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Abstract

Cartilages are unique in the family of connec-
tive tissues in that they contain a high concen-
tration of the glycosaminoglycans, chondroitin 
sulfate and keratan sulfate attached to the core 
protein of the proteoglycan, aggrecan. 
Multiple aggrecan molecules are organized in 
the extracellular matrix via a domain-specific 
molecular interaction with hyaluronan and a 
link protein, and these high molecular weight 
aggregates are immobilized within the colla-
gen and glycoprotein network. The high nega-
tive charge density of glycosaminoglycans 
provides hydrophilicity, high osmotic swell-
ing pressure and conformational flexibility, 
which together function to absorb fluctuations 
in biomechanical stresses on cartilage during 
movement of an articular joint. We have sum-
marized information on the history and cur-

rent knowledge obtained by biochemical and 
genetic approaches, on cell-mediated regula-
tion of aggrecan metabolism and its role in 
skeletal development, growth as well as dur-
ing the development of joint disease. In addi-
tion, we describe the pathways for hyaluronan 
metabolism, with particular focus on the role 
as a “metabolic rheostat” during chondrocyte 
responses in cartilage remodeling in growth 
and disease.

Future advances in effective therapeutic 
targeting of cartilage loss during osteoar-
thritic diseases of the joint as an organ as well 
as in cartilage tissue engineering would bene-
fit from ‘big data’ approaches and bioinfor-
matics, to uncover novel feed-forward and 
feed-back mechanisms for regulating tran-
scription and translation of genes and their 
integration into cell-specific pathways.

Keywords

Cartilage · Aggrecan · Hyaluronan · 
Extracellular matrix

1.1	� Introduction

Cartilages are unique in the family of connec-
tive tissues in that they contain a high concen-
tration of the glycosaminoglycans (GAG), 
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chondroitin sulfate (CS) and keratan sulfate 
(KS) that are attached to the core protein of the 
proteoglycan, aggrecan. Aggrecan is organized 
in the extracellular matrix via a domain-specific 
molecular interaction with hyaluronan (HA) 
and with a link protein, and it is present 
throughout the collagen and glycoprotein 
network.

The high concentration of these organized 
GAGs have a well-documented essential role for 
articular cartilages to absorb alterations in bio-
mechanical stresses during movement of an artic-
ular joint. At the structural level this is due to 
their biophysical characteristics at physiological 
pH, which include hydrophilicity and high 
osmotic swelling pressure due to the negative 
charges on their carbohydrate subunits (carboxyl 
and sulfate groups) and on their conformational 
flexibility and efficiency at filling space due to 
their sizes.

In this chapter we review the history and cur-
rent knowledge of the cell-mediated regulation of 
aggrecan metabolism (Fig. 1.1) including: (a) the 
posttranslational modification of the core protein 
with CS and KS and its extracellular organization 
into ‘aggregates’ with HA and link proteins; (b) 
the proteolytic processing of the core protein by a 

specific set of extracellular proteases (ADAMTSs 
and MMPs); and (c) the function of hyaluronan 
(HA) metabolism in the context of serving as a 
“metabolic rheostat” during chondrocyte 
responses in cartilage remodeling during growth 
and disease.

Throughout the Chapter, components of the 
metabolic pathways that have been shown to be 
affected by biomechanical perturbation of tissues 
will be highlighted. In this research area, the 
Grodzinsky lab, together with an extensive net-
work of collaborators, spearheaded in vitro biore-
actor experiments using cartilage explants or 
chondrocytic cell constructs, to delineate the 
effects of static and dynamic compression, and of 
sheer stress, on the illustrated pathways in aggre-
can post-translational processing. This set in 
motion a research approach used by multiple 
laboratories to extend our understanding of 
mechanotransduction pathways in chondrocytes 
and progenitor cells for cartilage engineering 
purposes ([77, 106, 144, 228, 239, 279] and ref-
erences therein). In addition, throughout the 
comprehensive list of key references in the cov-
ered research areas the publications from the 
Grodzinsky lab and its past members are anno-
tated in the Bibliography.

Fig. 1.1  Schematic of topographical organization of components involved in intracellular aggrecan synthesis and 
extracellular matrix organization
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1.2	� Chondroitin Sulfate 
and Keratan Sulfate Fine 
Structure on Aggrecan

Core protein linkage regions for synthesis and 
polymerization of CS and KS on the aggrecan 
core protein domains are illustrated in Fig.  1.2. 
CS is O-glycosidically linked to the serine resi-
dues along the CS rich regions 1 and 2 of the core 
protein via a linkage region oligosaccharide 
(-Xyl-Gal-Gal-GlcA) followed by unbranched 
chains consisting of disaccharides, (→4)β-GlcA 
(1→3)βGalNAc(1→), in which the amino sugar 
can be substituted on the C4 and/or C6 by a sul-
fate ester.

KS on aggrecan, also known as ‘skeletal’ KS, 
[180, 214] is O-linked to a serine or threonine in 
the KS domain, via a mucin core-2 linkage struc-
ture, (-GalNAc β(1–6)GlcNAc(1→). The GAG 
polymer is based on a polylactosamine backbone, 
with repeated disaccharides of (→4) βGal β (1–3) 
GlcNAc (1→). Both sugars in the disaccharide 
repeat can be sulfated on their C6 carbon, and an 

additional fucose can be substituted on the 
GlcNAc-6S.  Many of these chains also capped 
with a sialic acid at the non-reducing terminal.

1.2.1	� Aggrecan CS Chain Length 
and Sulfation Are Different 
in Skeletal Growth and Mature 
Cartilages

It is well established that chain length of CS and 
the type of sulfation on the C-4 or C-6 position of 
GalNAc residues in CS can vary with cartilage 
source depending on species and anatomical 
location. Detailed analyses of aggrecan CS fine 
structures in cartilage growth and maturation 
have provided more insights into conserved 
adaptations of CS biosynthesis to altered bio-
physical and biomechanical demands of a partic-
ular cartilage type.

