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Abstract

Over several decades the perception and there-
fore description of articular cartilage changed 
substantially. It has transitioned from being 
described as a relatively inert tissue with lim-
ited repair capacity, to a tissue undergoing 
continuous maintenance and even adaption, 
through a range of complex regulatory pro-
cesses. Even from the narrower lens of biome-
chanics, the engagement with articular 
cartilage has changed from it being an inter-
esting, slippery material found in the hostile 
mechanical environment between opposing 
long bones, to an intriguing example of mech-
anobiology in action. The progress revealing 
this complexity, where physics, chemistry, 
material science and biology are merging, has 

been described with increasingly sophisti-
cated computational models. Here we describe 
how these computational models of cartilage 
as an integrated system can be combined with 
the approach of structural reliability analysis. 
That is, causal, deterministic models placed in 
the framework of the probabilistic approach of 
structural reliability analysis could be used to 
understand, predict, and mitigate the risk of 
cartilage failure or pathology. At the heart of 
this approach is seeing cartilage overuse and 
disease processes as a ‘material failure’, 
resulting in failure to perform its function, 
which is largely mechanical. One can then 
describe pathways to failure, for example, 
how homeostatic repair processes can be over-
whelmed leading to a compromised tissue. To 
illustrate this ‘pathways to failure’ approach, 
we use the interplay between cartilage con-
solidation and lubrication to analyse the 
increase in expected wear rates associated 
with cartilage defects or meniscectomy.
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6.1  Introduction

Over the past ~40  years, incredible advances 
have been made in cartilage biology. We are 
thinking about the finding that transient compres-
sive stiffness arises from low hydraulic conduc-
tivity of cartilage and collagen network stiffness, 
how the equilibrium cartilage compressive stiff-
ness arises primarily from repulsion between 
negatively charged aggrecan, the interplay 
between the aggrecan compression and the col-
lagen tension to maintain normal cartilage 
 stiffness, and how turnover of these ECM com-
ponents is regulated by chondrocytes via chemi-
cal, electromechanical and mechanical signals 
[1–8]. These insights, often gained by patient 
work on individual processes or isolated mole-
cules, have been integrated to present a compel-
ling story of how this tissue functions in both the 
short term (to an individual loading) and the 
long-term (to repeated cyclic loadings), and 
potential pathways to pathology [8]. With the 
insight made possible by understanding this inte-
grated system, we are only just beginning to 
develop rational strategies to intervene at the tis-
sue scale to maintain or reverse cartilage 
damage.

Meanwhile great advances have also occurred 
in imaging and computational biomechanics, 
genetics and genetic manipulations that may 
soon enable patient (or cohort) specific data to be 
incorporated into cartilage treatment strategies 
[9, 10]. How best to do this is still in its infancy, 
and so largely an open question, but it holds such 
promise. Our belief is that this way forward will 
no doubt be computational (i.e. based on deter-
ministic quantitative mechanistic models of carti-
lage tissue turnover in response to its mechanical 
and chemical environment), but will also neces-
sarily include statistical aspects (e.g. variable 
loadings and model tissue parameters over time 
and/or population). More to our point, we believe 
the concepts of risk analysis borrowed from reli-
ability engineering, provides a promising frame-
work to shepherd our hard-won understanding of 
cartilage biology into the clinic [11, 12]. Here we 
will expand on these ideas. In doing so we will 
necessarily review some cartilage biology. 

However, the focus will be on identifying strate-
gies cartilage uses to maintain and repair itself, 
and the pathways to cartilage ‘failure’, however 
failure may be defined. This approach promises 
to enable the risk associated with various ‘disease 
pathways’ in an individual or patient cohort to be 
rationally quantified, and then managed.

