimum degree in .G, then u is of minimum degree in .Gw.

Proof Let .degG(w) = mdeg. Then .degG(u) = mdeg. Indistinguishable vertices
are always neighbours. Eliminating w gives .degGw

(u) = mdeg − 1 because w is
removed from the adjacency set of u and there is no neighbour of u in .Gw that was
not its neighbour in .G. If .x = w and .x ∈ adjG{u}, then the number of neighbours
of x in .Gw is at least .mdeg− 1. Otherwise, if .x ∈ adjG{u}, then its adjacency set in
.Gw is the same as in .G and is of the size at least mdeg. The result follows. ��

Theorem 8.2 is illustrated in Figure 8.3.
Theorems 8.1 and 8.2 can be extended to more than two indistinguishable

vertices, which allows indistinguishable vertices to be selected one after another in
the MD ordering. This is referred to as mass elimination. Treating indistinguishable
vertices as a single supervariable cuts the number of vertices and edges in the
elimination graphs, which reduces the work needed for degree updates.
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In the basic MD algorithm, the current degree of a vertex is the number of
adjacent vertices in the current elimination graph. The external degree of a vertex
is the number of vertices adjacent to it that are not indistinguishable from it. The
motivation comes from the underlying reason for the success of the minimum degree
ordering in terms of fill reduction. Eliminating a vertex of minimum degree implies
the formation of the smallest possible clique resulting from the elimination. If mass
elimination is used, then the size of the resulting clique is equal to the external
degree of the vertices eliminated by the mass elimination step. Using the external
degree can speed up the time for computing the ordering and give worthwhile
savings in the number of entries in the factors.

8.1.4 Degree Outmatching

A concept that is closely related to that of indistinguishable vertices is degree
outmatching. This avoids computing the degrees of vertices that are known not
to be of current minimum degree. Vertex w is said to be outmatched by vertex u if

.adjG{u} ∪ {u} ⊆ adjG{w} ∪ {w}.

It follows that .degG(u) ≤ degG(w). A simple example is given in Figure 8.4.
Importantly, degree outmatching is preserved when vertex .v ∈ G of minimum
degree is eliminated, as stated in the following result.

Theorem 8.3 (George & Liu 1980b, 1989) In the graph .G let vertex w be
outmatched by vertex u and vertex v (.v = u,w) be of minimum degree. Then w

is outmatched in .Gv by u.

Proof Three cases must be considered. First, if .u /∈ adjG{v} and .w /∈ adjG{v}, then
the adjacency sets of u and w in .Gv are the same as in .G. Second, if v is a neighbour
of both u and w in .G, then any neighbours of v that were not neighbours of u and

u

w

v′′ v′′′

v′

Figure 8.4 An example .G in which vertex w is outmatched by vertex u. .v′ is not a neighbour of
u or w; vertex .v′′ is a neighbour of both u and w; .v′′′ is a neighbour of w but not of u.
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w are added to their adjacency sets in .Gv . Third, if .u /∈ adjG{v} and .w ∈ adjG{v},
then the adjacency set of u in .Gv is the same as in .G but any neighbours of v that
were not neighbours of w are added to the adjacency set of w in .Gv . In all three
cases, w is still outmatched by u in .Gv . ��

The three possible cases for v in the proof of Theorem 8.3 are illustrated in
Figure 8.4 by setting .v ≡ v′, .v′′ and .v′′′, respectively. An important consequence of
Theorem 8.3 is that if w is outmatched by u, then it is not necessary to consider w

as a candidate for elimination and all updates to the data structures related to w can
be postponed until u has been eliminated.

8.1.5 Cliques and Quotient Graphs

From Parter’s rule, if vertex v is selected at step k, then the elimination matrix that
corresponds to .Gk+1 contains a dense submatrix of size equal to the number of off-
diagonal entries in row and column v in the matrix that corresponds to .Gk . For large
matrices, creating and explicitly storing the edges in the sequence of elimination
graphs is impractical and a more compact and efficient representation is needed.
Each elimination graph can be interpreted as a collection of cliques, including the
original graph .G, which can be regarded as having .|E | cliques, each consisting of
two vertices (or, equivalently, an edge). This gives a conceptually different view of
the elimination process and provides a compact scheme to represent the elimination
graphs. The advantage in terms of storage is based on the following.

Let .{V1,V2, . . . ,Vq} be the set of cliques for the current graph and let v

be a vertex of current minimum degree that is selected for elimination. Let
.{Vs1 ,Vs2 , . . . ,Vst } be the subset of cliques to which v belongs. Two steps are then
required.

1. Remove the cliques .{Vs1 ,Vs2 , . . . ,Vst } from .{V1,V2, . . . ,Vq}.
2. Add the new clique .Vv = {Vs1 ∪ . . . ∪ Vst } \ {v} into the set of cliques.

Hence

.degG(v) = |Vv| <
t
∑

i=1

|Vsi |,

and because .{Vs1 ,Vs2 , . . . ,Vst } can now be discarded, the storage required for the
representation of the sequence of elimination graphs never exceeds that needed
for .G(A). The storage to compute an MD ordering is therefore known beforehand
in spite of the rather dynamic nature of the elimination process. The index of
the eliminated vertex can be used as the index of the new clique. This is called
an element or enode (the terminology comes from finite-element methods), to
distinguish it from an uneliminated vertex, which is termed an snode.
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A sequence of special quotient graphs .G[1] = G(A),G[2], . . . ,G[n] with the two
types of vertices is generated in place of the elimination graphs. Each .G[k] has n

vertices that satisfy

.V(G) = Vsnodes ∪ Venodes, Vsnodes ∩ Venodes = ∅,

where .Vsnodes and .Venodes are the sets of snodes and enodes, respectively. When v is
eliminated, any enodes adjacent to it are no longer required to represent the sparsity
pattern of the corresponding active submatrix and so they can be removed. This is
called element absorption.

Working with these graphs can be demonstrated by considering the computation
of the vertex degrees. To compute the degree of an uneliminated vertex, the set of
neighbouring snodes is counted. Then, if a neighbour of one of these snodes is an
enode, its neighbours are also counted (avoiding double counting). More formally,
if .v ∈ Vsnodes , then the adjacency set of v is the union of its neighbours in .Vsnodes

and the vertices reachable from v via its neighbours in .Venodes . In this way, vertex
degrees are computed by considering fill-paths, avoiding storing the fill-in entries
explicitly. This reduces memory requirements and contributes to the computational
efficiency, which can be further improved by amalgamating sets of indistinguishable
enodes and snodes.

The sequences of elimination graphs and quotient graphs are illustrated in
Figure 8.5. The top line shows .G together with .G2 and .G3 after the elimination
of vertices 1 and 2, respectively. When vertex 1 is eliminated, a new edge is
added to make its neighbours into a clique. The elimination of vertex 2 creates no
additional fill and the graph .G3 with three nodes represents the sparsity structure of
the corresponding active submatrix .A(3). The bottom line shows the corresponding
quotient graphs. After the first elimination, vertex 1 is an enode and the fill edge
is represented implicitly. After the second elimination, the enodes 1 and 2 can be
amalgamated and so too can the snodes 3 and 4 because they are indistinguishable.
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Figure 8.5 The top line shows .G = G1, .G2 and .G3. The red dashed line denotes a fill edge. The
bottom line shows the quotient graphs .G[2] and .G[3] after the first and second elimination steps. A
circle represents a vertex in .G (an snode), while a square represents an enode.
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ALGORITHM 8.2 Basic multiple minimum degree (MMD) algorithm
Input: Graph .G of a symmetrically structured matrix.
Output: A permutation vector p that defines a new labelling of the vertices of .G.

1: Set .k = 1, .G1 = G and compute the degree .degG1(u) of all .u ∈ V(G1)

2: while .k ≤ n do
3: Compute .mdeg = min{degGk (u) | u ∈ V(Gk)}
4: Find all mutually non-adjacent .vj ∈ V(Gk), .j = 1, . . . , t with .degGk (vj ) =

mdeg

5: for .j = 1 : t do
6: .p(k) = vj � Vertex .vj is the next vertex in the elimination order
7: .k = k + 1
8: end for
9: if .k < n then

10: Construct .Gk+1 and update the current degrees of its vertices
11: end if
12: end while

8.1.6 Multiple Minimum Degree (MMD) Algorithm

The multiple minimum degree (MMD) algorithm aims to improve efficiency by
processing several independent vertices that are each of minimum current degree
together in the same step, before the degree updates are performed. The basic
approach is outlined as Algorithm 8.2. At each outer loop, .t ≥ 1 denotes the number
of vertices of minimum current degree that are mutually non-adjacent and so can be
put into the elimination order one after another. An example in which the four corner
vertices have the same minimum degree is depicted in Figure 8.6. Here, on the first
step, .mdeg = 2 and .t = 4. Note that the MMD strategy is complementary to the
mass elimination approach in which the set S of indistinguishable vertices that can
be eliminated one after another is fully interconnected and all vertices of S have the
same set of neighbours outside S.

Figure 8.6 The red (corner) vertices of .G are each of degree 2 and are ordered consecutively
during the first step of Algorithm 8.2.
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The complexity of the MD and MMD algorithms is .O(nz(A)n2) but because for
MMD the outer loop of the algorithm update is performed fewer times, it can be
significantly faster than MD. MMD orderings can also lead to less fill-in, possibly a
consequence of introducing some kind of regularity into the ordering sequence.

8.1.7 Approximate Minimum Degree (AMD) Algorithm

The idea behind the widely used approximate minimum degree (AMD) algorithm
is to inexpensively compute an upper bound on a vertex degree in place of the
degree, and to use this bound as an approximation to the external degree when
selecting vertices within the MD algorithm. Even though vertex degrees are not
determined exactly, the quality of the orderings obtained using the AMD algorithm
are competitive with those computed using the MD algorithm and can surpass them.
The complexity of AMD is .O(nz(A)n) and, in practice, its runtime is typically
significantly less than that of the MD and MMD approaches.

8.2 Minimizing the Bandwidth and Profile

An alternative way of reducing the fill-in locally is to add another criterion to the
relabelling of the vertices, such as restricting the nonzeros of the permuted matrix
to specific positions. The most popular approach is to force them to lie close to the
main diagonal. If Gaussian elimination is applied without further permutations, then
all fill-in takes place between the first entry of a row and the diagonal or between
the first entry of a column and the diagonal. It is therefore sufficient to store all the
entries in the lower triangular part from the first entry in each row to the diagonal and
all the entries in the upper triangular part from the first entry in each column to the
diagonal. This allows straightforward implementations of Gaussian elimination that
employ static data structures. Here we again consider symmetric and, for simplicity,
we assume that .G(A) is connected; generalizations of the terminology and ideas to
nonsymmetric matrices are possible.

8.2.1 The Band and Envelope of a Matrix

To characterize the positions within .S{A} that are close to the main diagonal, we
denote the leftmost entries in the lower triangular part of A using the mapping .ηi as
follows:

.ηi(A) = min{j | 1 ≤ j ≤ i with aij = 0}, 1 ≤ i ≤ n, (8.1)
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that is, .ηi(A) is the column index of the first entry in the i-th row of A.
Define

.βi(A) = i − ηi(A), 1 ≤ i ≤ n.

The semibandwidth of A is

. max{βi(A)| 1 ≤ i ≤ n},

and the bandwidth is

.β(A) = 2 ∗max{βi(A) | 1 ≤ i ≤ n} + 1.

The band of A is the following set of index pairs in A

.band(A) = {(i, j) | 0 < i − j ≤ β(A)}.

The envelope is the set of index pairs that lie between the first entry in each row and
the diagonal

.env(A) = {(i, j) | 0 < i − j ≤ βi(A)}.

Note that the band and envelope of a sparse symmetrically structured matrix A

include only entries of the strict lower triangular part of A. The envelope is easily
visualized: picture the lower triangular part of A, and remove the diagonal and the
leading zero entries in each row. The remaining entries (whether nonzero or zero)
comprise the envelope of A. The profile of A is defined to be the number of entries
in the envelope (the envelope size) plus n.1 An illustrative example is given in
Figure 8.7. Here .η1(A) = 1, .β1(A) = 0, .η2(A) = 1, .β2(A) = 1, .η3(A) = 2,
.β3(A) = 1, and so on.
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Figure 8.7 Illustration of the band and envelope of a matrix A whose sparsity pattern is on the
left. In the centre, the positions of .band(A) are circled and on the right, the positions of .env(A)

are circled. The bandwidth is 5 and the envelope size and the profile are 7 and 14, respectively.

1 Sometimes in the literature the profile is defined to be the envelope size.
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The next result shows that the static data structures determined for A are
sufficient for its Cholesky factors and by permuting A to minimize its band or
profile, the fill-in is also approximately minimized.

Theorem 8.4 (Liu & Sherman 1976; George & Liu 1981) If L is the Cholesky
factor of A, then

.env(A) = env(L).

Proof The proof uses mathematical induction on the principal leading submatrices
of A of order k. The result is clearly true for .k = 1 and .k = 2. Assume it holds for
.2 ≤ k < n and consider the block factorization

.

(

A1:k,1:k u1:k
uT

1:k α

)

=
(

L1:k,1:k 0
vT

1:k β

)

(

LT
1:k,1:k v1:k

0 β

)

,

where .α and .β are scalars. Equating the left and right sides, .L1:k,1:kv1:k = u1:k.
Because .uj = 0 for .j < ηk+1(A) and .uηk+1 = 0, it follows that .vj = 0 for
.j < ηk+1(A) and .vηk+1 = 0. This proves the induction step. ��
A straightforward corollary of Theorem 8.4 is that .band(A) = band(L).

8.2.2 Level-Based Orderings

Finding a permutation P to minimize the band or profile of .PAP T is combinato-
rially hard and again heuristics are used to efficiently find an acceptable P . The
popular Cuthill McKee (CM) approach chooses a suitable starting vertex s and
labels it 1. Then, for .i = 1, 2, . . . , n − 1, all vertices adjacent to vertex i that are
still unlabelled are labelled successively in order of increasing degree, as described
in Algorithm 8.3. A very important variation is the Reverse Cuthill McKee (RCM)
algorithm, which incorporates a final step in which the CM ordering is reversed.
The CM- and RCM-permuted matrices have the same bandwidth but the latter can
decrease the envelope, as demonstrated in Figure 8.8.

The importance of the CM and RCM orderings is expressed in the following
theorem. The full envelope of the Cholesky factor of the permuted matrix implies
cache efficiency when performing the triangular solves once the factorization is
complete.

Theorem 8.5 (Liu & Sherman 1976; George & Liu 1981) Let A be symmetri-
cally structured and irreducible. If P corresponds to the CM labelling obtained
from Algorithm 8.3 and L is the Cholesky factor of .P T AP , then .env(L) is full, that
is, all entries of the envelope are nonzero.
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Figure 8.8 An example to illustrate Algorithm 8.3. The starting vertex is .s = 3; it has degree 1.
The graph .G(A) is given and the sparsity patterns of A (left), A symmetrically permuted by the
CM algorithm (centre) and A symmetrically permuted by the RCM algorithm (right). The profiles
of these matrices are 25, 17, and 16, respectively.

A crucial difference between profile reduction ordering algorithms and minimum
degree strategies is that the former is based solely on .G: the costly construction of
quotient graphs is not needed. However, unless the profile after reordering is very
small, there can be significantly more fill-in in the factor.

Key to the success of Algorithm 8.3 is the choice of the starting vertex s: the
quality of the ordering is highly dependent on s. A good candidate is a vertex
for which the maximum distance between it and some other vertex in .G is large.
Formally, the eccentricity .ε(u) of the vertex u in the connected undirected graph .G
is defined to be

.ε(u) = max{d(u, v) | v ∈ V},

where .d(u, v) is the distance between the vertices u and v (the length of the shortest
path between these vertices). The maximum eccentricity taken over all the vertices
is the diameter of .G (that is, the maximum distance between any pair of vertices).
The endpoints of a diameter (also termed peripheral vertices) provide good starting
vertices. The complexity of finding a diameter is .O(n3) because the shortest paths
amongst all the vertices have to be checked. Thus, a pseudo-diameter defined by
any pair of vertices for which .d(u, v) is close to the diameter is used instead. The
vertices defining a pseudo-diameter are pseudo-peripheral vertices.
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ALGORITHM 8.3 CM and RCM algorithms for band and profile reduction
Input: Graph .G of a symmetrically structured irreducible matrix and a starting
vertex s.
Output: Permutation vectors .pcm and .prcm that define new labellings of the vertices
of .G(A).

1: .label(1 : n) = f alse

2: Compute .adjG{u} and .degG(u) for all .u ∈ V(G)

3: .k = 1, . v1 = s, . pcm(1) = v1, . label(v1) = true

4: for .i = 1 : n− 1 do
5: for .w ∈ adjG{vi} with .label(w) = f alse in order of increasing degree do
6: .k = k + 1, . vk = w, . pcm(k) = vk , . label(vk) = true

7: end for
8: end for
9: For the RCM ordering, .prcm(i) = pcm(n− i + 1), .i = 1, 2, . . . , n.

A heuristic algorithm is used to find pseudo-peripheral vertices. A commonly
used approach is based on level sets. A level structure rooted at a vertex r is defined
as the partitioning of .V into disjoint levels .L1(r),L2(r), . . . ,Lh(r) such that

(i) .L1(r) = {r} and
(ii) for .1 < i ≤ h, .Li (r) is the set of all vertices that are adjacent to vertices in

.Li−1(r) but are not in .L1(r),L2(r), . . . ,Li−1(r).

The level structure rooted at r may be expressed as the set .L(r) =
{L1(r),L2(r), . . . ,Lh(r)}, where h is the total number of levels and is termed
the depth. The level sets can be found using a breadth-first search that starts at the
root r . The Gibbs-Poole-Stockmeyer (GPS) algorithm presented as Algorithm 8.4
can be used to finding pseudo-peripheral vertices, one of which may then be used as
a starting vertex for the CM and RCM algorithms. Here the root vertex r is normally
taken to be an arbitrary vertex of minimum degree. .L(r) is constructed and then
the level structures rooted at each of the vertices in the last level set .Lh(r). If, for
some .w ∈ Lh(r), the depth of .Lw exceeds that of .L(r), w replaces r as the root
vertex, and the procedure is repeated. If no such vertex is found, r is chosen as a
pseudo-peripheral vertex.

A simple example is given in Figure 8.9. Starting with .r = 2, after two passes
through the while loop, the GPS algorithm returns .s = 8 and .t = 1 as pseudo-
peripheral vertices.

To obtain an efficient implementation of the GPS algorithm, it is necessary to
limit the number of level set structures that are fully constructed. For example, “short
circuiting” can be incorporated in which wide level structures are rejected as soon
as they are detected (wide levels will not lead to a deep level structure which is
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ALGORITHM 8.4 Basic GPS algorithm to find a pair of pseudo-peripheral
vertices
Input: Graph .G of a symmetrically structured irreducible matrix and a root vertex
r .
Output: Pseudo-peripheral vertices .s, t .

1: Construct .L(r) and set .f lag = f alse

2: while .f lag = f alse do
3: .f lag = true

4: for .i = 1 : |L(r)| do
5: .wi ∈ L(r) � Select vertex .wi from last level set
6: if .f lag = true then
7: Construct .L(wi)

8: if .depth(L(wi)) > depth(L(r)) then
9: .f lag = f alse � Flag that .wi will be used as new initial vertex

10: end if
11: end if
12: end for
13: if .f lag = true then
14: .s = r and .t = wi � s is chosen; while loop will terminate algorithm
15: else
16: .r = wi

17: end if
18: end while

1 2 3 4

5 6 7 8

Figure 8.9 An example to illustrate Algorithm 8.4 for finding pseudo-peripheral vertices. With
root vertex .r = 2, the first level set structure is .L(2) = {{2}, {1, 3}, {4, 5, 7}, {6, 8}}. Setting .r = 8
at Step 16, the second level set structure is .L(8) = {{8}, {4, 7}, {3, 6}, {2, 5}, {1}} and the algorithm
terminates with .s = 8 and .t = 1.

needed for a narrow band). Furthermore, to reduce the number of vertices in the
last level set .Lh(r) for which it is necessary to generate the rooted level structures,
a “shrinking” strategy can be used. This typically involves considering the degrees
of the vertices in .Lh(r) (for example, only those of smallest degree will be tried).
Such modifications can lead to significant time savings while still returning a good
starting vertex for the CM and RCM algorithms. As with the MD algorithm, tie-
breaking rules must be built into any implementation.
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8.2.3 Spectral Orderings

Spectral methods offer an alternative approach that does not use level structures.
The spectral algorithm associates a positive semidefinite Laplacian matrix .Lp with
the symmetric matrix .A as follows:

.(Lp)ij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1 if i = j and aij = 0,

degG(i) if i = j,

0 otherwise.

An eigenvector corresponding to the smallest positive eigenvalue of the Laplacian
matrix is called a Fiedler vector. If .G is connected, .Lp is irreducible and the second
smallest eigenvalue is positive. The vertices of .G are ordered by sorting the entries
of the Fiedler vector into monotonic order. Applying the permutation symmetrically
to A yields the spectral ordering.

The use of the Fiedler vector for reordering A comes from considering the matrix
envelope. The size of the envelope can be written as

.|env(A)| =
n
∑

i=1

βi =
n
∑

i=1

max
k<i

(k,i)∈G
(i − k).

