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1 Introduction 

When making decisions, fisheries managers almost always assume that the param-
eters of the growth function are statistically identified and temporally stable. While 
many data-rich fisheries have performed well in recent years, fisheries with little 
to no data still account for more than 80% of global harvest (Costello et al., 2012). 
When currently unassessed fisheries begin to accumulate data, there will no doubt be 
attempts to manage these fisheries using standard statistical methods. If the growth 
function’s parameters are not well identified in the available data, then there may 
be fundamental problems that are unlikely to be solved by changes in institutions 
and management objectives such as those suggested by the recent Pew Oceans 
Commission and the US Commission on Oceans Policy. This paper looks at the 
intrinsic difficulties involved in estimating fishery growth parameters, where the 
parameters of a time-invariant function are poorly estimated from a short sample of 
fishery and fishery-independent data. 

The standard natural resource economics textbook treatments of how to optimally 
manage a fishery implicitly assume that biologists have delivered to them the “true” 
underlying parameters of a stable biological growth function (Gordon, 1954; Smith, 
1969; Fisher, 1981; Berck & Perloff, 1984; Clark,  1990; Hartwick & Olewiler, 
1998; Perman et al., 2003; Tietenberg & Lewis, 2018). Indeed, most economic 
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analysis is done as if there is not even a random element to changes in fish stocks. 
While this has allowed economists to concentrate on the “economic” part of the 
management problem, serious issues arise if the underlying biological parameters 
upon, which decisions are being made, are substantially wrong. Indeed, the basic 
theme of this paper is that the estimates of the biological parameters will usually 
be sufficiently far from their true values in such a manner that economists cannot 
ignore the implications of this issue in providing policy advice. 

To be sure, economists have not completely ignored the issue of uncertainty, 
although “relative” neglect is probably a fair assessment. Much of this neglect stems 
from a perceived division of labor between biologists and economists and a line of 
work begun by Reed (1979). Reed’s work suggested that if one simply tacked on 
a random term to the current period of growth, then the optimal policy was still 
the deterministic constant escapement rule of Gordon (1954). The reason is that if 
the error term was i.i.d. with an expected value of zero and observable, then it was 
optimal to adjust to each shock by setting harvests to keep the stock size constant. 
Clark and Kirkwood (1986) examine Reed’s framework under the more realistic 
assumption that contemporaneously there is measurement error in the stock size. 
Using a Bayesian framework, they find that a constant escapement rule is no longer 
optimal and that optimal stock size can be smaller or larger than in Reed’s case. 
Clark and Kirkwood maintain the assumption that the parameters of the growth 
function are known.1 

There has a been renewed interest in looking at uncertainty, some of which 
is stimulated by a provocative biologically oriented paper by Roughgarden and 
Smith (1996), which argued that the large amount of uncertainty in biological 
modeling calls for the use of some variant of the precautionary principle in fisheries 
management. This has led some economists, most notably Sethi et al. (2005), to 
reexamine the uncertainty issue.2 Sethi et al. use three independent sources of 
uncertainty, growth, stock size measurement, and harvest implementation, each 
modeled as a contemporaneous error term. In this sense, Sethi et al. encompasses the 
Reed, Clark, and Kirkwood results and the more formal parts of Roughgarden and 
Smith. They find that uncertainty with respect to stock size measurement matters 
the most. In particular, they find constant escapement rules that attempt to hold the 
stock size at the level that maximizes sustainable yield and, which often characterize 
fisheries management, lead to substantially lower profit and a higher probability that

1 Of course, there has been some work in the fisheries science literature on issues related to 
parameter uncertainty with respect to the growth function parameters (e.g., Ludwig & Walters, 
1981). What is surprising is that papers in this vein continue to point out large potential problems 
but with surprisingly little impact on management practices. 
2 Other recent papers looking at the role of uncertainty in fisheries management and the behavior 
of fisherman include Singh et al. (2006) and Smith et al. (2008). More generally there is a growing 
recognition that economists need to become more actively involved in modeling the complete 
bioeconomic system. Smith (2008) points out that small changes in parameter values in nonlinear 
fisheries can have a large influence on the underlying dynamics and that econometric understanding 
of these implications is woefully inadequate. 
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the fish stock being managed will go extinct, compared to management under the 
adaptive policy they find to be optimal. 

