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Abstract

Articular cartilage is a hydrated macromolec-
ular composite mainly composed of type II 
collagen fibrils and the large proteoglycan, 
aggrecan. Aggrecan is a key determinant of 
the load bearing and energy dissipation func-
tions of cartilage. Previously, studies of carti-
lage biomechanics have been primarily 
focusing on the macroscopic, tissue-level 
properties, which failed to elucidate the 
molecular-level activities that govern cartilage 
development, function, and disease. This 
chapter provides a brief summary of Dr. Alan 
J.  Grodzinsky’s seminal contribution to the 
understanding of aggrecan molecular mechan-
ics at the nanoscopic level. By developing and 
applying a series of atomic force microscopy 
(AFM)-based nanomechanical tools, 
Grodzinsky and colleagues revealed the 
unique structural and mechanical characteris-
tics of aggrecan at unprecedented resolutions. 
In this body of work, the “bottle-brush”-like 
ultrastructure of aggrecan was directly visual-
ized for the first time. Meanwhile, molecular 
mechanics of aggrecan was studied using a 

physiological-like 2D biomimetic assembly of 
aggrecan on multiple fronts, including com-
pression, dynamic loading, shear, and adhe-
sion. These studies not only generated new 
insights into the development, aging, and dis-
ease of cartilage, but established a foundation 
for designing and evaluating novel cartilage 
regeneration strategies. For example, building 
on the scientific foundation and methodology 
infrastructure established by Dr. Grodzinsky, 
recent studies have elucidated the roles of 
other proteoglycans in mediating cartilage 
integrity, such as decorin and perlecan, and 
evaluated the therapeutic potential of biomi-
metic proteoglycans in improving cartilage 
regeneration.
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5.1	� Introduction

Articular cartilage is the soft tissue at the end of 
bones that enables joint locomotion, energy dis-
sipation, and lubrication [40]. These functions are 
endowed by the specialized extracellular matrix 
(ECM) of cartilage, a hydrated composite of col-
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lagens and proteoglycans that are synthesized by 
residing chondrocytes [26] (Fig.  5.1a). 
Osteoarthritis (OA), the most prevalent musculo-
skeletal disease, is characterized by the irrevers-
ible breakdown of cartilage ECM, resulting in 
severe joint pain and limited motion [45]. Due to 
its avascular and dense nature, cartilage has very 
limited self-repair capabilities, and regenerative 
therapies often fail to restore the structure and 
function of healthy tissue [29]. This renders it cru-
cial to understand the establishment, homeostasis, 
and disease-induced degeneration of cartilage 
ECM.  The ECM mainly consists of ~65–70% 
w/w water, ~20–30% collagens, ~5–10% proteo-
glycans [40] as well as DNAs and other minor 
proteins/proteoglycans (Fig. 5.1a–c) [28]. In vivo, 
the collagen network is primarily responsible for 
cartilage tensile stiffness, while aggrecan and its 
negative fixed charges are the key determinants of 
cartilage compressive resistance and fluid flow-
associated energy dissipative properties [40].

In the past few decades, there have been many 
attempts in understanding cartilage biomechan-
ics in health and disease, in the hope to gain new 
insights into disease progression and functional 

regeneration. In the 1980’s, Mow and colleagues 
applied the biphasic poroelasticity theory [2] to 
interpret the time-dependent, energy dissipative 
properties of cartilage. This theory addressed the 
key role of molecular friction arising from water-
solid matrix interactions during fluid flow in con-
tributing to energy dissipation [42]. Grodzinsky 
and colleagues further integrated the concept of 
electrical streaming potential with cartilage 
mechanical deformation and underscored the 
crucial role of fixed charges in overt tissue bio-
mechanics [16, 17]. These seminal studies estab-
lished the foundation of modern cartilage 
biomechanics theory. At the same time, numer-
ous experimental tools have been implemented to 
delineate the contributions of each matrix con-
stituent to cartilage mechanical properties, 
including confined and unconfined compression, 
indentation, dynamic oscillatory loading, and 
shear [39]. For instance, investigating the biome-
chanics of normal and glycosaminoglycan 
(GAG)-depleted cartilage have shown that aggre-
can and its fixed charges directly contribute to 
~50% compressive modulus of cartilage [60].