Observation 8.1 implies that the asymptotic upper bound on the operation count for
the factorization based on .env(A) is

.workenv =
n
∑

i=1

β2
i =

n
∑

i=1

max
k<i

(k,i)∈G
(i − k)2.

Ordering the vertices using the Fiedler vector is closely related to minimizing
.weightenv over all possible vertex reorderings, where

.weightenv =
n
∑

i=1

∑

k<i
(k,i)∈G

(i − k)2.

Thus, while minimizing the profile and envelope is related to the infinity norm,
minimizing .weightenv is related to the Euclidean norm of the distance between
graph vertices.

Although computing the Fiedler vector can be computationally expensive it
does have the advantage of easy vectorization and parallelization and the resulting
ordering can give small profiles and low operation counts.
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8.3 Local fill-reducing orderings for nonsymmetric S{A}

If .S{A} is nonsymmetric, then an often-used strategy is to apply the minimum
degree algorithm (or one of its variants) or a band or profile-reducing ordering to the
undirected graph .G(A+AT ). This can work well if the symmetry index .s(A) is close
to 1. But if A is highly nonsymmetric (typically, for values of .s(A) less than 0.5,
A is considered to be highly nonsymmetric), then a different approach is required.
Markowitz pivoting generalizes the MD algorithm by choosing the pivot entry
based on vertex degrees computed directly from the nonsymmetric .S{A}; the result
is a nonsymmetric permutation. It can be described using a sequence of bipartite
graphs of the active submatrices but here we use a matrix-based description that
permutes A on-the-fly. Note that Markowitz pivoting is generally incorporated into
the numerical factorization phase of an LU solver, rather than being used to derive
an initial reordering of A.

At step k of the LU factorization, consider the .(n− k + 1)× (n− k + 1) active
submatrix, that is, the Schur complement .S(k) given by (3.2). Let .nz(rowi) and
.nz(colj ) denote the number of entries in row i and column j of .S(k) (.1 ≤ i, j ≤ n−
k + 1). Markowitz pivoting selects as the k-th pivot the entry of .S(k) that minimizes
the Markowitz count given by the product

.(nz(rowi)− 1)(nz(colj )− 1).

This strategy is summarized in Algorithm 8.5 and illustrated in Figure 8.10. Here
the first pivot is .a24 with Markowitz count 1; it does not cause fill-in. The second
pivot has Markowitz count 2 in .S(2); it results in one filled entry. Note that the
interchanges of rows and columns that are potentially performed at each of the first
.n − 1 steps of the factorization give the row and column permutation matrices on
the output of Algorithm 8.5. Implementation of the algorithm requires access to the
rows and the columns of the matrix.

ALGORITHM 8.5 Markowitz pivoting
Input: Matrix A with a nonsymmetric sparsity pattern.
Output: .A′ = PAQ, where P and Q are permutation matrices chosen to limit fill
in.

1: Set .S(1) = A and .A′ = A

2: for .k = 1 : n− 1 do
3: Compute .nz(rowi) and .nz(colj ) (.1 ≤ i, j ≤ n− k + 1)
4: Find an entry .s

(k)
ij of .S(k) that minimizes .(nz(rowi)− 1)(nz(colj )− 1)

5: Permute the rows and columns so that .s(k)
ij is the .(1, 1) entry of the permuted

.S(k)

6: Compute Schur complement .S(k+1) of the permuted .S(k) with respect to its
.(1, 1) entry

7: end for
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⎛
⎜⎜⎜⎝

1 ∗ ∗ ∗ ∗
2 ∗ �
3 ∗ ∗ ∗
4 ∗ ∗ ∗
5 ∗ ∗ ∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2 ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
4 ∗ � ∗
5 ∗ ∗ ∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

5 41 2 3 4 1 2 3 5 4 2 1 3 5

2 ∗ ∗
4 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗
3 ∗ ∗ ∗
5 ∗ ∗ f ∗

⎞
⎟⎟⎟⎠

Figure 8.10 Illustration of Markowitz pivoting. The first and second pivots are circled. The
sparsity pattern of .A = S(1) is on the left. In the centre is the sparsity pattern after permuting the
pivot in position .(2, 4) to the .(1, 1) position of .S(1). There is no fill-in after the first factorization
step. On the right is the sparsity pattern after selecting the second pivot that has the original position
.(4, 2) and permuting it to the .(1, 1) position of .S(2). The resulting filled entry is denoted by f . Note
that the nonsymmetric permutations transform the originally irreducible matrix into a reducible
one.

Markowitz pivoting as described here only considers the sparsity of A and the
subsequent Schur complements. In practice, the pivoting strategy also needs to avoid
small pivots because, as discussed in the last chapter, they can lead to numerical
instability. A simple improvement is to break ties in Step 4 by choosing from the
entries with the minimum Markowitz count the one of largest absolute value.

Because computing row and column counts is expensive, practical implemen-
tations may restrict computing them to a limited number of rows and columns.
Alternatively, the search may be restricted to a predetermined number of rows
of lowest row count (typically two or three rows), choosing entries with best
Markowitz count and breaking ties on numerical grounds. Another option is
to restrict the pivot choice to diagonal entries, in which case A is permuted
symmetrically.

Algorithm 8.5 needs storage formats that can accommodate dynamic changes
to the Schur complements. For example, the DS format described in Section 1.3.2,
which allows access to both the rows and the columns. However, this format is only
feasible if the amount of fill-in during the factorization is not large.

8.4 Global Nested Dissection Orderings

Nested dissection is the most important and widely used global ordering strategy
for direct methods when .S{A} is symmetric; it is particularly effective for ordering
very large matrices. It proceeds by identifying a small set of vertices .VS (known as
a vertex separator) that if removed separates the graph into two disjoint subgraphs
described by the vertex subsets .B and .W (commonly called “black” and “white”,
respectively). The rows and columns belonging to .B are labelled first, then those
belonging to .W and finally those in .VS . The reordered matrix has the form

.

⎛

⎜

⎝

AB,B 0 AB,VS
0 AW,W AW,VS

AT
B,VS

AT
W,VS

AVS ,VS

⎞

⎟

⎠
. (8.2)
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Figure 8.11 A simple example to illustrate nested dissection. The pattern of the original
matrix (top), the partitioned graph (centre), and the corresponding symmetrically permuted matrix
(bottom) are given.

This is shown for a .13 × 13 example in Figure 8.11. Provided the variables
are eliminated in the permuted order, no fill occurs within the zero off-diagonal
blocks. If .|VS | is small and .|B| and .|W| are similar, these zero blocks account
for approximately half the possible entries in the matrix. The reordering can be
applied recursively to the submatrices .AB,B and .AW,W until the vertex subsets
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ALGORITHM 8.6 Nested dissection algorithm
Input: Graph .G of a symmetrically structured matrix A and a partitioning algorithm
PartitionAlg.
Output: A permutation vector p that defines a new labelling of the vertices of .G.

1: recursive function (p = nested_dissection(A, PartitionAlg))
2: if dissection has terminated then � Vertex subsets are smaller than some

threshold
3: .p = AMD(V, E) � Compute an AMD ordering
4: else
5: Use PartitionAlg.(V, E) to obtain the vertex partitioning .(B,W,VS)

6: .pB = nested_dissection(.AB,B, PartitionAlg)
7: .pW = nested_dissection(.AW,W , PartitionAlg)
8: .pVS is an ordering of .VS

9: Set .p =
⎛

⎜

⎝

pB
pW
pVS

⎞

⎟

⎠

10: end if
11: end recursive function

are of size less than some prescribed threshold. At this stage, a local ordering
technique (such as AMD) is normally more effective than nested dissection, and so a
switch is made. The general form of the nested dissection algorithm is summarized
in Algorithm 8.6. The parameter PartitionAlg specifies the algorithm used in
determining the partitioning of the vertices. The performance and efficacy is highly
dependent on the choice of PartitionAlg. Originally, level set based methods were
used but most current approaches use multilevel techniques that create a hierarchy
of graphs, each representing the original graph, but with a smaller dimension. The
smallest (that is, the coarsest) graph in the sequence is partitioned. This partition
is propagated back through the sequence of graphs, while being periodically
refined.

8.5 Bordered Forms

Another possibility to exploit the global matrix structure is to use bordered block
forms. These forms can arise naturally in some practical applications.
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8.5.1 Doubly Bordered Form

The matrix (8.2) is an example of a doubly bordered block diagonal (DBBD)
form. More generally, a matrix is said in DBBD form if it has the block structure

.ADB =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1,1 C1

A2,2 C2

. . . .

ANb,Nb CNb

R1 R2 . . . RNb B

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (8.3)

where .Nb > 1, the blocks .Alb,lb on the diagonal are square .nlb × nlb matrices
and the border blocks .Clb and .Rlb are .nlb × nS and .nS × nlb matrices, respectively,
with .nS � nlb (.1 ≤ lb ≤ Nb). B is an .nS × nS matrix. The blocks can have very
different sizes. A nested dissection ordering can be used to permute a symmetrically
structured matrix A to a symmetrically structured DBBD form (.S{Ri} = S{CT

i }).
If .S{A} is close to symmetric, then nested dissection can be applied to .S{A+AT }.
In finite-element applications, the DBBD form corresponds to partitioning the
underlying finite-element domain into non-overlapping subdomains; each .Alb,lb

represents the interior of a subdomain and the variables in the borders are those
that lie on an interface between two or more subdomains.

Coarse-grained parallel approaches aim to factorize the .Alb,lb blocks in parallel
before solving the interface problem that connects the blocks. The block factoriza-
tion of .ADB is

.ADB =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

L1

L2

. . .

LNb

̂R1 ̂R2 . . . ̂RNb LS

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

U1 ̂C1

U2 ̂C2

. . . .

UNb
̂CNb

US

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where

.̂Rlb = RlbU
−1
lb , ̂Clb = L−1

lb Clb (1 ≤ lb ≤ Nb), LSUS = B −
Nb
∑

lb=1

̂Rlb
̂Clb.

The process is summarized in Algorithm 8.7. Here, for simplicity of notation, the
permutation matrices for the block factorizations are set to the identity; in practice,
.Alb,lb = PlbLlbUlbQlb for some permutation matrices .Plb and .Qlb (.1 ≤ lb ≤ Nb)
and .S = PSLSUSQS for some permutation matrices .Ps and .QS .

There are several opportunities to incorporate parallelism. First, the factoriza-
tions of the blocks .Alb,lb on the diagonal are completely independent. In addition,
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ALGORITHM 8.7 Coarse-grained parallel LU factorization using DBBD form
Input: Matrix .ADB in DBBD form (8.3).
Output: Block LU factorization.

1: Initialise .S = B

2: for .lb = 1 : Nb do
3: .Alb,lb = LlbUlb � LU factorization of square block on diagonal
4: .̂Rlb = RlbU

−1
lb � Triangular solve for bottom-border blocks

5: .̂Clb = L−1
lb Clb � Triangular solve for right-border blocks

6: end for
7: .S = S −∑Nb

lb=1
̂Rlb
̂Clb � Assemble updates to interface block

8: .S = LSUS � Factorize updated interface block (Schur complement)

the factorization of each individual .Alb,lb can be parallelized. The same is true
for the triangular solves that update the border blocks. Second, the assembly of
the interface block S can be partially parallelized (it can be started as soon as the
first updated border blocks are available). Third, the LU factorization of S can be
parallelized.

Observe that S is generally significantly denser than the other blocks and can
present a computational bottleneck. In fact, not only is factorizing S expensive in
terms of the memory and operations required, assembly updates to it can be time
consuming. This is because multiple submatrices may contribute to the same entry
of S, and these cannot be performed at the same time. Furthermore, for an efficient
parallel implementation, load balance must be considered. If the work required for
factorizing each of the blocks on the diagonal is not similar, then the time will be
dominated by the most expensive block. One possible solution is to choose Nb to be
greater than the number of processors and use dynamic scheduling to achieve good
load balance. Unfortunately, if the number of blocks increases, so too does the size
of S.

If A is not SPD, then factorizing the .Alb,lb blocks without considering the entries
in the border can potentially lead to stability problems. Consider the first step in
factorizing .Alb,lb and the threshold pivoting test (7.5) for a sparse LU factorization.
The pivot candidate .(Alb,lb)11 must satisfy

. max{max
i>1

|(Alb,lb)i1|, max
k
|(Rlb)k1|} ≤ γ−1|(Alb,lb)11|,

where .γ ∈ (0, 1] is the threshold parameter. Large entries in the row border matrix
.Rlb can prevent pivots being selected within .Alb,lb. Stability can be maintained by
moving rows and columns that cannot be eliminated to the borders. This increases
the border size and may adversely affect the a priori sparse data structures for
holding the factors, increase the work required to perform the factorization, and
reduce the potential for parallelism within the factorization of the block.
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8.5.2 Singly Bordered Form

An alternative strategy is to permute A to singly bordered block diagonal (SBBD)
form

.ASB =

⎛

⎜

⎜

⎝

A1,1 C1

A2,2 C2

. . . .

ANb,Nb CNb

⎞

⎟

⎟

⎠

,

where the blocks .Alb,lb are rectangular .mlb × nlb matrices with .mlb ≥ nlb and
.
∑Nb

lb=1 ml = n, and the border blocks .Clb are of order .mlb × nI (.nI � nlb), where
.nI =∑Nb

bl=1 (mlb − nlb). The linear system becomes

.

⎛

⎜

⎜

⎝

A1,1 C1

A2,2 C2

. . . .

ANb,Nb CNb

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

x1
...

xNb

xI

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

b1

b2
...

bNb

⎞

⎟

⎟

⎟

⎠

, (8.4)

where .xlb is of length .nlb, .xI is a vector of length .nI of interface variables, and the
right-hand side vectors .blb are of length .mlb, such that

.
(

Alb,lb Clb

)

(

xlb

xI

)

= blb, 1 ≤ lb ≤ Nb.

A partial factorization of each block matrix is performed, that is,

.
(

Alb,lb Clb

) = Plb

(

Llb

L̄lb I

)(

Ulb Ūlb

Slb

)

Qlb, (8.5)

where .Plb and .Qlb are permutation matrices, .Llb and .Ulb are .nlb × nlb lower and
upper triangular matrices, respectively, and if .qlb is the number of columns in .Clb

with at least one entry, .Slb is a .(mlb − nlb) × qlb local Schur complement matrix.
Pivots can only be chosen from the columns of .Alb,lb because the columns of .Clb

have entries in at least one other border block .Cjb (.jb = lb). The pivot candidate
.(Alb,lb)11 at the first elimination step must satisfy

. max
i>1

|(Alb,lb)i1| ≤ γ−1|(Alb,lb)11|,

and provided A is nonsingular, there will always be a numerically satisfactory
pivot in column 1 of .Alb,lb. The same is true at each elimination step so that .nlb

pivots can be chosen. An .nI × nI matrix S is obtained by assembling the Nb local
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ALGORITHM 8.8 Coarse-grained parallel LU factorization and solve using
SBBD form
Input: Linear system in SBBD form (8.4).
Output: Block LU factorization and computed solution x.

1: .S = 0 and .zI = 0
2: for .lb = 1 : Nb do
3: Perform a partial LU factorization (8.5) of .(Alb,lb, Clb).

4: Solve . Plb

(

Llb

L̄lb I

)(

ylb

ȳlb

)

= blb

5: .S = S + Slb and .zI = zI + ȳlb � Assemble S and .zI

6: end for
7: .S = PsLsUsQs � .Ps and .Qs are permutation matrices
8: Solve .PsLs yI = zI and then .UsQs xI = yI � Forward then back substitution
9: for .lb = 1 : Nb do

10: Solve . Ulb Qlb xlb = ylb − Ūlb Qlb xI

11: end for

Schur complement matrices .Slb. The approach is summarized as Algorithm 8.8. The
operations on the submatrices can be performed in parallel.

8.5.3 Ordering to Singly Bordered Form

The objective is to permute A to an SBBD form with a narrow column border. One
way to do this is to choose the number .Nb > 1 of required blocks and use nested
dissection to compute a vertex separator .VS of .G(A + AT ) such that removing .VS
and its incident edges splits .G(A + AT ) into Nb components. Then initialize the
set .SC of border columns to .VS and let .V1b,V2b, . . . ,VNb be the subsets of column
indices of A that correspond to the Nb components and let .ni,kb be the number of
column indices in row i that belong to .Vkb. If .lb = arg max1≤kb≤Nb |ni,kb|, then
row i is assigned to partition lb. All column indices in row i that do not belong to
.Vlb are moved into .SC . Once all the rows have been considered, the only rows that
remain unassigned are those that have all their nonzero entries in .VS . Such rows can
be assigned equally to the Nb partitions. If .j ∈ SC is such that column j of A has
nonzero entries only in rows belonging to partition kb, then j can be removed from
.SC and added to .Vkb. The procedure is outlined as Algorithm 8.9. The computed
vector block and set .SC can be used to define permutation matrices P and Q such
that .PAQ = ASB . In practice, it may be necessary to modify the algorithm to
ensure a good row balance between the number of rows in the blocks; this may lead
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ALGORITHM 8.9 SBBD ordering of a general matrix
Input: Matrix A, the number .Nb > 1 of blocks and corresponding vertex separator
.VS of .G(A+ AT ).
Output: Vector block such that .block(i) denotes the partition in the SBBD form to
which row i is assigned (.1 ≤ i ≤ n) and .SC is the set of border columns.

1: Initialise .SC = VS and .block(1 : n) = 0
2: Initialise .Vkb to hold the column indices of A that correspond to component kb

of .G(A+ AT ) after the removal of .VS , .1 ≤ kb ≤ Nb

3: for each row i do
4: Add up the number .ni,kb of column indices belonging to .Vkb, .1 ≤ kb ≤ Nb

5: Find .lb = arg max1≤kb≤Nb ni,kb

6: .block(i) = lb

7: for each column index j in row i do
8: if .j ∈ Vkb and .kb = lb then
9: Remove j from .Vkb and add to .SC

10: end if
11: end for
12: end for
13: Assign the rows i for which .block(i) = 0 equally between the Nb partitions.
14: If some column .j ∈ SC has nonzero entries only in rows belonging to partition

kb then remove j from .SC and add to .Vkb

to a larger .SC . It is also necessary to avoid adding in duplicate column indices into
.SC (alternatively, a final step can be added that removes duplicates).

The matching-based orderings discussed in Section 6.3 that permute off-diagonal
entries onto the diagonal can increase the symmetry index of the resulting reordered
matrix, particularly in cases where A is very sparse with a large number of zeros
on the diagonal. Frequently, applying a matching ordering before ordering to SBBD
form reduces the number of columns in .SC .

8.6 Notes and References

The most influential early paper on orderings for sparse symmetric matrices is
that of Tinney & Walker (1967). It first proposed the minimum degree algorithm
(referred to as scheme 2) and the minimum fill-in algorithm (referred to as scheme
3). The fast implementation of the minimum degree algorithm using quotient
graphs is summarized by George & Liu (1980a). Further developments were
made throughout the 1980s, including the multiple minimum degree variant, mass
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elimination and external degree; key references are Liu (1985) and George & Liu
(1989). An important development in the 1990s was the approximate minimum
degree algorithm of Amestoy et al. (1996). Modifying the AMD algorithm for
matrices with some dense rows is discussed in Dollar & Scott (2010). For a
careful description of different variants of the minimum degree strategy and their
complexity we recommend Heggernes et al. (2001). Rothberg & Eisenstat (1998)
consider both minimum degree and minimum fill strategies and (Erisman et al.,
1987) provide an early evaluation of different strategies for nonsymmetric matrices.

Jennings (1966) presents the first envelope method for sparse Cholesky factor-
izations. The Cuthill-McKee algorithm comes from the paper by Cuthill & McKee
(1969). The GPS algorithm was originally introduced in Gibbs et al. (1976). The
book by George & Liu (1981) gives a detailed description of the algorithm while
Meurant (1999) includes an enlightening discussion of the relation between the CM
and RCM algorithms. A quick search of the literature shows that a large number of
bandwidth and profile reduction algorithms have been (and continue to be) reported.
Many have their origins in the Cuthill-McKee and GPS algorithms. A widely used
two-stage variant that employs level sets is the so-called Sloan algorithm (Sloan,
1986); see also Reid & Scott (1999) for details of an efficient implementation. The
use of the Fiedler vector to obtain spectral orderings is introduced in Barnard et al.
(1995), with analysis given in George & Pothen (1997). A hybrid algorithm that
combines the spectral method with the second stage of Sloan’s algorithm to further
reduce the profile is proposed in Kumfert & Pothen (1997) and a multilevel variant
is given by Hu & Scott (2001). de Oliveira et al. (2018) provide a recent comparison
of many bandwidth and profile reduction algorithms.

Reducing the bandwidth when A is nonsymmetric is discussed by Reid &
Scott (2006). For highly nonsymmetric A, Scott (1999) applies a modified Sloan
algorithm applied to the row graph (that is, .G(AAT )) to derive an effective ordering
of the rows of A for use with a frontal solver. The approach originally proposed
by Markowitz (1957) for finding pivots during an LU factorization is incorporated
(in modified form) in a number of serial LU factorization codes, including the
early solvers MA28 and Y12M (Duff, 1980 and Zlatev, 1991, respectively) as well
as MA48 (Duff & Reid, 1996). The book of Duff et al. (2017) includes detailed
discussions. To limit permutations to being symmetric, Amestoy et al. (2007)
propose minimizing the Markowitz count among the diagonal entries.