Sethi et al. (2005) suggest that uncertainty is more important than economists 
previously thought but at its heart is still a stable deterministic growth function 
with contemporaneous uncorrelated i.i.d. error terms added to the growth, stock 
measurement, and harvest equations. There are two other interesting possibilities to 
explore. The first is that the system is not stable over time in the sense of having clear 
time series dynamics either in the deterministic (Carson et al., 2009) or stochastic 
(Costello, 2000; Costello et al., 2001) part of the model. The second feature explored 
in this paper is the possibility that the system is stable but the parameters being used 
for policy purposes are fundamentally different from the true ones.3 

The precautionary principle has many flavors but provides few specific decision 
rules. One common practice is to reduce quotas to some fraction of MSY such that 
good estimates of the growth function parameters still play a critical role.4 The other 
common practice is to suggest setting aside marine protected areas to prevent a fish 
stock from being wiped out (Lauck et al., 1998). But even when marine protected 
areas are in place, the remaining fishing grounds are likely to require some form of 
management tied to the biological state of the fishery to reduce the probability of 
collapse. 

Operational application of the precautionary principle faces many difficulties 
(Sunstein, 2005; Randall, 2011). It should not simply always ban activities that 
have associated risks that are poorly quantified and have the potential for high 
levels of harm, as its proponents often believe. Meaningful trade-offs will need to 
be made. Further, the decision-making framework should move toward the ordinary 
risk management framework as better information about the originally difficult to 
quantify risks becomes available. Grant and Quiggin (2013) provide a perspective 
on the precautionary principle that emphasizes inductive reasoning about possible 
risks which they term “bound awareness.” The procedure put forward in this paper 
is in the spirit of their work in that it advances a heuristic decision rule that reduces 
the possibility of “unfavorable surprises” while engaging in active experimentation 
that progressively helps to improve the parameter estimates of the fisheries growth 
model. 

Section 2 of this paper will introduce the basic model and in-sample simulation 
framework. Section 2 includes a discussion of some of the fisheries biology litera-
ture on estimating growth equations. This literature shows that even simple Gordon-

3 FAO (1995) in its discussion of the precautionary principle recognizes the data-poor situation we 
seek to explore by noting that the resource manager should take “a very cautious approach to the 
management of newly developing fisheries until sufficient data are available to assess the impact 
of the fishery on the long-term sustainability of the resource.” 
4 MSY as the management objective for a commercial fishery has been widely vilified but, as 
Smith and Punt (2001) show, it keeps coming back in one form or another as the management 
objective for a fishery. However, there is now a tendency to see MSY as an upper bound. Squires 
and Vestergaard (2016) provide a comprehensive look at factors that can result in the maximum 
economic yield (MEY) resource stock exceeding, equalling, or falling short of MSY. 
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Shaefer logistic growth models typically produce poor estimates and that there has 
been a tendency to move toward ever more complicated models that improve in-
sample – but typically not out-of-sample – forecasting ability. Economists have 
paid surprisingly little attention to the technical estimation problems that biologists 
have long faced. Various shades of macroeconomic modeling and forecasting issues 
come to mind here (Hamilton, 1994). The fundamental problem is that errors are 
propagated through a nonlinear dynamic system, with the issue being exacerbated 
by a high degree of correlation between many variables, imperfect observability of 
some key variables, and a relatively short time series available on which to estimate 
model parameters. 

While the parameters of the growth equation are technically identified, they are 
often only weakly identified because of the typical lack of substantial variation 
in the stock size and because of the tightly coupled relationship between the 
growth rate and the carrying capacity. In samples of the size often used for the 
purpose, parameter estimates may be almost arbitrarily far from their true values 
and the property of asymptotic consistency of little practical import. This under 
identification becomes even more troublesome if one allows various economic 
factors associated with catch per unit of effort measurements to be correlated with 
the unobserved random shocks, as seems likely. 

Section 3 will describe estimation results for the parameter values used for 
growth rate, carrying capacity and stock size in the fisheries example in Perman 
et al. (2003), a popular graduate textbook. However, the results are not unique to 
this specification. Our example shows a frightening degree of parameter dispersion; 
even with almost 30 periods of data, some of the parameter estimates still display 
considerable bias. 

Section 3 continues by simulating the traditional management practice of using 
estimated parameter values to determine catch. This is adaptive in the sense that 
it uses estimates of maximum sustainable yield (MSY)5 updated with accumulated 
harvest and stock data. This is done repeatedly with different draws on the vector of 
random error. This allows us to trace out various outcome distributions. Specifically, 
we focus on average catch and frequency of collapse. 