6.2  Articular Cartilage, 
an Extraordinary Tissue

Articular cartilage faces extraordinary mechani-
cal challenges during daily physical activities. 
For example, knee cartilages in adults experience 
contact forces up to 5 times the body weight dur-
ing stair climbing [13], leading to contact stresses 
up to 18 MPa. To get this loading in perspective, 
we note that a large stiletto heel exerts about 
10 MPa pressure on the ground, and this contact 
stress is well-known for damaging some wooden 
floors—while cartilage tissue repeatedly experi-
ences stresses that are almost twice as great. 
Probably due to this harsh mechanical environ-
ment, cartilage is an avascular tissue with a sparse 
chondrocyte to extracellular matrix (ECM) distri-
bution, which limits its repair capacity. All tis-
sues that normally repair quickly have abundant 
blood supplies, while in contrast, cartilage relies 
solely on diffusion/advection of nutrients and 
oxygen from synovial fluid that bathes its contact 
surface, with the subchondral bone- cartilage 
interface generally considered impermeable in 
healthy joints. Consequently, articular cartilage 
function and homeostasis largely rely on com-
plex interactions between its main extracellular 
components: interstitial fluid, aggrecan and a 
Type II collagen network [5, 8]. For example, the 
rate of tissue strain under sustained load largely 
depends on the interstitial fluid movement 
through the cartilage tissue and across the carti-
lage surfaces, influencing the mechanical and 
chemical microenvironments continually being 
sensed by chondrocytes, while the fluid contrib-
utes to synovial joint lubrication [5, 14]. When 
cartilage is subjected to compressive loading, it 
consolidates. The load is initially carried by the 
fluid phase, which is slowly squeezed out of the 
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extracellular matrix, helping to sustain very low 
frictional force between two opposing cartilage 
surfaces. As cartilage interstitial fluid exudes 
through the tissue surface, load is gradually 
transferred to the solid matrix, resulting in a 
gradual increase in friction at contacting 
surfaces.

6.3  Cartilage Damage Mechanics

The ability of cartilage to maintain its physio-
logical function in this hostile mechanical envi-
ronment depends on the tissue’s ability to 
continually synthesize extracellular matrix 
components, while avoiding excessive strain, an 
attribute normally conferred by its composite 
structure. Aggrecans are negatively charged 
molecules that have counter ions in a diffuse 
double-layer to maintain overall electroneutral-
ity. Overlapping double-layers repel and so nor-
mally expand and imbibe water. However, this 
expansion is resisted by the collagen network 
[15]. The aggrecan molecules within the colla-
gen network normally provide the equilibrium 
compressive stiffness for cartilage tissue [16], 
and ensure a very small hydraulic permeability 
which delays consolidation of the tissue to its 
equilibrium state. Consequently, when loaded, a 
long consolidation time follows (e.g. up to three 
or more hours).

As shown schematically in Fig.  6.1, a dam-
aged collagen network is not able to effectively 
retain a high enough concentration of aggrecan 
molecules within the collagen network, which 
leads to cartilage softening [17]. Reduced aggre-
can content also leads to larger hydraulic conduc-
tivity, more rapid consolidation and larger strains. 
This means the aggregate, collagen tissue net-
work and chondrocytes are more likely to be 
damaged by excessive strain (following even nor-
mal load), leading to further loss of aggrecan 
[18]. This positive feedback cycle is just one 
important pathway that can lead to disease such 
as osteoarthritis. One can imagine many more 
and so osteoarthritis is not just one disease [8, 
19]. Its management is likely to also differ 
depending on the etiology.

6.4  Role of Computational 
Modelling to Capture 
Complex Interactions

A key attraction of computational modeling is 
that it can be employed to reveal the spatial and 
temporal distribution of tissue microenviron-
ments experienced by chondrocytes embedded 
within articular cartilage. This involves interpo-
lating sparse experimental data sets, often mea-
sured at tissue boundaries, to define local 
conditions experienced by chondrocytes through-
out the cartilage tissue. This immediately opens 
up the possibility of beginning to define previ-
ously inaccessible variables that are likely to be 
driving local ECM damage and chondrocyte 
repair processes within articular cartilage. This 
new capability, together with experimentally cal-
ibrated computational damage and repair func-
tions, then naturally leads to predictions about 
the integrity of cartilage under various short and 
long-term scenarios.