Thus, examination of the GAG fine structure 
on growth and mature cartilage aggrecan core 
protein GAG domains using HPLC [163, 199] 

Fig. 1.2  Schematic of Aggrecan Core Protein Domains: G1, HA binding; KS, KS or O-linked oligosaccharide substi-
tuted domain, CS1/CS2, CS attachment domains

1  Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes – Then and Now
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and FACE analyses [33, 201] established both 
location and age-related changes. For example, 
CS fine structure analyses of fetal growth plate 
cartilage aggrecan revealed a gradient in CS 
composition from the reserve zone to the hyper-
trophic zone, characterized by a marked increase 
in chain length accompanied by increased 
6-sulfation and a concomitant decrease in 
4-sulfation [55]. Furthermore, major changes in 
both CS chain length and sulfation pattern during 
postnatal maturation of human knee cartilage 
from the epiphyseal growth to a mature articular 
phenotype [200, 214, 285] were also detected. 
Upon skeletal maturation, chain length decreased 
by as much as 50%, and transitioned from an 
equal abundance of 4- and 6-sulfated GalNAc 
residues in growth cartilage to a predominance of 
6-sulfated GalNAc residues. In addition CS 
chains in the CS2 region were shorter than those 
in the CS1 domain and carried a non-reducing 
terminal 4, 6-disulfated GalNAc residue instead 
of a 4S-GalNAc residue. A similar pattern in 
decreased chain length and increased 6-sulfation 
of both internal and terminal GalNAc residues 
was also observed by analyses of equine carpal 
articular cartilage CS [27].

1.2.2	� GAG Biosynthesis Is 
a Multienzyme Process That 
Takes Place During Core 
Protein Trafficking Through 
the ER and Golgi

Studies to-date have shown that the conserved 
heterogeneity in GAG fine structures, unlike pro-
tein synthesis, do not follow a template, and it is 
regulated by individual cell phenotypes as well as 
by the structure of the proteoglycan core proteins 
that provide the acceptors. It is now recognized 
that conserved GAG structures are generated by 
transcriptional [124, 164, 288] and topographical 
[127, 238, 248, 249] control of the numerous 
enzymes responsible for linkage region synthesis 
and by GAG polymerization and sulfation 
(Table 1.1).

1.2.3	� Skeletal Disorders Caused by 
Defective Genes Encoding 
Biosynthetic Enzymes 
for Sulfated 
Glycosaminoglycans

The generation of knock out mouse strains defi-
cient in these enzymes revealed that many had an 
embryonic lethal phenotype due to defective cell 
proliferation and organ development, or altered 
neuronal function. However, they did not reveal a 
specific function for their role in cartilage growth 
and maturation (Table  1.2). On the other hand, 
human genetic studies revealed that defects in 
GAG-biosynthetic glycosyltransferases, epimer-
ases or sulfotransferases cause distinct pheno-
types of congenital disorders in cartilage growth, 
such as skeletal dysplasia, chondrodysplasia, 
multiple exostoses, and Ehlers-Danlos syndrome. 
This has furthered our understanding of the func-
tional importance in the CS substitution on the 
aggrecan core protein (Table 1.3). In addition to 
the studies listed, individuals with either Kashin–
Beck disease (KBD) [84], who show a dysfunc-
tion of CS sulfation enzymes, or a rare 
polymorphism in the aggrecan core protein [61, 
122] are pre-disposed to the development of 
multi-joint or hand osteoarthritis, respectively.

1.2.4	� Intracellular Localization 
and Topographical 
Organization of Enzymes 
for Aggrecan GAG Synthesis

The initiation of the linkage region by xylosyl-
transferases (I or II) [80, 203, 247] using UDP-
xylose for addition of xylose to CS-region serine 
residues on aggrecan has been shown to occur in 
a pre-Golgi compartment, either at endoplasmic 
reticulum (ER) exit sites or in the ER-Golgi inter-
mediate compartment [115, 174, 267]. However, 
the locations of these enzymes are also proteo-
glycan core protein and/or cell type specific since 
xylosyltransferases (I and II) were identified in 
the cis-Golgi region in rat liver cells and 

A. H. K. Plaas et al.
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Table 1.1  Chondroitin sulfate synthetic enzymes

Enzyme
Human gene name https://www.
ncbi.nlm.nih.gov/gene

Human mRNA 
accession #

Gene records for 
other species

Linkage region
Xylosyltransferase 1 (XylT-1) XYLT1 NM_022167 Mouse, Rat, Dog, 

Pig
Xylosyltransferase 2 (XylT-2) XYLT2 NM_007255 Mouse, Rat, Dog, 

Bovine
Beta-1,4-Galactosyltransferase 1 
(GalT-I)

B4GALT7 NM_080605 Mouse, Rat

Beta-1,4-Galactosyltransferase 2 
(GalT-II)

B3GALT6 NM_012200 Mouse, Rat, Pig

Beta-1,3-Glucuronyltransferase 1 
(GlcAT-I)

B3GAT3 NM_014864 Mouse, Rat, Pig

Repeating disaccharide region
Beta-1,4-Glucuronyltransferase 1 
(GlcAT-II)
Beta-1,3 NAcetyl Galactosaminyl 
transferase II (GalNAcTII)

CHSY1
CHSY2 (CSS3)
CHSY3 (CHPF2)

NM_014918
NM_175856
NM_019015

Mouse, Rat, 
Bovine
—
Mouse, Rat, 
Bovine

Chondroitin Polymerizing Factor 
(GalNAcT-II, CS-GlcAT-II)

CHPF (CSS2) NM_024536 Mouse, Rat

Chondroitin N-GalNAc transferase 
(GalNAcT-I; GalNAcT-II)