Section 4 introduces a simple rule-of-thumb scheme that forsakes an effort at 
formal estimation of the growth function parameters. This is similar to the direction 
that some of the macroeconomic literature has taken when the true model parameters 
are unknown (Brock et al., 2007). There is also an earlier strand in the agricultural 
economics literature (Rausser & Hochman, 1979), which suggests that optimizing 
decision rules coupled with highly nonlinear stochastic natural systems can be too 
complicated to be practically implemented and that they may be dominated by

5 This is not the economic optimum but, rather, maximum sustainable yield. This is quite realistic 
as a target for the manager, as many current US fishery management plans mandate that the stock 
be maintained at or near maximum sustainable yield or a fraction thereof. Examples include the 
Mid-Atlantic Flounder (Mid-Atlantic Fisheries Management Council, 1999), the Bering Sea and 
Aleutian Islands Groundfish (Witherell, 1997), and the California White Seabass (Larson et al., 
2002). 
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simple transparent rules that condition on a few observables. This rationale is also 
reflected in the popular Taylor rule approach to monetary policy for central banks 
(Orphanides, 2008). 

Optimal stochastic control feedback rules may also be dominated by simple 
conditioning rules simply because of an inability to properly specify and estimate 
the system. Here, rather than assuming that the parameters of the growth function 
are known or even knowable, we make the much weaker assumption than is typical 
and assume only that the growth function is stable and is single-peaked. Our rule of 
thumb looks at the changes in stock and catch over two periods to determine which 
side of the peak one is on and takes a step toward it. Because there is a true stochastic 
component to growth, it is always possible to take a step in the wrong direction. 
Essentially, this is an adaptive gradient pursuit method, which is always on average 
moving in the correct direction. We show that this precautionary rule of thumb can 
lower the likelihood of collapse. When traditional management is combined with an 
initial period of precautionary management, future estimates converge to the truth 
more quickly and the likelihood of collapse is again lower. 

The paper concludes in Sect. 5 with remarks on using precaution and statistics in 
fisheries that are only beginning to receive funding for assessment. 

2 Model and Simulation Framework 

The standard textbook fisheries example is the Gordon-Schaefer model with a 
logistic growth equation (Clark, 1990; Perman et al., 2003). The growth equation 
is usually represented as: 

G (Xt ) = rXt (1–Xt/K) , (1) 

where G(Xt) is the net natural growth in the fish stock at time t, Xt, r  is the growth 
rate, and K is the carrying capacity. Xt + 1 = Xt + G(Xt) – Ft, where Ft is the 
quantity of fish harvested. A sustainable yield occurs where Ft = G(Xt). Maximizing 
sustainable yield (MSY), which is the explicit or implicit objective written into 
much fisheries legislation, occurs when the population is set at ½ K  and is equal 
to rK/4. Adding an economic actor such as a rent maximizing sole owner shifts 
the MSY formulation of stock size a bit higher or lower to take account of how 
costs depend on stock size (stock size larger than MSY and increasing as degree 
of dependence increases) and the magnitude of the positive discount rate (stock 
size smaller than MSY and decreasing as discount rate increases). The optimal 
harvest size, though, is still typically driven to a large degree by the underlying 
MSY biology, as these two factors often roughly offset each other. What is crucial 
for the argument we advance is the dependence of current policies on knowing K 
to set the optimal stock size and rK to set the optimal harvest. Similar dependence 
exists for most of the other growth functions commonly used in making fisheries 
management decisions, so the conceptual issues can all be well illustrated using the
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logistic function. Further, we note that, while the Gordon-Shaefer logistic growth 
model can be criticized for not being realistic enough to fit empirical data, it is an 
entirely different matter if we generate data as if that model were true and then try to 
fit it. Now, the Gordon-Shaefer logistic model with stock assumed to be observable 
represents the best case of having to fit only two parameters relative to the available 
time dimension of the dataset.6 While our simple model has but a single species and 
ignores spatial/temporal heterogeneity, the complications that arise from accounting 
for these factors make estimation all the more difficult and consequently reinforce 
the case for precaution when estimates are used to inform management. 

The main problem is that K in the logistic growth equation is fundamentally 
under-identified, unless r is known (and to a lesser degree vice versa for r unless K 
is known). The main reason is that, unless there is substantial variation in Xt, then 
observing Xt and G(Xt) only identifies the ratio r/K. Since fisheries managers often 
try to hold  Xt constant, which is optimal for MSY with i.i.d. environmental shocks to 
the growth equation (Reed, 1979), little variation in Xt is generally observed. Under-
identification of K and r is not a new argument. Hilborn and Walters (1992) develop 
it at some length, but the argument does not seem to have permeated thinking in 
the economics literature on fisheries management. Instead, one sees explorations of 
other sources of uncertainty. 