A seminal paper on global orderings is George (1973), but a real revolution in
the field followed the theoretical analysis of the application of nested dissection for
general symmetrically structured sparse matrices given in Lipton et al. (1979). For
subsequent extensions discussing separator sizes we suggest Agrawal et al. (1993),
Teng (1997), and Spielman & Teng (2007).

From the early 1990s onwards, there have been numerous contributions to graph
partitioning algorithms. Significant developments, including multilevel algorithms,
have been driven in part by the design and development of mathematical software,
notably the well-established packages METIS (2022) and Scotch (2022); both
offer versions for sequential and parallel graph partitioning (see also the papers
by Karypis & Kumar, 1998a,b and Chevalier & Pellegrini, 2008). The book by
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Bichot & Siarry (2013) discusses a number of contributions, including hypergraph
partitioning, which is well suited to parallel computational models (see, for example,
Uçar & Aykanat, 2007 and references to the use of hypergraphs given in the survey
article of Davis et al., 2016; they can also be used for profile reduction Acer et al.,
2019).

Hu et al. (2000) present a serial algorithm for ordering nonsymmetric A to SBBD
form; an implementation is available as HSL_MC66 within the HSL mathematical
software library. Algorithm 8.9 is from Hu & Scott (2005) (see also Duff & Scott,
2005). Alternatively, hypergraphs can be used for SBBD orderings. The best-known
packages are the serial code PaToH of Aykanat et al. (2004) and the parallel code
PHG from Zoltan (2022).
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Chapter 9
Algebraic Preconditioners and
Approximate Factorizations

In conjunction with iterative methods, preconditioning is often
the vital component in enabling the solution of such (linear)
systems when the dimension is large. – Wathen (2015)

Preconditioning involves exploiting ideas from sparse direct
solvers. Gradually, iterative methods started to approach the
quality of direct solvers. In earlier times, iterative methods were
often special purpose in nature... Now iterative methods are
almost mandatory. – Saad (1996b).

When a matrix factorization is performed using finite precision arithmetic, the
computed factors are not the exact factors. Despite this, the objective of sparse direct
methods is normally to compute solutions that are accurate within the precision
used. As discussed in Chapter 7, theoretical results can be used to assess both
stability and accuracy.

The effort to obtain results that are as accurate as possible can lead to complex
coding and unavoidable inefficiencies that can be magnified by modern computer
architectures. Furthermore, in some situations, more accuracy than is needed (or
is justified by the input data) is sought by a direct method. These issues can
potentially be addressed by intentionally relaxing the required accuracy of the
computed factors. In Section 7.3.3, we discussed static pivoting that allows pivots to
be explicitly perturbed during a matrix factorization to enable them to be selected,
thereby reducing the computational costs of the factorization (in terms of time and
memory). The penalty is that the factorization may be less stable and a refinement
process (such as described in Algorithm 7.3) may be needed to improve the
accuracy of the computed solution. However, even with sophisticated theoretical
and algorithmic tools, factorizations that use such strategies can still be prohibitively
expensive and may not be fully robust. An alternative approach is to compute a
simpler and cheaper and sparser approximate factorization of A (or of .A−1) and
to use this as a preconditioner in combination with an iterative solver to derive a
suitable solution of the linear system. The main obstacle is that the choice of an
efficient preconditioner is highly problem dependent: what works well for problems
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from one application may not help for those of a different origin. Our focus is on
algebraic preconditioners that are often successfully used in the solution of linear
systems arising from a range of diverse applications.

Algebraic preconditioners do not require knowledge of the provenance of the
linear system, and their construction relies solely on the matrix A (which may
only be available implicitly, that is, the action of A on vectors is known, but A

itself is not supplied). They are general methods that are particularly important
when little is known about the underlying problem and they are widely applicable
because they are designed with few restrictions. However, if more information is
known, it can be more effective to use a specialized preconditioner that is designed
for the specific application. This division between approaches to preconditioning
essentially amounts to whether we are “given a problem” or “given a matrix”:
algebraic preconditioning is primarily concerned with the latter.

In the following, we refer to an approximate factorization as an incomplete
factorization to distinguish it from a complete factorization of a direct method.

9.1 Introduction to Iterative Solvers

The two main classes of iterative methods for solving .Ax = b are stationary
iterative methods (also sometimes called relaxation or simple methods) and Krylov
subspace methods. We briefly introduce each class.

9.1.1 Stationary Iterative Methods

Stationary iterative methods work by splitting A as follows:

.A = M −N,

where the matrix M is chosen to be nonsingular and easy to invert. Starting with an
initial guess .x(0), the iterations are then given by

.x(k+1) = M−1Nx(k) +M−1b, k = 0, 1, . . . (9.1)

This can be rewritten as

.x(k+1) = x(k) +M−1(b − Ax(k)) = x(k) +M−1 r(k), k = 0, 1, . . . , (9.2)

where the vector .r(k) = b−Ax(k) is the residual on the k-th iteration. Observe that
by substituting .b = r(k) + Ax(k) into .x = A−1 b, we obtain

.x = A−1(r(k) + Ax(k)) = x(k) + A−1 r(k),
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and if M is used to approximate A, we again get the iteration (9.2). From (9.2),

.r(k+1) = b−A(x(k)+M−1 r(k)) = (I −AM−1) r(k) = . . . = (I −AM−1)k+1 r(0),

(9.3)
and if .e(k) = x − x(k) is the error vector on iteration k, then

.e(k+1) = M−1N e(k) = . . . = (M−1N)k+1 e(0) = (I −M−1A)k+1 e(0). (9.4)

The matrix .I − M−1A or .I − AM−1 is called the iteration matrix. In general,
(9.3) is evaluated rather than (9.4) because .e(0) is unknown and (9.3) computes the
residuals that are often used to monitor convergence.

Theorem 9.1 (Saad 2003b; Greenbaum 1997) For any initial .x(0) and vector b,
the iteration (9.1) converges if and only if the spectral radius of the iteration matrix
.(I −M−1A) is less than unity.

Proof The spectral radius of an .n×n matrix C with eigenvalues .λ1, λ2, . . . , λn is
defined to be

.ρ(C) = max{|λi | | 1 ≤ i ≤ n}. (9.5)

Furthermore, the sequence of matrix powers .Ck , .k = 0, 1, . . . , converges to zero if
and only if .ρ(C) < 1. It follows from (9.4) that if the spectral radius of .(I−M−1A)

is less than unity, then the iteration (9.1) converges for any .x(0) and b. Conversely,
the relation

.x(k+1)−x(k) = (I−M−1N)(x(k)−x(k−1)) = . . . = (I−M−1N)kM−1(b−Ax(0))

shows that if the iteration converges for any .x(0) and b, then .(I − M−1N)kv

converges to zero for any v. Consequently, .ρ(I −M−1A) must be less than unity,
and the result follows. ��

It is generally impractical to compute the spectral radius and sufficient conditions
that guarantee convergence are used. Because .ρ(C) ≤ ‖C‖ for any matrix norm, a
sufficient condition is .‖I − M−1A‖ < 1. A small spectral radius leads to rapid
convergence, and the closer the eigenvalues of .M−1A are to unity, the faster the
convergence. However, the eigenvalue distribution (not just the spectral radius) is
important in evaluating the rate of convergence.

Several standard stationary methods are obtained from the splitting

.A = DA + LA + UA, (9.6)

where .DA is a diagonal matrix that represents the diagonal part of A, and .LA and
.UA are the strictly lower and upper triangular parts of A, respectively. If .ω > 0 is a
scalar parameter, classical methods include:
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• Richardson method: .M = ω−1I

• Jacobi and damped Jacobi methods: .M = DA and .M = ω−1DA

• Gauss–Seidel and SOR methods: .M = DA + LA and .M = ω−1DA + LA

9.1.2 Krylov Subspace Methods

Non-stationary iterative methods are of the form

.x(k+1) = x(k) + ω(k)M−1 r(k), k = 0, 1, . . . ,

where the .ω(k) are scalars. In this class of methods, Krylov subspace methods are
the most effective. Given a vector y, the k-th Krylov subspace .K(k)(A, y) generated
by A from the vector y is defined to be

.K(k)(A, y) = span(y,Ay, . . . , Ak−1 y).

The idea behind Krylov subspace methods is to generate a sequence of approximate
solutions .x(k) ∈ x(0) + K(k)(A, r(0)) such that the norm of the corresponding
residuals .r(k) ∈ K(k+1)(A, r(0)) converges to zero. For symmetric positive definite
(SPD) systems, the Krylov subspace method of choice is the conjugate gradient
(CG) method. For nonsymmetric systems, there are a number of popular methods,
including the generalized minimal residual (GMRES) method and the biconjugate
gradient (BiCG) method, but there is no single method of choice. The key feature
they have in common is that at each iteration only matrix-vector products with A

(and possibly with .AT in the nonsymmetric case) are required.
Krylov subspace methods are powerful and nowadays, when combined with a

preconditioner, comprise the most widely used class of preconditioned iterative
methods. Because they build a basis, in exact arithmetic, convergence is achieved in
at most n iterations (but in the presence of rounding errors, this is not guaranteed).
If n is large, it is impractical to perform .O(n) iterations; the hope is that the process
returns a sufficiently accurate solution far earlier. Unfortunately, for a given A, right-
hand side vector b, and initial guess .x(0), it is usually not possible to predict the rate
of convergence. If A is an SPD matrix, then it can be shown that the approximate
solution .x(k) at iteration k computed using the CG method satisfies

.‖x − x(k)‖A ≤ 2

(√
κ(A)− 1√
κ(A)+ 1

)k

‖x − x(0)‖A,

where .‖ · ‖A is the A-norm, and .κ(A) is the spectral condition number given
by (7.15). Clearly, there is good (fast) convergence when .κ(A) is small, but poor
(slow) convergence usually occurs if .κ(A) � 1. But this error bound can be highly
pessimistic. It does not show the potential for CG to converge superlinearly or
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that the rate of convergence depends on the distribution of all the eigenvalues of
A. In practice, it is not normally possible to obtain detailed spectral information.
Thus, even for CG, preconditioning is often based on experimentation. For non-
SPD matrices, less is known and methods that guarantee the monotonic reduction
of a relevant quantity at each iteration are sometimes favoured. For example, if
the minimal residual (MINRES) method is used for solving symmetric indefinite
systems, then in exact arithmetic, the norm of the residual is monotonically
decreasing. However, no general descriptive convergence theory is available for
Krylov subspace methods for nonsymmetric systems (including GMRES). This is
a significant problem because, without theory to guide us, preconditioning must be
heuristic.

9.2 Introduction to Algebraic Preconditioners

Preconditioning corresponds to the application of a matrix (or a linear operator) to
the original linear system to yield a different linear system that has more favourable
properties. Consider the preconditioned linear system

.M−1Ax = M−1 b. (9.7)

Here .M−1 is applied to A from the left. We say that A is preconditioned from the left
and M is a left preconditioner. Analogously, the linear system can be preconditioned
from the right

.AM−1 y = b, x = M−1 y. (9.8)

The following result states that it is not possible to determine a priori which variant
is the best.

Theorem 9.2 (Mendelsohn 1956) Let .δ and .� be positive numbers. Then, for any
.n ≥ 3, there exist nonsingular .n × n matrices A and M such that all the entries of
.M−1A − I have absolute value less than .δ and all the entries of .AM−1 − I have
absolute values greater than .�.

Nevertheless, the choice between left and right preconditioning is still important
and may be based on the properties of the coupling of the preconditioner with
the iterative method or on the distribution of the eigenvalues of A. The computed
quantities that are readily available during a preconditioned iterative method depend
on how the preconditioner is applied and this may influence the choice. These
quantities may be used, for example, to decide when to terminate the iterations. An
obvious advantage of right preconditioning is that in exact arithmetic, the residuals
for the right preconditioned system are identical to the true residuals, enabling
convergence to be monitored accurately. In some cases, the numerical properties
of an implementation and/or the computer architecture may also play a part.
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For M in factorized form .M = M1M2, two-sided (or split) preconditioning is
an option. The iterative method then solves the transformed system

.M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y. (9.9)

If A and M are SPD matrices, then .M2 = MT
1 and we would like the preconditioned

matrix .M−1
1 AM−T

1 to be SPD. However, it is not necessary to use a two-sided
transformation with the preconditioned conjugate gradient (PCG) method because
it can be formulated using the M-inner product in which the matrix .M−1A is self-
adjoint.

Theorem 9.3 (Saad 2003b; van der Vorst 2003) Let A and M be SPD matrices.
Then .M−1A is self-adjoint in the M-inner product.

Proof Self-adjointness is implied by the following chain of equivalences.

.

〈M−1Ax, y〉M = 〈Ax, y〉 = 〈x,Ay〉 = 〈x,MM−1Ay〉
= 〈Mx,M−1Ay〉 = 〈x,M−1Ay〉M.

��
Left preconditioned CG with the M-inner product is mathematically equivalent

to right preconditioned CG with the .M−1-inner product. If A is symmetric but not
positive definite, the PCG method can formally be written down, but the necessary
conditions for convergence may not be satisfied and the method may break down
(division by a zero quantity).

9.2.1 Desirable Preconditioner Properties

An obvious objective is for the preconditioner to lead to rapid convergence. As
already noted, if the matrix A is SPD, then the convergence rate of the CG method
depends on the distribution of its eigenvalues. The preconditioner should aim to
reduce the condition number, but this is not necessarily sufficient to give fast con-
vergence. For general matrices, despite the lack of theoretical guarantees regarding
convergence, many useful preconditioners have nevertheless been motivated by
bounding the condition number of the preconditioned matrix.

Choosing a preconditioner is often based on how costly it is to compute and on
some indicators that potentially reflect its quality. In particular, the accuracy of a
preconditioner M can be assessed using the norm of the error matrix

.‖E‖ = ‖M − A‖,

and its stability can be measured using

.‖M−1E‖ = ‖I −M−1A‖ or ‖EM−1‖ = ‖I − AM−1‖.
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If a preconditioner is used to solve a large number of systems over which the
cost of constructing it can be amortized, then the expense of constructing M in
terms of time may not be the driving factor. However, as the preconditioner must
be applied at each iteration of the solver, unless very few iterations are performed,
it is essential that each application is inexpensive. Each application .M−1w involves
solving a linear system .Mv = w. If M is in factorized form and the factors are
(block) triangular, this is straightforward but because they are inherently serial and
hard to parallelize, repeated substitutions can be a critical computational bottleneck.
In some cases, rather than M , the inverse .M−1 is computed directly. In this case,
we have an approximate inverse preconditioner. Applying such a preconditioner
involves only matrix-vector multiplications, which are normally easier to parallelize.
However, because the inverse of an irreducible matrix is dense (Theorem 7.3), it is
important that .M−1 is constructed to be sparse. Such preconditioners are discussed
in Chapter 11.

9.2.2 Simple Algebraic Preconditioners

The simplest preconditioner consists of the diagonal of the matrix .M = DA. This
is known as the (point) Jacobi preconditioner. Block versions can be derived by
partitioning .V = {1, 2, . . . , n} into mutually disjoint subsets .V1, . . . ,Vl and then
setting

.mij =
{

aij if i and j belong to the same subset Vk for some k, 1 ≤ k ≤ l,

0 otherwise.

Often, natural choices for the partitioning suggest themselves. For example, super-
variables can be used or the partitioning may be chosen to coincide with the division
of variables over the processors in a parallel environment. Jacobi preconditioners
need very little storage and are easy to implement.

The SSOR preconditioner, like the Jacobi preconditioner, can be derived from
A without any work. If A is symmetric, then using the notation (9.6), the SSOR
preconditioner is defined to be

.M = (DA + LA)D−1
A (DA + LA)T , (9.10)

or, using a parameter .0 < ω < 2, as

.M = 1

2− ω
(

1

ω
DA + LA)(

1

ω
DA)−1(

1

ω
DA + LA)T .
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The optimal value of .ω will reduce the number of iterations needed for convergence
of the iterative solver, but it is usually prohibitively expensive to compute the
spectral information needed to calculate it. Again, block variants are possible.

9.2.3 The Eisenstat Trick

Within a preconditioned iterative solver, it is generally cheaper to apply .M−1

and A separately, rather than explicitly forming and storing the preconditioned
matrix. However, in special cases, it is possible to improve efficiency by combining
the action of the preconditioner with the matrix-vector multiplication. One such
approach is called the Eisenstat trick. Consider the matrix splitting (9.6), and let
M be given by

.M = (D + LA) [D−1(D + UA)] = M1 M2, (9.11)

where D is a nonsingular diagonal matrix. The SSOR matrix (9.10) is one
example in the symmetric case but more generally .D = DA. Using two-sided
preconditioning, (9.9) becomes

.A′y = M−1
1 AM−1

2 y = (D + LA)−1A[D−1(D + UA)]−1 y = (D + LA)−1b.

(9.12)
Setting

.L̄ = D−1LA, Ū = D−1UA, Ā = D−1A, and b̄ = (I + L̄)−1D−1 b,

and using (9.6), we obtain

.A′ = (D + LA)−1A[D−1(D + UA)]−1 = [(D + LA)−1D]D−1A[D−1(D + UA)]−1

= [D−1(D + LA)]−1D−1A(I +D−1UA)−1 = (I + L̄)−1Ā(I + Ū )−1.

That is, the system in (9.12) becomes

.A′y = (I + L̄)−1Ā(I + Ū )−1 y = (I + L̄)−1D−1 b = b̄. (9.13)

If y solves (9.13), then the solution x of .(I + Ū ) x = y solves .Ax = b. But the
expression for .A′ can be further transformed as

.A′ = (I + L̄)−1 (I + L̄+D−1DA − 2I + I + Ū )(I + Ū )−1

= (I + L̄)−1 [(I + L̄)(I + Ū )−1 + (D−1DA − 2I )(I + Ū )−1 + I ]

= (I + Ū )−1 + (I + L̄)−1 [(D−1DA − 2I )(I + Ū )−1 + I ].
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Thus, to compute .z = A′w = (I + L̄)−1Ā(I + Ū )−1w for a given w, it is necessary
only to solve two triangular systems

.(I + Ū ) z1 = w followed by (I + L̄) z2 = (D−1DA − 2I ) z1 + w

and then set .z = z1 + z2. Note that this trick is not a preconditioner: it is simply a
way of applying the preconditioner (9.11).

9.3 Some Special Classes of Matrices

The development of algebraic preconditioners has historically been closely con-
nected to their earliest application, which was solving linear systems arising from
the discretization of partial differential equations. Consider a two-dimensional
Poisson problem discretized on a given domain by a uniform regular grid using finite
differences, with zero Dirichlet conditions on the boundary. The resulting matrix for
a .3× 3 rectangular grid using the natural ordering of the vertices is given by

.A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4 −1 −1
−1 4 −1 −1
−1 4 −1

−1 4 −1 −1
−1 −1 4 −1 −1
−1 −1 4 −1
−1 4 −1
−1 −1 4 −1
−1 −1 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (9.14)

If the spatial discretization on the domain is characterized by the mesh parameter
h, then the size of A is inversely proportional to h. Expressing some matrix-
related quantities asymptotically as functions of h can be useful if the discretized
domain is bounded. For example, the condition number of the matrix (9.14)
depends asymptotically on .h−2. Matrices with similar banded sparsity patterns
with nonzeros on only a small number of subdiagonals arise from simple finite
difference or finite element discretizations of other partial differential equations.
They can be considered as particular cases of more general special classes of
matrices whose properties can be derived using the theoretical background behind
the discretizations.

M-matrices is one such class. Let the off-diagonal entries of the nonsingular
matrix A be nonpositive (that is, .aij ≤ 0 for all .i = j ). Then A is a (nonsingular)
M-matrix if one of the following holds:

• .A+D is nonsingular for any diagonal matrix D with nonnegative entries.
• All the entries of .A−1 are nonnegative.
• All principal minors of A are positive.
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The matrix (9.14) is an example of an M-matrix. A symmetric M-matrix is known
as a Stieltjes matrix, and such a matrix is positive definite.

The class of nonsingular H-matrices includes matrices coming from simple
discretizations of convection–diffusion problems. The comparison matrix .C(A) of
A is defined to have entries

.C(A)ij =
{

−|aij |, i = j,

|aij |, i = j.

If .C(A) is a nonsingular M-matrix, then A is a nonsingular H-matrix.
We also recall diagonally dominant matrices. A is diagonally dominant by rows

if

.

n
∑

j=1, j =i

|aij | ≤ |aii |, 1 ≤ i ≤ n. (9.15)

A is strictly diagonally dominant by rows if strict inequality holds in (9.15) for
all i. A is (strictly) diagonally dominant by columns if .AT is (strictly) diagonally
dominant by rows. A is said to be irreducibly diagonally dominant if it is
irreducible and (9.15) is satisfied with strict inequality for at least one row i. If
A is strictly diagonally dominant by rows or columns or is irreducibly diagonally
dominant, then it is nonsingular and factorizable. The class of diagonally dominant
matrices is closely connected to that of nonsingular H-matrices. For example, the
property that there exists a diagonal matrix D with positive entries such that AD is
strictly diagonally dominant is equivalent to A being a nonsingular H-matrix.