CSGALNACT1
CSGALNACT2

NM_018371
NM_018590

Mouse, Rat, 
Bovine, Pig, 
Horse
Mouse, Rat, 
Bovine, Pig, 
Horse

Chondroitin 4-O-Sulfotransferase CHST11 (C4ST-1)
CHST12 (C4ST-2)
CHST13 (C4ST-3)

NM_018413
NM_018641
NM_152889

Mouse, Rat
Mouse, Rat, 
Bovine, Pig, 
Horse
Mouse, Rat, 
Bovine, Pig

Chondroitin 6-O-Sulfotransferase CHST3 (C6ST-1) NM_004273 Mouse, Rat, 
Bovine, Pig, 
Horse

N-Acetylgalactosamine 4-Sulfate 
6-O-Sulfotransferase

CHST15 NM_015892 Mouse, Rat, 
Bovine, Pig

chondrosarcoma cells [149, 181]. Glycosyl- and 
sulfotransferases for extension and sulfation of 
the CS chains in the C4 or C6 positon of the 
GalNAc residues takes place in the Golgi stacks 
and extends into the trans-Golgi network (TGN) 
[249, 264].

Much less is known about the topographical 
location of the O-linked KS synthesis enzymes, 
largely impeded by the fact that their activity rap-

idly declines when tissues or cells are maintained 
ex vivo [75, 179]. For example, it has not been 
determined whether CS and KS synthesis occur 
simultaneously or whether GAG-specific 
enzymes are segregated in Golgi sub-
compartments, or whether there is a regulated 
temporal recruitment as the core protein is traf-
ficked through the secretory pathway enzymes in 
the same compartment.

1  Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes – Then and Now
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Table 1.2  Genetic deletion of CS-synthesis enzymes in mice and associated phenotypes

Enzyme Knock-out Mouse strains Major phenotype
Linkage region
Xylosyltransferase 2 Ferencz et al. [69] Increased weight differences of lung, heart, 

and spleen.
Beta-1,4-
Galactosyltransferase 1

Kido et al. [117] and Nakamura et al. 
[178]

Altered brain development

Beta-1,4-
Galactosyltransferase 2

Asano et al. [7] Defective proliferation and differentiation of 
epithelial cells; growth retardation
Embryonic lethality, growth retardation

Beta-1,3-
Glucuronyltransferase 1

Izumikawa et al. [108], Yada et al. 
[290], and Gotoh et al. [79]

Embryonic lethality due to failed cytokinesis

Repeating disaccharide region
Chondroitin N-GalNAc 
transferase

Inada et al. [104], Watanabe et al. [278], 
Sato et al. [226], Shimbo et al. [234], 
and Adhikara et al. [1]

Defective neuronal plasticity and axon 
regeneration
Defective cartilage growth and collagen 
organization; defective enchondral 
ossification; chondrodysplasia; impaired 
macrophage action

Chondroitin 
6-O-Sulfotransferase

Ito et al. [107] Enhanced motor function recovery after spinal 
cord injury

Chondroitin 
4-O-Sulfotransferase

Not available Abnormal CS elongation shown in sog9 
murine L cell mutant

GalNAc4-Sulfate 
6-O-Sulfotransferase

Habuchi et al. [83], Kitazawa et al. 
[126] and Ohtake-Niimi et al. [186]

Enhanced liver fibrosis; abnormal perineuronal 
net; altered bone marrow derived mast cells; 
altered dermal repair

Table 1.3  Human skeletal disorders caused by genetic abnormalities in CS-synthesis

Gene/protein
MIM 
No Clinical features of resulting skeletal defects

XYLT1 (Xylosyl transferase 1)
Desbuquios dysplasia type II
Baratola Scott syndrome

61577
608124
300681

Short stature, joint laxity, hand abnormalities
Short stature, patellar dislocation, facial abnormalities

SLC26A2 (Sulfate Transporter)
Achondrogenesis type IB
Diastrophic Dyplasia
Multiple Epiphyseal Dysplasia

600972
222600
226900

Pre- or early post-natal lethal chondrodysplasia
with underdeveloped skeleton
Epiphyseal Dysplasia, early onset of Osteoarthritis

PAPSS2 (PAPS Synthase-2)
Spondyloepimetaphyseal dysplasia

612847 Short bowed lower limbs, enlarged knee joints, short trunk, 
scoliosis

SLC35D1 (UDP-GlcA/UDP-GalNAc 
transporter)
Schneckbecken dysplasia

269250 Neonatal lethal chondrodysplasia short long bones, deformed 
vertebral bodies

B4GALT7 (GalT-I)
EDS, progeroid form

130070 Short stature, cranial dysmorphism, osteopenia, aged 
appearance

B3GALT6 (GalT-II)
Ehlers Danlos Syndrome 
Spondylodysplatic type 2

615349
615291

Short stature, joint laxity and dislocation, spondylodysplasia

B3GAT3 (GlcAT-I)
Larsen-like Syndrome

245600 Joint dislocations mainly at elbow, scoliosis

CHSY1 (Chondroitin Synthase 1) 
Temtamy preaxial brachydactyl syndrome

605282
608183

Short stature, limb malformations, growth retardation

CSGALNACT1 (GalNAcT-II, Mild 
Skeletal Dysplasia

616615 Brachydoctyly, joint lacity, mild facial deformations

CHST3 (CS6 sulfotransferase)
Spondyloepiphyseal dysplasia

143095
603799

Short stature, dislocation of large joints, kyphoscoliosis, 
osteoarthritis of elbow, wrist and knee

CHT11 (CS4 sulfotransferase)
Osteochondrodysplasia
brachydactyly

610128
618167

Brachydactyly, clinosymphalangism in hands and feet, 
syndactyly and hexadactyly in feet, scoliosis, dislocated 
patellae, and fibulae and pectus

A. H. K. Plaas et al.
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1.2.5	� ER/Golgi Topography 
and Organelle 
Microenvironment of GAG 
Synthesizing Enzymes