This fundamental under-identification of the parameters of the growth equation 
has a counterpart in the environmental valuation literature. There, it is well-known 
that – because observed conditions do not vary sufficiently – one must induce 
experimental variation (often in a stated preference context) in attributes such 
as cost in order to statistically identify the parameters of interest with enough 
precision to be useful for policy purposes. In the fisheries context, this would require 
intentionally encouraging very large swings in G(Xt) by setting different harvest 
levels in order to learn about r and K. This is unlikely to happen, as it would be 
fought in either direction by different interest groups. 

Hilborn and Walters (1992) note that, in many empirical fishing models, because 
of the statistical imprecision in parameter estimates, K is set to the largest observed 
stock size (usually estimated via sampling or some other method). This, of 
course, technically resolves the statistical identification problem. However, the other 
parameter estimates can now be grossly wrong as a consequence and, hence, may 
result in policy prescriptions that are grossly wrong. In particular, assuming a value 
of K, which is too small, will result in an estimate of r that is too large and a 
recommendation to set Xt too low, which can be potentially disastrous. 

Here, fishery data are simulated according to Eq. (1), including a uniformly 
distributed catch variable, Ft, and a normally distributed additive disturbance term, 
εt. This yields a linear estimating equation: Xt + 1 – Ft = rXt – (r/K)Xt 

2 + εt. The  
policy parameter of MSY = rK/4 is easily recovered from the linear regression

6 In practice, stock is at best observed with considerable measurement error. Zhang and Smith 
(2011) examine statistical issues related to this problem in the context of the Gordon-Shaefer 
model. 
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results from the estimating equation. For notational compactness, define β1 and β2 
as the respective coefficients from the linear regression. A consistent7 estimate of 
the maximum of the growth curve is then given by: 

MSYOLS = (β1 − 1)2 
−4β2 

(2) 

This completes the model and in-sample simulation framework. The next section 
describes the performance of a fishery managed using OLS estimates obtained 
from simulated data. We then proceed to compare these statistical decisions under 
identical draws from the error terms to the performance of heuristic management. 

3 Statistical Management 

Parameter estimates are calculated by simulating sample data according to the 
model outlined in the previous section. The harvest data for the in-sample period 
are a uniformly distributed fraction of the fish stock that can be thought of as 
exogenously varying fishing effort. While many fishery datasets might exhibit a 
“one-way trip” of depletion (Hilborn & Walters, 1992), this tends to “rig the 
game” in the sense that parameter estimates are less precise, and probability of 
collapse is higher. For this reason, the in-sample data simulations use uniform 
fishing variability to give estimation the best chance of success. Figure 1 displays 
average parameter estimates for each regression coefficient and MSY over 10,000 
simulations for 200 periods each. The regression coefficients are consistent for 
their true values and converge smoothly. The small-sample bias in the regression 
coefficients leads to some problematic behavior in the estimates of the policy 
variable; estimates of MSY are consistent but exhibit a much less regular approach 
to the true value, with many spikes, some quite large, along the path to convergence. 
This fits with empirical under-identification as described above (Kenny, 1979). 

The simulations above confirm that estimates implied by Eq. (2) are consistent. 
Using these estimates for policy is a different matter. Figure 2 demonstrates the 
performance of a statistical management regime that allows harvesting of the 
estimated value for MSY beginning at period 30.8 When statistical management 
begins, catches immediately increase and the rate of collapse (stock reaching zero) 
increases, rising to nearly 90% by the 100th period. While there may exist discount 
rates for which this catch profile is supported as optimal, the fact remains that

7 This follows from Slutsky’s theorem (Wooldridge, 2010) and is confirmed by simulation results 
below. 
8 30 years is an unusually large sample to have both catch and stock data. For example, Erisman 
et al. (2011) made use of some of the largest such datasets in Southern California, and the largest 
sample in this paper contained 30 years. 
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Fig. 1 Consistency of estimates 

most fishery management legislation contains a mandate to prevent collapse of 
the resource. Statistical management, even for a correctly specified model with 
unrealistically high-quality data, performs poorly. 