9.4 Introduction to Incomplete Factorizations

Preconditioners based on an incomplete factorization of A in which entries are
dropped during the factorization are widely used in computational science and
engineering, especially when the underlying physics of a problem is difficult to
exploit. Besides being used as standalone preconditioners, incomplete factorizations
are important within more sophisticated methods. For example, they can be used to
precondition subdomain solves in domain decomposition schemes or as a smoother
in multigrid methods. Incomplete factorizations fall into three main classes:

(i) Threshold-based methods in which the locations of permissible fill-in are
determined in conjunction with the numerical factorization of A; entries of
the computed factors of absolute value less than a prescribed threshold .τ > 0
are dropped. Success relies on determining a suitable .τ . This is highly problem
dependent and is influenced by the scaling of A.
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⎛
⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 ∗ ∗ ∗
2 ∗ ∗ f ∗ ∗ ∗
3 ∗ f ∗ f f f

4 ∗ f ∗ ∗ ∗
5 ∗ f ∗ ∗ ∗
6 ∗ f ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

2 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ f ∗ ∗
1 ∗ f ∗ ∗ f f

3 ∗ ∗ f f

5 ∗ ∗ f f ∗ ∗
6 ∗ ∗ f f ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

2 4 1 3 5 6 2 4 1 3 5 6

2 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗
1 ∗ ∗
3 ∗ ∗
5 ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠

Figure 9.1 Illustration of matrix sparsification. f denotes filled entries in the factors. On the left
is the original matrix A with its filled entries, in the centre is the permuted matrix with its filled
entries, and on the right is the sparsified permuted matrix after dropping the entries of A in positions
.(1, 3) and .(3, 1) (it has no filled entries).

(ii) Memory-based methods in which the amount of memory available for the
incomplete factorization is prescribed and only the largest entries in each row
(or column) are retained.

(iii) Structure-based methods in which an initial symbolic factorization phase deter-
mines the location of permissible entries using .S{A}. This allows the memory
requirements to be determined before an incomplete numerical factorization is
performed. The specified set of positions is called the target sparsity pattern.
A widely used example allows the incomplete factors to have entries only in
the positions corresponding to .S{A}.

The basic dropping approaches can be combined and they can be employed in
conjunction with discarding entries in A before the factorization commences. This
initial sparsification is appealing because it may be possible to obtain an incomplete
factorization by computing a complete factorization of the sparsified matrix.
Sparsification can be performed by value or by position. Figure 9.1 illustrates
sparsification of A after permuting it reveals a block structure (the permutation can
be found using, for example, Algorithm 3.7 or 3.8).

9.4.1 Incomplete Factorization Breakdown

Dropping entries can lead to breakdown of the incomplete factorization, that is, a
zero pivot may be encountered during the factorization (or a non-positive pivot in the
Cholesky case). It is only possible to predict when this will happen in special cases,
as stated in the following theorem, which is a consequence of the fact that being an
M-matrix or an H-matrix is preserved in the sequence of the Schur complements
during the factorization. This result does not hold for general SPD matrices.

Theorem 9.4 (Meijerink & van der Vorst 1977; Manteuffel 1980; Varga et al.
1980) Let A be a nonsingular M-matrix or H-matrix. If the target sparsity pattern
of the incomplete factors contains the positions of the diagonal entries, then the
incomplete factorization of A does not break down.
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To illustrate the error accumulation in the incomplete factorization of an M-
matrix using dropping, consider the example given in (9.14). Let E be the error
matrix. E is initialized to zero, and at each stage of the factorization, the dropped
entries are added into it. After one step of the complete factorization of A, the
partially eliminated matrix .A(2) is

.A(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4 −1 −1
3.75 −1 −0.25 −1
−1 4 −1
−0.25 3.75 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1
−1 4 −1

−1 −1 4 −1
−1 −1 4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Suppose the filled entries .−0.25 in positions .(2, 4) and .(4, 2) are dropped. Then the
values of the corresponding diagonal entries in the subsequent elimination matrices
are larger than they would have been without any dropping. Furthermore, as all
the off-diagonal nonzero entries are negative, for any target sparsity pattern the
dropped entries are negative. The M-matrix property applies to all subsequent Schur
complements, which implies that all the entries added into E are negative and
so the absolute values of the entries in E grow as the factorization proceeds (the
contributions can never cancel each other out). Thus, although the factorization does
not break down, the growth in the error is potentially a problem for the accuracy of
an incomplete factorization of an M-matrix.

9.4.2 Perturbing Entries to Prevent Breakdown

Modifying the diagonal entries of A is a common approach to avoid breakdown
in an incomplete factorization. Breakdown is illustrated in Figure 9.2. A simple a
posteriori remedy is to perturb the diagonal value that has caused breakdown. In
this example, increasing .a44 so that .d̃44 has a (small) positive value. Unfortunately,
practical experience of making simple ad hoc modifications is generally not very
positive. This is because making a local perturbation when breakdown occurs (or
is close to occurring) may be too late for the resulting factorization to be good
enough to be useful as a preconditioner (growth may already have happened in
some of the factor entries). This applies to standard incomplete factorizations and
to approximate inverses.

An alternative and more effective strategy to avoid breakdown is to modify all
the diagonal entries of A a priori and then compute an incomplete factorization
of .A + αI , where the shift .α > 0 is a scalar parameter. It is always possible
to find .α such that .A + αI is nonsingular and diagonally dominant and is thus
an H-matrix. However, being an H-matrix is not a necessary condition for a
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A =

⎛
⎝

3 −2 2

−2 3 −2

−2 3 −2

2 −2 8

⎞
⎠ , L =

⎛
⎝

1

−2/3 1

−6/5 1

2/3 4/5 −2/3 1

⎞
⎠ , D =

⎛
⎝

3

5/3
3/5

16/3

⎞
⎠ .

L̃ =

⎛
⎝

1

−2/3 1

−6/5 1

2/3 −10/3 1

⎞
⎠ , D̃ =

⎛
⎝

3

5/3
3/5

0

⎞
⎠ .

Figure 9.2 An example to illustrate breakdown. The matrix A and its square root-free factors are
given together with the incomplete factors .˜L and .˜D that result from dropping the entry .l24 during
the factorization. .d̃44 = 0 means the incomplete factorization has broken down.

ALGORITHM 9.1 Trial-and-error global shifted incomplete factorization

Input: Matrix A, incomplete factorization algorithm, initial shift .α(0)

Output: Shift .α and incomplete factors .˜L and .˜U such that .A+ α ≈ ˜L˜U
1: for .k = 0, 1, 2, . . . do
2: .A+ α(k)I ≈ ˜L˜U � Perform incomplete factorization
3: If successful, .α = α(k) and return
4: .α(k+1) = 2α(k)

5: end for

matrix to be factorizable and, in practice, much smaller values of .α can provide
incomplete factorizations for which .‖E‖ is small. A simple trial-and-error procedure
for choosing a shift is given in Algorithm 9.1. The initial shift .α(0) = 0 is reasonable
if A is an SPD matrix or, more generally, has positive diagonal entries. If .α(0) > 0
and the incomplete factorization of .A + α(0)I is successful, then the algorithm can
be modified to reduce .α(0) (for example, it could be replaced by .α(0)/2) and then
restarted. The potential benefit is a smaller .‖E‖ (and hopefully a higher quality
preconditioner) but at the cost of performing further incomplete factorizations.
Observe that A should be prescaled to try and limit the size of .α.

9.4.3 Pivoting to Prevent Breakdown

An alternative approach to avoid small pivots is to follow what is done in sparse
direct solvers and incorporate partial or threshold pivoting within the incomplete
factorization algorithm. This potentially makes the factorization significantly more
expensive and much more complicated to implement efficiently. As with sparse
direct solvers, preprocessing can limit the need for pivoting. If A is nonsymmetric,
then row and column permutations can be used to bring large entries onto the
diagonal before the factorization commences. In particular, the weighted matching
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ordering and scaling discussed in Section 7.4.2 can be used. In the symmetric case,
symmetry is preserved by choosing pivots from the diagonal. Again, the matrix
should be prescaled, and then at each stage, a straightforward choice is to select as
the next pivot the diagonal entry of the largest absolute value in the remaining active
submatrix. If there is no suitable diagonal entry (for example, if the absolute values
of all the remaining diagonal entries are less than some threshold), then either the
diagonal can be modified or .2× 2 pivots that preserve symmetry can be used.

One way to attempt to minimize the norm of the error matrix E is to select
the pivot candidate to minimize the sum of the absolute values of the dropped
(discarded) entries. However, this minimum discarded fill ordering is typically too
expensive to be useful in practice.

9.5 Factorizations as Preconditioner Components

Sometimes (incomplete) factorizations are employed as components in the construc-
tion of more complex preconditioners. Here some possible approaches are briefly
discussed.

9.5.1 Polynomial Preconditioning

Polynomial preconditioning selects a polynomial .φ and applies a Krylov subspace
method to solve either

.φ(A)Ax = φ(A) b

(left preconditioning) or

.Aφ(A) y = b, x = φ(A) y

(right preconditioning). .φ should be of small degree and chosen to enhance
convergence. Consider the characteristic polynomial .φn(μ) = det(A − μI) of A

(.det denotes the determinant). The Cayley–Hamilton theorem states that A satisfies
its own characteristic equation so that

.φn(A) =
n
∑

j=0

βj Aj = 0,

where .βj (.0 ≤ j ≤ n) are the coefficients of the characteristic polynomial
(.βn = 1, β0 = (−1)n det(A)). Provided A is nonsingular,
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.A−1 = (−1)n+1 1

det(A)

n
∑

j=1

βj Aj−1.

A preconditioner can be constructed by taking the first k terms, possibly weighted
by some suitable scalar coefficients, that is,

.M−1 =
k
∑

j=0

γj Ak.

An important question is why such a preconditioner can help in the presence
of the optimality properties of Krylov subspace methods. For example, at iteration
.k + 1 of the CG method, .x(k+1) satisfies

.x(k+1) = x(0) + φk(A) r(0), k = 0, 1, . . . ,

where .φk is a monic polynomial of degree k. This polynomial is optimal in the sense
that .x(k+1) minimizes

.‖x − x(k+1)‖2
A. (9.16)

A preconditioner that is a polynomial in A cannot speed the convergence because the
resulting iteration again forms the new .x(k+1) as .x(0) plus a polynomial in A times
.r(0), and thus the same or a higher degree polynomial is needed to achieve the same
value of (9.16). Consequently, the number of matrix-vector multiplications cannot
decrease. Nevertheless, polynomial preconditioning can be useful for a number of
reasons.

• The polynomial can improve the eigenvalue distribution of the preconditioned
matrix and result in a reduction in the number of iterations required for
convergence (even though the overall complexity may increase).

• It requires very little memory and its implementation can be straightforward.
• It can decrease the number of synchronization points in iterative methods as

represented by inner products. This is potentially important for message-passing
parallel architectures.

Even if only a small number of terms are used in the polynomial approximating
.A−1, a crucial issue is determining the coefficients .γ0, . . . , γk . A straightforward
way of doing this is based on the Neumann series of a matrix C given by .

∑+∞
j=0 Cj ,

which is convergent if and only if .ρ(C) < 1. In this case,

.(I − C)−1 =
+∞
∑

j=0

Cj . (9.17)
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Now let .M̄ be a nonsingular matrix and .ω > 0 a scalar such that the matrix .C =
I − ωM̄−1A satisfies .ρ(C) < 1. Using (9.17),

.A−1 = ω(ωM̄−1A)−1M̄−1 = ω (I − C)−1M̄−1 = ω

⎛

⎝

+∞
∑

j=0

Cj

⎞

⎠ M̄−1.

Truncating the summation gives as a possible preconditioner

.M−1 = ω

⎛

⎝

k
∑

j=0

Cj

⎞

⎠ M̄−1.

Observe that

.I −M−1A = I − ω

⎛

⎝

k
∑

j=0

Cj

⎞

⎠ M̄−1A = I −
⎛

⎝

k
∑

j=0

Cj

⎞

⎠ (I − C) = Ck+1,

which shows the positive effect of increasing k. If A and .M̄ are SPD matrices, then
M can be used with the CG method preconditioned from the left because .M−1A

is self-adjoint in the .M̄-inner product. Generalizations of the approach weight the
powers of C in .M−1 using additional scalars. The choice of .M̄ is crucial for the
effectiveness of the approach.

9.5.2 Schur Complement Approach and Deflation

Many contemporary preconditioners are constructed hierarchically. A straightfor-
ward example is represented by the approximate solution of saddle point problems
using the Schur complement approach. Consider the following general saddle point
system:

.Ax =
(

G C

R B

)(

x1

x2

)

=
(

b1

b2

)

. (9.18)

Assuming G is nonsingular, eliminating .x1 from the second block row yields the
reduced system

.Sx2 = b2 − RG−1b1, (9.19)

where .S = B − RG−1C is the Schur complement of G in A. Solving (9.19)
involves solving a linear system with G and with S. One option is to compute an
LU factorization of G and then employ a preconditioned iterative method; this is



9.5 Factorizations as Preconditioner Components 179

ALGORITHM 9.2 Simple Schur complement approach for saddle point systems
Input: Nonsingular saddle point system (9.18) with G nonsingular.
Output: Computed solution x.

1: Compute LU factorization of G

2: Solve .Gz = b1 � Use LU factors
3: Compute .˜S−1 ≈ (B − RG−1C)−1 � .˜S−1 chosen to approximate .S−1

4: Solve .Sx2 = b2 − Rz � Use iterative method with .M−1 = ˜S−1

5: Solve .Gx1 = b1 − Cx2 � Use LU factors

outlined in Algorithm 9.2. Combining direct and iterative techniques is sometimes
referred to as a hybrid approach.

The Schur complement (or substructuring) approach can be extended to matrices
that are split into more blocks. Blocks may arise naturally from the underlying
application, but they can also be defined using purely algebraic rules. For example,
consider an SPD matrix A. Applying graph partitioning techniques (such as the
nested dissection approach of Section 8.4) to the adjacency graph .G(A), A can be
symmetrically permuted to the doubly bordered block diagonal (DBBD) form

.P T AP = ADB =
(

GD RT

R B

)

,

where .GD is an SPD block diagonal matrix (Section 8.5.1). .ADB is a special case
of a symmetric saddle point matrix. A block LDLT factorization of .ADB is given by

.ADB =
(

I

RG−1
D I

)(

GD

S

)(

I G−1
D RT

I

)

,

where the matrix S is the SPD Schur complement. The blocks within .GD can be
factorized in parallel using a sparse Cholesky solver. However, S is typically large
and significantly denser than B and, in large-scale practical applications, it may not
be possible to explicitly assemble and factorize it; in this case, a preconditioned
iterative method is needed.

If .˜S−1 ≈ S−1, then an approximate block factorization of .A−1
DB is

.M−1 =
(

I −G−1
D RT

I

)(

G−1
D

˜S−1

)(

I

−R G−1
D I

)

.

Employing .M−1 as a preconditioner for .ADB gives the preconditioned matrix

.M−1ADB =
(

I G−1
D RT (I −˜S−1 S)

˜S−1 S

)

.
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Applying .M−1 requires the efficient solution of linear systems with .˜S−1S and
.GD . As in other preconditioning approaches, bounding the condition number of
the preconditioned matrix may be a useful indicator of the expected convergence
of CG. The eigenvalues of .M−1ADB are those of .˜S−1S and unity. Note that the
spectrum of .M−1ADB is the same as the spectrum of .M−1/2ADBM−1/2. Thus,
.κ(M−1/2ADBM−1/2) depends on the extremal eigenvalues of .˜S−1S. A one-level
preconditioner for S is obtained by setting

.˜S−1
1 = B−1.

Let the matrix B be .m × m and let .λ1 ≥ · · · ≥ λm > 0 be the eigenvalues of the
generalized eigenvalue problem

.Sz = λ˜S1z.

Because .˜S−1S = I − B−1RG−1
D RT , it follows that .λ1 ≤ 1 and so

.κ(˜S−1
1 S) = κ(˜S

−1/2
1 S˜S

−1/2
1 ) = λ1

λm

≤ 1

λm

,

which is unbounded as .λm approaches zero. In general, one-level algebraic precon-
ditioners successfully bound the largest eigenvalues of the preconditioned matrix
but encounter difficulties in controlling the smallest ones, which can lie close to the
origin, hindering convergence. Strategies that involve a second-level component aim
to overcome this and include deflation preconditioners and domain decomposition
preconditioners.

The basic idea behind deflation is to “hide” parts of the spectrum from the
CG method such that the CG iteration “sees” a system that has a much smaller
condition number and hopefully a more favourable eigenvalue distribution than
the original matrix. The part of the spectrum that is hidden is determined by the
deflation subspace and the improvement in the convergence rate of the deflated CG
method depends on the choice of this subspace. The ideal deflation subspace is
the invariant subspace spanned by the eigenvectors corresponding to the smallest
eigenvalues. There are practical cases showing convergence of the preconditioned
iterative method may profit from this restriction of the spectrum to its “effective”
part. To illustrate the approach, let .� be the .k × k diagonal matrix with entries
equal to the k smallest eigenvalues and let Z be the .m × k matrix whose columns
are the corresponding eigenvectors. A two-level deflation preconditioner is defined
to be

.˜S−1
2 = B−1 + Z(�−1 − I )ZT = ˜S−1

1 + Z(�−1 − I )ZT .

In practice, challenges remain because .� and Z are typically not readily available.
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9.5.3 Domain Decomposition

In the last section, the vertices .V = {1, 2, . . . , n} of .G(A) were partitioned into
non-overlapping subsets. Alternatively, overlapping subsets (which are generally
termed subdomains because the approach was originally proposed for problems that
had an underlying grid) may be used. Domain decomposition methods based on
overlapping subdomains are often referred to as Schwarz methods. Given .N > 1,
let .��i be the subset of size .n�i of vertices that are distance one in .G(A) from
the vertices in .�Ii (.1 ≤ i ≤ N ). The overlapping subdomain .�i is defined to be
.�i = [�Ii,��i], with size .ni = n�i + nIi .

Associate with .�i an .ni × n restriction (or projection) matrix given by .Ri =
In(�i, :). .Ri maps from the global domain to subdomain .�i ; its transpose .RT

i is a
prolongation matrix that maps from subdomain .�i to the global domain. The one-
level additive Schwarz preconditioner is defined to be

.M−1
AS =

N
∑

i=1

RT
i A−1

i Ri, Ai = RiART
i . (9.20)

Applying this preconditioner to a vector involves solving concurrent local problems
in the overlapping subdomains. Increasing N reduces the sizes .ni of the overlapping
subdomains, leading to smaller local problems and faster computations. However,
the preconditioned system using .M−1

AS may not be well conditioned and the
convergence of the iterative solver may be inhibited. In fact, the local nature of
this preconditioner can lead to a deterioration in its effectiveness as the number of
subdomains increases because of the lack of global information from the matrix
A. To maintain robustness with respect to N , an artificial subdomain is added to the
preconditioner (also known as second-level or coarse space correction) that includes
global information. Let .0 < n0 � n. If the .n0 × n matrix .R0 is of full row rank, the
two-level additive Schwarz preconditioner is defined to be

.M−1
AS2 = M−1

AS + RT
0 A−1

0 R0, A0 = R0ART
0 .

The coarse space correction can also be applied in a multiplicative way, which can
lead to more robust variants. A sparse direct method can be used for the solves
with each .Ai , which has the advantage of being robust and is another example of a
hybrid approach. Alternatively, for very large systems, incomplete IC factorization
preconditioners or approximate inverse preconditioners and an iterative method can
be used. While this may result in a slower convergence rate, it can lead to a faster
method overall because each iteration is less expensive (and may be the only option
if the direct solver requires too much memory). Generalizing the approach to a
hierarchy of additions of artificial domains leads to the class of multilevel methods.
Again, employing them as preconditioners requires solves with the domain matrices,
which can be based on sparse direct methods or preconditioned iterative methods.
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An attractive feature of domain decomposition methods is that they are naturally
parallel because all subdomain computations can be performed simultaneously. The
restricted additive Schwarz preconditioner is obtained by a simple and efficient
change that removes the overlap in the prolongation, replacing (9.20) by

.M−1
RAS =

N
∑

i=1

̂RT
i A−1

i Ri,

where .̂Ri = In(�Ii, :). The main motivation here is to reduce the communication
cost by half because computing products such as .̂Riw does not involve any data
exchange with neighbouring processors.

9.6 Notes and References

A useful textbook on iterative methods is Saad (2003b). It includes the result stated
in Theorem 9.3, while the proof of Theorem 9.2 is given in Mendelsohn (1956).
Other key books include Meurant (1999), van der Vorst (2003), and the recent
monograph of Bertaccini & Durastante (2018), as well as Liesen & Strakoš (2013)
and Meurant & Duintjer Tebbens (2020), which targets theoretical and practical
properties of iterative methods. The excellent surveys of Benzi (2002) and Wathen
(2015), Pearson & Pestana (2020) present overviews of preconditioning techniques
and the monograph Chen (2005) describes several approaches and includes many
example applications, while Bollhöfer (2015) gives a practically oriented survey
that mainly targets multilevel and parallel aspects of algebraic preconditioners. A
discussion of the desirable properties of preconditioners can be found in Chow &
Saad (1997). More sophisticated dropping strategies and the relation between ILU
factorizations and factorized approximate inverses are considered by Bollhöfer &
Saad (2002, 2006); while Kopal et al. (2016) discuss adaptive dropping.

For a basic introduction to the stability problems of LU-based preconditioners,
see Elman (1986, 1989). The Eisenstat trick of Section 9.2.3 is presented by
Eisenstat (1981). An interesting discussion putting this into the context of other
similar ideas is given in Ortega (1988a).

