Skip to main content

Mechanisms of Spinal Cord Plasticity in Rodent Models of Acute and Post-Colitis Visceral Hypersensitivity

  • Chapter
  • First Online:
Visceral Pain
  • 313 Accesses

Abstract

Inflammation of the colon is well-established as an initiating factor in the development of chronic visceral pain. Colitis induces sensitisation at peripheral and central sites of the sensory afferent pathways that relay nociceptive signals into the brain. Sensitisation within the spinal cord is an important mechanism maintaining chronic visceral pain beyond colitis resolution and facilitates the development of cross-organ sensitization. This minireview summarises what is currently known from animal acute and post-colitis models on spinal sensitisation and the plasticity involved. These mechanisms have relevance to human inflammatory and functional bowel disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). These prevalent conditions afflict millions of people globally and yet adequate treatments for the chronic visceral pain associated with these disorders are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CRD:

Colorectal distension

CVH:

Chronic visceral hypersensitivity

DCA:

Deoxycholic acid

DH:

Dorsal horn

DNBS:

Dinitrobenzene sulfonic acid

DRG:

Dorsal root ganglia

DSS:

Dextran sulphate sodium

L:

Laminae

LS:

Lumbosacral

TL:

Thoracolumbar

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

VMR:

Visceromotor response

References

  • Al-Chaer ED, Westlund KN, Willis WD. Sensitization of postsynaptic dorsal column neuronal responses by colon inflammation. Neuroreport. 1997;8:3267–73.

    Article  CAS  PubMed  Google Scholar 

  • Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E. The TNBS-induced colitis animal model: an overview. Ann Med Surg (Lond). 2016;11:9–15.

    Article  PubMed  Google Scholar 

  • Aziz I, Simren M. The overlap between irritable bowel syndrome and organic gastrointestinal diseases. Lancet Gastroenterol Hepatol. 2021;6:139–48.

    Article  PubMed  Google Scholar 

  • Balemans D, Mondelaers SU, Cibert-Goton V, Stakenborg N, Aguilera-Lizarraga J, Dooley J, Liston A, Bulmer DC, Vanden Berghe P, Boeckxstaens GE, Wouters MM. Evidence for long-term sensitization of the bowel in patients with post-infectious-IBS. Sci Rep. 2017;7:13606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbara G, Grover M, Bercik P, Corsetti M, Ghoshal UC, Ohman L, Rajilic-Stojanovic M. Rome foundation working team report on post-infection irritable bowel syndrome. Gastroenterology. 2019;156:46–58. e7

    Article  PubMed  Google Scholar 

  • Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, Macdermott AB. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci. 2013;1279:90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone M, Chain F, Sokol H, Brigidi P, Bermudez-Humaran LG, Langella P, Martin R. A versatile new model of chemically induced chronic colitis using an outbred murine strain. Front Microbiol. 2018;9:565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basso L, Lapointe TK, Iftinca M, Marsters C, Hollenberg MD, Kurrasch DM, Altier C. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis. Proc Natl Acad Sci U S A. 2017;114:11235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson JR, Xu J, Moynes DM, Lapointe TK, Altier C, Vanner SJ, Lomax AE. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis. Cell Tissue Res. 2014;356:309–17.

    Article  CAS  PubMed  Google Scholar 

  • BouSaba J, Sannaa W, Camilleri M. Pain in irritable bowel syndrome: does anything really help? Neurogastroenterol Motil. 2022;34:e14305.

    Article  PubMed  Google Scholar 

  • Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol. 2014;11:611–27.

    Article  PubMed  Google Scholar 

  • Castro J, Harrington AM, Hughes PA, Martin CM, Ge P, Shea CM, Jin H, Jacobson S, Hannig G, Mann E, Cohen MB, MacDougall JE, Lavins BJ, Kurtz CB, Silos-Santiago I, Johnston JM, Currie MG, Blackshaw LA, Brierley SM. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology. 2013;145:1334–46.e1–11.