4 Heuristic Precaution 

What is the manager to do in the face of unreliable estimates of MSY in the given 
sample? A first thought might be to introduce a reduction to MSY, but it is not 
obvious how to make such a reduction that is not an arbitrary “fudge factor.” This 
section presents a modest suggestion: discard all but recent data. A “rule-of-thumb” 
management program using only the most recent three periods’ stock and catch data
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Fig. 2 Statistical management 

can perform a rudimentary gradient search for the stock which yields MSY. The 
motivation for the gradient search is that much can be learned from three periods 
about the current position of the stock. Presume only that G(Xt) has a unique global 
maximum value greater than zero and G(Xt) = 0 for  Xt = 0 and Xt = 0 for  some  
unknown K > 0. The goal is to set catch levels to send the stock level to that which 
maximizes the growth function. If the noise term is reasonably small and stock and 
catch values are known, then G(Xt)= (Xt – 1 – Xt) – Yt – 1, approximately. Therefore, 
at time period s and given data: {Ys, Ys – 1, Ys – 2, Xs, Xs – 1, Xs – 2}, we can rewrite to 
obtain our estimates of the realized growth in the previous two periods: 

G(Xs – 1) = (Xs – Xs – 1) – Ys – 1  and G(Xs – 2) = (Xs – 1  – Xs – 2) – Ys – 2. We now  
have four cases, two of which are informative: 

1. Xs – 1  > Xs and G(Xs – 1) > G(Xs): This implies that the single peak occurs at 
some X greater than Xs. 

2. Xs – 1  < Xs and G(Xs – 1) < G(Xs): This is not enough information to determine 
the location of the peak. 

3. Xs – 1  < Xs and G(Xs – 1) > G(Xs): This implies that the single peak occurs at 
some X greater than Xs. 

4. Xs – 1  > Xs and G(Xs – 1) < G(Xs): This is not enough information to determine 
the location of the peak.
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G(Xs) 

G(Xs) 

G(Xs–1) 

Xs–1 Xs–1Xs Xs 

Xs–1 Xs–1Xs Xs 

G(Xs–1) 

G(Xs) 

G(Xs–1) 

G(Xs) 

G(Xs–1) 

CASE 1: Xs–1 > Xs and G(Xs–1) > G(Xs) CASE 2: Xs–1 < Xs and G(Xs–1) < G(Xs) 

CASE 3: Xs–1 < Xs and G(Xs–1) > G(Xs) CASE 4: Xs–1 > Xs and G(Xs–1) < G(Xs) 

Fig. 3 The four possibilities for 2 points for any single-peaked growth curve 

Three realizations of the stock and growth values are sufficient to describe two 
values lying on the underlying growth function. Figure 3 summarizes these four 
cases outlined above. 

The rule-of-thumb decision rule makes use of the implications of each case 
above. In the informative cases 1 and 2, the rule increases or decreases the harvest 
by a factor, γ , assigned arbitrarily to be 5 in simulations below. To summarize, the 
rule of thumb sets period s catch as follows for each of the four cases: 

1. Set Ys = (1 − γ )Ys−1 
2. Set Ys = Ys−1 
3. Set Ys = (1 + γ )Ys−1 
4. Set Ys = Ys−1 

Any precautionary preference would be concerned with the probability of stock 
collapse. Many management plans contain statements mandating a maintenance of 
stocks at or near that which yields MSY, coupled with a mandate to prevent the stock 
from crashing and to prevent the stock from dropping below some threshold as in 
Lee (2003). The rule of thumb decreases the probability of stock collapse. 

Figures 4, 5, 6, and 7 present averages of 100,000 trials for 100 periods for 
managing a fishery under different regimes. Figure 4 shows the baseline of OLS 
statistical management beginning at period 15. Figures 5 and 6 show the results 
of preceding OLS statistical management by 15 and 30 years (respectively) of 
rule-of-thumb (gradient) management. Figure 7 shows the results of using our rule-
of-thumb heuristic approach for the entire 85-year period of active management 
displayed. In every case, statistical management is dominated by our simple
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Fig. 4 Pure statistical management with delay 

heuristic rule. Most strikingly, our rule-of-thumb gradient approach maintains high 
average catch levels; at the same time, the longer it is used relative to the standard 
OLS statistical management regime, the lower the probability of a fishery collapse. 

The results suggest that it is unlikely that small samples of fishery independent 
data contain much payoff-relevant information. The rule of thumb outperforms 
decisions based on the entire sample. It is important to remember that OLS is 
correctly specified for this model, and the disturbance terms are normally distributed 
and i.i.d., a rosy situation indeed. The model is simple, but any change to the model 
to increase realism will only make the bio-econometrician’s task more difficult, as 
there is no more realistic growth model with fewer than two parameters. 