Through this process, computational model-
ing can provide a pathway from laboratory data 
to quantitative predictions about future tissue 
states under various scenarios. This should be of 
great interest to clinicians, as they are in the busi-
ness of advising patients as to the optimal path to 
follow in response to their problem. The process 
of building and calibrating computational models 
of cartilage tissue also offers up the possibility of 
a new pathway to more effective use of the new 
data being generated by ‘precision medicine’ for 
individual patients.

There are many chemical molecules and 
mechanical cues that regulate articular cartilage 
homeostasis. Therefore, to realistically define 
cartilage microenvironments requires consider-
ation of interactions between many specific and 
rather detailed computational modules (involving 
multi-physics and multiphasic modelling). The 
theory of porous media has been widely employed 
to simulate the mechanical behaviour of biologi-
cal soft tissues, such as articular cartilage [20–
25] and fracture callus [26–28]. Here the 
extracellular matrix and interstitial fluid interac-
tion contributes to the time-dependent observed 
tissue stiffness and deformation behaviour. By 
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Fig. 6.1 Schematic shows damage to superficial collagen 
network results in escape of aggrecans and water mole-
cules from the cartilage tissue, which may significantly 

increase strain locally. This can lead to local damage of 
the extracellular matrix and chondrocytes

combining the porous media theory with trans-
port models and chemical reactions, we can also 
simulate three-dimensional diffusion and advec-
tion of different molecules in cartilage, and use 
this information to predict different cellular 
activities [14, 29–36]. For example, insulin-like 
growth factors mediate cartilage cellular activi-
ties such as cell proliferation, differentiation, 
apoptosis and synthesis of extracellular matrix 
[32, 37, 38]. We have built a spatial model for 
IGF in cartilage tissue that includes many simul-
taneous chemical reactions, as well as transport 
parameters [36]. Each of these parameters 
depends on the actual chemical structure of IGF 
and its binding proteins, as these determine the 
chemical rate constants that define their interac-
tions. These rate constants depend on the amino 
acid sequence in each molecule, which in turn 
depends on the genetic code in that individual. If 
the genetic code is known, as revealed by preci-
sion medicine, it should be possible to predict the 
effect of that person’s genetic code on the  
chemical rate constants, enabling the creation of 
customized computational models for each indi-
vidual’s IGF system for their cartilage. By this 
means, we can bridge the information gap 
between genetic data and what this data actually 
means in the context of a tissue.

This same principle can be applied to all the 
other chemical molecules found in cartilage tis-
sue. For example, the inflammatory cytokine 
IL-1a is known to modulate biochemical degra-
dation of cartilage tissue following a traumatic 
joint injury, so we built a detailed model of 
IL-1beta in cartilage, and calibrated the model 
using detailed experimental data generated exclu-
sively in the Grodzinsky lab [37]. The model 
simulated the experimental observation of bio-
chemical degradation of bovine articular carti-
lage explants. The developed model can help 
improve our understanding of in vivo events after 
a joint injury and potentially be employed for 
assessing the influence of different therapeutic 
molecules on osteoarthritis management [39, 40].

Since the biochemical signaling pathways are 
influenced by the mechanical microenvironment 
of cartilage, we built a mechanical model of car-
tilage. We have developed and published a state- 
of- the-art biphasic model of cartilage mechanics 
that is validated against ex-vivo mechanical 
experiments on human osteochondral plugs sub-
ject to cyclic loading [22]. The model takes into 
account tensile loading being carried by the col-
lagen network, and compressive load carried by 
water and aggrecan. The model has a non-linear 
compressive stiffness and non-linear hydraulic 
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Fig. 6.2 Our cartilage 
mechanics model can 
accurately reproduce 
experimental data of 
time-course of 
deformation in both the 
loading and recovery 
phase of the experiment. 
(Figure adapted from 
Zhang et al. [22] with 
permission)

permeability based on the aggrecan concentra-
tion, which changes as the cartilage tissue 
deforms. As such this model represents a new 
constitutive model of articular cartilage, which 
helps provide a sound foundation for new models 
describing cartilage damage and repair modelling 
(Fig. 6.2).