The ER/Golgi membrane localization of the GAG 
synthesis enzymes has been confirmed from their 
protein sequences, but details of their arrange-
ment in these compartments are still debated [66]. 
For example, it has been proposed that the 
enzymes are at different membrane locations 
throughout the Golgi, and in that configuration, 
they would randomly synthesize chains depend-
ing on overall luminal availability of UDP-sugars 
and PAPS substrates. More recently, studies with 
chemically modified xylosides that serve as “sub-
stitute” acceptors for CS synthesis in the Golgi 
[43, 269] suggest that distinct functional macro-
molecular assemblies of elongation and sulfation 
enzymes, termed “GAGOSOMES”, are present. 
These complexes would concurrently catalyze the 
UDP-sugar addition and sulfate transfer to gener-
ate diverse GAG chain structures. This type of 
mechanism could indeed account for the differ-
ences in CS chain structures present on the CS1 
and CS2 domains of aggrecan. The need for a 
specialized configuration of the Golgi compart-
ment to achieve coordinated glycosylation reac-
tions has also been suggested from genetic 
mutations in proteins such as COG4, CORAB 
and GOG8 associated with Golgi subdomains. 
These proteins have been shown to cause congen-
ital disorders of glycosylation, including GAG 
biosynthesis, due to mis-localization of the trans-
ferase enzymes [2, 99, 167]. Topographical orga-
nization of the GAG biosynthetic enzymes is also 
a necessary prerequisite for targeted transport of 
nucleotide sugar precursors [242] for glycosyl-
ation and PAPS for sulfation [18, 57] from their 
production sites in the cytosol into the ER/Golgi 
lumen. In this regard, genetic deletion of the 
nucleotide sugar transporter Slc35d1 caused a 
skeletal defect in the knockout mice, and this was 
due to a sparse substitution of significantly short-
ened CS chains on aggrecan [98]. Other factors 
that could influence a functional Golgi membrane 
structure and luminal environment, and thereby 
regulate core protein glycosylation, include pH 

[213], ionic strength, [137] and cellular stress 
responses [225].

1.2.6	� Alterations in CS Fine 
Structure by Biomechanical 
Stimuli – What Parts 
of the Post-translational 
Pathway Are They Targeting?

While there have been studies on the effects of 
growth factors (e.g. TGFβ1, IGF1) and cytokines 
on cartilage GAG synthesis, [161] and on CS 
synthesis [22, 171, 188], there have been rela-
tively few studies to determine the effects of bio-
mechanical stimuli on modulation of CS and KS 
synthesis enzymes. Cyclic compression of bovine 
cartilage explants in vitro resulted in the synthe-
sis of CS chains with increased GalNAc6-
sulfation and a concomitant decrease in 
GalNAc4-sulfation, and with fewer chains termi-
nating with disulfated GalNAc4,6S [28, 227]. In 
vivo treadmill exercise in horses [28] increased 
CS chain size, which was accompanied by a 
greater proportion of un-sulfated regions in the 
chains, suggesting a differential effect on the sup-
ply of UDP-precursors and PAPS to the 
CS-synthesizing enzymes, or a selective decrease 
in activity of the sulfotransferases.

However, a considerable number of studies 
have reported structural changes in the cytoskel-
eton and intracellular organelles, such as mito-
chondria, ER/Golgi [145] and the nucleus, and in 
structures in response to biomechanical stimuli, 
including compression, hydrostatic and osmotic 
pressure [29, 32, 53, 56, 64, 82, 95, 123, 125, 
128, 137–139, 145, 168, 169, 253]. Likewise 
such mechanical perturbations of the tissues or 
the cells is expected to modify ion channel activ-
ity, Ca2+ signaling [53, 101, 196, 299, 300] and 
glucose transport and utilization [138, 160, 241, 
276, 286] that can affect steps in glycosylation 
pathways.

In summary, mechano-signal transduction, 
[77] which targets the aggrecan GAG substitu-
tion pathways, is likely to induce changes in the 
GAG precursor synthesis and/or topographical 
organization of the GAG synthesis enzymes, 

1  Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes – Then and Now
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rather than in transcriptional regulation of the 
GAG biosynthetic enzymes (Fig. 1.1).

1.3	� Aggrecan Metabolic 
Turnover in the ECM 
of Healthy and Osteoarthritic 
Cartilages

The cartilage ECM composition changes in order 
to adapt to various postnatal stages of growth and 
maturation, and is also affected by arthritic dis-
eases. The mechanisms that such metabolic turn-
over events have on aggrecan have been well 
studied. For example, Maroudas and coworkers 
[156, 268] measured the D/LAsp ratio and the 
advanced glycation end product, pentosidine, in 
aggrecan purified from adult human cartilages 
and reported a half-life of ~3 years in vivo. A dif-
ferent approach [91] utilized an in vitro cartilage 
explant culture method with medium supple-
mented with 35S radiolabel to tag the CS-bearing 
region of newly synthesized aggrecan. By quanti-
tating both the matrix retention and release into 
the culture medium of newly synthesized and 
resident CS-core protein fragments, turnover 
constants and half-lives for both pools of aggre-
can in vitro were determined to be between 6-20 
days. This method was subsequently used by oth-
ers [35] to show that the half-life of aggrecan in 
the ECM can be prolonged by the inclusion of 
serum or anabolic growth factors [35, 172] or 
was shortened by proinflammatory stimulators 
[88] in the culture medium. It is also influenced 
by the type of cartilage [197] or the disease state 
[37, 219], and can be modulated by biomechani-
cal perturbations [58, 133, 191, 205–207, 217].

1.3.1	� Enzymatic Mechanism 
of Aggrecanolysis

Explant culture experiments demonstrated that a 
cell-dependent process generates aggrecan spe-
cies that can no longer bind to HA and therefore 
diffuse from the tissue. This in turn motivated a 
research area to determine the molecular mecha-
nism for the “aggrecanolysis”.