Fig. 5.1  An overview of articular cartilage extracellular 
matrix (ECM). (a) Schematic illustration of the major 
constituents in cartilage ECM: type II/IX/XI collagen 
fibril network and aggrecan-hyaluronan (HA) aggregates. 
(b) Depth-dependent nanostructure of collagen fibril net-

work visualized by helium ion microscopy on 
proteoglycan-removed rabbit cartilage. Adapted with per-
mission from Ref. [56]. (c) Nanostructure of aggrecan-
HA aggregates imaged by transmission electron 
microscopy. (Adapted with permission from Ref. [3])
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Despite these advances in tissue-level studies, 
disease intervention and regeneration remain elu-
sive. This is at least partly because the tissue-
level investigatory approaches are unable to 
account for the salient heterogeneity and a high 
level of complexity of cartilage structural hierar-
chy from nm-to-mm scales. For example, the col-
lagen network is dominated by types II/IX/XI 
collagen heterotypic fibrils [15], with a minor 
amount of type III collagen co-assembling on the 
surface of collagen II fibrils [58]. The collagen 
fibrils (diameter ~ 30–80 nm) vary in orientation 
and diameter with depth in the tissue [9], from 
being transverse in the superficial layer, to ran-
dom in the middle layer, then predominantly per-
pendicular in the deep layer, accompanied by an 
increasing gradient of fibril diameter and proteo-
glycan concentration (Fig. 5.1b) [56]. Aggrecan, 
the major proteoglycan, has a “bottle-brush” 
structure, and is decorated with highly negatively 
charged chondroitin sulfate (CS) and keratan sul-
fate (KS) GAGs along its core protein [26]. In 
vivo, aggrecan is end-attached to the linear hyal-
uronan (HA) molecules via its G1 domain at the 
N-terminal [27], and this interaction is further 
stabilized by link protein [4]. In the ECM, these 
supramolecular aggregates are entrapped within 
~100  nm nanopores between collagen fibrils at 
~50% molecular compressive strain [59], thereby 
adopting a highly compacted configuration that 
endows the tissue with its high fixed charge den-
sity and osmotic swelling pressure. The electron 
microscopy study by Buckwalter and Rosenberg 
highlighted the complexity in the assembly and 
retention of aggrecan in  vivo, and provided the 
first direct visual evidence of the aggrecan-HA 
aggregation (Fig. 5.1c) [3]. Given these complex-
ities, understanding the ECM from the molecular 
level is necessary for developing effective disease 
intervention and tissue regeneration.

Dr. Grodzinsky is the pioneer in studying the 
molecular mechanics of cartilage ECM constitu-
ents. Through collaboration with Dr. Christine 
Ortiz, a world-renowned scientist in polymer 
nanomechanics and atomic force microscopy, this 
team has made numerous transformative discov-
eries on the nanostructure and nanomechanics of 
cartilage, with a focus on the major proteoglycan, 

aggrecan. This chapter provides a brief summary 
of Grodzinsky’s contributions to the understand-
ing of aggrecan within the context of cartilage 
function, disease, and regeneration. This chapter 
begins with the summary of the ultrastructural 
and nanomechanical studies of native aggrecan 
(Sect. 5.2), followed by the overview of applying 
the knowledge of aggrecan to understanding car-
tilage aging, disease and tissue engineering (Sect. 
5.3), and then, the discussion of more recent stud-
ies on other native and biomimetic proteoglycans 
that were directly inspired by the Grodzinsky’s 
work (Sect. 5.4), and finally, concludes with a 
summary and future outlook (Sect. 5.5).

5.2	� Ultrastructure 
and Nanomechanics 
of Aggrecan

One seminal contribution by Grodzinsky and col-
leagues is the direct visualization of the ultra-
structure of aggrecan and its GAG side chains, 
which was the first of its kind [43]. In this study, 
Ng et al. deposited aggrecan molecules extracted 
from fetal epiphyseal and mature nasal bovine 
cartilage samples onto 
3-aminopropyltriethoxysilane (APTES)-treated, 
positively charged, atomisticly flat mica surfaces. 
The nanostructure of aggrecan was then revealed 
via tapping mode AFM-imaging at a spatial reso-
lution of ~2 nm. Imaging aggrecan at such unprec-
edented resolution enabled not only visualization 
of its “bottle-brush”-like molecular architecture, 
but also direct quantification of its structural 
parameters (Fig. 5.2a). This includes the core pro-
tein contour length, Lc, end-to-end distance, Ree, 
degree of extension, Ree/Lc, and the packing den-
sity and length of GAG bristles. In turn, the per-
sistence length, Lp, as calculated from the 
worm-like chain model (~110 nm for fetal epiph-
yseal aggrecan), illustrated the highly extended 
conformation of aggrecan in its equilibrium state. 
Conversely, this study also showed that in vivo, 
aggrecan adapted a highly compacted conforma-
tion, for that the in vivo concentration is at least 
40× higher than the densely packed form imaged 
on mica (Fig.  5.2b). To this end, the contrast 
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Fig. 5.2  Ultrastructure of aggrecan via tapping mode 
atomic force microscopy  (AFM) imaging. (a) 
Nanostructure of individual fetal bovine epiphyseal and 
mature bovine nasal aggrecan deposited on atomicly flat 
mica surface. (b) Nanostructure of densely packed fetal 