6.5  Using Models to Investigate 
Pathways to Cartilage Failure

Synovial joint lubrication is one of the key roles 
of articular cartilage. Synovial joints can experi-
ence very small frictional force, with initial fric-
tion coefficient ranging from 0.005 to 0.02, while 
bearing extremely large mechanical stress [41, 
42]. However, experimental studies have shown 
that the cartilage friction coefficient can rise with 
time (~minutes) under loading [43, 44]. Our 
computational modelling in conjunction with 
experimental observations have shown that there 
is a strong correlation between cartilage friction 
coefficient and the degree of cartilage consolida-
tion. This suggests that after prolonged period of 
loading, in particular stationary activities (e.g. 
standing), consolidation has occurred and fric-
tion coefficient rises (Fig. 6.3). The cartilage sur-
face can experience relatively large friction 
coefficient (e.g. 0.2–0.3, with subsequent addi-
tional cartilage damage likely as motion 
recommences).

It is known that large frictional force at the 
joints can result in elevated cartilage surface wear 
and damage and cartilage delamination. A well 
calibrated and patient-specific computational 
modelling can help us simulate the likely impact 
of physical activities on synovial joint health and 
thereby design patient-specific physical therapy 
activities for management of osteoarthritis We 
have incorporated different joint states such as 
meniscectomy and cartilage surface defects, and 
simulated cartilage time-dependent lubrication. 
As shown in Fig. 6.4, the response of damaged 
cartilage, to the same loading conditions, was a 
faster rate of consolidation and quicker increase 
in surface friction coefficient. The expectation 
then is these compromised joints will experience 
a higher average friction coefficient, than a 
healthy cartilage, and so a higher surface wear 
rate. Knowing this, from medical history (e.g. 
observation of defects in MRI) it is possible to 
devise activities that minimize the likelihood of 
these adverse situations occurring, thereby 
increasing the likelihood cartilage will maintain 
its functional integrity.

Although we have shown above that defects 
and meniscectomies can increase consolidation 
and extend the time a cartilage surface experi-
ences high friction, we still do not know how 
critical this is in a particular individual. The load 
the joint experiences depends on factors such as 
body weight, joint size and shape, limb geometry 
and lifestyle. Some of these biomechanical 
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Fig. 6.3 There is a strong correlation between degree of consolidation of articular cartilage and friction coefficient in 
synovial joint. (This figure has been reproduced from Miramini et al. [45] with permission)
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Fig. 6.4 A faster 
consolidation is 
predicted for cartilage 
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the one with a full 
thickness defect. (This 
figure has been adapted 
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[45] with permission)

aspects can be incorporated for an individual 
through a combination of imaging and gait analy-
sis to predict joint loads. In addition, the func-
tional mechanical properties of the cartilage 
tissue are also expected to vary in a population 
due to genetic and environmental histories. These 
factors can be also incorporated in patient -spe-
cific simulation.

Computational modelling can also assist clini-
cians in assessment of cartilage health. For exam-
ple, we can assess cartilage tissue functional 
properties by combined fluoroscopic and MRI 
imaging of the knee in a standing still posture and 
measuring the degree of joint closure over time 
[46]. The calculated degree of consolidation of 
knee joint together with computational modelling 
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enable evaluation of knee joint ability to sustain 
interstitial fluid pressure and so experience a nor-
mal low surface friction coefficient [45].