Our understanding of “aggrecanolysis” in the 
human joint was clarified by detailed analysis of 
aggrecan intermediates in chondrocyte and carti-
lage culture medium [103, 222], and this was 
shown to occur naturally in human cartilage and 
synovial fluids [220] (Fig. 1.3). The most studied 
aspect has been the proteolysis of the interglobu-
lar domain (IGD) of aggrecan with the release of 
the glycosaminoglycan (GAG)-attachment 
regions which is destructive to the tissue biome-
chanical function [20, 21] as it causes loss of the 
CS from the cartilage ECM.

Although there had been much debate around 
data suggesting a role for MMP3 (Stromelysin) 
in aggrecanolysis, a team of scientists at the phar-
maceutical company DuPont [258] purified the 
aggrecan degrading proteolytic enzymes from 
the medium of catabolically stimulated bovine 
cartilage explant cultures. They belonged to the 
“A Disintegrin and Metalloproteinase with the 
ThromboSpondin motifs” (ADAMTS) family of 
metalloproteinases. They were termed aggrecan-
ase-1 (ADAMTS-4) and aggrecanase-2 
(ADAMTS-5).

1.3.2	� Targeted Inhibition 
of Aggrecanolysis – 
A Potential Treatment 
for Human Osteoarthritis?

Given that aggrecan depletion of the articular 
cartilage is a hallmark of chronic OA and that 
ADAMTS5 has been proposed as the primary 
aggrecanase responsible for the destructive cleav-
ages [73, 78, 246], it appeared likely that inhibi-
tors of this enzyme would have therapeutic value 
as a Disease Modifying OA Drug (DMOAD).

A number of preclinical studies with in vitro 
explant cultures and/or animal models of OA 
using small molecular weight inhibitors of 
ADAMTS5 [25, 41, 45, 46] and catalytic-site 
directed neutralizing antibodies [192]  showed 
promising results, and several of these potential 
therapeutics were tested in clinical trials 
(Table 1.4). However to-date, although showing 
promising DMOAD activity in pre-clinical 
models of OA [40, 134, 166], none were effec-

A. H. K. Plaas et al.



11

Fig. 1.3  Proteolysis sensitive sites in the human aggre-
can core protein: The amino acid sequences in the sciscle 
bonds were either identified by protein sequencing of 
fragments isolated from human cartilages or synovial flu-

ids (for MMPs, N-F and for ADAMTS, E-A, E-G and 
E-L) [220] or predicted from the published aggrecan core 
protein sequences [60]

Table 1.4  ADAMTS-5 inhibitors advancing into human clinical trials

Drug
Clinical trial ID and 
duration Outcome Measures and Study Subjects Published Data

Small molecule inhibitors
AGG-523 
Wyeth

NCT00454298
Phase I 
(2007–2009)

Evidence for aggrecan catabolism in urine, blood, or the 
knee joint Pharmacokinetics and safety profile after 
taking the drug either once a day or twice a day for 4 
weeks.
Healthy and OA patients

NO Data available

AGG-523 
Wyeth

NCT00427687;
Phase I (Feb 2007–
June 2007)

The effect of AGG-523 on biomarkers related to 
osteoarthritis

NO Data available

GLPG1972 
Galapagos

NCT02612246;
Phase I (April 
2016–July 2016)

Toxicity, pharmacokinetics, pharmacodynamics
Healthy and OA patients

[25]

GLPG1972 
Galapagos

NCT03595618
Phase II (August 
2018–July 2020)

Reduction in cartilage loss was assessed by cartilage 
thickness as measured in the medial cMTFC of the 
target knee using qMRI.
OA Patients

www.fiercebiotech.
com/biotech/
galapagos
Shows no DMOAS 
activity

Antibodies
M6495 
Ablynx

NCT03583346
Phase I (August 
2018–July 2019)

In participants with symptomatic knee OA to explore 
the safety, tolerability, immunogenicity, 
pharmacokinetics (PK), and pharmacodynamics (PD)

NO Data available

M6495 
Ablynx

NCT03224702
Phase I

Healthy Male Subjects NO Data available

1  Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes – Then and Now

http://www.fiercebiotech.com/biotech/galapagos
http://www.fiercebiotech.com/biotech/galapagos
http://www.fiercebiotech.com/biotech/galapagos


12

tive in the human disease, or showed detrimen-
tal side effects and thus not approved for 
clinical use. For example, in human OA 
explants, a humanized ADAMTS-5-selective 
monoclonal antibody (GSK2394002) was able 
to decrease the levels of aggrecan fragments 
released. However, toxicity studies of this anti-
body in a primate model of OA showed impair-
ment of cardiovascular function as a side effect, 
and clinical trial studies were not developed. A 
novel type of therapeutic anti-ADAMTS-5 anti-
body, the Nano-body (M6495, Ablynx) blocked 
OA progression in mice following destabiliza-
tion of the medial meniscus (DMM) surgery 
and reduced circulating levels of aggrecanase-
generated aggrecan fragments when adminis-
tered in a primate model [26]. A different set of 
antibodies that inhibited either the ability of 
ADAMTS5 for auto-activation or its interaction 
with an activating factor, such as LRP1, have 
also been shown to protect against aggrecanol-
ysis in vitro [223, 224]. However, no informa-
tion is available if they were investigated for 
their clinical therapeutic usefulness.