bovine epiphyseal aggrecan monomers, illustrating the 
highly compressed conformation of aggrecan in vivo (~ 
40× higher than the aggrecan packing imaged here). 
(Panels (a) and (b) are adapted with permission from Ref. 
[43])

between aggrecan from fetal epiphyseal versus 
mature nasal cartilage highlighted the large varia-
tion of its ultrastructure with tissue source and age 
(Fig.  5.2a). Furthermore, these high resolution 
images clearly illustrated the dominating role of 
longer CS-GAGs in contributing to the molecular 
conformation of aggrecan. Indeed, a follow-up 
study by Lee et  al. compared the structure and 
conformation of aggrecan from a 29-year-old 
human donor subjected to chondroitinase ABC 
and keratanase II treatment, and confirmed that 
the extension and conformation of aggrecan is 
predominantly governed by the longer CS-GAGs, 
rather than the shorter KS-GAG chains [36].

In addition to nanostructure, Grodzinsky and 
colleagues also, for the first time, assessed the 
nanomechanics of aggrecan under multiple 
deformation modes, including compression, 
energy dissipation, shear, and adhesion. Building 
on earlier work of CS-GAG nanomechanics [51–
53], Dean et al. chemically functionalized aggre-
can with thiol-groups at its N-terminal, and 
end-attached thiol-functionalized aggrecan onto 
gold-coated planar silicon substrates and micro-
spherical AFM colloidal tips (R ≈ 2.5 μm). This 
set-up established a 2D biomimicry assembly of 
aggrecan at ~50  mg/mL, near its physiological 
packing density (~20–80 mg/mL), thus enabling 
the studies of aggrecan interactions under in 
vivo-like conditions. With this biomimetic sys-

tem, the team performed an in-depth analysis of 
key molecular mechanical behaviors of aggrecan. 
First, compressive nanomechanics was quantified 
using force spectroscopy and contact mode AFM 
imaging in aqueous solutions with varied ionic 
strength (IS) conditions [10, 11]. As expected, 
the long-range repulsion force between two 
opposing aggrecan layers extended to >1 μm in 
IS  =  0.001  M solution, while the distance and 
magnitude of compression resistance decreased 
drastically with increasing IS from 0.001 to 
1.0 M (Fig. 5.3a). Applying Poisson-Boltzmann-
based models, this study confirmed that the elec-
trical double layer (EDL) repulsion interactions 
arising from CS-GAGs play a dominating role in 
the compressive nanomechanics of aggrecan, in 
comparison to other non-electrostatic factors 
such as steric hindrance and conformational 
entropy. Importantly, under in vivo conditions 
(IS  =  0.15  M), given that the Debye length, 
κ−1 ≈ 0.8 nm, is at the same order of GAG-GAG 
packing distance (~ 2–3 nm), the salient hetero-
geneity in electrical potential was a key factor in 
determining the magnitude of repulsion. While 
the continuum Donnan model substantially over-
estimated the repulsion force, both the unit cell 
model [5] and charged rod model [12], which 
accounted for the nanoscale spatial heterogeneity 
of electrical potential, accurately predicted the 
aggrecan-aggrecan repulsion [10].
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Fig. 5.3  Nanomechanics of aggrecan measured between 
two opposing layers of aggrecan via atomic force micros-
copy (AFM)-based nanomechanical modalities. 
Experiments were performed applying aggrecan function-
alized colloidal tips (R ≈ 2.5 μm, except that R ≈ 22.5 μm 
for panel (b) to aggrecan-functionalized planar substrates 
in NaCl aqueous solutions at different ionic strengths 
(IS  =  0.001–1.0  M). Left panels: Schematics of experi-
mental set-ups. For panel (c), the substrate was prepared 
via micro-contact printing to form micropatterned surface 
of hydroxyl-terminated self-assembled monolayer 
(OH-SAM, HS(CH2)11OH) and aggrecan monolayer. 
Right panels: (a) Compressive force-versus distance 

curves as a function of bath IS via colloidal molecular 
force spectroscopy. Adapted with permission from Ref. 
[10]. (b) The magnitude of phase angle, ϕ, of newborn 
human aggrecan as a function of dynamic frequency and 
bath IS via AFM-based nanorheometric test (mean ± 95% 
CI, n = 6). Adapted with permission from Ref. [44]. (c) 
Lateral versus applied normal force curves as a function 
of bath IS via lateral force microscopy (mean  ±  SD, 
n = 8). Adapted with permission from Ref. [24]. (d) The 
total aggrecan-aggrecan adhesion energy as a function of 
surface dwell time and bath IS via molecular force spec-
troscopy (mean ± SEM, n ≥ 30). (Adapted with permis-
sion from Ref. [23])