The issue of potential breakdown during incomplete factorizations was pointed
out by Kershaw (1978). This strengthened interest in classes of matrices for which
breakdown cannot occur. Theorem 9.4 for M-matrices is from Meijerink & van der
Vorst (1977); the extension to H-matrices is given independently by Manteuffel
(1980) and Varga et al. (1980). Favourable asymptotic bounds for the condition
number of M-matrices preconditioned by modified incomplete factorizations were
an important impetus behind the development of algebraic preconditioners. These
are described in Axelsson (1972) and Gustafsson (1978, 1979), but see also the
early sophisticated analysis of relaxation methods presented in Dupont et al. (1968).
Some of the assumptions that were used to obtain early asymptotic bounds were
later shown to be unnecessary (Bern et al., 2006). Practical choices of polynomial
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preconditioners, particularly for SPD systems, are discussed in the book by Saad
(2003b) (and the earlier introductory paper of Saad, 1985). Note the recent interest
of Loe & Morgan (2021) and Ye et al. (2021), the former motivated by the potential
to reduce communication in parallel computing.

For preconditioning saddle point problems using algebraic approaches, the
highly cited survey of Benzi et al. (2005) and monograph of Rozložník (2018) are
good starting points. We also refer to the papers by Maryška et al. (1996, 2000a,b)
and Arioli et al. (2006) on the iterative solution of algebraically preconditioned
saddle point problems from PDE applications.

There are a number of monographs on domain decomposition methods. An
important algorithmically oriented introduction is Smith et al. (1996), but see
also Quarteroni & Valli (1999) and Toselli & Widlund (2005) as well as the
books by Olshanskii & Tyrtyshnikov (2014) and Dolean et al. (2015), which
emphasize connections to PDEs and solution techniques motivated by them. We
recommend the paper of Tang et al. (2009) for an algebraic comparison of different
classes of domain decomposition and deflation preconditioners. A further line
of research resulting in general algebraic preconditioners has been developed
using hierarchical matrices; the papers include Bebendorf & Fischer (2008) and
Bebendorf et al. (2013) and the monograph on hierarchical matrices of Bebendorf
(2008). The ShyLU software package developed by Rajamanickam et al. (2012)
is a fully algebraic hybrid package for solving sparse linear systems using domain
decomposition methods. It offers distributed memory domain decomposition solvers
and node level solvers and kernels that support the distributed memory solvers. The
node level solvers include sparse LU and Cholesky factorizations, a multithreaded
triangular solver, and a fast iterative ILU algorithm. ShyLU is available as part of
Trilinos (ShyLU Project Team, 2022).

Algebraic multigrid (AMG) methods are another important class of frequently
used methods. AMG methods can be used to precondition a wide spectrum of
problems, but their development has been mainly motivated by systems arising
from the discretization of PDEs, often exploiting specific properties of discretized
models. A recommended overview is by Xu & Zikatanov (2017); see also Stüben
et al. (2017).
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Chapter 10
Incomplete Factorizations

They [incomplete factorizations] can be thought of as
approximating the exact LU factorization of a given matrix A

(e.g. computed via Gaussian elimination) by disallowing certain
fill-ins. As opposed to other PDE-based preconditioners such as
multigrid and domain decomposition, this class of
preconditioners are primarily algebraic in nature and can in
principle be applied to any sparse matrices. When applied to
PDE problems, they are usually not optimal ... On the other
hand, they are often quite robust. – Chan & van der Vorst
(1997).

Having introduced incomplete factorization preconditioners in the previous chapter,
the focus in this chapter is on different ways to compute such factorizations and their
relationship to the complete factorizations used in sparse direct methods. We denote
the incomplete factors by .˜L and .˜U ; in the SPD case, .˜U = ˜LT . We assume that the
sparsity patterns of A and its incomplete factors always include the positions of the
diagonal entries.

10.1 ILU(0) Factorization

The simplest sparsity pattern for an incomplete factorization is .S{˜L+ ˜U} = S{A},
that is, no entries in .˜L or .˜U are allowed outside the sparsity pattern of A and
only entries in positions .(i, j) ∈ S{A} are retained in the (incomplete) elimination
matrices. The resulting incomplete factorization is called an ILU(0) factorization (or
an IC(0) factorization if A is SPD).

Motivation for considering a sparsity pattern that is a superset of .S{A} is given
by the following straightforward but important result.

Theorem 10.1 (Chan & van der Vorst 1997; van der Vorst 2003) Consider the
incomplete LU factorization .A + E = ˜L˜U with sparsity pattern .S{˜L + ˜U}. The
entries of the error matrix E are zero at positions .(i, j) ∈ S{˜L+ ˜U}.

© The Author(s) 2023
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Proof The result clearly holds for .j = 1. Let .(i, j) ∈ S{˜L+˜U } and assume without
loss of generality that .i > j > 1. The .(i, j) entry of .˜L is computed as

.l̃ij =
⎛

⎝aij −
j−1
∑

k=1

l̃ik ũkj

⎞

⎠ /ũjj

with the sums over k implying .(i, k) ∈ S{˜L+˜U} and .(k, j) ∈ S{˜L+˜U }. This gives

.aij = ˜Li,1:j−1˜U1:j−1,j + l̃ij ũjj = ˜Li,1:j ˜U1:j,j = Li,1:jU1:j,j ,

and the corresponding entry of E is zero. ��
A consequence of Theorem 10.1 is that extending .S{˜L+ ˜U} gives a larger set of

entries of A for which the error is zero. This is attractive provided the incomplete
factorization can still be computed and employed cheaply and does not require
prohibitive amounts of memory. In some situations, there are straightforward ways
to extend .S{˜L + ˜U}. For example, consider a simple discretization of a PDE on a
rectangular grid. The sparsity pattern of the corresponding SPD matrix A and its
graph .G(A) together with the first three steps of the Cholesky factorization of A

(in which variables 1, 2, and 3 are eliminated in turn) are given in Figure 10.1. A

has entries on the diagonal and four of its subdiagonals and the fill-in lies within
.band(A). A natural choice is to allow .S{˜L + ˜U} to include fill-in along a few
additional diagonals within the band.

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 2 3 4

5 6 7 8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ f
∗ ∗ ∗ ∗

∗ ∗
∗ ∗∗ ∗

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ ∗

f f ∗ ∗
∗ f ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗
∗

∗ ∗ ∗
∗ ∗ ∗ f ∗

∗ ∗ ∗ f f ∗
∗ ∗ f f f

f f f ∗ ∗ f
∗ f f ∗ ∗ ∗

∗ f f ∗ ∗ ∗
∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 10.1 An .8× 8 banded sparse SPD matrix A and its graph .G(A). The first three steps of a
Cholesky factorization are shown. Filled entries are denoted by f .
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10.2 Basic Incomplete Factorizations

We start with the two basic incomplete factorizations. Here and elsewhere, section
notation is used but operations are performed only on nonzero entries. The Crout
variant given in Algorithm 10.1 computes .˜U row-by-row and .˜L column-by-column
and sparsifies each row and column as soon as they are computed using a target
sparsity pattern .S{˜L + ˜U}. The widely used variant outlined in Algorithm 10.2
constructs both .˜L and .˜U by rows. Prescribing an appropriate sparsity pattern in
advance can be difficult. If it is not supplied, sparsification can be applied inside
the k loops (for instance, entries with absolute value less than a chosen tolerance
may be dropped) and the sparsity patterns of the factors updated as the factorization
proceeds.

Algorithms 10.1 and 10.2 are straightforward to implement using sparse data
structures. At major step i, Algorithm 10.2 computes .˜Li,1:i−1 and .˜Ui,i+1:n; both
rows can be held using a single auxiliary vector. Note that, in Algorithm 10.1,
sparsification of the partially computed vectors is performed outside the k loops,
whereas in Algorithm 10.2 it is inside the k loop. In practice, either approach can be
used, leading to slightly different variants.

ALGORITHM 10.1 Crout incomplete LU factorization

Input: Matrix A and, optionally, a target sparsity pattern .S{˜L+ ˜U}.
Output: Incomplete LU factorization .A ≈ ˜L˜U .

1: for .j = 1 : n do

2: .l̃jj = 1, .˜Lj+1:n,j = Aj+1:n,j

3: .˜Uj,j :n = Aj,j :n
4: for .k = 1 : j − 1 such that .(j, k) ∈ S{˜L} do
5: .˜Uj,j :n = ˜Uj,j :n − l̃jk

˜Uk,j :n � Sparse linear combination

6: end for

7: Sparsify .˜Uj,j+1:n � Drop entries from row j of .˜U

8: for .k = 1 : j − 1 such that .(k, j) ∈ S{˜U} do
9: .˜Lj+1:n,j = ˜Lj+1:n,j − ũkj

˜Lj+1:n,k � Sparse linear combination

10: end for

11: Sparsify .˜Lj+1:n,j � Drop entries from column j of .˜L

12: .˜Lj+1:n,j = ˜Lj+1:n,j /ũjj

13: end for



188 10 Incomplete Factorizations

ALGORITHM 10.2 Row incomplete LU factorization

Input: Matrix A and, optionally, a target sparsity pattern .S{˜L+ ˜U}.
Output: Incomplete LU factorization .A ≈ ˜L˜U .

1: for .i = 1 : n do

2: .l̃ii = 1, .˜Li,1:i−1 = Ai,1:i−1

3: .˜Ui,i:n = Ai,i:n
4: Sparsify .˜L1,1:i−1 and .˜Ui,i+1:n
5: for .k = 1 : i − 1 such that .(i, k) ∈ S{˜L} do
6: .l̃ik = l̃ik/ũkk

7: .˜Li,k+1:i−1 = ˜Li,k+1:i−1 − l̃ik ˜Uk,k+1:i−1

8: Sparsify .˜Li,k+1:i−1

9: .˜Ui,i:n = ˜Ui,i:n − l̃ik ˜Uk,i:n
10: Sparsify .˜Ui,i+1:n
11: end for

12: end for

10.3 Incomplete Factorizations Based on the Shortest
Fill-Paths

We next consider an incomplete LU factorization that uses a structure-based
dropping strategy. Entries of the factors that correspond to nonzero entries of A are
assigned the level 0, while each potential filled entry in position .(i, j) is assigned a
level as follows:

.level(i, j) = min
1≤k<min{i,j}(level(i, k)+ level(k, j)+ 1). (10.1)

Given .� ≥ 0, during the factorization, a filled entry is permitted at position
.(i, j) provided .level(i, j) ≤ �. The resulting level-based incomplete factorization
is denoted by ILU(.�) (or IC(.�)); the basic row variant is given in Algorithm 10.3.

Figure 10.2 depicts .S{˜L + ˜LT } for the IC(.�) factorization of A from the
discretized Laplace equation on a square grid (see the smaller problem in (9.14))
and for a matrix with a more general symmetric sparsity structure. The fill-in is
typically generated irregularly throughout the factorization: initially few updates
are needed, but later steps involve many updates, leading to large amounts of
dropping. Furthermore, the amount of fill-in can grow quickly with increasing .�

and, as a result, .� is typically small and level-based dropping is often combined with
threshold-based dropping or with sparsifying A before the factorization commences
(for example, by discarding entries of A with small absolute values).
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ALGORITHM 10.3 Level-based incomplete LU factorization
Input: Matrix A and the level parameter .� ≥ 0.
Output: ILU.(�) factorization .A ≈ ˜L˜U .

1: Initialise level to 0 for nonzeros and diagonal entries of A and to .n+1 otherwise
2: for .i = 1 : n do � Loop over rows
3: .l̃ii = 1, .˜Li,1:i−1 = Ai,1:i−1 and .˜Ui,i:n = Ai,i:n � Initialise row i of .˜L and .˜U

4: for .k = 1 : i − 1 such that .level(i, k) ≤ � do
5: .l̃ik = l̃ik/ũkk

6: for .j = k + 1 : i − 1 do
7: .l̃ij = l̃ij − l̃ik ũkj and update .level(i, j)

8: end for
9: for .j = i : n do

10: .ũij = ũij − l̃ik ũkj and update .level(i, j)

11: end for
12: end for
13: for .k = 1 : i − 1 do � Drop entries in row i for which level is too high
14: if .level(i, k) > � then .l̃ik = 0
15: end for
16: for .k = i : n do
17: if .level(i, k) > � then .ũik = 0
18: end for
19: end for

The level-based strategy comes from observing that in practical examples the
absolute values of the entries in the factors in positions for which level is large are
often small. This is the case for model problems arising from discretized PDEs. A
closer look shows a surprising connection between the level-based ILU factorization
and the complete factorization: entries with large values of level correspond to long
fill-paths. This is expressed in Theorem 10.2, which allows the sparsity patterns of
the incomplete factors to be determined a priori.

Theorem 10.2 (Hysom & Pothen 2002) Consider the ILU(.�) factorization of A.
.level(i, j) = k for some .k ≤ � if and only if there is a shortest fill-path .i �⇒ j of
length .k + 1 in the adjacency graph .G(A).

Algorithm 10.4 outlines finding the pattern of row i of .˜U ; finding the pattern of
columns of .˜L is analogous. Only .G(A) is required, and hence the sparsity pattern
of each row in the factor can be computed independently, in parallel. The algorithm
operates via a simple breadth-first search that finds a shortest path between vertex
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IC(0) IC(2) IC(4)

IC(0) IC(2) IC(4)

Figure 10.2 The sparsity patterns of the IC.(�) factors of A from the discretized Laplace equation
on a square grid (top) and a more general symmetric sparse matrix (bottom).

i and vertices reachable from i via a graph traversal of .l + 1 or fewer edges. The
correctness of the algorithm follows from Theorem 10.2.

10.4 Modifications Based on Maintaining Row Sums

We assume in this section that the target sparsity pattern .S{˜L + ˜U} contains .S{A}.
Modified incomplete factorizations (MILU or MIC in the SPD case) seek to
maintain equality between the row sums of A and .˜L˜U , that is, .˜L˜Ue = Ae (e is the
vector of all ones). Rather than discarding potential fill-in outside the target sparsity
pattern, the approach subtracts it from the diagonal entries of .˜U ; this is outlined
in Algorithm 10.5. Note that an MILU factorization may break down. If the target
sparsity pattern corresponds to that of an ILU(.�) factorization, then an MILU(.�)
factorization is computed.

Equality of the row sums of A and .˜L˜U can be seen as follows. If all the filled
entries are retained (that is, .S{˜L+ ˜U} = S{L+ U}), then the claim holds trivially.
Now assume some filled entries are not kept. If an entry in column j of row i of A

belongs to the target sparsity pattern, then its value is modified in Step 8 if .i ≤ j

or in Step 15 if .i > j . Otherwise, the i-th diagonal entry of .˜U is modified (Step
10 or Step 17). In each case, .l̃ik ũkj is subtracted from entries of the i-th row of the
incomplete factors. Consider row i of .˜L˜U . This product is given by
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ALGORITHM 10.4 Find the sparsity pattern of row i of the ILU.(�) factor .˜U

of A
Input: Graph .G(A), the level parameter .� ≥ 0 and row index i.
Output: Sparsity pattern .S{˜Ui,i:n} of row i of the ILU.(�) factorization .A ≈ ˜L˜U .

1: .S{˜Ui,i:n} = {i}, .Q = {i} � Queue holds i initially
2: .length(i) = 0
3: .visited(i) = i

4: while .Q is not empty do
5: .pop(Q, k) � Take k from the queue
6: for .j ∈ adjG(A)(k) with .visited(j) = i do
7: .visited(j) = i

8: if .j < i and .length(k) < � then
9: .append(Q, j) � Add j to the queue

10: .length(j) = length(k)+ 1
11: else if .j > i then
12: .S{˜Ui,i:n} = S{˜Ui,i:n} ∪ {j} � Add j to the sparsity pattern of row i

13: end if
14: end for
15: end while

.

i−1
∑

j=1

l̃ij

n
∑

k=j

ũjk =
i−1
∑

j=1

l̃ij ũjj +
i−1
∑

j=1

l̃ij

n
∑

k=j+1

ũjk +
n
∑

k=i

ũik =

=
i−1
∑

j=1

⎛

⎝aij −
j−1
∑

k=1

l̃ik ũkj

⎞

⎠+
i−1
∑

j=1

l̃ij

n
∑

k=j+1

ũjk +
n
∑

k=i

⎛

⎝aik −
i−1
∑

j=1

l̃ij ũjk

⎞

⎠

=
n
∑

j=1

aij +
i−1
∑

j=1

l̃ij

n
∑

k=j+1

ũjk −
⎛

⎝

i−1
∑

j=1

j−1
∑

k=1

l̃ik ũkj +
n
∑

k=i

i−1
∑

j=1

l̃ij ũjk

⎞

⎠ .

Rearranging the indices in the double summations, the last three sums cancel out.
Moreover, the added double summation is the sum of all the modification terms
.l̃ik ũkj in Algorithm 10.5, and the sum of the two subtracted double summations
also comprises all the modification terms. Consequently, the row sums of A are
preserved in the product of the incomplete factors.

Theorem 10.3 provides motivation for maintaining constant row sums in the case
of a model PDE problem. The result is also valid for Neumann or mixed boundary
conditions, and there are extensions to three-dimensional problems and MIC(.�)
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ALGORITHM 10.5 Modified incomplete factorization (MILU)

Input: Matrix .A = LA+DA+UA (see (9.6)) and a target sparsity pattern .S{˜L+˜U}
containing .S{A}.
Output: Incomplete LU factorization .A ≈ ˜L˜U .

1: .l̃ij = (I + LA)ij for all .(i, j) ∈ S(˜L) � .S(LA) ⊆ S(˜L)

2: .ũij = (DA + UA)ij for all .(i, j) ∈ S(˜U) � .S(UA) ⊆ S(˜U)

3: for .k = 1 : n− 1 do
4: for .i = k + 1 : n such that .(i, k) ∈ S{˜L} do
5: .l̃ik = l̃ik/ũkk � Check that .ũkk is nonzero
6: for .j = i : n such that .(k, j) ∈ S{˜U} do
7: if .(i, j) ∈ S{˜U} then
8: .ũij = ũij − l̃ik ũkj

9: else
10: .ũii = ũii − l̃ik ũkj �Modify diagonal instead of creating fill-in
11: end if
12: end for
13: for .j = k + 1 : i − 1 such that .(k, j) ∈ S{˜U} do
14: if .(i, j) ∈ S{˜L} then
15: .l̃ij = l̃ij − l̃ik ũkj

16: else
17: .ũii = ũii − l̃ik ũkj �Modify diagonal instead of creating fill-in
18: end if
19: end for
20: end for
21: end for

with .� > 0. However, although Theorem 10.1 holds for MILU factorizations, the
approach may not be useful for general A.

Theorem 10.3 (Gustafsson 1978; Bern et al. 2006) Let A come from a discretized
Poisson problem on a uniform two-dimensional rectangular grid with Dirichlet
boundary conditions and discretization parameter h. Then the condition number
.κ((˜L˜U)−1A) for the level-based MIC(0) preconditioner is .O(h−1).

Optionally, in Steps 10 and 17 of Algorithm 10.5, the update term .l̃ik ũkj may be
multiplied by a parameter .θ (.0 < θ < 1) before it is subtracted from the diagonal
entry .ũii . The introduction of .θ was proposed as a practical way to extend MILU to
linear systems not coming from discretized PDEs. Clearly, using .θ < 1 reduces the
amount by which the diagonal entries are modified.
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10.5 Dynamic Compensation

As discussed in Section 9.4.1, dropping entries can lead to breakdown. One way to
avoid this (in exact arithmetic) is to dynamically modify the computed entries; this
is outlined as Algorithm 10.6. Instead of accepting a filled entry in position .(i, j),
the idea is to add a (weighted) multiple of its absolute value to the corresponding
diagonal entries .ũii and .ũjj . Provided the number of modifications is small, this
can be useful if A is a diagonally dominant matrix and scaled so that its diagonal
entries are nonnegative. The parameter .ω controls the amount by which the diagonal
entries of .˜U are modified, but if .ω < 1, then breakdown can still occur. Dynamic
compensation can be successful when incorporated into an IC factorization of

ALGORITHM 10.6 ILU factorization with dynamic compensation

Input: Matrix .A = LA +DA + UA (see (9.6)), a target sparsity pattern .S{˜L+ ˜U}
and parameter .ω (.0 ≤ ω ≤ 1).
Output: Incomplete LU factorization .A ≈ ˜L˜U .

1: .l̃ij = (I + LA)ij for all .(i, j) ∈ S(˜L)

2: .ũij = (DA + UA)ij for all .(i, j) ∈ S(˜U)

3: for .k = 1 : n− 1 do
4: for .i = k + 1 : n such that .(i, k) ∈ S{˜L} do
5: .l̃ik = l̃ik/ũkk

6: for .j = i : n such that .(k, j) ∈ S{˜U} do
7: if .(i, j) ∈ S{˜U} then
8: .ũij = ũij − l̃ik ũkj

9: else
10: .ρ = (ũii/ũjj )

1/2

11: .ũii = ũii + ωρ |l̃ik ũkj |, .ũjj = ũjj + ω|l̃ik ũkj | /ρ, .ũij = 0.
12: end if
13: end for
14: for .j = k + 1 : i − 1 such that .(k, j) ∈ S{˜U} do
15: if .(i, j) ∈ S{˜L} then
16: .l̃ij = l̃ij − l̃ik ũkj

17: else
18: .ρ = (ũii/ũjj )

1/2

19: .ũii = ũii + ωρ |l̃ik ũkj |, .ũjj = ũjj + ω|l̃ik ũkj | /ρ, .l̃ij = 0.
20: end if
21: end for
22: end for
23: end for
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an SPD matrix A because the resulting local modifications correspond to adding
positive semidefinite matrices to A. In practice, the behaviour of the resulting
preconditioner can be very different from that computed using the MIC approach
of the previous section.