    Article  PubMed  Google Scholar 

  • Chen Q, Heinricher MM. Descending control mechanisms and chronic pain. Curr Rheumatol Rep. 2019a;21:13.

    Article  PubMed  Google Scholar 

  • Chen Q, Heinricher MM. Plasticity in the link between pain-transmitting and pain-modulating Systems in Acute and Persistent Inflammation. J Neurosci. 2019b;39:2065–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffin B, Bouhassira D, Sabate JM, Barbe L, Jian R. Alteration of the spinal modulation of nociceptive processing in patients with irritable bowel syndrome. Gut. 2004;53:1465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho SV, Meller ST, Gebhart GF. Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res. 1996;736:7–15.

    Article  CAS  PubMed  Google Scholar 

  • Coutinho SV, Urban MO, Gebhart GF. Role of glutamate receptors and nitric oxide in the rostral ventromedial medulla in visceral hyperalgesia. Pain. 1998;78:59–69.

    Article  CAS  PubMed  Google Scholar 

  • de Araujo AD, Mobli M, Castro J, Harrington AM, Vetter I, Dekan Z, Muttenthaler M, Wan J, Lewis RJ, King GF, Brierley SM, Alewood PF. Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat Commun. 2014;5:3165.

    Article  PubMed  Google Scholar 

  • Deiteren A, De Man JG, Keating C, Jiang W, De Schepper HU, Pelckmans PA, Francque SM, De Winter BY. Mechanisms contributing to visceral hypersensitivity: focus on splanchnic afferent nerve signaling. Neurogastroenterol Motil. 2015;27:1709–20.

    Article  CAS  PubMed  Google Scholar 

  • Dieleman LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114:385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds KN, Beckett EA, Evans SF, Grace PM, Watkins LR, Hutchinson MR. Glial contributions to visceral pain: implications for disease etiology and the female predominance of persistent pain. Transl Psychiatry. 2016;6:e888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eijkelkamp N, Kavelaars A, Elsenbruch S, Schedlowski M, Holtmann G, Heijnen CJ. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol. 2007;293:G749–57.

    Article  CAS  PubMed  Google Scholar 

  • Farrell KE, Keely S, Walker MM, Brichta AM, Graham BA, Callister RJ. Altered intrinsic and synaptic properties of lumbosacral dorsal horn neurons in a mouse model of colitis. Neuroscience. 2017;362:152–67.

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Gebhart GF. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol. 2011;300:G170–80.

    Article  CAS  PubMed  Google Scholar 

  • Feng B, La JH, Tanaka T, Schwartz ES, McMurray TP, Gebhart GF. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Am J Physiol Gastrointest Liver Physiol. 2012;303:G817–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich AE, Gebhart GF. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain. 2003;104:93–101.

    Article  CAS  PubMed  Google Scholar 

  • Gebhart GF. Descending modulation of spinal nociceptive processing. Schmerz. 1993;7:216–25.

    Article  CAS  PubMed  Google Scholar 

  • Grundy L, Brierley SM. Cross-organ sensitization between the colon and bladder: to pee or not to pee? Am J Physiol Gastrointest Liver Physiol. 2018;314:G301–8.

    Article  PubMed  Google Scholar 

  • Grundy L, Harrington AM, Castro J, Garcia-Caraballo S, Deiteren A, Maddern J, Rychkov GY, Ge P, Peters S, Feil R, Miller P, Ghetti A, Hannig G, Kurtz CB, Silos-Santiago I, Brierley SM. Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight. 2018;3:e121841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrington AM, Brierley SM, Isaacs N, Hughes PA, Castro J, Blackshaw LA. Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. J Comp Neurol. 2012;520:2241–55.

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A, Poisbeau P, Welzl H, Wolfer DP, Betz H, Zeilhofer HU, Muller U. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 2004;304:884–7.

    Article  CAS  PubMed  Google Scholar 

  • Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60:214–25.