Following the studies of elasticity, Nia et al. 
probed the energy dissipative, poroelastic nano-
mechanics of aggrecan using the custom-built 
AFM-nanorheometer [44]. Similar to the case of 
elastic modulus, the energy dissipation of aggre-
can layer is also largely governed by the EDL 
repulsion, as illustrated by the salient dependence 
of phase angle on bath IS (Fig. 5.3b). Meanwhile, 
the dynamic oscillatory loading responses of 
three specimens were compared: normal carti-
lage, GAG-depleted cartilage, and the end-
attached aggrecan monolayers. In the low 
frequency elastic domain, the modulus of GAG-
depleted cartilage, EL, was ~1.5 × lower than that 
of the normal cartilage, while the modulus of 
aggrecan layer is ~7 × lower. Despite this much 
lower modulus, the aggrecan monolayer had 
comparable hydraulic permeability, k, to the 

native cartilage, while that of the GAG-depleted 
cartilage was ~24 × higher. Such contrast under-
scored the direct contribution of aggrecan and its 
sGAGs to cartilage fluid flow and pressurization 
capabilities. This is because the closely spaced 
GAG chains of aggrecan, with an effective pore 
size ~2–4  nm, provide the main resistance to 
intra-tissue fluid flow in cartilage, as manifested 
in the GAG-GAG nanomolecular model of 
hydraulic permeability [14], while the collagen 
network has a much larger pore size (~100 nm), 
resulting in elevated hydraulic permeability. 
Similar to the case of elasticity, a more complex 
structural model was needed to capture the mag-
nitude of aggrecan-endowed energy dissipation. 
The fiber-reinforced model [55] or transversely 
isotropic model [54], which accounted for carti-
lage tension-compression asymmetry, were able 
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to quantitatively capture the degree of energy dis-
sipation, while an isotropic poroelastic model 
would markedly underestimate these values.

Applying lateral force microscopy (LFM), 
Han et al. elucidated the shear nanomechanics of 
both single and two opposing aggrecan layers 
[24, 25]. The shear resistance of aggrecan was 
quantified as a function of aggrecan layer height 
and applied normal force under varied IS.  The 
lateral linearity ratio, μ (= dFlateral/dFnormal), was 
found to vary significantly with both IS (Fig. 5.3c) 
and lateral displacement rate, suggesting that the 
shear resistance was also largely governed by 
both EDL repulsion and fluid flow. At lower IS, 
given the dominance of EDL repulsion, aggrecan 
exhibited a more extended conformation. 
Therefore, a lower lateral proportional coefficient 
could be attributed to the minimal interdigitation 
between opposing aggrecan and strong water 
hydration effects surrounding negative charges, 
similar to the highly lubricative case of nega-
tively charged synthetic polyelectrolytes. To this 
end, the shear of two opposing aggrecan layers 
also yielded a lower lateral coefficient, due to 
stronger EDL repulsion than just one single layer. 
In addition, divalent Ca2+ ions (~2–4 mM in car-
tilage [40]) were also found to mediate the shear 
behavior through extra screening of EDL repul-
sion and potentially the ion bridging effect. 
Collectively, EDL repulsion dominates not only 
the compressive, but also shear nanomechanics 
of aggrecan. It is also worth noting that the low 
lateral coefficient, μ, observed here does not 
imply a role of aggrecan in cartilage lubrication, 
as the concentration of aggrecan on cartilage sur-
face is very low, and the synovial fluid is domi-
nated by fragmented aggrecan, which lacks the 
G1-domain that enables its binding to HA [50].

Interestingly, despite the dominance of strong 
EDL repulsion, aggrecan also exhibited marked 
adhesive interactions with adjacent aggrecan 
molecules [23], and with collagen II fibrils [49]. 
When compressed at physiological-like molecu-
lar strain (~50% [59]) for 0–30 seconds, aggre-
can was found to undergo pronounced adhesion, 
with a magnitude at ~1 pN between per pair of 
aggrecan-aggrecan, and ~  0.3 pN per aggrecan 
molecule versus collagen II fibrils in 

physiological-like solution. Such adhesion was 
attributed to non-specific interactions, such as 
hydrogen bonding, hydrophobicity, ionic interac-
tions as well as physical entanglement. Increasing 
EDL repulsion by lowering IS effectively limited 
the intermolecular contact and reduced the adhe-
sion between the layers (Fig. 5.3d). On the other 
hand, Ca2+-mediated ion bridging further 
enhanced the adhesion by providing additional 
ionic linkage. Given that the highly compressed 
state of aggrecan mimics the physiological 
molecular strain in unloaded cartilage, these non-
specific interactions were hypothesized to be an 
important biophysical factor that helps stabiliz-
ing the retention of fragmented aggrecan in 
healthy cartilage and contributes to the integrity 
of cartilage ECM.