A related scheme, called diagonally compensated reduction, modifies A before
the factorization begins by adding the values of all of its positive off-diagonal entries
to the corresponding diagonal entries and then setting these off-diagonal entries
to zero. If A is SPD, then the resulting matrix is a symmetric M-matrix and the
incomplete factorization will not break down (Theorem 9.4). However, the modified
matrix may be too far from A for its incomplete factors to be useful.

10.6 Memory-Limited Incomplete Factorizations

We next consider a more sophisticated modification scheme that introduces the use
of intermediate memory that is employed during the construction of the incomplete
factors but is then discarded. The aim is to obtain a high quality preconditioner
while maintaining sparsity and allowing the user to control how much memory is
used (both in the construction of the preconditioner and in the incomplete factor .˜L).
Let the matrix A be SPD and consider the decomposition

.A = (˜L+ ˜R) (˜L+ ˜R)T − E.

Here the incomplete factor .˜L is a lower triangular matrix with positive diagonal
entries, .˜R is a strictly lower triangular matrix with “small” entries, and the error
matrix is .E = ˜R˜RT . At each step, the next column of .˜L is computed, and then the
remaining Schur complement is modified. On step j of the incomplete factorization,
the first column of the Schur complement .S(j) is split into the sum

.˜Lj :n,j + ˜Rj :n,j ,

where .˜Lj :n,j contains the entries that are retained in column j of the final incom-
plete factorization, .(˜R)jj = 0 and .˜Rj+1:n,j contains the entries that are discarded.
If a complete factorization was being computed, then the Schur complement would
be updated by subtracting

.(˜Lj+1:n,j + ˜Rj+1:n,j ) (˜Lj+1:n,j + ˜Rj+1:n,j )
T .

However, the incomplete factorization discards the term

.E(j) = ˜Rj+1:n,j
˜RT

j+1:n,j .
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Figure 10.3 An illustration of the fill-in in a standard sparsification-based IC factorization (left)
and in the approach that uses intermediate memory (right) after one step of the factorization. Entries
with a small absolute value in row and column 1 are denoted by .δ. The filled entries are denoted
by f .
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Figure 10.4 On the left is an SPD matrix with an entry of small absolute in positions .(1, 3) and
.(3, 1). In the centre is .S{˜L} computed using a standard IC factorization that drops the small entry
.δ at position .(3, 1) (there are no filled entries in this case). On the right is the lower triangular
part of the elimination matrix after the first step of the incomplete factorization using intermediate
memory. The filled entry is denoted by f .

Thus, the matrix .E(j) is implicitly added to A, and because .E(j) is positive
semidefinite, the approach is naturally breakdown-free.

The obvious choice for .˜Rj+1:n,j is the smallest off-diagonal entries in the column
(those that are smaller in absolute value than a chosen tolerance). Then implicitly
adding .E(j) is combined with the standard steps of an IC factorization, with entries
dropped from .˜L after the updates have been applied to the Schur complement.

Figure 10.3 depicts the first step of this approach. In the first row and column,
.∗ and .δ denote the entries of .˜L1:n,1 and .˜R1:n,1, respectively. Because a standard
sparsification scheme does not store the smallest entries, using such a scheme gives
no fill-in in the rows and columns corresponding to the discarded entries; this is
shown on the left. The fill-in in the factorization that uses intermediate memory is
depicted on the right. Clearly, more filled entries are used in constructing .˜L.

This strategy enables the structure of the complete factorization to be followed
more closely than is possible using a standard approach. This is illustrated in
Figure 10.4. If the small entries at positions .(1, 3) and .(3, 1) are not discarded, then
there is a filled entry in position .(3, 2) and this allows the incomplete factorization
using intermediate memory to involve the (large) off-diagonal entries in positions
.(5, 2) and .(6, 2) in the second step of the IC factorization.

Unfortunately, because the column .˜Rj+1:n,j must be retained to perform the
updates on the next step, the total memory requirements are essentially as for a
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ALGORITHM 10.7 Crout memory-limited IC factorization
Input: SPD matrix A, memory control parameters .lsize > 0 and .rsize ≥ 0.
Output: Incomplete Cholesky factorization .A ≈ ˜L˜LT .

1: .wi = 0, 1 ≤ i ≤ n

2: for .j = 1 : n do
3: for .i = j : n such that .aij = 0 do
4: .wi = aij

5: end for
6: for .k < j such that .l̃jk = 0 do
7: for .i = j : n such that .l̃ik = 0 do
8: .wi = wi − l̃ik l̃jk

9: end for
10: for .i = j : n such that .r̃ik = 0 do
11: .wi = wi − r̃ik l̃jk

12: end for
13: end for
14: for .k < j such that .r̃jk = 0 do
15: for .i = j : n such that .l̃ik = 0 do
16: .wi = wi − l̃ik r̃jk

17: end for
18: end for
19: Copy into .˜Lj :n,j the .lsize+nz(Aj :n,j ) entries of w of largest absolute value

20: Copy into .˜Rj+1:n,j the rsize entries of w that are the next largest in absolute

value

21: Scale .l̃jj = (wj )
1/2, .˜Lj+1:n,j = ˜Lj+1:n,j /l̃jj , .˜Rj+1:n,j = ˜Rj+1:n,j /l̃jj

22: Reset entries of w to zero.

23: end for
24: Optionally discard .˜R � .˜R is often only used in the construction of .˜L

complete factorization. However, the memory can be reduced by introducing two
drop tolerances so that only entries of absolute value at least .τ1 are kept in .˜L

and entries smaller than .τ2 are dropped from .˜R. The factorization is no longer
guaranteed to be breakdown-free. Furthermore, the numbers of entries in .˜L and
.˜R are not known a priori.

An alternative idea that limits both the number of entries in the incomplete
factor and the intermediate memory is to fix the maximum number of entries in
each column of .˜L and .˜R. This is outlined in Algorithm 10.7. Here .lsize ≥ 0 and
.rsize ≥ 0 are the maximum number of filled entries in each column of .˜L and
the maximum number of entries in each column of .˜R, respectively, and .nz(Aj :n,j )
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denotes the number of entries in the lower triangular part of column j of A. The
number of entries in .˜L is less than .nz(A)+(n−1)lsize (where .nz(A) is the number
of entries in the lower triangular part of A) and .˜R has at most .(n−1)rsize entries. If
the parameter rsize is set to 0, then no intermediate memory is used but in general
choosing .rsize > 0 leads to the computed .˜L being a higher quality preconditioner.
In case of breakdown, the algorithm can incorporate the use of a global shift; see
Algorithm 9.1.

10.7 Fixed-Point Iterations for Computing ILU
Factorizations

The fixed-point ILU algorithm is fundamentally different from Gaussian
elimination-based approaches. Given the target sparsity pattern .S{˜L + ˜U}, the
goal is to iteratively generate incomplete factors fulfilling the ILU property

.(˜L˜U)ij = aij , (i, j) ∈ S{˜L+ ˜U}

(see Theorem 10.1). The idea is appealing because the entries of .˜L and .˜U can be
computed iteratively in parallel using the constraints

.

min(i,j)
∑

k=1
(i,k),(k,j)∈S{˜L+˜U}

l̃ik ũkj = aij , (i, j) ∈ S{˜L+ ˜U},

and the normalization .l̃ii = 1. Using the relations

.l̃ij =
⎛

⎝aij −
j−1
∑

k=1

l̃ik ũkj

⎞

⎠ / ũjj , i > j, . (10.2)

ũij = aij −
i−1
∑

k=1

l̃ik ũkj , i ≤ j, (10.3)

the approach can be formulated as a fixed-point iteration method of the form .wk+1 =
f (wk), .k = 0, 1, . . ., where w is a vector containing the unknowns .l̃ij and .ũij . Each
fixed-point iteration is called a sweep. Algorithm 10.8 outlines the method.

An important question is how to choose initial values for the factor entries.
In some applications, a natural initial guess is available. For example, in time-
dependent problems, the .˜L and .˜U computed in the previous time step may provide
appropriate initial guesses for the current time step. In other cases, a possible
strategy is to symmetrically scale A to have a unit diagonal and then take the initial .˜L
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ALGORITHM 10.8 Fixed-point ILU factorization

Input: Matrix A, the target sparsity pattern .S{˜L+˜U}, and initial incomplete factors
.˜L and .˜U .
Output: Updated incomplete factors.

for .(i, j) ∈ S{˜L+ ˜U} do
Set .l̃ij and .ũij to the given initial values

end for
for .sweep = 1, 2, . . . do

for .(i, j) ∈ S{˜L+ ˜U} do
if .i > j then

Compute .l̃ij using (10.2)
else

Compute .ũij using (10.3)
end if

end for
end for

and .˜U to be the lower and upper parts of the scaled matrix, respectively. In practice,
a few sweeps may be sufficient to generate preconditioners that are competitive in
terms of quality to those generated via classical incomplete Gaussian elimination
algorithms.

The following features differentiate the fixed-point ILU algorithm from classical
methods and make it attractive for parallel computations on modern architectures.

• The algorithm is fine-grained, allowing for scaling to a very large number of
processors, limited only by the number of nonzero entries in the target sparsity
patterns.

• Preordering A is not needed to enhance parallelism, and thus orderings that
improve the accuracy of the incomplete factorization can be used.

• The algorithm can utilize an initial guess for the ILU factorization.

To enhance the preconditioner quality, it is possible to interleave employing
Algorithm 10.8 with a strategy that dynamically adapts .S{˜L + ˜U} to the problem
characteristics. In an iterative process based on highly parallel building blocks,
this allows threshold-based ILU factorizations to be computed on parallel shared-
memory architectures and enables the efficient use of streaming-based architectures
such as GPUs.
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10.8 Ordering in Incomplete Factorizations

Ordering algorithms designed for sparse direct solvers (see Chapter 8) can have
a positive effect on the robustness and performance of preconditioned Krylov sub-
space methods. However, the best choice of ordering for an incomplete factorization
preconditioner may not be the same as for a complete factorization, and although the
effects of orderings and how much fill-in is allowed have been widely demonstrated,
they are not yet fully understood.

When the natural (lexicographic) ordering is used, the incomplete triangular
factors resulting from a no-fill ILU factorization can be highly ill-conditioned, even
if the matrix A is well-conditioned. Allowing more fill-in in the factors, for example,
using ILU(1) instead of ILU(0), may solve the problem, but it is not guaranteed. In
some cases, preordering A can lead to more stable factors, and hence more effective
preconditioners, but, again, this is not understood.

Minimum degree orderings (Section 8.1.2) are popular for direct methods, but
for incomplete factorizations care is needed to ensure the dropping strategy is
compatible with the ordering. This is because the rows (and columns) of the
permuted matrix can have significantly different counts. In this situation, using
memory-based dropping in which the maximum allowable number of filled entries
in a row of .˜L is the same for all rows may not be a good approach. An alternative
strategy is to specify that the permitted fill-in is proportional to that of the complete
factorization (which can be computed using Algorithm 4.3).

A level set ordering that reduces the bandwidth or profile of a matrix can be
employed (Section 8.2). For complete factorizations, the fill-in in the factors can
be much greater than for nested dissection or minimum degree, but for incomplete
factorizations they can be highly effective. In particular, using an RCM ordering
(Algorithm 8.3) is often found to lead to a higher quality preconditioner than using
the natural ordering. RCM-based orderings are generally inexpensive to compute
and can provide good reuse of computer caches.

Global orderings based on a divide-and-conquer approach and, in particular,
nested dissection (Section 8.4) are important for complete factorizations. But such
orderings cut local connections within the graph of A and, when used with incom-
plete factorizations, can lead to poor quality preconditioners. A global ordering
that specifically targets incomplete factorizations is a red–black (or checker board)
ordering. Consider the graph .G(A) of an SPD matrix A that arises from a simple
5-point discretization of a PDE on a regular two-dimensional grid and colour its
vertices using two colours so that no vertices of the same colour are incident to the
same edge (see Figure 10.5). Because no red vertex is adjacent to any other red
vertex, the red vertices are an independent set; similarly, the black vertices are an
independent set. The red vertices can be processed in any order, provided they are
all processed before any of the black vertices. This can make red–black orderings
convenient for parallel implementations and is the main reason that they are often
employed with stationary iterative methods.
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Figure 10.5 A model problem to illustrate a red–black ordering. The grid-based graph .G(A) with
coloured vertices is given together with the matrix A (left) and the symmetrically permuted matrix
using the red–black ordering (right).

A bipartite graph is an undirected graph whose vertices can be partitioned into
two disjoint sets such that each set is an independent set (Section 6.3.1). It follows
that the red–black ordering exists if and only if .G(A) is bipartite. The ordering is
often generalized as follows. Start by finding a set of mutually non-adjacent vertices
(that is, an independent set) and flag them as red vertices. After the elimination of the
variables corresponding to the red vertices and employing a sparsification strategy,
a Schur complement matrix is obtained. Proceed by finding a set of mutually non-
adjacent vertices in this matrix, flag them as red vertices and continue recursively.
This approach can lead to a significant decrease in the condition number of the
preconditioned matrix. Another generalization for arbitrary graphs is to employ
more colours (multicolouring). Again, the colouring can be exploited in parallel
computations. For efficiency, load balancing of the coloured vertices needs to be
considered. Because reordering the vertices can affect the convergence rate of an
iterative solver, the potential gain in parallel performance at each iteration may be
offset by a slower convergence rate.

10.9 Exploiting Block Structure

Blocking methods for complete factorizations can be adapted to incomplete factor-
izations. The aim is to speed up the computation of the factors and to obtain more
effective preconditioners. In a block factorization, scalar operations of the form

.l̃ik = aik/ũkk
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are replaced by matrix operations

.˜Lib,kb = Aib,kb
˜U−1

kb,kb,

and scalar multiplications of entries of the factors are replaced by matrix–matrix
products. When dropping entries, instead of considering the absolute values, simple
norms of the block entries (such as the one norm, max norm, or Frobenius norm)
are used.

An incomplete factorization can start with the supernodal structure of the
complete factors. If dropping is applied to individual columns, this structure is
generally lost. To try and retain it, the dropping strategy can be modified either
to drop the set of nonzeros of a row in the current supernode or to keep it. To
obtain sufficiently sparse incomplete factors, it may be necessary to subdivide each
supernode, allowing greater flexibility on how many rows are dropped. It is also
possible to relax blocking operations in such a way that the supernodes are not
exact but are allowed to incur some fill-in.

10.10 Notes and References

Sparsity structure was the main ingredient of the first algebraic preconditioners that
were developed in the late 1950s. The nonzero structure represented the stencils
resulting from the discretization of PDEs on structured grids. The earliest contribu-
tion is Buleev (1959), and this was later generalized to three-dimensional problems.
An independent derivation and its interpretation as an incomplete factorization for a
sparse matrix coming from a simple 5-point stencil is given in Varga (1960); other
early work is by Baker & Oliphant (1960). For an overview of early contributions
and the motivations behind incomplete factorizations, see Il.′in (1992); we also refer
to the survey of Chan & van der Vorst (1997).

Important breakthroughs in the use of preconditioning using incomplete factor-
izations for practical problems came in two key papers. The first by Meijerink &
van der Vorst (1977) recognized the importance of preconditioning for the conjugate
gradient method. In the second, Kershaw (1978) proposed locally replacing pivots
by a small positive number to prevent breakdown of the factorization. This paved
the way for incomplete factorizations in which dropping is based solely on the size
of the computed entries and which were introduced even earlier by Tuff & Jennings
(1973).

The Crout incomplete LU factorization outlined in Algorithm 10.1 was imple-
mented in a successful code for symmetric problems by Lin & Moré (1999),
building on earlier ideas of Jones & Plassmann (1995) and Eisenstat et al. (1982)
(see also Li et al., 2003 for later contributions to this approach). Algorithm 10.2
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with a sparsification strategy that uses both a drop tolerance and a limit on the
number of entries in each column of the incomplete factors was published in Saad
(1994a) as the dual threshold ILUT method. For general nonsymmetric matrices,
ILUT has proved very popular and has been developed further (see, for example,
MacLachlan et al., 2012). But because it is based on the row factorization, it
ignores symmetry in A and, if A is symmetric, the computed sparsity patterns of
L and .UT are normally different. In this case, a Crout incomplete factorization
may be preferable. The hierarchy of sparsity structures based on the concept of
levels is introduced in Watts-III (1981). The initial work has since been significantly
improved, notably for parallel implementations by Hysom & Pothen (2002). The
Euclid library is a scalable implementation of a parallel level-based ILU algorithm
that is available as part of the hypre library of linear solvers (see Falgout et al.,
2006, 2021). Scalable means that the incomplete factorization and triangular solve
timings remain nearly constant when the problem size n is scaled in proportion to
the number of processors. Another parallel level-based ILU preconditioner that uses
an adaptive block implementation is proposed in Hénon et al. (2008).

The modified incomplete factorizations of Section 10.4 are described in Saad
(2003b). A proof of Theorem 10.3 can be found in Bern et al. (2006), but it is also
of interest to follow earlier work on asymptotic bounds for the condition number
of matrices preconditioned by modified incomplete factorizations given in Dupont
et al. (1968), Axelsson (1972), and Gustafsson (1978), while an elegant description
is in Meurant (1999).

Incomplete factorizations with dynamic compensation originally introduced by
Ajiz & Jennings (1984) have been routinely employed in practice. However,
memory-limited approaches based on relaxing the strategy of Tismenetsky (1991)
often lead to more efficient preconditioners; see Kaporin (1998) for a row-based
construction that has recently been used by Konshin et al. (2017, 2019) to solve
challenging practical problems. Scott & Tůma (2014b) present a Crout construction
of a sophisticated memory-limited incomplete factorization and provide a robust
implementation for SPD systems as the package HSL_MI28 within the HSL
mathematical software library (Scott & Tůma, 2014a); a variant for symmetric
saddle point systems is also included in HSL.

Using fixed-point iterations for the parallel computation of incomplete factor-
izations is a relatively new idea that was proposed and analysed by Chow & Patel
(2015). Interleaving a fixed-point iteration with a procedure that adjusts the sparsity
pattern is proposed by Anzt et al. (2018). Other attempts to compute and use ILU
preconditioners in parallel that build on the software package ILUPACK (Bollhöfer
et al., 2012) are presented in Aliaga et al. (2016, 2019). A different approach to
parallelize incomplete factorizations by relaxing supernodes is given by Gupta &
George (2010).

Significant attention has been devoted to using orderings of A to try and improve
the quality of incomplete factorization preconditioners. An early and often quoted
comparison of reorderings for SPD problems is by Duff & Meurant (1989). For
more general matrices, see Benzi et al. (1999), Oliker et al. (2002), or Osei-Kuffuor
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et al. (2015). Saad (1996a) and Saad & Zhang (1999) generalize red–black orderings
and consider blocks and/or more colours; also of interest are the papers of Saad &
Suchomel (2002), Li et al. (2003), and Carpentieri et al. (2014)).
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Chapter 11
Sparse Approximate Inverse
Preconditioners

While it is recognized that preconditioning the system often
improves the convergence of a particular method, this is not
always so. In particular, a successful preconditioner for one
class of problems may prove ineffective on another class. –
Gould & Scott (1998).

There is, of course, no such concept as a best preconditioner ...
However, every practitioner knows when they have a good
preconditioner which enables feasible computation and solution
of problems. In this sense, preconditioning will always be an art
rather than a science. – Wathen (2015).

Consider a preconditioner M based on an incomplete LU (or Cholesky) factorization
of a matrix A. .M−1, which represents an approximation of .A−1, is applied by
performing forward and back substitution steps; this can present a computational
bottleneck. An alternative strategy is to directly approximate .A−1 by explicitly com-
puting .M−1. Preconditioners of this kind are called sparse approximate inverse
preconditioners. They constitute an important class of algebraic preconditioners
that are complementary to the approaches discussed in the previous chapter. They
can be attractive because when used with an iterative solver, they can require
fewer iterations than standard incomplete factorization preconditioners that contain
a similar number of entries while offering significantly greater potential for parallel
computations.

From Theorem 7.3, the sparsity pattern of the inverse of an irreducible matrix A

is dense, even when A is sparse. Therefore, if A is large, the exact computation of its
inverse is not an option, and aggressive dropping is needed to obtain a sufficiently
sparse approximation to .A−1 that can be used as a preconditioner. Fortunately,
for a wide class of problems of practical interest, many of the entries of .A−1 are
small in absolute value, so that approximating the inverse with a sparse .M−1 may
be feasible, although capturing the large (important) values of .A−1 is a nontrivial
task. Importantly, the computed .M−1 can have nonzeros at positions that cannot
be obtained by either a complete or an incomplete factorization, and this can be
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beneficial. Furthermore, although .A−1 is fully dense, the following result shows
this is not the case for the factors of factorized inverses.

Theorem 11.1 (Bridson & Tang 1999; Benzi & Tůma 2000) Assume the matrix
A is SPD, and let L be its Cholesky factor. Then .S{L−1} is the union of all entries
.(i, j) such that i is an ancestor of j in the elimination tree .T (A).