In summary, future plans for the generation 
of aggrecanase inhibitors as clinically sound 
therapeutics for targeted mitigation of aggrecan 
depletion from the cartilage ECM during OA 
pathogenesis may remain impeded by the find-
ings that these enzymes have multi-tissue and 
organ distributions and functions. For example 
ADAMTS5 is essential for dermal wound heal-
ing [266], maintenance of tendon fibrillar struc-
ture/function [275], regulation of metabolic 
health by adipose tissue [17], and cardiovascu-
lar homeostasis [16]. An alternative future 
approach to restoring the aggrecan-dependent 
physiochemical and biomechanical properties 
of the cartilage matrix may require the cartilage-
targeted delivery of engineered cleavage-
resistant aggrecan-or GAG-mimetics, singly or 
in molecular complexes with other components. 
Such an approach could develop from techno-
logical advances made to-date in chemo-
enzymatic synthesis of functional GAG 
structures and domains [175, 240].

1.4	� Hyaluronan Metabolism 
and Its Relevance 
to Cartilage Structure 
and Function

Hyaluronan is a high-molecular weight polysac-
charide composed of repeating disaccharide 
units, (→4) β-GlcA (1→3) βGlcNAc (1→) with a 
wide range of structural and metabolic functions 
in all tissues and body fluids [89]. These func-
tions include lubrication, water homeostasis, 
macromolecular filtering, interactions with 
“hyaladherins” in matrix organization [49, 158, 
274, 303] and regulation of cellular activities dur-
ing development and in a range of pathologies 
[76, 92, 130, 194, 257]. This section provides a 
brief summary of the extensive research into the 
role of HA in cartilage structure/function and fol-
low with highlights of recent advances in HA 
metabolism that could be incorporated into 
studying the cell biological responses of tissues 
under mechanical perturbations.

1.4.1	� Hyaluronan in Cartilage 
Matrix Structure and Articular 
Joint Mechanics

The role of HA in cartilage has largely been con-
sidered in the light of its physical properties, 
namely for organizing aggrecan throughout the 
extracellular cartilage matrix A first report of a 
specific interaction of aggrecan with HA was 
reported by Hardingham and Muir [86, 87, 260], 
followed by more detailed analyses of the role of 
HA chemistry [90] and the role of the link glyco-
proteins in stabilization of the protein carbohy-
drate interactions [23, 67, 182, 252]. The 
biochemical analyses was later confirmed by 
electron microscopic methodology to visualize 
the structural arrangement of aggrecan mono-
mers [96, 215] and link proteins [30, 31, 173] 
along the extended HA polymer backbone. In 
vitro cell biological studies with rat chondrosar-
coma cells, and with pig and rabbit articular 
chondrocytes, confirmed that the ternary com-
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plex between aggrecan, link protein and hyaluro-
nan was formed extracellularly, soon after 
secretion of the glycosylated proteins from the 
cell [120, 121, 198, 209, 216].

A different protein-HA modification, first dis-
covered in the cumulus oophorus extracellular 
matrix [74] has also been identified in the extra-
cellular matrix of OA cartilage [296]. These mac-
romolecular HA complexes are formed in the 
extracellular matrix by covalent transfer of heavy 
chains (HCs) from inter-alpha-inhibitor (ITI) to 
HA.  ITI is a modified CS proteoglycan with a 
core protein, bikunin that has 1, 2 or 3 HCs 
attached by an ester linkage between an aspartate 
in the HC and the 6-OH of a GalNAc in the CS 
chain [150]. The HC is transferred to the 6-OH 
on GlcNAc in HA [301] by tumor necrosis factor-
induced protein-6 (TSG-6) [48, 176]. Subsequent 
investigations have identified the formation of 
such HC-HA matrices as part of a cellular 
response in tissue inflammations in a wide range 
of chronic diseases [136, 274], including asthma 
[250] Crohn’s disease [195], diabetic nephropa-
thy [141], and degenerative suspensory ligament 
desmitis [202]. In both, OA and RA, HA-HC 
complexes are abundantly present in synovial 
fluid aspirates from patients [116, 229, 293, 296] 
and in animal models [68, 135] likely having 
been shed into the fluid after formation in 
inflamed synovium and/or degenerated cartilage.

In addition to the role of HA in organization of 
tissue and cell-specific extracellular matrices, it 
generates the viscoelastic properties of synovial 
fluid [185, 251], and in cooperation with the 
mucin-like molecule, PRG4 (aka Superficial 
Zone Protein or Lubricin), it provides boundary 
lubrication of the articular cartilage surfaces in 
diarthrodial joints [230]. Notably, in both OA and 
RA, decreased size and increased polydispersity 
of molecular the weight distribution of HA poly-
mers in synovial fluid have been reported [12, 13] 
in keeping with the proposed impaired cartilage 
boundary lubrication in degenerative joint dis-
eases [24]. Such observations led to the wide 
clinical use of intra-articular injections of high 
molecular weight HA as potential therapeutic 
‘viscosupplementation’ for arthritic joints [4, 10, 
11, 211].

1.4.2	� Engagement of Hyaluronan 
Receptors Modulates Cell 
Responses

The studies of HA receptors, CD44, RHAMM, 
LYVE, Layilin and Stabilin2 and their down-
stream effects on cellular functions have been 
extensively investigated, particularly in the areas 
of development, cancer and respiratory diseases, 
as well as neuro- and vascular pathologies. A num-
ber of comprehensive recent reviews on this topic 
are available [76, 111, 131, 146, 162, 193, 263, 
281]. Several of these receptors, in particular 
CD44, have also been shown to be active in carti-
lage matrix development and inflammatory 
pathologies, and those reports are summarized in 
Table 1.5. In the context of biomechanical effects 

Table 1.5  Reported in vivo and in vitro functions of HA 
receptors in mechanosentive joint tissues

Receptor Cartilage/Synovium Bone
CD44 Immobilization of 

pericellular HA [129];
Cell adhesion [132, 
147];
Endocytosis of HA [3];
Modulation of BMP7 
signaling [151]

Unloading and 
inflammation 
induced bone 
loss [94, 143]
Osteoclast 
multinucleation 
[51]

RHAMM Localized in epiphyseal 
cartilage, articular 
fibrocartilage [62];
Modulation of 
expression of 
transcription factor 
Nrf2 in chondrocytes 
[189]
Decreased IL6 and IL8 
production, decreased 
migration of 
synoviocytes [287]