5.3	� Implications for Aging, 
Disease and Regeneration

Following these fundamental studies of aggre-
can, Grodzinsky and colleagues further applied 
the experimental paradigm to gain new molecular 
insights into cartilage disease pathogenesis and 
regenerative medicine. One important applica-
tion was to assess age-associated changes of 
aggrecan polymorphism using human cartilage 
samples. Applying tapping mode AFM imaging 
and force spectroscopy, Lee et  al. compared 
aggrecan molecules from newborn and 38-year-
old adult donors [36]. Aggrecan from newborn 
cartilage exhibited superior nanostructure and 
compressive nanomechanics relative to that from 
adult cartilage. First, the adult aggrecan popula-
tion consisted of substantially more fragmented 
monomers that did not have the G1 or G3 globu-
lar domain (Fig. 5.4a, left panel). Such observa-
tion illustrated that aggrecan fragmentation could 
be a normal homeostasis process during growth 
and aging, and is a prevalent feature even in 
healthy adult cartilage. It also indicated that the 
retention of aggrecan in vivo may require addi-
tional mechanisms beyond the aggrecan-HA 
association, such as the aggrecan-aggrecan and 
aggrecan-collagen II adhesion [23, 49]. And, 
even for the sub-population of full length aggre-
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Fig. 5.4  Applications of AFM in the studies of aggrecan 
in cartilage aging, disease initiation and tissue engineer-
ing. (a) Left panel: Tapping mode AFM height images of 
newborn and adult (38-year-old) human aggrecan mono-
mers. Arrow heads: globular domains. Right Panel: 
Compression resistance curves of end-attached newborn 
and adult human aggrecan monolayer measured at 0.01 M 
ionic strength via colloidal force spectroscopy. (Adapted 
with permission from Ref. [36]). (b) Left panel: Schematic 
illustration of immunofluorescence (IF)-guided AFM 
nanomechanical mapping on mature murine cartilage 
cryosection using a microspherical colloidal tip; the peri-

cellular matrix (PCM) is immunolabeled with collagen 
VI.  Right panel: Representative indentation modulus 
maps show the early reduction of PCM and territorial/
inter-territorial extracellular matrix (T/IT-ECM) modulus 
at 1 week after applying the destabilization of the medial 
meniscus (DMM) surgery to 3-month-old male wild-type 
mice, relative to the Sham control. (Adapted with permis-
sion from Ref. [6]). (c) Tapping mode AFM height images 
of aggrecan ultrastructure synthesized by adult equine 
bone marrow stromal cells (BMSCs) and chondrocytes. 
(Adapted with permission from Ref. [33])

can, the newborn aggrecan exhibited longer core 
protein length, longer CS-GAG length, and 
denser packing of CS-GAGs, contributing to 
much stronger compression resistance (Fig. 5.4a, 
right panel). Taken together, these results provide 
direct molecular-level evidence about the effects 
of age on cartilage matrix changes, which may 
assist the intervention of age-associated cartilage 
degeneration and OA initiation.

Despite being part of the natural homeostatic 
process, aggrecan fragmentation is more aggra-
vated during the initiation of OA. Inspired by the 
molecular-level studies by Grodzinsky, Chery 
et  al. investigated how aggrecan degeneration 
alters the micromechanics of pericellular matrix 
(PCM), the immediate microenvironment of 
chondrocytes, and in turn, the mechanotransduc-
tion of chondrocytes in post-traumatic OA. In the 

destabilization of the medial meniscus (DMM) 
murine model [18], the micromodulus of PCM 
was measured by immunofluorescence (IF)-
guided AFM nanomechanical mapping 
(Fig.  5.4b), and was found to show significant 
reduction as early as 3 days post-surgery relative 
to the Sham control. This reduction preceded 
both changes of overt tissue-level mechanical 
properties measured by classical AFM-
nanoindentation (1 week after) [13], and appear-
ance of histological cartilage damage 
(4–8  weeks  after) [18]. This weakening of the 
PCM can be attributed to accelerated aggrecan 
degradation in OA, as the aggrecan neo-epitopes 
(e.g., VDIPEN) were found to be mainly local-
ized in the pericellular domain at this early stage. 
In alignment with the PCM degeneration, at 
3 days after DMM, chondrocytes also exhibited 
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demoted intracellular calcium signaling, [Ca2+]i, 
activities, one of the earliest, fundamental cell 
responses to mechanical stimuli [8]. This effect 
was most pronounced under hypo-osmotic stim-
uli, which simulate the amplified GAG-GAG 
EDL repulsion and increased cell strain during 
compressive joint loading. Conversely, when the 
aggravated catabolism was attenuated by small 
molecule inhibitor, GM6001, the reduction of 
PCM modulus and disruption of [Ca2+]i activities 
could be effectively rescued. Thus, aggravated 
aggrecan degradation represents a key molecular 
event in the initiation of OA, which not only 
impacts the tissue-level mechanical properties, 
but disrupts chondrocyte mechanotransduction 
by impairing the PCM.