A consequence of this result is that .L−1 need not be fully dense. Considering this
implication algorithmically, if A is SPD, it may be advantageous to preorder A to
limit the number of ancestors that the vertices in .T (A) have. For example, nested
dissection may be applied to .S{A} (Section 8.4). If .S{A} is nonsymmetric, then it
may be possible to reduce fill-in in the factors of .A−1 by applying nested dissection
to .S{A+ AT }.

11.1 Basic Approaches

An obvious way to obtain an approximate inverse of A in factorized form is to
compute an incomplete LU factorization of A and then perform an approximate
inversion of the incomplete factors. For example, if incomplete factors .˜L and .˜U

are available, approximate inverse factors can be found by solving the 2n triangular
linear systems

.˜Lxi = ei, ˜Uyi = ei, 1 ≤ i ≤ n,

where .ei is the i-th column of the identity matrix. These systems can all be solved
independently, and hence, there is the potential for significant parallelism. To reduce
costs and to preserve sparsity in the approximate inverse factors, they may not need
to be solved accurately. A disadvantage is that the computation of the preconditioner
involves two levels of incompleteness, and because information from the incomplete
factorization of A is passed into the second step, the loss of information can be
excessive.

Another straightforward approach is based on bordering. Let .Aj denote the
principal leading submatrix of A of order j (.Aj = A1:j,1:j ), and assume that its
inverse factorization

.A−1
j = WjD

−1
j ZT

j

is known. Here .Wj and .Zj are unit upper triangular matrices, and .Dj is a diagonal
matrix. Consider the following scheme:

.

⎛

⎝

ZT
j 0

zT
j+1 1

⎞

⎠

⎛

⎝

Aj A1:j,j+1

Aj+1,1:j aj+1,j+1

⎞

⎠

⎛

⎝

Wj wj+1

0 1

⎞

⎠ =
⎛

⎝

Dj 0

0 dj+1,j+1

⎞

⎠ ,
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where for .1 ≤ j < n

.wj+1 = −WjD
−1
j ZT

j A1:j,j+1,

zj+1 = −ZjD
−1
j WT

j AT
j+1,1:j ,

dj+1,j+1 = aj+1,j+1 + zT
j+1Ajwj+1 + Aj+1,1:jwj+1 + zT

j+1A1:j,j+1.

Starting from .j = 1, this suggests a procedure for computing the inverse factors of
A. Sparsity can be preserved by dropping some entries from the vectors .wj+1 and
.zj+1 once they have been computed. Sparsity and the quality of the preconditioner
can be influenced by preordering A.

If A is symmetric, .W = Z and the required work is halved. Furthermore, if A is
SPD, then it can be shown that, in exact arithmetic, .djj > 0 for all j and the process
does not break down. In the general case, diagonal modifications may be required,
which can limit the effectiveness of the resulting preconditioner.

Observe that the computations of Z and W are tightly coupled, restricting the
potential to exploit parallelism. At each step j , besides a matrix–vector product
with .Aj , four sparse matrix–vector products involving .Wj , .Zj and their transposes
are needed; these account for most of the work. The implementation is simplified if
access to the triangular factors is available by columns as well as by rows.

11.2 Approximate Inverses Based on Frobenius Norm
Minimization

It is clear from the above discussion that alternative techniques for constructing
sparse approximate inverse preconditioners are needed. We start by looking at
schemes based on Frobenius norm minimization. Historically, these were the first
to be proposed and offer the greatest potential for parallelism because both the
construction of the preconditioner and its subsequent application can be performed
in parallel.

11.2.1 SPAI Preconditioner

To describe the sparse approximate inverse (SPAI) preconditioner, it is convenient
to use the notation .K = M−1. The basic idea is to compute .K ≈ A−1 with its
columns denoted by .kj as the solution of the problem of minimizing

.‖I − AM−1‖2
F = ‖I − AK‖2

F =
n
∑

j=1

‖ej − Akj‖2
2, (11.1)
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over all K with pattern .S . This produces a right approximate inverse. A left
approximate inverse can be computed by solving a minimization problem for .‖I −
KA‖F = ‖I − AT KT ‖F . This amounts to computing a right approximate inverse
for .AT and taking the transpose of the resulting matrix. For nonsymmetric matrices,
the distinction between left and right approximate inverses can be important. Indeed,
there are situations where it is difficult to compute a good right approximate inverse
but easy to find a good left approximate inverse (or vice versa). In the following
discussion, we assume that a right approximate inverse is being computed.

The Frobenius norm is generally used because the minimization problem then
reduces to least squares problems for the columns of K that can be computed
independently and, if required, in parallel. Further, these least squares problems are
all of small dimension when .S is chosen to ensure K is sparse. Let .J = {i | kj (i) =
0} be the set of indices of the nonzero entries in column .kj . The set of indices of
rows of A that can affect a product with column .kj is .I = {m |Am,J = 0}. Let .|I|
and .|J | denote the number of entries in .I and .J , respectively, and let .̂ej = ej (I) be
the vector of length .|I| that is obtained by taking the entries of .ej with row indices
belonging to .I. To solve (11.1) for .kj , construct the .|I| × |J | matrix .̂A = AI,J
and solve the small unconstrained least squares problem

. min
̂kj

‖̂ej − ̂Âkj‖2
2. (11.2)

This can be done using a dense QR factorization of .̂A. Extending .̂kj to have length
n by setting entries that are not in .J to zero gives .kj .

A straightforward way to construct .S that does not depend on a sophisticated
initial choice (but could, for example, be the identity or be equal to .S{A}) proceeds
as follows. Starting with a chosen column sparsity pattern .J for .kj , construct .̂A,
solve (11.2) for .̂kj , set .kj (J ) =̂kj , and define the residual vector

.rj = ej − A1:n,Ĵkj .

If .‖rj‖2 = 0, then .kj is not equal to the j -th column of .A−1, and a better
approximation can be derived by augmenting .J . To do this, let .L = {l | rj (l) = 0}
and define

. ˜J = {i |AL,i = 0} \ J . (11.3)

These are candidate indices that can be added to .J , but as there may be many of
them, they need to be chosen to most effectively reduce .‖rj‖2. A possible heuristic
is to solve for each .i ∈ ˜J the minimization problem

. min
μi

||rj − μiAei‖2
2.



11.2 Approximate Inverses Based on Frobenius Norm Minimization 209

This has the solution .μi = rT
j Aei/‖Aei‖2

2 with residual .‖rj‖2− (rT
j Aei)

2/‖Aei‖2
2.

Indices .i ∈ ˜J for which this is small are appended to .J . The process can be repeated
until either the required accuracy is attained or the maximum number of allowed
entries in .J is reached.

Solving the unconstrained least squares problem (11.2) after extending .̂A to
.AI∪I ′,J∪J ′ is typically performed using updating. Assume the QR factorization
of .̂A is

.̂A = AI,J = Q

(

R

0

)

= (Q1 Q2
)

(

R

0

)

,

where .Q1 is .|I| × |J |. Here Q is an orthogonal matrix and R is an upper triangular
matrix. The QR factorization of the extended matrix is

.AI∪I ′,J∪J ′ =
(

̂A AI,J ′
AI ′,J ′

)

=
(

Q

I

)

⎛

⎝

R QT
1 AI,J ′

QT
2 AI,J ′
AI ′,J ′

⎞

⎠

=
(

Q

I

)(

I

Q′
)

⎛

⎝

R QT
1 AI,J ′

R′
0

⎞

⎠ ,

where .Q′ and .R′ are from the QR factorization of the .(|I ′| + |I| − |J |) × |J ′|
matrix

.

(

QT
2 AI,J ′
AI ′,J ′

)

.

Factorizing this matrix and updating the trailing QR factorization to get the new .̂kj

is much more efficient than computing the QR factorization of the extended matrix
from scratch.

Construction of the SPAI preconditioner is summarized in Algorithm 11.1. The
maximum number of entries .nzj that is permitted in .kj must be at least as large
as the number of entries in the initial sparsity pattern .Jj . Updating can be used to
compute a new .̂kj for each pass through the while loop; the number of passes is
typically small (for example, if a good initial sparsity pattern is available, a single
pass may be sufficient).

The example in Figure 11.1 illustrates Algorithm 11.1. Starting with a tridiagonal
matrix, it considers the computation of the first column .k1 of the inverse matrix K .
The algorithm starts with .J1 = {1, 2}.

When A is symmetric, there is no guarantee that the computed K will be
symmetric. One possibility is to use .(K + KT )/2 to approximate .A−1. The SPAI
preconditioner is not sensitive to the ordering of A. This has the advantage that
A can be partitioned and preordered in whatever way is convenient, for instance,
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ALGORITHM 11.1 SPAI preconditioner (right-looking approach)
Input: Nonsymmetric matrix A, a convergence tolerance .η > 0, an initial sparsity
pattern .Jj and the maximum number .nzj of permitted entries for column j of K

(.1 ≤ j ≤ n).
Output: .K ≈ A−1 with columns .kj (.1 ≤ j ≤ n).

1: for .j = 1 : n do � The columns may be computed in parallel

2: Set .J = Jj and . I = {m |A(m,J ) = 0}, .‖rj‖2 = ∞
3: Construct .̂A = AI,J and solve (11.2) for .̂kj

4: .rj = ej − A1:n,Ĵkj

5: while .|J | < nzj and .‖rj‖2 > η do

6: Construct . ˜J given by (11.3) � . ˜J is the candidate set

7: Determine new indices .J ′ ⊂ ˜J to add to .J
8: .I ′ = {m |Am,J ′ = 0} \ I
9: .I = I ∪ I ′ and .J = J ∪ J ′ � Augment the sparsity pattern

10: Construct new .̂A = AI,J and new .̂kj � Update the QR factorization

11: .rj = ej − A1:n,Ĵkj

12: end while

13: .kj (J ) =̂kj � Extend .̂kj to .kj by setting entries not in .J to zero.

14: end for

A =

⎛
⎜⎜⎜⎜⎝

10 −2

−1 10 −2

−1 10 −2

−1 10 −2

−1 10

⎞
⎟⎟⎟⎟⎠ , Â =

⎛
⎝10 −2

−1 10

−1

⎞
⎠ , k̂1 =

(
0.1020
0.0101

)
, r1 =

⎛
⎜⎜⎜⎜⎝
1.00 × 10−4

1.00 × 10−3

1.01 × 10−2

0

0

⎞
⎟⎟⎟⎟⎠ .

Â =

⎛
⎜⎜⎝

10 −2

−1 10 −2

−1 10

−1

⎞
⎟⎟⎠ , k̂1 =

⎛
⎝0.1021
0.0104
0.0010

⎞
⎠ , r1 =

⎛
⎜⎜⎜⎜⎝
1.0 × 10−5

1.1 × 10−4

1.1 × 10−3

1.0 × 10−2

0

⎞
⎟⎟⎟⎟⎠ , k1 =

⎛
⎜⎜⎜⎜⎝
0.1021
0.0104
0.0010

0

0

⎞
⎟⎟⎟⎟⎠ .

Figure 11.1 An illustration of computing the first column of a sparse approximate inverse using
the SPAI algorithm with .nz1 = 3. On the top line is the initial tridiagonal matrix A followed by the
matrix .̂A and the vectors .̂k1 and .r1 on the first loop of Algorithm 11.1. The bottom line presents
the updated matrix .Â that is obtained on the second loop by adding the third row and column of
A and the corresponding vectors .̂k1 and .r1 and, finally, .k1. Here the numerical values have been
appropriately rounded.

to better suit the needs of a distributed implementation, without worrying about
the impact on the subsequent convergence rate of the solver. The disadvantage is
that orderings cannot be used to reduce fill-in and/or improve the quality of this
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approximate inverse. For instance, if .A−1 has no small entries, SPAI will not find
a sparse K , and because the inverse of a permutation of A is just a permutation of
.A−1, no permutation of A will change this.

11.2.2 FSAI Preconditioner: SPD Case

We next consider a class of preconditioners based on an incomplete inverse factor-
ization of .A−1. The factorized sparse approximate inverse (FSAI) preconditioner
for an SPD matrix A is defined as the product

.M−1 = GT G,

where the sparse lower triangular matrix G is an approximation of the inverse of
the (complete) Cholesky factor L of A. Theoretically, a FSAI preconditioner is
computed by choosing a lower triangular sparsity pattern .SL and minimizing

.‖I −GL‖2
F = tr

[

(I −GL)T (I −GL)
]

, (11.4)

over all G with sparsity pattern .SL. Here tr denotes the matrix trace operator (that
is, the sum of the entries on the diagonal). The computation of G can be performed
without knowing L explicitly. Differentiating (11.4) with respect to the entries of G

and setting to zero yields

.(GLLT )ij = (GA)ij = (LT )ij for all (i, j) ∈ SL. (11.5)

Because .LT is an upper triangular matrix while .SL is a lower triangular pattern, the
matrix equation (11.5) can be rewritten as

.(GA)ij =
{

0 i = j, (i, j) ∈ SL,

lii i = j.
(11.6)

G is not available from (11.6) because L is unknown. Instead, .G is computed such
that

.(GA)ij = δi,j for all (i, j) ∈ SL, (11.7)

where .δi,j is the Kronecker delta function (.δi,j = 1 if .i = j and is equal to 0,
otherwise). The FSAI factor G is then obtained by setting

.G = DG,
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where D is a diagonal scaling matrix. An appropriate choice for D is

.D = [diag(G)]−1/2, (11.8)

so that

.(GAGT )ii = 1, 1 ≤ i ≤ n.

The following result shows that the FSAI preconditioner exists for any nonzero
pattern .SL that includes the main diagonal of A.

Theorem 11.2 (Kolotilina & Yeremin 1993) Assume A is SPD. If the lower
triangular sparsity pattern .SL includes all diagonal positions, then G exists and
is unique.

Proof Set .Ii = {j | (i, j) ∈ SL}, and let .AIi ,Ii
denote the submatrix of order

.nzi = |Ii | of entries .akl such that .k, l ∈ Ii . Let .ḡi and .gi be dense vectors containing
the nonzero coefficients in row i of .G and G, respectively. Using this notation,
solving (11.7) decouples into solving n independent SPD linear systems

.AIi ,Ii
ḡi = enzi

, 1 ≤ i ≤ n,

where the unit vectors are of length .nzi . Moreover,

.(GAG
T
)ii =

∑

j∈Ii

δi,jGij = Gii = (A−1
Ii ,Ii

)ii .

This implies that the diagonal entries of D given by (11.8) are nonzero. Conse-
quently, the computed rows of G exist and provide a unique solution. ��
The procedure for computing a FSAI preconditioner is summarized in Algo-
rithm 11.2. The computation of each row of G can be performed independently;
thus, the algorithm is inherently parallel, but each application of the preconditioner
requires the solution of triangular systems.

The following theorem states that G computed using Algorithm 11.2 is in some
sense optimal.

Theorem 11.3 (Kolotilina et al. 2000) Let L be the Cholesky factor of the SPD
matrix A. Given a lower triangular sparsity pattern .SL that includes all diagonal
positions, let G be the FSAI preconditioner computed using Algorithm 11.2. Then
any lower triangular matrix .G1 with its sparsity pattern contained in .SL and
.(G1AGT

1 )ii = 1 (.1 ≤ i ≤ n) satisfies

.||I −GL||F ≤ ||I −G1L||F .
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ALGORITHM 11.2 FSAI preconditioner
Input: SPD matrix A and a lower triangular sparsity pattern .SL that includes all
diagonal positions.
Output: Lower triangular matrix G such that .A−1 ≈ GGT .

1: for .i = 1 : n do
2: Construct .Ii = {j | (i, j) ∈ SL}, . AIi ,Ii

and set .nzi = |Ii |
3: Solve .AIi ,Ii

ḡi = enzi

4: Scale .gi = dii ḡi with .dii = (ḡi,nzi
)−1/2 � .ḡi,nzi

is the last component of .ḡi

5: Extend .gi to the row .Gi,1:i by setting entries that are not in .Ii to zero
6: end for

The performance of the FSAI preconditioner is highly dependent on the choice
of .SL. If entries are added to the pattern, then, as the following result shows, the
preconditioner is more accurate, but it is also more expensive.

Theorem 11.4 (Kolotilina et al. 2000) Let L be the Cholesky factor of the SPD
matrix A. Given the lower triangular sparsity patterns .SL1 and .SL2 that include
all diagonal positions, let the corresponding FSAI preconditioners computed using
Algorithm 11.2 be .G1 and .G2, respectively. If .SL1 ⊆ SL2, then

.||I −G2L||F ≤ ||I −G1L||F .

11.2.3 FSAI Preconditioner: General Case

The FSAI algorithm can be extended to a general matrix A. Two input sparsity
patterns are required: a lower triangular sparsity pattern .SL and an upper triangular
sparsity pattern .SU , both containing the diagonal positions. First, lower and upper
triangular matrices .GL and .GU are computed such that

.(GLA)ij = δi,j for all (i, j) ∈ SL,

.(AGU)ij = δi,j for all (i, j) ∈ SU .

Then D is obtained as the inverse of the diagonal of the matrix .GLAGU, and the
final nonsymmetric FSAI factors are given by .GL = GL and .GU = GUD. The
computation of the two approximate factors can be performed independently.

This generalization is well defined if, for example, A is nonsymmetric positive
definite. There is also theory that extends existence to special classes of matrices,
including M- and H-matrices. In more general cases, solutions to the reduced
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systems may not exist, and modifications (such as perturbing the diagonal entries)
are needed to circumvent breakdown.

11.2.4 Determining a Good Sparsity Pattern

The role of the input pattern is to preserve sparsity by filtering out entries of .A−1

that contribute little to the quality of the preconditioner. For instance, it might be
appropriate to ignore entries with a small absolute value, while retaining the largest
ones. Unfortunately, the locations of large entries in .A−1 are generally unknown,
and this makes the a priori sparsity choice difficult. A possible exception is when
A is a banded SPD matrix. In this case, the entries of .A−1 are bounded in an
exponentially decaying manner along each row or column. Specifically, there exist
.0 < ρ < 1 and a constant c such that for all .i, j

.|(A−1)ij | ≤ cρ|i−j |.

The scalars .ρ and c depend on the bandwidth and the condition number of A. For
matrices with a large bandwidth and/or a high condition number, c can be very large
and .ρ close to one, indicating extremely slow decay. However, if the entries of .A−1

can be shown to decay rapidly, then a banded .M−1 should be a good approximation
to .A−1. In this case, .SL can be chosen to correspond to a matrix with a prescribed
bandwidth.

A common choice for a general A is .SL+SU = S{A}, motivated by the empirical
observation that entries in .A−1 that correspond to nonzero positions in A tend to
be relatively large. However, this simple choice is not robust because entries of
.A−1 that lie outside .S{A} can also be large. An alternative strategy based on the
Neumann series expansion of .A−1 is to use the pattern of a small power of A,
i.e., .S{A2} or .S{A3}. By starting from the lower and upper triangular parts of A,
this approach can be used to determine candidates .SL and .SU . While approximate
inverses based on higher powers of A are often better than those corresponding
to A, there is no guarantee they will result in good preconditioners. Furthermore,
even small powers of A can be very dense, thus slowing down the construction
and application of the preconditioner. A possible remedy is to use the power of a
sparsified A. Alternatively, the pattern can be chosen dynamically by retaining the
largest terms in each row of the preconditioner as it is computed, which is what
the SPAI algorithm does. Another possibility is to implicitly determine .SL + SU as
follows. Starting with a simple sparsity pattern, compute the corresponding FSAI
preconditioner .G1. Then choose a pattern based on .G1AGT

1 and apply the FSAI
algorithm to .G1AGT

1 to obtain .G2. Finally, set the preconditioner to .G2G1. Despite
running the FSAI algorithm twice, this approach can be worthwhile. Unfortunately,
the choice of the best technique for generating a FSAI preconditioner and its sparsity
pattern is highly problem dependent.
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11.3 Factorized Approximate Inverses Based on Incomplete
Conjugation

An alternative way to obtain a factorized approximate inverse is based on incom-
plete conjugation (A-orthogonalization) in the SPD case and on incomplete A-
biconjugation in the general case. For SPD matrices, the approach represents an
approximate Gram–Schmidt orthogonalization that uses the A-inner product .〈., .〉A.
An important attraction is that the sparsity patterns of the approximate inverse
factors need not be specified in advance; instead, they are determined dynamically
as the preconditioner is computed.

11.3.1 AINV Preconditioner: SPD Case

When A is an SPD matrix, the AINV preconditioner is defined by an approximate
inverse factorization of the form

.A−1 ≈ M−1 = ZD−1ZT ,

where the matrix Z is unit upper triangular and D is a diagonal matrix with positive
entries. The factor Z is a sparse approximation of the inverse of the .LT factor in the
square root-free factorization of A. Z and D are computed directly from A using
an incomplete A-orthogonalization process applied to the columns of the identity
matrix. If entries are not dropped, then a complete factorization of .A−1 is computed
and Z is significantly denser than .LT . To preserve sparsity, at each step of the
computation, entries are discarded (for example, using a prescribed threshold, or
according to the positions of the entries, or by retaining a chosen number of the
largest entries in each column), resulting in an approximate factorization of .A−1.