5 Concluding Remarks 

Fisheries in the developing world are plagued by myriad difficulties. Property rights 
are insecure. Ecosystems are degraded. Data are missing and, of necessity, the 
parameter estimates upon which fisheries management decisions are made must be 
wrong. Statistical estimates are never the true parameter values. Economists have 
largely ignored this issue. Indeed, most theoretical and applied work has taken the
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Fig. 5 Mixed management, short horizon 

parameter estimates from biologists and treated them as truth. When economists 
have considered uncertainty, it is typically in the form of random environmental 
shocks to recruitment from the growth equation. In the simplest cases, i.i.d. error 
terms allow the appropriate adjustment in each time period. Sethi et al. (2005) have  
shown that other forms of error, such those resulting from having to measure stock 
size, can create much more substantial problems for managing fisheries. Our work 
extends the list of problems by emphasizing statistical uncertainty in the parameter 
estimates when only relatively short time series data are available – a situation that 
characterizes many fisheries. 

In the simple Gordon-Shaefer model, measurement error in the main biological 
parameters – growth rate, carrying capacity, and maximum sustainable yield – 
tends to be fairly large. In part that is because the regression model has two 
covariates, stock size and stock size squared, which tend to be highly correlated. 
This high correlation is made much worse by the usual management practice of 
trying to maintain stock size at a specific level. The typical error in the parameter 
estimates increases rapidly in the underlying unexplained variance. More complex 
(and realistic) models, either in terms of more parameters or more complex error 
structures, are likely to create even worse statistical properties for the estimates used. 
This paper gives the game away to the bio-econometrician; estimation is made as 
simple as possible. The functional form is the one used to generate the data; the error 
component is generated independently and has low variance. Further, both catch and



Precautionary Heuristic Management and Learning for Data-Poor Fisheries 119

Fig. 6 Mixed management, long horizon 

stock are assumed observable. This paper shows that there is little gain (if any) to 
using the full, but still quite small, sample typically available for most fisheries. 
Throwing out 90% of the sample and using a heuristic are better. 

Increasing the number of parameters will almost surely make the problem worse. 
Some readers may argue that real stock assessments rely on fishery-independent 
data and that our results only reinforce the importance of that source of information. 
Fisheries are multidimensional dynamic systems and data on variables beyond 
catch and stock levels (such as length-frequency and length-at-age) may improve 
estimates, but only if the out-of-sample predictive information they provide grows at 
a rate substantially larger than the number of extra parameters that must be fit. That 
is because the fundamental nature of the problem is the propagation of measurement 
error in the parameters in a nonlinear optimization model. 

One of the immediate results of our framework is that under- or overestimating 
the allowable catch by the same amount does not result in symmetric errors. 
Overestimation leads to higher catches now and, of necessity, fewer fish later, 
including substantially increasing the risk that the fishery collapses. For any given 
over- and underestimate of the allowable catch, there is typically a discount rate 
that would make one indifferent. Environmentalists and fishers, however, are likely 
to disagree on the discount rate. The social discount rate is also likely to be lower 
than the private discount rate. This discount rate story as a source of conflict is not 
new, but what is new is the interaction between the level of parameter uncertainty
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Fig. 7 Pure heuristic management with delay 

and the discount rate. Uncertainty amplifies the policy variance implied by differing 
discount rates. Reducing the level of uncertainty can be Pareto-improving for all 
groups and can reduce (but not eliminate) the degree of conflict. This insight may 
be useful in implementing more practical variants of the precautionary principle. 

Given the poor performance of the standard statistical estimates of the relevant 
biological parameters and the fact that either over- or underestimation of allowable 
catch can reduce welfare, it is useful to ask if there is any way to improve the 
situation. Because the problem is essentially one of high collinearity and small 
sample size, one possibility is to limit the range of either the carrying capacity 
or growth rate parameters. Interesting opportunities for doing this appear to be 
available, particularly with the recent biological work on estimating historical 
population stocks before large-scale commercial fishing (Jackson et al., 2001). A 
Bayesian framework (Geweke, 1986; Gelman et al., 2003; Walters & Ludwig, 1994) 
is natural. Pinning down a reasonable narrow range for one of these parameters 
could add a great deal of stability to the estimate of allowable catch. 