Understanding the molecular aspects of aggre-
can in normal aging and disease initiation also 
shed light on the development of novel tissue 
engineering and regeneration strategies. In tissue 
engineering, the use of primary chondrocytes is 
challenged by the limited amount of cells and 
donor site morbidity. Bone marrow stromal cells 
(BMSCs) are often used as the alternative cell 
source [41]. When undergoing chondrogenesis, 
BMSCs were found to synthesize full length 
aggrecan within 1–2 weeks of chondrogenic cul-
ture [33, 37]. Adult equine BMSCs undergoing 
chondrogenesis within hydrogel cultures could 
synthesize aggrecan molecules having CS-GAG 
chains that were almost 2× longer than the 
CS-GAGs synthesized by primary chondrocytes 
harvested from those same horses (Fig.  5.4c). 
Importantly, it was also discovered via 
fluorophore-assisted carbohydrate electrophore-
sis (FACE) analysis that the aggrecan made by 
these adult BMSCs demonstrated CS-GAG sul-
fation patterns typical of those observed in new-
born growth cartilage, even though these cells 
were originated from adult animals. The BMSC-
derived aggrecan also showed higher compres-
sive stiffness, close to that of newborn human 
aggrecan as seen in Fig. 5.4a. On the other hand, 
in comparison to primary chondrocytes, BMSCs 
had a lower synthesis rate of collagen and proteo-
glycans, as well as a lower retention rate of newly 
synthesized aggrecan in its neo-matrix. This 
resulted in a lesser assembled matrix with lower 
sGAG content in the BMSC neo-matrix [1]. 

When assessed via AFM-nanorheometer, BMSC 
neo-matrix showed a higher degree of energy dis-
sipation and similar elastic modulus at lower fre-
quencies, but lower modulus at high frequency 
relative to that of chondrocyte neo-matrix [34, 
35]. Therefore, despite its capability of synthe-
sizing more superior aggrecan, BMSCs may also 
have inferior capabilities in biosynthesis and neo-
matrix assembly. These factors need to be consid-
ered and modulated at both molecular and cellular 
levels to enhance the quality of regenerative 
tissues.

5.4	� Other Native and Biomimetic 
Proteoglycans

In addition to aggrecan, cartilage matrix also 
consists of many other proteoglycans and glyco-
proteins, including small leucine rich proteogly-
cans (SLRPs), perlecan, lubricin, matrilins and 
cartilage oligomeric matrix protein (COMP) 
[28]. These molecules are present at minor quan-
tities, and thus, do not directly contribute to tis-
sue biomechanics. However, they could have 
important roles in regulating matrix assembly or 
cell-matrix interactions through specific interac-
tions with other matrix molecules, cell surface 
receptors, and/or cytokines [32]. Regulatory roles 
of individual proteoglycans have been studied by 
assessing the phenotype of various genetic 
knockout murine models [28]. Previously, analy-
sis of murine cartilage phenotype has been 
mainly limited to gross-level assays, such as bulk 
chemistry, histology, immunohistochemistry, and 
micro-computed tomography (μCT). Assessment 
of the functional relevance of these molecules 
was challenged by the small volume and irregular 
shape of murine cartilage, which renders conven-
tional biomechanical tools not applicable.

The nanomechanical paradigm established by 
Grodzinsky and colleagues enabled direct quanti-
fication of murine cartilage biomechanical prop-
erties, providing a new path for pinpointing the 
activities of individual proteoglycans [22]. For 
example, a recent study by Han et al. investigated 
the role of decorin in cartilage biomechanical 
function and OA progression [21]. Decorin is a 
class I SLRP containing ~40  kDa leucine rich 
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core protein with one CS- or dermatan sulfate 
(DS)-GAG chain attached near its N-terminal. In 
human cartilage, the concentration of decorin is 
≈ 15 nmol/ml, comparable to that of aggrecan (≈ 
20  nmol/ml) [47], which implies its potential 
importance to cartilage integrity. In both decorin-
null (Dcn−/−) and inducible decorin knockout 
mice (Dcnf/f/Rosa26CreER, or DcniKO), loss of 
decorin resulted in reduced aggrecan and sGAG 

content in the ECM (Fig.  5.5a). When tested 
under the AFM-nanorheometer, decorin-deficient 
cartilage demonstrated compromised biome-
chanical properties, including lower modulus, 
higher hydraulic permeability and reduced fluid 
pressurization (Fig. 5.5b, c). These observations 
highlighted a crucial role of decorin in regulating 
the integrity of aggrecan in cartilage ECM. This 
hypothesis was supported by molecular-level 