Differentiation of 
osteoblasts [93]

Layilin Modulation of cytokine 
expression [8]
Inhibition of IL-1β-
induced MMP-1 and 
MMP-13 production in 
synoviocytes [177]

No reports

LYVE Synovial biomarker for 
joint inflammation 
[102]; Lymphatic and 
blood vessel ingrowth in 
endplate cartilage [218]
Increased lymphatics in 
OA and RA synovium 
[289]

Deficient 
lymphatics in 
peri-implant 
membrane [65]
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on receptor HA interactions it is notable that ligand 
responses to tensile or flow stresses have been 
reported [14, 15, 184, 208], which would imply 
that application of physiological forces, such as 
tensile stress, sheer stress and fluid flow can affect 
receptor-HA interactions. This would provide an 
important function of these cell/matrix interac-
tions as force sensing mechanisms [71, 148].

1.5	� HA Metabolism Pathways 
Support Cell Survival

The biophysical, structural and cell biological 
roles of HA polymers reviewed above should be 
viewed in relation to their biosynthesis and deg-
radation pathways. Over the past 5 decades many 
laboratories contributed research data that have 
built a comprehensive picture of these pathways 
(see Fig. 1.4).

1.5.1	� Enzymatic Pathways in HA 
Synthesis and Catabolism

The first insights into the mechanism of HA syn-
thesis were reported in 1959, using Streptococcus 
membranes [154] that contained an enzyme 
activity (HA synthase (HAS)), which uses GlcA-
UDP and GlcNAc-UDP as substrates to 
polymerize HA chains, and its gene was cloned 
in 1993 [52]. This was followed by identification 
of mammalian HAS genes (HAS1, HAS2 and 
HAS3) from a number of laboratories (reviewed 
in [282, 284]). They are transmembrane proteins, 
and have similar domain organizations that 
allows the direct translocation of the HA polymer 
into the extracellular space during HAS-catalyzed 
synthesis [153, 280]. Rates of polymer synthesis 
and size of the extruded HA chain are dependent 
on expression, translation and plasma membrane 
targeting of the enzyme proteins [255] as well as 

Fig. 1.4  Schematic illustration of coordination of HA 
synthesis, catabolism and HA-protein interactions: 
HA-Synthesis steps include HAS1, 2 or 3 protein tran-
scription, modification and translocation to the plasma 
membrane, polymerization of HA chains using cytosolic 
UDP-GlcA and UDP-GlcNAc precursors and extrusion 
into the extracellular space. Cell signaling can be induced 
by HA/cell surface receptor interactions (CD44, 
RHAMM, Layilin). Interaction of HA with binding pro-

teins (Acan, LP, TSG6, HCs) in the pericellular and inter-
territorial matrix generate specialized macromolecular 
complexes. HA-catabolism is mediated either by receptor 
mediated internalization (via LYVE-1 or Stabilin-2) of 
high molecular weight polymer or of low molecular 
weight fragments generated by cell surface hyaluroni-
dases (TMEM2 or CEMIP) and completed in the lyso-
somal compartment by resident hyaluronidases (HYAL1, 
HYAL2 or HYAL3)
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on the supply of the UDP-sugar precursors from 
the cytoplasm [92, 112]. A detailed study of 
HAS2 has revealed additional levels of post-
translational control, including phosphorylation, 
[270], O-GlcNAcylation, [112], ubiquitination 
and dimerization [114]. Furthermore, the estab-
lishment of HAS knock out mouse strains pro-
vided important insights into the distinct roles of 
the three HAS proteins in development, growth 
and pathologies (summarized in Table 1.6).

In addition to the biosynthetic pathways, the 
degradative mechanisms for HA in tissues is also 

becoming more clearly defined. The existence of 
lysosomal hyaluronidases has long been estab-
lished [110, 259], and their involvement follow-
ing receptor mediated endocytosis via CD44 [47, 
85], LYVE-1 [204] and HARE (Stabilin 1) [283]. 
However, extracellular hyaluronidase activities 
remained elusive until the identification of two 
extracellular hyaluronidase activities: (1) 
TMEM2, a type II transmembrane protein with 
hyaluronidase activity at neutral pH, [105, 256, 
291] is expressed widely in adult mouse tissues, 
including vascular and lymphatic endothelial 
cells and liver, the major sites of HA clearance; 
and (2) KIAA1199 (CEMIP) [294, 295]. CEMIP 
was initially described as having a pivotal role in 
cancer cells, aiding their migration during tissue 
invasion and metasis [72, 262]. However, a num-
ber of recent reports have demonstrated its 
involvement in both cartilage pathologies [54, 
59, 235, 299, 300] and osteoblast differentiation 
[39] making this an interesting candidate gene 
and protein to examine in relation to biomechani-
cal stimulants imposed on cartilage and bone tis-
sues (see Fig. 1.4).

1.5.2	� Synergy Between Glucose 
Metabolism and HA Synthesis 
Adjusts the Cellular Energy 
Status

More recent studies on HA metabolism in cancer 
biology and diabetes have clearly demonstrated 
that biosynthesis of the HA is closely linked to 
intracellular glucose metabolism. This is through 
both aerobic and anaerobic glycolysis for energy 
production [265], and by the generation of the 
two sugar nucleotides, UDP-GlcNAc and UDP-
GlcA. Together these sugar nucleotides regulate 
HA production by modification of both the bio-
synthetic activity [272, 304] and the half-lives of 
the membrane-associated HAS enzymes [271].