    Article  CAS  PubMed  Google Scholar 

  • Heymen S, Maixner W, Whitehead WE, Klatzkin RR, Mechlin B, Light KC. Central processing of noxious somatic stimuli in patients with irritable bowel syndrome compared with healthy controls. Clin J Pain. 2010;26:104–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiraga SI, Itokazu T, Nishibe M, Yamashita T. Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm Regen. 2022;42:15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes DI, Todd AJ. Central nervous system targets: inhibitory interneurons in the spinal cord. Neurotherapeutics. 2020;17:874–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes PA, Brierley SM, Martin CM, Brookes SJ, Linden DR, Blackshaw LA. Post-inflammatory colonic afferent sensitization: different subtypes, different pathways, and different time-courses. Gut. 2009a;58:1333.

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA, Brierley SM, Blackshaw LA. Post-inflammatory modification of colonic afferent mechanosensitivity. Clin Exp Pharmacol Physiol. 2009b;36:1034–40.

    Article  CAS  PubMed  Google Scholar 

  • Kannampalli P, Pochiraju S, Bruckert M, Shaker R, Banerjee B, Sengupta JN. Analgesic effect of minocycline in rat model of inflammation-induced visceral pain. Eur J Pharmacol. 2014;727:87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating C, Beyak M, Foley S, Singh G, Marsden C, Spiller R, Grundy D. Afferent hypersensitivity in a mouse model of post-inflammatory gut dysfunction: role of altered serotonin metabolism. J Physiol. 2008;586:4517–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Ryu Y, Hahm DH, Sohn BY, Shim I, Kwon OS, Chang S, Gwak YS, Kim MS, Kim JH, Lee BH, Jang EY, Zhao R, Chung JM, Yang CH, Kim HY. Acupuncture points can be identified as cutaneous neurogenic inflammatory spots. Sci Rep. 2017;7:15214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klem F, Wadhwa A, Prokop LJ, Sundt WJ, Farrugia G, Camilleri M, Singh S, Grover M. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis. Gastroenterology. 2017;152:1042–54. e1

    Article  PubMed  Google Scholar 

  • Laird JM, Olivar T, Roza C, De Felipe C, Hunt SP, Cervero F. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience. 2000;98:345–52.

    Article  CAS  PubMed  Google Scholar 

  • Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Tsuruoka M, Maeda M, Hayashi B, Wang X, Inoue T. Descending modulation of visceral nociceptive transmission from the locus coeruleus/subcoeruleus in the rat. Brain Res Bull. 2008;76:616–25.

    Article  PubMed  Google Scholar 

  • Liu M, Kay JC, Shen S, Qiao LY. Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCgamma, PKC, and PI3K/Akt pathways during colitis. J Neuroinflammation. 2015;12:151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JY, Wang XJ, Li XY, Kong XH, Yang G, Zhang D, Yang YT, Shi Z, Ma XP. Spinal microglia and astrocytes: two key players in chronic visceral pain pathogenesis. Neurochem Res. 2022;47:545–51.

    Article  CAS  PubMed  Google Scholar 

  • Lu CL. Spinal microglia: a potential target in the treatment of chronic visceral pain. J Chin Med Assoc. 2014;77:3–9.

    Article  PubMed  Google Scholar 

  • Lu Y, Westlund KN. Effects of baclofen on colon inflammation-induced Fos, CGRP and SP expression in spinal cord and brainstem. Brain Res. 2001;889:118–30.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Jiang BC, Cao DL, Zhao LX, Zhang YL. Chemokine CCL8 and its receptor CCR5 in the spinal cord are involved in visceral pain induced by experimental colitis in mice. Brain Res Bull. 2017;135:170–8.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Cao DL, Zhao LX, Han Y, Zhang YL. MicroRNA-146a-5p attenuates visceral hypersensitivity through targeting chemokine CCL8 in the spinal cord in a mouse model of colitis. Brain Res Bull. 2018;139:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Xu HM, Han Y, Zhang YL. Analgesic effect of resveratrol on colitis-induced visceral pain via inhibition of TRAF6/NF-kappaB signaling pathway in the spinal cord. Brain Res. 2019;1724:146464.