6.6  Probabilistic Modelling 
and Osteoarthritis Risk 
Assessment

As alluded to above, there are numerous uncer-
tainties and variability associated with the param-
eters affecting cartilage behaviour. For example, 
cartilage loading condition depends on many fac-
tors including physical activity, body weight and 
joint anatomy. In addition, the physical proper-
ties of cartilage also remain uncertain and depend 
on factors such as age, joint health and genetic 
factors. Therefore, it is of critical importance to 
consider the uncertainty and variability of differ-
ent factors when simulating cartilage behaviors. 
Probabilistic analysis has been traditionally 
developed and employed for reliability assess-
ment of engineering structure such as bridges and 
nuclear power stations. Compared with a deter-
ministic approach that adopts a discrete value for 
a specific model parameter, a probabilistic mod-
elling approach takes into account the distribu-
tion of environmental factors and model 
parameters in the deterministic calculation and 
therefore generates a distribution of tissue trajec-
tories (including pathways to disease) and there-
fore outcomes. In the context of engineering, we 
can define the ‘probability of failure’ as the like-

lihood of exceeding some pre-determined state 
critical to the functional performance of the engi-
neered structure. For example, it might be the 
probability of a load exceeding the structure’s 
(e.g. a bridge’s) strength, or the probability of a 
load exceeding a certain level of deformation in 
the structure, or the probability of environmental 
factors causing a certain level of material damage 
(e.g. component fatigue damage, irradiation dam-
age, or corrosion damage). Reliability can be 
defined as one minus the probability of failure. In 
the context of loading a structure, the probability 
of failure can be defined as the overlap between 
the probability density function of a ‘generalized 
loading’ applied on the structure and probability 
density function of the structure ‘generalized 
resistance’, as shown in Fig. 6.5.

Recently, we have used this approach to pre-
dict the likelihood of knee osteoarthritis [9]. This 
was done on the basis of a simple model of chon-
drocyte ECM synthesis in response to loading 
and the possibility for chondrocyte apoptosis 
under that load. Failure was defined by the ability 
to resist a test load (i.e. not exceed a maximum 
strain threshold). The model predicted that low 
activity leads to low ECM synthesis and so a 
gradual softening of the tissue. High activity 
increases ECM synthesis but also exposure to 
excessive loads. The probabilistic predictions 
had the median time to onset of failure occurred 
earlier in the low activity model, and with a rela-
tively narrow uncertainty in onset time. The high 
activity level had a delayed median onset, but had 

Fig. 6.5 The 
probability of failure of 
a structure can be 
estimated by finding the 
overlapping area under 
the probability density 
functions of generalized 
load and generalized 
resistance. (Figure 
adapted with permission 
from Miramini and Yang 
[47])
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Fig. 6.6 Probabilistic computational model of cartilage lubrication. (Figure adapted with permission from Liao et al. 
[48])

much wider distribution of failure onset, relative 
to the low activity predictions [9].

In addition, we have recently developed a 
multi-scale probabilistic computational model 
(Fig.  6.6) to simulate the cartilage lubrication 
behaviour by incorporating the uncertainties 
associated with the key variables governing car-
tilage contact gap mechanics [48–50]. The 
model takes into account the internal relation 
between different variables and their correlated 
influence on cartilage lubrication. The simula-
tion results show that an increase of polymer 
brush border thickness at the cartilage surface 
improves the hydrodynamic lubrication of carti-
lage, while the increasing surficial GAG content 
of the cartilage and increasing asperity stiffness 
could negatively affect hydrodynamic lubrica-
tion. Finally, we note that this probabilistic 

approach has also been adopted to estimate the 
probability of delayed bone fracture healing 
[47, 51].

6.7  Conclusion

To conclude, we are reaching a stage where it is 
now possible to connect all the pieces together 
into a whole picture of articular cartilage homeo-
stasis and to identify pathways to disease. 
Computational modeling seems to be the natural 
platform upon which to integrate, into their 
proper context, the many interacting processes 
involved. Here we presented various mechanistic 
sub-models describing aspects of articular carti-
lage health. However we have also advocated for 
the merging of these mechanistic sub-models 
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with the statistical-based models or approaches 
from (structural) reliability engineering. This 
then can provide a ‘bridge’ between the molecu-
lar and cell biology, biomechanics and epidemi-
ology of osteoarthritis to give a rational basis for 
patient specific treatments. Although all the com-
putational approaches are present to make this 
approach possible, the barriers to its adoption 
depends, not the least, on the adoption by 
clinicians.
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