Biosynthesis of the two nucleotide precursors 
takes place in the cytoplasm (Fig.  1.5) and is 
driven by the availability of intracellular glucose 
taken up by the cell from the interstitial fluid by 
glucose transporters and its subsequent conversion 
to Glc6P [36]. UDP-GlcNAc is then synthesized 

Table 1.6  Genetic deletion of HA synthases and hyal-
uronidases in mice

Gene/protein
Phenotype knock-out mouse 
strains

Has1 (hyaluronan 
synthase 1)

Defective formation of 
retrocanal Bursa [237]
Increased Synovial Fibrosis, 
Osteopenia [38]

Has2 (hyaluronan 
synthase 2)a

Impaired skeletal development 
[159, 170] Increased airway 
hypersensity in asthma [233]

Has3 (hyaluronan 
synthase 3)

Altered neuronal activity [6]
Decreased neointimal 
hyperplasia [118, 231]
Increased tumor cell invasion in 
human mammary parenchymal 
tissues [140]

Hyal1 (hyaluronidase 
1)b

Accelerated thinning of knee 
joint cartilage in aging
Prolonged fertility [157]

Hyal2 (hyaluronidase 
2)

Severe cardiopulmonary 
dysfunction,
Anemia,
Mild craniofacial abnormalities 
[42]

Hyal3 (hyaluronidase 
2)

No detectable phenotype [9]

Tmem2c 
(Transmembrane 
protein 2; aka 
CEMIP2)

Increased levels of circulating 
HA, active on the surface of 
endothelial cells in the lymph 
nodes and liver [256]

Cemip (aka 
KIAA1199)

Impaired learning and memory 
ability due to decreased 
dendritic spine density in 
dentate gyrus granule cell [297]

aConditional and Heterozygous Knockout Strains only; 
complete Knockout is embryonically lethal due to failure 
of heart development [34]
bHuman Mucopolysaccharidosis Type IX is due to a muta-
tion in the HYAL1 gene
cConditional Knockout Strains
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Fig. 1.5  Schematic Illustration of Integration of Glucose 
Metabolism for Cytosolic Production of HA Biosynthesis 
Precursors UDP-GlcNAc and UDP-GlcUA: Extracellular 
glucose is transported into the cytoplasm by specific glu-
cose transporters, where it is shunted for energy produc-
tion via glycolysis and for production of the HA synthesis 
precursors UDP-GlcNAc and UDP-GlcUA via the hexos-
amine biosynthetic pathway or by UDP-glucose pyro-

phosphorylase/UDP-glucose dehydrogenase, respectively. 
Potential regulatory sites for mechanical stimuli of cells/
tissues are indicated by bold black arrows. It should be 
noted that HA synthases have ‘direct’ access to cytosolic 
UDP-precursors, whereas UDP precursors for the chon-
droitin and keratan polymerases, or for other enzymes of 
glycol-conjugate synthesis, require an additional translo-
cation/transport step into the ER/Golgi compartments

via the hexosamine biosynthetic pathway [187], 
that also engages products from amino acid 
metabolism (glutamine) and lipid metabolism 
(Acetyl-CoA). UDP-GlcA biosynthesis on the 
other hand, depends on the activity of two 
enzymes, UDP-Glucose pyrophosphorylase 
(UPP), which uses glucose-1-phosphate (Glc1P) 
and UTP to generate UDP-Glc for conversion to 
UDP-GlcUA by UDP-Glucose dehydrogenase 
(UGDH) [244, 304]. Both enzymes show a wide 
tissue distribution, including cartilages [44, 152].

To date, the mechanistic linkage of glucose 
metabolism and HA synthesis has not been stud-
ied in detail in the context of cartilage during 
growth, maturation and pathologies, with only 
one recent review pointing to its importance in 
the developmental biology of the tissue [100]. An 
interest in the importance of the HBP in OA 
pathology was initiated by the observations that 
high concentrations of extracellular glucosamine 
or mannosamine could inhibit in vitro cytokine-

induced aggrecan degradation by ADAMTS pro-
teinases [190, 221] and inhibit disease progression 
in animal models of OA [183, 273]. Clinical use 
of oral dosages of glucosamine as a potential 
DMOAD [19, 70, 109, 165, 212] is still debated.

1.5.3	� Are Biophysical Stressors 
Important in Regulation of HA 
Metabolism by Chondrocytes?

The subject of biomechanical effects on HA 
metabolism has been most broadly studied in 
endothelial cells and their response to sheer 
stresses generated by blood flow [81, 155, 277], as 
well as in epithelial cells in the alveolar lining 
[97]. Other mechanical perturbances, such as 
cyclic mechanical stretch or strain, shear stress, 
surface motion or mechanical injury [63, 119, 138, 
142, 210, 254, 298] imposed on connective tissue 
cells, including fibrochondrocytes and articular 
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chondrocytes, have also been shown to modulate 
HA production. The later studies have not pro-
vided any information on potential transduction 
pathways for stimulated HA production, but likely 
mechanisms could come from the newly emerging 
databases on cartilage “metabolomics’ [5, 50, 232, 
236, 243]. Key regulatory points would include 
glucose transport [168, 169, 241], subsequent 
Glc6P shunting to aerobic [113] or anaerobic gly-
colysis [292, 302] for energy production, and/or 
synthesis of UDP-GlcNAc and UDP-GlcUA to 
regulate HAS activities. Given the critical struc-
tural and cell regulatory roles of HA reviewed 
above, a more detailed understanding of HA 
metabolism and its response under biomechanical 
perturbation of tissues and cells would provide 
novel opportunities to uncover treatment of carti-
lage pathologies [261], as well as optimization of 
procedures for the production of tissue engineered 
cartilages [160, 245].

1.6	� Conclusion

Despite the extensive knowledge base in cartilage 
extracellular matrix structure and metabolism in 
health and diseases, there remain multiple opportu-
nities to apply ‘big data’ generation and bioinfor-
matics mining approaches to gain further insights 
to the feed-forward and feed-back mechanisms 
between genes, their products and cellular path-
ways. These goals could be achieved by applying 
such approaches to examine engineered tissues, 
animal models and clinical biorepositories.
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