Fig. 5.5  Decorin regulates the integrity of aggrecan and 
biomechanics of cartilage ECM. a-c) Structural and bio-
mechanical phenotype of Dcn−/− murine cartilage relative 
to the wild-type (WT) control at 3  months of age. (a) 
Safranin-O/Fast Green histology and IF images show the 
reduction of sulfated glycoaminoglycans (sGAGs) and 
aggrecan in Dcn−/− cartilage. (b) AFM-based nanoinden-
tation and nanorheometric tests show the reduction of 
indentation modulus, Eind, and the increase of hydraulic 
permeability, k, of cartilage. (c) Maximum pore pressure 
calculated from the fibril-reinforced poroelastic finite ele-

ment model at the peak frequency (∼10 Hz) correspond-
ing to maximum phase angle. (d) Tapping mode AFM 
height imaging shows the formation of interconnected 
supramolecular network when aggrecan is reconstituted 
with free decorin protein, and individual aggrecan mono-
mers when reconstituted without. (e) Schematic illustra-
tion of the structural role of decorin in regulating the 
molecular adhesion of aggrecan-aggrecan and aggrecan-
collagen fibrils, and thus, the integrity of cartilage ECM. 
(Panels (a)–(e) are adapted with permission from Ref. 
[21])
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nanomechanical experiments. First, when free 
decorin protein was added to the solution, molec-
ular adhesions between two opposing aggrecan 
layers, and between aggrecan and collagen II 
fibrils, were both significantly increased. Second, 
when decorin protein and aggrecan monomers 
were reconstituted on a mica surface, they formed 
interconnected supramolecular networks, despite 
the presence of strong EDL repulsion (Fig. 5.5d). 
These results corroborate the observation that 
Dcn−/− chondrocytes synthesized a similar 
amount of sGAGs, but a lesser portion was 
retained in the neo-matrix. Therefore, in carti-
lage, decorin could serve as a “physical linker”, 
which in turn, strengthens the aggrecan-aggrecan 
and aggrecan-collagen II molecular adhesion, 
enhancing the integration of aggrecan network in 
cartilage (Fig. 5.5e) [21].

The impact of decorin on aggrecan integrity 
also regulates chondrocyte mechanotransduction. 
Applying immunofluorescence (IF)-guided 
AFM, Chery et  al. showed that the PCM of 
Dcn−/− cartilage was impaired during post-natal 
growth, leading to demoted chondrocyte intracel-
lular calcium signaling, [Ca2+]i, activities in situ 
[7]. This study further confirmed that such 
impairment can be attributed to the reduction of 
aggrecan and sGAG content in the PCM, sup-
porting the role of decorin in mediating chondro-
cyte mechanobiology through regulating the 
integrity of aggrecan in the PCM. In the DMM 
model, both Dcn−/− and DcniKO mice exhibited 
accelerated loss of sGAGs and fibrillation of car-
tilage surface, contributing to more severe OA 
relative to the control [38]. The mediation of 
aggrecan assembly was also found to be specific 
to decorin. Biglycan is another class I SLRP, 
whose core protein has ~57% structural homol-
ogy to that of decorin, but harbors two, rather 
than one, CS/DS-GAG side chains near its 
N-terminal [30]. In contrast, such aggravated OA 
was not detected in biglycan inducible knockout 
mice (Bgnf/f/Rosa26CreER) subjected to DMM 
surgery [20]. Therefore, building on the founda-
tion established by Grodzinsky, these recent stud-
ies highlighted an indispensable role of decorin 
in regulating the integrity of aggrecan network in 
cartilage matrix, and thus, the ECM biomechan-
ics and chondrocyte mechanotransduction. 

Meanwhile, decorin also contributes to the slow-
down of OA progression by attenuating the loss 
of fragmented aggrecan and inhibiting cartilage 
fibrillation.

Besides decorin, the impact of perlecan on 
cartilage development and homeostasis has also 
been studied from the nanomechanics perspec-
tive. Perlecan is a basement membrane-specific 
heparan sulfate proteoglycan (HSPG, 
Mw ~ 470 kDa), and contains three heparan sul-
fate (HS)-GAG or CS-GAG chains near its 
N-terminal. In cartilage, perlecan is localized in 
the PCM, and is suggested to interact with colla-
gens VI and XI to stabilize the matrix compart-
ment [62]. It also directly regulates cell surface 
mechanosensing [19] and activation of fibroblast 
growth factor-2 (FGF-2) [57]. Applying 
IF-guided AFM, Wilusz et  al. demonstrated 
direct contribution of perlecan and its HS-GAGs 
to PCM integrity. Heparinase III digestion was 
shown to increase the micromodulus of porcine 
cartilage PCM, but not that of the bulk ECM [61]. 
It was hypothesized that the HS-GAG chain of 
perlecan could contribute to the local fixed 
charges and osmotic swelling pressure, while its 
enzymatic removal may reduce the swelling of 
PCM and in turn, increase the apparent local 
modulus. Furthermore, in newborn perlecan 
knockdown mice (Hspg2+/−), Xu et al. observed 
reduced cartilage matrix stiffness as well as 
defective PCM formation. Production of an abun-
dance of matrix proteins was elevated, including 
atypical sGAGs, which was hypothesized to 
compensate for the loss of perlecan, illustrating 
an important role of perlecan in mediating initial 
matrix assembly [63].