There are several variants. Algorithms 11.3 and 11.4 outline left-looking and
right-looking approaches, respectively. Practical implementations need to employ
sparse matrix techniques. The left-looking scheme computes the j -th column .zj of
Z as a sparse linear combination of the previous columns .z1, . . . , zj−1. The key
is determining which multipliers (the .α’s in Steps 4 and 5 of the two algorithms,
respectively) are nonzero and need to be computed. This can be achieved very
efficiently by having access to both the rows and columns of A (although the
algorithm does not require that A is explicitly stored—only the capability of forming
inner products involving the rows of A is required). For the right-looking approach,
the crucial part for each j is the update of the sparse submatrix of Z composed of
the columns .j + 1 to n that are not yet fully computed. Here, only one row of A is
used in the outer loop of the algorithm. Therefore, A can be generated on-the-fly by
rows. The DS format can be used to store the partially computed Z (Section 1.3.2).
As with complete factorizations, the efficiency of the computation and application
of AINV preconditioners can benefit from incorporating blocking.
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ALGORITHM 11.3 AINV preconditioner (left-looking approach)
Input: SPD matrix A and sparsifying rule.
Output: .A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal
matrix with positive diagonal entries.

1: .[z(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] � Initialise Z to hold the columns of the

identity matrix

2: for .j = 1 : n do

3: for .k = 1 : j − 1 do

4: .α = Ak,1:n z
(k−1)
j /dkk

5: .z
(k)
j = z

(k−1)
j − αz

(k−1)
k

6: Sparsify .z
(k)
j � Drop entries from .z

(k)
j

7: end for

8: .djj = Aj,1:n z
(j−1)
j

9: end for

10: .Z = [z(0)
1 , . . . , z

(n−1)
n ]

11.3.2 AINV Preconditioner: General Case

In the general case, the AINV preconditioner is given by an approximate inverse
factorization of the form

.A−1 ≈ M−1 = WD−1ZT ,

where Z and W are unit upper triangular matrices and D is a diagonal matrix. Z and
W are sparse approximations of the inverses of the .LT and U factors in the LDU
factorization of A, respectively. Starting from the columns of the identity matrix,
A-biconjugation is used to compute the factors. Algorithm 11.5 outlines the right-
looking approach. Note it offers two possibilities for computing the entries .djj of
D that are equivalent in exact arithmetic if the factorization is breakdown-free. The
left-looking variant given in Algorithm 11.3 can be generalized in a similar way.

Figure 11.2 illustrates the sparsity patterns of the AINV factors for a matrix
arising in circuit simulation. .S{A} is symmetric, but the values of the entries of
A are nonsymmetric. The sparsity pattern .S{W + ZT } is given, where W and
Z are computed using Algorithm 11.5 with sparsification based on a dropping
tolerance of .0.5. Also given are the patterns .S{˜L + ˜U} and .S{˜L−1 + ˜U−1} for
the incomplete factors .˜L and .˜U computed using Algorithm 10.2 (see Section 10.2)
with a dropping tolerance of .0.1 and at most 10 entries in each row of .˜L + ˜U .
Note that this dual dropping strategy is one of the most popular ways of employing
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Figure 11.2 An example to illustrate the difference between the sparsity patterns of the AINV
factors and those of the inverse of the ILU factors. The sparsity pattern .S{A} of the matrix A is
given (top left) together with the patterns of the factorized approximate inverse factors .S{W +ZT }
(top right), the ILU factors .S{˜L + ˜U} (bottom left), and their inverses .S{˜L−1 + ˜U−1} (bottom
right).

Algorithm 10.2; it is often denoted as ILUT(.p, τ ), where p is the maximum number
of entries allowed in each row and .τ is the dropping tolerance. In this example, the
parameters were chosen so that the number of entries in both .W + ZT and .˜L + ˜U
is approximately equal, but the resulting sparsity patterns are clearly different. In
particular, potentially important information is lost from .S{˜L−1 + ˜U−1}.

11.3.3 SAINV: Stabilization of the AINV Method

The following result is analogous to Theorem 9.4.

Theorem 11.5 (Benzi et al. 1996) If A is a nonsingular M- or H-matrix, then the
AINV factorization of A does not break down.

For more general matrices, breakdown can happen because of the occurrence of
a zero .djj or, in the SPD case, negative .djj . In practice, exact zeros are unlikely
but very small .djj can occur (near breakdown), which may lead to uncontrolled
growth in the size of entries in the incomplete factors and, because such entries
are not dropped when using a threshold parameter, a large amount of fill-in. The
next theorem indicates how breakdown can be prevented when A is SPD through
reformulating the A-orthogonalization.
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ALGORITHM 11.4 AINV preconditioner (right-looking approach)
Input: SPD matrix A and sparsifying rule.
Output: .A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal
matrix with positive diagonal entries.

1: .[z(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] � Initialise Z to hold the columns of the

identity matrix

2: for .j = 1 : n do

3: .djj = Aj,1:n z
(j−1)
j

4: for .k = j + 1 : n do

5: .α = Aj,1:n z
(j−1)
k /djj

6: .z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify .z
(j)
k � Drop entries from .z

(j)
k

8: end for

9: end for

10: .Z = [z(0)
1 , . . . , z

(n−1)
n ]

Theorem 11.6 (Benzi et al. 2000; Kopal et al. 2012) Consider Algorithm 11.4
with no sparsification (Step 7 is removed). The following identity holds

.Aj,1:n z
(j−1)
k ≡ eT

j Az
(j−1)
k = 〈z(j−1)

j , z
(j−1)
k 〉A, 1 ≤ j ≤ k ≤ n.

Proof Because .AZ = Z−T D and .Z−T D is lower triangular, entries 1 to .j − 1 of
the vector .Az

(j−1)
k are equal to zero. Z is unit upper triangular so entries .j + 1 to n

of its j -th column .z
(j−1)
j are also equal to zero. Thus, .z

(j−1)
j can be written as the

sum .z+ ej , where entries j to n of the vector z are zero. The result follows. ��
This suggests using alternative computations within the AINV approach based

on the whole of A instead of on its rows. The reformulation, which is called
the stabilized AINV algorithm (SAINV), is outlined in Algorithm 11.6. It is
breakdown-free for any SPD matrix A because the diagonal entries are .djj =
〈z(j−1)

j , z
(j−1)
j 〉A > 0. Practical experience shows that, while slightly more costly to

compute, the SAINV algorithm gives higher quality preconditioners than the AINV
algorithm. However, the computed diagonal entries can still be very small and may
need to be modified.

The factors Z and D obtained with no sparsification can be used to compute
the square root-free Cholesky factorization of A. The L factor of A and the inverse
factor Z computed using Algorithm 11.6 without sparsification satisfy
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ALGORITHM 11.5 Nonsymmetric AINV preconditioner (right-looking
approach)
Input: Nonsymmetric matrix A and sparsifying rule.
Output: .A−1 ≈ WD−1ZT with W and Z unit upper triangular matrices and D a
diagonal matrix.

1: .[z(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en] and .[w(0)

1 , . . . , w
(0)
n ] = [e1, . . . , en]

2: for .j = 1 : n do

3: .djj = (A1:n,j )
T z

(j−1)
j or .djj = Aj,1:n w

(j−1)
j

4: for .k = j + 1 : n do

5: .α = (A1:n,j )
T z

(j−1)
k /djj

6: .z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify .z
(j)
k � Drop entries from .z

(j)
k

8: .β = Aj,1:n w
(j−1)
k /djj

9: .w
(j)
k = w

(j−1)
k − βw

(j−1)
j

10: Sparsify .w
(j)
k � Drop entries from .w

(j)
k

11: end for

12: end for

13: .Z = [z(0)
1 , . . . , z

(n−1)
n ] and . W = [w(0)

1 , . . . , w
(n−1)
n ]

.AZ = LD or L = AZD−1.

Using .djj = 〈z(j−1)
j , z

(j−1)
j 〉A, and equating corresponding entries of .AZD−1 and

L, gives

.lij =
〈z(j−1)

j , z
(j−1)
i 〉A

〈z(j−1)
j , z

(j−1)
j 〉A

, 1 ≤ j ≤ i ≤ n.

Thus, the SAINV algorithm generates the L factor of the square root-free Cholesky
factorization of A as a by-product of orthogonalization in the inner product .〈. , .〉A
at no extra cost and without breakdown.

The stabilization strategy can be extended to the nonsymmetric AINV algorithm
using the following result.

Theorem 11.7 (Benzi & Tůma 1998; Bollhöfer & Saad 2002) Consider Algo-
rithm 11.5 with no sparsification (Steps 7 and 10 removed). The following identities
hold:



220 11 Sparse Approximate Inverse Preconditioners

ALGORITHM 11.6 SAINV preconditioner (right-looking approach)
Input: SPD matrix A and sparsifying rule.
Output: .A−1 ≈ ZD−1ZT with Z a unit upper triangular matrix and D a diagonal
matrix with positive diagonal entries.

1: .[z(0)
1 , . . . , z

(0)
n ] = [e1, . . . , en]

2: for .j = 1 : n do

3: .djj = 〈z(j−1)
j , z

(j−1)
j 〉A

4: for .k = j + 1 : n do

5: .α = 〈z(j−1)
k , z

(j−1)
j 〉A/djj

6: .z
(j)
k = z

(j−1)
k − αz

(j−1)
j

7: Sparsify .z
(j)
k � Drop entries from .z

(j)
k

8: end for

9: end for

10: .Z = [z(0)
1 , . . . , z

(n−1)
n ]

.Aj,1:n z
(j−1)
k = eT

j Az
(j−1)
k = 〈w(j−1)

j , z
(j−1)
k 〉A,

.(A1:n,j )
T w

(j−1)
k = eT

j AT w
(j−1)
k = 〈z(j−1)

j , w
(j−1)
k 〉A, 1 ≤ j ≤ k ≤ n.

The nonsymmetric SAINV algorithm obtained using this reformulation can improve
the preconditioner quality, but it is not guaranteed to be breakdown-free.

11.4 Notes and References

Benzi & Tůma (1999) present an early comparative study that puts preconditioning
by approximate inverses into the context of alternative preconditioning techniques;
see also Bollhöfer & Saad (2002, 2006), Benzi & Tůma (2003), and Bru et al. (2008,
2010). The inverse by bordering method mentioned in Section 11.1 is from Saad
(2003b).

The first use of approximate inverses based on Frobenius norm minimization is
given by Benson (1973). A SPAI approach that can exploit a dynamically changing
sparsity pattern S is introduced in Cosgrove et al. (1992); an independent and
enhanced description is given in the influential paper by Grote & Huckle (1997).
Later developments are presented in Holland et al. (2005), Jia & Zhang (2013),
and Jia & Kang (2019). A comprehensive discussion on the choice of the sparsity
pattern S can be found in Huckle (1999). Huckle & Kallischko (2007) consider
modifying the SPAI method by probing or symmetrizing the approximate inverse
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and Bröker et al. (2001) look at using approximate inverses based on Frobenius
norm minimization as smoothers for multigrid methods. Choosing sparsity patterns
for a related approximate inverse with a particular emphasis on parallel computing
is described by Chow (2000).

For nonsymmetric matrices, MI12 within the HSL mathematical software
library computes SPAI preconditioners (see Gould & Scott, 1998 for details and
a discussion of the merits and limitations of the approach). An early parallel
implementation is given by Barnard et al. (1999). Dehnavi et al. (2013) present
an efficient parallel implementation that uses GPUs and include comparisons with
ParaSails (Chow, 2001). The latter handles SPD problems using a factored sparse
approximate inverse and general problems with an unfactored sparse approximate
inverse. A priori techniques determine S as a power of a sparsified matrix.

Original work on the FSAI preconditioner is by Kolotilina & Yeremin (1986,
1993). Its use in solving systems on massively parallel computers is presented in
Kolotilina et al. (1992), while an interesting iterative construction can be found in
Kolotilina et al. (2000). A parallel variant called ISAI preconditioning that combines
a Frobenius norm-based approach with traditional ILU preconditioning is proposed
by Anzt et al. (2018). FSAI preconditioning has attracted significant theoretical
and practical attention. Recent contributions discuss not only its efficacy but also
parallel computation, the use of blocks, supernodes, and multilevel implementations
(Ferronato et al., 2012, 2014; Janna & Ferronato, 2011; Janna et al., 2010, 2013,
2015; Ferronato & Pini, 2018; Magri et al., 2018). Many of these enhancements are
exploited in the FSAIPACK software of Janna et al. (2015).

The AINV preconditioner for SPD and nonsymmetric systems is introduced
in Benzi et al. (1996) and Benzi & Tůma (1998), respectively; see also Benzi
et al. (1999) for a parallel implementation. However, the development of this type
of preconditioner follows much earlier interest in factorized matrix inverses (for
example, Morris, 1946 and Fox et al., 1948). For the SAINV algorithm, see Benzi
et al. (2000) and Kharchenko et al. (2001). Theoretical and practical properties of
the AINV and SAINV factorizations are studied in a series of papers by Kopal et al.
(2012, 2016, 2020).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

Abdelfattah, A., Anzt, H., Boman, E., Carson, E., Cojean, T., Dongarra, J., Fox, A., Gates, M.,
N. Higham, X. S. L., Liu, Y., Loe, J., Luszczek, P., Pranesh, S., Rajamanickam, S., Ribizel, T.,
Smith, B., Swirydowicz, K., Thomas, S., Tomov, S., Tzai, M., Yamazaki, I., & Yang, U. M.
(2021). A survey of numerical linear algebra methods utilizing mixed precision. International
Journal of High Performance Computing Applications, 35(4), 344–369.

Acer, S., Kayaaslan, E., & Aykanat, C. (2019). A hypergraph partitioning model for profile
minimization. SIAM Journal on Scientific Computing, 41(1), A83–A108.

Agrawal, A., Klein, P., & Ravi, R. (1993). Cutting down on fill using nested dissection: Provably
good elimination orderings. In A. George, J. R. Gilbert, & J. W. H. Liu (Eds.), Graph Theory
and Sparse Matrix Computation (pp. 31–55). New York: Springer.

Aho, A. V., Garey, M. R., & Ullman, J. D. (1972). The transitive reduction of a directed graph.
SIAM Journal on Computing, 1(2), 131–137.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data Structures and Algorithms. Computer
Science and Information Processing. Reading, Mass: Addison-Wesley Publishing Co.

Ajiz, M. A. & Jennings, A. (1984). A robust incomplete Choleski-conjugate gradient algorithm.
International Journal for Numerical Methods in Engineering, 20(5), 949–966.

Aliaga, J. I., Badia, R. M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti, P., & Quintana-Ortí,
E. S. (2016). Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on
NUMA architectures and many-core accelerators. Parallel Computing, 54, 97–107.

Aliaga, J. I., Dufrechou, E., Ezzatti, P., & Quintana-Ortí, E. S. (2019). Accelerating the task/data-
parallel version of ILUPACK’s BiCG in multi-CPU/GPU configurations. Parallel Computing,
85, 79–87.

Amestoy, P. R., Davis, T. A., & Duff, I. S. (1996). An approximate minimum degree ordering
algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4), 886–905.

Amestoy, P. R., Li, X. S., & Ng, E. G. (2007). Diagonal Markowitz scheme with local symmetriza-
tion. SIAM Journal on Matrix Analysis and Applications, 29(1), 228–244.

Amestoy, P. R. & Puglisi, C. (2002). An unsymmetrized multifrontal LU factorization. SIAM
Journal on Matrix Analysis and Applications, 24(2), 553–569.

Anzt, H., Chow, E., & Dongarra, J. (2018). ParILUT - a new parallel threshold ILU factorization.
SIAM Journal on Scientific Computing, 40, C503–C519.

Anzt, H., Huckle, T. K., Bräckle, J., & Dongarra, J. (2018). Incomplete sparse approximate inverses
for parallel preconditioning. Parallel Computing, 71, 1–22.

Arioli, M., Demmel, J. W., & Duff, I. S. (1989). Solving sparse linear systems with sparse backward
error. SIAM Journal on Matrix Analysis and Applications, 10(2), 165–190.

© The Author(s) 2023
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acyclic, 21
adjacency, 24
ancestor, 22
bipartite, 103, 125, 200
child, 23
clique, 20, 38, 141
column elimination tree, 98
condensation, 44
connected, 23
DAG, 22
degree, 20
descendant, 22
diameter, 147
digraph, 19
directed, 19
eccentricity, 147
elimination, 33
elimination tree, 55
equireachable, 93
filled, 31
fill-path, 21

forest, 23, 55
incident edge, 20
independent set, 103, 199
induced subgraph, 19
isomorphic, 20
leaf vertex, 23
level, 27
level sets, 148
mass elimination, 139
maximal clique, 67
maximum matching, 103
neighbours, 20
nonsymmetric elimination tree, 97
parent, 23
path, 21
path compression, 59
peripheral vertices, 147
postordering, 28, 64
preordering, 28
pruned subtree, 56
pruning, 95
pseudo-diameter, 147
pseudo-peripheral vertices, 147
quotient, 44, 141
reachability, 21
reachable set, 22, 39
rooted tree, 23
root vertex, 23, 55
row subtree, 57, 79
search, 27
sibling, 23
skeleton, 62
spanning tree, 23
strongly connected, 23
strongly connected components, 23, 44
subgraph, 19
supervariable, 47
symmetric pruning, 96
topological ordering, 26
transitive reduction, 92
traversal, 27, 190
tree, 23
undirected, 19
virtual tree, 59
walk, 21
weighted, 24

Growth factor, 115

H
H-matrix, 172, 173, 217
Hybrid solver, 179
Hypergraphs, 161
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I
Ill-conditioning, 113, 126
Incomplete factorization, 164, 172, 185

Crout variant, 187
dynamic compensation, 193
fixed-point ILU, 197
IC(.�), 188
ILU(.�), 188
level-based, 188
memory-limited, 194
modified (MILU), 190
row variant, 187

Indistinguishable vertices, 46, 138
Irreducible matrix, 42
Iterative methods

Krylov subspace, 164
stationary, 164

Iterative refinement, 128

K
Krylov subspace methods, 166

L
Level sets, 148
List, 26

linked list, 12, 14
queue, 27
stack, 27

LU factorization, 5
column, 35
incomplete, 185

M
Markowitz pivoting, 151
Matching, 103

extreme, 107
perfect, 103

Matrix
block triangular form, 43
column elimination, 32
dense, 5
factorizable, 6
inertia, 123
irreducible, 42
permutation, 25
reducible, 42
saddle point, 4
skeleton, 62
sparse, 1, 5
sparsity pattern, 5
strong Hall, 42, 99, 108

strongly regular, 6
structural singularity, 5
symmetric indefinite, 4
symmetric positive definite, 4

Maximum matching, 103
Minimum degree algorithm, 137
M-matrix, 171, 173, 217
Multifrontal method, 81, 100, 120
Multiple minimum degree algorithm, 143

N
Nested dissection ordering, 152
Non-cancellation assumption, 31

O
Ordering

approximate minimum degree, 144
Cuthill McKee, 146
global, 135
level-based, 146
local, 135
Markowitz, 151
minimum deficiency, 136
minimum degree, 137
minimum discarded fill, 176
minimum fill-in, 136
multiple minimum degree, 143
nested dissection, 152, 199, 206
postordering, 28, 64
preordering, 28
red-black, 199
Reverse Cuthill McKee, 146, 199
sparse matrix, 135
spectral method, 150
topological, 26, 64

P
Parter’s rule, 37
Partial pivoting, 36, 99, 114, 116
Path, 21, 39

alternating, 104
augmenting, 104

Permutation matrix, 25
Permutation vector, 25
Pivoting

.2× 2, 119
blocks, 117
complete, 116
incomplete factorization, 175
partial, 36, 99, 114, 116
relaxed, 123
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Pivoting (cont.)
rook, 117, 119
sparse indefinite, 119
static, 123
threshold, 118

Pivots, 33
delayed, 120

Preconditioner
AINV, 215
algebraic, 167
approximate inverse, 205
deflation, 180
domain decomposition, 181
FSAI, 211
incomplete factorization, 172, 185
Jacobi, 169
left, 167
polynomial, 176
right, 167
SAINV, 217
Schur complement, 178
SPAI, 207
SSOR, 169
two-sided, 167

Profile, 145

Q
Queue, 27, 190
Quotient graph, 44, 141

condensation, 44

R
Reducible matrix, 42
Relaxed pivoting, 123
Reverse Cuthill McKee ordering, 146, 199
Rook pivoting, 117, 119
Row replication principle, 89

S
Scaling, 129

equilibration, 130
matching-based, 130

Schur complement, 34, 81, 89, 178, 194, 200
Skeleton graph, 62
Skeleton matrix, 62
Spectral condition number, 128, 166

Spectral radius, 165
Static pivoting, 123
Storage

CCS, 14
coordinate format, 13
CSR, 13
DS, 15, 152, 215
linked list, 12, 14
VBR, 16

Strongly connected components, 23, 44
Strongly regular matrix, 6
Supernode, 67, 76, 201

amalgamation, 69
fundamental, 70
LU factorization, 100
relaxed, 69

Supervariable, 47, 76, 138
Symbolic factorization, 6

Cholesky, 53
Symmetric pruning, 96
Symmetry index, 4

T
Threshold pivoting, 118
Transitive reduction, 92
Transversal, 43
Tree, 23

assembly, 67
elimination, 55, 97, 98
leaf vertex, 23
root, 23
row subtree, 57, 79
virtual tree, 59

U
Undirected graph, 19
Update matrix, 82

V
VBR format, 16
Vector

permutation, 25
sparse, 6

Vertex labelling, 19
Vertex separator, 152
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