Our framework suggests a different way of dealing with the issue. It may be 
generally applicable to situations where there is considerable uncertainty about the 
underlying biological growth function, other than the assumption that it is single 
peaked. Our rule-of-thumb decision simply tests which side of the peak one is likely
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to be on, using very limited information, and then pursues it using a conservative 
step size. Since there are stochastic shocks, it is always possible to move in the 
wrong direction on any particular step. On average, though, one moves in the 
correct direction. This simple approach works reasonably well in the sense of being 
fairly close to using the growth function parameters estimated in the standard way 
when the parametric modeling being fit was the correct one. Further, there are 
clearly more sophisticated adaptive gradient pursuit methods that could be explored 
than the simple rule-of-thumb approach in this paper; such methods may be more 
statistically efficient while maintaining a large degree of robustness. Another logical 
step would be to look at the performance of different adaptive gradient pursuit 
methods when the underlying parametric model being fit was the incorrect one, 
so that there was both specification and parameter estimation error, as is likely 
to be the case in realistic empirical applications. Our current framework shows 
promise for cautious adaptive management as a path to implementing management 
guided by a precautionary principle. Finally, we have assumed the usual biological 
management strategy of setting an overall catch limit. It would be useful to see how 
our proposed method interacts with the use of landing fees (Weitzman, 2002) or  
individual transferable quotas (Squires et al., 1995). 

References 

Berck, P., & Perloff, J. M. (1984). An open-access fishery with rational expectations. Economet-
rica, 52, 489–506. 

Brock, W. A., Durlauf, S. D., Nason, J. M., & Rondina, G. (2007). Simple versus optimal rules as 
guides to policy. Journal of Monetary Economics, 54, 1372–1396. 

Carson, R. T., Granger, C. W. J., Jackson, J., & Schlenker, W. (2009). Fisheries management under 
cyclical population dynamics. Environmental and Resource Economics, 42, 379–410. 

Clark, C. (1990). Mathematical bioeconomics: The optimal management of renewable resources 
(2nd ed.). Wiley. 

Clark, C., & Kirkwood, G. (1986). On uncertain renewable resource stocks: Optimal harvest 
policies and the value of stock surveys. Journal of Environmental Economics and Management, 
13, 235–244. 

Costello, C. (2000). Resource management with information on a random environment [Disserta-
tion]. University of California, Berkeley. 

Costello, C., Polasky, S., & Solow, A. (2001). Renewable resource management with environmen-
tal prediction. Canadian Journal of Economics, 34, 196–211. 

Costello, C., Ovando, D., Hilborn, R., Gaines, S., Deschenes, O., & Lester, C. (2012). Status and 
solutions for the world’s unassessed fisheries. Science, 338, 517–520. 

Erisman, B., Allen, L., Claisse, J., Pondella, D., II, Miller, E., & Murray, J. (2011). The illusion 
of plenty: Hyperstability masks collapses in two recreational fisheries that target fish spawning 
aggregations. Canadian Journal of Fisheries and Aquatic Sciences, 68, 1705–1716. 

Fisher, A. C. (1981). Resource and environmental economics. Cambridge University Press. 
Food and Agriculture Organization (FAO). (1995). Precautionary approach to fisheries. Part I: 

Guidelines on the precautionary approach to capture fisheries and species introductions. FAO  
Technical Paper no. 350. 

Gelman, A., Carlin, B. P., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis (2nd ed.). 
Chapman and Hall.



122 J. H. Murray and R. T. Carson

Geweke, J. F. (1986). Exact inference in the inequality constrained normal linear regression model. 
Journal of Applied Econometrics, 1, 127–142. 

Gordon, H. S. (1954). The economic theory of a common property resource: The fishery. Journal 
of Political Economy, 62, 124–142. 

Grant, S., & Quiggin, J. (2013). Bounded awareness, heuristics and the precautionary principle. 
Journal of Economic Behavior & Organization, 93, 17–31. 

Hamilton, J. D. (1994). Time series analysis. Princeton University Press. 
Hartwick, J., & Olewiler, N. (1998). The economics of natural resource use (2nd ed.). Prentice 

Hall. 
Hilborn, R., & Walters, C. J. (1992). Quantitative fisheries stock assessment: Choice, dynamics, 

and uncertainty. Chapman and Hall. 
Jackson, J. J., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., 

Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. 
B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., & Warner, R. 
R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 
629–637. 

Kenny, D. A. (1979). Correlation and causality. Wiley.  
Larson, M, Horeczko, M., Hanan, D., Valle, C., & O’Reilly, K. (2002). White seabass fishery 

management plan. California Department of Fish and Game. http://www.dfg.ca.gov/marine/ 
wsfmp/index.asp 

Lauck, T., Clark, C. W., Mangel, M., & Monro, G. (1998). Implementing the precautionary 
principle in fisheries through marine reserves. Ecological Applications, 8, S72–S78. 

Lee, L. M. (2003). Population assessment and short-term stock projections of the blue fish. Atlantic 
States Marine Fisheries Commission and the Mid-Atlantic Fishery Management Council 
Monitoring Committee. 