    Article  CAS  PubMed  Google Scholar 

  • Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS. Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull. 2018;142:183–96.

    Article  CAS  PubMed  Google Scholar 

  • Lyubashina OA, Sivachenko IB, Sokolov AY. Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull. 2019;152:299–310.

    Article  PubMed  Google Scholar 

  • Majima T, Funahashi Y, Kawamorita N, Takai S, Matsukawa Y, Yamamoto T, Yoshimura N, Gotoh M. Role of microglia in the spinal cord in colon-to-bladder neural crosstalk in a rat model of colitis. Neurourol Urodyn. 2018;37:1320–8.

    Article  CAS  PubMed  Google Scholar 

  • Moshiree B, Price DD, Robinson ME, Gaible R, Verne GN. Thermal and visceral hypersensitivity in irritable bowel syndrome patients with and without fibromyalgia. Clin J Pain. 2007;23:323–30.

    Article  PubMed  Google Scholar 

  • Neal KR, Hebden J, Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ. 1997;314:779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neal KR, Barker L, Spiller RC. Prognosis in post-infective irritable bowel syndrome: a six year follow up study. Gut. 2002;51:410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ness TJ, Gebhart GF. Acute inflammation differentially alters the activity of two classes of rat spinal visceral nociceptive neurons. Neurosci Lett. 2000;281:131–4.

    Article  CAS  PubMed  Google Scholar 

  • Ness TJ, Gebhart GF. Inflammation enhances reflex and spinal neuron responses to noxious visceral stimulation in rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G649–57.

    Article  CAS  PubMed  Google Scholar 

  • Oka P, Parr H, Barberio B, Black CJ, Savarino EV, Ford AC. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5:908–17.

    Article  PubMed  Google Scholar 

  • Olivar T, Cervero F, Laird JM. Responses of rat spinal neurones to natural and electrical stimulation of colonic afferents: effect of inflammation. Brain Res. 2000;866:168–77.

    Article  CAS  PubMed  Google Scholar 

  • Palecek J, Willis WD. The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain. 2003;104:501–7.

    Article  CAS  PubMed  Google Scholar 

  • Palecek J, Paleckova V, Willis WD. Postsynaptic dorsal column neurons express NK1 receptors following colon inflammation. Neuroscience. 2003;116:565–72.

    Article  CAS  PubMed  Google Scholar 

  • Palsson OS, Whitehead W, Tornblom H, Sperber AD, Simren M. Prevalence of Rome IV functional bowel disorders among adults in the United States, Canada, and the United Kingdom. Gastroenterology. 2020;158:1262–73. e3

    Article  PubMed  Google Scholar 

  • Pertovaara A, Kalmari J. Comparison of the visceral antinociceptive effects of spinally administered MPV-2426 (fadolmidine) and clonidine in the rat. Anesthesiology. 2003;98:189–94.

    Article  CAS  PubMed  Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002;25:319–25.

    Article  CAS  PubMed  Google Scholar 

  • Price DD, Zhou Q, Moshiree B, Robinson ME, Verne GN. Peripheral and central contributions to hyperalgesia in irritable bowel syndrome. J Pain. 2006;7:529–35.

    Article  PubMed  Google Scholar 

  • Qiao LY, Gulick MA, Bowers J, Kuemmerle JF, Grider JR. Differential changes in brain-derived neurotrophic factor and extracellular signal-regulated kinase in rat primary afferent pathways with colitis. Neurogastroenterol Motil. 2008;20:928–38.

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Malykhina AP, Akbarali HI, Foreman RD. Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology. 2005;129:1967–78.

    Article  PubMed  Google Scholar 

  • Rodrigues AC, Nicholas Verne G, Schmidt S, Mauderli AP. Hypersensitivity to cutaneous thermal nociceptive stimuli in irritable bowel syndrome. Pain. 2005;115:5–11.

    Article  PubMed  Google Scholar 

  • Saab CY, Wang J, Gu C, Garner KN, Al-Chaer ED. Microglia: a newly discovered role in visceral hypersensitivity? Neuron Glia Biol. 2006;2:271–7.