Marcolongo and colleagues synthesized a 
family of biomimetic proteoglycans (BPGs) to 
recapitulate the biophysical characteristics of 
native aggrecan at the molecular level [48]. 
Specifically, BPG10 is a synthetic polymer con-
sisting of a ~ 10 kDa synthetic poly(acrylic acid) 
(PAA) core, decorated with ~5–7 CS-GAG bris-
tles (Fig.  5.6a). Similar to that of aggrecan, 
BPG10 exhibits the “bottle-brush” architecture, 
with CS-GAGs packed at 3–4 nm spacing along 
the PAA core [48], comparable to the 2–3  nm 
spacing of CS-GAGs along aggrecan core protein 
[43]. When infiltrated into bovine cartilage 
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explants, these BPGs were able to localize in the 
PCM and territorial domain [46] (Fig.  5.6b). 
Kahle et al. applied IF-guided AFM to BPG10-
augmented bovine cartilage explant, and showed 

that its localization increased the micromodulus 
of PCM without altering properties of the matrix 
bulk (Fig. 5.6c) [31]. Such effect was attributed 
to the increased fixed charge density within the 

Fig. 5.6  Biomimetic proteoglycan, BPG10, strengthens 
cartilage pericellular matrix (PCM) and modulates chon-
drocyte mechanotransduction through integrating with 
the aggrecan network in the PCM. (a) BPG10 is synthe-
sized by grafting natural chondroitin sulfate glycosami-
noglycan (CS-GAG) bristles to an enzymatically 
resistant, synthetic poly (acrylic acid) (PAA) core. (b) IF 
images of adult bovine cartilage explants infiltrated with 
fluorescently-labeled BPG10 and co-stained with colla-
gen VI demonstrate the preferred distribution of BPG10 
within the PCM and nearby territorial domain. (c) 
Representative indentation modulus, Eind, maps of control 
and BPG10-treated cartilage in 20 × 20 μm2 regions of 
interest (ROIs) containing well-defined PCM rings 
(40  ×  40 indents) via IF-guided AFM nanomechanical 

mapping illustrate the increase of PCM micromodulus by 
the infiltration of BPG10. (d) Left panel: Representative 
IF images of intracellular calcium signaling, [Ca2+]i, of 
adult bovine chondrocytes in situ. BPG10 enhances 
mechanosensing of chondrocytes in both isotonic and 
hypotonic (osmotically-simulated compression) condi-
tions, as illustrated by an increase in the percentage of 
responding cells, %Rcell (mean  ±  95% CI, ≥ 445 cells 
from n  =  3 animals). (e) Schematic illustration of bio-
physical adhesion interactions between BPG10 and 
aggrecan, which enables the integration of BPG10 with 
the aggrecan-enriched cartilage PCM, and thus, the pre-
ferred localization of BPG10 in the PCM. (Panels (a)–(e) 
are adapted with permission from Ref. [31])
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PCM due to the localization of BPG10. In turn, 
residing chondrocytes in BPG10-augmented 
PCM exhibited enhanced in situ [Ca2+]i activities 
(Fig. 5.6d). When tested by molecular force spec-
troscopy, these BPG10 molecules demonstrated 
the capability of undergoing molecular adhesion 
with other BPG10 molecules and with native 
aggrecan, at a similar adhesion magnitude as 
aggrecan-aggrecan self-adhesion. Thus, it was 
hypothesized that by mimicking the “brush-like” 
ultrastructure and polyanionic nature of aggre-
can, BPG10 can integrate with aggrecan in native 
cartilage through biophysical adhesions 
(Fig. 5.6e), and thus, has the potential to be used 
for harnessing cell mechanoresponses and modi-
fying disease progression [31].

5.5	� Summary and Outlook

This chapter summarized the transformative 
impact of Dr. Grodzinsky’s contributions to the 
understanding of aggrecan molecular mechanics 
at the nanoscale. By developing and applying an 
array of AFM-based nanomechanical modalities 
to cartilage molecules, cells, and tissues, this 
body of work established a new front in under-
standing the origins of cartilage ECM functions, 
cell-ECM interactions, and disease initiation 
events. In addition, as discussed in this chapter, 
this nanotechnology paradigm established by Dr. 
Grodzinsky opened the door for further in-depth 
studies on the roles of other minor proteoglycans 
and proteins in cartilage biomechanics and mech-
anobiology, as well as the evaluation of novel 
molecular therapeutic strategies for OA treat-
ment. It is expected that many future studies will 
benefit immensely from this molecular founda-
tion established by Dr. Grodzinsky, which is one 
of the many fronts that he has contributed in mus-
culoskeletal research.
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