Ludwig, D. A., & Walters, C. J. (1981). Optimal harvesting with imprecise parameter estimates. 
Ecological Modelling, 14, 273–292. 

Mid-Atlantic Fishery Management Council. (1999). Summer flounder, scup, and black sea bass 
fishery management plan: Executive summary–amendment 12.http://www.mafmc.org/mid-
atlantic/fmp/summer-a12.htm 

Orphanides, A. (2008). Taylor rules. In The new Palgrave dictionary of economics (Vol. 8, 2nd ed., 
pp. 2000–2004). 

Perman, R., Yu, M., McGilvray, J., & Common, M. (2003). Natural resource and environmental 
economics (3rd ed.). Pearson. 

Randall, A. (2011). Risk and precaution. Cambridge University Press. 
Rausser, G. C., & Hochman, E. (1979). Dynamic agricultural systems: Economic prediction and 

control. Elsevier North-Holland. 
Reed, W. J. (1979). Optimal escapement levels in stochastic and deterministic harvesting models. 

Journal of Environmental Economics and Management, 6, 350–363. 
Roughgarden, J., & Smith, F. (1996). Why fisheries collapse and what to do about it. Proceedings 

of the National Academy of Sciences, 93, 5078–5083. 
Sethi, G., Costello, C., Fisher, A. C., Hanemann, W. M., & Karp, L. (2005). Fishery management 

under multiple uncertainty. Journal of Environmental Economics and Management, 50, 300– 
318. 

Singh, R., Weninger, Q., & Doyle, M. (2006). Fisheries management with stock growth uncertainty 
and costly capital adjustment. Journal of Environmental Economics and Management, 52, 582– 
599. 

Smith, V. L. (1969). On models of commercial fishing. Journal of Political Economy, 77, 181–198. 
Smith, M. D. (2008). Bioeconometrics: Empirical modeling of bioeconomic systems. Marine 

Resource Economics, 23, 1–23. 
Smith, T., & Punt, A. E. (2001). The gospel of maximum sustainable yield in fisheries management: 

Birth, crucifixion and reincarnation. In J. D. Reynolds, G. M. Mace, & K. H. Redford (Eds.), 
Conservation of exploited species. Cambridge University Press.


 23280 19619 a 23280 19619 a
 
http://www.dfg.ca.gov/marine/wsfmp/index.asp

 24248 30688 a 24248
30688 a
 
http://www.mafmc.org/mid-atlantic/fmp/summer-a12.htm


Precautionary Heuristic Management and Learning for Data-Poor Fisheries 123

Smith, M. D., Zhang, J., & Coleman, F. C. (2008). Econometric modeling of fisheries with complex 
life histories: Avoiding biological management failures. Journal of Environmental Economics 
and Management, 55, 265–280. 

Squires, D., & Vestergaard, N. (2016). Putting economics into maximum economic yield. Marine 
Resource Economics, 31, 101–116. 

Squires, D., Kirkley, J., & Tisdell, C. A. (1995). Individual transferable quotas as a fisheries 
management tool. Reviews in Fisheries Science, 3, 141–169. 

Sunstein, C. R. (2005). Laws of fear: Beyond the precautionary principle. Cambridge University 
Press. 

Tietenberg, T. H., & Lewis, L. (2018). Environmental and natural resource economics (11th ed.). 
Routledge. 

Walters, C. J., & Ludwig, D. (1994). Calculation of Bayes posterior distributions for key 
parameters. Canadian Journal of Aquatic Science, 51, 713–722. 

Weitzman, M. L. (2002). Landing fees vs harvest quotas with uncertain fish stocks. Journal of 
Environmental Economics and Management, 43, 325–338. 

Witherell, D. (1997). Summary of the Bering Sea and Aleutian Islands fishery management 
plans. North Pacific Fishery Management Council. http://www.fakr.noaa.gov/npfmc/fmp/bsai/ 
BSAIFMP/bsfmp97.htm 

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data (2nd ed.). MIT 
Press. 

Zhang, J., & Smith, M. D. (2011). Estimation of a generalized fishery model: A two-stage 
approach. Review of Economics and Statistics, 93, 690–699. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.


 18794 17405 a 18794
17405 a
 
http://www.fakr.noaa.gov/npfmc/fmp/bsai/BSAIFMP/bsfmp97.htm
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Precautionary Heuristic Management and Learning for Data-Poor Fisheries
	1 Introduction
	2 Model and Simulation Framework
	3 Statistical Management
	4 Heuristic Precaution
	5 Concluding Remarks
	References