    Article  PubMed  Google Scholar 

  • Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F. Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain. 2010;14:120.e1–9.

    Article  PubMed  Google Scholar 

  • Schmulson MJ, Drossman DA. What is new in Rome IV. J Neurogastroenterol Motil. 2017;23:151–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikandar S, Dickenson AH. Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care. 2012;6:17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sikandar S, Bannister K, Dickenson AH. Brainstem facilitations and descending serotonergic controls contribute to visceral nociception but not pregabalin analgesia in rats. Neurosci Lett. 2012;519:31–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornkvist NT, Aziz I, Whitehead WE, Sperber AD, Palsson OS, Hreinsson JP, Simren M, Tornblom H. Health care utilization of individuals with Rome IV irritable bowel syndrome in the general population. United European Gastroenterol J. 2021;9:1178–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci. 2006;26:1833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traub RJ. Evidence for thoracolumbar spinal cord processing of inflammatory, but not acute colonic pain. Neuroreport. 2000;11:2113–6.

    Article  CAS  PubMed  Google Scholar 

  • Traub RJ, Murphy A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain. 2002;95:93–102.

    Article  CAS  PubMed  Google Scholar 

  • Traub RJ, Tang B, Ji Y, Pandya S, Yfantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology. 2008;135:2075–83.

    Article  CAS  PubMed  Google Scholar 

  • Verne G. Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain. 2003;103:99–110.

    Article  PubMed  Google Scholar 

  • Verne GN, Price DD. Irritable bowel syndrome as a common precipitant of central sensitization. Curr Rheumatol Rep. 2002;4:322–8.

    Article  PubMed  Google Scholar 

  • Verne GN, Robinson ME, Price DD. Hypersensitivity to visceral and cutaneous pain in the irritable bowel syndrome. Pain. 2001;93:7–14.

    Article  PubMed  Google Scholar 

  • Wang G, Tang B, Traub RJ. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol. 2005;94:3788.

    Article  PubMed  Google Scholar 

  • Wilder-Smith CH, Schindler D, Lovblad K, Redmond SM, Nirkko A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut. 2004;53:1595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–9.

    Article  CAS  PubMed  Google Scholar 

  • Zeilhofer HU, Werynska K, Gingras J, Yevenes GE. Glycine receptors in spinal nociceptive control-an update. Biomol Ther. 2021;11:846.

    CAS  Google Scholar 

  • Zhang H, Dong X, Yang Z, Zhao J, Lu Q, Zhu J, Li L, Yi S, Xu J. Inhibition of CXCR4 in spinal cord and DRG with AMD3100 attenuates colon-bladder cross-organ sensitization. Drug Des Devel Ther. 2022;16:67–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Price DD, Caudle RM, Verne GN. Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain. 2008a;134:9–15.

    Article  PubMed  Google Scholar 

  • Zhou Q, Price DD, Caudle RM, Verne GN. Visceral and somatic hypersensitivity in TNBS-induced colitis in rats. Dig Dis Sci. 2008b;53:429–35.

    Article  PubMed  Google Scholar 

  • Zhou Q, Price DD, Verne GN. Reversal of visceral and somatic hypersensitivity in a subset of hypersensitive rats by intracolonic lidocaine. Pain. 2008c;139:218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Price DD, Caudle RM, Verne GN. Spinal NMDA NR1 subunit expression following transient TNBS colitis. Brain Res. 2009;1279:109–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Research Council (ARC) Discovery Project (DP180101395 and DP220101269 to A.M.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Harrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrington, A.M. (2023). Mechanisms of Spinal Cord Plasticity in Rodent Models of Acute and Post-Colitis Visceral Hypersensitivity. In: Brierley, S.M., Spencer, N.J. (eds) Visceral Pain. Springer, Cham. https://doi.org/10.1007/978-3-031-25702-5_14

Download citation

Publish with us

Policies and ethics